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ABSTRACT 

 Security protocols are one of the most secure ways to ensure an outsider threat 

does not gain access to information sent across networks. Current security protocol 

standards typically encrypt packet payloads against such intrusions. But with data 

encryption comes new challenges to monitor communication on a network. In Software 

Defined Networks (SDN), Transport Layer Security (TLS) is commonly used to encrypt 

OpenFlow messages exchanged between a controller and each switch under its control. 

TLS results in lack of data visibility to network monitors and this, in-turn, can prevent 

timely detection of and response to various network events. In this thesis, we develop 

solutions to classify encrypted OpenFlow traffic into OpenFlow message types. It 

examines the effectiveness of two traffic classification techniques using a dataset 

generated from a simulated SDN, and shows that the techniques can achieve an accuracy 

up to 95%. The most successful features used to classify encrypted OpenFlow messages 

are explained along with a methodology of collecting data, labeling data, identifying 

features, and the training of models to achieve high accuracy of classification. 
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CHAPTER 1:
Introduction

Network traffic is digitally-formatted information that traverses one of more computer based
networks. This traffic is broken into discrete packets that represent the smallest units of
conveyance for carrying data and/or protocol-related control information. Any packet or
sequence of packet or sequence thereof that has an effect on the network is referred to as
a network event. These events can range from requesting an IP address from the dynamic
host configuration protocol (DHCP) server, to requesting a cached web page from a web
server. These events are the ongoing operations of any given organization. The technique
of inferring network events from live or captured network traffic is commonly referred
to as network traffic analysis or classification. Accurate network traffic classification is
advantageous in networkmanagement and administration as it can provide timely indications
and warning regarding potential malicious activities such as network intrusions or data
exfiltration. Classification of unencrypted network traffic has been studied with promising
results [1]. However there has been limited research of classifying encrypted packets for
traffic analysis purposes. Encryption of network traffic provides an essential security control
for information transiting any of the myriad of networks that constitute the global Internet.
It provides for the information security objectives of both confidentiality and integrity thus
helping to prevent unauthorized disclosure, modification, or impersonation of information.
This thesis considers a specific subset of encrypted packet flows, Transport Layer Security
(TLS) protected traffic as it applies to Software Defined Networks (SDNs). An SDN is a
networking standard which provides the flexibility of programming network services as per
the need and demand of user applications. SDNs utilize TLS for control communications
between a logically centralized controller and each switch handling user traffic. The ability
to infer network events from TLS encrypted data will allow monitoring of SDN control
traffic in transit and potentially give new insight into classifying other types of encrypted
traffic.
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1.1 Inferring Network Events
Network traffic analysis refers to a class of techniques for collecting and examining computer
communication traffic for the purpose of detecting and responding to security threats.
Because adversaries are continuously modifying their attack methods to avoid detection, it
is important for network operators to deploy robust traffic analysis systems.

The study conducted byMenuka et al. [2] details the work conducted to infer network events
from unencrypted data. It outlines the process of data preparation (identifying what features
would be used for the data), data clustering (labeling the data), classification of the data,
and a performance evaluation.

The study conducted utilized a Kaggle data set [3]. The data set was real world, diverse, and
was created by collecting network traffic from a university in Popayan, Colombia. Only a
subset of the data set was used for the study. Utilizing unsupervised learning for labeling, the
data was clustered based on the possible correlation of the data. Labels are created and used
to train classification models. Five classification models (Support Vector Machine, Linear
and Radial Based Function, Decision Tree, Random Forest, and Kth Nearest Neighbor) are
implemented and return various levels of performance. The study conducted a field test
integrating machine learning with software defined networks. The study demonstrates how
classification algorithms return positive results within the SDN environment.

Traffic analysis becomes difficult when we introduce the paradigm of encryption into the
realmof analysis. Due to variousmalicious activities conducted over the Internet, it becomes
prudent to encrypt data traversing the composite networks. TheOnionRouting (Tor) Project,
Secure Socket Shell (SSH), Wi-Fi Protected Access (WPA), and Internet Protocol Security
Protocol Encapsulating Security Payload (IPSec ESP); among other initiatives, provide
these capabilities. Having the capability of identifying and classifying encrypted network
data and then correlating that data to a specific network event provides a means to more
effectively manage and monitor a networks carrying such traffic. This capability is even
more significant for larger and more geographically dispersed networks.

What makes the classification of encrypted network traffic stand out from the classification
of unencrypted traffic is the increased difficulty of identifying features for classification
algorithms to key on. For unencrypted data, models can utilize key information (source IP
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address, destination IP address, protocol port number) to create models for classification of
future data. With encrypted packets, little to none of this information is visible due to the
obfuscation wrought by the encryption. Therefore, other key features of the packets must
be identified and employed to accurately create a usable classification model.

1.2 Problem Statement
This thesis investigates whether it is feasible to classify encrypted TLS traffic within an
SDN into categories that can serve as indicators of network events. SDNs are well suited to
the growing field of cloud services and data centers owning to their adaptability, scalability,
security, and logical control; and are thus more capable of enhanced centralized control due
to the separation of the control-plane and data-planes [4]. It is the observation of the control
plane and its encrypted data that ultimately facilitated collection of the data necessary to
derive the results presented in this study. The control plane, by default is unencrypted. By
implementing the TLS-related control plane packets, we can by inference and deduction
analyze the encrypted control plane traffic. This encryption method is achieved by a TLS
proxy.

”A TLS proxy is used in secure connections to allow for additional networking services
while protecting against denial-of-service attacks. TLS (Transport Layer Security) provides
encryption and authenticity of communication over the Internet. It started out for secure
online e-commerce transactions and has quickly become the defacto security protocol. TLS
proxies are becoming more prominent than older SSL (Secure Socket Layer) proxies when
it comes to handling incoming TLS connections” [5]. Figure 1.1 depicts a simple diagram
of a SDN with a pair of TLS proxy connections between the controller and four switches.

3



Figure 1.1. SDN with TLS Proxies for Encryption

1.3 Research Questions
The hypothesis being evaluated in this thesis is: Identifying and classifying encrypted TLS
data from SDNs to infer network events will provide an effective method of identifying
potential network vulnerabilities and attacks.

The primary research questions pursued are:

• Does selecting a specific classification algorithm (e.g. k-nearest neighbor, random
forests, or decision trees) impact inference accuracy?

• Does the size and topology of the network affect the accuracy and speed of the
classification?

• Will the classification solution be deployable in Navy platforms?

4



1.4 Organization of Thesis
The thesis is organized in five chapters. Chapter 1 provides an introduction to the area of
research, the problem addressed, and the scope and purpose of the thesis. In Chapter 2, the
reader gets an overview of the most important technology areas related to the thesis. Clas-
sification algorithms are described in general terms and TLS, SDN-based TLS technology
in described in more detail. Chapter 3 outlines the methodology of the experimental, to
include diagrams of the setup and running of the network. The results of the experiment
are provided and described in Chapter 4. The thesis concludes with Chapter 5 and an
appendix, which also offers considerations for follow-on research as well as source code for
the interpreter.

5
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CHAPTER 2:
Background

This chapter provides an overview of the three major technology areas pertinent to this
thesis research. First, an introduction to Software Defined Networking (SDN) technology
is presented. This section includes detailed information about the Transport Layer Security
(TLS) protocol, as well as the Mininet network emulation software used in this work. The
second section describes machine learning concepts and classification algorithms relevant
to this study. Finally, this chapter ends with a discussion of related work in the area of
classifying network activities from traffic analysis.

2.1 Software Defined Networking
A Software Defined Networking entails organizing and managing networks in a way that
among other things, separates the configuration channel from the data flow channel. The
configuration channel is the control plane. The control plane allows for a centralized
authority to configure multiple data flow channels that comprise the entire network. The
work is handled andmanaged by the controller, hence the name control plane. The controller
handles configuration management of all the SDN compliant devices. The data flow is the
data plane. This data plane represents the traversal of user related data packets across
the network. The switch devices within the network can rely on the control plane to make
forwarding decisions ormake those decisions on their own. Figure 2.1 shows the architecture
of an SDN. There is only one control plane for the management and configuration of the
hardware devices. This makes the administration, scalability, and organization of an SDN
efficient.

7



Figure 2.1. Architecture of an SDN

Traditional networks require the use of fixed function network devices. This means that
traditional networks are hardware based, as compared to an SDNs which are software
based. Traditional networks also have distributed control. This means every hardware
device, e.g. router or switch is independently controlled. Figure 2.2 depicts the architecture
of a traditional network. From this illustration, it can be seen that an individual control
plane is provided by each individual device. This, then places configuration management
requirements at each device; which makes the management of these traditional networks
cumbersome and tedious.

Figure 2.2. Architecture of a Traditional Network

2.1.1 TLS
Transport Layer Security is a prevalent cryptographic protocol. It is used to conceal
information that traverses networks. From conducting financial transactions to logging into

8



Facebook, TLS is one of the backbones of internet security. TLS provides privacy and
integrity of data during the communications of system. There are three versions of TLS:
TLS 1.1, TLS 1.2, and TLS 1.3. TLS 1.1 [6] is now deprecated. TLS 1.2 [7] is deprecated
as well but did introduce better hash algorithms. TLS 1.3 [8] is the current version in use
today and adds more security mechanisms such as one round trip handshake and session
hashes.

TLS provides a mechanism for networked entities to perform authentication; that is proving
that their provided identities are valid/truthful. With public (and private) key encryption,
website authentication can be facilitated. TLS also protects data from man-in-the-middle
attacks by leveraging symmetric encryption algorithms. Finally message authentication
codes are used to facilitate the detection of unauthorized changes to data during traversal
across a network.

Within an SDN encryption is provided by TLS. The TLS protocol will create a secure
connection from client to server to allow transference of encrypted data. The TLS 1.2
connection process steps are outlined in Figure 2.3.

Figure 2.3. TLS 1.2 Connection Establishment

A more in-depth timing diagram of TLS 1.3 message transferal is outlined in Chapter 3.
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2.1.2 Mininet
The software program utilized for this study is Mininet. Mininet presents a software based
virtual environment in which networks can be created for research or real-life use. All
hosts, controllers, switches and protocols execute just as they do in traditional physical
networks. Configuration is centralized through a command terminal. OpenFlow is a
supported protocol that provides communication between the control and data plane.

The emulation of networks provides a robust and flexible solution to visualize networks
when the resources for a physical network are not available. The virtual networks can
be created, utilized, and tore down in minutes. This emulation can be achieved using one
physicalmachine (laptop or desktop). Mininet allows you to transmit packets through virtual
switches that provide realistic operating metrics, such as with link speed and processing
delay. Figure 2.4 shows a graphical depiction of a basic network in Mininet.

Figure 2.4. Graphical depiction of an SDN in Mininet
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2.2 Machine Learning
Machine learning is a subset of artificial intelligence. It is a system in which learning occurs
by the observation of data and inputs. The method of learning is achieved by remembering
iterations of experiences in order to make the be prediction of a given scenario.

Machine learning is the process that many companies utilize for services they provide. The
recommendation system from services like Netflix, YouTube, and Spotify all use machine
learning in attempts to deliver the best recommended content for a given user to stream or
watch. In this example each service is collecting data about the user. This could include,
but is not limited to, what the user is watching, clicking, or what you are reacting to. All of
this data is used to make an educated guess on what the user might want to see next.

2.2.1 Supervised and Unsupervised Learning
Machine learning algorithms are generally performed in two ways: supervised and unsuper-
vised. Gathering data, learning the correlations among it and using labels to predict events
is supervised learning. The process starts with the analysis of a known training data set. The
algorithm yields a model to make predictions about the output. The results can be compared
to the ground truth data used to determine correlations and determine the accuracy of the
algorithm. A quick example of supervised learning can be seen in the practice of predicting
house prices. The key features to be collected would be square footage, number of rooms,
and various other amenities, while also noting the prices of similar houses currently or
recently on the market. The prediction of new house prices is based on using the composite
of available information to deduce the price of a new house (square footage, number of
rooms, location, and various other amenities) generated from the data.

Conversely, unsupervised learning algorithms apply to training when the data used is neither
classified nor labeled. Since the data is unlabeled, the algorithms can learn different facts
about the data and potentially provide new, heretofore unknown or unspecified insights for
further analysis. An example of this would be identifying an image that contains cats and
dogs. Because the machine has no knowledge of features for these animals, it is not possible
to classify the animals. But it can categorize them according to patterns. This method
would be used to categorize the image according to the animals’ similarities, patterns, and
differences.
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2.2.2 Classification Algorithms
Since somemodels can perform better than others perform poorly, it is more advantageous to
train and test multiple classification models to determine which is more fitting for the goals
of the type of learning being pursued. While there are numerous classification algorithms,
Archit Verma outlines several of the most well-known methods for classification that were
deemed good candidates for the purpose of this research:

The decision tree learning algorithm is a top-down, recursive divide-and-
conquer, greedy algorithm. A decision tree is a tree like structure in which
internal nodes are labeled with attributes and outgoing edges denote outcome
of test condition on that attribute while leaf nodes denote classes. Nodes with
attributes divide the training dataset into two or more subsets based on the
meaning of each related attribute.

The Naive Bayes’ classification algorithm is based on Bayes’ theorem of pos-
terior probability. This algorithm works by predicting probability that a given
data instance belongs to a particular class. Data instance is represented by a
vector - = (G1, G2, G3, ......, G=) where G1, G2, ...., G= are the values of the n
attributes �1, �2, �3, ....., �= in the dataset.

The Support Vector Machine (SVM) algorithm is a supervised learning algo-
rithm that uses labeled data to train the model. The SVM model will calculate
decision boundaries between labeled data also known as hyper planes. Points
near these hyper-planes are called extreme points. The algorithm will optimize
these decision boundaries by setting up margins that separate hyper-planes.

Random forests, also known as random decision forests, are an ensemble learn-
ing method for classification, that operate by constructing a number of decision
trees at training time and outputting the class that is the majority of the classes
outputted from individual trees. Random decision forests correct for decision
tree’s problem of over fitting to their training data sets. The individual deci-
sion trees are created by random selection of tuples from training datasets and
random selection of attributes at each split.

K-nearest neighbor (KNN) predicts the class label of an unknown data instance
by choosing the majority of the classes labels of K-nearest data instances based

12



on the distance between the instances as measured by a distance measure
formula. KNN is a type of instance-based learning, or lazy learning, where and
all computations are done only when the test tuple is presented for classification
[9].

2.3 Related Work
Given this thesis entails classification of encrypted data, here are a few studies conducted
in this area of research:

The classification described byWright et al. [10] examined the effectiveness of classification
of commonly used protocols that are encrypted. The study displays classifying various
encrypted network protocols in two ways. First, it shows the results of classifying network
data without reconstructing TCP (i.e. multiple packet) sessions; followed by the results
wherein TCP session packets were reconstructed. Comparisons of this data showed that
classification accuracy increases when allowing reconstructions of multiple packet sessions
owning to such allowing for the development of better heuristics for classification.

Another study administered by Rasteh et al. [11] focused on using machine learning to
classify encrypted network traffic while implementing a data classification algorithm. The
paper reviews the process of dataset development, data processing, data labeling, and
creating a classification model utilizing Spiking Neural Networks (SNNs). The encryption
methods used were VPN and Tor. The traffic types classified were web browsing, chat, file
transfer, video, and VoIP data. The study demonstrated the ability to classify encrypted
data with the SNN classifier to an overall accuracy of 95%.

Another study conducted byM. Sjoholmsierchio [4] demonstrates the ability to add encryp-
tion variations to an existing open-source protocol. In his research, M. Sjoholmsierchio
creates protocol dialects for the OpenFlow protocol. These dialects standalone from the
TLS encryption that can be used by SDNs. The results demonstrated that adding the dialects
had no significant impact on latency and overhead.

13
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CHAPTER 3:
Methodology

This chapter outlines the methodology of the thesis. It covers the general approach of the
research conducted. It describes OpenFlowmessaging and its order flow. It provides a brief
Mininet walk through. The chapter then covers the encrypted and unencrypted data that will
be collected. Next is data labeling followed by feature identification. The chapter concludes
by reviewing classification algorithms and which specific classifiers will be utilized.

3.1 General Approach
To answer the research questions, the thesis took a four-step approach:

1. The creation of two independent virtual networks. One network implemented no
encryption methods, while the other implements TLS 1.3 encryption methods. Both
networks are given the same commands to generate network traffic.

2. The pairing of each message from the encrypted network to the unencrypted network
to develop heuristics to help identify encrypted messages.

3. The labeling of encrypted messages and identifying features so as to utilize them
during sample runs of encrypted traces.

4. The creation of classification algorithms to determine the efficacy the resulting clas-
sification.

By both describing the design for a complete solution and prototyping and testing the key
components, the thesis addresses the primary research questions. Through the development
of the prototype, the key concepts of the solution are tested and some of the challenges of
developing the proposed system for TLS encryption are identified and addressed. Further-
more, the prototype is necessary to perform functional evaluation of the proposed solution
and also for tests of performance and scalability.

15



3.2 OpenFlow Events
Before explaining the Mininet configurations, we must observe the OpenFlow packets
transmitted across the network. These unencrypted network packets will be the data utilized
to create the ground truth for packet analysis.

In the SDN environment, standard OpenFlow protocol communication is used between the
controller and the switch. Due to the control and data plane being separated, the controller
can focus on overall network information and the switch can focus on data forwarding. Figure
3.1 depicts a Wireshark packet capture during an OpenFlow connection establishment.

Figure 3.1. OpenFlow Connection Establishment

The first three packets are the Transmission Control Protocol (TCP) three-way handshake.
The connection is initiated by the switch. Once the handshake is established, the switch
and controller send OFPT_HELLO packets to one another. They each send these messages
to identify the highest OpenFlow protocol version it can support. Once the messages have
been acknowledged the session has been established.

After session establishment, the controller sends an OFPT_STATS_REQUEST, ask-
ing for information on which ports are available. The switch responds with an
OFPT_FEATURES_REPLY message, noting the ports available, their speeds, and sup-
ported actions. The switch also sends an OFPT_STATS_REPLY that provides detailed
information about the switch such as serial number, software description, and hardware
description. Next, the controller sends the OFPT_SET_CONFIG message. The message
includes the flags and maximum bytes allowed to be sent to the controller. The controller
then sends an OFPT_FLOW_MOD message to modify the state of the switch.

The controller then sends the OFPT_BARRIER_REQUEST message. This message is
utilized by the controller to determine whether the switch has completed all previous
operations. All previously sent messages from the controller must be completed after
this message is sent. The switch then responds with an OFPT_BARRIER_REPLY to the

16



controller.

Next, the OFPT_PACKET_IN is sent by the switch to the controller. There are three
situations when this occurs: no matching flow entry, action request sent to the con-
troller, and invalid Time to Live (TTL) field. The switch also has the ability of send-
ing an OFPT_PORT_STATUS to indicate the status change of one of its ports. Fi-
nally, in order to check for the liveliness of the connection OFPT_ECHO_REQUEST
and OFPT_ECHO_REPLY are sent from the switch to the controller and vice versa [12].
Figure 3.2 depicts the message timing diagram for OpenFlow.

Figure 3.2. OpenFlow Message Diagram

3.3 Mininet Implementation
Having obtained a brief understanding of OpenFlow messages, we can now discuss the
implementation of the Mininet to conduct this study. As mentioned previously, the tool
Mininet was chosen because of its flexible ability to construct and modify networks quickly.
The version of OpenFlow utilized is OpenFlow 1.4. The Ubuntu version used is 18.04.3.
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The baseline VMware snapshot is provided by [4]. His study examines protocol dialects
within SDNs. This study utilized the already established TLS version 1.3 encrypted network
to gather data for classification. It also takes advantage of the scripts created to efficiently
rerun network scenarios. Numerous networks were created with various amounts of hosts
ranging from 2 to 50. The more hosts within the network, the more data to be generated
across the control plane of the SDN.

3.4 Mininet Walkthrough
To run the experiment, two scripts were created. The first script was for the unencrypted
network and the second was for the encrypted network. Both scripts executed the exact
same code. The only difference is the latter script established a TLS connection between the
controller and the switch. The following is the walk through and explanation of executing
the unencrypted script.

Opening a terminal and entering:

$ sudo ./run_notls test

The sudo command allows Mininet to run as root. The rest of the command is the execution
of the script file and specifying the output file named test. The script takes several actions
when it is run. Firstly, it cleans up old files created by previous executions of the code. It
then resets Mininet to the baseline network configuration. Once the cleanup is done, the
controller is started. Then, Wireshark is started and listens to port 6633. Port 6633 is the
port the controller will be listening to the switch on. The switch will listen to the controller
on a randomly assigned ephemeral port. Finally the switch is started and connected to the
controller. The switch will start with a predefined network topology configuration. The
network will run for some predetermined time and shutdown. The controller, Wireshark,
and the switch will shut down. What is left is a packet capture detailing all the packets sent
across the control plane. Figure 3.3 displays the script execution.
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Figure 3.3. Script Execution Flowchart

3.5 The Data

3.5.1 Unencrypted Data
The data generated from the scenarios produce packet capture (PCAP) files. These files
give a detailed look at what packets traversed the network. In this study we observe the data
that traverses the control plane. This data is limited to packets that only span the connection
between the controller and the switch. This allows the ability to determine what kind of
network event occurred.

Figure 3.4 illustrates a full packet capture obtained from a scenario run with the unencrypted
Mininet network. All packets have been discussed in detail in Section 3.1.1. Taking a
detailed look into the capture files provides vital information regarding to the information
passed from the controller to the switch and the switch to the controller. To start, the ports
used are 58772 and 6633 for the switch and controller, respectively. This shows that only
traffic being observed is solely from the control plane. We can also see the types of protocols
used throughout the network. For this network, only the transmission control (TCP) and
OpenFlow protocols are utilized. For the time column, this shows the time elapsed since
the previous packet was sent. Getting more detailed in the information presented we can
see the length of each packet.
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Figure 3.4. Full Packet Capture of Unencrypted OpenFlow Traffic

3.5.2 Encrypted Data
Noting the connection establishment for the encrypted network in Figure 3.5, just as with
the unencrypted network, it begins with the TCP three-way handshake. From there we
see the Client Hello message from the switch to the server. This message communicates
the version of TLS that the switch is able to execute. Next is the Server Hello selecting
the configurations of the cipher suite to use. For this scenario, TLS 1.3 is chosen. The
switch then checks the configurations and generates the key to be used for the session. Once
this three-step process is done the encrypted connection is established and all subsequent
packets are encrypted.
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Figure 3.5. TLS Connection Establishment

Figure 3.6 displays a more generic message diagram associated with TLS 1.3 connection
establishment.

Figure 3.6. TLS 1.3 Message Diagram

Moving to the encrypted packets of the network data shown in Figure 3.7, it is immediately
apparent there is not as much information provided by the PCAP file. Just as with the
unencrypted file, the ports for the controller and switch are visible, as are the lengths of the
packets. Protocols used were TLS 1.3 and TCP. The final bit of information provided is
the time elapsed since the previous packet was sent. These packets, specifically the packets
labeled application data, are the encrypted versions of the OpenFlow messages outlined in
the previous section.
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Figure 3.7. Full Packet Capture of Encrypted TLS Traffic

3.6 Data Labeling
Through data labeling, a small dataset was used to manually analyze packets attach meaning
to the data. This process was tedious due to the inspection of each individual packet and
in an attempt to find characteristics that might assist in identifying each packet or group of
packets in the encrypted packet traces.

An initial intent of this study, the intent was to decrypt the TLS traffic to see the exact
contents of each encrypted packet. This would provide 100% accurate labeling of each
packet in an encrypted trace. However, after extensive research on how to achieve this with
no results, along with time constraints, it was determined this was not possible.

Amethod that could be used is to utilize the pre-shared master secret created during the TLS
secure connection establishment. This would allow for the decryption of packets encrypted
during that specific session. Previous versions of TLS (TLS 1.0, 2.0, etc.) authorized the
use of Rivest–Shamir–Adleman (RSA) key exchange to decrypt. This was not possible in
TLS 1.3. Only Ephemeral Diffie Hellman key exchanges are authorized. Which is only
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possible in a real-time live connection. There are solutions to work around this, but it was
determined the method chosen would suffice for this study.

Data labeling was started by taking the two packet captures and attempting to marry up the
transmitted packets. For example, identifying the unencryptedOFPT_HELLOmessage sent
from the client to the sever and find where its equivalent message is in the encrypted packet
capture file. This process was executed until all unencrypted packets had been mapped to a
corresponding encrypted packet.

For the study, the TCP acknowledgement packet and the Internet Protocol version 6 (IPv6)
packets were removed. The removal was necessary due to their trivial meaning with respect
to network traffic inference. The result left only the Openflowmessages. Figure 3.8 displays
the output of just the Openflow messages.
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Figure 3.8. Data Labeling

Starting at the bottom of the packet alignment, having observed the direction of the unen-
crypted packets and the size, there was a noticeable correlation. Unencrypted packets 138
through 142 alignwith encrypted packets 156 through 160. It was noticed that by identifying
the size of the unencrypted packets, they were all the same (76 bytes). This same fixed-size
characteristic was noticed with the encrypted packets as well (98 bytes). This is particularly
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interesting because it showed TLS 1.3 adds 22 bytes of length to each packet. To further pro-
vide assurance these packets were the same content, we correlated themwith their source-to-
destination directionality (e.g. switch-to-controller or controller-to-switch) and found them
to be the same. Therefore, encrypted packets 156 and 159 are OFPT_ECHO_REQUEST
messages and encrypted packets 157 and 160 are OFPT_ECHO_REPLY messages with
high certainty. This process was continued up the packet capture and unencrypted packets
132, 134, 135, and 136 correlated to encrypted packets 148, 150, and 152, and 154 respec-
tively. Packets 132, 135, 148, and 152 are OFPT_FLOW_MOD messages and packets 134,
136, 150, and 154 were OFPT_PACKET_OUT messages.

Moving above these packets, it was observed some of the unencrypted packets are not
in the same order as the encrypted packets. To understand this, attempts were made to
find a packet to see if some packets were transmitted in a different order. For example,
unencrypted packet 130 was transmitted from the controller to the switch and has a size
of 150 bytes. Whereas the encrypted packet 147 was transmitted from the switch to the
controller and has a size of 174. Using the heuristic, we know this does not follow the
pattern. Using unencrypted packet 130 as the ground truth we attempt to find a packet that
matches the direction transmitted and the size heuristic. We identified encrypted packet
144 as the corresponding packet to packet 130.

This method was continued for every packet. Once complete, we were able to identify each
packet based on direction transmitted, size, and order. Figure 3.9 outlines the direction and
lengths associated with each type of packet.
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Figure 3.9. Packet Heuristics

3.7 Feature Identification
Moving to feature identification, this is the process of examining only the encrypted TLS
data. With this data, features identified can assist in identifying OpenFlow packet types.

After examining the encrypted packets, the features that provided information were direc-
tion of transmission, packet length, and time. These three features provide a measurement
property to differentiate individual packets during the learning and classification process.
Source, destination, and protocol did not provide any substantial assistance to the clas-
sification algorithm due to all the packets having been sent to and from the same place
and the protocol always being TLS 1.3. Also, packet number did not provide significant
results during the study but may be used in the future to conduct further research. Unused
features would be dropped in the data preprocessing section of the study to keep with the
recommended techniques of machine learning. Figure 3.10 displays the output of the data
prior to preprocessing.
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Figure 3.10. Features To Be Used

3.8 Classification Algorithms
Developing the classification algorithm requires observing both encrypted and unencrypted
packets and identifying features that apply to both sets of data. Then utilizing those features
to differentiate events that occur across the network.

Figure 3.11 illustrates splitting data in testing and training data sets. The training data set
is used to train the classification algorithm. Accuracy can be increased by tuning certain
parameters with the algorithm. The output of this is the classification model. Once the
model is developed the testing data will be passed to the model to determine accuracy of
the algorithm.
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Figure 3.11. Classification Algorithm Development

For this study two classification algorithms were chosen, Decision Trees and Naive Bayes.
Decision trees are a supervised machine learning algorithm that splits data according to
specified parameters. The algorithm was chosen due to its ease of understanding and
its prevalence when attempting to classify data. Naive Bayes is a probabilistic machine
learning classifier. This specific classifier was chosen to provide contrast to the Decision
Tree classifier for a broader range of study.

3.8.1 Preparing the Data
Before utilizing the data received from the network, it was necessary to prepare and clean
the data. This step provided advantages when using the data to develop the classification
algorithms.

First, the unnecessary columns that did not play a part in the classification algorithm were
removed. Those columns were the packet number, source/destination IP address, and
protocol. Next, processing of the data to provide better meaning for specific columns was
needed. Time elapsed between each packet was used vice absolute time to better understand
how long each packet took to be delivered. Since the direction format was not useful for
the algorithm it was reformatted. Packets transmitted from the controller to the switch were
designated a value of 0. And packets transmitted from the switch to the controller were
designated a value of 1. This is known as a numerical variable. Finally, all the encrypted
packets were provided a label developed from the unencrypted data explained in the data
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labeling section. These labels were used during the training portion of the classification.
Figure 3.12 shows a snippet of the results of the cleaning and preprocessing of the data.

Figure 3.12. Features Used for Classification
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CHAPTER 4:
Results

This chapter outlines the results of the research conducted. It first reviews the dataset
and how it was generated. Next the algorithm implementation and execution are covered.
Finally the classification results and analysis are provided.

4.1 Dataset Preparation
The dataset shown in the previous chapter was generated from running 20 sessions of a
network containing 1 controller, 1 switch, and 3 hosts. Each session would execute for 50
seconds and then shutdown. During this elapsed time, specific command would be given
to generate different OpenFlow messages across the control plane of the SDN. Every run of
the network would conduct a ping of all host of the network (ping), write/read data through
a TCP/UDP connection (nc), and retrieve a random web-page from the internet (wget).
3692 packets were generated from running the encrypted scenario with the aforementioned
commands. After filtering out unneeded acknowledgment and IPv6 packets, only the
OpenFlow messages remained. Table 4.1 outlines the statistics of the dataset utilized
during classification.

Table 4.1. OpenFlow Dataset Statistics
OpenFlow Packet Type Number of Packets Generated

Features Request 20
Set Config 20
Flow Mod 521

Features Reply 20
Packet In 560
Packet Out 562

Echo Request 134
Echo Reply 134

Total 2011
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4.2 Algorithm Implementation

Decision Tree Classification
With the dataset cleaned and processed for classification, the Decision Tree algorithm was
created. It was built through ”a process known as binary recursive partitioning. This is an
iterative method splitting the data into partitions, and then splitting it up further on each of
the branches” [13].

The following is a high-level description of how I developed the Decision Tree classifier:

1. Loaded the dataset
2. Identified the features and the target variable
3. Divided the data into train and test data (80% training data and 20% test data)
4. Created the Decision Tree classifier
5. Trained the Decision Tree classifier
6. Created the confusion matrix
7. Created the accuracy report
8. Visualized the Decision Tree

Naive Bayes Classification
To provide a different method of classification, a Naive Bayes classifier was developed.
”A Naive Bayes classifier assumes that the presence of a particular feature in a class is
unrelated to the presence of any other feature” [14]. The Naive Bayes classifier model took
the features as an input and returned the probability of it being a specific type of message.
Each feature is not dependent on any other, so the algorithm yielded different results as
compared to the decision tree algorithm.

The Naive Bayes classifier development was similar to that of the Decision Tree, except
there is no tree to be visualized. Here I:

1. Loaded the dataset
2. Identified the features and the target variable
3. Divided the data into train and test data (80% training data and 20% test data)
4. Created the Naive Bayes classifier
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5. Trained the Naive Bayes classifier
6. Created the confusion matrix
7. Created the accuracy report

Each classifier was developed in Anaconda Navigator using Scientific Python Development
Environment (SPYDER). This environment was chosen due to ease of use and familiarity
from previous studies. The source code is provided in Appendix 1. The results and analysis
of the classifications are provided in the Section 4.3.

4.3 Classification Results
The classification results are shown in Table 4.2. The results were taken from the average
of running the classification algorithm 15 times. The Decision Tree algorithm performed
quite well, returning an accuracy of 99% and a n F-1 score of 98%. This is due to the
method of splitting the data each time based on a specified parameter. As displayed, the
Naive Bayes did not return optimal results. It returned an accuracy of 75% and an F-1 score
of 74%. This is due to the features being independent from one another. Therefore features
would not be used together to classify each packet.

Table 4.2. Results of Classification Algorithms.

Classification Algorithm
Total
number of
packets

Packets
classified Accuracy F-1 Score

1: Naive Bayes 2011 403 75% 74%
2: Decision Tree 2011 403 99% 98%

When examining the confusion matrices on Figure 4.1, a more thorough explanation of how
the classifiers identified each packet is given.
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(a) Decision Tree Confusion Matrix (b) Naive Bayes Confusion Matrix

Figure 4.1. Confusion Matrix Results

The diagonal plot shows the correct classification of each packet. Anything under the
diagonal represents a packet thatwas the correct packet, but themodel classified it incorrectly
(false negative). Anything above the diagonal represents a packet that was wrong, but the
classifier labeled it as the correct type of packet (false positive). Within the Decision Tree
confusion matrix we see the Features_Request message misidentified. One of the packets
was the correct type of packet but it was labeled as an Echo_Reply message. And three
others were wrong (they were actually Hello messages) but it labeled them as a correct
Features_Requestmessage. In both instances the training of the classifier plays a significant
role on why this occurs. Given that the Hello, Features_Request, and Echo_Reply packets
all have the similar feature values it is easy to understand how the classifier might mis-label
them.

For the Naive Bayes confusion matrix, the logic is the same. Except in this classifier
Echo_Reply packets were predicted to be Features_Request packet. Then Packet_Out
packets are misidentified as Flow_Mod packets. Since both sets of packets have similar
values and Naive Bayes treats features independently the misidentification is higher with
this classifier.

Further analysis was conducted in the area of features. This analysis was conducted to
ensure the accuracy results were valid and did not memorize the data during training. The
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accuracy was a result of utilizing each feature (time, length, direction) individually to see
how well the classifier performed. Table 4.3 displays the results.

Table 4.3. Feature Importance Analysis

Classification Algorithm Time
Feature

Direction
Feature

Length
Feature

Overall
Accuracy

1: Naive Bayes 22% 25% 26% 75%
2: Decision Tree 40% 54% 85% 98%

As the table shows, the individual features utilized in the decision tree classifier yielded
higher classification accuracy, therefore leading to a higher accuracy when all are used
together. What is particularly interesting about the Naive Bayes classifier’s features is that
all yielded similar accuracy. This confirms the fact that Naive Bayes classifiers treat each
feature independently.
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CHAPTER 5:
Conclusion and Future Work

5.1 Conclusions
The primary hypothesis of the thesis introduced in Section 1.3: Identifying and classifying
encrypted TLS data from SDNs to infer network events will provide an effective method
of identifying potential network vulnerabilities and attacks, is positively answered by the
completion of gathering, labeling, and classifying encrypted OpenFlow packets within a
Software Defined Network. The ability to infer the control packet type will allow for a more
accurate monitoring of what is occurring on the network.

In addition, the research conducted was able to answer two of the three research questions
posed in Section 1.3:

• First, does selecting a specific classification algorithm impact inference accuracy?
The simple answer based on results presented in Chapter 4 is YES. Decision Tree is
shown to perform much better than Naive Bayes.

• Second, does the size and topology of the network affect the accuracy and speed of
the classification? If more data is generated from a bigger network, then will in fact
take longer to classify the increased number of packets. However, both Decision Tree
and Naive Bayes algorithms are able to scale to large datasets. Given the accuracy
of the current algorithms, it is only logical with more data to train on, the accuracy
would therefore increase.

• Finally, and unfortunately the final research question: will the classification solution
be deployable in Navy platformswas not able to be researched. Initial thoughts would
be that it is possible, but further work would be needed to build a testbed that is
able to simulate a variety of Navy platforms. Not having the capability of gathering
unencrypted data for labeling and then also being able to generate the equivalent
encrypted data for classification purposes halted this process.
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In summary, the results indicate that it is possible to infer encrypted TLS network events
within software defined networks. Classification accuracy depends on algorithm selection.
Results show a high of 99% accuracy when identifying encrypted packets. This study is
easily repeatable and can be streamlined for optimization for future use.

5.2 Recommendations for Future Work
The work involving the gathering, labeling, and classifying of the data solution revealed
a number of areas on which future research efforts could focus to advance and evolve the
research and the results described in this thesis. These following potential areas are listed
in no particular order:

• Further research could be placed in the area of other network protocols. This study
utilized OpenFlow as the protocol to decipher messages. The expansion of other pro-
tocols would assist network monitors and managers in identifying malicious attacks
conducted from other services introduced in the network.

• Effort could also be placed in the area of live classification. Testing conducted during
this study occurred after data collection was complete. Live classification could be
implemented within Navy networks to enhance network management and oversight.
Having the ability to capture encrypted packets in real-time flowing across a network
would provide substantial benefits to organizations wanting to see network content.

• Different classification algorithms could be an area of future work as well. Only
two classification algorithms we used during this study and returned decent to great
results. With the future search in algorithms, there could also be more research placed
on the generation of different features. Since three features were used, there are quite
a few more that could return promising results.

• The decryption of TLS 1.3 traffic is this final area of future work. There are methods
of decrypting TLS 1.3 traffic available. The ability to decrypt said traffic provides
more 100% accuracy in labeling data, therefore increased accuracy in the classifica-
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tion. More time and research are needed to accomplish this task.
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APPENDIX: Source Code for Classification
Algorithms

The follow source code was utilized for a Decision Tree Classifier:

#Import necessary libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score

from sklearn.metrics import plot_confusion_matrix

from sklearn.tree import plot_tree

import matplotlib.pyplot as plt

# Label Columns

col_names = [’Time’, ’Length’, ’Direction’, ’Target’]

tar_name = [’Target’]

# Load dataset

df = pd.read_csv(’total_data.csv’)

#%%

# Identify Feature and Target Variable

feature_cols = [’Time’, ’Length’,’Direction’]

X = df[feature_cols] # Features

y = df.Target # Target variable

#%%

# Split dataset into training set and test set 80% training and 20% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Create Decision Tree classifer object

clf = DecisionTreeClassifier(max_features=3,max_depth=6)

# Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)
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y_pred = clf.predict(X_test)

# Plot Confusion Matrix

plot_confusion_matrix(clf, X_test, y_test, xticks_rotation=90)

# Calculate Feautre Importance

feat_importance = clf.tree_.compute_feature_importances(normalize=False)

# Print Results

print(classification_report(y_test,y_pred))

print(accuracy_score(y_test, y_pred))

print("Feat Importance = " + str(feat_importance))

#%%

# Visualize Decision Tree

plt.figure(figsize=(60,25))

plot_tree(clf,

feature_names = feature_cols,

class_names = df.Target,

filled = True,

proportion= True,

fontsize=10,

rounded = True )

plt.savefig(’tree_visualization.png’)
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The follow source code was utilized for a Naive Bayes Classifier:

#Import necessary libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.metrics import plot_confusion_matrix

from sklearn.naive_bayes import GaussianNB

from sklearn.inspection import permutation_importance

# Label Columns

col_names = [’Time’, ’Length’, ’Direction’, ’Target’]

tar_name = [’Target’]

# Load dataset

df = pd.read_csv(’total_data.csv’)

#%%

# Identify Feature and Target Variable

feature_cols = [’Time’, ’Length’,’Direction’]

X = df[feature_cols] # Features

y = df.Target # Target variable

# Split dataset into training set and test set 80% training and 20% test

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0, test_size=0.2)

# Train Naive Bayes classifier

gnb = GaussianNB().fit(X_train, y_train)

gnb_predictions = gnb.predict(X_test)

# Plot Confusion Matrix

plot_confusion_matrix(gnb, X_test, y_test, xticks_rotation=90)

y_pred = gnb.predict(X_test)

accuracy = gnb.score(X_test, y_test)

# Print Results

43



print(accuracy)

print(’################################################’)

print(classification_report(y_test,y_pred))

print(’################################################’)

# creating a confusion matrix

print(confusion_matrix(y_test, gnb_predictions))

print("Number of mislabeled points out of a total %d points : %d"

% (X_test.shape[0], (y_test != y_pred).sum()))

imps = permutation_importance(gnb, X_test, y_test)

print(imps.importances_mean)
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