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ABSTRACT 

 Wildfire-favorable offshore wind events (OWEs) in California, such as Santa Ana 

(SA) and Diablo wind events, are extreme weather events that can contribute to severe 

societal impacts. We analyzed the large-scale weather and climate conditions associated 

with OWEs in California during November 1979–2018. We focused on statistical and 

dynamical analyses of the associated global subseasonal to seasonal (S2S) atmospheric 

and oceanic anomalies. We found that OWEs in California tend to be part of anomalous 

planetary wave trains that span all or most of the northern extratropics and that they 

appear to be initiated by sea surface temperature anomalies (SSTAs) and tropospheric 

convection anomalies in the tropical Indian Ocean and western-central tropical Pacific 

region. Multiple lines of evidence suggest that the onset of the tropical anomalies tends to 

lead the occurrence of November OWEs in California by 10–30 days or more. An 

empirical test shows that: (a) using the MJO as a predictor of California OWEs at 

subseasonal lead times produces skillful forecasts compared to random forecasts; and (b) 

the impacts of MJO are modulated by low-frequency climate modes (e.g., ENLN and 

ENLN Modoki). We also analyzed OWEs in October and December 1979–2018 and 

found broadly similar results. Our results strongly suggest that skillful S2S predictions of 

California OWEs may be possible by accounting for tropical atmosphere-ocean variations 

and tropical-extratropical teleconnection dynamics. 
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I. INTRODUCTION AND PREVIOUS RESEARCH 

A. INTRODUCTION 

1. Overview 

Offshore wind events (OWEs) in California (CA), such as Santa Ana (SA) and 

Diablo winds, are anomalous offshore and downslope winds that descend from the Great 

Basin into CA and can help fuel disastrous wildfires during the end of the dry season 

(October to December). OWEs are generated by anomalous ridges and associated high-

pressure over the western United States during the fall and winter months, and they result 

in strong easterly (westward) to northeasterly (southwestward) flow that interacts with 

topography to trigger intense down-slope windstorms and gap wind effects. These events 

have far-reaching societal impacts, including increasing wildfire risks, resource and 

infrastructure vulnerabilities, wind energy management challenges, and national security 

concerns.  

Some parts of this section are adapted from Murphree et al. (2018), previously 

published by the Climate Prediction S&T Digest. The focus of this study is to characterize 

and analyze the global scale subseasonal to seasonal (S2S) anomalies associated with the 

development of CA OWE-favorable synoptic conditions, as opposed to the exclusively 

synoptic to mesoscale focus of many prior studies of OWEs. Our results indicate that: (a) 

global scale S2S processes are important in initiating CA OWE-favorable synoptic 

conditions; and (b) remote tropical variables associated with these processes may be useful 

predictors of OWE-favorable conditions at S2S lead times. We conducted a simple 15-year 

hindcasting study using an empirical forecasting system and found potential skill at S2S 

forecasting OWE-favorable synoptic conditions. The ability to skillfully predict these 

conditions could potentially improve the preparation for and responses to CA OWEs.  

While we experience weather locally, there is a long chain of causality leading to 

“local” weather, such as CA OWEs. A simple example of this is recognizing that numerical 

weather prediction (NWP) operates by solving the Navier-Stokes questions in space and 

time with predetermined initial and boundary conditions (Holton and Hakim 2012). The 
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advection terms of the equations implicitly carry forward information from the upstream 

process. While atmospheric chaos indeed places some limitation on our ability to know, to 

an infinite degree of fidelity, the initial conditions of the upstream process and to accurately 

predict the weather at extended ranges (Lorenz 1995), it does not necessarily limit our 

ability to predict the favorability of certain synoptic analogues or patterns. Zhang et al. 

(2019) argued that modern midlatitude predictably is limited to about ten days, and any 

improvement in initial condition fidelity extends predictability only modestly, by another 

five days or so. 

On the other hand, Shen et al. (2021) offers evidence of coexisting chaos and order 

within the weather and climate system that may make extended S2S forecasting possible. 

So, while the Earth’s climate system, including weather and climate, is undoubtedly 

governed by chaotic nonlinear processes, there are also slowly varying processes that 

provide an opportunity to predict the general state of the climate and its teleconnections at 

extended leads. We aim to provide evidence for this in the context of predicting the 

favorability of CA OWEs at subseasonal leads. Other work in our research group is 

examining the seasonal predictability of CA OWEs and has found promising results of 

seasonal predictability out to about two to three months. 

2. What Are Offshore Wind Events?  

As discussed in the previous section, CA OWEs are dry, downslope, northeasterly 

(southwestward) to easterly (westward) winds resulting in intense windstorms at the 

surface across many regions of CA. They are foehn-like, and their effects can be amplified 

by terrain-induced phenomena such as katabatic and gap wind effects. Northern and 

Central CA OWEs are known as Diablo wind events, while in Southern CA they are known 

as Santa Ana (SA) wind events (cf. Raphael 2003; Westerling et al. 2004; Miller and 

Schlegel 2006, Hughes and Hall 2010; Jones et al. 2010; Abatzoglou et al. 2013; Guzman-

Morales et al. 2016; Murphree et al. 2018; Kolden and Abatzoglou 2018; Rolinski et al. 

2019; Mass and Ovens 2019). 

Figure 1 displays a topographical map of CA. The numerous and varied orientations 

of mountain ranges in CA provide many opportunities for terrain effects. For example, 
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strong northeasterly (southwestward) flow aloft over the Sierra Nevada range can lead to 

lee troughing on the western side of the range. This troughing amplifies the pressure 

gradient and can help trigger the strong, ageostrophic flow at the surface/low levels 

associated with OWEs (Mass and Oven 2019). Likewise, this can occur over the Northern 

CA Klamath and Cascade ranges, Central CA’s Coastal and Diablo Ranges, and Southern 

CA’s Transverse and Peninsular Ranges. Some of these ranges (e.g., Klamath/Cascade and 

Transverse) are more vulnerable to northerly (southward) flow, while others (Coastal, 

Diablo, Sierra, and Peninsular) are more vulnerable to easterly (westward) flow due to 

their orientation. 

Moreover, the source region of the flow in the Great Basin has its lowest valley 

elevations close to 4000 ft. Thus, as the flow travels west, it slopes downward and 

experiences adiabatic compression and warming (Whiteman 2000). Katabatic, density 

current effects also play a role in the initial acceleration of OWEs due to Great Basin and 

mountain radiational cooling at night (Whiteman 2000). Downslope windstorms can often 

accompany OWEs, depending on the orientation and specific flow parameters (Whiteman 

2000; Mass and Ovens 2019). Moreover, depending on the particular mesoscale orientation 

of the flow, gap wind effects also lead to intense wind acceleration, such as at the exit of 

the Cajon Pass in Southern California (Whiteman 2000). Figure 2 displays a map of 

Southern California and the infamous mountain passes that amplify SA winds. Localized 

extreme effects of OWEs are often associated with these mesoscale phenomena, which 

tend to dominate that perception of OWEs, Diablo, and SA winds as simply 

synoptic/mesoscale events. 
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 Topographical map of CA. 

Source: Wikipedia (2021). 
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Santa Ana Wind Threat Index zones are shaded in color and labeled with numbers. Major 
mountains ranges are in dashed black lines. Map inset identifies weather stations used to 
diagnose SA events. 

 Map of Southern California identifying significant 
topography impacting Santa Ana wind events. Adapted 

from Rolinski et al. (2019). 

Previous research has focused on synoptic and mesoscale mechanisms and 

conditions that shape OWEs (cf. Raphael 2003; Westerling et al. 2004; Miller and Schlegel 

2006; Hughes and Hall 2010; Jones et al. 2010; Abatzoglou et al. 2013; Guzman-Morales 

et al. 2016; Kolden and Abatzoglou 2018; Rolinski et al. 2019; Mass and Ovens 2019). We 

will not detail those results here, but we will comment on the previously studied synoptic 

seasonality of CA OWEs to explain why we focus on fall events. Figure 3 displays 

Guzman-Morales et al. (2016) results, who created an updated climatology of Southern 

California SA winds. In general, SA winds can occur year-round, but they peak in 

frequency and intensity in the fall and winter months. While their peak is in December and 

January, SA winds are typically most destructive in the fall months of October and 

November, at the end of the dry season. This period is when the other aspects of fire 

weather (i.e., fuels and lack of rain) are at the prime conditions for fire danger (Whiteman 



6 

2000). Because of this, we focused our general research on the fall and early winter months 

of October to December and this study on November, at the tail end of the dry season.  

 
Climatology of SA events from 1948 to 2021: a) monthly distribution of SA event mean 
wind speed, b) monthly distribution of SA event max wind speed, c) monthly distribution 
of SA event duration, and d) mean monthly SA event frequency. Extreme events of > 10–
15 m/s are noted in red. 

 Summary of Santa Ana wind event climatology. 
Adapted from: Guzman-Morales et al. (2016). 
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To better visualize the description of OWEs, we examine a specific event from 

October 2003. Figure 4 displays a visible satellite image from 26 October 2003 of smoke 

from the numerous wildfires, including the Cedar Fire, burning in Southern California. 

These fires were associated with an especially severe SA event around 23–27 October 

2003. While SA winds did not directly start the Cedar Fire or the other fires burning 

simultaneously, the winds did lead to their conflagration. The image notes the easterly 

(westward) flow evidenced with the black arrows and smoke plumes traveling over the 

Pacific. The red dots across CA represent the perimeters of active fires at the time.  

 
Multiple fires burned across Southern California in October 2003. The red dots represent individual 
incidents (separate fires). Offshore flow (black arrows) from a Santa Ana wind event pushes smoke out 
over the Pacific Ocean. Red circle encompasses the massive Cedar Fire in San Diego County, CA. 

 Visible satellite imagery of wildfires and smoke plumes on 26 October 
2003 in Southern CA. Adapted from Descloitres (2003). 
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Figure 5 displays the 850 mb eddy geopotential height anomaly for the Cedar 

Fire-related SA event from 23–27 October 2003. As defined in Chapter II, a geopotential 

height anomaly is calculated by subtracting the climatological mean geopotential height 

from the mean geopotential height for the period in question. The eddy anomaly removes 

the zonal mean at each latitude from the anomaly. Note the positive geopotential height 

anomaly west of Washington state and the inferred anomalous geostrophic offshore flow 

across CA (black arrows). Other anomalies include northerly (southward) flow into the 

Rockies and onshore flow in British Columbia and Alaska (AK).

 

The Cedar Fire in San Diego, CA was stoked by a strong Santa Ana wind event that peaked 
around 23–27 October 2003. The northeasterly (southwestward) offshore flow provided 
prime conditions for a fire conflagration, such as low relative humidity and a strong, warm 
wind. 

 850 mb eddy geopotential height (gpm) anomaly for 23–27 
October 2003 for a Santa Ana wind event associated 

with the Cedar Fire. 
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Figure 6 shows a 3-D view of the synoptic pattern from the surface to the upper 

levels. At the upper levels, a large 200 mb eddy height anomaly rests over the same location 

as the lower tropospheric 850 mb height anomaly. At the surface, high-pressure blankets 

the West Coast. Note, however, an inverted trough over coastal CA. This feature has been 

noted in previous research (Raphael 2003) and found in our results. It is likely caused, at 

the mesoscale level, by lee troughing west of the Sierra Nevada range and thermal 

troughing over the Central Valley of CA and exacerbated by the adiabatic compression of 

the easterly (westward) downslope flow. However, as we will discuss later, this low-

pressure feature is also likely due to a larger scale teleconnection pattern not addressed in 

previous research.  

 
Eddy geopotential height anomaly (gpm) for the upper (200 mb) and lower (850 mb) 
troposphere and sea level pressure anomaly plots for the 23–27 October 2003 Santa Ana event. 

 Multi-layered view of the Cedar Fire-related Santa 
Ana wind event from 23–27 October 2003. 
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If we zoom out from the regional to the global view, we find a global anomaly 

pattern. Figure 7 depicts the global 200 mb eddy geopotential height anomaly for the same 

period from 23–27 October 2003. Note the global, zonal anomalous Rossby wave, 

spanning most of the Northern Hemisphere from about 20N to 70N. Also, we find an 

anomalous low height anomaly over Mexico and west of Baja California. As we will show 

in the Results chapter, this anomaly is potentially part of an interfering teleconnection 

critical to the height gradient of the anomalous positive height anomaly over western North 

America (WNA). We have found that this gradient and associated geostrophic flow is 

required for the large-scale synoptic flow associated with CA OWEs. Also, we found that 

when CA OWEs are occurring, there are other global anomalies and simultaneous impacts, 

such as troughing in China and western Japan, a strong ridge in AK, northerly (southward) 

flow over the Great Plains, and northeasterly (southwestward) flow over the United 

Kingdom, etc. 

 
 Global view of the 200 mb eddy geopotential height 

(gpm) anomaly for the October 23–27, 2003 OWE. 

Figure 8 displays the global eddy height anomalies for the October 2003 event (top 

left) and three other CA OWEs related to significant wildfires. The top-right plot is for an 
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OWE related to the Freeway Complex Fire in November 2008, the bottom left plot is 

connected to the Thomas Fire in December 2017, and the bottom right plot is related to the 

Camp and Woolsey Fires of November 2018. Note that, in all cases, we found global, zonal 

anomalous Rossby waves spanning most of the Northern Hemisphere from about 20N to 

70N. There are some differences between events, but each event appears to be related to a 

similar global anomaly pattern. These results suggest that CA OWEs are part of a global 

pattern, which indicates that there may be skill in predicting OWEs at S2S leads. 

 
 Global view of the 200 mb eddy geopotential height (gpm) 

anomalies and associated wildfires for four CA OWEs. 

3. Current Forecasting Capability 

Current operational forecasting of OWEs, specifically SA events, is limited to 

synoptic time scales of about seven days via red flag warnings from the NOAA/NWS 

Storm Prediction Center (Storm Prediction Center 2021) and the Santa Ana Wind Threat 

Index from the Southern California Geographic Area Coordination Center of the National 

Interagency Fire Center (Southern California Geographic Area Coordination Center 2021). 

Jones et al. (2010) also discussed approaches to forecasting SA events but found low skill 

at S2S lead times (greater than about a week). Recent research by Rolinski et al. (2019) 
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suggested S2S forecasting of SA events may be possible but did not give any specific 

results or conclusions. 

Aside from empirical forecasting of fire-favorable CA offshore winds, such as SAs, 

current operational and experimental numerical weather prediction (NWP) forecasts offer 

some potential opportunity and skill in predicting CA OWE-related geopotential height 

and wind anomalies at S2S leads. However, it is well known that conventional NWP 

models generally have low skill at S2S leads (Lang et al. 2020). Recent advances in NWP 

are attempting to “bridge the gap” between short-lead synoptic weather forecasting (about 

seven to 10 days) and longer lead climate forecasting (beyond seasonal, greater than two 

to three months) leads (Lang et al. 2020). For example, operational NWP weather models, 

such as the NCEP GFS and NAVGEM deterministic models with 10 to 16-day ranges, 

have advanced to longer-range deterministic and ensemble models such as NCEP GEFS 

(16-day range), NAVGEM EPS (16-day range), and Navy ESPC (45-day range) (Hogan et 

al. 2014; Barton et al. 2021; NCEP 2021). 

The NCEP CFSV2 model offers daily, weekly (out to six weeks), and monthly (out 

to nine months) climate forecasts (Saha et al. 2014; NCEP 2021). Recent experimental 

work on subseasonal forecasting by the Subseasonal Experiment Project (SubX) and Navy 

ESPC is researching the use of multi-model ensembles for four-week weather forecasts 

(Pegion et al. 2019; Barton et al. 2021). However, NWP model performance for S2S 

forecasting of extreme and infrequent weather events could be improved or supplemented 

by empirical and data-driven techniques. For example, Chattopadhyay et al. (2020) used 

deep learning pattern recognition techniques to identify 500 mb geopotential height 

analogues preceding heat and cold waves with promising results. They note: 

The results show the promises of multivariate data‐driven frameworks for 
accurate and fast extreme weather predictions, which can potentially 
augment numerical weather prediction efforts in providing early warnings. 
(Chattopadhyay et al. 2020) 

Our research seeks to expand on this concept of using data-driven techniques to 

provide advanced warning of extreme weather events, such as CA OWEs. As Jones (2018) 

demonstrated, machine learning (ML) and other empirical techniques can aid in forecasting 
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for data-denied or limited regions or situations when there is neither enough time nor 

resources to generate NWP forecasts. Advanced empirical techniques can help formalize 

forecasting thumb rules for use as first-guess forecasts, supplement NWP guidance, or use 

as the lone guidance when new data is unavailable. As we will show, these basic techniques 

are adaptable to many other problems relevant to weather and climate forecasting, and 

security. 

4. Operational DOD Significance 

CA OWEs are a phenomenon that have severe impacts, such as wildfire, power 

outages, and poor air quality. From a national security standpoint, CA OWEs and the 

wildfires they stoke also represent a threat to the Department of Defense (DOD) resources, 

infrastructure, and readiness. For example, the 2019 “Report on Effects of a Changing 

Climate to the Department of Defense” notes that of the 79 DOD installations reviewed, 

43 installations are or will be directly vulnerable to wildfire over the next 20 years 

(Department of Defense 2019). The primary concern for wildfires is that DOD 

activities often provide ignition sources on military installations. Combined with fire-

favorable weather, such as OWEs, wildfires threaten military infrastructure, training, and 

readiness (Kodack 2019). According to the report, “the DOD spends considerable 

resources on claims, asset loss, and suppression activities due to wildfire” (Department of 

Defense 2019). 

Moreover, the lingering effects of wildfires, such as landslides and soil erosion, 

result in long-lasting vulnerabilities. Likewise, a 2020 article by the Center for Climate and 

Security notes that an additional indirect effect of wildfires on or near DOD installations 

is that operational military personnel are redirected from their primary mission to support 

wildfire fighting operations (Kodack 2019). Depending on which units are tasked, this puts 

strain on military requests for forces and support. So, while wildfires and the associated 

fire-favorable weather, such as CA OWEs, are not typically viewed as a traditional threat 

to national security, the DOD has recently acknowledged these asymmetric threats, 

especially in the era of climate change. Thus, improving the predictive skill of fire-

favorable weather, such as OWEs, can extend the range of the military planning process 
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further into the future to more efficiently allocate and direct resources and personnel and 

respond to threats to infrastructure and readiness. Moreover, the basic techniques used in 

this study can be applied to other areas and operations of DOD relevance. 

B. PREVIOUS RESEARCH ON CLIMATE TELECONNECTIONS 

1. Offshore Wind Events and Potential S2S Connections 

Previous research has hinted at but not explored possible global teleconnections to 

CA OWEs (Raphael 2003; Raphael and Finley 2007; Guzman-Morales et al. 2016; 

Rolinski et al. 2019). For example, Raphael (2003) and Raphael and Finely (2007) found 

some evidence that SA events in February and March during El Nino (EN) conditions tend 

to decrease in frequency and intensity but last longer. They did not find significant 

relationships elsewhere in the fall or early winter. Guzman-Morales et al. (2016) found that 

October–April SA event intensity tends to be enhanced during EN and PDO positive 

conditions and subdued during La Nina (LN) and PDO negative conditions. Their results 

suggest that SA events last longer during EN conditions, confirming Raphael (2003). 

Rolinski et al. (2019) also proposed a PDO relationship with SA wind frequencies 

increasing during LN and PDO negative conditions and decreasing AMO conditions. 

As discussed in section A. 3., only Rolinski et al. (2019) noted potential seasonal 

climate precursors to SA events, such as the PDO, AMO, and tropical SSTs (using the 

Nino 3.4 index).  

2. Tropical Forcing of Rossby Waves 

The results in Figures 5–8 indicate that CA OWES are related to global-scale 

teleconnections. These indications are based on decades of research on the tropical forcing 

of Rossby waves (Simmons 1982; Simmons et al. 1983; Sardeshmukh and Hoskins 1988). 

For example, Sardeshmukh and Hoskins (1988) conducted seminal work connecting 

anomalous tropical forcing to Rossby wave generation and introduced the concept of 

Rossby wave sources (RWS) to calculate forcing regions. Figure 9 depicts (top left) stream 

function and divergence perturbations for an idealized tropical heat source. The remaining 

figures show the model solution 48 days later for a linear (top right), partially nonlinear 

(bottom left), and fully nonlinear model (bottom right) configuration. From an idealized 
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modeling study, their results provide evidence that tropical convective anomalies can 

indeed force extratropical Rossby wave trains. Follow-on work expanded on and confirmed 

their conclusions (cf. Hoskins and Ambrizzi 1993; Takaya and Nakamura 1997 and 2001). 

 
(a) Idealized stream function and divergence perturbation (shaded). The anomalous stream function 
evolution 48-days later is portrayed using a linear (b), partially nonlinear (c), and fully nonlinear (d) model. 

 Global Rossby wave generation by idealized tropical convection. 
Adapted from Sardeshmukh and Hoskins (1988). 

3. Dynamical Analysis of MJO-forced Rossby Waves and Impacts 

The connection between the Madden Julian-Oscillation (MJO) (providing upper-

level divergent wind anomalies and associated RWS) and extratropical Rossby waves and 

their midlatitude impacts has been advanced by numerous studies (cf. Higgins and Mo 

1997; Henderson et al. 2016; Henderson and Maloney 2018; Mundhenk et al. 2018; Tseng 

et al. 2018; Zheng and Chang 2019). The studies explicitly examined the dynamical 

linkages between tropical convective anomalies associated with the MJO and specific 

impacts over WNA. For example, Henderson et al. (2016) examined the time-lagged 

relationships between different phases of the MJO and anomalous upper-level stream 

function and anomalous 500 mb geopotential height during boreal winter (December to 
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January). Figure 10 depicts one such relationship. The left figures show anomalous upper-

level stream function and wave activity flux vectors zero to three pentads after MJO phase 

3 forcing. The plots on the right depict the associated 500 mb geopotential height 

anomalies. Note that MJO phase 3 tends to be associated with anomalous highs and lows 

over and near WNA about one to three weeks after phase 3 occurs. 

 
Anomalous upper-level stream function (left) zero to three pentads after MJO Phase 3. Black arrows 
represent wave activity flux vectors. Anomalous 500 mb geopotential heights (right) zero to three 
pentads after MJO Phase 3. Black dots represent statistically significant anomalies.  

 Prior research investigating anomalous stream function and geopotential 
heights over WNA lagging MJO Phase 3 by zero to 15 days. 

Adapted from Henderson et al. (2016). 

Figures 11 and 12 from Henderson and Maloney (2018) expand on Henderson et 

al. (2016). Henderson and Maloney examined the time-lagged relationships between 

different phases of the MJO and anomalous upper-level stream function and 500 mb 

geopotential height during EN and LN conditions. The figure depiction is the same as in 
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Figure 10 except that Figure 11 depicts results during EN conditions and Figure 12 during 

LN conditions. Again, note that MJO phase 3 tends to be associated with anomalous highs 

and lows over and near WNA about one to three weeks after phase 3 occurs. They also 

found, as we confirm, that the teleconnections seem to be modulated by ENLN conditions, 

although we have found the teleconnections are more related to ENLN Modoki conditions. 

EN and LN Modoki feature anomaly patterns similar to EN and LN (Ashok et al. 2007), 

but with: (1) the warm (cool) tropical SST anomalies for EN (LN) Modoki centered further 

to the west than in EN (LN); and (2) cool (warm) SST anomalies just west of South 

America during EN (LN) Modoki rather than warm (cool) SST anomalies there during EN 

(LN). These SST anomalies lead to the teleconnections for ENLN Modoki that can be very 

different from those for ENLN (Horel and Wallace 1981, Ashok et al. 2007). 

 
Same description as Figure 10. 

 Prior research investigating stream function and geopotential heights over 
WNA lagging MJO Phase 3 by zero to 15 days, during EN conditions.  

Adapted from Henderson and Maloney (2018). 
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Same description as Figure 10. 

 Prior research investigating stream function and geopotential heights 
over WNA lagging MJO Phase 3 by zero to 15 days, during LN conditions. 

Adapted from Henderson and Maloney (2018). 

Mundhenk et al. (2018) expanded on Henderson et al. (2016) and Henderson and 

Maloney (2018) by studying the potential skill in subseasonal forecasting of atmospheric 

river (AR) strikes in CA and British Colombia using knowledge of the MJO and inferred 

Rossby wave teleconnection dynamics. Figure 13 below depicts composite anomalous AR 

activity as a function of MJO phase for British Colombia (top) and CA (bottom). In each 

plot, MJO phase is on the y-axis, and the days after MJO are on the x-axis. The colors 

represent the anomalous activity. The study focused on ARs and found that ARs in CA are 

anomalously favored approximately zero to three weeks after MJO phase 7. They also 

found decreased AR activity in CA following MJO phases 1–4 one to four weeks earlier. 
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Our limited work on onshore flow in CA (not discussed in this study) confirms that ARs 

are favored in CA following phase 7. 

 
Composite anomalous AR strike activity in British Columbia and CA by MJO phase (y-
axis) and lead time in days (x-axis). Shaded colors represent anomalous frequency of 
occurrence from the DJFM climatological mean. 

 Prior research investigating the use of the MJO as a predictor for 
atmospheric river events in western North America.  

Adapted from Mundhenk et al. (2018). 
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4. Clustering Synoptic Weather Data 

Finally, previous research on the use of k-means clustering of synoptic weather and 

climate data has shown that it is a valuable tool in analyzing climate patterns. For example, 

Riddle et al. (2012) clustered wintertime (December to March) 500 mb heights over North 

America and found seven dominant clusters of variability. Figure 14 displays Riddle et al. 

results, and they found OWE-like patterns in clusters 1 and 6. Their follow-on analysis (not 

shown) linked these clusters to time-lagged relationships with the MJO. Results for cluster 

6 (not shown) suggest a time-lagged relationship with the MJO phase 6 about one to three 

weeks later (Riddle et al. 2012). Our results for December (see Section B of the Appendix) 

suggest a time-lagged association with MJO phases 3 and 4. The different results are likely 

because we focus on monthly offshore wind anomalies for October to December, while 

Riddle et al. focused on seasonal height anomalies for December to March. However, their 

work does support our method of applying k-means clustering to the problem. 
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K-mean cluster composites of North American 500 mb geopotential heights anomalies 
(seven-day means) for seven clusters (a–g). 

 Prior research investigating the use of k-mean clustering to 
discover large-scale synoptic and climate weather patterns. 

Adapted from Riddle et al. (2012). 
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C. RESEARCH QUESTIONS 

The prior research and our initial investigations summarized in the prior section 

indicate that CA OWEs may be synoptic and mesoscale symptoms of global anomalies. In 

particular, this work indicates that: 

1. Regional CA OWEs are signatures of a larger scale, global anomalous 

Rossby wave train that spans all longitudes in the Northern Hemisphere 

from about 20N to 70N. 

2. These wave trains are related to remote tropical predictors, such as the 

MJO and EN Modoki, via teleconnection bridges between the tropics and 

the extratropics. 

3. The S2S prediction of CA OWEs may be possible using simple empirical 

tropical predictors. 

Based on these indications, we developed and investigated for this study, the 

following research questions.  

1. What global-scale anomalies are associated with CA OWEs?   

2. How are CA OWEs related to known tropical climate variations? 

3. What teleconnection processes set up offshore wind favorable conditions 

over western North America? 

4. What is the potential for skillful statistical subseasonal to seasonal (S2S) 

prediction of CA OWEs using tropical predictors? 

Throughout our investigation, we focused on examining the S2S variability and 

predictability of CA OWEs and their precursors in the context of multiple modes of 

variability, including subseasonal, seasonal, and interannual variability. So, for example, 

we investigated OWEs as a response to a combination of both MJO and EN Modoki 

conditions. We did not aim to separately analyze the effects of different climate variations 

(e.g., S2S versus interannual). This is a different approach than used in many other studies 

of S2S variations and tropical-extratropical teleconnections (e.g., Riddle et al. 2012; 

Henderson et al. 2016; Henderson and Maloney 2018). Two of our main objectives were 



23 

to: (1) identify the combination of climate variations that are favorable for CA OWEs; and 

(2) assess the potential for skillfully predicting CA OWEs at S2S lead times by accounting 

for realistic combinations of climate system variations (e.g., combinations of both S2S and 

interannual variations).  
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II. DATA AND METHODS 

In this chapter, we detail our data sources and methods in order of use in the results 

section. 

A. DATA 

1. Focus Region 

Our study focus region captures most of the state of CA. It is divided into multiple 

subregions (Figure 15) to help analyze CA OWEs in the whole state and the subregions. 

Within the subregions, topography plays a significant role in determining the lower 

tropospheric mesoscale features of offshore flow. Our domain includes part of Nevada to 

include some information about the source region of CA offshore flow. We also include 

part of the northeastern Pacific Ocean (NEPAC) to capture the offshore extensions of CA 

OWEs and flow patterns not directly influenced by terrain. Figure 15 displays our study 

domain and subregions, and Table 1 lists the linear (Pearson) correlation coefficients for 

all CA versus regional u850 zonal winds. The black box encompasses our all-CA region 

(32.5–42N, 235–244E), the red box the Northern CA (NorCA) subregion (38.5–42N, 235–

244E), the blue box the Central CA (CentCA) subregion (35–38.5N, 235–244E), the green 

box the Southern CA (SoCA) subregion (32.5–35N, 235–244E), and the box in yellow 

outline the SA subregion (32.5–35N, 240–242.5E). As discussed in further detail later, we 

define a separate SA subregion to compare our results to previous research on SA winds 

and demonstrate operational forecasting feasibility for a well-known region in which 

OWES can be especially devastating.  
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The large black box encompassing California represents the All-CA focus region. The individual red, 
blue and green shaded boxes encompass the Northern, Central and Southern CA subregions, 
respectively. The yellow outlined box encompasses the SA subregion.  

 Google Earth plot of study domain. 

Table 1. Pearson correlation coefficients for all CA vs. 
regional CA zonal winds 

 
All correlations are significant at the 99.5% confidence level. 
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2. Data Sources 

Table 2 summarizes the data sets we used, plus the corresponding metadata and 

source. All of these data sets are publicly accessible at the references listed. The following 

data sets and climate indices are commonly used to investigate climate patterns and 

teleconnections. Accumulated Cyclone Energy (ACE) measures the total amount of kinetic 

energy for a tropical cyclone throughout its life. It is estimated by summing the squares of 

the six-hourly maximum sustained velocity. For NWPAC accumulated cyclone energy 

(ACE), monthly mean values were calculated for October and November 1979–2019 using 

JTWC Best Track data (Figure 16), using the method described in Colorado State 

University (2021). We used the ACE values to investigate potential associations between 

tropical cyclone activity in the NWPAC and the triggering of anomalous wave trains 

associated with CA OWEs. The Atlantic Multidecadal Oscillation (AMO) and associated 

index is a hypothesized low-frequency interdecadal mode of variability of North Atlantic 

sea surface temperatures (Enfield and Trimble 2001). The Arctic Oscillation (AO) and 

associated index is a mode of daily, monthly, and seasonal climate variability of 

geopotential heights around the Arctic (Thompson and Wallace 1998). The Climate 

Forecast System Reanalysis Version 2 (CFSRV2) data set is a global, high-resolution 

reanalysis of a coupled air-ocean-land-ice numerical model at a 0.5° spatial resolution and 

six-hourly temporal resolution (Saha et al. 2010). The Dipole Mode Index (DMI) is a 

measure of the strength of the Indian Ocean Dipole (IOD) mode of interannual climate 

variability (Saji and Yamagata 2003). The El Nino Modoki Index (EMI) is a measure of 

the strength of the EN Modoki mode of interannual climate variability (Ashok et al. 2007). 

The Multivariate ENSO Index (MEI) is a measure of the strength of the ENSO mode of 

interannual climate variability (Wolter and Timlin 1993). The MJO Real-time Multivariate 

MJO (RMM) Index is an operational index that measures the strength and location of the 

phases of the MJO (Wheeler and Hendon 2004). More detail on the MJO and the RMM 

index can be found in section 3. The National Centers for Environmental Prediction / 

National Center for Atmospheric Research Reanalysis Version 1 (NCEP/NCAR R1) is a 

global atmospheric reanalysis data set at 2.5° spatial resolution and six-hourly temporal 

resolution (Kalnay et al. 1996). The Pacific Decadal Oscillation (PDO) and associated 
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index is a hypothesized low-frequency climate oscillation of sea surface temperatures in 

the North Pacific (Mantua et al. 1997). The Pacific North American (PNA) pattern and 

associated index is a low-frequency mode of variability of atmospheric heights in the 

eastern North Pacific and North American regions (Barnston and Livezey 1987). Finally, 

the Quasi-biennial Oscillation (QBO) and associated index is a mode of interannual 

variability of lower stratospheric zonal winds in the tropics (Baldwin et al. 2001). All 

climate indices and data sets listed in Table 2 were directly retrieved with no additional 

processing from public sources at BOM, NOAA CPC, PSL, and JAMSTEC. A summary 

of dates used for all analyses is listed in Table 14 in Appendix D. 

 
 Monthly mean ACE for the NWPAC for November 1979–2018. 
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Table 2. Data sources 

Data Set/ 
Index  

Temporal  
Resolution 

Spatial 
Resolution (degree) 

Variables (units) Source and 
Reference 

ACE Monthly N/A ACE (104 kt2) JTWC, NOAA 
CPC 

AMO Monthly N/A N/A NOAA PSL, 
Enfield and 
Trimble 2001 

AO Monthly N/A N/A NOAA CPC, 
Thompson and 
Wallace 1998  

CFSRV2 6-hr 0.5  850 mb u and v wind 
(m/s) 

CPC, Saha et al. 
2010 

DMI Monthly N/A N/A NOAA PSL, 
Saji and 
Yamagata 2003 

EMI Monthly N/A N/A JAMSTEC, 
Ashok et al. 
2007  

Interpolated  
OLR 

Daily and  
Monthly 

2.5 OLR (W/m2) NOAA PSL, 
Liebmann and 
Smith 1996 

MEI Monthly N/A N/A NOAA PSL, 
Wolter and 
Timlin 1993 

MJO RMM Daily N/A N/A BOM, Wheeler 
and Hendon 
2004 

NCEP/NCAR 
R1 

Daily and  
Monthly 

2.5  geopotential height (m) 
stream function (m2/s) 
velocity potential (m2/s) 
SST (C) 

NOAA PSL, 
Kalnay et al. 
1996 

PDO Monthly N/A N/A NOAA CPC, 
Mantua et al. 
1997 

PNA Monthly N/A N/A NOAA CPC, 
Barnston and 
Livezey 1987 

QBO Monthly N/A N/A NOAA PSL, 
Baldwin et al. 
2001 
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3. Variables  

To investigate the associations between remote tropical predictors and CA OWEs, 

we chose to use atmospheric and oceanic variables and methods conducive to large-scale 

analyses of teleconnection dynamics. We focused our examination on geopotential height 

(gpm), stream function (m2/s), velocity potential (m2/s), OLR (W/m2), SST (C), and 850 

mb u and v winds (m/s). As discussed in Chapter I, CA offshore flow and SA events are 

typically studied using regional-scale sea level pressure and lower tropospheric winds and 

humidity. For our study, we focused on global scale variables throughout the troposphere 

and at the sea surface to investigate the low frequency, long wave dynamics, and other 

global-scale processes involved in generating CA OWEs 

We used daily 850 mb u (zonal) and v (meridional) winds for the CA region from 

the CFSRV2 dataset to analyze CA flow, averaged from 6-hourly reanalyses. For this data 

set in the CA region, there are 380 grid points each for u and v wind. We computed daily 

mean u and v wind for each of the four regions shown in Figure 15. We chose to examine 

flow at 850 mb because we are interested in the synoptic and long wave patterns. At the 

same time, surface winds are helpful to investigate the mesoscale features of offshore wind 

events. Winds at 850 mb, or about 1500 m altitude, show some, but not all, of the effects 

of terrain. As discussed in the introduction, the mountain ranges of CA are essential for the 

unique mesoscale features of offshore wind events, such as gap flow, downslope 

windstorms, and katabatic effects (cf. Raphael 2003; Westerling et al. 2004; Miller and 

Schlegel 2006; Hughes and Hall 2010; Jones et al. 2010; Abatzoglou et al. 2013; Guzman-

Morales et al. 2016; Kolden and Abatzoglou 2018; Rolinski et al. 2019; Mass and Ovens 

2019). Our choice of 850 mb is a balance between representing the large-scale flow and 

lower troposphere/surface dynamics while also including some terrain effects.  
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We chose to examine both zonal and meridional flow to determine if there are 

differences between types of CA OWEs that the meridional component can explain. Before 

processing and analyzing the wind data using PCA and k-means (discussed below), we 

flattened the data by concatenating each latitude of grid points (from the 2-D CA grid) into 

a 1-D vector so that each sample (day) of data consist of a single row of grid points. So, 

for November 1979–2018, we analyzed 1200 samples (row) of 760 dimensions/features 

(380 grid points each for u and v winds in the all-CA domain). 

We used geopotential height to reveal the long-wave pattern and the height 

gradients that determine winds (Holton and Hakim 2012). We also used stream function to 

evaluate long-wave patterns and winds, especially in the tropics, and infer potential 

convective heating anomalies in the tropical troposphere (cf. Matsuno 1966, Gill 1980, 

Holton and Hakim 2012). Stream function is especially useful, compared to geopotential 

height, for analyzing low-frequency waves and responses to convective heating anomalies 

in the tropics, where the corresponding geopotential height anomalies and gradients may 

be relatively weak. We used velocity potential to identify regions of divergent wind (the 

spatial derivate of velocity potential) and divergence (the spatial derivate of the divergent 

wind). We analyze stream function and velocity potential at the 0.2101 sigma level, close 

to 200 mb level. Henceforth, we will refer to 0.2101 sigma as “upper-level.” Stream 

function and velocity potential together provide information about the total flow and can 

be used to infer regions of convection or subsidence (cf. Matsuno 1966; Gill 1980; Holton 

and Hakim 2012). Figure 62 in Appendix C. details the fundamental dynamics on how to 

infer upper-level stream function and velocity potential anomalies from convective 

anomalies and vice versa. We also used tropical OLR and SST to indicate regions of 

possible enhanced convection or subsidence (cf. Wolter and Timlin 1993; Liebmann and 

Smith 1996; Holton and Hakim 2012). We calculated the anomalies for all variables and 

eddy anomaly fields for geopotential height and stream function to: a) reveal what is 

different about CA OWE periods from climatological norms, and b) accentuate the low 

frequency, long-wave patterns associated with CA OWEs. We calculated anomalies for 

each variable by subtracting the variable’s climatological mean for the variable from the 

conditional composite mean. The climatological means were based on data for the 
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November 1981–2020 period. We calculated the eddy anomaly for each variable by 

subtracting the variable’s zonal mean anomaly for each latitude from the variable’s 

conditional composite mean anomaly at each longitude for that latitude. 

For the MJO data, we used the Australian Bureau of Meteorology (BOM) 

operational MJO index. The index is based on an empirical orthogonal function (EOF) 

analysis of equatorial 850 mb and 200 mb zonal wind and satellite-derived OLR, and it 

aims to remove the annual cycle and some interannual cycle components (Madden and 

Julian 1994; Wheeler and Hendon 2004; Zhang 2005; Zhang 2013; Bureau of Meteorology 

2021). The two resulting principal component (PC) time series form the components of the 

Real-time Multivariate MJO Series 1 (RMM1) and Series 2 (RMM2) (Bureau of 

Meteorology 2021; Wheeler and Hendon 2004). The two time series are plotted on a wheel 

diagram, as in Figure 17. The RMM amplitude is defined as √𝑅𝑅𝑅𝑅𝑅𝑅12 + 𝑅𝑅𝑅𝑅𝑅𝑅22 (Bureau 

of Meteorology 2021; Wheeler and Hendon 2004). The phase corresponds to the region of 

enhanced convection, based on the magnitudes of each PC, and the amplitude is 

represented by the distance from the origin of the wheel diagram. The daily operational 

data set includes each RMM series’ magnitude, derived phase number, and amplitude. 

Figure 18 depicts the October to December 1974–2009 seasonal OLR and 850 mb wind 

composites, which show the geographical location and scope of the convective and 

subsidence anomalies associated with each of the eight phases of the MJO. On average, the 

MJO has a total period of about 30–60 days or longer, and each phase has an average period 

of about 4–8 days (Madden and Julian 1994; Zhang 2005; Zhang 2013). 
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 Sample MJO phase diagram. Source: BOM (2021). 
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 Average OLR and 850 mb wind patterns per phase 

for October to December 1974–2009. 
Source: BOM (2021). 

B. MONTHLY MEAN AND DAILY COMPOSITES AND ANALYSIS 

We conducted monthly mean and daily mean composite anomaly analyses, similar 

to what was done in many prior studies of climate variations in the NEPAC and WNA 

regions (e.g., Plumb 1985; Sardeshmukh and Hoskins 1988; Stepanek 2006; Swain et al. 

2017). The object of our monthly mean and daily composite analysis for a given variable 
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is to find the average anomalous global weather and climate conditions for the variable that 

are associated with CA OWEs. That is, we aim to analyze the climate system conditioned 

on the occurrence of CA OWES. We analyzed anomalous Rossby wave trains by 

examining the geopotential height and stream function anomalies and eddy anomalies to 

identify coherent patterns of alternating positive and negative anomalies (cf. Sardeshmukh 

and Hoskins 1988). In this study, we do not extend the analysis to wave flux vector analysis 

(Takaya and Nakamura 1997 and 2001) or Rossby wave source (RWS) analysis 

(Sardeshmukh and Hoskins 1988), but we recommend that these analyses be done in  

future research. 

To identify the offshore months, we constructed a time series of the all-CA area 

averaged 850 mb u (m/s) anomaly for November 1979–2018 (Figure 19). We identified 

the 15 Novembers with the lowest monthly mean wind speeds (i.e., the months with the 

strongest offshore or weakest onshore flow, marked with red circles in Figure 19). We 

chose to work with 15 months to capture approximately the lowest tercile of 850 mb u 

winds and make our results more readily comparable to prior climate variation studies (e.g., 

Higgins and Mo 1997, L’Heureux and Higgins 2008, van den Dool 2007). The 850 mb u 

anomalies for these 15 Novembers are all negative, indicating offshore wind anomalies 

less than the 40-year mean of 1.21 m/s. We used these 15 Novembers to represent monthly 

mean conditions during offshore favorable Novembers. There were 16 months that had 

negative anomalies, but we decided not to use November 2000 because its anomaly of 0.08 

m/s was weak compared to the remaining 15 offshore Novembers. Our monthly mean 

composite and correlation results are based on this time series. The 15 Novembers, from 

most offshore favorable to least offshore favorable, are those for: 2004, 2013, 2007, 1989, 

1986, 1993, 1992, 2018, 2002, 1990, 1987, 2009, 1991, 2008, and 1980. 

As discussed in Chapter I, C., we intend to identify common patterns between CA 

OWEs and other global variables. We will not assess the statistical significance of the 

shared anomalies except when correlating CA winds to climate indices. Instead, we will 

determine specific anomalies’ importance and usefulness in predicting CA OWEs using 

Bayesian analysis and related hindcasting. While we will attempt to infer some dynamical 

explanations, we will not quantify them here. That task is saved for future research.  
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Monthly mean November CA 850 mb zonal wind anomaly. The red circles identify the 15 
most offshore favorable Novembers, in terms of monthly mean wind speed anomalies.  

 Timeseries of CA 850 mb zonal wind anomalies for 
November 1979–2018. 

C. MONTHLY CORRELATIONS 

We correlated monthly mean time series using traditional Pearson correlations to 

measure the linear association between November CA zonal wind and global variables and 

climate indices (Wilks 2020). Statistical significance is estimated using a one-tailed t-test 

based on sample degrees of freedom and correlation value, following Livezey and Chen 

(1983). We do not assert causation based on the results of the correlations, but we do use 

the correlation values to identify associations between climate system variables for further 

analyses. In particular, we used the correlation results to help focus our investigations of 

dynamical linkages between CA OWEs and remote variables. 

D. MJO STATISTICAL HINDCAST TEST 

To assess the initial associations between the MJO and CA OWEs, we conducted a 

simple retrospective analysis of MJO activity preceding individual CA offshore wind 
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events. This analysis was based on the indications from Murphree et al. (2019) that CA 

offshore (onshore) wind events tend to occur one to five weeks after the occurrence of MJO 

phases 8–1–2–3 (4–5–6–7). For this analysis, we composited the 200 most offshore (i.e., 

the least onshore) days and the 200 most onshore (i.e., the least offshore) days in the full 

CA daily mean 850 mb u wind data set for November 1979–2018. For each of these 400 

days, we extracted MJO and climate index data for the previous six25 days (a 20-day 

window), resulting in a data set of 8000 days before offshore or onshore wind events. For 

each of the 8000 days, we determined: (a) which MJO phase occurred; and (b) whether an 

offshore or onshore event occurred six–25 days later. We did not consider MJO phase 

progression or amplitude in this first test. All we considered were the frequencies of MJO 

phases before CA offshore and onshore flow. If MJO phase 8, 1, 2, or 3 occurred on any 

single day in the six–25 days before an offshore event, then we recorded a hit, meaning 

that phases 8, 1, 2, or 3 did occur as expected six–25 days before a CA OWE. We recorded 

a miss if any other association between the MJO phase and OWE was found. 

We followed a similar procedure for determining hits and misses for CA onshore 

wind events, but with, for example, a hit being recorded if MJO phase 4, 5, 6, or 7 preceded 

an onshore event by six–25 days. We used this simple method to get an initial assessment 

of the intraseasonal associations between CA offshore and onshore wind events and MJO 

phases. In this method, a hit is identified even if only one day of MJO conditions preceded 

the wind event. However, with 8000 days being analyzed, the law of large numbers 

indicates that there is only a small chance that this method of counting hits would give 

spurious results (Wilks 2020). From these counts, we constructed 2x2 contingency tables 

and calculated hit rate (HR), also known as the probability of detection (POD), false alarm 

rate (FAR), threat score (TS), and Heidke skill score (HSS) (Wilks 2020). We do not view 

these scores as assessments of skill in using the MJO phase to predict CA wind events at 

leads of six–25 days. Instead, we see these scores as initial indicators of potential: (a) 

teleconnections between tropical MJO conditions and CA wind events; and (b) subseasonal 

predictability of CA wind events based on information about precursor MJO conditions. 
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E. PRINCIPAL COMPONENT ANALYSIS 

Before clustering the CA wind data using k-means clustering, we applied principal 

component analysis (PCA) to reduce the data set’s dimensionality and visualize the k-

means clustering results. It is well-known in the statistics field that some machine learning 

algorithms, such as k-means clustering, do not perform well in extremely high dimensional 

data sets (James et al. 2017). However, simple schemes like k-means have benefits, such 

as ease of interpretation (Pedregosa et al. 2011; James et al. 2017; Wilks 2020). To facilitate 

the use of k-means in our research, we applied PCA first to reduce the components from 

760 (380 grid points each for u and v winds in the all-CA domain) to 20–30 components 

that would explain about 95% of the variance, depending on the month analyzed (as an 

example, November compressed to 28 dimensions). This technique has been used in 

previous research combined with k-means clustering (cf. Riddle et al. 2012). We used the 

Scikit-learn Python tool kit to execute the operation (Pedregosa et al. 2011). We also 

projected the wind data onto the first three components to display the data in three 

dimensions (see Figures 49 and 50–61 in Appendix A). The objectives of this display are 

to facilitate the: (a) visual examination of the projected winds; (b) identification of clear, 

coherent clusters before we applied k-mean clustering; and (c) identification of the labeled 

clusters in principal component space. The main results of the PCA are contained in 

Appendix, section A., Figures 45–46. 

F. CLUSTERING 

K-means clustering is a simple, easy-to-use unsupervised machine learning method 

used to discover patterns in large datasets (cf. Pedregosa et al. 2011; James et al. 2017; 

Wilks 2020). The approach seeks to identify clusters of data within the set, such that the 

number of clusters is less than the number of samples, by minimizing the Euclidean 

distance between samples and clusters in an iterative process. The technique requires  

the user to test the scheme on different settings of clusters and then measure the 

performance using objective and subjective metrics. Objective metrics include inertia 

score, which minimizes Euclidean intra-cluster distances, and silhouette score, which 

minimizes Euclidean intra-cluster and inter-cluster distances. Subjective techniques 
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include recognizing the context of the problem. For example, k-means clustering 

essentially seeks to find the best fit of clusters that minimizes within-cluster variance 

(although, in some cases, the focus may be on capturing more variability within each 

cluster). Figures 47 and 48 in Appendix A. display the inertia and silhouette scores for CA 

November winds. In our case, we searched for the minimum set of clusters that both 

minimizes within-cluster variance and maximizes the distinctions between clusters. We 

considered using many other machine learning methods, such as artificial neural networks, 

but decided against them because they tend to be relatively complex and challenging 

to interpret physically. For more information, we refer the reader to the plethora of 

resources on k-means clustering, such as Pedregosa et al. (2011), James et al. (2017), and 

Wilks (2020). 

To examine the types of CA OWEs, we applied k-means clustering to the PCA-

processed wind data. As discussed above, we first compressed the dimensionality from 760 

to 28 components, retaining 95% of the variance. Unsupervised machine learning methods 

are inherently, but not entirely, subjective. An unsupervised scheme does not use a labeled 

dataset for training verification. On the other hand, a supervised system can test its 

accuracy against a known target set (cf. James et al. 2017). Our study did not have a known 

data set of OWEs, so we set our own definition of CA OWEs, consisting of offshore zonal 

flow, and we clustered CA winds conditioned on that concept. So, when we tested different 

combinations of clusters, we introduced subjectivity in two main ways: (a) we defined 

offshore winds as 850 mb u < 0 m/s, and (b) we chose the number of clusters using 

imperfect methods. Because we focused on OWEs only, we ignored the subjectivity of 

only looking at offshore winds. We used multiple metrics to address the subjectivity in 

scoring methods, such as inertia score, silhouette score, and context, as detailed in the 

previous paragraph. The result of the analysis is a cluster-labeled data set. We then 

performed further analysis conditioned on cluster membership. 

G. BAYESIAN DATA ANALYSIS 

To analyze the time evolution of MJO activity preceding CA offshore wind 

conditions, we used an independent and straightforward Bayesian data analysis (BDA) 
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method, commonly used in operations research. Traditional conditional frequency analysis 

would calculate the frequency of MJO activity, given that CA OWEs later occurred as P 

(MJO | OWE). We chose to apply BDA to calculate the inverse probability, the probability 

of a CA OWE given MJO activity in the past or P (OWE | MJO). This approach has two 

main advantages: 

5. 1.  BDA allows us to turn a likelihood statement into a forecast 

statement (Wilks 2020). If we know the likelihood of MJO activity given 

offshore wind events, what is the probability of an offshore wind event 

given MJO activity? The conditional frequency approach would only give 

us the frequency of occurrence, not a forecast or confidence statement. 

6. 2. BDA allows us to tune the a priori assumptions (Wilks 2020), for 

example, the long-term probability of offshore wind events. 

There are other extensions of BDA, such as Bayesian estimation (BE) of stochastic 

regression parameters using MCMC sampling methods used by Jones (2018). Those 

techniques are helpful for advanced Bayesian model output statistics and operational 

forecast post-processing that could be used if our results are determined to be suitable for 

operational applications. However, we simply and directly applied Bayes Theorem to 

develop initial evidence of potential predictive associations to establish a foundation for 

probabilistic forecasting for our study.  

To conduct BDA, we adapted and directly applied Bayes Rule (Gelman et al. 2013, 

Wilks 2020): 

                                            𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 | 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 ) =  𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 )

  (1) 

In this equation, the term P (Cluster | MJOn) is the Bayesian posterior probability 

of a CA OWE given past MJO activity in each phase n. The term P (MJOn |A Cluster) is 

the conditional frequency of MJO activity in phase n given a future occurrence of a CA 

OWE. It is calculated by compositing MJO data from one to 45 days prior to CA OWEs. 

We calculated this frequency of occurrence in five-day increments back to 45 days prior to 

CA OWEs for each phase of the MJO. We did this calculation with and without MJO 
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amplitude restrictions, but we focused our analyses on MJO events with RMM amplitudes 

greater than or equal to (GTE) 1.0 (Wheeler and Hendon 2004). Next, the Bayesian prior 

term P (Cluster) is the long-term frequency of occurrence of each cluster in November 

1979–2018. We chose to use the most objective measure possible by relying on the long-

term frequency, but this term could be further tuned based on other assumptions. Finally, 

we calculated the evidence term, P (MJOn), which is the long-term frequency of each phase 

of the MJO (with RMM amplitude GTE 1.0) from September 16 to November 30, 1979–

2018. This term is calculated as the product of the frequency of occurrence of a given phase 

of the MJO and the frequency that its RMM amplitude is GTE 1.0, or P (MJOn  ∩ AMP 

GTE 1.0) = P(MJOn)*P(AMP GTE 1.0). From these three terms, we can directly calculate 

the Bayesian posterior probability, or the inverse probability of a cluster occurrence (CA 

OWE) given MJO activity in the past, P (Cluster | MJOn). 

Finally, we applied Equation 2 to adjust the Bayesian posterior probability to 

capture the relative anomalous probability, Prel (Cluster | MJOn), representing the increased 

or decreased probability compared to the long-term frequency (cf. Riddle et al. 2012). This 

relative probability is bounded by [-1,1]. For example, a relative probability of 0.5 means 

the cluster is 50% (or 1.5 times) more likely to occur than average. A relative probability 

of -0.5 means the cluster is 50% (or 1.5 times) less likely to occur than typical. 

                                         𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 |𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 ) =  𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 |𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 )−𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑟𝑟)

                      (2) 

We calculated the anomalous Bayesian posterior probabilities in five-day 

increments out to 45 days after MJO events. We also calculated the 10-day average of these 

posteriors and a weighted average (based on numbers of days per cluster) for a combined 

offshore (all clusters) summary. Previous research on midlatitude regional sensitives to the 

MJO by Jenney et al. (2019) used similar time-lagged techniques, albeit without BDA. 

H. STATISTICAL HINDCAST TEST 

Finally, we conducted a 15-year hindcast to test the potential predictive associations 

that we identified. Based on the Bayesian posterior results, we set up a simple system to 

forecast SA events in Southern California from November 2004 to 2018. We chose to do 
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the hindcasts for SA events to facilitate comparisons of our results to those from prior 

studies and identify potential operational applications of our results (for example, in 

planning for strong wind events, wildfires, and electric power outages). We chose to train 

on the complete 40-year data set and test on the last 15 years, overlapping with the training 

set. For this study, we wanted to retain the greatest number of samples for training. We 

caveat our results by acknowledging we trained and tested on the same data. While this test 

was, therefore, not independent, we used the results as verification of our hypotheses and 

propose future independent testing. 

The target, or predictand, was scored against daily CFSRV2 850 mb u wind for the 

SA region of our domain. For the 15 Novembers, we extracted MJO and ENLN data one-

45 days before each day. Then, we considered MJO activity in pentads per our Bayesian 

posteriors. If in each pentad, we observed certain phases of the MJO with RMM amplitude 

GTE 1.0, we hindcasted favorability for SA conditions at the associated lead with 

confidence equal to the average Bayesian posterior. In each pentad, the SA predictor had 

to occur three out of the five days. The MJO phase and lead times for the predictors of SA 

conditions were: 

1. MJO Phase 8 or 1 at leads of 26–30 days 

2. MJO Phase 1 or 2 at leads of 21–25 days 

3. MJO Phase 2 or 3 at leads of 11–20 days 

As an example, consider the pentad sequence of daily MJO phases of “7 8 8 1 1.” 

This sequence, in which phases 8 and 1 occurred in four of the five days, would yield a 

forecast of SA conditions occurring 26–30 days later. If the sequence had instead been “7 

7 7 8 1,” we would not issue a forecast because the SA predictors occurred in only two of 

the five days. For a sequence of “8 1 2 2 3,” we would issue a SA forecast for 11–20 days 

later. In the test, we do not score the confidence of our forecasts; instead, we just score the 

hits and misses. We constructed 2x2 contingency tables and calculated HR, FAR, TS, and 

HSS. We also calculated the scores during EN and LN conditions to determine if there is 

conditional skill based on differing climate patterns. 
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III. RESULTS 

We found that offshore flow in all four subregions of CA is well-correlated (0.61 ≤ 

r ≤ 0.91) to offshore flow in all CA (Figure 15 and Table 1). We expected that offshore 

flow throughout the state would be well-correlated based on previous research on CA 

OWEs (cf. Miller and Schlegel 2006; Kolden and Abatzoglou 2018; Mass and Ovens 

2019). We also expected there to be some differences based on the dominant terrain 

features. Our study aims to further expand on the notion that CA OWEs in different 

subregions are related to the same anomalous tropical precursors, and associated Rossby 

wave trains at S2S leads. In the following sections, we provide our significant findings for 

each of our main research questions (see Chapter I, section C.).  

A. WHAT GLOBAL-SCALE ANOMALIES ARE ASSOCIATED WITH CA 
OWES?   

Our first research question addresses the concept that CA OWEs are mesoscale or 

synoptic weather events that are related to global anomalies. In the introduction, we showed 

that when we zoom out from the regional to the global view (Figures 5–8), individual CA 

OWE-related Rossby waves trains have global signatures and impacts. This section will 

explore CA OWE composites in further depth using monthly mean composites and 

correlations. We will first consider how monthly mean offshore Novembers in CA are 

related to global tropical anomalies and then examine correlations to determine the 

magnitude of the associations. 

1. Monthly Mean Composite Analyses 

As described in Chapter II, Methods, using a monthly time series of CA 850 mb u 

(zonal) wind for November 1979–2018 (Figure 19), we identified the 15 most offshore 

months (based on CA 850 mb u wind speed). Only one month (November 2004) was 

offshore (850 mb u < 0 m/s) in terms of the monthly mean wind speed. The remaining 14 

monthly means were weakly onshore. We found that on average, 67% of November days 

from 1979–2018 are onshore (850 mb u > 0 m/s). So, months with a higher proportion of 

offshore days than average (> 33%) might still have onshore monthly mean wind speed. In 
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other words, months with numerous OWEs might still be on average onshore, but they 

have negative monthly anomalies with respect to the 40-year mean wind speed (see Figure 

19). So, our composite of offshore months represents those with either more frequent 

offshore days or more intense offshore days. The top 15 most offshore years, in order of 

ascending monthly mean wind speed, are 2004, 2013, 2007, 1989, 1986, 1993, 1992, 2018, 

2002, 1990, 1987, 2009, 1991, 2008, and 1980. 

Figure 20 is the composite 200 mb eddy geopotential height anomaly for the top 15 

offshore Novembers. Note the anomalous ridge centered over WNA resulting in onshore 

geostrophic flow into AK, northerly (southward) geostrophic flow over the Great Plains, 

and offshore geostrophic flow over CA. This ridge is just one crest of an anomalous Rossby 

wave that spans most of the Northern Hemisphere, from about 20N to 70N. The wave has 

a zonal wavenumber of about k = 4–5, and its amplitude peaks between east Asia and 

WNA. There are potentially multiple wave trains interacting. For example, a nearly zonal 

wave train begins with an upper level low over the Arabian Peninsula and extends eastward 

with a high over India, low over China, high over Japan, low south of the Aleutians, high 

over WNA, low over eastern Canada and a high over the North Sea. 

Additionally, there is potentially an arcing wave train beginning with a high over 

the equatorial central Pacific Ocean (CPAC) (southwest of HI). This hypothesized wave 

train extends northeastward into the NEPAC, where it may merge and constructively 

interfere with the zonal wave train. It then arcs southeastward into the subtropical Atlantic 

Ocean (east of Florida). These two hypothetically interfering wave trains indicate that CA 

OWEs are part of a global scale set of concurrent anomalous processes initiated in multiple 

regions. Furthermore, the hypothesized wave train interference may play an essential role 

in setting up the strong height and pressure gradients over CA required for OWEs. 

Specifically, the low extending southwestward over Baja California and the high to the 

northwest provide the necessary height gradient for strong offshore geostrophic winds over 

much of CA (cf. Raphael 2003; Hughes and Hall 2009; Jones et al. 2010). We do not 

attempt in this project to separate or isolate the S2S, interannual, or lower frequency 

processes involved in initiating and maintaining these anomalous wave trains. Instead, we 

focus here on assessing the composite effects of climate variations occurring at various 
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frequencies on the potential on the subseasonal predictability of CA OWEs. However, 

analyses that attempt to separate the impacts of climate variations occurring at different 

time scales would be useful to pursue in future research (as discussed in Chapter IV, C.). 

 
 November monthly mean 200 mb eddy geopotential height anomaly 
(gpm) composite for the 15 most offshore Novembers, 1979–2018. 

Next, we compare the monthly mean November offshore composite to the daily 

mean (individual event) composite (Figure 21). The daily mean composite (right-hand 

figure) represents the top 200 most offshore days for November 1979–2018. The method 

used to create the daily mean composite is detailed in Chapter II and discussed in further 

depth in the following subsection. As discussed in the previous section and shown in 

Figures 20–21, the monthly mean composite exhibits a global anomalous Rossby wave 

train with a high over WNA. The daily mean composite also shows a global anomalous 

Rossby wave train, between about 20N to 70N, with a high over WNA. This is a nearly 

zonal wave train of wavenumber k = 4–5 with an upper level low over Iraq, a high over 

India, a low over China, a high over Japan, a low south of the Aleutians, a high over WNA, 

a low over eastern Canada/US, and a high over Iceland. At this point, we cannot state 

whether all anomalies in the composite, and in similar composites presented later in this 
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chapter, are statistically significant. However, the major patterns in these composites (e.g., 

the wave train patterns in Figure 20) are found in the results from several different analysis 

methods and are broadly consistent with the patterns identified in other studies of S2S and 

interannual scale anomalies in WNA (e.g., Swain et al. 2017, Mundhenk et al. 2018). For 

this study, we used these patterns to identify potential predictors of CA OWEs, which we 

then tested using simple statistical hindcasts. 

Additionally, an arcing wave train begins with a high over the equatorial CPAC 

(southwest of HI). This wave train extends northeastward into the NEPAC, where it merges 

and constructively hypothetically interferes with the zonal wave train. It then arcs 

southeastward into the subtropical Atlantic Ocean. Like the monthly mean composite, there 

is an anomalous low just west of Southern/Baja California, which may result from the 

interference pattern between the zonal and arcing wave train. Again, this low is critical 

to the strong gradient needed to generate the strong offshore winds as in the monthly  

mean composite.  

There are different numbers of samples in each figure (450 days for the monthly 

mean composite and 200 days for the daily mean composite). Thus, in comparing the 

figures, it is helpful to focus on the anomaly signs and spatial patterns rather than the 

magnitudes. We do not focus on differences in the anomaly magnitudes because the 

magnitudes are very dependent on the sample sizes, which are very different. Specifically, 

the composite with a smaller number of samples will tend to have higher amplitudes and 

spurious results. However, we can compare the signs, locations, and shapes of the 

anomalies. First, the tropical Pacific Ocean positive height anomaly is shifted further to the 

west in the daily composite. There is a clear pair of upper-level positive height anomalies 

in the CPAC, just southwest of HI, and low height anomalies over the MC in the monthly 

mean composite. In the daily mean composite, the positive height anomalies in the CPAC 

are less defined and spans further west into the WPAC and MC. These patterns may be due 

to the average MEI = 0.27 and EMI = 0.29 (weak EN and EN Modoki signals) for the 

monthly mean composite, which would result in a positive height anomaly over the CPAC 

due to the change in the location of the tropical convective anomalies (cf. Matsuno 1966, 

Gill 1980, Horel and Wallace 1981, Ashok et al. 2007). 
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Meanwhile, the average MEI = 0.05 and EMI = 0.11, or about neutral, for the daily 

mean composite would result in a positive height anomaly closer to the Maritime Continent 

(MC) (Horel and Wallace 1981). However, due to the slight impact of EN Modoki, there 

is still a slight positive height anomaly in the CPAC (cf. Ashok et al. 2007). The differences 

in these tropical anomalies may account for other differences globally, as we know EN and 

EN Modoki have differing global teleconnections (Horal and Wallace 1981, Ashok et al. 

2007). Elsewhere around the globe, there are minor differences that may be due to these 

and other unaccounted dynamics and sampling errors. Relevant to our study are the 

differences in height anomalies over Japan and the Sea of Okhotsk. There is an apparent 

positive height anomaly in the monthly mean composite, while in the daily mean 

composite, the same anomaly is broken up by a low height anomaly. Again, this may be 

due to interfering teleconnections from EN or EN Modoki and their impacts on the 

subtropical jet location and strength. During EN or EN Modoki, the subtropical jet is 

extended in different ways eastward over the central Pacific (Winters et al. 2019). These 

differing jet extensions would potentially alter the anomalies in the North Pacific during 

EN or EN Modoki.  

The differences between the monthly mean and daily mean results shown in Figure 

21 are potentially important in determining the causes of the wave trains associated with 

CA OWEs (e.g., the extent to which the wave trains are generated by tropical S2S climate 

variation and the extent to which they are generated by tropical interannual variations). 

However, the clear similarity between these results is an indication that: (1) the wave trains 

are a relatively robust feature of CA OWEs; and (b) information about the processes that 

generate the wave trains may be useful in predicting CA OWEs. In the rest of this chapter, 

we focus on assessing the combined effects of these processes on this predictability, 

especially the combined effects of MJO, ENLN, and ENLN Modoki. 
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Left panel is same as in Figure 20. 

 Comparison of November monthly mean 200 mb eddy geopotential height 
anomaly (gpm) composite for the 15 most offshore months (left) and  

eddy geopotential height anomaly (gpm) composite of the 200 most offshore 
individual November days (right). 

Monthly mean and daily mean composites of offshore wind conditions in CA share 

similar global anomalous Rossby wave train patterns. Some of the differences are that the 

monthly mean composite (450 days) contains both offshore and some onshore/neutral days 

since not every day of each of the 15 months is offshore. On the other hand, the top 200 

offshore daily composite contains only offshore days. The monthly mean composite shares 

113 of the top 200 daily mean days. However, the similarities may suggest that they are 

related to similar dynamical precursors, and they may be predictable at S2S leads.  

To get an initial understanding of possible global precursors, we investigated 

monthly mean tropical convective anomalies and midlatitude teleconnections one 

(October) and zero (November) months prior to the 15 top offshore Novembers. Figure 22 

depicts global upper-level sigma eddy stream function anomaly (m2/s) (top) and velocity 

potential anomaly (bottom) composites during the top 15 offshore Novembers (right) and 

in October, one month prior (left). During the preceding Octobers, there is an anomalous 

eddy stream function pattern of upper-level lows over Asia and the southern Indian Ocean 

(SIO) and upper-level highs over the equatorial north-central Pacific Ocean and 

northeastern Pacific Ocean (NCPAC/NEPAC) and the south-central Pacific Ocean and 

southeastern Pacific Ocean (SCPAC/SEPAC). This anomaly pattern indicates anomalous 

subsidence over the MC and Philippine Sea region (cf. Matsuno 1966, and Gill 1980). The 

same overall pattern is evident during November, albeit slightly less coherent and shifted 
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somewhat to the east. The velocity potential figures for both October and November 

indicate anomalous convection over Africa and in the western Indian Ocean (WIO), 

anomalous subsidence over the MC, and anomalous convection in the equatorial eastern 

Pacific Ocean (EPAC). The location of the anomalous velocity potential and associated 

convection/subsidence matches the inferred regions of anomalous convection/subsidence 

indicated by the stream function anomalies (Matsuno 1966; Gill 1980). Thus, during and 

one month prior to the 15 most offshore favorable Novembers, there tends to be 

anomalously strong (weak) convection in the tropical Indian (Western Pacific) Oceans. 

 
In the eddy stream function figures (top), dashed black circles represent counterclockwise 
circulation associated with an upper-level low. Solid back circles represent clockwise 
circulation associated with an upper-level high (in the NH; the opposite is true in the SH). 
In the velocity potential figures (bottom), dashed black circles represent areas of divergent 
wind associated with upper-level divergence and anomalously strong convection. Solid 
black circles represent areas of convergent wind associated with upper-level convergence 
and anomalously strong subsidence. 

 Upper-level sigma eddy stream function anomaly (m2/s) one (top left) 
and zero-months (top right) prior to the top 15 offshore Novembers and 

velocity potential anomaly (m2/s) one (bottom left) and zero-months 
(bottom right) prior to the top 15 offshore Novembers. 
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Figure 23 shows the OLR and SST anomalies that correspond to the eddy stream 

function and velocity potential anomalies shown in Figure 22. During the preceding 

Octobers, there is a pattern of anomalous negative OLR in the Indian Ocean (IO) and 

Western Pacific Ocean (WPAC)/Central Pacific Ocean (CPAC) and anomalous positive 

OLR over the MC that indicate anomalous convection in the western and central tropical 

IO and subsidence over the MC and western tropical Pacific Ocean (Liebmann and Smith 

1996). The same overall pattern is evident during November, albeit without the convection 

in the IO. The anomalous SST figures for both October and November indicate anomalous 

high SST in the IO and CPAC/EPAC Ocean and anomalous low SST in the South China 

Sea (SCS)/MC region and off the east coast of South America. This pattern is consistent 

with anomalous convection in the IO and CPAC/EPAC Ocean and anomalous subsidence 

in the SCS/MC region and off the east coast of South America (Tompkins 2001). The OLR 

and SST anomaly patterns are consistent with the subsidence anomaly pattern in the MC 

and the Philippine Sea indicated by the eddy stream function and velocity potential 

anomalies. Although the SST and OLR anomalies are smaller in spatial extent than the 

related stream function and velocity potential anomalies, this makes sense because a) the 

SST and OLR anomalies are noisy in the tropics, and b) the stream function and velocity 

potential anomalies represent a spatial integration of the rotational and divergent flows 

associated with the SST and OLR anomalies. The OLR and SST anomalies also indicate 

anomalous convection in the IO consistent with the velocity potential anomalies, but not 

the eddy stream function anomalies. The SST and OLR anomalies show several clear 

positive and negative anomalies (e.g., four clear +/- SSTA regions), but the stream function 

and velocity potential anomalies (Figure 22) show only two clear anomaly regions 

indicating anomalously weak (strong) convection in the MC (central tropical Pacific) 

region. This suggests that the SST and OLR anomalies in the MC and central tropical 

Pacific are the main SST and OLR anomalies involved in generating the major stream 

function and velocity potential anomalies. This may be because the MC and central tropical 

Pacific SST and OLR anomalies are more robust, more extensive in area, or more persistent 

than the other SST and OLR anomalies. It may also indicate that the MC and central 

tropical Pacific SST and OLR anomalies are better positioned within the background 
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circulation to produce significant anomalies in that circulation (i.e., the circulation 

anomalies indicated by the stream function and velocity potential anomalies; cf. Simmons 

et al. 1983). The resemblance of these SST and OLR anomalies to EN and EN Modoki 

SST patterns is discussed later in this chapter. Many other interesting SST and OLR 

anomalies present, such as the positive SST anomaly in the eastern North Pacific. Indeed, 

this anomaly may play a role in or be a symptom of the associated ridge building into 

Alaska (Kohlman et al. 2021). However, investigations of these other anomalies are beyond 

the scope of this study. 

 
Black circles indicate negative OLR and SST anomalies. Red circles indicate positive OLR 
and SST anomalies. 

 Surface OLR anomaly (W/m2) one (top left) and zero-months (top right) 
prior to the top 15 offshore Novembers and SST anomaly (K)  

one (bottom left) and zero-months (bottom right)  
prior to the top 15 offshore Novembers. 

We compared the composite anomalies for the top 15 offshore Novembers and the 

prior Octobers with the anomalies associated with tropical climate variations (in particular, 

specific MJO phases, ENLN Modoki, and ENLN) during November and October. In these 

comparisons, we focused on the extent to which the tropical climate variation anomaly 

patterns qualitatively matched with the OWE related anomaly patterns. Our objectives 

were to: (1) qualitatively assess the major similarities and differences in the anomaly 
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patterns; and (2) determine how to focus our quantitative assessments of the associations 

between the OWE related anomaly patterns and those associated with the tropical climate 

variations. For these comparisons, we did not explicitly filter or separate climate variations 

with different time scales (e.g., S2S and interannual variations). Thus, the anomalies shown 

in these comparison figures represent, in general, a combination of S2S, interannual, and 

longer period variations. This combination limits our ability to determine the relative 

contributions of different climate variations, but it allows us to more realistically 

characterize the S2S evolution of CA OWEs and to assess their predictability. 

Figure 24 compares the eddy stream function anomalies for the top 15 offshore 

Novembers (one and zero months prior; top panels) to the eddy stream function anomalies 

for the days during Octobers and Novembers of 1979–2018 in which MJO phases 1 and 2 

occurred (bottom panels). In general, there is broad agreement in the location of the stream 

function anomalies. In particular, both the offshore and MJO figures show cyclonic 

(anticyclonic) stream function anomaly pairs straddling the equator in the tropical IO 

(central tropical Pacific) sectors. However, there are differences in the midlatitude 

anomalies. Specifically, the top offshore Novembers feature an upper-level clockwise 

circulation (upper-level high) over WNA and an associated wave train beginning with the 

previously discussed upper-level low over WNA. So, the tropical anomalies agree, but the 

midlatitude anomalies do not.  
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The top panels as the same as in Figure 22. 

 Upper-level eddy stream function anomaly (m2/s) one (top left) 
and zero-months (top right) prior to the top 15 offshore Novembers 

compared to upper-level eddy stream function anomaly (m2/s) for Oct-
Nov MJO phases 1 (bottom left) and 2 (bottom right). 

Figure 25 compares the eddy stream function anomalies for the top 15 offshore 

Novembers (one and zero month leads) to the monthly mean composite during Octobers 

and Novembers of 1979–2018 in which EN and EN Modoki occurred (bottom panels). 

There is broad agreement in the location of the stream function anomalies, and there is a 

better agreement in the midlatitudes than in comparison with the MJO (Figure 24). 

Specifically, the top offshore Novembers feature an upper-level clockwise circulation 

(upper-level high) over WNA and an associated wave train beginning with the previously 

discussed upper-level low over Asia. The EN and EN Modoki composites also feature a 

distinct wave train from an upper-level low over Asia to an upper-level high near AK (EN) 

and the NEPAC (EN Modoki). We can also see the associated positive PNA pattern in the 

EN composite with an arcing wave train starting with a high near HI, a low south of the 

Aleutians, a high over AK, and a low over CA (Horel and Wallace 1981, Livezey at al. 

1987). Because EN and EN Modoki are lower-frequency interseasonal climate modes than 

the MJO, we can infer that the extratropical teleconnection patterns are closer to a steady-
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state solution. The EN and EN Modoki highs are misplaced to produce strong CA OWEs, 

but their misplacements are different. The EN high is farther to the NE than the October 

high (upper left panel), but the EN Modoki high is relatively well placed to produce some 

offshore flow over WNA. This suggests that EN Modoki interannual variability could 

provide a favorable background state for CA OWEs. Further research into S2S and 

interannual variability, such as this, should consider how and why EN Modoki may provide 

favorable lower-frequency conditions. 

 
The top panels as the same as in Figure 22. 

 Upper-level sigma eddy stream function anomaly (m2/s) one (top left) 
and zero-months (top right) prior to the top 15 offshore Novembers 

compared to upper-level sigma eddy stream function anomaly (m2/s) for 
Oct–Nov EN (bottom left) and EN Modoki (bottom right). 

We also compared the anomalous velocity potential composites of the top 15 

offshore Novembers to MJO phases 1 and 2 (Figure 26) and EN and EN Modoki (Figure 

27). We chose to compare to MJO phases 1 and 2, EN, and EN Modoki for reasons 

discussed later in this chapter. In short, our analyses revealed these variations were the 

most similar to the OWE composites. We only show these variations here, as opposed to 

all possibilities, for brevity. In Figure 26, we find a broad area of anomalous upper-level 
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convergent wind over the MC and WPAC for MJO phase 1 and WPAC/CPAC for phase 

2. We also see a broad area of anomalous upper-level divergent wind over Africa, WIO, 

South America, and the Atlantic for MJO phase 1 and Africa and the IO for phase 2. 

The October (one-month prior) offshore composite matches MJO phase 1 in the IO 

and WPAC. The November offshore composite fits well with the MJO phase 2 composites 

in the same anomalously weak and anomalously strong convection regions. This indicates 

that the tropical anomalies associated with these MJO phases may play a role in generating 

OWEs. There are differences for both composites and their MJO counterparts in the 

Atlantic/South America region. We found stronger upper-level convergent wind north of 

Brazil in the offshore composites compared to the MJO composites. This may indicate 

other anomalies are interfering with the MJO teleconnections, such as EN and EN Modoki. 

Figure 27 shows the same comparison but for EN and EN Modoki. Again, we see some 

visual agreement with the location of the velocity potential anomalies near the MC and 

WPAC region, but not as well as with MJO. For example, the EN negative velocity 

potential anomalies are not large enough over Africa. They do not penetrate far enough 

east into the CPAC (the MJO-related subsidence extends further east) than the offshore 

composites. For EN Modoki, the positive velocity potential anomaly is in the right location 

but is not broad enough in the WPAC. However, the EN and EN Modoki composites 

indicate the curious upper-level convergent wind anomalies in the Atlantic north of Brazil 

that the MJO composites do not. This and the previously discussed results may indicate 

some constructive interference between EN/EN Modoki and the MJO before and during 

CA offshore Novembers.  
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The top panels as the same as the bottom panels in Figure 22. 

 Upper-level velocity potential anomaly (m2/s) one (top left) and zero-
months (top right) prior to the top 15 offshore Novembers compared to upper-

level velocity potential anomaly (m2/s) for Oct–Nov MJO phases 1 (bottom 
left) and 2 (bottom right). 
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The top panels as the same as the bottom panels in Figure 22. 

 Upper-level velocity potential (m2/s) one (top left) and 
zero-months (top right) prior to the top 15 offshore Novembers 

compared to upper-level velocity potential anomaly (m2/s) for Oct–
Nov EN (bottom left) and EN Modoki (bottom right). 

In Figure 28, we find broad agreement between the anomalous SST patterns before 

and during CA offshore Novembers and for MJO phases 1 and 2. For example, in all cases, 

there are positive anomalies in the IO, the CPAC, and NEPAC on the order of 0.2–0.6 °K 

above climatology. All cases also share negative SST anomalies in the SCS/MC region on 

the order of 0.2–0.4 °K below climatology. However, the offshore composites feature a 

negative anomaly off South America that the MJO composites do not. Also, the MJO phase 

2 composite features a positive anomaly northwest of Australia that the offshore 

composites do not.  
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The top panels as the same as in Figure 23. 

 SST anomalies (C) one (top left) and zero-months (top right) prior to the 
top 15 offshore Novembers compared to SST anomalies (C) for Oct–Nov 

MJO phases 1 (bottom left) and 2 (bottom right). 

Figure 29 compares the OWE anomalies to those for EN and EN Modoki. All of 

the composites show a general three-part pattern in the tropics, with positive SSTAs in the 

western-central IO, negative SSTAs in the MC region, and positive SSTAs in the central-

eastern Pacific. However, the positive anomaly in the central and eastern tropical Pacific 

is much more extensive and intense for the EN and EN Modoki composites than for the 

OWE composites. The EN Modoki composite does include a weak negative anomaly off 

South America that matches the offshore SST composites but extends too far to the north 

and south of the equator and too far east in the central and eastern tropical Pacific. Thus, 

the MJO, EN, and EN Modoki SSTA composites all provide some level of agreement with 

the offshore composites, but there is not one perfect match. 

A comparison of the lower panels of Figures 28 and 29 shows that the SSTAs for 

MJO phases 1 and 2 are similar to but much weaker than those for EN and EN Modoki. 

During these MJO phases, the atmospheric anomaly patterns are qualitatively similar to, 

but less persistent than, those during EN and EN Modoki, with, for example, enhanced 

convection (subsidence) in the western IO (MC) regions (Zhang 2013). We speculate that 

these atmospheric anomalies may help generate SSTA patterns similar to but weaker than 
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those during EN and EN Modoki. The similar SSTA patterns for MJO phases 1 and 2, EN, 

and EN Modoki may also be due in part to an incomplete filtering out of interannual 

variability in the process used to create the MJO index that we used.  

 
The top panels as the same as in Figure 23. 

 SST anomalies (C) one (top left) and zero-months (top right) prior to the 
top 15 offshore Novembers compared to SST anomalies (C) for Oct–Nov 

EN (bottom left) and EN Modoki (bottom right). 

In summary, analysis of monthly mean composites reveals that CA offshore 

Novembers feature a unique anomalous signature of an upper-level high over WNA that is 

part of a global zonal wave train emanating from South Asia and a possible additional 

arcing wave train originating from the equatorial CPAC. These patterns are evident during 

offshore Novembers and in the prior Octobers (at one-month leads). Analysis of the eddy 

stream function and velocity potential anomalies associated with these patterns indicate 

anomalous subsidence in the MC/WPAC and possible anomalous convection in the WIO. 

Tropical OLR and SST anomalies generally support this as well. Comparing these 

composites to MJO phase 1 and 2, EN, and EN Modoki, we found possible associations 

between CA offshore November and known intraseasonal and interseasonal tropical 

variability modes. However, these results do not indicate a single culprit in tropical 

precursors to CA offshore Novembers. There is evidence that MJO, EN, and EN Modoki 



60 

may each contribute to CA OWEs. Next, we will examine linear correlations to determine 

which associations are the strongest. 

2. Monthly Correlations 

We examined monthly mean composites to determine the large-scale tropical 

precursors to CA offshore Novembers in the previous section. We found: (a) anomalous 

tropical SST and tropospheric anomalies may lead to anomalous extratropical wave trains 

that lead to OWEs; and (b) these tropical anomalies are similar to those associated with 

several tropical climate variations (MJO, EN, and EN Modoki). Here we will demonstrate 

with linear correlations that eddy stream function and SST anomalies in the IO and WPAC 

regions are the strongest and most significant. 

Figure 30 shows maps of linear correlations between CA 850 mb zonal wind and 

global stream function (top) and velocity potential (bottom) for October and November. 

Statistically significant correlations are for regions where |r| > 0.26 (40 degrees of freedom) 

at the 95% confidence level (Livezey and Chen 1983). For the October stream function 

(top left), we found significant positive correlations of r > 0.30 over southern Asia and the 

southern Pacific Ocean (SPAC) and significant negative correlations of r < -0.30 over 

southern Africa and in the NWPAC. In the Northern Hemisphere, positive correlations 

indicate that positive (negative) stream function anomaly is correlated to CA onshore 

(offshore) flow. In other words, if the upper-level stream function anomaly is positive, that 

correlates to onshore wind, and if the stream function anomaly is negative, that correlates 

to offshore wind. Negative correlations indicate that negative (positive) stream function 

anomaly is correlated to CA onshore (offshore) flow. In other words, if the upper-level 

stream function anomaly is positive, that correlates to offshore wind, and if the stream 

function anomaly is negative, that correlates to onshore wind. In the Southern Hemisphere, 

those associations are opposite. These correlations match what we found in the previous 

section and indicate that patterns of cyclonic (anticyclonic) stream function anomalies 

straddling the equator in the IO (Pacific) sectors are related to CA offshore wind. The 

November stream function correlation is generally in agreement, although the correlations 
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form a wave train in the northern hemisphere. This makes sense because we are basing our 

correlations off of CA winds and associated global wave trains. 

Next, the velocity potential correlations (Figure 30) reveal significant positive 

correlations of r > 0.30 over western Africa in October and in the CPAC for November. 

There are also significant negative correlations r < -0.30 in the NWPAC for October and 

over Africa for November. These correlations are interpreted more easily than stream 

function. Positive correlations indicate that positive (negative) velocity potential anomalies 

are related to CA onshore (offshore) wind. Negative correlations indicate that positive 

(negative) velocity potential anomalies are associated with CA offshore (onshore) wind. 

Focusing on the MC/NWPAC region in October, negative correlations mean that if the 

velocity potential anomaly is positive (subsidence), then CA wind tends to be offshore (and 

vice versa), which is what we found previously in section A, 1. In the WIO/Africa region, 

positive correlations mean that negative velocity potential anomalies (convection) are 

related to CA offshore wind, which we also found previously in section A, 1. In November, 

we see a positive correlation in the CPAC, which means a negative velocity potential 

anomaly (convection) is related to CA offshore wind. We also find a negative correlation 

in the WIO, which means that we expect CA offshore wind for a positive velocity potential 

anomaly (subsidence). In summary, Figure 30 provides additional evidence that: (a) 

anomalous subsidence in the MC / NWPAC and anomalous convection in the WIO / Africa 

in October is associated with CA offshore winds in the following November, and (b) 

anomalous convection in the MC and CPAC and anomalous subsidence in Africa in 

November is associated with CA offshore winds in that November. This is broadly in 

agreement with the potential hypothesis that MJO phases 8–3 tend to precede CA offshore 

wind events by one to zero months, with the MJO tending to evolve from phase 8 to phase 

3 during these months so that the convective anomaly has moved from the IO to the Pacific 

Ocean (PAC) during this period. 
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Black solid (dashed) circles encompass areas of dynamically relevant and statistically 
significant positive (negative) correlations. 

 Monthly mean correlations between CA November 850 mb zonal wind 
and: (upper left) global upper-level stream function in October (one month 
prior); (upper right) global upper-level stream function in November (zero 
months prior); (lower left) global upper-level velocity potential in October 

(one month prior); (lower right) global upper-level velocity potential in 
November (zero months prior). 

We also analyzed global SST correlations to CA 850 mb zonal wind (Figure 31). 

We found statistically significant positive correlations of r > 0.30 in the SCS/Philippine 

Sea, northwest of Australia, and off of South America and negative correlations of r < -

0.30 in the CPAC and IO (in October only). Positive correlations mean that negative 

(positive) SST anomalies are related to offshore (onshore) flow. The correlations shown in 

Figure 31 are consistent with the SST anomaly patterns we found in examining monthly 

mean composites (Figure 23). In particular, Figure 31 shows that SSTAs tend to be 

anomalously cool (warm) in the SCS/WNP (IO and central tropical Pacific) one month 

before and during CA OWEs in November.  
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Black circles encompass statistically significant and relevant correlations. 

 Correlations for CA November 850 mb zonal wind 
to global SST one (left) and zero-months (right) prior to 

the top 15 offshore Novembers. 

In summary, we find that the monthly mean composites are supported by linear 

correlations between CA wind and stream function, velocity potential, and SST anomalies. 

There are statistically significant correlations between CA November offshore wind and: 

a) anomalous convection in the IO subsidence in the MC in October, and b) anomalous 

subsidence over Africa and anomalous convection in the WPAC/CPAC in November. 

Interestingly, these correlations reveal that the opposite patterns are valid for CA 

November onshore flow. We did not focus on CA onshore events in this study. However, 

our preliminary results for onshore events show broadly opposite results to those for 

offshore events. The monthly mean composites indicate that these patterns are broadly 

consistent with those for MJO phases in which the convective (subsidence) anomaly are 

centered in the east African – western IO (MC) region (e.g., phases 1, 2), EN, and EN 

Modoki. However, based on the variability in the composites and correlations, no single 

climate variation appears to be sufficient to explain CA OWEs. Using our methods, we do 

not find enough evidence to identify MJO or EN Modoki alone as the primary 

teleconnection association. In the next section, we will assess these associations with 

further correlation analyses for EN and EN Modoki and a simple retrospective analysis of 

MJO activity before CA offshore wind events. 

B. HOW ARE CA OWES RELATED TO KNOWN CLIMATE 
VARIATIONS? 

In the previous section, we investigated monthly mean composites of CA offshore 

Novembers and preceding tropical conditions. We found that CA offshore conditions are 
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preceded by anomalous tropical convective anomalies that are possibly related to MJO, 

EN, or EN Modoki. We also analyzed initial linear correlations that show statistically 

significant associations between CA OWEs in November and prior and simultaneous 

conditions in the IO, MC, and WPAC / CPAC. There are other weak associations globally 

that may be important, but we will not investigate those here. In this section, we investigate 

CA offshore wind monthly and daily linear correlations to known climate indices. This will 

help elucidate the complex associations between remote tropical predictors and CA wind. 

1. Correlations of Climate Indices to OWEs 

We analyzed how our index of CA November zonal wind (850 mb u) (see chapter 

2, section B) correlates to indices for common and potentially relevant climate variations: 

MEI (to represent ENLN), EMI (to represent ENLN Modoki), DMI (to represent the Indian 

Ocean Dipole), ACE index (to represent NWPAC the accumulated cyclone energy of 

tropical cyclones in the western North Pacific), PNA index (to represent the Pacific-North 

American pattern), AMO index (to represent the Atlantic Multidecadal Oscillation), AO 

index (to represent Arctic Oscillation), PDO index (to represent the Pacific Decadal 

Oscillation), and QBO index (to represent the Quasi-biennial Oscillation). See chapter 2, 

section A, 2. for more information on these indices. 

Table 3 shows that EMI is significantly and negatively correlated at the 99.5% 

confidence level to CA offshore Novembers with r = - 0.50 for October (one month prior) 

and r = - 0.50 for November. However, while negatively correlated, both MEI and DMI 

associations are not significant at the 95% confidence level (r > - 0.26). Notably, all three 

of these correlations are negative because all three indices have broadly similar anomaly 

patterns in the IO / MC / WPAC regions (cf. Saji and Yamagata 2003, Ashok et al. 2007, 

Wolter and Timlin 2011). These patterns consist of subsidence anomalies in the 

MC/WPAC straddled by convective anomalies in the IO and CPAC/EPAC. There are 

qualitative and quantitative differences in the indices, especially in their focus region and 

detailed composites. However, only the correlation to EMI is statistically significant. We 

also found that MEI and EMI are significantly correlated at the 99.5% confidence level. 

This is important to recognize that EN Modoki and EN are somewhat related: EN Modoki 
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signatures can be viewed as CPAC EN events (Ashok et al. 2007). So, it makes sense that 

they are positively correlated, at least to a degree. This helps us understand why CA 

offshore Novembers can be related to both EN and EN Modoki indices simultaneously. It 

appears that EN and EN Modoki are broadly similar and are thus well correlated, but EN 

may lack one or more of the relatively favorable factors that EN Modoki has for CA OWEs. 

These favorable factors are still to be determined, but it appears to be the reasonably 

complex set of SST and OLRA anomalies shown in Figure 23 that are more clearly part of 

EN Modoki than EN. For example, EN Modoki more clearly contains the offshore 

favorable SST anomalies off the northwest coast of Australia, in the central tropical Pacific, 

and off the west coast of South America.  

The correlations in Table 3 indicate that ENLN events are not significant drivers of 

CA OWEs, based on the correlation to MEI. This is somewhat at odds with the results in 

Figures 25, 27, and 29 that show similarities between offshore anomalies and EN 

anomalies. This may be because the relatively broad ENLN index we used, the MEI, does 

not sufficiently capture and distinguish the multiple SST and OLR anomalies that appear 

to be most important for triggering CA OWEs (Figure 23). The relatively high correlations 

between EN Modoki and CA OWEs may be a result of how the EMI distinguishes three 

distinct tropical SST anomaly regions similar to those associated with CA OWEs (see 

Ashok et al. 2007). Some prior studies have provided indications that EN may be involved 

in initiating CA OWEs (e.g., Raphael 2003; Raphael and Finley 2007; Guzman-Morales et 

al. 2016, Rolinski et al. 2019). However, these studies focus on winter cases (Raphael 2003; 

Raphael and Finely 2007) or the whole year (Guzman-Morales 2016; Rolinski et al. 2019). 

We focused only on the fall, dry season in CA.  

The only other correlation close to being significant at the 95% confidence level is 

between CA 850 mb zonal wind and November AO index value with r = - 0.21. The 

negative correlation suggests that when AO is positive, zonal wind trends negative (and 

vice versa). We have not thoroughly investigated this linkage, but it is possible that during 

AO positive conditions, the mid-latitude jet stream is stronger and more zonal, potentially 

acting as a better waveguide for tropical Rossby waves propagating into the midlatitudes 

(Zhou and Miller 2005). Moreover, L’Heureux and Higgins (2008) found the AO loading 
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pattern is in some ways impacted by and dependent on MJO activity and associated Rossby 

waves generation. CA offshore wind conditions may be directly related to the AO. Or, the 

AO may be related to the MJO, and we are essentially correlating two symptoms (CA 

offshore wind and the AO) of the same cause (MJO). In either case, the association does 

not appear to be strong enough to use as a predictor of CA offshore winds. We did not find 

significant associations between CA OWEs and PDO and AMO, unlike Guzman-Morales 

et al. (2016) and Rolinski et al. (2019), as discussed in Chapter I. Moreover, we did not 

find significant associations to the PNA, WNP ACE, or the QBO. 

Table 3. Correlations of EMI index to MEI index and CA November 
monthly mean 850 mb zonal wind to climate indices. 

 
 

Correlation coefficients in yellow (|r| > 0.26) are statistically significant at the 95% 
confidence level. Correlations for October are for indices leading CA wind by 1-month. 

 

Related to EN, we did find that November (2004–2018) SA wind events (offshore 

winds in SoCA) tend to last for more days during LN and neutral conditions and for fewer 

days during EN conditions (Figure 32). We do not investigate this further in this study, but 

we hypothesize that this is likely due to the EN-associated positive PNA pattern that results 

in onshore flow in CA (Horel and Wallace 1981; Livezey et al. 1987). This onshore flow 

would oppose MJO-related offshore winds and possibly shorten their duration. 
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The x-axis measures the duration of Santa Ana evets in days. The y-axis measures the 
numbers of events. 

 Histogram of SA event duration for 
November 2004–2018 

2. Assessing MJO Skill as an S2S Predictor of Individual CA Offshore 
Wind Events 

In the prior sections, we provided evidence that the MJO, especially phases 1 and 

2, play a role at S2S lead times preceding CA OWEs. For example, the monthly mean 

composites suggest that MJO activity with subsidence over the MC and convection in the 

IO are associated with CA OWEs (see Chapter III, section A, 1). In this section, we move 

towards an initial understanding of how the MJO plays a role in the initiation of CA 

offshore wind events by compositing MJO activity six–25 days before the 200 strongest 

CA offshore and onshore wind events using daily data (see Chapter II, section D). For the 

total of 8000 days, we count the number of times MJO phases 8, 1, 2, or 3 occur that result 

in an onshore or offshore wind event. At this point, no restrictions are placed on MJO 

amplitude or phase sequence. We simply look at the frequency of occurrence. 

We constructed contingency tables and calculated skill metrics (Table 4), such as 

hit rate (HR), also known as the probability of detection (POD), false alarm rate (FAR), 
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threat score (TS), and Heidke skill score (HSS) (Wilks 2020). We also tested using the 

opposite phases of the MJO (phases 4, 5, 6, or 7). Table 4 lists the skill scores for MJO-

based predictions of offshore wind only. Using TS as a combined metric for HR and FAR, 

we find that using MJO phases 8–3 improves the prediction of CA offshore winds by 37% 

and results in a positive, albeit small, HSS compared to phases 4–7. This means that using 

those phases 8–3 improves prediction compared to a random forecast (Wilks 2020). Next, 

we find that MJO phases 8–3 perform better during EN Modoki conditions (EMI > 0.5) 

and perform worse during LN Modoki (EMI < -0.5). When assessing MJO phases 8–3 

during EN or LN, hits are higher during EN, but this does not add value over random 

forecasts. Hits are dramatically lower during LN conditions. 

Meanwhile, using the opposite phases of MJO (phase 4 –7), perform “better” during 

LN Modoki and worse during EN Modoki. However, the HSS for both situations are nil or 

negative, indicating no skill compared to random forecasts. While the best HSS of 0.08 for 

MJO phases 8–3 alone during EN Modoki conditions seems small, the relative 

improvement over opposing conditions suggests that MJO activity consisting of subsidence 

over the MC and convection in the IO plays a role in the initiation of CA OWEs at leads 

of six–25 days. Again, EN and LN do not add value with respect to HSS. 

Table 4. Skill scores for CA offshore wind associations using MJO phases 
as predictors. 

 
Values in green (red) represent relatively high (low) skill.  
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In summary, we found that using daily MJO data as predictors of CA offshore 

winds provides skill when we use phases 8–3, compared to phases 4–7 at leads of six–25 

days. We found that predictions based on these phases have greater POD and lower FAR 

if they occur during EN Modoki conditions.  

3. Monthly OLR Hovmöller Analysis 

To visualize these results differently, we consider an example Hovmöller of tropical 

OLR anomalies preceding CA offshore conditions. This method allows us to visualize 

information about convection in the IO and subsidence in the MC/WPAC before and during 

CA offshore conditions at subseasonal leads. For brevity, we consider one representative 

example for November 2004, the November with the strongest monthly mean offshore 

flow. Figure 33 depicts a time-longitude plot (Hovmöller) of the tropical OLR anomaly 

averaged from 15°N to 15°S and displayed for longitudes 60°E to 180°E. . Data begins 

from 1 October 2004 and ends on 30 November 2004. The numbers on the right-hand side 

are the RMM MJO phases values (no amplitude information considered). The time series 

on the left is the actual daily mean 850 mb zonal wind in CA. The yellow boxes highlight 

offshore wind events. We see that on about 18 October, approximately 16 days before the 

first offshore wind event, there is anomalous convection building in the WIO and 

subsidence from the far EIO into the WPAC. This OLRA dipole persists through about 06 

November. Note the RMM phase values evolving from 8 to 3 during this 18 October to 06 

November period. The first and strongest offshore wind event in November began on 05 

November, about 18 days after the beginning of phase 8–3 conditions on 18 October 2004. 

The last of the three OWEs started on 20 November, about 14 days after the end of the 

OLRA dipole and MJO phases 8–3 conditions. We should note that the pattern is 

complicated due to using OLR anomalies as a proxy for MJO state and due to the highly 

variable nature of MJO propagation. In this example, the MJO evolved from about phase 

5 at the beginning of October and ended with phase 3 at the end of October. This works 

out to a period of about four days per phase and about three m/s propagation speed (tracking 

subsidence anomaly from beginning of October in WIO to the end of October in 

MC/WPAC). These values are consistent with average periods of 4–8 days per phase and 
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a propagation speed of 3–5 m/s eastward (cf. Madden and Julian 1994; Zhang 2005; Zhang 

2013). 

 
Hovmöller plot is created using tropical OLR data averaged from 15N to 15S and from 
60E to 180E. The blue time series on the left is for November CA 850 mb wind. The yellow 
boxes highlight dates of OWEs. The numbers on the right are the daily RMM phase 
numbers. The approximate longitudes of major tropical regions are noted at the bottom. 

 Hovmöller plot of October to November 2004 tropical OLR 
(W/m2) anomaly and related CA OWEs. 
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In summary, we found evidence that CA monthly mean offshore winds are related 

to global-scale S2S processes related to tropical convective anomalies in the IO and PAC. 

These anomalies seem to be associated with MJO activity in phases 8 - 3 at subseasonal 

leads and larger-scale climate modes, such as EN Modoki, at longer S2S leads. Daily 

(individual) November offshore wind events seem to be related to the same processes as 

monthly mean winds. Using a sample Hovmöller plot, we visualized how tropical 

anomalies may have led to specific OWE days and monthly mean offshore flow conditions. 

Next, we will investigate individual offshore wind events using other techniques in greater 

depth to confirm these results. 

C. WHAT TELECONNECTION PROCESSES SET UP OFFSHORE WIND 
FAVORABLE CONDITIONS OVER WESTERN NORTH AMERICA? 

Our goal in this section is to determine, to a higher resolution and degree of fidelity, 

and with an independent method, the extent to which individual OWEs are linked to MJO 

activity at subseasonal leads of one to five weeks. Our methods will entail using k-means 

clustering, a simple unsupervised machine learning, with preprocessing using PCA. Details 

of the methods are in Chapter 2, and the metadata and performance diagnostics for their 

application are in Appendix A. In the initial iterations of this study, we looked at clusters 

of onshore and offshore wind. Here, we focus on offshore wind clusters to better answer 

our initial research questions regarding wildfire-favorable, extreme offshore wind events. 

In additional work not reported here, we found that these methods also show that CA 

onshore flow events In November are related to specific MJO phases at S2S lead times. 

These findings are consistent with prior studies of MJO related teleconnections to North 

America (e.g., Higgins and Mo 1997; Mundhenk et al. 2018). 

1. Clustering Results 

Prior research has not established what range of synoptic and global scale 

conditions are associated with CA OWEs. To address this gap, we developed clusters based 

on daily CA 850 u and v wind components for November 1979–2018 from CFSRV2. We 

focused only on the 396 offshore days (33% of the total 1200). The entire 760 dimensions 

(grid points) in our domain needed to be simplified. Using PCA, we reduced the 
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dimensionality to 28 principal components (accounting for 95% of the variance; see 

Figures 45 and 46 in Appendix A.). Then, we applied k-mean clustering on the remaining 

1200 samples (days) with 28 dimensions. A priori, it was not apparent what the appropriate 

numbers of clusters should be. We exercised trial and error to reach our resultant k=2 

clusters. Detailed results are shown in Appendix A., Figures 47 and 48. 

a. Cluster Geopotential Height Composites 

Figures 34 and 35 depict results based on the two clusters discovered from the k-

means clustering analysis. We find that cluster 0 (Figure 34) and cluster 1 (Figure 35) 

reveal a positive geopotential height anomaly over WNA, which is what we expect given 

we have focused the clustering on offshore wind conditions. Cluster 0 (215 out of 396 days) 

reveals a global zonal wave train of wavenumber k = 4–5 emanating from South Asia. 

Similarly, cluster 1 (181 out of 396 days) also has a global zonal wave train, but the details 

are slightly different. For example, cluster 0 has a low over China and a high over Japan, 

while in cluster 1, the low and high are further east, resulting in a more compressed wave 

train in the NPAC. Based on the monthly mean results (see Chapter III, section A, 1), these 

differences might be related to differences in the number of days in each cluster associated 

with specific climate variations (e.g., differences in the number of EN Modoki days). The 

position and orientation of the positive upper-level height anomaly over WNA indicate that 

cluster 0’s anomalous winds over CA are offshore and northerly. In contrast, cluster 1’s 

are offshore and slightly southerly. This inference is confirmed by the results in Tables 5 

and 6.  
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Cluster 0 contains 215 out of 396 total offshore days for November 1979–2018.  

 Composite 200 mb eddy geopotential height anomaly (gpm) 
for the days in cluster 0 of the November CA 850 mb u and v winds. 

 
Cluster 1 contains 181 out of 396 total offshore days for November 1979–2018. 

 Composite 200 mb eddy geopotential height anomaly (gpm) for the 
days in cluster 1 of the November CA 850 mb u and v winds. 
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Table 5. Average CA 850 mb u and v winds speed for cluster 0. 

Region Mean u850 
(m/s) 

Mean v850 
(m/s) 

All CA -1.45 -3.50 

Northern CA -0.85 -1.95 

Central CA -2.54 -4.34 

Southern CA -2.44 -4.71 

 

Table 6. Average CA 850 mb u and v winds for cluster 1. 

Region Mean u850 
(m/s) 

Mean v850 
(m/s) 

All CA -1.51 1.68 

Northern CA -1.04 2.32 

Central CA -2.66 1.49 

Southern CA -2.25 0.97 

 
From a fire weather perspective, the meridional component of the wind may be 

critical information. Traditional offshore wind events associated with fire weather in the 

CA dry season are defined as offshore, with a dry northerly (southward) component that is 

foehn-like, potentially katabatic, and downslope (cf. Raphael 2003; Westerling et al. 2004; 

Miller and Schlegel 2006; Hughes and Hall 2010; Jones et al. 2010; Abatzoglou et al. 2013; 

Guzman-Morales et al. 2016; Kolden and Abatzoglou 2018; Rolinski et al. 2019; Mass and 

Ovens 2019). However, we also know that southerly (northward) flow into CA from the 
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south and east can fuel a dangerous situation where hot and dry conditions at the surface 

lift the inbound warm, moist air from the tropics. This occurred in August 2020 when rare 

thunderstorms and dry lightning that led to the August Complex Fire, the largest combined 

fire in CA state history (Duginski 2020). In this case, the decaying Tropical Storm Fausto 

was the source of moisture and instability (Duginski 2020). Our clustering reveals a subset 

(181 out of the total 396 days) that may be prime conditions for this type of situation, 

provided a moisture source exists, such as a tropical storm or monsoonal flow. To the 

author’s knowledge, this scenario has not been previously discussed in other research. 

The cluster 0 and 1 composites in Figures 34–35 also reveal some interesting 

tropical anomalies that may play a role in the differences between offshore wind events. 

First, in cluster 0, we find positive height anomalies in the CPAC, possibly related to EN 

or EN Modoki conditions based on the shape and location of the anomalies. For the 30 

days before the cluster 0 days, we found that the mean and median MEI were 0.12 and 

0.19, respectively, and the mean and median EMI were 0.15 and 0.34, respectively. These 

values indicate neutral to very weak EN and EN Modoki conditions. Still, they indicate a 

general tendency toward EN and EN Modoki conditions before and during the cluster 0 

days. Figure 34 shows positive anomalies straddling the equator in the central tropical 

Pacific consistent with anomalously strong convection in the equatorial central tropical 

Pacific. This figure also shows an arcing wave train beginning with a high in the CPAC 

west of HI, arcing to the northeast with a low south of the Aleutians, a high over WNA, a 

low over the Central U.S. and SoCA, and a high over the eastern seaboard of the U.S. As 

discussed previously, the interference between this wave train and the global zonal wave 

train emanating from South Asia appears to be characteristic of CA offshore wind 

conditions.  

Next, for cluster 1, we find a small negative height anomaly just west of the dateline 

and a positive anomaly just east of the dateline, in both hemispheres, that may be the 

beginning of an arcing wave train. However, this wave train is less distinct north of 30N 

and seems to disappear into the zonal wave train. It may be that the phase of this wave train 

is such that it constructively interferes with the zonal wave train and thus blends into the 

background state. For cluster 1, we found that the mean and median MEI was -0.04 and 
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-0.17, respectively, and the mean and median EMI was 0.04 and 0.18, respectively. While 

these values do not indicate definite LN/neutral or EN Modoki conditions, they indicate a 

general trend towards neutral conditions in the MC and weak convection in the CPAC. We 

previously discussed that CA offshore wind events seem to be favored during EN Modoki 

conditions, but this does not rule out events in other conditions. Thus, cluster 1 may 

represent those different scenarios when EN Modoki is weak or does not exist. This could 

account for the slight changes in the teleconnection pattern with an eastward shift in the 

offshore wind-inducing positive height anomaly and the related south-easterly 

(northwestward) flow component.  

Interestingly, for both clusters, we found weak yet positive EMI conditions, while 

MEI was mixed. This agrees with our previous results using monthly mean correlations 

that CA offshore winds are significantly correlated with EN Modoki conditions and not 

significantly correlated to EN or LN. Thus, using two independent methods, we find that 

climate conditions before and during monthly mean offshore Novembers and daily offshore 

November days indicate an EN Modoki association at S2S leads. 

b. Cluster Analysis of Other Global Conditions 

In the previous section, we found that two CA November offshore wind clusters 

reveal two similar synoptic and long-wave patterns: a global zonal wave train emanating 

from South Asia interfering with a shorter arcing wave train originating from the CPAC. 

Next, we examine other variables to assess further the association between the two clusters 

and their remote tropical teleconnections. 

Figure 36 depicts the upper-level eddy stream function (top) and velocity potential 

(bottom) anomalies for each cluster (cluster 0 on the left, cluster 1 on the right). Eddy 

stream function anomaly analysis reveals the tropical anomalies better than the eddy 

geopotential height anomaly. First, focusing on the tropics, the cluster 0 eddy stream 

function anomalies show an upper-level anticyclonic circulation over India (positive 

stream function anomaly) and east of Madagascar (negative stream function anomaly) and 

an upper-level cyclonic circulation over eastern China (negative stream function anomaly) 

and Australia (positive stream function anomaly). This indicates enhanced convection in 
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the EIO and MC, which is confirmed by the upper-level divergent wind anomaly (negative 

velocity potential) in the corresponding velocity potential plot below. Moreover, there is a 

second convection-related circulation in the CPAC with an upper-level anticyclonic 

circulation in the NWPAC just west of the dateline (positive stream function anomaly) and 

just east of the dateline in the SPAC (negative stream function anomaly) and an upper-

level cyclonic circulation near HI (negative stream function anomaly) and near the Pitcairn 

Islands, at about 230°E/130°W (positive stream function anomaly). This indicates 

enhanced convection in the CPAC, which is confirmed by the upper-level divergent wind 

anomaly in that region in the corresponding velocity potential plot below. As we have 

shown above, these convective anomalies are likely related to MJO activity with 

convection in the EIO and MC (i.e., MJO phases 3–4) and EN Modoki with convection in 

the CPAC.  

 
(Top) Solid (dashed) black circles represent anticyclonic (cyclonic) circulations. (Bottom) 
Solid (dashed) black circles represent upper-level convergent wind (divergent wind). 

 Upper-level eddy stream function anomaly (m2/s) for cluster 0 (top left) 
and cluster 1 (top right) and velocity potential anomaly (m2/s) for cluster 0 

(bottom left) and cluster 1 (bottom right) of November CA 
850 mb u and v winds. 
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Second, cluster 1 eddy stream function anomaly reveals an upper-level anticyclonic 

over the IO extending east towards the Philippines Sea (positive stream function anomaly) 

and in the SIO west of Australia (negative stream function anomaly) and an upper-level 

cyclonic circulation north of the Marianas Islands (negative stream function anomaly) and 

east of Australia (positive stream function anomaly). This indicates enhanced convection 

in the MC and WPAC, confirmed by the upper-level divergent wind anomaly in that region 

in the corresponding velocity potential plot below. Moreover, there is a second convection-

related circulation in the CPAC with an upper-level anticyclonic circulation in the CPAC 

southeast of HI (positive stream function anomaly) and just east of the dateline in the SPAC 

(negative stream function anomaly) and an upper-level cyclonic circulation east of HI 

(negative stream function anomaly), which constructively interferes with the low to the 

north, and east the Pitcairn Islands (positive stream function anomaly, east of about 

230°E/130°W). This indicates enhanced convection in the CPAC, which is confirmed by 

the upper-level divergent wind anomaly in that region in the corresponding velocity 

potential plot below. The patterns between cluster 0 and 1 are generally in agreement, but 

the anomalies for cluster 1 are shifted somewhat to the east. As we have shown above, 

these convective anomalies are likely related to MJO activity with convection in the EIO 

and MC (i.e., MJO phases 4–5) and EN Modoki with convection in the CPAC.  

Figure 37 depicts the OLR (top) and SST (bottom) anomalies for each cluster 

(cluster 0 on the left, cluster 1 on the right). The cluster 0 OLR anomaly reveals anomalous 

convection in the central-eastern tropical IO and central tropical Pacific and subsidence in 

the MC and eastern equatorial Pacific. This pattern is generally confirmed by the SST 

anomalies, with positive SST anomalies in the central-eastern tropical IO and western to 

central tropical Pacific and negative anomalies in the MC and eastern equatorial Pacific. 

As we showed in Figures 24–29, this is generally in agreement with MJO phase 2 and 3 

(not shown) and EN Modoki patterns. The cluster 1 OLR anomalies reveal anomalous 

convection extending from the tropical EIO to the dateline and over southeast Asia, and 

there is anomalous subsidence in the central tropical IO, central tropical Pacific, and 

northeast of the Philippines. The areas with negative (positive) OLRAs are generally areas 

with positive (negative) SSTAs (for example, in the SCS–ECS region). Overall, the cluster 



79 

1 OLRAs and SSTAs indicate suppressed (enhanced) convection in the central tropical IO 

and central tropical Pacific (MC). 

 
(Top) Solid (dashed) black circles represent positive (negative) OLR anomalies. (Bottom) 
Solid (dashed) black circles represent positive (negative) SST anomalies. 

 Surface OLR anomaly (W/m2) for cluster 0 (top left) and 
cluster 1 (top right) and SST anomaly (K) for cluster 0 (bottom left) 
and cluster 1 (bottom right) of November CA 850 mb u and v winds. 

Composite analysis of the two CA November offshore wind clusters (daily data) 

revealed two broadly similar global patterns: a global zonal wave train emanating from 

South Asia and an arcing wave train originating from the CPAC. The two clusters differ 

slightly with respect to average EN and EN Modoki conditions, with cluster 0 leaning 

towards EN Modoki and cluster 1 leaning neutral/weak EN Modoki. Moreover, we found 

that the anomalous tropical convection patterns generally resemble those for the monthly 

mean offshore wind patterns and are consistent with MJO activity consisting of convection 

in the IO, subsidence in the MC and WPAC, and convection in the CPAC. Cluster 1 

composites appear to be more like later phases of the MJO than cluster 0. Specifically, 

cluster 0 composites contain features related to MJO phase 4 and possibly 5, with tropical 

convection shifted closer to the MC/WPAC. However, at this point, we have not 

investigated the time evolution of these patterns. So far, we have not shown at what leads 
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certain phases of the MJO matter. Next, we apply simple BDA to examine the evolution of 

MJO activity preceding CA November offshore winds. 

2. Bayesian Data Analysis of Cluster Results 

Next, we apply simple BDA to examine the evolution of MJO activity preceding 

CA November offshore winds. Table 7 lists our BDA results for clusters 0 and 1. The 

values describe the 10-day mean evolution and relative Bayesian posterior probability of 

CA offshore winds (percent departure from a priori frequency) given preceding MJO 

activity, P (cluster | MJO). Note, the Bayesian posterior probabilities are interpreted as a 

forecast or confidence in an outcome instead of a frequency (Wilks 2020). Another helpful 

way to interpret the posteriors is as an odds statement about the favorability of an outcome. 

For example, CA OWEs from cluster 0 are favored (approximately 40% more likely) 

following MJO phases 2 or 3 at leads of one to two weeks and MJO phases 1, 2, or 3 at 

leads of one to three weeks (25% more likely). Moreover, CA OWEs from cluster 0 are 

unfavored (approximately 30–40% less likely) following MJO phases 4, 5, or 6 at leads of 

one to two weeks and MJO phases 4, 5, or 6 at leads of 1 to three weeks (20–40% less 

likely). CA OWEs from cluster 1 are favored (approximately 30–50% more likely) 

following MJO phases 2, 3, or 4 at leads of one to two weeks and MJO phases 2, 3, or 4 at 

leads of one to three weeks (20–30% more likely). In addition, CA OWEs from cluster 1 

are unfavored (approximately 20–50% less likely) following MJO phases 5, 6, or 7 at leads 

of one to two weeks and MJO phases 5 or 6 at leads of one to three weeks (40–50% less 

likely). Beginning at about 16–25 days before CA OWEs, the CA OWE-favorable (green) 

MJO phases begin to slope negatively towards later phases at a rate of about one to two 

phases every five to 10 days as time evolves closer to the CA OWEs. This results in a 

period of about five to 10 days per phase, which concurs with the previously researched 

MJO phase period of about four to eight days per phase (Chapter II, section A., 3). The 

sloping behavior does not exist earlier than about 25 days. This suggests that: a) our results 

agree with what should occur for average MJO activity, and b) CA OWE predictability 

may be limited to about 25–30 days. 
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In general, CA November OWEs are favored following MJO activity in phases 8–

3 at leads of six to 30 days or one to four weeks. Likewise, they are unfavored following 

MJO activity in phases 5–7 at leads of six to 30 days or one to four weeks. There are 

differences in the details between clusters 0 and 1, possibly related to the interference 

between MJO activity or its measurement by the RMM index with ENLN or ENLN 

Modoki conditions, as discussed in-depth previously. Or, the cluster 0 wave train, with a 

more zonal wave train, may be related to earlier phases of the MJO, such as phases 1 or 2. 

Meanwhile, cluster 1, with a more arcing wave train, could be related to later phases of the 

MJO, such as phases 3 or 4. Cluster 1 MJO activity does appear to reach MJO phase 4 just 

before CA OWEs, as shown in the BDA results and as discussed in the previous section. 

The BDA results only consider MJO activity. We have not extended them to include ENLN 

or ENLN Modoki information. This should be done in further research.  

Given the broad similarity between the cluster posteriors in Table 7, we combined 

results using a weighted average. Table 8 lists the combined Bayesian posterior 

probabilities for CA November offshore winds given prior MJO activity. The benefit of 

averaging the two clusters together is that, although we noted some essential synoptic 

differences in CA and differences in tropical background states, we get a smoother and 

clearer pattern of MJO activity before CA November offshore wind conditions. The results 

reveal that MJO activity in phases 1–3 (5–7) favors (does not favor) CA offshore winds 

approximately one to five (one to four) weeks later. While providing less granularity, the 

smoothed results offer a clear picture and evidence that MJO activity is related to CA 

offshore wind conditions at S2S leads. These results confirm previous results using 

monthly means and correlations that suggest tropical teleconnections to CA synoptic 

weather conditions. These results are complementary yet independent of the earlier 

analyses. In the next section, we will examine the time evolution of the eddy stream 

function anomalies composited from the top 200 most offshores days, from both clusters 0 

and 1, to visualize these results. 
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Table 7. Relative Bayesian posterior probabilities for clusters 0 and 1 of November CA 850 mb u and v winds. 

 
 

 First column lists the MJO phase. The second column P(MJO) represents the long-term frequency of each phase (1-8) from 16 September–30 
 November 1979–2018. Third column P(cluster) represents the long-term frequency of each cluster during November 1979–2018. The fourth 
 column P (AMP >= 1) represents the conditional probability that the given phase’s amplitude from the RMM index is greater than or equal to  
 1.0. The remaining columns list the 10-day mean anomalous Bayesian posterior probabilities for each phase at listed leads prior to CA OWEs 
 for each cluster. The green shading represents values greater than 0.15 or the top two values if not greater than 0.15. The red values represent 
 those less than -0.15 or the bottom two values if not less than -0.15. The choice of 0.15 and -0.15 is purely for convenience in identifying 
 relatively large magnitude relative Bayesian posterior probabilities and is not related to significance. 
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Table 8. Relative Bayesian posterior probabilities for combined cluster of November CA 850 mb u and v winds. 

 
  
Same as in Table 7 but for combined clusters. 
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3. Time Evolution Analysis of Composite CA Offshore Wind Events 

In the previous section, we discussed evidence from BDA that CA November 

OWEs are favored following MJO activity in phases 8–3 at leads of one to four weeks. Our 

monthly mean composites and correlations support these results, as well. Next, we will 

examine still frames from a movie (not shown here) of eddy stream function anomalies 

composited from the top 200 November offshore days, based on a combination of days 

from clusters 0 and 1. To construct the movie, we computed nine-day mean composites of 

eddy stream function anomalies for the top 200 offshore events, increments of two-day 

time steps going back to 45 days before each of the 200 events. In general, the results depict 

an evolution of eddy stream function that suggests convective anomalies emerging in the 

IO and subsidence anomalies in the MC / WPAC one to four weeks before CA November 

OWEs. We chose four still frames from the movie that correspond well in time and 

anomaly features to the results suggested by the BDA.  

Figure 38 depicts upper-level eddy stream function anomalies centered on day -31 

and day -25 (centered nine-day means) compared with Oct–Nov MJO phases 8 and 1 for 

comparison. The day -31 results (top left) depict a pair of anomalous cyclonic circulations 

straddling the equator in the eastern hemisphere. The northern circulation is over the 

southern Asia–western North Pacific region, and the southern circulation is over the 

Australia–western South Pacific region. There is also a pair of anomalous anticyclonic 

circulations straddling the equator between the dateline and 90°W. These anomalies are 

consistent with anomalous subsidence over the MC and broadly consistent with the MJO 

phases 8 composite (bottom left panel in Figure 38) and with the MJO phase suggested by 

Bayesian posteriors in Tables 7 and 8.  

The day -25 results are like those for day -31 but with a more substantial and 

eastward shifted cyclonic anomaly over southern Asia–western North Pacific region. These 

anomalies are consistent with anomalous subsidence over the MC, with MJO phase 1 

(bottom right panel in Figure 38), and with the MJO phase suggested by Bayesian 

posteriors in Tables 7 and 8. 
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OWE eddy stream function anomaly plots (top row) are comprised of nine-day means centered on 31 and 
25 days prior to CA OWE events. MJO phase composites (bottom row) represent the composite eddy 
stream function anomaly for MJO phase 8 and 1 events in Oct–Nov 1979–2018. 

 Upper-level eddy stream function anomaly (m2/s) composites 31 (top left) 
and 25 (top right) days prior to CA OWEs compared with MJO phase 8 

(bottom left) and 1 (bottom right). 

Figure 39 depicts upper-level eddy stream function anomalies centered on day -15 

and day -7 (centered nine-day means) compared with Oct–Nov MJO phases 2 and 3 for 

comparison. The day -15 results (top left) depict a pair of anomalous cyclonic circulations 

straddling the equator in the eastern hemisphere, with the northern circulation over the 

eastern Asia–western North Pacific region and the southern circulation over the 

Australian–western South Pacific region. There is also a pair of anomalous anticyclonic 

circulations straddling the equator between about the dateline and 230°E/130°W. These 

anomalies are consistent with anomalous subsidence over the WPAC and broadly 

consistent with the MJO phases 2 composite (bottom left panel in Figure 39) and with the 

MJO phase suggested by Bayesian posteriors in Tables 7 and 8. 

The day -7 results are like those for day -15 but with an eastward shifted cyclonic 

anomaly over the central North Pacific region. These anomalies are consistent with 

anomalous convection in the IO and subsidence in the WPAC, with MJO phase 3 (bottom 
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right panel in Figure 38) and the MJO phase suggested by Bayesian posteriors in Tables 7 

and 8. 

 
OWE eddy stream function anomaly plots (top row) are comprised of nine-day means 
centered on 15 and seven days prior to CA OWE events. MJO phase composites (bottom 
row) represent the composite eddy stream function anomaly for MJO phase 2 and 3 events 
in Oct–Nov 1979–2018. 

 Upper-level eddy stream function anomaly (m2/s) composites 15 (top left) 
and seven (top right) days prior to CA OWEs compared with MJO phase 2 

(bottom left) and 3 (bottom right). 

The above results complement the Bayesian posteriors because they help visualize 

the temporal evolution of the tropical circulation and convective anomalies. The days we 

used to create these combined cluster composite anomalies were not conditioned on any 

climate variation state (such as MJO, ENLN, or ENLN Modoki). Thus, it is notable that 

the cluster composites anomalies are very similar to MJO anomalies and consistent with 

the Bayesian posterior results that also showed links between OWEs and specific prior 

MJO phases. Our results indicate that the OWE composites have a lot in common with the 

MJO composites and support the idea that MJO conditions may play a role in producing 
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OWEs. However, some notable differences between the OWE and MJO composites in 

Figures 38–39 indicate that while certain MJO phases are favorable for OWEs, they are 

not sufficient by themselves to trigger OWEs. Some other factors that may also play a role 

include EN Modoki, perhaps the AO, and extratropical background flows favorable for 

wave train development that leads to an anomalous geopotential high over WNA.  

We note that much of the sometimes-incoherent signature of the eddy stream 

function anomalies are expected because MJO and other tropical forcing mechanisms are 

not “off/on” switches. Tropical Rossby and Kelvin wave trains are continually initiated and 

suppressed through multiple forcings and constructive and destructive interference. Our 

composites capture snapshots in time that reveal evidence of not only our suspect tropical 

teleconnections to CA November OWEs but also the aggregate climate variability in the 

rest of Earth’s climate system. This is distinctly different from classical modeling studies 

of tropical forcing of Rossby waves, which typically treat the forcing as a simple localized 

heat or momentum source and consider the steady-state solutions (e.g., Sardeshmukh and 

Hoskins 1988). More recent observational work has used similar techniques to study more 

realistic teleconnection dynamics (cf. Henderson et al. 2016, Henderson and Maloney 

2018, Mundhenk et al. 2018). Their results also show characteristic “messiness” due to the 

observational nature of the methods. We attempt to limit the amount of preprocessing and 

smoothing to capture realistic teleconnection dynamics. Despite all of this, our results 

provide multiple lines of evidence, including from monthly mean composites and 

correlations, daily composites, and BDA, that demonstrate that CA OWEs are 

teleconnected to tropical anomalies in the IO/PAC at S2S leads. Next, we will provide 

evidence that these results can be used to successfully predict the favorability for CA 

offshore wind events at leads of 30 days. 

D. WHAT IS THE POTENTIAL FOR SKILLFUL STATISTICAL 
SUBSEASONAL TO SEASONAL (S2S) PREDICTION OF CA OWES 
USING TROPICAL PREDICTORS? 

So far, we have provided numerous and independent lines of evidence that CA 

offshore winds are related to tropical variability via teleconnection dynamics. It remains to 

be established whether any of our results can be used to produce skillful S2S predictions 
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of OWEs. This section provides evidence from a simple hindcasting study that knowledge 

of tropical variability can provide some skill compared to random forecasts. Chapter II 

provides details on our hindcasting methods.  

Using only the RMM MJO phase as a predictor, we set up a simple test that 

forecasted for SA wind event (OWEs in SoCA) favorability for 15 consecutive Novembers 

from 2004 to 2018. In a five-day sequence, if MJO Phases 8 or 1 occurred (at least three 

occurrences in the pentad) at leads of 26–30 days, phases 1 or 2 at leads of 21–25 days, or 

phases 2 or 3 at leads of 11–20 days, then we hindcasted at that lead time conditions 

favorable for SA conditions. We focused on SoCA as an initial test and to test our potential 

hypothesis on a relatively small scale and for more operational scenarios, such as for utility 

and fire weather forecasting. We verified our forecasts against CFSRV2 mean 850 mb 

zonal wind for SoCA and conditioned the scores on the occurrence of EN and LN. We did 

this to compares our results to previous research on SA events and ENLN. Our hindcasts 

correctly captured all six major SA events from 2004–2018 associated with 17 major 

wildfires, including the Camp and Woolsey Fires (California Department of Forestry and 

Fire Protection 2021). Of the six SA events, five were first hindcasted at 26–30 day leads 

and one at a lead of 21–25 days. 

Table 9 displays the average skill scores, averaged across all leads. Overall, we 

found that our method correctly identified SA-favorable conditions with a POD of 0.84, 

FAR of 0.27, and HSS of 0.20. The period with the most skill was the 16–20 day-lead. 

During LN conditions, FAR and HSS improved to 0.22 and 0.40. During EN, the FAR 

jumped significantly to 0.54, and we essentially provided no skill over random forecasts in 

the context of our study. This is an interesting result that may be explained as follows.  

Table 9. Skill scores for 15-year hindcast test of SoCA SA events. 
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We previously discussed and that two wave trains appear to be part of the complex 

teleconnection dynamics related to CA offshore wind events. The first is zonal and 

emanates from South Asia, and the second arcs from the CPAC. According to our results, 

this second wave train, possibly associated with EN Modoki conditions, may: a) provide 

the necessary low off SoCA to generate the steep height gradient needed for strong offshore 

flow, and b) adjust the background zonal flow associated with its own independent 

teleconnection. In other words, we know that during EN conditions and the associated 

positive PNA pattern, the midlatitude jet stream translates southward, thus allowing storm 

tracks to dig south into SoCA (Horel and Wallace 1981; Livezey et al. 1987). The result is 

mean onshore winds in SoCA, as shown in Figure 40. On the left is the eddy stream 

function anomaly during EN conditions with the positive PNA pattern highlighted. Over 

SoCA, an upper-level low circulation results in mean onshore wind, consistent with known 

PNA teleconnections. This means that during EN conditions, MJO remote teleconnections 

to offshore flow in CA are opposed by the background state of onshore flow. Thus, false 

alarms would occur in our forecast system. The opposite is true during LN conditions, 

where the background flow is generally offshore in SoCA, consistent with negative PNA. 

Thus, our suspect MJO teleconnection would not be opposed, resulting in fewer false 

alarms. However, this argument does not consider upstream interference between MJO and 

ENLN anomalies. We previously found weak/no correlation between EN or LN and CA 

offshore flow, so we argue that the impact is likely downstream, not upstream. 

In summary, in a simple hindcast test using the BDA results to inform the choice 

of predictors, we found that the MJO, using the RMM index, may provide some S2S 

predictability of CA OWEs at S2S leads. Moreover, the predictability may be modulated 

by lower frequency variability, such as EN and LN. 
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Red circles encompass upper-level highs and black circle represent upper-level lows. 
Composite on left (right) is indicative of +PNA (-PNA) patterns over western North 
America.  

 Upper-level eddy stream function anomaly (m2/s) 
composites conditioned on EN (left) and LN (right) conditions 

for Oct–Nov 1979–2018. 

E. RESULTS SUMMARY 

With multiple lines of independent evidence, we have shown that November 

offshore flow in CA is related to tropical variability, especially MJO and EN Modoki 

conditions, at S2S leads. Monthly mean composites and correlations, daily composites, 

BDA, analysis of the time evolution of composite anomalies, and a simple hindcasting test 

indicate that information about the state of MJO and lower frequency tropical climate 

variations may be used to skillfully predict conditions favorable for CA offshore wind 

events. We also analyzed individual CA OWEs from October and December 1979–2018 

and found similar results (see Appendix B; tables 12 and 13). However, the processes that 

lead to these events vary enough between the months that they may need to be predicted 

separately for each month. This month-to-month variability is likely due to the significant 

changes in the climate system in October–December during the transition from boreal fall 

to winter. We save further investigation on this topic for future research.  
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IV. DISCUSSION AND CONCLUSION 

A. CONCEPTUAL MODEL OF TELECONNECTION DYNAMICS 

To summarize the potential MJO teleconnection to CA OWEs, Figures 41–44 

depict a conceptual model of how anomalous tropical variability precedes CA OWEs at 

S2S leads. These figures are based mainly on the results shown in chapter 3, A. First, about 

three to five weeks before the OWE-favorable synoptic conditions form over CA, 

anomalous tropical activity akin to MJO (phases 1–2) convection in the WIO and 

subsidence over the EIO/MC forms (Figure 41). This results in a tropical Rossby wave 

pattern consisting of an upper-level high and low to the northwest of the convective and 

subsidence anomalies. The anomalous divergent wind and stream function act as a Rossby 

wave source at the mid-latitude jet. The MJO activity propagates eastward and continues 

the forced anomalous wave source. 

About one to two weeks before CA OWE conditions, the MJO has evolved into 

phases 2–3 with convective, and subsidence anomalies shifted east to the EIO and 

MC/WPAC, respectively (Figure 42). As a result, the anomalous tropical stream function 

anomalies shift east with an upper-level high developing over the CPAC. The subtropical 

jet continues to guide the forced wave train zonally. 

At about zero to one weeks before CA OWE conditions, the pattern has shifted 

further east with convection and now centered over the EIO/MC and the CPAC upper-level 

high exiting the jet region and arcing poleward (Figure 43). Once the Rossby wave extends 

eastward beyond the subtropical jet exit region in the CPAC, which acts as a waveguide 

trapping the wave’s poleward propagation, it propagates along a great circle path 

meridionally according to its wave number (Vallis 2006). Rossby wave trains with smaller 

wavenumbers (longer wavelengths) will tend to have a larger poleward meridional scale 

(Vallis 2006). Waves with larger wavenumbers (shorter wavelengths) will tend to have a 

larger zonal scale and may even refract equatorward for the shortest wavelengths) (Vallis 

2006). 
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Finally, during CA OWE conditions, we find anomalous tropical convection 

centered over the MC (MJO phase 4) and a fully developed, anomalous global Rossby 

wave train with an upper-level high over WNA. The Rossby wave’s wave number 

increases as the wave train extends zonally around the globe. We hypothesize that this 

increase in zonal wave number is due to earlier wavefronts wrapping around the globe and 

interfering with later wavefronts, but we did not explicitly investigate this. Nevertheless, 

the resultant Rossby wave is nearly barotropic and results in anomalous and offshore 

geostrophic winds over CA. These offshore winds exist throughout the depth of the 

troposphere and interact with surface terrain to force extreme OWE conditions. 

In this conceptual model, we did not include details regarding EN or EN Modoki 

for visual simplicity. However, we can hypothesize based on our research that, to a first-

order, EN Modoki (LN Modoki) constructively (destructively) interferes with the MJO 

phases 8–1–2–3 anomalies in the tropics, such that EN Modoki may amplify the MJO 

anomalies. As we previously discussed, during EN conditions, the background flow in CA 

in mean onshore due to the associated positive PNA pattern and wind anomalies. So, EN-

related teleconnections may locally conflict with MJO teleconnections in CA. These 

possibilities need to be further researched in future studies. 
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 Conceptual schematic of hypothesized teleconnection 

dynamics three to five weeks before CA OWEs. 

 
 Conceptual schematic of hypothesized teleconnection 

dynamics one to two weeks before CA OWEs. 
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 Conceptual schematic of hypothesized teleconnection 

dynamics zero to one weeks before CA OWEs. 

 
 Conceptual schematic of hypothesized teleconnection 

dynamics just prior to and/or during CA OWEs. 
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B. RESEARCH SUMMARY, CONCLUSIONS, LIMITATIONS, AND 
FUTURE WORK 

Our results provide evidence for answering our research questions, as summarized 

below. Some parts of this section are adapted from Murphree et al. (2018), previously 

published by the Climate Prediction S&T Digest.  

1. What Global-Scale Anomalies Are Associated with CA OWEs?   

Analyses of monthly mean composites reveal that CA offshore Novembers feature 

a unique anomalous signature of an upper-level high over WNA that is part of a global 

zonal wave train emanating from South Asia and a possible additional arcing wave train 

originating from the equatorial CPAC. These patterns are evident during offshore 

Novembers and in the prior Octobers (at one-month leads). Analysis of the eddy stream 

function and velocity potential anomalies associated with these patterns indicate 

anomalous subsidence in the MC/WPAC and possible anomalous convection in the WIO. 

Tropical OLR and SST anomalies generally support this, as well. Comparing these 

composites to MJO phase 1 and 2, EN, and EN Modoki reveal possible associations 

between CA offshore Novembers and known intraseasonal and interseasonal tropical 

variability modes. However, these results do not indicate a single culprit of tropical 

precursors to CA offshore Novembers. There is evidence that MJO, EN, and EN Modoki 

may each contribute to CA OWEs. 

2. How Are CA OWEs Related to Known Climate Variations? 

Using monthly correlations and a simple MJO-association assessment, we found 

evidence that CA November monthly mean offshore winds are related to global-scale S2S 

processes related to tropical convective anomalies in the IO and PAC. These anomalies 

seem to be associated with MJO activity in phases 8–3 at subseasonal leads and larger-

scale climate modes, such as EN Modoki, at longer S2S leads. Daily (individual) 

November offshore wind events seem to be related to the same processes as monthly mean 

winds. We did not examine whether the speed or persistence of MJO propagation factors 

into the hypothesized teleconnection. 
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3. What Teleconnection Processes Set Up Offshore Wind-Favorable 
Conditions Over Western North America? 

Using PCA, k-means clustering, and BDA, our results indicate that the OWE 

composites have a lot in common with the MJO composites and support the idea that MJO 

conditions may play a role in producing OWEs. However, some notable differences 

between the OWE and MJO composites in Figures 38–39 indicate that while certain MJO 

phases are favorable for OWEs, they are not sufficient by themselves to trigger OWEs. 

Some other factors that may also play a role include EN Modoki, perhaps the AO, and 

extratropical background flows favorable for wave train development that leads to an 

anomalous geopotential high over WNA. 

4. What Is the Potential for Skillful Statistical Subseasonal to Seasonal 
(S2S) Prediction of CA OWEs using Tropical Predictors? 

In a simple hindcast test using the BDA results to inform the choice of predictors, 

we found that the MJO, using the RMM index, may provide some S2S predictability of 

CA OWEs at S2S leads. Moreover, the predictability may be modulated by lower 

frequency variability, such as EN and LN. As discussed in Chapter I, C., we did not attempt 

to isolate S2S variability by filtering out the lower frequency interannual variability. While 

this would be useful to assign quantitative attribution of CA OWE S2S variability to 

tropical variability, this was not the goal of this study. We aimed to assess S2S 

predictability in the context of composite variability at all scales beyond the highest daily 

frequencies. 

Synthesizing the results of the four research questions, we found that wildfire 

favorable offshore wind events (OWEs) in California, such as Santa Ana (SA) and Diablo 

wind events, are extreme weather events that can contribute to severe societal and security 

impacts, such as wildfires and infrastructure vulnerability. OWEs and their impacts are 

especially common in October-December, at the end of the California dry season. We 

analyzed the large-scale weather and climate conditions associated with OWEs in 

California during November 1979–2018. We focused on statistical and dynamical analyses 

of the global subseasonal to seasonal (S2S) atmospheric and oceanic anomalies associated 

with: (a) monthly mean offshore months; (b) individual and composite daily events. We 
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found that OWEs in California tend to be part of anomalous planetary wave trains that span 

all or most of the northern extratropics. They appear to be initiated by sea surface 

temperature anomalies (SSTAs) and tropospheric convection anomalies in the tropical 

Indian Ocean and western-central tropical Pacific region. These anomalies are similar to 

several of the anomalies that characterize the Madden Julian Oscillation (MJO), El Nino 

and La Nina (ENLN), and ENLN Modoki. Multiple lines of evidence, including monthly 

and daily composite dynamical analyses and correlations, principal component analysis 

(PCA), k-means clustering, and Bayesian data analysis (BDA), suggest that the onset of 

the tropical anomalies tend to lead the occurrence of November OWEs in California by 

10–30 days or more. A simple empirical test shows that: (a) using the MJO as a predictor 

of California OWEs at subseasonal lead times produces skillful forecasts compared to 

random forecasts; and (b) the impacts of MJO are modulated by low-frequency climate 

modes (e.g., ENLN and ENLN Modoki). We also analyzed OWEs in October and 

December 1979–2018 and found similar results (see Appendix B, Tables 12 and 13). 

However, the processes that lead to OWEs vary enough between the months that OWEs 

may need to be predicted separately for each month. This month-to-month variability is 

likely due to the significant changes in the climate system in October–December during 

the transition from boreal fall to winter. Our results strongly suggest that skillful S2S 

predictions of California OWEs may be possible by accounting for tropical atmosphere-

ocean variations and tropical-extratropical teleconnection dynamics. 

Our results indicate that: 

1. Fire-favorable offshore wind conditions in California (and related events 

elsewhere in the western US) are part of anomalous global S2S processes. 

2. The MJO, especially phases 8, 1, 2, and 3, appears to be important in 

initiating these processes at lead times of several weeks. 

3. Other climate variables, such as ENLN and ENLN Modoki, may be 

necessary for modifying how MJO initiates CA OWE-favorable 

conditions. 
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4. The lead times associated with the process that creates OWE-favorable 

conditions and experimental hindcasting statistics suggest that skillful S2S 

forecasting of these conditions may be possible. 

5. However, such forecasting would likely be complicated by the multiple 

processes that affect the setup of the extratropical anomalies associated 

with CA OWE-favorable conditions (e.g., other climate variations, such as 

the AO; the extratropical background flow, and other extratropical 

dynamic factors that help determine the wave train response to climate 

variations, e.g., Sardeshmukh and Hoskins (1988)). 

Our research differs from previous, but related research on CA OWEs in that we 

investigated and found: 

1. Large-scale conditions were identified that are favorable for CA 

November OWE events. These large-scale conditions capture periods of 

actual mesoscale OWEs, which have been the focus of previous studies. 

This correspondence between large-scale conditions and actual small-scale 

events indicates that information about large-scale conditions may be 

useful in S2S prediction of the mesoscale events. 

2. Daily and monthly composites of many CA OWEs show characteristic 

global and regional scale geopotential height anomaly patterns associated 

with CA OWEs. 

3. These characteristic patterns include tropical anomalies  up to several 

weeks prior to CA OWEs. This indicates that tropical anomalies may be 

useful S2S predictors of CA OWEs. 

4. These precursor tropical anomalies are similar, but not identical, to the 

anomalies associated with MJO phases 8–1-2-3 and EN Modoki. This 

suggests that MJO and EN Modoki may play a role in initiating a S2S 

teleconnection process that leads to CA OWEs.  
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5. The characteristic tropical anomalies also indicate that ENLN and ENLN 

Modoki may influence CA OWEs  by altering the extratropical 

background flow over the North Pacific and WNA. 

Our development and use of a prototype S2S forecasting system, and our use of 

that system in multidecadal hindcasting, indicate that CA OWEs are potentially predictable 

at S2S lead times. Thus, our study expands beyond what previous research has attempted 

by considering the global S2S processes that lead to wildfire-favorable weather in 

California. Moreover, our research demonstrates flexible and adaptable techniques for 

developing formal, Bayesian forecast guidance for situations where NWP guidance is 

limited or unavailable. 

We were, however, unable to address some important topics. For example:  

1. We did not separately determine the extent to which CA OWE S2S 

variability is due to S2S climate variations and interannual climate 

variations. 

2. For this study, we did not develop fully testable hypotheses. Instead, we 

focused on answering research questions to develop information about 

potential associations between tropical anomalies and CA OWEs. We 

recommend that this information we developed be used to create testable 

hypotheses for future studies of CA OWEs.  

3. We did not rigorously quantify the dynamical teleconnection associations 

using extensive statistical tests and bootstrapping. 

4. We did not conduct a rigorous, randomized, and independent test of our 

hypotheses using hindcasts. Our testing and training periods overlapped to 

maximize training sample size. 

C. FUTURE RESEARCH. 

We recommend a number of directions for future research to test and extend our 

findings, including:  
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1. Analyze OWEs during different months and seasons. Our initial results for 

October and December reveal processes similar to those that we found for 

November. However, the October-December period is one in which large 

seasonal transitions occur (e.g., seasonal differences in subtropical jet 

strength and position and the development of Arctic winter conditions that 

can affect the development of tropical-extratropical teleconnections). So, 

some differences in the processes for these three months are likely.  

2. Conduct further dynamical analyses, such as Rossby wave source 

calculations and wave activity flux vector analyses, to further clarify the 

role of tropical anomalies and the background state in developing CA 

OWEs. 

3. Extend the use of machine learning methods by applying other methods, 

such as Bayesian ensemble model output statistics (BEMOS), self-

organizing maps (SOM), and artificial neural networks (ANN). 

4. Isolate the effects on CA OWEs of S2S, interannual, and other climate 

variations via data filtering and other methods. 

5. Conduct modeling studies to isolate specific dynamical processes involved 

in the tropical-extratropical teleconnections that lead to CA OWEs. 

6. Apply our basic concepts, methods, and findings to the experimental 

prediction of fire-favorable offshore wind conditions in CA. 

7. Apply the basic concepts and methods to other problems, such as marine 

heatwaves, cold surges, and ARs. 

8. Explore and apply our methods and findings to assessing and improving 

dynamical prediction systems, such as the Navy ESPC system and the 

NOAA CFS. 
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APPENDIX.  DATA PREPROCESSING AND OTHER RESULTS 

A. PRINCIPAL COMPONENT ANALYSIS AND CLUSTERING 

1. PCA Processing 

Figure 45 displays the cumulative variance for the first 28 components (for 95% 

variance retained) when applying PCA to November CA zonal and meridional winds. 

Figure 46 displays the amount of variance explained by each component. 

 
The red line indicates the threshold for 95% of variance explained. 

 Cumulative PCA variance by number of components. 
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 Percent Variance explained by each PCA component 

 

2. Clustering Analysis 

a. Cluster Scoring 

(1) Inertia 

Figure 47 displays the amount of inertia explained by one to nine clusters.  



103 

 
 Inertia Score for k clusters. 
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(2) Silhouette Score 

Figure 48 displays the silhouette score for two to eight clusters. 
 

 
Each iteration of k clusters is bootstrapped 100 times. The blue and orange box and whisker 
plots represent different numbers of subsamples for each iteration.  

 Silhouette Score distributions for k clusters. 

b. Cluster Visualization in PC Space 

Figure 49 displays the 3D plot of November CA zonal and meridional wind with 

respect to the first three principal components. Known SA events are in black. 
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 3D plot of CA OWE events in PC space. 

 

c. Correlations between CA winds and principal components 

Table 11 lists the correlation coefficients between various wind values across CA 

and each principal component.  



106 

Table 10. Pearson correlations of CA and regional 850 mb u and v wind 
speeds and cluster membership. 

 

 

d. Scatter plots of CA winds and cluster membership against principal 
components 

Figures 50–58 plot various CA November wind samples against the highest 

correlated principal components.  



107 

 
Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of CA u wind speed vs. EOF (PC) 2 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of CA u wind speed vs. EOF (PC) 3. 
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Cluster membership signified in blue and orange. 

 Scatter plot of CA v wind speed vs. EOF (PC) 1 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Northern CA u wind speed vs. EOF (PC) 2. 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Central CA u wind speed vs. EOF (PC) 3. 



112 

 
Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Southern CA u wind speed vs. EOF (PC) 3. 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Northern CA v wind speed vs. EOF (PC) 1. 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Central CA v wind speed vs. EOF (PC) 1. 
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Cluster membership signified in blue and orange. Southern California Santa Ana events 
are denoted with black dots. 

 Scatter plot of Southern CA v wind speed vs. EOF (PC) 1. 

e. Principal component composites 

Figures 5961 project the global 200 mb eddy geopotential height anomalies for first 

three principal components on a map.  
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Image on left represent the upper tercile (top third in PC 1 transformed space). Image on 
right represent the lower tercile (lower third in PC 1 transformed space). 

 Eddy geopotential height anomaly (m) for the first 
principal component explaining 37% of the variance of 

November CA 850 mb u and v winds. 

 
Image on left represent the upper tercile (top third in PC 2 transformed space). Image on 
right represent the lower tercile (lower third in PC 2 transformed space). 

 Eddy geopotential height anomaly (m) for the 
second principal component explaining 17% of the 
variance of November CA 850 mb u and v winds. 

 
Image on left represent the upper tercile (top third in PC 3 transformed space). Image on 
right represent the lower tercile (lower third in PC 3 transformed space). 

 Eddy geopotential height anomaly (m) for the third 
principal component explaining 12% of the variance of 

November CA 850 mb u and v winds.



117 

B. BAYESIAN POSTERIOR PROBABILITIES FOR OCTOBER AND DECEMBER 1979–2018 

Tables 12 and 13 list the relative Bayesian posterior probabilities for October and December 1979–2018. 

Table 11. Relative Bayesian posterior probabilities for combined cluster of October CA 850 mb u and v winds. 

 
Same as in Table 6 but for October combined clusters. 

Table 12. Relative Bayesian posterior probabilities for combined cluster of December CA 850 mb u and v winds. 

 
Same as in Table 6 but for December combined clusters. 
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C. TROPICAL CONVECTIVE ANOMALIES AND INFERENCES 

 
 Schematic detailing how to infer upper-level stream 
function and velocity potential anomalies from tropical 

convective anomalies. 

D. LIST OF DATES USED FOR EACH ANALYSIS 

Table 13. Table of dates used for analyses 

Analysis Month Day Year 
Monthly mean 
composites 

October and 
November 

N/A 1979–2018 

Top 15 offshore 
Novembers 

November N/A 2004, 2013, 2007, 
1989, 1986, 1993, 
1992, 2018, 2002, 
1990, 1987, 2009, 
1991, 2008, and 
1980 

Monthly correlations October and 
November 

N/A 1979–2018 

CA wind indices for 
PCA and clustering 

November All 1979–2018 
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Analysis Month Day Year 

Top SA Days 

November 20021128 
20021127 
20021129 
20021126 
19891129 
19891128 
20081115 
19891118 
19961102 
19901123 
20051118 
19821103 
19931102 
20021120 
19951111 
20161109 
20061130 
20101103 
19811101 
20181109 
20081116 
20071103 
20131127 
20161103 
20181119 
20081124 
19961127 
19921104 
20111110 
19871119 
19921129 
20071104 
20081107 
19881130 
20161110 
19911112 
19871104 
19821125 
19881129 
20121105 
19911123 
20091125 
20101112 
19921130 

1979–2018 
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Analysis Month Day Year 
19991106 
20071124 
20091126 
20101104 
20091124 
20161111 
19891120 
20011108 
20171129 
20131128 
19921113 
20131111 
19801126 
20081117 
19961108 
19991113 
19931103 
20011104 
20021115 
20111109 
20051115 
19891119 
19801117 
19801116 
20121123 
20041102 
20011109 
20001117 
20021121 
20101102 
19941123 
20051116 
19901124 
20111127 
19971102 
19891109 
20031128 
19931126 
19871126 
19861124 
20181120 
19801125 
20051120 
19901129 
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Analysis Month Day Year 
19801127 
20051109 
20171130 
19961109 
20131129 
20141125 
19921114 
20151121 
20031123 
19951104 
20031127 
20131107 
20001104 
20181112 
20081114 
20141105 
20051119 
19801104 
19921126 
19931106 
20151107 
20091116 
20041114 
19901110 
19931127 
20081106 
20131112 
19861101 
19821126 
20001103 
20151113 
19891110 
19941130 
20161108 
19861111 
20011105 
20111102 
19971101 
19991114 
20141106 
20171122 
20141118 
20081130 
19821104 
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Analysis Month Day Year 
20161124 
19821112 
20131106 
19891130 
19941129 
19991112 
20161118 
19901111 
19901104 
19931115 
19961101 
19811102 
19801118 
19791113 
20131126 
19901107 
20131101 
20001118 
20041115 
19981113 
20121112 
19811108 
20121104 
19911124 
20181114 
20101126 
20071113 
19901112 
20091103 
20121113 
20031118 
20091102 

Cluster 0 days 

November 20021126 
20081115 
19901123 
19961127 
20021127 
20061130 
19871104 
20021120 
20091124 
20181109 
19961102 
19931102 

1979–2018 
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Analysis Month Day Year 
19891118 
19881130 
19881129 
19921129 
20071103 
19921130 
20071124 
19911123 
20051115 
20091125 
20081107 
20081114 
19931115 
19821125 
19891115 
20121105 
19971102 
20001117 
20101112 
19831127 
19801125 
19801116 
19901107 
19911112 
19901110 
19891109 
19801126 
19861126 
19961101 
20001104 
20081130 
19891110 
20111102 
20041114 
19921104 
20141105 
20001103 
19861111 
20051119 
19941129 
19921111 
20151113 
20061106 
20031127 
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Analysis Month Day Year 
19801127 
19861101 
20001118 
20141125 
19871126 
19951104 
19931103 
20101102 
19861130 
20131106 
19901108 
20151121 
19971101 
20181112 
19961107 
19851102 
19901128 
20101114 
20091129 
19911119 
19921112 
19911124 
20031123 
19861102 
20031118 
20081129 
19901104 
20111126 
19801118 
20131101 
20131130 
19841123 
20091130 
19891103 
19801117 
19901122 
19901103 
19941122 
20121104 
20171130 
20031112 
19901109 
19891102 
20091102 
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Analysis Month Day Year 
20071128 
19871124 
20141104 
20021119 
20171129 
20041101 
19931106 
19861109 
19891127 
19911107 
20051117 
19941114 
19861112 
19861110 
19821102 
20181115 
19871110 
19821101 
19911111 
20151120 
20141117 
20101125 
20041129 
19851114 
20181101 
19981112 
20181102 
19861104 
20171128 
19851106 
19931120 
19851101 
20091119 
20101113 
19911122 
20071102 
19891101 
20131105 
20131125 
19911101 
19931125 
19921106 
20091101 
20071114 
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Analysis Month Day Year 
19951113 
19861103 
20021118 
20041124 
20151112 
20001107 
20031111 
19931119 
19791121 
19801120 
20101117 
19841119 
19981119 
19891111 
20111113 
20091115 
20041121 
20011105 
20131123 
19801119 
19851103 
20131124 
19891108 
20071126 
20151106 
20101115 
20161102 
20101111 
19921103 
20041122 
20041120 
19961126 
20131122 
19911110 
19861105 
19951103 
19821113 
20181110 
20001112 
20081121 
20131114 
20071121 
19791120 
20021114 
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Analysis Month Day Year 
19991101 
20151128 
19841122 
19911130 
20001125 
19931101 
19941111 
19891116 
20071122 
20071101 
20011127 
19911102 
20021125 
19931107 
20041117 
20131113 
20071123 
19931105 
20141108 
20181111 
20151127 
19871103 
20041108 
20181108 
19901115 
19901106 
19931114 

Cluster 1 days  

November 20021128 
19891128 
20021129 
19891129 
19811101 
20051118 
20081116 
20041106 
20051116 
20081124 
20071104 
19951111 
19821103 
20131129 
19961108 
20051109 
20011108 

1979–2018 
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Analysis Month Day Year 
20081117 
20011109 
20041102 
19991106 
20181119 
19901129 
20011104 
20071107 
19821126 
20181120 
20131128 
20051110 
20071105 
19941123 
19961109 
19991114 
20121123 
19921113 
20111109 
20131127 
19801104 
20021115 
20101103 
19901124 
19891119 
20091126 
20111110 
19871119 
19921114 
19941130 
20051120 
19811108 
19991113 
19811102 
19931126 
20151107 
19891120 
20181113 
19901111 
20161103 
20121106 
20021121 
20101104 
20181114 
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Analysis Month Day Year 
20091116 
20041105 
20131126 
20161109 
19981113 
20101130 
19821112 
19871111 
20171122 
19841101 
20131111 
19921126 
20071106 
20091103 
19821104 
19791113 
19791112 
19821124 
20121113 
20121124 
20041115 
19931127 
20031128 
19901112 
20121112 
19861117 
19791114 
20111127 
20101101 
20141118 
19811109 
20131107 
20161110 
20101126 
19891130 
20151122 
20041107 
20131112 
20161118 
19821114 
20161108 
20051121 
20161124 
20121114 
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Analysis Month Day Year 
20051101 
19991112 
20081118 
20151114 
20121127 
20131102 
19831115 
20081125 
20161111 
19791115 
20021130 
20181126 
19931116 
20121115 
20161104 
19861116 
19801105 
19961110 
19871105 
20141106 
19951123 
19811119 
19991129 
19791128 
20011103 
20011119 
20091104 
20071108 
19901116 
19871127 
19841105 
19791106 
20011110 
20131110 
20021103 
19861113 
20171101 
20051123 
19921115 
19811103 
20101105 
20081126 
19911103 
20001120 
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Analysis Month Day Year 
19931109 
20091109 
20151129 
20131118 
19971118 
19971122 
20051122 
19871118 
20081123 
19871108 
20181118 
19951114 
20011102 
20181116 
20111111 
20111112 
19811106 
19991128 
19791107 
19991102 
19911108 
20131109 
19841115 
20121126 
19971109 
19991107 
19811105 
19811128 
20031130 
20031106 
19951120 
20041104 

Composite top 200 
offshore November 
days 

November 20131122 
20131123 
20041121 
20021126 
19871104 
20031112 
19841122 
20091129 
19861102 
20081115 
20151127 
19861101 

1979–2018 
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Analysis Month Day Year 
19931114 
20051115 
20021127 
20041120 
20111102 
19951103 
20021120 
19871103 
19911130 
20001103 
20071121 
20071103 
20021125 
19921129 
19891101 
20181109 
20151128 
19861112 
19891118 
19991101 
20071102 
19801116 
20071123 
19961102 
19941122 
20181112 
19861103 
19931102 
19821102 
19961101 
19901106 
20081130 
20121105 
20181111 
20041122 
19961126 
19931101 
20071122 
19931119 
19931115 
19861104 
19971102 
19881130 
20151121 
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Analysis Month Day Year 
20091130 
20141108 
19861111 
19871126 
20001117 
20001107 
19891102 
20091125 
20051117 
19901115 
20101113 
20081129 
20101102 
19901107 
19911122 
20181108 
19931125 
19891115 
20141117 
19791120 
20131124 
19861130 
20081114 
19881129 
19931106 
20011127 
20031127 
20051119 
20041108 
20041114 
20071101 
20091124 
20151113 
20041129 
19941111 
20181115 
19911111 
19891103 
20071128 
19841123 
20031123 
20091102 
19891110 
20171130 
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Analysis Month Day Year 
20021128 
19891128 
20021129 
19891129 
19811101 
20051118 
20081116 
20041106 
20051116 
20081124 
20071104 
19951111 
19821103 
20131129 
19961108 
20051109 
20011108 
20081117 
20011109 
20041102 
19991106 
20181119 
19901129 
20011104 
20071107 
19821126 
20181120 
20131128 
20051110 
20071105 
19941123 
19961109 
19991114 
20121123 
19921113 
20111109 
20131127 
19801104 
20021115 
20101103 
19901124 
19891119 
20091126 
20111110 



135 

Analysis Month Day Year 
19871119 
19921114 
19941130 
20051120 
19811108 
19991113 
19811102 
19931126 
20151107 
19891120 
20181113 
19901111 
20161103 
20121106 
20021121 
20101104 
20181114 
20091116 
20041105 
20131126 
20161109 
19981113 
20101130 
19821112 
19871111 
20171122 
19841101 
20131111 
19921126 
20071106 
20091103 
19821104 
19791113 
19791112 
19821124 
20121113 
20121124 
20041115 
19931127 
20031128 
19901112 
20121112 
19861117 
19791114 



136 

Analysis Month Day Year 
20111127 
20101101 
20141118 
19811109 
20131107 
20161110 
20101126 
19891130 
20151122 
20041107 
20131112 
20161118 

Statistical hindcast 
training 

November All 1979–2018 

Statistical hindcast 
testing 

November All 2004–2018 
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