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ABSTRACT 

Rising numbers of aging spacecraft and new missions demand the development of 

novel approaches to perform various tasks in orbit. Complex servicing and 

assembly missions have been successfully completed by human astronauts in the 

past. However, currently available human-rated vehicles are not capable of accessing 

all relevant orbital locations, nor are there enough assets available for human 

operators to service all essential payloads directly. If sufficient capability to perform 

simple tasks remotely could be provided via a robotic manipulator, it may be possible to 

meet the servicing needs of a far greater number of missions at a lower program 

cost and without requiring risky extravehicular activities. 

The aim of this study is to develop a remote-operated robotic system capable of 

performing relevant tasks when mounted to a planar floating spacecraft simulator 

operating on an air bearing table. This system, known as PERSEUS, possesses three 

revolute joints to allow postural redundancy within a large workspace and a rapidly 

reconfigurable end-effector that enables simulation of various maneuvers for different 

planar orientations. When mounted to a simulated spacecraft, PERSEUS offers capability 

to simulate various grapple and hopping maneuvers representative of what may be 

required to inspect and service a host payload. 
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I. INTRODUCTION 

A. ORBITAL ROBOTIC MANIPULATION SYSTEMS 

Robotic manipulators, commonly referred to as “robotic arms” are utilized for a 

variety of engineering applications. Using sophisticated principles of mathematical 

modeling, these systems often provide greater precision and versatility than human 

operators can provide.  

Terrestrial applications include industrial assembly, diagnostic inspection, and 

robotic-assisted medical applications. In these applications, robotic manipulators move 

heavy loads, assemble complex structures, and perform complex diagnostic and repair 

operations. These operations are often performed with a human in-the-loop but may also 

be performed autonomously. By developing operating models based on mathematical 

principles, these systems revolutionized a variety of fields ranging from assembly line-

based manufacturing to precision robotic surgical systems [1]–[3]. Traditional practices of 

manufacturing, assembly, and medicine were directly limited by the locomotive precision 

and sensory input of human operators. Robotic methods allow for analytical calculation of 

solution trajectories limited by the characteristics of mechanical and electrical components. 

Similar principles apply to the performance of servicing and assembly tasks on-

orbit [4]. The orbital environment poses unique challenges for assembling and servicing 

sophisticated, expensive assets. Moving in constant freefall at great speed necessitates high 

precision as small errors may result in mission failure or loss of life. As in terrestrial 

applications, many of these complex orbital operations have historically been performed 

directly by human operators [5].  

Missions to the Solar Maximum satellite [6], Hubble Space Telescope (HST) [7], 

and International Space Station (ISS) [8] serve as examples of orbital servicing. These 

missions utilized robotic manipulator capabilities to grapple to and capture satellite 

payloads in order to allow human crews to service and assemble various structures. A 

conceptual rendering of the grapple maneuver required to service Solar Maximum is given 
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in Figure 1. During STS-41C, astronaut crews were required to grapple to Solar Maximum 

in order to replace damaged attitude control and sensor equipment. 

 
Figure 1. Solar Maximum Servicing Mission Artist’s Concept. Source: [6] 

For the HST servicing missions, use of a robotic manipulator aboard the Space 

Shuttle was essential to grapple to HST and allow crews to repair the spacecraft during 

extravehicular activities. One image of such a maneuver is given in Figure 2. This image 

depicts the use of the Space Shuttle robotic arm to deploy HST. Later, technical issues with 

spherical aberration in HST optics would require a series of five servicing missions. 

Throughout these missions, astronaut crews would perform numerous complex 

extravehicular activities to install instruments required to correct faults in Hubble’s initial 

implementation [7]. 
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Figure 2. Robotic Manipulator Use During Hubble Servicing Missions. 

Source: [7] 

In each of these cases, direct human servicing was required to operate robotic 

equipment to intervene by correcting errors and installing new equipment. These 

operations were vital to extend the capabilities of expensive space hardware whose useful 

life would have otherwise expired.  

Human-in-the-loop robotic manipulators have been used extensively throughout 

the ISS program. Assembly was completed through the operation of the Mobile Servicing 

System (MSS) and Space Station Remote Manipulator System (SSRMS) to manipulate and 

install components ferried to the Station by the Orbiter [8]. These systems were also used 

to maneuver astronauts about the Station during extravehicular activities in order to access 

various components in need of servicing. The manipulators used for the Space Shuttle and 

ISS programs are highly capable but have been produced at costs far exceeding the budget 

of most missions. If sufficiently capable robotic systems could be developed to inspect and 

service host spacecraft without a human crew present, far greater numbers of missions 

could potentially be serviced. This would extend mission lifetimes of more assets and 

further decrease overall cost of providing capability for extended periods of time. Several 
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system concepts have been developed to evaluate techniques required to perform servicing 

tasks without the presence of a human crew. These include large systems such as: the 

Mission Extension Vehicle 1 (MEV-1) [9], DARPA Phoenix project [10], and CubeSat 

form factor concepts such as the United States Naval Academy’s RSat spacecraft [11] and 

ISAR robotic testbed [12]. Remotely operated spacecraft have already been shown to 

possess capability to perform servicing tasks for real satellites in orbital environments. One 

such example is the successful rendezvous and docking of MEV-1 to the Intelsat-901 

spacecraft as depicted in Figure 3 [9]. 

 
Figure 3. MEV-1 Grappling to IS-901 Satellite at GEO. Source: [9] 

In order to extend mission life or assemble structural components, a manipulator 

with sufficiently complex workspace to allow a suitable range of orientations to inspect 

host spacecraft and reach relevant portions of host spacecraft topography to enable 

completion of required tasks [13]. Many spacecraft contain sensitive optics or large 

deployable surfaces that could be affected by exhaust from conventional maneuvering 

thrusters. Servicing spacecraft could protect these sensitive systems by maneuvering 

through the actuation of a robotic manipulator system instead of using thrusters. To explore 

the utility of such systems and develop the maneuvering techniques required for these 

operations, the Naval Postgraduate School (NPS) Spacecraft Robotics Laboratory (SRL) 



5 

has developed PERSEUS, a self-contained robotic manipulator used to augment the 

capability of existing Floating Spacecraft Simulators (FSS). 

B. MANEUVER SIMULATION AND TESTING 

1. Planar Floating Spacecraft Simulator 

Simulation of orbital robotic operations is made difficult by the gravitational 

acceleration incident to a terrestrial laboratory setting. Nevertheless, maneuvers relevant 

to spacecraft servicing can be simulated through multiple methods in both terrestrial 

environments and in freefall conditions. NPS-SRL currently operates a suite of  FSS units 

which simulate maneuvers in two axes through use of an air bearing table system known 

as the Proximity Operation of Spacecraft Experimental Hardware-in-the-loop Dynamic 

Simulator (POSEIDYN) [14].  

True to its name, the FSS operates similarly to a generic on-orbit spacecraft with 

mass, size, and inertia comparable to a large CubeSat or other small satellite. FSS attitude 

determination is provided by use of a suite of Vicon® IR tracking cameras. Reaction wheels 

and compressed air thrusters can provide attitude control, with thrusters that can be used 

for propelling the unit. These thrusters and air bearing surfaces are supplied with 

compressed air from a composite gas cylinder and series of regulators. The entire system 

is controlled wirelessly from a test conductor terminal [14]. Position tracking and data 

collection are performed using a series of reflective infrared tags and a suite of tracking 

cameras. The FSS frame and structure are composed of additively manufactured 

polycarbonate, with access ports and mounting holes integrated into the frame for the 

addition of various test articles used for specific maneuvers. These are used to attach 

docking probes and cones, robotic manipulators, grapple fixtures, and other devices used 

to simulate various types of spacecraft and tasks relevant to servicing. 

The POSEIDYN testbed provides FSS units with a 13’ x 13’ area to maneuver and 

conduct simulated operations. Its thickness is uniform across the area with a tolerance of 

±0.0005.” This surface is bounded by metal rails to which a variety of surfaces and objects 

may be mounted for FSS interaction. POSEIDYN is enclosed in a room with reflectivity 

and lighting conditions controlled through a combination of paint and light sources that 
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simulate conditions on-orbit. For visualization purposes, an image of an FSS unit with 

reaction wheel assembly on the POSEIDYN table is included for the reader in Figure 4. 

 
Figure 4. Image of FSS Unit on NPS POSEIDYN Table 

When multiple FSS units are operated on the POSEIDYN table with associated 

tracking and lighting, a variety of complex maneuvers and operations may be simulated 

and modeled. These include proximity operations of small spacecraft such as grappling and 

docking. Images of a grappling maneuver and FSS docking hardware are provided in 

Figure 5. 
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Figure 5. Spacecraft Proximity Operations Simulation with FSS. Source: [15] 

Figure 5 represents the use of FSS to model rendezvous, grapple, and capture of a 

host spacecraft rotating at a constant rate. The capturing spacecraft FSS is augmented with 

a large planar robotic manipulator and reaction wheels for attitude control. Additional 

views provided from onboard cameras on both FSS units are also included to illustrate 

relative positioning of the spacecraft. 

FSS units are also used to model rendezvous and docking of spacecraft using 

conventional probe-and-cone docking fixtures. Figure 6 depicts two FSS in close proximity 

on the NPS POSEIDYN table, with vehicles possessing the male and female docking 

features, respectively. These features and hardware can be used to model the final approach 

as spacecraft prepare for and complete the process of docking. 
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Figure 6. FSS Units Configured for Rendezvous and Docking Test 

Previous experiments simulating orbital robotic maneuvers with FSS have 

demonstrated capability relevant to spacecraft servicing [16]. However, these have 

required servicing spacecraft to have similar size, weight, and power to host systems. Novel 

techniques with greater operational flexibility and lower size, weight, and power are 

necessary to develop viable concepts for spacecraft maneuver and servicing in a cost-

effective manner.  

2. Astrobee Microgravity Testing  

Manipulator performance and spacecraft motion characteristics can also be 

evaluated using existing hardware on-orbit. NASA’s Astrobee free-flyer possesses a 

robotic manipulator with two revolute joints and a gripper. It also possesses a suite of 

sensors including cameras, inertial measurement units, and a LIDAR to determine its own 

position and motion. An example block diagram of Astrobee’s robotic and sensing systems 

is depicted in Figure 7 [17].  
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Figure 7. Astrobee Robotic System Block Diagram. Adapted from [17], [18] 

Due to its robotic capability and ability to provide localization data, it is a prime 

candidate for testing and evaluation of the kinematics of actuator-driven spacecraft 

locomotion. Astrobee may be used to explore how a future servicing spacecraft could 

utilize a robotic manipulator for maneuvering in close proximity. In order to investigate 

these maneuvers using Astrobee, NPS-SRL and the NASA Ames Intelligent Robotics 

Group are conducting a campaign of experiments known as Astrobatics. The aim of 

Astrobatics experiments is to characterize the kinematics of manipulator-driven spacecraft 

locomotion in microgravity [19]. These experiments consisted of commanding Astrobee to 

perform a series of “self-toss” maneuvers by actuating the two revolute joints of the 

Astrobee end-effector to toss itself from a perched position on an ISS handrail. After 

actuating the revolute joints of the Astrobee manipulator, the gripper was commanded to 

open, allowing Astrobee to float through the laboratory spaces on an unconstrained 

trajectory. Examples of “self-toss” and perching maneuvers are depicted in Figures 8 and 

9. 
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Figure 8. Astrobee Performing Self-Toss Maneuver in International Space 

Station Kibo Module. Source: [20] 

  Figure 8 shows two Astrobee robots, both perched on an ISS handrail using 

robotic manipulators. By actuating the distal and proximal joints of the manipulator, 

Astrobee can toss itself about the laboratory module, allowing sensing hardware to track 

the resulting motion in space. A close view of a perched Astrobee is shown in Figure 9. 
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Figure 9. Astrobee Perched on ISS Handrail for Self-Toss. Source: [21] 

These experiments gave insight into the general mechanics of maneuvering one 

spacecraft about a host spacecraft using a robotic manipulator instead of propellant. 

However, limitations of the joint space of the Astrobee manipulator require the 

development of an additional manipulator with greater workspace. By incrementing toward 

a manipulator with postural redundancy, a potentially wider range of candidate maneuvers 

could be evaluated. Future iterations of spacecraft robotic manipulators could one day be 

implemented on Astrobee or similar systems. 

A system should be developed in a manner that could simulate maneuvers 

representative of those required by an unmanned servicing spacecraft operating in a 

microgravity environment. Previous systems have simulated microgravity in three axes, 

but it is not yet practical to test robotic proximity operations in this manner [22]. However, 

a series of planar maneuvers can be performed using a precision-machined granite air 

bearing table and a simulated spacecraft capable of operating in a two-axis simulated 

microgravity environment. 
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II. SYSTEM OVERVIEW 

A. SUMMARY 

PERSEUS is a self-contained, four degree-of-freedom, three-link manipulator 

system designed to provide maneuver and grapple capability to Floating Spacecraft 

Simulator (FSS) units in the Naval Postgraduate School Spacecraft Robotics Laboratory. 

It is composed of a manipulator chain, end-effector, wireless communication and control 

equipment, and a structural housing enclosure. This system operates independently of FSS 

control techniques and does not require any sensor input or commanding from its host FSS. 

Instead, it acts as a self-contained unit and can simply be fastened to the FSS structure. 

Once attached, PERSEUS can then be operated wirelessly to execute joint-space trajectory 

commands to perform maneuvers. A description of the various components of the 

PERSEUS system will follow. A graphical rendering of the system assembly is given in 

Figure 10. 

 
Figure 10. PERSEUS Manipulator Assembly Rendering 



14 

B. CAPABILITY 

PERSEUS is used to augment a single FSS unit to provide capability for robotic 

manipulation and actuator-driven locomotion. Its manipulator chain provides a maximum 

reach of approximately forty centimeters outward the mounting surface and the ability to 

reach the port and starboard sides of the host unit. While a detailed description of the 

workspace and operating postures of the manipulator chain will be detailed later, it is 

important to note that the three revolute joints possessed by PERSEUS allow for redundant 

posturing within the manipulator workspace. 

C. END-EFFECTOR 

The PERSEUS end-effector is designed to interface with handrails mounted to the 

edge of the POSEIDYN table and with grapple fixtures placed on other relevant objects 

used on the testbed. A notable feature of this design is its ability to be rapidly reconfigured 

from horizontal to vertical orientations between experiments, requiring only the removal 

and replacement of four bolts. Left and right portions of the gripper deflect translationally 

through a slot track that ensures both halves are aligned properly. Opening and closing of 

the end-effector is accomplished by means of two bent-arm linkages attached to the 

actuator horn disk and gripper sections. Renderings of these components are included in 

Appendix A. The inner contact surfaces of the gripper are coated with Velcro® to reduce 

slipping on contact with rails and other objects. The outward opening of the gripper is 

slightly wider than the rear portion of the contact surface to allow smooth release after a 

continuous push from the manipulator.  

D. ACTUATION 

The manipulator chain is driven by a series of four identical Dynamixel XH430-

W210-R actuators. These actuators combine motor, controller, and encoder in isolated 

units that receive power and command signals from a single connection. The actuators in 

the chain are connected serially off a single line to reduce cable routing through the 

structure. Motor commands from the user are converted from C++ code to the actuator 

communication protocol by an interface board that also provides power to the manipulator 

chain. Actuators in this system are configured for position control so the individual 
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manipulator postures may be commanded directly without requiring more complex torque 

control calculation on the part of the user.  

E. INTEGRATION 

The system is mated with the host FSS unit by fastening six bolts to the FSS 

mounting ring and PERSEUS electronics box inner mounting holes. Arduino® and 

interface boards are attached to the electronics box lid using standoffs and bolts. Actuators 

are secured to brackets present on the electronics box lid, link frames, and end-effector 

mounting frame by bolting into surface holes present on the actuator cases. Proximal and 

distal portions of the end-effector mounting frame are secured together by bolts, with the 

end-effector track mounting to the face of the fourth actuator in the chain. Bent links are 

attached to the fourth actuator horn disks and the proximal side of left and right gripper 

halves after being fed into the track. System input power is fed through the skeletonized 

frame of the electronics box. Hardline access to the Arduino® and interface boards is 

available through these same openings. Actuator cabling is fed through the lid of the 

electronics box and down the manipulator chain. Slack in cables is restrained with Velcro® 

to prevent tangling or pinching as the structure rotates.  

  



16 

THIS PAGE INTENTIONALLY LEFT BLANK  



17 

III. MATHEMATICAL MODEL DEVELOPMENT 

A. FRAMES OF REFERENCE 

Each joint in the manipulator chain retains a native reference frame which describes 

motion relative to each actuator. The reference frames of these joints are related to 

neighboring reference frames by means of transformation matrices which account for 

differences in angular orientation in space. A reference frame can be related to any other 

reference frame within same three-dimensional space by matrix multiplication by such a 

transformation matrix as shown in Figure 11 [23]. 

 
Figure 11. Graphical Representation of a Matrix Transformation 

These transformation matrices are constructed by combining the spatial rotations 

required when moving sequentially from one joint frame to the next. Through this method, 

it is possible to relate end-effector position in its native frame to the manipulator base 

frame. This enables the determination of joint orientations required to place an end-effector 

in a defined base frame position when executing a command or completing a task. Due to 

the dimensionality of matrices constructed by this method, these transformations can be 

determined by means of matrix multiplication. An example of such a transformation matrix 

described by Siciliano et al. is given in Equation 1 [23]. 
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𝑨𝑨10 = �𝑹𝑹1
0 0�⃑

0�⃑ 𝑇𝑇 1
� (1) 

where 𝑹𝑹10 represents an angular rotation about an axis required to transition from Frame 0 

to Frame 1, and 𝑜⃑𝑜10 represents the position vector relating position of the origin of Frame 

1 to that of Frame 0. Similar matrices can be constructed for successive transformations 

to the final frame in the manipulator chain. These are then multiplied in series, resulting 

in a complete transformation from the base frame to the end-effector frame. 

𝑞⃑𝑞 = �
𝜃𝜃1
𝜃𝜃2
𝜃𝜃3
� (2) 

 

𝑨𝑨𝑒𝑒𝑏𝑏(𝑞⃑𝑞) = 𝑨𝑨0𝑏𝑏(𝑞𝑞1)𝑨𝑨10(𝑞𝑞2)𝑨𝑨21(𝑞𝑞3)𝑨𝑨𝐸𝐸𝐸𝐸2  (3) 

  

𝑨𝑨𝑒𝑒𝑏𝑏(𝑞⃑𝑞) = �
𝑛𝑛�𝑒𝑒𝑏𝑏(𝑞⃑𝑞) 𝑠̂𝑠𝑒𝑒𝑏𝑏(𝑞⃑𝑞) 𝑎𝑎�𝑒𝑒𝑏𝑏(𝑞⃑𝑞) 𝑝⃑𝑝𝑒𝑒𝑏𝑏(𝑞⃑𝑞)
⋮ ⋮ ⋮ ⋮
0 0 0 1

� 

where 𝑛𝑛�, 𝑠̂𝑠, and 𝑎𝑎� are the unit vectors defining the local reference frame of the 

end-effector and 𝑝⃑𝑝 is the position vector relating the origin of the end-effector 

frame to the origin of the base frame for the manipulator chain. 

(4) 

 

B. DENAVIT-HARTENBERG (D-H) PARAMETERS 

Design and construction of the physical structure of a manipulator system are 

meaningless without a mathematical model of system operation. Such a model would allow 

for the analytical calculation of the different states for each joint required to perform 

maneuvers and thereby allow a controller to command those states. Denavit and Hartenberg 

developed a method of cataloguing the relevant parameters required to relate the positions 

of each joint and end-effector in a manipulator chain to a common frame of reference [23]–

[26]. These D-H parameters account for the length of each link, the type and limits of joint 
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actuation, and the orientation of the reference frame of each joint. The D-H parameters for 

the PERSEUS manipulator are given in Table 1. 

Table 1. Denavit-Hartenberg Parameters for PERSEUS Manipulator 

Link li αi di θi 

1 0.1m 0 0 θ1 

2 0.1m 0 0 θ2 

3 0.1m 0 0 θ3 

EE 0.1m 0,
𝜋𝜋
2
∗
 - θ4∗∗ 

*Reconfiguration of the End-Effector (EE) from vertical to horizontal orientations introduces a 
reference frame offset angle of 𝜋𝜋

2
. 

**End-Effector actuator angular deflection affects only the opening and closing of the gripper. 

 

Using the D-H parameters for a given system, the transformation matrix for the 

end-effector of an actual manipulator may be determined. This allows the computation of 

joint orientations that allow access to specific areas within the manipulator workspace 

based on the geometry of the arm and the location of the target. A simple graphical 

representation of a three-link planar manipulator chain is provided in Figure 12. Note that 

for a planar manipulator only 𝑠̂𝑠 and 𝑎𝑎� are meaningful parameters, as 𝑛𝑛� is equal to the zero 

vector. The planar nature of the PERSEUS manipulator results in these local frames 

containing meaningful information only in x- and y-directions.  
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Figure 12. Graphical Representation of Three-Link Planar Manipulator 

C. END-EFFECTOR POSITION 

As described previously, the PERSEUS manipulator joints only deflect 

rotationally, with a range of motion from −𝜋𝜋
2
 to 𝜋𝜋

2
 radians. Since PERSEUS operates only 

in one plane, the rotational axes of each joint are always aligned in parallel fashion. This 

results in a condition where the position of the end-effector is a function of only the 

constant length of each link and the angular orientation of each actuator in the chain. As 

such, the position of the end-effector in both the X- and Y-directions is given by the 

following equations: 

 

𝑥𝑥𝐸𝐸𝐸𝐸 = 𝑙𝑙1 cos(𝜃𝜃1) + 𝑙𝑙2 cos(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3 cos(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)

+ 𝑙𝑙𝐸𝐸𝐸𝐸 cos(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 

 

(5) 

𝑦𝑦𝐸𝐸𝐸𝐸 = 𝑙𝑙1 sin(𝜃𝜃1) + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3 sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)

+ 𝑙𝑙𝐸𝐸𝐸𝐸 sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 

 

(6) 
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where 𝑙𝑙𝑖𝑖 corresponds to the length of each link in the manipulator chain and 𝜃𝜃𝑖𝑖 represents 

the angular orientation of each actuator at a given time. Joint orientations were limited 

according to constraints resulting from physical design of the links in the manipulator 

chain.  

D. WORKSPACE 

Given the parameters and equations listed previously, it is then possible to 

determine all possible positions of the end-effector by mapping the workspace of the 

manipulator according to possible joint angle commands. Using Equations 5 and 6, 

possible end-effector positions were calculated by iterating each joint angle with an angular 

resolution of 0.15 radians and accounting for keep-out zones resulting from physical 

system geometry. This workspace was developed using a technique described by [27] and 

is depicted in Figure 13. 

 
Figure 13. PERSEUS Manipulator Workspace. Adapted from [27] 
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IV. KINEMATIC SIMULATION USING TORO 

A. OVERVIEW 

Representative predictions of system motion during maneuvers performed on an 

FSS using PERSEUS were desired in order to appropriately evaluate performance during 

physical system testing. These were obtained by using the Toolset for Orbital Robotics© 

(TORO) [28]. This software takes into account various rigid multibody system parameters 

including size, mass, inertia, and degrees of freedom to develop equations of motion to 

describe system motion. Actual system parameters are then fed into these equations of 

motion to develop trajectories for each body state and its respective first time-derivative. 

In this method, it is possible to simulate total body motion resulting from the actuation of 

one or more joints in a multibody system. By applying size, mass, and inertia data for 

PERSEUS and FSS units, it is possible to develop predictions as to system behavior during 

maneuvers evaluated in this study. 

B. SCENARIO PARAMETERS 

The scenario modeled in TORO© is the use of PERSEUS to perform a planar push 

maneuver, where the three revolute joints are actuated in such a manner that the end-

effector translates outward from the spacecraft body in a straight line normal to the face to 

which the manipulator is mounted. The maneuver is simulated using the parameters listed 

in Tables 2 and 3. Degrees of freedom for TORO© simulation listed in Table 3 include 

position in X- and Y-directions, rotation of the plane, and joint angles for each revolute 

joint in the manipulator chain. First derivatives with respect to time of these parameters are 

also plotted. Moments of inertia for bodies about their respective principal axes normal to 

the plane were calculated using a MATLAB® function implementing Equation 7 over a 

rectilinear body with length, width, and mass as inputs.  

𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖

𝑟𝑟𝑖𝑖2 
(7) 
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Table 2. TORO Simulation Physical Parameters 

Body Length (m) Mass (kg) Moment of Inertia (kg-m2) 

Base 0.27 10.18 0.2538 

Link 1 0.1 0.14 4.06 × 10−4 

Link 2 0.1 0.14 4.06 × 10−4 

Link 3 0.2 0.14 4.06 × 10−4 

End Mass 0.27 9.88 0.2527 

 
While the masses and moments of inertia for Link 3 and the End Mass are listed 

separately, for the simulated scenario they are assumed to be one rigid body since an ideal 

push maneuver would require contact between the two segments to be aligned. Since the 

angular displacement between these two bodies should be zero, they are instead treated as 

one rigid body for purposes of estimation. Simulation consisted of segmenting a push 

maneuver into two phases: a push phase and a coast phase. During the push phase, the 

spacecraft body acts as the manipulator base with a large mass mounted to the end of the 

final link. Based on defined initial angular states and velocities given in Table 3, a solution 

is propagated based on parameters similar to testing performed using the actual 

manipulator. The final state of this push phase is then fed into the propagator as the initial 

state of a coast phase where no actuation takes place and where no external forces are 

present. 

TORO© operates by first symbolically computing equations of motion that describe 

the whole system. These equation of motion parameters are then utilized by a separated 

script to propagate solution trajectories using a fourth- or fifth-order Runge-Kutta method 

via the MATLAB® function ode45 [29]. For the sake of brevity, these equations of motion 

are included as part of Appendix D. 
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Table 3. Degrees of Freedom and State Parameters for TORO Simulation 

Degree of 
Freedom Parameter Initial 

Value 
Initial Time 
Derivative Intermediate Value 

1 X 0 0 𝑋𝑋𝑓𝑓1  

2 Y 0 0 𝑌𝑌𝑓𝑓1 

3 Plane 
Rotation 0 0 𝜑𝜑𝑓𝑓1 

4 𝜃𝜃1 
𝜋𝜋
4

 −
𝜋𝜋
8

 ≈ 0 

5 𝜃𝜃2 −
𝜋𝜋
2

 
𝜋𝜋
4

 ≈ 0 

6 𝜃𝜃3 
𝜋𝜋
4

 −
𝜋𝜋
8

 ≈ 0 
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V. MANIPULATOR CONTROL 

A. JOINT-SPACE POSITION CONTROL 

The PERSEUS manipulator is designed for direct control of the orientation of each 

actuator. Rather than commanding torques or angular velocities for each actuator, the user 

is able to provide commands for specific manipulator postures by varying the angular 

position of each revolute joint. This in turn allows for complex maneuvers and posture 

trajectories to be represented as the combination of a series of scripted, segmented postures. 

Given an appropriate mathematical model of the manipulator and an understanding of the 

workspace, maneuvers may be designed to allow the end-effector to reach a target position 

or follow a defined path. The transition from initial to final end-effector states is then 

modeled by selecting a number of points along that path and solving for appropriate joint 

angles based on Equations 5 and 6. This method is used to produce commands for two 

maneuvers: a so-called “Push Maneuver” where PERSEUS uses its actuators to cause a 

linear positional deflection of the host FSS unit normal to a perching rail, and a “Swing 

Maneuver” where the actuators are used to perform a self-toss by rotating away from a 

perching rail. Related methods of developing methods have been previously developed by 

Safbom [30]. 

B. PUSH MANEUVER 

Effective use of a robotic manipulator for locomotion about a host spacecraft 

requires capability to induce translational relative motion. This maneuver will evaluate the 

kinematic behavior of an FSS unit attempting to distance itself from a perched position. 

Since the PERSEUS manipulator is capable of placing its end-effector in a given target 

position using multiple postures, it is possible to move the end-effector outward from the 

spacecraft body while following a straight line. According to Newton’s Third Law, if this 

line of action crosses the center of mass of the system, the spacecraft will move away from 

its initial position along the line of action in the opposite direction. In this manner, the 

robotic manipulator may be used to allow a servicing spacecraft to push itself away from a 
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surface without inducing a moment about the body. An example of this type of maneuver 

is given in Figure 14. 

 
Figure 14. PERSEUS Push Maneuver Concept 

C. SWING MANEUVER 

Similar to translational motion requirements, servicing systems must be capable of 

changing angular orientation relative to the host spacecraft. This may be accomplished by 

perching the manipulator on a rail and actuating the joints to induce a rotation rate. By 

releasing the end-effector from the rail after this rotation has been established, the motion 

induced by the manipulator will then cause the FSS to separate from the rail with some 

rotational velocity. This will allow the FSS to swing from one perched orientation to 

another position atop the POSEIDYN table and arrive with a different angular orientation. 

Such a maneuver is depicted in Figure 15. 
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Figure 15. PERSEUS Swing Maneuver Concept 
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VI. DETAILED SYSTEM DESIGN 

A. ACTUATORS 

1. Description 

The PERSEUS manipulator is driven by a series of four identical Dynamixel 

XH430-W210-R actuators produced by Robotis. These actuators, shown in Figure 16, 

contain a motor, driver, encoder, and gearing within a closed case and are capable of 

operating via position, velocity, or current (torque) control. Data and 12VDC input power 

are provided by a four-pin Japan Solderless Terminal (JST) connector. The presence of two 

JST ports on each case allows multiple actuators to be connected in series for complex 

manipulator chains.  

 
Figure 16. Dynamixel X-Series Actuators. Source:[31] 

Mechanical design of the actuators provides for continuous, smooth angular 

deflection with little backlash. Numerous tapped holes are located about the exterior of the 
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case to allow for fastening to bases or manipulator link components. It is also possible to 

pass cables through the interior of the case in order to reduce cable tangling or pinching 

during operation. Detailed actuator specifications are included in Appendix B. 

B. STRUCTURE 

1. Description 

PERSEUS is composed of two main structures: an electronics box and the 

manipulator chain. The electronics box is used for interfacing with a host FSS, securing 

essential power handling and computing hardware, and allowing access to data and power 

ports. This enables quick system installation and reprogramming as needed. The 

manipulator chain is composed of three links, with each link being formed by fastening an 

open hinge bracket to mounting holes on actuator cases. An end-effector assembly is 

formed by mounting a grooved track along the front face of the fourth actuator. Two gripper 

halves are inserted into this track and connected to the motor horn by means of two bent 

linkages. These linkages allow the gripper to open and close along the track by driving the 

fourth actuator between angles of 0 and 𝜋𝜋
2
 . This end-effector assembly is mounted to a two-

piece interface structure that allows the end-effector to be reconfigured from vertical to 

horizontal orientation by removing a replacing three bolts. An expanded view of the system 

assembly is provided in Figure 17. 
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Figure 17. PERSEUS Expanded View 

Together, these components form a manipulator with a 40 centimeter reach whose 

control and power handling electronics fit within a 14 × 14 × 5 centimeter box. As 

PERSEUS does not rely on the host FSS for control or data handling capability, this can 

be installed and removed quickly by a single test conductor. 

2. Limitations 

Structural design of the PERSEUS manipulator has the following limitations: 

• Radial loading on actuator horns shall not exceed 40 N 

• Axial loading along motor shafts shall not exceed 20 N 

• To prevent cable disconnection, actuator positions must not exceed  

−
𝜋𝜋
2
≤ 𝜃𝜃 ≤

𝜋𝜋
2

 

In order to ensure operability of the manipulator, structural loads under 1 G were 

calculated and compared to published torque specifications. According to the 

manufacturer, each actuator is capable of developing a maximum of 2.6 N-m of torque. 

Masses of link and end-effector assemblies were measured and catalogued for calculation. 

Loads due to structural mass and orientation were determined using the following equation: 
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𝝉𝝉𝑀𝑀𝑀𝑀𝑀𝑀 = �Μ𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔0𝑙𝑙𝑖𝑖

3

𝑖𝑖=0

 (8) 

where torque was represented as the sum of the products of mass, distance from anchor, 

and gravitational acceleration for each link. These data are shown in Table 4. For added 

safety margin, link masses were assumed to be lumped masses at the maximum physical 

distance from the mounting point of the manipulator chain. 

Table 4. PERSEUS Manipulator Loading Under 1 G 

Link Mass Distance from Anchor Load 

1 140g 0.1m 0.137N 

2 140g 0.2m 0.275N 

3 140g 0.4m 0.549N 

Total 420g - 0.961N 

 

Using this method, it was determined that loads due to the mass of the structure 

under standard gravity were 37.0% of the published manufacturer maximum torque 

specification for the zeroth actuator in the manipulator chain. This indicates that the 

actuators are capable of moving the links of the manipulator throughout its workspace. It 

is also observed that inertial loading is well within the 40 N and 20 N radial and axial load 

limitations.  

C. FASTENING 

To withstand loads resulting from structural mass and manipulator operation, 

components are fastened with bolts. Mounting holes in polycarbonate components were 

designed such that bolts would self-tap during fastening. The following fasteners were used 

in the assembly: 

• M2 x 8mm hex socket cap bolts  Actuator horns, hinge brackets, gripper 

linkages 
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• M2.5 x 6mm hex socket cap bolts  Actuator case mounting to structure 

• M2.5 x 10mm hex socket cap bolts  Manipulator mounting to electronics 

box  

• M4 x 10mm hex socket cap bolts  FSS interface fastening 

• Nylon spacers  as needed to ensure level seating 

D. ELECTRICAL DESIGN AND NETWORKING 

PERSEUS operates using Commercial-Off-The-Shelf (COTS) components and 

open-source software. The following electrical components are used in the system: 

• Arduino® Due Microcontroller (x1) 

• Arduino® WiFi Shield (x1) 

• 5VDC 1A Barrel Jack Power Source (x1) 

• Dynamixel U2D2 Power Hub Board (x1) 

• Dynamixel XH430-V210-R Actuator (x4) 

• 12VDC 5A Barrel Jack Power Source (x1) 

• Dynamixel RS-485 4-Pin Robot Cable, 180mm (x5) 

A diagram of power and data connections is provided in Figure 18. 
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Figure 18. Wiring Diagram. Adapted from [31]–[34] 

An Arduino® Due board serves as the system onboard computer. This 

microcontroller reads actuator position trajectory data from a text file stored on an SD card 

and transmits commands to the manipulator chain. Pairing with an Arduino® WiFi shield 

allows new actuator position trajectories to be loaded and saved to the SD card over-the-

air in order to execute various maneuvers. Trajectories may also be loaded to the system 

over a direct connection to a master control terminal. These commands are passed over 

micro-USB by the onboard computer to a U2D2 communications interface unit that 

converts integer position values into commands recognized by the computing hardware 

built into each actuator. 

The Power Hub Board provides necessary power handling to convert 12VDC input 

power into the proper conditions for actuator control. This delivers commands and receives 

feedback in the form of actuator state and error data. Connections between the U2D2 

communications unit and each successive actuator are made using Dynamixel RS-485 4-

pin Robot Cables.  

Actuators are connected in such a manner that commands, feedback, and power 

may be sent and received over a single line of RS-485 cables. Signals are processed using 
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onboard control hardware that allows for position, velocity, current, and other 

specifications to be assigned using an internal Electrically Erasable Programmable Read-

Only Memory (EEPROM). An exhaustive explanation of actuator internal computational 

capability is not provided here. However, it is sufficient to note that actuator control is 

performed by reading and writing specified commands to EEPROM addresses 

corresponding to desired operating parameters.  

PERSEUS is designed such that it is compatible with multiple power inputs options. 

5VDC power for the onboard computer may be provided over a barrel jack during benchtop 

testing or using a battery for testing on POSEIDYN. 12VDC power may be provided by 

either a Molex connector, barrel jack, or Switched-Mode-Power-Supply (SMPS) DC 

connector. This allows PERSEUS actuators to be powered by tapping FSS onboard power 

or by implementing a separate battery pack. 

The system is designed to be operated over-the-air by transmitting trajectory text 

files to the onboard computer via WiFi over a local network. In this case, a master test 

computer opens a communications link with the onboard computer via the WiFi shield, 

reads command values, and delivers them to the U2D2 communications unit in order to 

drive the actuators. This may also be performed using a direct cable connection, so long as 

sufficient slack is present in the cable to prevent interference with motion during testing. 

A network diagram representing the flow of data during testing is provided in Figure 19. 

 
Figure 19. PERSEUS Testing System Network. Adapted from [32]–[34] 
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E. PROGRAMMING AND OPERATION 

System maneuver execution must be performed safely and accurately. Namely, the 

manipulator chain actuators must be driven in such a manner that the end-effector reaches 

a target without either impacting its host FSS unit or exceeding angles and angular 

velocities that could cause cable disconnection or damage to the various link segments and 

structural components. Further, the system must perform specified operations using an 

onboard computer with limited memory. In order to ensure safe, accurate operation while 

minimizing demands on onboard computing hardware, system control is performed in a 

staged manner. This approach utilizes a higher-memory terminal to complete collision 

avoidance calculations and limit checks with streamlined, low-risk trajectories sent to 

onboard hardware for execution. The following subsections will describe the segments of 

this operating scheme. 

1. Trajectory Generation and Verification 

Joint space trajectories are generated from user-defined parameters passed to a 

MATLAB® script. This script queries input regarding the desired number of joint space 

state vectors, angles for the initial and final state of each joint, and desired end-effector 

behavior during the maneuver. From these inputs, the program generates a vector of 

orientation angles for each joint and converts these angles to integer values corresponding 

to a position count that can be interpreted by each actuator. These joint space orientation 

vectors are generated such that each actuator will drive linearly from initial to final state at 

a constant overall angular velocity.  

A series of simple geometric calculations are then performed to determine whether 

or not the generated joint space trajectories are likely to cause a collision with the body of 

the host FSS unit or impact the manipulator physical structure. Due to the planar nature of 

manipulator design, this is performed in a straightforward manner by combining the 

physical size of each segment and the desired orientation. If any of the rigid bodies within 

the manipulator chain are deemed likely to cause a collision, an error message is displayed 

to the user indicating the suspected cause of a potential collision. In such cases, the program 

will not convert the trajectory to a format readable by the actuation program.  
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In like manner to collision avoidance calculations, trajectories are checked by the 

generating program to ensure that upper and lower bounds for angular orientation are 

upheld. To ensure the motion of the various links would not cause a cable to become 

dislodged, these limits were set at ±90 degrees, with zero degrees occupying the north 

position opposite the manufacturer label on the front face of each actuator. If a given 

candidate trajectory exceeds angular position bounds, an error message is displayed to the 

user identifying the joint or joints predicted to violate the limit.  

In addition to these checks, the trajectory generation program determines the 

behavior of the end-effector throughout a maneuver. The program receives input on 

whether the end-effector will begin in the open or closed position, if it transitions from its 

initial open or closed state, and at what point during a maneuver this transition should 

occur. This is done by selecting a value between zero and one to indicate whether the end-

effector opens or closes toward the beginning or end of an actuation sequence. A user may 

therefore use the program to generate a program where the end-effector grapples to an 

object or releases itself from a perched position, and at what time it does so.  

If a candidate trajectory passes all checks, the trajectory is saved as a text file of 

user-defined name. This text file is then ready to be passed to computing hardware that 

may read the file and drive the actuator to the indicated states. A workflow diagram 

demonstrating the processes occurring in the generation of a maneuver control trajectory 

is given in Figure 20. A published version of the script is found in Appendix C. 
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Figure 20. Trajectory Generation Program Workflow 

2. Actuation Program 

After a trajectory of joint angles required for a given maneuver is generated and 

saved as a text file it is then passed to the manipulator onboard computer for actuation. For 

the PERSEUS system, this program operates using a modified C++ version of the 

Dynamixel Software Development Kit (SDK) [35]. Actuation is performed by reading 

from and writing to an EEPROM present in each actuator case. Present state data from 

actuators may be read and stored in order to determine error. Commands may be sent to 

actuators by building and writing packets to EEPROM addresses corresponding to each 

desired parameter. Each actuator must be assigned an ID value to allow synchronous serial 
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command and feedback. With ID set for each actuator in the chain, data may be sent and 

received along a single RS-485 line.  

Upon execution, the actuation program assigns parameters for byte length of 

commands and defines addresses to ensure commands are written to the proper EEPROM 

address. The trajectory test file is then read and converted from character format to integer 

values. Since C++ does not allow direct querying of integer values of array elements, 

trajectories are converted to a single vector of usable format. The program then proceeds 

by confirming an established communication link to each actuator, enabling motor torque, 

and reading the present state of each actuator. After receiving user authorization to proceed, 

joint space angular position vectors are written to addresses corresponding to goal 

positions. Present positions are then read and compared to goal position via a checksum 

for a defined error threshold. Once a given position within the overall maneuver trajectory 

set is achieved within checksum tolerance the next angular position vector is written to the 

goal position addresses. Actuation proceeds until the checksum condition is met, and the 

solution iteratively marches through the loaded trajectory until completion of the 

maneuver. Once the final angular position command is satisfied, the program terminates. 

A user may also terminate the program at any time in case of error. It is important to note 

that this position control configuration does not implement variation in angular velocity. 

Future versions of this actuation program may implement direct control of angular velocity 

or motor current corresponding to desired torque.  

To illustrate the principles of operation behind the actuation program, a simplified 

flowchart is provided for the reader in Figure 21. A published version of this script is given 

in Appendix F.  
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Figure 21. Actuation Program Flowchart 

As depicted in Figure 21, the actuation program is designed to proceed iteratively 

through a candidate trajectory vector by reading elements corresponding to the number of 
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position command vectors desired. This streamlined approach reduces the demands on the 

onboard computer. 

3. Operations and Testing 

Testing and performance evaluation requires coordination of various hardware. 

Required systems include a master test computer, PERSEUS onboard computer, a data 

collection and recording terminal, and a localization broadcast computer. For testing to be 

completed appropriately, these systems are operated in the following manner: 

• FSS hardware checks are performed to ensure batteries are charged, 

pneumatic cylinders are full, regulators and nozzles are functioning 

properly. 

• PERSEUS hardware is checked to ensure fasteners are tight, ample power 

is supplied, and actuators move freely without abnormal resistance. 

• Vicon® IR tracking system target resolution is confirmed.  

• FSS localization data is broadcast appropriately to the data collection 

computer. 

• Desired trajectories are loaded to the onboard computer or tethered test 

computer, as appropriate. 

Once hardware checks are completed, test conductors proceed to establish 

communication link with PERSEUS via WiFi or USB. Once the trajectory text file is 

accessible to the actuation program, the actuation program proceeds to execute the 

commanded trajectory. Vicon® tracking cameras record position and orientation of various 

targets marked using IR-reflective tags. These data are broadcast over the air to a data 

collection computer which receives and records raw data via Simulink. All experimental 

data are recorded raw, and data processing is performed after the fact.  
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A simplified flowchart representative of the testing process is provided in Figure 

22. 

 
 

Figure 22. Testing Procedure Workflow 
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VII. EXPERIMENTATION 

A. INTEGRATION 

1. Component Preparation 

Primary structural components were constructed of additively manufactured 

polycarbonate produced via fused deposition modeling. Prior to assembly, these parts were 

inspected to ensure minimal warping occurred during manufacturing. Support material was 

removed and bearing surfaces were sanded to allow smooth fit. Gripper components were 

sanded to reduce friction across bearing surfaces of the end-effector track. Through holes 

for electrical component mounting were measured to meet specifications from engineering 

drawings. 

Actuators were visually inspected with no damage found. Idler horns on front and 

back faces of each actuator were installed to allow attachment of structural hinge brackets. 

A back idler horn was not installed on the end-effector joint to allow proper fitting within 

combined proximal and distal end-effector cradle assembly. The root actuator case was 

removed to allow through-case wire routing and replaced.  

2. Wire Routing 

Printed circuit boards for power handling, communications interface, and the 

onboard computer were mounted to the inside face of the electronics box lid using 

standoffs. This allowed easy access to benchtop power and USB connection for preliminary 

testing. For FSS testing, communications and power were routed through ports on the side 

and top of the PERSEUS electronics box. 

 

3. Assembly 

System assembly was conducted in the following manner: 

1. Root actuator cables were attached via through-case mounting. 

2. The root actuator was fastened to the electronics box lid using M2.5 bolts 

fed through the root cradle into holes on the bottom and sides of the case. 
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3. First and second links were constructed by bolting second and third 

actuators to hinge brackets.  

4. The end-effector cradle was assembled by fixing proximal and distal 

halves using spacers and bolts. The fourth actuator was then fixed to this 

cradle by bolting the side of the case. 

5. The end-effector was constructed by joining each half of the gripper to a 

motor head bent linkage using M2 bolts and nylon spacers. The track was 

then mounted to the fourth actuator using two M2.5 bolts placed in holes 

adjacent to the front motor idler horn. Linkage assemblies were then 

installed by sliding each half of the gripper down the track and fastening 

the linkage to the idler horn.  

6. Electronics were then installed on the rear face of the electronics box lid. 

Photographs of the complete system assembly are given in Figure 23.  

 
 

Figure 23. PERSEUS Manipulator Assembly 

4. FSS Installation 

In order to conduct testing aboard FSS units on the POSEIDYN table, the 

electronics box was first mated to the FSS interface ring and fastened using M4 bolts. 

Additional bolts were used to fasten FSS structural frame components to reduce structural 

vibration during manipulator operation. The PERSEUS manipulator chain was then 

fastened to the FSS by bolting the electronics box lid tightly using M3 bolts. Power and 
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data lines were passed through ports on the sides of the box. Images of this integration are 

given in Figure 24. Future iterations of this design will draw power directly from the FSS 

EPS and pass data over wireless connection, but for a proof-of-concept power was supplied 

from an external 12V source via a barrel jack and communications supported by USB 

cable. 

 
Figure 24. PERSEUS Installation on FSS for Testing 

B. BENCH TESTING 

To verify proper system operation prior to testing, a series of tests were performed 

in two primary configurations. Hardware-in-the-loop maneuver simulation was performed 

by connecting actuators to a host computer and loading a series of test maneuver 

trajectories. These were then read and executed by the system to ensure anomalous 

behaviors were not present and that maneuvers with risk of potential damage were not 

performed. Once proper actuator operation was confirmed, the manipulator chain was 

assembled, and electrical components connected to a test conductor computer. The 

manipulator was then fastened to a large steel plate using clamps to reduce likelihood of 

motor torque rotating the mounting platform. This was done in such a manner that the 
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components were protected from electrical contact with the mounting platform. A series of 

maneuvers were then performed to simulate FSS operations, with performance recorded 

using a video camera. This bench testing configuration is shown in Figure 25. 

 
Figure 25. Bench Testing Configuration 

C. PUSH MANEUVER 

1. Setup 

PERSEUS was integrated into a host FSS unit via the method described previously. 

The IR tracking system was activated, and identification of various system rigid bodies 

was confirmed. Due to close proximity of mounting positions for IR tracking tags, the 

manipulator chain could only be resolved into two rigid bodies attached to a rigid body 

representing the electronics box. Tests were conducted by ensuring all relevant vehicles 

were at rest and aligned for proper manipulator contact. Since power and data were 

provided using external cables, test conductors fed additional cable to the system during 

motion to provide slack and reduce external torque introduced by the tethered 

configuration. 
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2. Push Off Fixed Rail 

To represent a planar spacecraft hopping maneuver from a body of much greater 

size and mass, a PERSEUS-equipped FSS was placed adjacent to a rail along the perimeter 

of the POSEIDYN table. The manipulator was then retracted toward the spacecraft body 

and the end-effector aligned with the rail. Once contact between the end-effector and the 

rail was confirmed, test conductors released the FSS unit to float freely on the table. After 

localization of IR-tagged rigid bodies and a countdown, a command was sent via the U2D2 

communications board to execute the maneuver. While in motion, test conductors observed 

the FSS unit visually and paid out additional cable. Upon reaching the end of the cable, 

data collection was halted, and results were recorded. Post-processing of data was 

performed using MATLAB® to characterize translational and rotational motion of the 

body. 

3. Push Off Static Simulated Spacecraft 

The next series of push maneuver experiments replaced a fixed perimeter rail with 

a static, unpowered FSS unit in the interior area of the POSEIDYN table. Similar 

procedures were followed for setting initial orientations as for tests involving a fixed rail. 

However, rather than inducing motion from the perimeter toward the center of the table, 

the PERSEUS-equipped FSS was oriented to move parallel to the outer rail at 

approximately one-half meter inside the perimeter. This allowed test conductors greater 

control of cables and allowed longer distance duration maneuvers to be conducted for the 

same cable length while minimizing torque resulting from the cable. Similar to fixed rail 

experiments, post-processing was performed to show motion throughout the actuation and 

coast phases of the maneuver. 

4. Push Off Floating Spacecraft Simulator 

Lastly, tests were conducted to examine motion following a push maneuver 

conducted between two powered FSS units. By powering both units and providing air to 

the hover pads, these tests aimed to more accurately model system dynamics during an 

actual maneuver in microgravity. These tests were conducted similarly to fixed rail and 

static spacecraft tests. However, additional care was taken to ensure initial relative 
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translational and rotation motion of both units was near-zero. One test conductor followed 

the PERSEUS-equipped FSS, while another stood ready to receive the passive unit and 

prevent it from contacting perimeter rail structures or other hardware. Overall body motion 

data were processed and plotted as in previous experiments. These data were also used to 

determine any motion of the center of mass of the combined system to elucidate the motion 

influence of external torques resulting from non-zero friction along the table bearing 

surface, air drag acting on each body, and the use of cables for power and data connections. 
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VIII. RESULTS AND DISCUSSION 

A. BENCH TESTING 

1. Single Motor Actuation 

Actuation of a single motor over RS-485 was successful. Position control 

configuration enabled the user to define orientations in terms of motor position counts. The 

program then continued to build and send packets for target position. As long as the 

actuator exceeded the ten-count position error threshold, the motor continued to drive. 

Once this was completed, additional states could be commanded in like manner. 

2. Multi-Actuator Synchronous Actuation 

Similar to single motor actuation, position trajectories corresponding to multiple 

motors were read and converted to command state data packets. These were sent 

synchronously to actuators, and no appreciable time delay was observed between actuation 

of motors in the chain. However, it was important to note that each actuator stopped 

rotating after the error threshold was met for each iterative step of the maneuver and started 

again from zero angular velocity at the next step. This indicated that spin-up and spin-down 

torques would be generated at the beginning and end of each step. While this effect was 

not pronounced when actuators were not coupled to manipulator links, the torque 

developed by each motor was sufficient to cause jitter after assembly. 

3. Physical Arm Bench Testing 

After successful completion of hardware-in-the-loop simulation, the manipulator 

chain was assembled for bench testing as described previously. Trajectories were then 

generated in MATLAB® for the push and swing maneuvers described in Manipulator 

Control. These were then read by the actuation program and executed iteratively as 

described previously. Parameters for each of these maneuvers, including initial and final 

state and end-effector behavior, are given in Table 5. 
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Table 5. Maneuver Trajectory State Parameters 

Maneuver 
Type 

State 
Command 

Count 
𝜃𝜃10 𝜃𝜃1𝑓𝑓 𝜃𝜃20 𝜃𝜃2𝑓𝑓 𝜃𝜃30 𝜃𝜃3𝑓𝑓 

Push 11 45° 0° -90° 0° 45° 0° 

Swing 11 0° 30° 0° 30° 0° 30° 

 

During bench testing, manipulator motion was recorded on video and post-

processed to determine timing of various phases of operation. Still images were captured 

from video and are used here in Figure 26 to depict motion throughout the maneuver. It is 

important to note that the end-effector opened 0.17 seconds after the maneuver began, 

simulating release from a perched position on a rail.  

 
Figure 26. Push Maneuver Bench Test 

A similar technique was used to demonstrate manipulator motion during a 

simulated swing maneuver. The manipulator was capable of driving each revolute joint 

actuator from a neutral position to a 30° orientation in 1.5 seconds. This is shown in Figure 

27. 
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Figure 27. Swing Maneuver Bench Test 

It is important to note that bench testing of the physical manipulator showed a more 

pronounced effect in terms of spin-up and spin-down torques due to iterative position 

stepping through the commanded vectors for each trajectory. This is due to the torque at 

each actuator head being transmitted through the manipulator links, causing a greater 

moment arm within the system for each link. This was partially mitigated by the low 

backlash characteristics of each actuator, with final resulting motion following the defined 

path appropriately but with noticeable jitter. 

This jitter is not compatible with a system intended for use in an orbital 

environment as this effect would be more pronounced in microgravity. Future versions of 

this manipulator should provide a control solution that allows each trajectory waypoint to 
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be passed smoothly along a given path to reduce the number of times each motor spins up 

and down. However, for the purpose of demonstrating the concept of position control for 

planar maneuvers in a two-axis simulated microgravity environment, this may be deemed 

a sufficient first step. 

B. POSEIDYN FSS PUSH MANEUVER TESTING 

1. Physical System Data 

Results of simulated spacecraft testing of the push maneuver were collected and 

processed according to methods described previously. Due to constraints on power and 

pressurized air systems aboard FSS units, a limited number of test runs could be conducted. 

Of these, multiple runs exhibited poor localization and loss of target tracking. Data from 

such runs were discarded. Experimental results were tabulated and plotted to demonstrate 

system behavior. These data are included in Table 6 and Figures 28 through 33. Vehicle 1 

refers to the PERSEUS-equipped FSS, while Vehicle 2 refers to the passive FSS used 

during testing. For rail experiments, a second vehicle was not used. For dynamic push 

maneuver experiments involving multiple FSS units, motion of the center of mass of the 

combined two-FSS system was also recorded. Body rotations for FSS units in dynamic 

push experiments were not plotted. 

As shown in Table 6, loss of localization and system complications resulted in two 

runs of each maneuver type that produced usable data. These issues may be resolved by 

improving the experimental setup by performing all commanding over-the-air, allowing 

the interior of the POSEIDYN table to be used and thereby avoiding the boundaries of the 

tracking system area of regard. However, the data collected still represent actual motion 

produced by means of actuating a robotic manipulator. 
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Table 6. Push Maneuver Experimental Results 

*Vehicle 2 motion was only relevant for cases with two floating spacecraft.  
**Center of mass motion measurements were used to evaluate experiments where the system center 
of mass should have remained stationary. 
 

For push maneuvers performed from a static fixed rail, total displacements of 0.31 

and 0.51 meters were achieved as shown in Figures 28 and 29. Maneuvers conducted by 

pushing off a static simulated spacecraft are given in Figures 30 and 31, with total 

displacements of 0.68 and 0.69 meters. Dynamic push maneuvers between two FSS units 

produced displacements of 0.17 and 0.46 meters as depicted in Figure 32 and 33. Large 

deviations between results of maneuvers were observed to result primarily from 

misalignments in initial mounting, where the PERSEUS-equipped FSS began to rotate 

between being released by the test conductor and the beginning of the actuation sequence. 

Tests runs which produced greater displacements were observed to result from initial 

release conditions where almost no body rotation was present, and where the end-effector 

was flush and normal to the surface off of which the push maneuver would be conducted. 

The presence of nonzero external torques resulting from cable mounting appeared to 

influence motion as well. This was most apparent in dynamic push maneuvers, where the 

system center of mass was shown to move 5.9 and 7.0 centimeters during the two runs. 

Maneuver 
Type 

V1∆𝑋𝑋 
(m) 

V1∆𝑌𝑌 
(m) 

V2∆𝑋𝑋 
(m) 

V2∆𝑌𝑌  
(m) 

CoM ∆𝑋𝑋P

** 
(m) 

CoM ∆𝑌𝑌P

** 
(m) 

Body 
Rotation 

(deg) 

∆𝑇𝑇 
(s) 

Fixed Rail 
Run 1* 0.083 0.300 N/A N/A N/A N/A 31.2 25.0 

Fixed Rail 
Run 2* 0.199 0.466 N/A N/A N/A N/A 61.2 14.7 

Static FSS 
Run 1* 0.661 0.152 N/A N/A N/A N/A 318.4 21.0 

Static FSS 
Run 2* 0.668 0.153 N/A N/A N/A N/A 347.3 25.0 

Floating 
FSS Run 1 0.436 0.136 0.446 0.087 0.043 0.055 N/A 21.0 

Floating 
FSS Run 2 0.111 0.130 0.496 0.075 0.054 0.024 N/A 17.0 



56 

This was most likely the result of friction across the table surface and torque resulting from 

cabling. Although the POSEIDYN table was cleaned prior to testing, these tests were not 

performed in clean room conditions. It is likely that debris was present on the surface. 

While test conductors also attempted to provide sufficient cable slack during maneuvers, 

this may have allowed translational and angular momentum exchange along the line as the 

cable may have pushed or pulled the FSS. 

Assuming that center of mass displacement occurred as the result of constant 

acceleration from initial position at zero velocity to the final position, Newton’s Second 

Law would predict an external force acting on the system between roughly 40 to 70 

millinewtons.  

 
Figure 28. Push Maneuver from Fixed Rail, First Run 
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Figure 29. Push Maneuver from Fixed Rail, Second Run 

 
Figure 30. Push Maneuver from Static Simulated Spacecraft, First Run 
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Figure 31. Push Maneuver from Static Simulated Spacecraft, Second Run 

 
Figure 32. Push Maneuver Between Two Floating Spacecraft, First Run 
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Figure 33. Push Maneuver Between Two Floating Spacecraft, Second Run 

2. TORO Simulation 

Using the segmented approach described previously, predicted trajectories were 

generated for the various parameters relating to the system degrees of freedom. TORO© 

simulation of a push maneuver from a static simulated spacecraft resulted in the following 

data listed in Table 7. Center of mass motion during these maneuvers, along with joint 

rotation data are given in Figures 34 through 37. 
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Table 7. TORO Simulation of Push Maneuver from Static Simulated 
Spacecraft 

*Joint rotation model for actuation phase did not take backlash characteristics into account. 
**For the coast phase, joint angles of zero were assumed for each joint with zero angular velocity. 
 

 
Figure 34. Simulated System Displacement During Manipulator Actuation 

Maneuver 
Phase 

CoM ∆𝑋𝑋 
(m) 

CoM ∆𝑌𝑌 
(m) 

𝑅𝑅10  
(deg) 

𝑅𝑅1𝑓𝑓 
(deg) 

𝑅𝑅20 
(deg) 

𝑅𝑅2𝑓𝑓 
(deg) 

𝑅𝑅30 
(deg) 

𝑅𝑅3𝑓𝑓 
(deg) 

∆𝑇𝑇 
(s) 

Actuation* 0.062 0.016 45 4.47 -90 13.1 45 9.72 2.0 

Coast** 0.168 0.008 0 0 0 0 0 0 18.0 

Total 0.230 0.024 - - - - - - 20.0 
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*Q1, Q2: Body motion in X and Y (m). Q3: Rotation of the plane (rad). Q4-Q6: Orientation 
of joints R1, R2, and R3 (rad). 

Figure 35. Simulated Motion of System Degrees of Freedom During 
Manipulator Actuation* 

 
Figure 36. Simulated System Displacement During Coast 
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*Q1, Q2: Body motion in X and Y (m). Q3: Rotation of the plane (rad). Q4-Q6: Orientation 
of joints R1, R2, and R3 (rad). 

Figure 37. Simulated Motion of Degrees of Freedom During Coast* 

As shown in Figures 34-37, TORO© Simulation predicted total spacecraft motion 

of 6.4 centimeters during the actuation of the manipulator chain and 16.8 centimeters 

during the coast phase for a total of 23.2 centimeters during the maneuver. Motion during 

actuation was roughly comparable to the 5.9-centimeter change in end-effector distance 

from the root during actuation. However, overall predicted system motion was significantly 

lower than the experimental results which demonstrated system motion of nearly 70 

centimeters.  

This discrepancy is likely the result of differences between the operating 

assumptions of motion in TORO© when compared to the motion constraints of the physical 

manipulator design. TORO© software assumes smooth motion of joints from initial to final 

state, as numerical propagation techniques do not perform well with non-smooth 

conditions. PERSEUS manipulator control caused each actuator to begin and conclude 

each segment of maneuver trajectories with zero velocity. This corresponded to the 
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introduction of a spin-up or spin-down torque no less than eleven times throughout each 

push maneuver. Manipulator motion is caused entirely by torque produced at the motor 

shaft being transmitted through the body of the system. Therefore, it is not unreasonable to 

suspect that the production of additional torque at each iterative step along a maneuver 

trajectory resulted in greater motion than predicted. Since cable torque was shown to cause 

a displacement roughly six or seven centimeters greater than ideal conditions, actual system 

motion resulting from manipulator actuation for a push maneuver from a static simulated 

spacecraft was likely closer to 60 centimeters. 
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IX. CONCLUSION 

A. SYSTEM DESIGN 

PERSEUS represented a successful first step toward the implementation of 

sophisticated robotic manipulation systems aboard NPS FSS units. The combination of 

additively manufactured structure, actuation system with documented open-source 

software, and use of self-contained communications and onboard computing hardware 

allowed PERSEUS to be rapidly integrated aboard existing systems without requiring 

modifications. Postural redundancy within a planar workspace also allowed the actual 

demonstration of maneuvers that could not be performed by previous systems with fewer 

degrees of freedom. The structure was observed to withstand both inertial loads and loads 

imparted to the system through robotic actuation. 

B. CONCEPT OF OPERATIONS 

The self-contained PERSEUS design architecture allowed the manipulator to be 

installed by a single technician in approximately fifteen minutes without requiring any 

modifications to the host FSS unit. Operation of the data collection system and both FSS 

units was carried out with the direct involvement of only two test conductors. 

Modifications to the operational procedures for PERSEUS will not likely decrease the 

number of test conductors required to perform experiments. However, process 

improvements that eliminate the need for physical cable tethering to the system and provide 

a means of controlling the system via wireless means could significantly improve the 

quality of experimental data. By streamlining the process of uploading programs, the need 

to recompile and execute for each arm maneuver could be eliminated, allowing test 

conductors to improve initial state controls to prevent the introduction of external forces 

and torques to the system. 

C. PERFORMANCE 

In its first implementation, PERSEUS was able to successfully perform a series of 

push maneuvers starting from a variety of initial conditions. This is considered successful. 
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However, a system fault experienced when attempting swing maneuver testing aboard 

POSEIDYN precluded the operational data collection of such maneuvers. Correction of 

this issue is of high importance and includes both improving the EPS interface between 

PERSEUS and FSS onboard power, as well as tightening of tolerances for opening and 

closing the end-effector to prevent crossing threshold values between minimum and 

maximum position indices for the end-effector actuator.  

Overall, the system was observed to follow defined trajectories successfully with 

minimal deviation from user-defined end-effector position constraints. These small 

deviations resulted primarily as a result of the small, but nonzero backlash characteristics 

of each actuator combined with the angular momentum of rotating manipulator segments 

of significant length. These may be reduced by adjusting the default angular velocity used 

by the control software, and by eliminating unnecessary structural mass to reduce moments 

of inertia. Iterative joint space position control introduced significant vibratory motion to 

the manipulator chain. This is due primarily to the segmented zero velocity requirement 

resulting from sequential position control.  

D. SUMMARY 

PERSEUS was capable of performing a maneuver similar to that which could be 

used to separate two spacecraft from a docked position. This holds promise for examining 

future methods of performing proximity operations and servicing tasks using purely 

electromechanical means. The combination of software and hardware developed as part of 

the PERSEUS system provide an open framework for the iterative improvement and 

refinement of such techniques. 

E. FUTURE WORK 

Multiple elements of system design should be refined in future versions to provide 

users greater flexibility, performance, and ease of use. These include enhanced access to 

power switches and communications interface ports, implementation of the OTA 

programming concept, and a restructuring of manipulator control code in order to reduce 

spin-up and spin-down torques resulting from current techniques used to segment 

maneuvers. Future iterations of PERSEUS could reduce this loading by introducing a state-
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space control method allowing for non-zero angular velocity for the various actuators in 

between actuation steps. Vibratory motion during actuation could be reduced by reducing 

unnecessary component mass. Operational processes may be improved to allow more 

precise control of initial conditions by the same number of test conductors as used in this 

iteration. Tolerances for end-effector motion should be adjusted to prevent potential 

damage or misalignment that could result from crossing from motor position 0 to motor 

position 4095. Adjustments to trajectory generation software could also be used to account 

for these issues. By improving upon the existing design in these areas, PERSEUS could 

provide additional capability and perform a wider variety of proximity operations robotic 

maneuvers accurately.  
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APPENDIX A. PERSEUS CAD DESIGN
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APPENDIX B. DYNAMIXEL XH430-W210-R SPECIFICATIONS 

 
  



80 

THIS PAGE INTENTIONALLY LEFT BLANK  



81 

APPENDIX C. TRAJECTORY GENERATION CODE 
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APPENDIX D. TORO EQUATIONS OF MOTION
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APPENDIX E. TORO TRAJECTORY PROPAGATION CODE 
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APPENDIX F. C++ DYNAMIXEL ACTUATION CODE. 

The following code was adapted from [35]. 
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