RAEsTANTlA PER sCIENnAM

g

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

PLANAR ELECTROMECHANICAL ROBOTIC
MANIPULATION SYSTEM TO ENABLE UNMANNED
SPACECRAFT SERVICING (PERSEUS)

by
Ian A. Hardy
June 2021
Thesis Advisor: Marcello Romano
Co-Advisor: Jennifer Hudson
Second Reader: Stephen Kwok-Choon,

Spacecraft Robotics Laboratory

Approved for public release. Distribution is unlimited.




THIS PAGE INTENTIONALLY LEFT BLANK



Form Approved OMB

REPORT DOCUMENTATION PAGE No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE
(Leave blank) June 2021

3. REPORT TYPE AND DATES COVERED

Master's thesis

4. TITLE AND SUBTITLE
PLANAR ELECTROMECHANICAL ROBOTIC MANIPULATION SYSTEM
TO ENABLE UNMANNED SPACECRAFT SERVICING (PERSEUS)

6. AUTHOR(S) Ian A. Hardy

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING /
ADDRESS(ES) MONITORING AGENCY
N/A REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release. Distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

Rising numbers of aging spacecraft and new missions demand the development of novel approaches to
perform various tasks in orbit. Complex servicing and assembly missions have been successfully
completed by human astronauts in the past. However, currently available human-rated vehicles are not
capable of accessing all relevant orbital locations, nor are there enough assets available for human
operators to service all essential payloads directly. If sufficient capability to perform simple tasks remotely
could be provided via a robotic manipulator, it may be possible to meet the servicing needs of a far greater
number of missions at a lower program cost and without requiring risky extravehicular activities.

The aim of this study is to develop a remote-operated robotic system capable of performing relevant
tasks when mounted to a planar floating spacecraft simulator operating on an air bearing table. This system,
known as PERSEUS, possesses three revolute joints to allow postural redundancy within a large workspace
and a rapidly reconfigurable end-effector that enables simulation of various maneuvers for different planar
orientations. When mounted to a simulated spacecraft, PERSEUS offers capability to simulate various
grapple and hopping maneuvers representative of what may be required to inspect and service a host

payload.

14. SUBJECT TERMS
orbital robotics, manipulator, autonomous systems

15. NUMBER OF
PAGES
139

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF

CLASSIFICATION OF CLASSIFICATION OF THIS | CLASSIFICATION OF | ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified uu

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18



THIS PAGE INTENTIONALLY LEFT BLANK

1



Approved for public release. Distribution is unlimited.

PLANAR ELECTROMECHANICAL ROBOTIC MANIPULATION SYSTEM TO
ENABLE UNMANNED SPACECRAFT SERVICING (PERSEUS)

Ian A. Hardy
Ensign, United States Navy
BS, United States Naval Academy, 2020

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by:  Marcello Romano
Advisor

Jennifer Hudson
Co-Advisor

Stephen Kwok-Choon
Second Reader

Garth V. Hobson
Chair, Department of Mechanical and Aerospace Engineering

i1



THIS PAGE INTENTIONALLY LEFT BLANK

v



ABSTRACT

Rising numbers of aging spacecraft and new missions demand the development of
novel approaches to perform various tasks in orbit. Complex servicing and
assembly missions have been successfully completed by human astronauts in the
past. However, currently available human-rated vehicles are not capable of accessing
all relevant orbital locations, nor are there enough assets available for human
operators to service all essential payloads directly. If sufficient capability to perform
simple tasks remotely could be provided via a robotic manipulator, it may be possible to
meet the servicing needs of a far greater number of missions at a lower program

cost and without requiring risky extravehicular activities.

The aim of this study is to develop a remote-operated robotic system capable of
performing relevant tasks when mounted to a planar floating spacecraft simulator
operating on an air bearing table. This system, known as PERSEUS, possesses three
revolute joints to allow postural redundancy within a large workspace and a rapidly
reconfigurable end-effector that enables simulation of various maneuvers for different
planar orientations. When mounted to a simulated spacecraft, PERSEUS offers capability
to simulate various grapple and hopping maneuvers representative of what may be

required to inspect and service a host payload.



THIS PAGE INTENTIONALLY LEFT BLANK

vi



II.

I11.

IVv.

VI

TABLE OF CONTENTS

INTRODUCTION...uuiiiuiiininniissnnnsnssssissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 1
A. ORBITAL ROBOTIC MANIPULATION SYSTEMS.......cccceeeuvevuvrcnncns 1
B. MANEUVER SIMULATION AND TESTING ......ucccvueevverivueisnncsnennns 5

1. Planar Floating Spacecraft SIMulator ..........ccoceceeevvercrcercscnrcsnnns 5

2. Astrobee Microgravity TeSting......ccccceeeveecsrerccssnrcssnrcssnrcssnnscsonns 8
SYSTEM OVERVIEW .....iiiinininniinsninsnisssisssisssisssssssssssssssssssssssssssssssns 13
A. SUMMARY ...uuiiiniiininninnsninsiisssiessssssssesssssssssssssssssssssssssssssssssssssssssssssssss 13
B. CAPABILITY uuccctiiriininsnecneisnisssessessssecssassssesssassssssssassssssssassssssssasssse 14
C. END-EFFECTOR ......ucoiiitintirnnintennnecsninsnenssnesssecssnssssssssesssssessassssenss 14
D. ACTUATION .uuiiiiiiinenneensnensnesssensssecssessssssssnssssssssassssssssssssassssassssessaass 14
E. INTEGRATION...uuiiiiiniiniinniinninsnicssissssesssssssssssssssssssssssssssssssssssessssns 15
MATHEMATICAL MODEL DEVELOPMENT........ccovevinvensensuncessancssncsenes 17
A. FRAMES OF REFERENCE .....cuuuuiiniivirisensninsensesssesssnsesssessssssssssssseses 17
B. DENAVIT-HARTENBERG (D-H) PARAMETERS ........ccccevenurenunnens 18
C. END-EFFECTOR POSITION ....ccoviiivinsinssnnnsicssercsnssssssssessssssssssssssens 20
D. WORKSPACE ..uuiiiriiticninnnnsnennsicssesssisssisssssssssssssssssssssssssssssssns 21
KINEMATIC SIMULATION USING TORO.....ucuiiiinuecrricsecsrecsaccsessancssecsenes 23
A. OVERVIEW....uuiiinninninnninninnenneicsesnisssessssssesssssssesssssssssssasssss 23
B. SCENARIO PARAMETERS .....uiiiiiniiininsiinsninsnnssnisssssssssssssssssssans 23
MANIPULATOR CONTROL.....ucuuieeiinrnicsnisenssecsanssesssnssssssessssssssssessassssssssses 27
A. JOINT-SPACE POSITION CONTROL .......ccueverruinrersensnecrensaecsancnnnes 27
B. PUSH MANEUVER ....cuuiiitiiiineinnecsnecsnessssesssecsssessssssssssssessssesssssssssess 27
C. SWING MANEUVER .......uitiiiiitinniinsnissnisssisssisssissssssssssssssssssesans 28
DETAILED SYSTEM DESIGN ....cuucciniininseinsensricsenssesssessssssesssessssssessassssssseses 31
A. ACTUATORS .uuoiitiitintrnttnnennsecssississsesssesssessssssssssssessssssssssssssess 31

1. DeSCrIPLION...cuueeireniirireensnnnssnecsaenssnesssnesssessaessssssssnssssessssssssesssnsssns 31
B. STRUCTURE .....uuiiriininnninnniisnicsnisssissssssssisssssssssssssssssssssssssssssssssssssssss 32

1. | D Y 411 11 1 TR 32

2. LimitationS....eceeiiinseniennsinsnnnseinsecnsnecsiissnsssesssecssssssesssessses 33
C. FASTENING ..uuuiiiiiiitennticniinnissseensisssessssesssessssessssssssssssesssssssssssssssns 34
D. ELECTRICAL DESIGN AND NETWORKING .......ccovevrueerurrecsaecnnne 35
E. PROGRAMMING AND OPERATION ....uciiviivveinsnnissnncsnecsssncsancsannens 38

vil



1. Trajectory Generation and Verification..........coeeeveerseccneennens 38

2. ACtuation Program .........cceeeiccscsnnecssssnsncsssssssscsssssssessssssssssnssns 40

3. Operations and Testing ........cccevvverienissnrecssssnnnecssssnsncsssssssecssssnnes 43

VII. EXPERIMENTATION ..iiiiniinisnennencssenssnecssnsssaecssessssscssssssassssassssessssssssssss 45
A. INTEGRATION...uuiiiiiitinnnecsnninnnnssecsssecssessssesssncssssssssssssssssasssssssssssssssss 45

1. Component Preparation .........ceeeeecccssenrecssssnneccscsssscsssssssesssssanes 45

2. Wire ROULING ...ccuuueeiiinivnniicnisnnicssssnnrecssssnsnsssssssssssssssssesssssssssssnssns 45

3. §5 XY 111 1) 1 2N 45

4. FSS Installation .....coeeineeenseecsennsensecnsnecsensseensecsssecssnsssscsssesnne 46

B. BENCH TESTING ...uucioiiiiiiniuiisninsnicsssicssessssssssssssssssssssssssssssssssssssssssens 47

C PUSH MANEUVER ......uuiiiiiiniintinnticsnisssisssisssisssssssssssssssssssssssssssns 48

1. N 11 4 T 48

2. Push Off Fixed Rail.......ucoeieueineinsuennninsnensecisnensnecseesssecssnennns 49

3. Push Off Static Simulated Spacecraft...........ccceecvevevercrcercscnnncnns 49

4 Push Off Floating Spacecraft Simulator............ccoveeeverivuensunnnnes 49

VIII. RESULTS AND DISCUSSION ....cciiiiiiiisuiisnncsninsnicssesssssssesssssssssssssssssassass 51
A. BENCH TESTING ...uucoouiiniiiniinnncssinseicssnsssnsssesssssssssssssssssessssssssssssssens 51

1. Single Motor ACtUALION .......cccevvueecsrerccssaressnrcssnssssssnssssssssssssssanes 51

2. Multi-Actuator Synchronous Actuation ..........eeeecseecsnecseecnne 51

3. Physical Arm Bench Testing .........coveerseecsencsnensecssnecsaenssnessanenne 51

B. POSEIDYN FSS PUSH MANEUVER TESTING.........cccceceevvererueinnnens 54

1. Physical System Data.........eeieevivnriinissnnricsssnnnccssssssscsssssssecssssanes 54

2. TORO Simulation .......ceeieiisecneicsnecssennseensensssecsensssesssesssecsees 59

IX.  CONCLUSION .uuuiiiviiinniinsnnnsnecsssncssnesssssssessssssssssssssssssssssssssssssssssssssssssssssssassssssssss 65
A. SYSTEM DESIGN ....ccoiiiiuiiniinsnicsnisssicsssssssisssssssssssssssssssssssssssssssssssssssss 65

B. CONCEPT OF OPERATIONS ....uuiiiiitinninnnicssensnesssessssncssnssssssssnsnns 65

C. PERFORMANCE .....uuuitiiiicniinninnecnnicssesssesssessssecsssssssssssessssssssssssssess 65

D. SUMMARY ...utiiniiisninsnnnsnensnecssesssnesssesssssessessssssssassssssssnssssesssssssassssasssse 66

E. FUTURE WORK ....uiiitiintictinnnnnticnnecsninsnessseesssessssssssssssessssssssassssesss 66
APPENDIX A. PERSEUS CAD DESIGN .....uiiiininininneinsneissnsssesssicssessssssssessans 69
APPENDIX B. DYNAMIXEL XH430-W210-R SPECIFICATIONS.......ccccceevuerruneene 79
APPENDIX C. TRAJECTORY GENERATION CODE .......ueieruersseicsuensseccsnecsnns 81
APPENDIX D. TORO EQUATIONS OF MOTION .....ccoveiruecssnecsaenssnecssecssecsansssncens 85

viil



APPENDIX E. TORO TRAJECTORY PROPAGATION CODE .........cevervuersueenne 95

APPENDIX F. C++ DYNAMIXEL ACTUATION CODE..........ueveivreicruerssaecsunnnne 99
LIST OF REFERENCES ....couuiiniininniinninnnennensnenssesssssssssssssssessssssssssssssssssssssssssssss 115
INITIAL DISTRIBUTION LIST ...ccouiiniiiieninsnenensnnnsnessecssessaessesssessassssssssssassssssssssases 119

X



THIS PAGE INTENTIONALLY LEFT BLANK



Figure 1.

Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

LIST OF FIGURES

Solar Maximum Servicing Mission Artist’s Concept. Source: [6].............. 2

Robotic Manipulator Use During Hubble Servicing Missions.

SOUICE: [ 7] eeeeitee ettt ettt ettt e et e e 3
MEV-1 Grappling to IS-901 Satellite at GEO. Source: [9]......cccecveueeneenne. 4
Image of FSS Unit on NPS POSEIDYN Table .......ccccceviniininiinicicneenne. 6
Spacecraft Proximity Operations Simulation with FSS. Source:[15].......... 7
FSS Units Configured for Rendezvous and Docking Test ..........ccccccueeneenee. 8
Astrobee Robotic System Block Diagram. Adapted from [17], [18] .......... 9
Astrobee Performing Self-Toss Maneuver in International Space

Station Kibo Module. Source: [20].......coovuiieiiiieiieecieeeeeeeeee e 10
Astrobee Perched on ISS Handrail for Self-Toss. Source: [21]................. 11
PERSEUS Manipulator Assembly Rendering..........c.ccccceeveeriieniennennnn. 13
Graphical Representation of a Matrix Transformation...........ccccceceeveennee. 17
Graphical Representation of Three-Link Planar Manipulator ................... 20
PERSEUS Manipulator Workspace. Adapted from [27]......c.ccccevieneennens 21
PERSEUS Push Maneuver COnCept........cccveevieeriieeniiieeniieenieeesieeenieeens 28
PERSEUS Swing Maneuver COoncept.........ccccveererieneenieeeeneeneneeneennens 29
Dynamixel X-Series Actuators. Source:[31] ...cccoevvieviiiiniiiiniieeiieeeieee 31
PERSEUS Expanded VIEW........cccocerviiriiiiniiinieienienecieeeeseee e 33
Wiring Diagram. Adapted from [31]—[34].c.cccoveeriiieeiieeeieeeeeeciee e 36
PERSEUS Testing System Network. Adapted from [32]-[34]................. 37
Trajectory Generation Program Workflow...........ccccceeeieviieniieniieneeen, 40
Actuation Program Flowchart...........ccccooiiiiiiiiiiniiieceee e 42
Testing Procedure Workflow...........ccceeiieiiiiiiiinieeiicicce e 44

X1



Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

Figure 35.

Figure 36.

Figure 37.

PERSEUS Manipulator ASSembly..........cccccecuirieneriiinieniniinicnenieneenens 46

PERSEUS Installation on FSS for Testing.........ccccoeeveviiinieniienienreenene 47
Bench Testing Configuration...........cocueeeevieeiineenenieneeieeteneee e 48
Push Maneuver Bench Test ..........cccoviiiieiiiiiiieiceeceeee e 52
Swing Maneuver Bench Test..........coceeviriiiiiiiniiniiincececceee 53
Push Maneuver from Fixed Rail, First Run........ccccoovvvvviiiiiiieiiiiieeeeeees 56
Push Maneuver from Fixed Rail, Second Run.................cccccoooviinn. 57
Push Maneuver from Static Simulated Spacecraft, First Run.................... 57
Push Maneuver from Static Simulated Spacecraft, Second Run............... 58
Push Maneuver Between Two Floating Spacecraft, First Run.................. 58
Push Maneuver Between Two Floating Spacecraft, Second Run.............. 59
Simulated System Displacement During Manipulator Actuation.............. 60

Simulated Motion of System Degrees of Freedom During

Manipulator ACTUATION............ccovieeereeeeeeeeeeeeeeeeee et 61
Simulated System Displacement During Coast...........cocuevveeverieneenennnene 61
Simulated Motion of Degrees of Freedom During Coast”..............c.......... 62

xii



Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Table 7.

LIST OF TABLES

Denavit-Hartenberg Parameters for PERSEUS Manipulator .................... 19
TORO Simulation Physical Parameters...........ccccceeeviiiriiieniieeniieeeieeenne, 24
Degrees of Freedom and State Parameters for TORO Simulation............. 25
PERSEUS Manipulator Loading Under 1 G ........ccccceeviiiiieniieiecieeee 34
Maneuver Trajectory State Parameters...........coceevereiereenieeiiinienenicnecnns 52
Push Maneuver Experimental Results ...........ccccoeviieviieniiiinieniiciecieee, 55

TORO Simulation of Push Maneuver from Static Simulated
SPACECTALE. ..ot 60

xiil



THIS PAGE INTENTIONALLY LEFT BLANK

X1V



COTS
C++
DARPA
D-H
EEPROM
FSS

HST

IR

ISAR

ISS
1S-901
JST
MATLAB®
MEV-1
MSS
NASA
NPS
PERSEUS

POSEIDYN

RS-485
SD
SDK
SMPS
SRL
SSRMS
STS
TORO
USB

LIST OF ACRONYMS AND ABBREVIATIONS

Commercial-Off-The-Shelf

C Object-Oriented Programming Language
Defense Advanced Research Projects Agency
Denavit-Hartenberg Parameters

Electrically Erasable Programmable Read-Only Memory
Floating Spacecraft Simulator

Hubble Space Telescope

Infrared

Intelligent Space Assembly Robot

International Space Station

Intelsat 901

Japan Solderless Terminal

Matrix Laboratory by The MathWorks, Inc.
Mission Extension Vehicle 1

Mobile Servicing System

National Aeronautics and Space Administration
Naval Postgraduate School

Planar Electromechanical Robotic Manipulation System to Enable
Unmanned Spacecraft Servicing

Proximity Operation of Spacecraft Experimental Hardware-in-the-
loop Dynamic Simulator

Recommended Standard 485 for Serial Communications
Secure Digital

Software Development Kit

Switched-Mode Power Supply

Spacecraft Robotics Laboratory

Space Station Remote Manipulator System

Space Transportation System

Toolset for Orbital Robotics®

Universal Serial Bus

XV



U2D2 USB to Dynamixel Interface
VDC Volts Direct Current
WiFi Wireless Fidelity

Xvi



ACKNOWLEDGMENTS

For my late grandfather, Clyde Allan Dalton. You always pushed me to learn the
most and be the best I could be. Memories of your humor during times of challenge carried

me through this program. This is for you.

This study would not have been possible without the constant support of the
NPS Spacecraft Robotics Laboratory team. Guidance from Professors Marcello
Romano and Jennifer Hudson has been instrumental in developing this design and its
operating concept. Their expertise was critical in framing a research topic that was
simultaneously relevant, challenging, and interesting. Consistent mentorship and
motivation from Dr. Stephen Kwok-Choon pushed me to solve problems unlike

anything I previously tackled. His assistance has been, in a word, indispensable.

I would like to thank my mother and father, whose countless nights of toil and work
brought me to this point. Their labors of love and words of encouragement reminded me
to work hard and aim high. Their investments in books and building blocks sparked my

curiosity, which continues to this day.

My thanks also go to Deborah Hefner Hansen. Her optimism and care have paved
the way for me and many of her other students to pursue higher education and strive to

serve the community.

Last, I want to give my thanks to God. His daily care has kept me moving forward
when studies and demands have worn down my stamina. What constitutes a miracle
is certainly up for debate these days, but completing this course of study during such

an unusual year is more than sufficient for me.

behold, thou hast made the heaven and the earth by thy great power and
stretched out arm, and there is nothing too hard for thee

—Jeremiah 32:17, KJV

xvii



THIS PAGE INTENTIONALLY LEFT BLANK

Xviil



I. INTRODUCTION

A. ORBITAL ROBOTIC MANIPULATION SYSTEMS

Robotic manipulators, commonly referred to as “robotic arms” are utilized for a
variety of engineering applications. Using sophisticated principles of mathematical
modeling, these systems often provide greater precision and versatility than human

operators can provide.

Terrestrial applications include industrial assembly, diagnostic inspection, and
robotic-assisted medical applications. In these applications, robotic manipulators move
heavy loads, assemble complex structures, and perform complex diagnostic and repair
operations. These operations are often performed with a human in-the-loop but may also
be performed autonomously. By developing operating models based on mathematical
principles, these systems revolutionized a variety of fields ranging from assembly line-
based manufacturing to precision robotic surgical systems [1]—[3]. Traditional practices of
manufacturing, assembly, and medicine were directly limited by the locomotive precision
and sensory input of human operators. Robotic methods allow for analytical calculation of

solution trajectories limited by the characteristics of mechanical and electrical components.

Similar principles apply to the performance of servicing and assembly tasks on-
orbit [4]. The orbital environment poses unique challenges for assembling and servicing
sophisticated, expensive assets. Moving in constant freefall at great speed necessitates high
precision as small errors may result in mission failure or loss of life. As in terrestrial
applications, many of these complex orbital operations have historically been performed

directly by human operators [5].

Missions to the Solar Maximum satellite [6], Hubble Space Telescope (HST) [7],
and International Space Station (ISS) [8] serve as examples of orbital servicing. These
missions utilized robotic manipulator capabilities to grapple to and capture satellite
payloads in order to allow human crews to service and assemble various structures. A

conceptual rendering of the grapple maneuver required to service Solar Maximum is given



in Figure 1. During STS-41C, astronaut crews were required to grapple to Solar Maximum

in order to replace damaged attitude control and sensor equipment.

Figure 1. Solar Maximum Servicing Mission Artist’s Concept. Source: [6]

For the HST servicing missions, use of a robotic manipulator aboard the Space
Shuttle was essential to grapple to HST and allow crews to repair the spacecraft during
extravehicular activities. One image of such a maneuver is given in Figure 2. This image
depicts the use of the Space Shuttle robotic arm to deploy HST. Later, technical issues with
spherical aberration in HST optics would require a series of five servicing missions.
Throughout these missions, astronaut crews would perform numerous complex
extravehicular activities to install instruments required to correct faults in Hubble’s initial

implementation [7].



Source: [7]

In each of these cases, direct human servicing was required to operate robotic
equipment to intervene by correcting errors and installing new equipment. These
operations were vital to extend the capabilities of expensive space hardware whose useful

life would have otherwise expired.

Human-in-the-loop robotic manipulators have been used extensively throughout
the ISS program. Assembly was completed through the operation of the Mobile Servicing
System (MSS) and Space Station Remote Manipulator System (SSRMS) to manipulate and
install components ferried to the Station by the Orbiter [8]. These systems were also used
to maneuver astronauts about the Station during extravehicular activities in order to access
various components in need of servicing. The manipulators used for the Space Shuttle and
ISS programs are highly capable but have been produced at costs far exceeding the budget
of most missions. If sufficiently capable robotic systems could be developed to inspect and
service host spacecraft without a human crew present, far greater numbers of missions
could potentially be serviced. This would extend mission lifetimes of more assets and

further decrease overall cost of providing capability for extended periods of time. Several

3



system concepts have been developed to evaluate techniques required to perform servicing
tasks without the presence of a human crew. These include large systems such as: the
Mission Extension Vehicle 1 (MEV-1) [9], DARPA Phoenix project [10], and CubeSat
form factor concepts such as the United States Naval Academy’s RSat spacecraft [11] and
ISAR robotic testbed [12]. Remotely operated spacecraft have already been shown to
possess capability to perform servicing tasks for real satellites in orbital environments. One
such example is the successful rendezvous and docking of MEV-1 to the Intelsat-901

spacecraft as depicted in Figure 3 [9].

Figure 3.  MEV-1 Grappling to IS-901 Satellite at GEO. Source: [9]

In order to extend mission life or assemble structural components, a manipulator
with sufficiently complex workspace to allow a suitable range of orientations to inspect
host spacecraft and reach relevant portions of host spacecraft topography to enable
completion of required tasks [13]. Many spacecraft contain sensitive optics or large
deployable surfaces that could be affected by exhaust from conventional maneuvering
thrusters. Servicing spacecraft could protect these sensitive systems by maneuvering
through the actuation of a robotic manipulator system instead of using thrusters. To explore
the utility of such systems and develop the maneuvering techniques required for these

operations, the Naval Postgraduate School (NPS) Spacecraft Robotics Laboratory (SRL)
4



has developed PERSEUS, a self-contained robotic manipulator used to augment the

capability of existing Floating Spacecraft Simulators (FSS).

B. MANEUVER SIMULATION AND TESTING
1. Planar Floating Spacecraft Simulator

Simulation of orbital robotic operations is made difficult by the gravitational
acceleration incident to a terrestrial laboratory setting. Nevertheless, maneuvers relevant
to spacecraft servicing can be simulated through multiple methods in both terrestrial
environments and in freefall conditions. NPS-SRL currently operates a suite of FSS units
which simulate maneuvers in two axes through use of an air bearing table system known
as the Proximity Operation of Spacecraft Experimental Hardware-in-the-loop Dynamic

Simulator (POSEIDYN) [14].

True to its name, the FSS operates similarly to a generic on-orbit spacecraft with
mass, size, and inertia comparable to a large CubeSat or other small satellite. FSS attitude
determination is provided by use of a suite of Vicon® IR tracking cameras. Reaction wheels
and compressed air thrusters can provide attitude control, with thrusters that can be used
for propelling the unit. These thrusters and air bearing surfaces are supplied with
compressed air from a composite gas cylinder and series of regulators. The entire system
is controlled wirelessly from a test conductor terminal [14]. Position tracking and data
collection are performed using a series of reflective infrared tags and a suite of tracking
cameras. The FSS frame and structure are composed of additively manufactured
polycarbonate, with access ports and mounting holes integrated into the frame for the
addition of various test articles used for specific maneuvers. These are used to attach
docking probes and cones, robotic manipulators, grapple fixtures, and other devices used

to simulate various types of spacecraft and tasks relevant to servicing.

The POSEIDYN testbed provides FSS units with a 13° x 13 area to maneuver and
conduct simulated operations. Its thickness is uniform across the area with a tolerance of
+0.0005.” This surface is bounded by metal rails to which a variety of surfaces and objects
may be mounted for FSS interaction. POSEIDYN is enclosed in a room with reflectivity

and lighting conditions controlled through a combination of paint and light sources that

5



simulate conditions on-orbit. For visualization purposes, an image of an FSS unit with

reaction wheel assembly on the POSEIDYN table is included for the reader in Figure 4.

Figure 4.

When multiple FSS units are operated on the POSEIDYN table with associated
tracking and lighting, a variety of complex maneuvers and operations may be simulated
and modeled. These include proximity operations of small spacecraft such as grappling and
docking. Images of a grappling maneuver and FSS docking hardware are provided in

Figure 5.



Spacecraft Robotics Laboratory
Naval Postgraduate School

Figure 5. Spacecraft Proximity Operations Simulation with FSS. Source: [15]

Figure 5 represents the use of FSS to model rendezvous, grapple, and capture of a
host spacecraft rotating at a constant rate. The capturing spacecraft FSS is augmented with
a large planar robotic manipulator and reaction wheels for attitude control. Additional
views provided from onboard cameras on both FSS units are also included to illustrate

relative positioning of the spacecraft.

FSS units are also used to model rendezvous and docking of spacecraft using
conventional probe-and-cone docking fixtures. Figure 6 depicts two FSS in close proximity
on the NPS POSEIDYN table, with vehicles possessing the male and female docking
features, respectively. These features and hardware can be used to model the final approach

as spacecraft prepare for and complete the process of docking.



Figure 6. FSS Units Configured for Rendezvous and Docking Test

Previous experiments simulating orbital robotic maneuvers with FSS have
demonstrated capability relevant to spacecraft servicing [16]. However, these have
required servicing spacecraft to have similar size, weight, and power to host systems. Novel
techniques with greater operational flexibility and lower size, weight, and power are
necessary to develop viable concepts for spacecraft maneuver and servicing in a cost-

effective manner.

2. Astrobee Microgravity Testing

Manipulator performance and spacecraft motion characteristics can also be
evaluated using existing hardware on-orbit. NASA’s Astrobee free-flyer possesses a
robotic manipulator with two revolute joints and a gripper. It also possesses a suite of
sensors including cameras, inertial measurement units, and a LIDAR to determine its own
position and motion. An example block diagram of Astrobee’s robotic and sensing systems

is depicted in Figure 7 [17].



Sensors Processing

Docking Perching
Camera Camera

Tasking

Inertial

N
Measuremen 5
2 < Medium
t Unit High Level Low Level
Level
Processor Processor
Processor
J/

Image, Tx

Localization
Position Estimation

Actuation Planning

Evan Ackerman/IEEE Spectrum

Figure 7.  Astrobee Robotic System Block Diagram. Adapted from [17], [18]

Due to its robotic capability and ability to provide localization data, it is a prime
candidate for testing and evaluation of the kinematics of actuator-driven spacecraft
locomotion. Astrobee may be used to explore how a future servicing spacecraft could
utilize a robotic manipulator for maneuvering in close proximity. In order to investigate
these maneuvers using Astrobee, NPS-SRL and the NASA Ames Intelligent Robotics
Group are conducting a campaign of experiments known as Astrobatics. The aim of
Astrobatics experiments is to characterize the kinematics of manipulator-driven spacecraft
locomotion in microgravity [19]. These experiments consisted of commanding Astrobee to
perform a series of “self-toss” maneuvers by actuating the two revolute joints of the
Astrobee end-effector to toss itself from a perched position on an ISS handrail. After
actuating the revolute joints of the Astrobee manipulator, the gripper was commanded to
open, allowing Astrobee to float through the laboratory spaces on an unconstrained
trajectory. Examples of “self-toss” and perching maneuvers are depicted in Figures 8 and
9.



B m

-

P e e 5

- o

Figure 8.  Astrobee Performing Self-Toss Maneuver in International Space
Station Kibo Module. Source: [20]

Figure 8 shows two Astrobee robots, both perched on an ISS handrail using
robotic manipulators. By actuating the distal and proximal joints of the manipulator,
Astrobee can toss itself about the laboratory module, allowing sensing hardware to track

the resulting motion in space. A close view of a perched Astrobee is shown in Figure 9.

10



Figure 9. Astrobee Perched on ISS Handrail for Self-Toss. Source: [21]

These experiments gave insight into the general mechanics of maneuvering one
spacecraft about a host spacecraft using a robotic manipulator instead of propellant.
However, limitations of the joint space of the Astrobee manipulator require the
development of an additional manipulator with greater workspace. By incrementing toward
a manipulator with postural redundancy, a potentially wider range of candidate maneuvers
could be evaluated. Future iterations of spacecraft robotic manipulators could one day be

implemented on Astrobee or similar systems.

A system should be developed in a manner that could simulate maneuvers
representative of those required by an unmanned servicing spacecraft operating in a
microgravity environment. Previous systems have simulated microgravity in three axes,
but it is not yet practical to test robotic proximity operations in this manner [22]. However,
a series of planar maneuvers can be performed using a precision-machined granite air
bearing table and a simulated spacecraft capable of operating in a two-axis simulated
microgravity environment.

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



II. SYSTEM OVERVIEW

A. SUMMARY

PERSEUS is a self-contained, four degree-of-freedom, three-link manipulator
system designed to provide maneuver and grapple capability to Floating Spacecraft
Simulator (FSS) units in the Naval Postgraduate School Spacecraft Robotics Laboratory.
It is composed of a manipulator chain, end-effector, wireless communication and control
equipment, and a structural housing enclosure. This system operates independently of FSS
control techniques and does not require any sensor input or commanding from its host FSS.
Instead, it acts as a self-contained unit and can simply be fastened to the FSS structure.
Once attached, PERSEUS can then be operated wirelessly to execute joint-space trajectory
commands to perform maneuvers. A description of the various components of the
PERSEUS system will follow. A graphical rendering of the system assembly is given in
Figure 10.

Figure 10. PERSEUS Manipulator Assembly Rendering

13



B. CAPABILITY

PERSEUS is used to augment a single FSS unit to provide capability for robotic
manipulation and actuator-driven locomotion. Its manipulator chain provides a maximum
reach of approximately forty centimeters outward the mounting surface and the ability to
reach the port and starboard sides of the host unit. While a detailed description of the
workspace and operating postures of the manipulator chain will be detailed later, it is
important to note that the three revolute joints possessed by PERSEUS allow for redundant

posturing within the manipulator workspace.

C. END-EFFECTOR

The PERSEUS end-effector is designed to interface with handrails mounted to the
edge of the POSEIDYN table and with grapple fixtures placed on other relevant objects
used on the testbed. A notable feature of this design is its ability to be rapidly reconfigured
from horizontal to vertical orientations between experiments, requiring only the removal
and replacement of four bolts. Left and right portions of the gripper deflect translationally
through a slot track that ensures both halves are aligned properly. Opening and closing of
the end-effector is accomplished by means of two bent-arm linkages attached to the
actuator horn disk and gripper sections. Renderings of these components are included in
Appendix A. The inner contact surfaces of the gripper are coated with Velcro® to reduce
slipping on contact with rails and other objects. The outward opening of the gripper is
slightly wider than the rear portion of the contact surface to allow smooth release after a

continuous push from the manipulator.

D. ACTUATION

The manipulator chain is driven by a series of four identical Dynamixel XH430-
W210-R actuators. These actuators combine motor, controller, and encoder in isolated
units that receive power and command signals from a single connection. The actuators in
the chain are connected serially off a single line to reduce cable routing through the
structure. Motor commands from the user are converted from C++ code to the actuator
communication protocol by an interface board that also provides power to the manipulator

chain. Actuators in this system are configured for position control so the individual
14



manipulator postures may be commanded directly without requiring more complex torque

control calculation on the part of the user.

E. INTEGRATION

The system is mated with the host FSS unit by fastening six bolts to the FSS
mounting ring and PERSEUS electronics box inner mounting holes. Arduino® and
interface boards are attached to the electronics box lid using standoffs and bolts. Actuators
are secured to brackets present on the electronics box lid, link frames, and end-effector
mounting frame by bolting into surface holes present on the actuator cases. Proximal and
distal portions of the end-effector mounting frame are secured together by bolts, with the
end-effector track mounting to the face of the fourth actuator in the chain. Bent links are
attached to the fourth actuator horn disks and the proximal side of left and right gripper
halves after being fed into the track. System input power is fed through the skeletonized
frame of the electronics box. Hardline access to the Arduino® and interface boards is
available through these same openings. Actuator cabling is fed through the lid of the
electronics box and down the manipulator chain. Slack in cables is restrained with Velcro®

to prevent tangling or pinching as the structure rotates.

15



THIS PAGE INTENTIONALLY LEFT BLANK

16



III. MATHEMATICAL MODEL DEVELOPMENT

A. FRAMES OF REFERENCE

Each joint in the manipulator chain retains a native reference frame which describes
motion relative to each actuator. The reference frames of these joints are related to
neighboring reference frames by means of transformation matrices which account for
differences in angular orientation in space. A reference frame can be related to any other
reference frame within same three-dimensional space by matrix multiplication by such a

transformation matrix as shown in Figure 11 [23].

Frame 0O Frame 1

Figure 11. Graphical Representation of a Matrix Transformation

These transformation matrices are constructed by combining the spatial rotations
required when moving sequentially from one joint frame to the next. Through this method,
it is possible to relate end-effector position in its native frame to the manipulator base
frame. This enables the determination of joint orientations required to place an end-effector
in a defined base frame position when executing a command or completing a task. Due to
the dimensionality of matrices constructed by this method, these transformations can be
determined by means of matrix multiplication. An example of such a transformation matrix

described by Siciliano et al. is given in Equation 1 [23].

17



a =80 )
o 1

where R? represents an angular rotation about an axis required to transition from Frame 0

to Frame 1, and 0 represents the position vector relating position of the origin of Frame

1 to that of Frame 0. Similar matrices can be constructed for successive transformations

to the final frame in the manipulator chain. These are then multiplied in series, resulting

in a complete transformation from the base frame to the end-effector frame.

6
q= [92 2)
63
A2(§) = A3(q1)A7(92)A3(q3) A%, 3)
b fig(@) 32(q) ag(q@) pe(@)
A:(q) = : : : :
0 0 0 1
where 71, §,and @ are the unit vectors defining the local reference frame of the 4)

end-effector and p is the position vector relating the origin of the end-effector

frame to the origin of the base frame for the manipulator chain.

B. DENAVIT-HARTENBERG (D-H) PARAMETERS

Design and construction of the physical structure of a manipulator system are
meaningless without a mathematical model of system operation. Such a model would allow
for the analytical calculation of the different states for each joint required to perform
maneuvers and thereby allow a controller to command those states. Denavit and Hartenberg
developed a method of cataloguing the relevant parameters required to relate the positions
of each joint and end-effector in a manipulator chain to a common frame of reference [23]—

[26]. These D-H parameters account for the length of each link, the type and limits of joint

18



actuation, and the orientation of the reference frame of each joint. The D-H parameters for

the PERSEUS manipulator are given in Table 1.

Table 1.  Denavit-Hartenberg Parameters for PERSEUS Manipulator

Link Ii o d; 0;

1 0.lm 0 0 01

2 0.lm 0 0 02

3 0.1lm 0 0 03
7-[*

EE 0.1m 0, 5 - 0,

*Reconfiguration of the End-Effector (EE) from vertical to horizontal orientations introduces a
reference frame offset angle of %

**End-Effector actuator angular deflection affects only the opening and closing of the gripper.

Using the D-H parameters for a given system, the transformation matrix for the
end-effector of an actual manipulator may be determined. This allows the computation of
joint orientations that allow access to specific areas within the manipulator workspace
based on the geometry of the arm and the location of the target. A simple graphical
representation of a three-link planar manipulator chain is provided in Figure 12. Note that
for a planar manipulator only § and @ are meaningful parameters, as 7 is equal to the zero
vector. The planar nature of the PERSEUS manipulator results in these local frames

containing meaningful information only in x- and y-directions.

19



Figure 12. Graphical Representation of Three-Link Planar Manipulator

C. END-EFFECTOR POSITION

As described previously, the PERSEUS manipulator joints only deflect
rotationally, with a range of motion from — % to % radians. Since PERSEUS operates only
in one plane, the rotational axes of each joint are always aligned in parallel fashion. This
results in a condition where the position of the end-effector is a function of only the
constant length of each link and the angular orientation of each actuator in the chain. As
such, the position of the end-effector in both the X- and Y-directions is given by the

following equations:

Xgg = ll COS(Ql) + l2 COS(91 + 02) + l3 COS(Hl + 92 + 93)
+ lgg cos(6, + 6, + 653) ®)

yEE = ll Sln(al) + lz Slﬂ(@l + 62) + l3 Sll’l(@l + 02 + 93)
+ lgg sin(0, + 0, + 63) (6)

20



where [; corresponds to the length of each link in the manipulator chain and 6; represents
the angular orientation of each actuator at a given time. Joint orientations were limited
according to constraints resulting from physical design of the links in the manipulator

chain.

D. WORKSPACE

Given the parameters and equations listed previously, it is then possible to
determine all possible positions of the end-effector by mapping the workspace of the
manipulator according to possible joint angle commands. Using Equations 5 and 6,
possible end-effector positions were calculated by iterating each joint angle with an angular
resolution of 0.15 radians and accounting for keep-out zones resulting from physical
system geometry. This workspace was developed using a technique described by [27] and

is depicted in Figure 13.

0.4

Te )
W2 Tey, v
ERNE) ‘3:3:3:3:3:.’:."::}:!:;'::”
A1) '
RN A

Pog, "es. %
% 'u,.r,",-d,--‘

PERSEUS
Electronics Box

Y (m)

Floating
Spacecraft
Simulator
Body

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
X (m)

Figure 13. PERSEUS Manipulator Workspace. Adapted from [27]

21



THIS PAGE INTENTIONALLY LEFT BLANK

22



IV. KINEMATIC SIMULATION USING TORO

A. OVERVIEW

Representative predictions of system motion during maneuvers performed on an
FSS using PERSEUS were desired in order to appropriately evaluate performance during
physical system testing. These were obtained by using the Toolset for Orbital Robotics®
(TORO) [28]. This software takes into account various rigid multibody system parameters
including size, mass, inertia, and degrees of freedom to develop equations of motion to
describe system motion. Actual system parameters are then fed into these equations of
motion to develop trajectories for each body state and its respective first time-derivative.
In this method, it is possible to simulate total body motion resulting from the actuation of
one or more joints in a multibody system. By applying size, mass, and inertia data for
PERSEUS and FSS units, it is possible to develop predictions as to system behavior during

maneuvers evaluated in this study.

B. SCENARIO PARAMETERS

The scenario modeled in TORO® is the use of PERSEUS to perform a planar push
maneuver, where the three revolute joints are actuated in such a manner that the end-
effector translates outward from the spacecraft body in a straight line normal to the face to
which the manipulator is mounted. The maneuver is simulated using the parameters listed
in Tables 2 and 3. Degrees of freedom for TORO® simulation listed in Table 3 include
position in X- and Y-directions, rotation of the plane, and joint angles for each revolute
joint in the manipulator chain. First derivatives with respect to time of these parameters are
also plotted. Moments of inertia for bodies about their respective principal axes normal to
the plane were calculated using a MATLAB® function implementing Equation 7 over a

rectilinear body with length, width, and mass as inputs.

. ™)
Iror = Z m;1;
i

23



Table 2. TORO Simulation Physical Parameters

Body Length (m)  Mass (kg)  Moment of Inertia (kg-m?)
Base 0.27 10.18 0.2538
Link 1 0.1 0.14 4.06 x 107*
Link 2 0.1 0.14 4.06 x 1074
Link 3 0.2 0.14 4.06 x 107*
End Mass 0.27 9.88 0.2527

While the masses and moments of inertia for Link 3 and the End Mass are listed
separately, for the simulated scenario they are assumed to be one rigid body since an ideal
push maneuver would require contact between the two segments to be aligned. Since the
angular displacement between these two bodies should be zero, they are instead treated as
one rigid body for purposes of estimation. Simulation consisted of segmenting a push
maneuver into two phases: a push phase and a coast phase. During the push phase, the
spacecraft body acts as the manipulator base with a large mass mounted to the end of the
final link. Based on defined initial angular states and velocities given in Table 3, a solution
is propagated based on parameters similar to testing performed using the actual
manipulator. The final state of this push phase is then fed into the propagator as the initial
state of a coast phase where no actuation takes place and where no external forces are

present.

TORO® operates by first symbolically computing equations of motion that describe
the whole system. These equation of motion parameters are then utilized by a separated
script to propagate solution trajectories using a fourth- or fifth-order Runge-Kutta method
via the MATLAB® function ode45 [29]. For the sake of brevity, these equations of motion

are included as part of Appendix D.

24



Table 3.  Degrees of Freedom and State Parameters for TORO Simulation

Degree of Parameter Initial Imtlal T%me Intermediate Value
Freedom Value Derivative
1 X 0 0 Xy
2 Y 0 0 Yr
Plane
3 Rotation 0 0 Pn
4 0 z z 0
! 4 8 -
5 0 z T 0
2 2 4 -
6 6 T T 0
3 4 8 —

25



THIS PAGE INTENTIONALLY LEFT BLANK

26



V.  MANIPULATOR CONTROL

A. JOINT-SPACE POSITION CONTROL

The PERSEUS manipulator is designed for direct control of the orientation of each
actuator. Rather than commanding torques or angular velocities for each actuator, the user
is able to provide commands for specific manipulator postures by varying the angular
position of each revolute joint. This in turn allows for complex maneuvers and posture
trajectories to be represented as the combination of a series of scripted, segmented postures.
Given an appropriate mathematical model of the manipulator and an understanding of the
workspace, maneuvers may be designed to allow the end-effector to reach a target position
or follow a defined path. The transition from initial to final end-effector states is then
modeled by selecting a number of points along that path and solving for appropriate joint
angles based on Equations 5 and 6. This method is used to produce commands for two
maneuvers: a so-called “Push Maneuver” where PERSEUS uses its actuators to cause a
linear positional deflection of the host FSS unit normal to a perching rail, and a “Swing
Maneuver” where the actuators are used to perform a self-toss by rotating away from a
perching rail. Related methods of developing methods have been previously developed by

Saftbom [30].

B. PUSH MANEUVER

Effective use of a robotic manipulator for locomotion about a host spacecraft
requires capability to induce translational relative motion. This maneuver will evaluate the
kinematic behavior of an FSS unit attempting to distance itself from a perched position.
Since the PERSEUS manipulator is capable of placing its end-effector in a given target
position using multiple postures, it is possible to move the end-effector outward from the
spacecraft body while following a straight line. According to Newton’s Third Law, if this
line of action crosses the center of mass of the system, the spacecraft will move away from
its initial position along the line of action in the opposite direction. In this manner, the

robotic manipulator may be used to allow a servicing spacecraft to push itself away from a

27



surface without inducing a moment about the body. An example of this type of maneuver

is given in Figure 14.

Test Rail Test Rail

PERSEUS

Floating
Spacecraft pem—
Simulator
Floating
W s LU
POSEIDYN POSEIDYN
Table Surface Table Surface
A B

Figure 14. PERSEUS Push Maneuver Concept

C. SWING MANEUVER

Similar to translational motion requirements, servicing systems must be capable of
changing angular orientation relative to the host spacecraft. This may be accomplished by
perching the manipulator on a rail and actuating the joints to induce a rotation rate. By
releasing the end-effector from the rail after this rotation has been established, the motion
induced by the manipulator will then cause the FSS to separate from the rail with some
rotational velocity. This will allow the FSS to swing from one perched orientation to
another position atop the POSEIDYN table and arrive with a different angular orientation.

Such a maneuver is depicted in Figure 15.

28



Test Rail

Test Rail

Test Rail

PERSEUS

Floating
Spacecraft
Simulator

POSEIDYN
Table Surface

POSEIDYN

Table Surface

POSEIDYN
Table Surface

Figure 15.

PERSEUS Swing Maneuver Concept

29




THIS PAGE INTENTIONALLY LEFT BLANK

30



VI. DETAILED SYSTEM DESIGN

A. ACTUATORS
1. Description

The PERSEUS manipulator is driven by a series of four identical Dynamixel
XH430-W210-R actuators produced by Robotis. These actuators, shown in Figure 16,
contain a motor, driver, encoder, and gearing within a closed case and are capable of
operating via position, velocity, or current (torque) control. Data and 12VDC input power
are provided by a four-pin Japan Solderless Terminal (JST) connector. The presence of two
JST ports on each case allows multiple actuators to be connected in series for complex

manipulator chains.

— P

i PN - U+
— FiMZ - WD
— P - G

sk ]

Figure 16. Dynamixel X-Series Actuators. Source:[31]

Mechanical design of the actuators provides for continuous, smooth angular

deflection with little backlash. Numerous tapped holes are located about the exterior of the

31



case to allow for fastening to bases or manipulator link components. It is also possible to
pass cables through the interior of the case in order to reduce cable tangling or pinching

during operation. Detailed actuator specifications are included in Appendix B.

B. STRUCTURE
1. Description

PERSEUS is composed of two main structures: an electronics box and the
manipulator chain. The electronics box is used for interfacing with a host FSS, securing
essential power handling and computing hardware, and allowing access to data and power
ports. This enables quick system installation and reprogramming as needed. The
manipulator chain is composed of three links, with each link being formed by fastening an
open hinge bracket to mounting holes on actuator cases. An end-effector assembly is
formed by mounting a grooved track along the front face of the fourth actuator. Two gripper
halves are inserted into this track and connected to the motor horn by means of two bent

linkages. These linkages allow the gripper to open and close along the track by driving the

fourth actuator between angles of 0 and% . This end-effector assembly is mounted to a two-

piece interface structure that allows the end-effector to be reconfigured from vertical to
horizontal orientation by removing a replacing three bolts. An expanded view of the system

assembly is provided in Figure 17.

32



Figure 17. PERSEUS Expanded View

Together, these components form a manipulator with a 40 centimeter reach whose
control and power handling electronics fit within a 14 X 14 x 5 centimeter box. As
PERSEUS does not rely on the host FSS for control or data handling capability, this can

be installed and removed quickly by a single test conductor.

2. Limitations

Structural design of the PERSEUS manipulator has the following limitations:

J Radial loading on actuator horns shall not exceed 40 N
o Axial loading along motor shafts shall not exceed 20 N
J To prevent cable disconnection, actuator positions must not exceed
I I
3 <6< 5

In order to ensure operability of the manipulator, structural loads under 1 G were
calculated and compared to published torque specifications. According to the
manufacturer, each actuator is capable of developing a maximum of 2.6 N-m of torque.
Masses of link and end-effector assemblies were measured and catalogued for calculation.

Loads due to structural mass and orientation were determined using the following equation:

33



3
TMax = Z Mstrigoli )
i=0

where torque was represented as the sum of the products of mass, distance from anchor,
and gravitational acceleration for each link. These data are shown in Table 4. For added
safety margin, link masses were assumed to be lumped masses at the maximum physical

distance from the mounting point of the manipulator chain.

Table 4. PERSEUS Manipulator Loading Under 1 G

Link Mass Distance from Anchor Load
1 140g 0.lm 0.137N
2 140g 0.2m 0.275N
3 140g 0.4m 0.549N

Total 420g - 0.961N

Using this method, it was determined that loads due to the mass of the structure
under standard gravity were 37.0% of the published manufacturer maximum torque
specification for the zeroth actuator in the manipulator chain. This indicates that the
actuators are capable of moving the links of the manipulator throughout its workspace. It
is also observed that inertial loading is well within the 40 N and 20 N radial and axial load

limitations.

C. FASTENING

To withstand loads resulting from structural mass and manipulator operation,
components are fastened with bolts. Mounting holes in polycarbonate components were
designed such that bolts would self-tap during fastening. The following fasteners were used

in the assembly:

e M2 x 8mm hex socket cap bolts = Actuator horns, hinge brackets, gripper

linkages

34



e M2.5 x 6mm hex socket cap bolts = Actuator case mounting to structure

e M2.5 x 10mm hex socket cap bolts 2 Manipulator mounting to electronics

box
e M4 x 10mm hex socket cap bolts = FSS interface fastening

e Nylon spacers = as needed to ensure level seating

D. ELECTRICAL DESIGN AND NETWORKING

PERSEUS operates using Commercial-Off-The-Shelf (COTS) components and

open-source software. The following electrical components are used in the system:

o Arduino® Due Microcontroller (x1)

. Arduino® WiFi Shield (x1)

o 5VDC 1A Barrel Jack Power Source (x1)

o Dynamixel U2D2 Power Hub Board (x1)

o Dynamixel XH430-V210-R Actuator (x4)

o 12VDC 5A Barrel Jack Power Source (x1)

o Dynamixel RS-485 4-Pin Robot Cable, 180mm (x5)

A diagram of power and data connections is provided in Figure 18.

35



WIFI Shield §

Dynamixel XH-430-210R (x4)
RS-485 Serial Line

Figure 18. Wiring Diagram. Adapted from [31]-[34]

An Arduino® Due board serves as the system onboard computer. This
microcontroller reads actuator position trajectory data from a text file stored on an SD card
and transmits commands to the manipulator chain. Pairing with an Arduino® WiFi shield
allows new actuator position trajectories to be loaded and saved to the SD card over-the-
air in order to execute various maneuvers. Trajectories may also be loaded to the system
over a direct connection to a master control terminal. These commands are passed over
micro-USB by the onboard computer to a U2D2 communications interface unit that
converts integer position values into commands recognized by the computing hardware

built into each actuator.

The Power Hub Board provides necessary power handling to convert 12VDC input
power into the proper conditions for actuator control. This delivers commands and receives
feedback in the form of actuator state and error data. Connections between the U2D2
communications unit and each successive actuator are made using Dynamixel RS-485 4-

pin Robot Cables.

Actuators are connected in such a manner that commands, feedback, and power

may be sent and received over a single line of RS-485 cables. Signals are processed using

36



onboard control hardware that allows for position, velocity, current, and other
specifications to be assigned using an internal Electrically Erasable Programmable Read-
Only Memory (EEPROM). An exhaustive explanation of actuator internal computational
capability is not provided here. However, it is sufficient to note that actuator control is
performed by reading and writing specified commands to EEPROM addresses

corresponding to desired operating parameters.

PERSEUS is designed such that it is compatible with multiple power inputs options.
5VDC power for the onboard computer may be provided over a barrel jack during benchtop
testing or using a battery for testing on POSEIDYN. 12VDC power may be provided by
either a Molex connector, barrel jack, or Switched-Mode-Power-Supply (SMPS) DC
connector. This allows PERSEUS actuators to be powered by tapping FSS onboard power

or by implementing a separate battery pack.

The system is designed to be operated over-the-air by transmitting trajectory text
files to the onboard computer via WiFi over a local network. In this case, a master test
computer opens a communications link with the onboard computer via the WiFi shield,
reads command values, and delivers them to the U2D2 communications unit in order to
drive the actuators. This may also be performed using a direct cable connection, so long as

sufficient slack is present in the cable to prevent interference with motion during testing.

A network diagram representing the flow of data during testing is provided in Figure 19.

U2D2 Comms

(T)

Local Network

Router ﬁ

il

Master Test Arduino WiFi
Computer Shield

/ERSEUS

Manipulator

Figure 19. PERSEUS Testing System Network. Adapted from [32]-[34]

37



E. PROGRAMMING AND OPERATION

System maneuver execution must be performed safely and accurately. Namely, the
manipulator chain actuators must be driven in such a manner that the end-effector reaches
a target without either impacting its host FSS unit or exceeding angles and angular
velocities that could cause cable disconnection or damage to the various link segments and
structural components. Further, the system must perform specified operations using an
onboard computer with limited memory. In order to ensure safe, accurate operation while
minimizing demands on onboard computing hardware, system control is performed in a
staged manner. This approach utilizes a higher-memory terminal to complete collision
avoidance calculations and limit checks with streamlined, low-risk trajectories sent to
onboard hardware for execution. The following subsections will describe the segments of

this operating scheme.

1. Trajectory Generation and Verification

Joint space trajectories are generated from user-defined parameters passed to a
MATLAB® script. This script queries input regarding the desired number of joint space
state vectors, angles for the initial and final state of each joint, and desired end-effector
behavior during the maneuver. From these inputs, the program generates a vector of
orientation angles for each joint and converts these angles to integer values corresponding
to a position count that can be interpreted by each actuator. These joint space orientation
vectors are generated such that each actuator will drive linearly from initial to final state at

a constant overall angular velocity.

A series of simple geometric calculations are then performed to determine whether
or not the generated joint space trajectories are likely to cause a collision with the body of
the host FSS unit or impact the manipulator physical structure. Due to the planar nature of
manipulator design, this is performed in a straightforward manner by combining the
physical size of each segment and the desired orientation. If any of the rigid bodies within
the manipulator chain are deemed likely to cause a collision, an error message is displayed
to the user indicating the suspected cause of a potential collision. In such cases, the program

will not convert the trajectory to a format readable by the actuation program.

38



In like manner to collision avoidance calculations, trajectories are checked by the
generating program to ensure that upper and lower bounds for angular orientation are
upheld. To ensure the motion of the various links would not cause a cable to become
dislodged, these limits were set at £90 degrees, with zero degrees occupying the north
position opposite the manufacturer label on the front face of each actuator. If a given
candidate trajectory exceeds angular position bounds, an error message is displayed to the

user identifying the joint or joints predicted to violate the limit.

In addition to these checks, the trajectory generation program determines the
behavior of the end-effector throughout a maneuver. The program receives input on
whether the end-effector will begin in the open or closed position, if it transitions from its
initial open or closed state, and at what point during a maneuver this transition should
occur. This is done by selecting a value between zero and one to indicate whether the end-
effector opens or closes toward the beginning or end of an actuation sequence. A user may
therefore use the program to generate a program where the end-effector grapples to an

object or releases itself from a perched position, and at what time it does so.

If a candidate trajectory passes all checks, the trajectory is saved as a text file of
user-defined name. This text file is then ready to be passed to computing hardware that
may read the file and drive the actuator to the indicated states. A workflow diagram
demonstrating the processes occurring in the generation of a maneuver control trajectory

is given in Figure 20. A published version of the script is found in Appendix C.

39



[ smar |
\_ .
‘ Text
|
f ] L4

,."f Display Syntax Format ."‘I
’ Do Any Joint Angles
Exceed Limils \
.«—'—\
. - Y

Request Initial
and Final Joint / f
States N | Display Error |
o Message |

i f !
v { /
. N
3 Convert Joint J

Angles to Body

Request Initial Positions from |-
EE State System
{Open/Closed) Geometry

o Link ar Body Positions

Contact Own S/C e
B B
Conditional CI:?;;IEH
Logic Check No Cancel
No L v
I )
|J ||l
P | Safe Trajectory | -
v . / Message | f /
/ / / Collision Polential Esror [
Generate Linear Request L / / Message /
Position Control .a———  Open/Close # i !
Veclors Timing e .
) -
L —_— Save 10 .txt
) File
Apply Motor — _,
Encoder Step T
Conversion
F Ve
-actor ) \\

. J | Terminate  |ee
\
./

Figure 20. Trajectory Generation Program Workflow

2. Actuation Program

After a trajectory of joint angles required for a given maneuver is generated and
saved as a text file it is then passed to the manipulator onboard computer for actuation. For
the PERSEUS system, this program operates using a modified C++ version of the
Dynamixel Software Development Kit (SDK) [35]. Actuation is performed by reading
from and writing to an EEPROM present in each actuator case. Present state data from
actuators may be read and stored in order to determine error. Commands may be sent to
actuators by building and writing packets to EEPROM addresses corresponding to each

desired parameter. Each actuator must be assigned an ID value to allow synchronous serial

40



command and feedback. With ID set for each actuator in the chain, data may be sent and

received along a single RS-485 line.

Upon execution, the actuation program assigns parameters for byte length of
commands and defines addresses to ensure commands are written to the proper EEPROM
address. The trajectory test file is then read and converted from character format to integer
values. Since C++ does not allow direct querying of integer values of array elements,
trajectories are converted to a single vector of usable format. The program then proceeds
by confirming an established communication link to each actuator, enabling motor torque,
and reading the present state of each actuator. After receiving user authorization to proceed,
joint space angular position vectors are written to addresses corresponding to goal
positions. Present positions are then read and compared to goal position via a checksum
for a defined error threshold. Once a given position within the overall maneuver trajectory
set is achieved within checksum tolerance the next angular position vector is written to the
goal position addresses. Actuation proceeds until the checksum condition is met, and the
solution iteratively marches through the loaded trajectory until completion of the
maneuver. Once the final angular position command is satisfied, the program terminates.
A user may also terminate the program at any time in case of error. It is important to note
that this position control configuration does not implement variation in angular velocity.
Future versions of this actuation program may implement direct control of angular velocity

or motor current corresponding to desired torque.

To illustrate the principles of operation behind the actuation program, a simplified
flowchart is provided for the reader in Figure 21. A published version of this script is given

in Appendix F.

41



(o)
\ l J

.f' ]

|'II Display Startup Message Il|l

'

Open COM Port
Sdew/teyUsE*

1

-

Check Actuster #
and I

| —

Read "test.bxt’ file
to numeric array

."
; 'III Display JII
He * on l.hh'l'_‘h"lll'

L J

Does Actuatar Count =

lengthitest.txt{calumns)?

Push Position

Does Count = Elernents of
P o g
maxisizeltest txt))? tast(- Count) to
Actuators
" 4

Yes

f—
,IIIIJ|J|:'I|a_'.f “TEST 'If { Y
. l-'ill COMPLETE" ko n‘ll—b-: Terminate Test |

,I'I terminal Il.' "\h _/l'l

I

Figure 21. Actuation Program Flowchart

As depicted in Figure 21, the actuation program is designed to proceed iteratively

through a candidate trajectory vector by reading elements corresponding to the number of

42



position command vectors desired. This streamlined approach reduces the demands on the

onboard computer.

3. Operations and Testing

Testing and performance evaluation requires coordination of various hardware.
Required systems include a master test computer, PERSEUS onboard computer, a data
collection and recording terminal, and a localization broadcast computer. For testing to be

completed appropriately, these systems are operated in the following manner:

o FSS hardware checks are performed to ensure batteries are charged,

pneumatic cylinders are full, regulators and nozzles are functioning

properly.

o PERSEUS hardware is checked to ensure fasteners are tight, ample power

is supplied, and actuators move freely without abnormal resistance.

J Vicon® IR tracking system target resolution is confirmed.

o FSS localization data is broadcast appropriately to the data collection
computer.

J Desired trajectories are loaded to the onboard computer or tethered test

computer, as appropriate.

Once hardware checks are completed, test conductors proceed to establish
communication link with PERSEUS via WiFi or USB. Once the trajectory text file is
accessible to the actuation program, the actuation program proceeds to execute the
commanded trajectory. Vicon® tracking cameras record position and orientation of various
targets marked using IR-reflective tags. These data are broadcast over the air to a data
collection computer which receives and records raw data via Simulink. All experimental

data are recorded raw, and data processing is performed after the fact.

43



A simplified flowchart representative of the testing process is provided in Figure

22.

3

START
Query Actuator State
Condition
R1, Ra, R3, EE
h i
Print Master COM
Status Print State Vector to Begin Tracking
Master COM System Data Collect

‘Wi-Fi Connection .
Request Protocol Initialize N=1

Print Completion
Message

Read State(:,N)
Close Wi-Fi

Connection

Is PERSEUS Link
Established

Actuator Push
State(:,N) ¥
: : Conclude Trackin:
Print Connection 5
i
== length(State)
Push Program OTA
to Arduine DUE END
via WiFi Shield

Figure 22. Testing Procedure Workflow

44



VII. EXPERIMENTATION

A. INTEGRATION
1. Component Preparation

Primary structural components were constructed of additively manufactured
polycarbonate produced via fused deposition modeling. Prior to assembly, these parts were
inspected to ensure minimal warping occurred during manufacturing. Support material was
removed and bearing surfaces were sanded to allow smooth fit. Gripper components were
sanded to reduce friction across bearing surfaces of the end-effector track. Through holes
for electrical component mounting were measured to meet specifications from engineering

drawings.

Actuators were visually inspected with no damage found. Idler horns on front and
back faces of each actuator were installed to allow attachment of structural hinge brackets.
A back idler horn was not installed on the end-effector joint to allow proper fitting within
combined proximal and distal end-effector cradle assembly. The root actuator case was

removed to allow through-case wire routing and replaced.

2. Wire Routing

Printed circuit boards for power handling, communications interface, and the
onboard computer were mounted to the inside face of the electronics box lid using
standoffs. This allowed easy access to benchtop power and USB connection for preliminary
testing. For FSS testing, communications and power were routed through ports on the side

and top of the PERSEUS electronics box.

3. Assembly
System assembly was conducted in the following manner:
1. Root actuator cables were attached via through-case mounting.

2. The root actuator was fastened to the electronics box lid using M2.5 bolts

fed through the root cradle into holes on the bottom and sides of the case.
45



6.

First and second links were constructed by bolting second and third

actuators to hinge brackets.

The end-effector cradle was assembled by fixing proximal and distal
halves using spacers and bolts. The fourth actuator was then fixed to this

cradle by bolting the side of the case.

The end-effector was constructed by joining each half of the gripper to a
motor head bent linkage using M2 bolts and nylon spacers. The track was
then mounted to the fourth actuator using two M2.5 bolts placed in holes
adjacent to the front motor idler horn. Linkage assemblies were then
installed by sliding each half of the gripper down the track and fastening
the linkage to the idler horn.

Electronics were then installed on the rear face of the electronics box lid.

Photographs of the complete system assembly are given in Figure 23.

4.

Figure 23. PERSEUS Manipulator Assembly

FSS Installation

In order to conduct testing aboard FSS units on the POSEIDYN table, the

electronics box was first mated to the FSS interface ring and fastened using M4 bolts.
Additional bolts were used to fasten FSS structural frame components to reduce structural
vibration during manipulator operation. The PERSEUS manipulator chain was then

fastened to the FSS by bolting the electronics box lid tightly using M3 bolts. Power and

46



data lines were passed through ports on the sides of the box. Images of this integration are
given in Figure 24. Future iterations of this design will draw power directly from the FSS
EPS and pass data over wireless connection, but for a proof-of-concept power was supplied
from an external 12V source via a barrel jack and communications supported by USB

cable.

Figure 24. PERSEUS Installation on FSS for Testing

B. BENCH TESTING

To verify proper system operation prior to testing, a series of tests were performed
in two primary configurations. Hardware-in-the-loop maneuver simulation was performed
by connecting actuators to a host computer and loading a series of test maneuver
trajectories. These were then read and executed by the system to ensure anomalous
behaviors were not present and that maneuvers with risk of potential damage were not
performed. Once proper actuator operation was confirmed, the manipulator chain was
assembled, and electrical components connected to a test conductor computer. The
manipulator was then fastened to a large steel plate using clamps to reduce likelihood of

motor torque rotating the mounting platform. This was done in such a manner that the
47



components were protected from electrical contact with the mounting platform. A series of
maneuvers were then performed to simulate FSS operations, with performance recorded

using a video camera. This bench testing configuration is shown in Figure 25.

Figure 25. Bench Testing Configuration

C. PUSH MANEUVER
1. Setup

PERSEUS was integrated into a host FSS unit via the method described previously.
The IR tracking system was activated, and identification of various system rigid bodies
was confirmed. Due to close proximity of mounting positions for IR tracking tags, the
manipulator chain could only be resolved into two rigid bodies attached to a rigid body
representing the electronics box. Tests were conducted by ensuring all relevant vehicles
were at rest and aligned for proper manipulator contact. Since power and data were
provided using external cables, test conductors fed additional cable to the system during
motion to provide slack and reduce external torque introduced by the tethered

configuration.

48



2. Push Off Fixed Rail

To represent a planar spacecraft hopping maneuver from a body of much greater
size and mass, a PERSEUS-equipped FSS was placed adjacent to a rail along the perimeter
of the POSEIDYN table. The manipulator was then retracted toward the spacecraft body
and the end-effector aligned with the rail. Once contact between the end-effector and the
rail was confirmed, test conductors released the FSS unit to float freely on the table. After
localization of IR-tagged rigid bodies and a countdown, a command was sent via the U2D2
communications board to execute the maneuver. While in motion, test conductors observed
the FSS unit visually and paid out additional cable. Upon reaching the end of the cable,
data collection was halted, and results were recorded. Post-processing of data was
performed using MATLAB® to characterize translational and rotational motion of the

body.

3. Push Off Static Simulated Spacecraft

The next series of push maneuver experiments replaced a fixed perimeter rail with
a static, unpowered FSS unit in the interior area of the POSEIDYN table. Similar
procedures were followed for setting initial orientations as for tests involving a fixed rail.
However, rather than inducing motion from the perimeter toward the center of the table,
the PERSEUS-equipped FSS was oriented to move parallel to the outer rail at
approximately one-half meter inside the perimeter. This allowed test conductors greater
control of cables and allowed longer distance duration maneuvers to be conducted for the
same cable length while minimizing torque resulting from the cable. Similar to fixed rail
experiments, post-processing was performed to show motion throughout the actuation and

coast phases of the maneuver.

4. Push Off Floating Spacecraft Simulator

Lastly, tests were conducted to examine motion following a push maneuver
conducted between two powered FSS units. By powering both units and providing air to
the hover pads, these tests aimed to more accurately model system dynamics during an
actual maneuver in microgravity. These tests were conducted similarly to fixed rail and

static spacecraft tests. However, additional care was taken to ensure initial relative
49



translational and rotation motion of both units was near-zero. One test conductor followed
the PERSEUS-equipped FSS, while another stood ready to receive the passive unit and
prevent it from contacting perimeter rail structures or other hardware. Overall body motion
data were processed and plotted as in previous experiments. These data were also used to
determine any motion of the center of mass of the combined system to elucidate the motion
influence of external torques resulting from non-zero friction along the table bearing

surface, air drag acting on each body, and the use of cables for power and data connections.

50



VIII. RESULTS AND DISCUSSION

A. BENCH TESTING
1. Single Motor Actuation

Actuation of a single motor over RS-485 was successful. Position control
configuration enabled the user to define orientations in terms of motor position counts. The
program then continued to build and send packets for target position. As long as the
actuator exceeded the ten-count position error threshold, the motor continued to drive.

Once this was completed, additional states could be commanded in like manner.

2. Multi-Actuator Synchronous Actuation

Similar to single motor actuation, position trajectories corresponding to multiple
motors were read and converted to command state data packets. These were sent
synchronously to actuators, and no appreciable time delay was observed between actuation
of motors in the chain. However, it was important to note that each actuator stopped
rotating after the error threshold was met for each iterative step of the maneuver and started
again from zero angular velocity at the next step. This indicated that spin-up and spin-down
torques would be generated at the beginning and end of each step. While this effect was
not pronounced when actuators were not coupled to manipulator links, the torque

developed by each motor was sufficient to cause jitter after assembly.

3. Physical Arm Bench Testing

After successful completion of hardware-in-the-loop simulation, the manipulator
chain was assembled for bench testing as described previously. Trajectories were then
generated in MATLAB® for the push and swing maneuvers described in Manipulator
Control. These were then read by the actuation program and executed iteratively as
described previously. Parameters for each of these maneuvers, including initial and final

state and end-effector behavior, are given in Table 5.

51



Table 5.  Maneuver Trajectory State Parameters

Maneuver State
Type  Command b1 Oif 920 O2p O3 O3
Push 11 45° 0° -90° 0° 45° 0°
Swing 11 0° 30° 0° 30° 0° 30°

During bench testing, manipulator motion was recorded on video and post-
processed to determine timing of various phases of operation. Still images were captured
from video and are used here in Figure 26 to depict motion throughout the maneuver. It is
important to note that the end-effector opened 0.17 seconds after the maneuver began,

simulating release from a perched position on a rail.

Figure 26. Push Maneuver Bench Test

A similar technique was used to demonstrate manipulator motion during a
simulated swing maneuver. The manipulator was capable of driving each revolute joint
actuator from a neutral position to a 30° orientation in 1.5 seconds. This is shown in Figure
27.

52



Figure 27. Swing Maneuver Bench Test

It is important to note that bench testing of the physical manipulator showed a more
pronounced effect in terms of spin-up and spin-down torques due to iterative position
stepping through the commanded vectors for each trajectory. This is due to the torque at
each actuator head being transmitted through the manipulator links, causing a greater
moment arm within the system for each link. This was partially mitigated by the low
backlash characteristics of each actuator, with final resulting motion following the defined

path appropriately but with noticeable jitter.

This jitter is not compatible with a system intended for use in an orbital
environment as this effect would be more pronounced in microgravity. Future versions of

this manipulator should provide a control solution that allows each trajectory waypoint to
53



be passed smoothly along a given path to reduce the number of times each motor spins up
and down. However, for the purpose of demonstrating the concept of position control for
planar maneuvers in a two-axis simulated microgravity environment, this may be deemed

a sufficient first step.

B. POSEIDYN FSS PUSH MANEUVER TESTING
1. Physical System Data

Results of simulated spacecraft testing of the push maneuver were collected and
processed according to methods described previously. Due to constraints on power and
pressurized air systems aboard FSS units, a limited number of test runs could be conducted.
Of these, multiple runs exhibited poor localization and loss of target tracking. Data from
such runs were discarded. Experimental results were tabulated and plotted to demonstrate
system behavior. These data are included in Table 6 and Figures 28 through 33. Vehicle 1
refers to the PERSEUS-equipped FSS, while Vehicle 2 refers to the passive FSS used
during testing. For rail experiments, a second vehicle was not used. For dynamic push
maneuver experiments involving multiple FSS units, motion of the center of mass of the
combined two-FSS system was also recorded. Body rotations for FSS units in dynamic

push experiments were not plotted.

As shown in Table 6, loss of localization and system complications resulted in two
runs of each maneuver type that produced usable data. These issues may be resolved by
improving the experimental setup by performing all commanding over-the-air, allowing
the interior of the POSEIDYN table to be used and thereby avoiding the boundaries of the
tracking system area of regard. However, the data collected still represent actual motion

produced by means of actuating a robotic manipulator.

54



Table 6.  Push Maneuver Experimental Results

Manewver VIAX  VIAY  V2AX V2AY CoMAX™ CoMay™ Body
Type (m) (m) (m) (m) (m) (m) Rotation )
(deg)

FixedRaill o083 0300 NA NA  NA N/A 312 250
Run 1

FixedRail =199 0466 NA A N/A N/A 61.2 147
Run 2

SWicF3S 0661 0152 NA  NA N/A N/A 3184 210
Run 1

SWicFSS o668 0153  NA  NA N/A N/A 3473 25.0
Run 2
Floating

FsSRun] 0436 0136 0446 0087 0.043 0.055 NA 210
Floating

ESSRuny 0111 0130 0496 0075 0.054 0.024 N/A  17.0

*Vehicle 2 motion was only relevant for cases with two floating spacecraft.

**Center of mass motion measurements were used to evaluate experiments where the system center
of mass should have remained stationary.

For push maneuvers performed from a static fixed rail, total displacements of 0.31
and 0.51 meters were achieved as shown in Figures 28 and 29. Maneuvers conducted by
pushing off a static simulated spacecraft are given in Figures 30 and 31, with total
displacements of 0.68 and 0.69 meters. Dynamic push maneuvers between two FSS units
produced displacements of 0.17 and 0.46 meters as depicted in Figure 32 and 33. Large
deviations between results of maneuvers were observed to result primarily from
misalignments in initial mounting, where the PERSEUS-equipped FSS began to rotate
between being released by the test conductor and the beginning of the actuation sequence.
Tests runs which produced greater displacements were observed to result from initial
release conditions where almost no body rotation was present, and where the end-effector
was flush and normal to the surface off of which the push maneuver would be conducted.
The presence of nonzero external torques resulting from cable mounting appeared to
influence motion as well. This was most apparent in dynamic push maneuvers, where the

system center of mass was shown to move 5.9 and 7.0 centimeters during the two runs.

55



This was most likely the result of friction across the table surface and torque resulting from
cabling. Although the POSEIDYN table was cleaned prior to testing, these tests were not
performed in clean room conditions. It is likely that debris was present on the surface.
While test conductors also attempted to provide sufficient cable slack during maneuvers,
this may have allowed translational and angular momentum exchange along the line as the

cable may have pushed or pulled the FSS.

Assuming that center of mass displacement occurred as the result of constant
acceleration from initial position at zero velocity to the final position, Newton’s Second
Law would predict an external force acting on the system between roughly 40 to 70

millinewtons.

Lo
o
T

PERSEUS
= Electronics Box

Link 1

—_— Link 2

Rail

¥ Distance from Origin, M
[

25 . . . . . . . .
16 1.8 2 22 24 26 28 3 32
X Distance from Origin, M

Figure 28. Push Maneuver from Fixed Rail, First Run

56



b
@

[
=2}

&
e

L
[~

Y Distance from Origin, M
(A

28 PERSEUS
Electronics Box
96 — Link 1
—_— Link 2
24t == Rail
22r
3 . . . . .
1.5 2 25 3 35

X Distance from QOrigin, M

Figure 29. Push Maneuver from Fixed Rail, Second Run

4.5

O =
PERSEUS
= Electronics Box

=
T

—_ Link 1

— Link 2

Y Distance from Origin, M
[
(%]

w
T

2.5 . . : . :
1 1.5 2 2.5 3 3.5
X Distance from Origin, M

Figure 30. Push Maneuver from Static Simulated Spacecraft, First Run

57



45
KEY
D FSS
3 cioconcs Box
= 4 — Link 1
E; —_ Link 2
=
=) - Rail
-
O
§
& 35T
@ - B
g —=—q\}-
(3]
@ —
]
- 3l
25 | i ] \ ;
1.6 2 25 3 3.5

X Distance from Origin, M

Figure 31. Push Maneuver from Static Simulated Spacecraft, Second Run

4.5
KEY
|:| FSS
5 eidcuoncs sox
= 4r — Link 1
.. —_ Link 2
=
:in - Rail
Q
§
= 357
[ub]
Q
c
]
iz
(=]
- sl
a5 b L L L L
1 1.5 2 2.5 3

X Distance from Origin, M

Figure 32. Push Maneuver Between Two Floating Spacecraft, First Run

58



Perseus Push Maneuver from Floating Spacecraft

451
KEY
D FSS
D eiccirones Box
— Link 1
= e —_ Link 2
& -~ ke
=)
o
5
E 35T — =
(] -
O
c
bL)
4]
)
- 3t
25 ’ 5
1 1.5 2 25 3

X Distance from Origin, M

Figure 33. Push Maneuver Between Two Floating Spacecraft, Second Run

2. TORO Simulation

Using the segmented approach described previously, predicted trajectories were
generated for the various parameters relating to the system degrees of freedom. TORO®
simulation of a push maneuver from a static simulated spacecraft resulted in the following
data listed in Table 7. Center of mass motion during these maneuvers, along with joint

rotation data are given in Figures 34 through 37.

59



Table 7. TORO Simulation of Push Maneuver from Static Simulated
Spacecraft

Maneuver CoM AX CoMAY R1, Rl R2, R2f R3, R3f AT

Phase (m) (m)  (deg) (deg) (deg) (deg) (deg) (deg) (s)
Actuation”  0.062 0.016 45 447 90 131 45 972 20
Coast”™* 0.168 0.008 0 0 0 0 0 0 180
Total 0.230 0.024 - - - - - - 200

*Joint rotation model for actuation phase did not take backlash characteristics into account.

**For the coast phase, joint angles of zero were assumed for each joint with zero angular velocity.

50.32 § -003
8 g
'5 0.3 S -0.035}
> >
028} =
c c -0.04t
o o
'E 0.26 | E
T & -0.045}
)] w
@ 0.24 | @
= 2 005}
©0.22 o
(7] (7]
€ € 0055}
& o2t 8
‘E ‘E -0.06}
§ 0.18 § :
g8 g
0 0.16 : 0 -0.065 -
1 2 0 1 2
Tls] T[s]

Figure 34. Simulated System Displacement During Manipulator Actuation

60



0.2

08

0.2

08

93, qd3

08

g6, qdé

0.2

*Q1, Q2: Body motion in X and Y (m). Q3: Rotation of the plane (rad). Q4-Q6: Orientation
of joints R1, R2, and R3 (rad).

Figure 35.

Figure 36. Simulated System Displacement During Coast

08

Simulated Motion of System Degrees of Freedom During
Manipulator Actuation”

o
B =]

(X

Spacecraft Center of Mass Position in X-Direction

(=]

Spacecraft Center of Mass Position in Y-Direction

[h*]
o



t[s]

0 4
T2 .
g 0
CE>

t[s]

g6, qdé
abhbon
N
|

o
~
-
S
@
2
o
2
2
>

tis]

*Q1, Q2: Body motion in X and Y (m). Q3: Rotation of the plane (rad). Q4-Q6: Orientation
of joints R1, R2, and R3 (rad).

Figure 37. Simulated Motion of Degrees of Freedom During Coast”

As shown in Figures 34-37, TORO® Simulation predicted total spacecraft motion
of 6.4 centimeters during the actuation of the manipulator chain and 16.8 centimeters
during the coast phase for a total of 23.2 centimeters during the maneuver. Motion during
actuation was roughly comparable to the 5.9-centimeter change in end-effector distance
from the root during actuation. However, overall predicted system motion was significantly
lower than the experimental results which demonstrated system motion of nearly 70

centimeters.

This discrepancy is likely the result of differences between the operating
assumptions of motion in TORO® when compared to the motion constraints of the physical
manipulator design. TORO® software assumes smooth motion of joints from initial to final
state, as numerical propagation techniques do not perform well with non-smooth
conditions. PERSEUS manipulator control caused each actuator to begin and conclude

each segment of maneuver trajectories with zero velocity. This corresponded to the

62



introduction of a spin-up or spin-down torque no less than eleven times throughout each
push maneuver. Manipulator motion is caused entirely by torque produced at the motor
shaft being transmitted through the body of the system. Therefore, it is not unreasonable to
suspect that the production of additional torque at each iterative step along a maneuver
trajectory resulted in greater motion than predicted. Since cable torque was shown to cause
a displacement roughly six or seven centimeters greater than ideal conditions, actual system
motion resulting from manipulator actuation for a push maneuver from a static simulated

spacecraft was likely closer to 60 centimeters.

63



THIS PAGE INTENTIONALLY LEFT BLANK

64



IX. CONCLUSION

A. SYSTEM DESIGN

PERSEUS represented a successful first step toward the implementation of
sophisticated robotic manipulation systems aboard NPS FSS units. The combination of
additively manufactured structure, actuation system with documented open-source
software, and use of self-contained communications and onboard computing hardware
allowed PERSEUS to be rapidly integrated aboard existing systems without requiring
modifications. Postural redundancy within a planar workspace also allowed the actual
demonstration of maneuvers that could not be performed by previous systems with fewer
degrees of freedom. The structure was observed to withstand both inertial loads and loads

imparted to the system through robotic actuation.

B. CONCEPT OF OPERATIONS

The self-contained PERSEUS design architecture allowed the manipulator to be
installed by a single technician in approximately fifteen minutes without requiring any
modifications to the host FSS unit. Operation of the data collection system and both FSS
units was carried out with the direct involvement of only two test conductors.
Modifications to the operational procedures for PERSEUS will not likely decrease the
number of test conductors required to perform experiments. However, process
improvements that eliminate the need for physical cable tethering to the system and provide
a means of controlling the system via wireless means could significantly improve the
quality of experimental data. By streamlining the process of uploading programs, the need
to recompile and execute for each arm maneuver could be eliminated, allowing test
conductors to improve initial state controls to prevent the introduction of external forces

and torques to the system.

C. PERFORMANCE

In its first implementation, PERSEUS was able to successfully perform a series of

push maneuvers starting from a variety of initial conditions. This is considered successful.

65



However, a system fault experienced when attempting swing maneuver testing aboard
POSEIDYN precluded the operational data collection of such maneuvers. Correction of
this issue is of high importance and includes both improving the EPS interface between
PERSEUS and FSS onboard power, as well as tightening of tolerances for opening and
closing the end-effector to prevent crossing threshold values between minimum and

maximum position indices for the end-effector actuator.

Overall, the system was observed to follow defined trajectories successfully with
minimal deviation from user-defined end-effector position constraints. These small
deviations resulted primarily as a result of the small, but nonzero backlash characteristics
of each actuator combined with the angular momentum of rotating manipulator segments
of significant length. These may be reduced by adjusting the default angular velocity used
by the control software, and by eliminating unnecessary structural mass to reduce moments
of inertia. [terative joint space position control introduced significant vibratory motion to
the manipulator chain. This is due primarily to the segmented zero velocity requirement

resulting from sequential position control.

D. SUMMARY

PERSEUS was capable of performing a maneuver similar to that which could be
used to separate two spacecraft from a docked position. This holds promise for examining
future methods of performing proximity operations and servicing tasks using purely
electromechanical means. The combination of software and hardware developed as part of
the PERSEUS system provide an open framework for the iterative improvement and

refinement of such techniques.

E. FUTURE WORK

Multiple elements of system design should be refined in future versions to provide
users greater flexibility, performance, and ease of use. These include enhanced access to
power switches and communications interface ports, implementation of the OTA
programming concept, and a restructuring of manipulator control code in order to reduce
spin-up and spin-down torques resulting from current techniques used to segment

maneuvers. Future iterations of PERSEUS could reduce this loading by introducing a state-
66



space control method allowing for non-zero angular velocity for the various actuators in
between actuation steps. Vibratory motion during actuation could be reduced by reducing
unnecessary component mass. Operational processes may be improved to allow more
precise control of initial conditions by the same number of test conductors as used in this
iteration. Tolerances for end-effector motion should be adjusted to prevent potential
damage or misalignment that could result from crossing from motor position 0 to motor
position 4095. Adjustments to trajectory generation software could also be used to account
for these issues. By improving upon the existing design in these areas, PERSEUS could
provide additional capability and perform a wider variety of proximity operations robotic

maneuvers accurately.

67



THIS PAGE INTENTIONALLY LEFT BLANK

68



APPENDIX A. PERSEUS CAD DESIGN

EE SR 2 2 2 2 **OO ZHmZ.ﬂW*** EEE L2222 T

-Electronics Box (x1)

-Electronics Box Lid (x1)

-Hinge Bracket (x3)

-Dynhamixel XH-430-210R (x4)
-End Effector Proximal Plate (x1)
-End Effector Distal Plate (x1)

-Grip (x2)

-End Effector Track (x1)

-Span Link (x2)

-Dynamixel X4P Cable, 180mm (x4)

9

e

UNLESS OTHERWISE SPECIFIED: FINISH:
1M MILLIMETERS

HAME SIGHATURE

DESURR AND

DO HOT SCALE DRAWING

IAN HARDY, ENS, USN

MATERIAL: DWG NO.
POLYCARBONATE
WEIGHT: SCALEN:Z

3

PERSEUS

System Assembly

ASSEM

SHEET1 OF 1

REVISIOM

A4

A

69



2 ]

—= 40,00 —o—

—e 25,00 Le—
ALL SHAMFERS

pl
SYMIMETR I 333mm — [ 500

25 .50

35,50

ALL HELES THEU
\\ln_cﬁ_.; Z.5mm
|_|‘m oo 1Zx14mm SPASING

150,00 .

geoo oo

S5.00 4500

: B
.24
5408 NHIHI O'FH = OF

"..—l.,.“-ﬂsﬂ-n.- OO HO' A FCAA-THE INEDH
130,00 = i e
. IH

l&H HARDY, EHMS, LEH

rIE

o R B [Ty

EFET

PERSEUS

Electronics Box Lid
™ .\z“__.M_.,_\n}iGz}: ﬁi.mDH_u_O_ZD._._mH._. ne A
& A 4

3 7

70



3.00

10.52

/( 2080 £0.00

ALL HOLES THREU

—tte 24 .82

{4

800 5 g

i

38.00

rd

H0.00

P

Uk 1S3 O TRMEWEr SPRCFID - kL DMUEE skD
Dl s bs ART b wl e ITTES NETAE ShakF
SUETACF ke rmars
FOIMEak O

IKFa g

AMGUISE

BaWT S0 kA TUET oarr

e

CHET
AFFN T

wIG

o s AT

WG ke

3

OO kOrSCalFOkaWhke EMvEQk

AN HARDY, EMNG, USM

FIr

DWG kO

SCAIFII

EndEff Track

PERSEUS

EEFrame

2

SHAT 1Or

Ad



s

o

S
I

] .
L_m.ooﬁ +
e

A saoe o = 31.00 —»]

fe— 3000 —a]

SO0 —ae] -

L 21.50

UKIFS3 OrkMEWEr SFMCrrm- Bk OMIUEE akD
Db MEEOES ART B w W TS | TR
SURTACE THER- roors
Li=10 R Tl

Ibrat &M HARDY, EME UsH

ARCUI AE-

= XL SIGHATURT oarr Fir T.... m m.m m Cm
EndEff Coupler

DO BGOF SCAIT DEAWKG =1

@50.00

Distcl Plate
e “Porvcarsonate | EEPlateDistal

A L A 1 9

72



16.00

R25.00

—={ 12,00 (=e—

32,50
@ 14.00

/A\| R1&.00

UHIESS QIHERYEE SFEC RED:
DMEREDHE ARE M MIIMEIERS
SURKACE HMEH:
IS ERANMCES:

IHEAR:

ARTUIAR:

A
DILNH
CHED
AFRD
[al=d
[y

HHEH:

SCHAIURE

— 1800 =
rO.EO)mmOz.Em

D W SCAIE DR FEVEDCH

A HARDY, EMS, USH

[y v

EEPlateProximal 2!

ICAIE

FPERSEUS
EndEff Coupler
Froximal Flote

SHEELN Ok

A



~=—55.00 =
~—5.00

= 130.00

R7.31

—= 3500 =

@ 65.00

130.00 107.50
20.78

o SO

45.00

R7.50
—=23.00=—

[

UNLESS OTHERWISE SPECIFIED: FINISH:
DIMENSIONS ARE IN MILLIMETERS
4 SURFACE FINISH:

TOLERANCES:

10.00 | unear:

P ANGULAR:
NAME SIGNATURE DATE
DRAWN
CHKD
APPV'D

MFG
QA MATERIAL:

WEIGHT:

4 3

DO NOT SCALE DRAWING REVISION M

ENS lan Hardy, USN

TILE:

PERSEUS ELECTRONICS
BOX

DWG NO.

A4

ElecBox2

SCALE:1:2 SHEET 1 OF 1

2 1

74



o o O 4
] F/ 2000
Nawawal k
5&.00 R13.00
L.oofxﬁl\\
/ \ R10.00

R4.00 I*.|

T 1808
i .
12.00
L
00 1500 *.
S .00
— 2300 e
A el 0. 00— B ethrviividudire W NETaE fhath B3 G 501 G ARG Ervi
* f \* :""_._..wu“_..._..q.m. LAk HARDY, EME USH
A1 *‘:ll._n_m_n_m_ L * — bawr SEkATUET oarr LU _Ummmmcm .
i = len End Effector Gripper
Qh_m,m_u WIEYY A5 * .__u._qn. AR LAl DWG kO
POLYCARBOMNATE O—n_—ﬁu

6 5 4 3 2 1

75



77.480

44

.00

— R1.00

ﬁJMbo

— |

.00

Py R12.50

OB .00

— 14,00

ﬁl.ﬁmbo

UHIMES QFPMPWEr SPICrrm . e ER
ORMHESORS ARTH RN ITIES
SUFTACTHER
TOIMEA kO

[l

ABGUIAE

Bawl SIG M ATURT

*‘w.oo

@2.00

1&.00

Ra
4

27 .88

el

ORUER akD
NEFAE kAR
mors

WATTEL .

POLYCARBOMATE

WG kT

3

e

SCall Il

DO BOFSCAITORA WG

lar HARDY, EMNS, USM

PERSEUS

EMv Bk

Structurdl Hinge Bracket

DWG kO

HingeBracket

SHAT Gl |

2

A

A

76



3.450
45

) |
\

-/

1\

1.74

UB IS QrRITWEr SPICIID - Bk LrueEE Ak D

U TR T R T oy 3 NEFAE Sha bR OO kOrsCAlTORaWED [ -11
SURTACI B ER: LT

raIMEsbCr

1hraE lar HARDY, EMS, USN

ABCUIAE

— .ﬁvm.m_u_ —— baWT SIG b A TURT barr L _U._mmmmcm

ENdEFf Drive Angle Link

APERT

o oa AR nWa ko

POLYCARBONATE w_UQS_LD_A

WS br- SCallsel SHITT 1af |

5 4 3 2 1

77



THIS PAGE INTENTIONALLY LEFT BLANK

78



APPENDIX B. DYNAMIXEL XH430-W210-R SPECIFICATIONS

MCU ARM CORTEX-M3 (72 [MHz], 32Bit)

Contactless absolute encoder (12Bit, 360 [*])

Position Sensor
Maker : ams(www.ams.com), Part No : AS5045

Motor Coreless(Maxon)

Baud Rate 9,600 [bps] ~ 4.5 [Mbps]
Control Algorithm PID control

Resolution 4096 [pulse/rev]
Backlash 15 [arcmin] (0.25 [°])

Current Control Mode

Velcoity Control Mode

Position Control Mode (0 ~ 360 [°])
Extended Position Control Mode (Multi-turn)
Current-based Position Control Mode

PWM Control Mode (Voltage Control Mode)

Operating Modes

Weight 82 [g]

Dimensions (W x Hx D) 28.5 x 46.5 x 34 [mm]

Gear Ratio 2126 :1

2.2 [N.m] (at 11.1 [V], 1.2 [A])
Stall Torque 2.5 [N.m] (at 12.0 [V], 1.3 [A])
3.1 [N.m] (at 14.8 [V], 1.5 [A])

46 [rev/min] (at 11.1 [V])
No Load Speed 50 [rev/min] (at 12.0 [V])
62 [rev/min] (at 14.8 [V])

Radial Load 40 [N] (10 [mm)] away from the horn)

Axial Load 20 [N]

Operating Temperature -5 ~ +80 [°C]

Input Voltage 10.0 ~ 14.8 [V] (Recommended : 12.0 [V])
Command Signal Digital Packet
RS485 / TTL Multidrop Bus

Physical Connection TTL Half Duplex Asynchronous Serial Communication with 8bit, 1stop, No Parity
RS485 Asynchronous Serial Communication with 8bit, 1stop, No Parity

ID 253 1D (0 ~ 252)

Feedback Position, Velocity, Current, Realtime tick, Trajectory, Temperature, Input Voltage, etc
Case Material Metal (Front, Middle), Engineering Plastic (Back)

Gear Material Full Metal Gear

Standby Current 40 [mA]

79



THIS PAGE INTENTIONALLY LEFT BLANK

80



APPENDIX C. TRAJECTORY GENERATION CODE

PERSEUStest2txt
Written by- ENS lan Hardy Naval Postgraduate School Spacecraft Robotics Laboratory JUNE 2021 "Ad Astra Per Aspera”
Creates Joint-Space Position Array for Test Maneuvers for PERSEUS Robotic Manipulator

Contents

Setup and Code Hygiene
User Input

Linear Joint-Space Trajcetory Generation

Angle to Position Conversion

Link and Body Positions

Angle Limit Check

Physical Position Check

= Append Each Row Trajectory with Rotation Direction Data
= Concatenate Trajectonies and Save to b File

Setup and Code Hygiene

ele
clear all
format compact

User Input
Requires exact adherence to requested input syntax from prompts. Dewiation from syntax will cause emor.

disp('CAUTION: Failure to follow requested input syntax will cause error')
StateVecs = input('Please Select Desired # of State Segments for Maneuver: (INT) ');

ROinitial = input('Please Enter Desired Initial RO Joint Angle in Degrees: ');
ROfinal = input(‘'Please Enter Desired Final RO Joint Angle in Degrees: ')j

Rlinitial = input('Please Enter Desired Initial Rl Joint Angle in Degrees:
Rlfinal = input('Please Enter Desired Final Rl Joint Angle in Degrees: ')j

RZinitial = input('Please Enter Desired Initial R2 Joint Angle in Degrees:
R2final = input('Please Enter Desired Final R2 Joint Angle in Degrees: ')j

EEinitial = (input(’'Please Enter Desired INITIAL End-Effector State (0/C): ','&"))s
EEchange = (input( 'Does End-Effector State Change? (YJ/N) ',"s"))s

EEigopen = stremp(EEinitial,'0");

EEcYes = stromp(EEchange, 'Y )

EEcHo = stremp(EEchange, 'H');

if EEcNo == 1
if EEisopen == 1
EEinitial = 0;
EEfinal = 0
EEtraj = linspace(EEinitial,EEfinal,StateVecs);

else
EEinitial = 1;
EEfinal = 1;
EEtraj = linepace(EEinitial ,EEfinal,StateVecs)j
end
else

if EEisopen == 1

81



EEfinal 1; ='c’
else EEfinal = 0; %'V’
end

EEtran = input('At What Point During the Maneuver Does EE open/close? (0.0 - 1.0) ')j;
TranPoint = round(EEtran * StateVecs);

EEtraj = NaN(1l,StateVecs);

EEtraj(TranPoint+l:end) = EEfinal;

EEtraj(l:TranPoint) = -EEfinal + 1;

CAUTION: Failure to follow requested input syntax will cause error

Error using input

Cannot call INPUT from EVALC.

Error in PERSEUStest2txt (line 22)

StateVecs = input('Please Select Desired # of State Segments for Maneuver: (INT) ');:

Linear Joint-Space Trajcetory Generation

All vectors are linearly-spaced to reduce mid-trajectory spinup/spindown torque. Transient torque condition still present at initial and final points

ROtraj = linspace{R0Oinitial,R0final,StateVecs);
Rltraj = linspace(Rlinitial,Rlfinal,StateVecs);
R2traj = linspace(R2initial,R2final,StateVecs);

Angle to Position Conversion

Uses conversion factor for Dynamixel XH-430 gearing

numPos = 4096;
f1lipl80 = fix(numPos/2);
PosperDeg = numPos / 3607

EEcloseAngle = 90; % 90 degree angle orientation closes EE. Subject to design change

ROtrajPos = fix((PosperDeg * ROtraj)+flipl80);
RltrajPos = fix((PosperDeg * Rltraj)+flipl80);
R2trajPos = fix((PosperDeg * R2traj)+flipl80);
EEtrajPos = fix(PosperDeg * EEtraj * EEcloseAngle) + 1;

c0 = ROtrajPos < 0;
el = RltrajPos < 0;
©2 = R2trajPos < 0;
cE = EEtrajPos < 0;

ROtrajPos(c0) = ROtrajPos(c0) + numPos;
RltrajPos(cl) = RltrajPos(cl) + numPos;
R2trajPos(c2) = R2trajPos(c2) + numPos;
EEtrajPos(cE) = EEtrajPos(cE) + numPos;

Link and Body Positions

Link 2 includes end-effector due to fixed geometry

RootOffsetX = 0;
RootOffset¥ = 0.04; %cm, offset of RO from mounting face

L0 = 0.1; % 1l0cm
L1l = 0.1; % 10cm
L2 = 0.2; % 20cm

LOposX = RootOffsetX + (L0 * sind(ROtraj));:

82



LOposY = RootOffsetY + (L0 * cosd(ROtraj));

LlposX = LOposX + (Ll * sind(ROtraj + Rltraj));
LlposY = LOposY + (L1 * cosd(ROtraj + Rltraj));

L2posX = LlposX + (L2 * sind(ROtraj + Rltraj + R2traj));
L2posY = LlposY + (L2 * cosd(ROtraj + Rltraj + R2traj));

Angle Limit Check
NOTE: Current limits are due to cable routing configuration imposed by Dynamixel XH-430 case design. Updates to routing may change these limits.

ROlimitLo = -90;
ROlimitH1 = 90;

R1limitLo = -90;
R11limitHi = 90;

R2limitLo = -90;
R21imitHi = 90;

if all(ROtraj >= ROlimitLo) && all(ROtraj <= ROlimitHi)
disp( 'R0 Joint Space Trajectory Appears Within Bounds')
elseif any(ROtraj < ROLimitLo)
disp( 'R0 CCW Rotation Exceeds Bound')
else
disp( 'R0 CW Rotation Exceeds Bound')
end

if all(Rltraj >= RllimitLo) && all(Rltraj <= R11imitHi)
disp( 'Rl Joint Space Trajectory Appears Within Bounds')
elseif any(Rltraj < R1llimitLo)
disp( 'Rl CCW Rotation Exceeds Bound')
else
disp( 'Rl CW Rotation Exceeds Bound')
end

if all(R2traj >= R21imitLo) && all(R2traj <= R21imitHi)
disp('R2 Joint Space Trajectory Appears Within Bounds')
elseif any(RZtraj < R2limitLo)
disp('R2 CCW Rotation Exceeds Bound')

else
disp('R2 CW Rotation Exceeds Bound')
end
disp(': JOINT ANGLE BOUNDS CHECK COMPLETE:

Physical Position Check

Compares positions of link bodies and end-effector to determine if a candidate trajectory would contact own spacecraft body

Body.x1limR = 0.15;

Body.xlimL = -0.15;

Body.ylimH1 = 0;

Body.ylimLo = -0.3;

disp(':: CHECKING LINK AND END-EFFECTOR POSITION FOR POTENTIAL COLLISION

posWarn = 0;

if any(LOposX <= Body.xlimR) && any(LOposX >= Body.xlimlL) && any(LOposY <= Body.ylimHi) && any(LOposY >= Body.ylimLo)
disp('WARNING: L0 COLLISION PREDICTED')
posWarn = posWarn + 1;
else disp('NO COLLISION PREDICTED FOR L0')

end

83



if any(LlposX <= Body.xlimR) && any(LlposX >= Body.xlimL) && any(LlposY <= Body.ylimHi)
disp('WARNING: L1 COLLISION PREDICTED')
posWarn = posWarn + 1;
else disp('NO COLLISION PREDICTED FOR L1')

end

1f any(L2posX <= Body.xlimR) && any(L2posX >= Body.xlimL) && any(L2posY <= Body.ylimH1)
disp( WARNING: END-EFFECTOR COLLISION PREDICTED')
posWarn = posWarn + 1;
else disp('NO COLLISION PREDICTED FOR END-EFFECTOR')

end

1f posWarn ==
disp('NO COLLTSTON PREDICTED WITH OWN S/C BODY')
end

disp(':: POTENTTIAL COLLISTON CHECK COMPLETE::

Append Each Row Trajectory with Rotation Direction Data

&& any(LlposY >=

&& any(L2posY >=

Body.ylimLo)

Body.ylimLo)

Clockwise equals zero per dynamixel software development kit *IMPORTANT NOTE: Index elements for final state command follow this pattern: 1-0-1-0.
This will cause the arm to "fold in" at the last rotation in order to reduce probability of collision Be sure to examine txt file carefully before execution of C++

script

RO0index = ones(size(R0traj));
Rlindex = zeros(size(Rltraj));
R2index = ones(size(R2traj));
EEindex = zeros(size(EEtraj))j

for indexcounter = 1:(StateVecs-1)
if (ROtraj(indexcounter+l) < ROtraj(indexcounter))
ROindex(indexcounter) = 1; % CCW rotation
else ROindex(indexcounter) = 0; % CW rotation
end

if (Rltraj(indexcounter+l) < Rltraj(indexcounter))
Rlindex(indexcounter) = 13 % CCW rotation

else Rlindex(indexcounter) = 0; % CW Rotation

end

if (R2traj(indexcounter+l) < RZtraj(indexcounter))
R2index(indexcounter) = 1; % CCW rotation
else R2index(indexcounter) = 0; % CW rotation

end

if (EEtraj(indexcounter+l) < EEtraj(indexcounter))
EEindex(indexcounter) = 1; % CCW rotation

else EEindex(indexcounter) = 0; % CW Rotation

end

Concatenate Trajectories and Save to .txt File

myFile = input("Select Trajectory File Name (e.g. 'Filel.txt'): ","s");

if posWarn ==0
disp('No Warnings Detected. Saving to column-oriented .txt file...')
testArray = cat(2,R0trajPos,RltrajPos,R2trajPos,EEtrajPos);

%testArray = cat(l,R0trajPos,R0index,RltrajPos,Rlindex,R2trajPos,R2index,EEtrajPos,EEindex);

writematrix(testArray,myFile, 'Delimiter’', 'space’)
disp(testArray)

else
disp('Trajectory Not Saved Due to Warning')

end

84



APPENDIX D. TORO EQUATIONS OF MOTION

T LTI e et
(C) Dr. Marcello Romano, 2020-08-19
This function ias part of TORO: a Tool Set for Orbital RObotica

an UNGROUNDED SYSETEM (UG), CONGISTING OF
2 Rigid-base Spacecraft and

&
%

&

% Writing the symbolic EoM for a Gyatem made of

&

&

% A Rigid-link Robotic Manipulator with two joints with rotary actuator: convention for coordinates IS as in figure
%

clear all

cle

tpublishing:
& publish(’'SCRIPT1 EOM UG Planar §C R2.m’,'pdf')

tdeclare t as a symbolic variable, it will be used for "time"
syma t real

TERRRLRRLRRERURLRLLRLRLRRRLERLRIRRRRLRLRRRRRRNRY
% USER INPUT BEGIN
TRRRRRRRRRRRRLR

SDECLARING SYMBOLIC VARIABLES USED

&

LWARNING: IMPORTANT, USE the following symbols in your inputs
%

%al,q?,...qn for generalized coordinates

qdl,qd?,...qdn for generalized velocities
&

%m0, ml,...mn-1 for the masses of the body

810, Il...In-1 for the inertia matrices at the Center of Mass of each link
tprojected in the Link coordinate systems

SUSER INPUT: Name of the system: an int dum function Gy .m is eventually created
SystemName = 'PERSEUS_SC_RS'

RUSER INPUT: %Declare symbolic variables needed in the input

RTHIS IS NEEDED FOR THE FUNCTION EoM20defun.m called later below

ayma 10 11 12 13 real tconstant parameters: length of the base side (considered of being of square shape) and link 1

ayms m0 ml m2 m3 real ¥ constant masses of base (m0) and link (ml)

syms ic0 icl ic2 ic3 real %principal moment of inertia of base (ic0) and link (icl) about the axis normal to the plane of motion
ayms X1 X2 X3 X4 X5 X6 real %Ceneralized NON-Conservative Forces associated te the coordinates

par = {10 11 12 13 m0 ml m2 m3 icO icl ic2 ic3}; %always use this order of listing the parameters

syma gl @2 g3 g4 a5 g6 real & gen. coordinates variable (function of time)
% x, v, plane, thel, the2, thel

SEXPLANATION OF THE COORDINATEG (see figure)

8let us call x0 and y0 the coordinates of \vect{r}_0 in \vectorbass{N}
tql=x0

tq2=y0

£qi=thetal

tqi=thetal

%g5=theta2

RUSER INPUT: number of degrees of freedom
§(it is assumed that the number of gensralized coordinates is sgual to the
tnumber of degress of freedom (minimal system rep: ), i.e. constrains among the gi are NOT

tsupported)

nundof=6;

tic

RUSER INPUT:

RDEVELOPING EXPRESSION FOR POSITION VECTOR COORDINATES OF the Center of Mass of each body IN INERTIAL BASE W

&position vector r0 in coordinates in vector base N
n_x0 = [glig2];

C_N_L0=[coa(q3),-3in(g3);ein(q3), cos(g3}]; %DCM from base (L0) to N

§Let us call rl the position vector of cl relative to the origin of the
tvector base N (ON),

8Jlcl: the position vector of cl relative to J1 in vector base LO
L0_Jlcl=11/2*[cos(gd); sin(ad)];

L0_c01=10/2#[1; 01;

EPosition vector rl=0cl in coordinates in N
Nrl = Nx0 + CN LO #(L0_c01+L0_Jlcl);

ttheta2=g5
L1 _J2¢2=12/2*[cosa(g5); sin(g5)];
Ll cl2=11/2#[1; 0);

tthetal=q5
©_L0_Ll= [cos(g4),-sin(g4);sin(gd), cos(gd)l;
C_N_L1=C_N_LO0*C_LO_L

85



N_r2 =N_rl+ c_N_L1 *(Ll_cl2+L1_d2e2);

$Attempting for the last link now:
12 _J3c3= 13/2%[coa(g6); sin(ab)l;
12 c23= 12/24[1; 0];

€ _L0_L2= [cos(q5),-sin(q5);sin(g5), cos(a5)];
C N L2= C_N_LO*C_L0_L2;

N_r3=N_r2+C_N_L2 *(L2_c23+L2_J3cl);

% Final Base (massive object at end of chain)
& L3_J4c4 = 14/2%[ces(g6); =in(ab)];

& L3_e3d = 13/2%(1; 01;

%

% C_LO_L3= [coa(q6),-sin(gb);sin(gb), cos(gb)]l;
§ C N L3= C N _LO*C LO_L3;

&

§ N_r4=N _r3+C N L3*(L3_c34+L3 Jdcd);

NPositionVectors={N_r0,N_rl, W_r2, N_r3};
% Now for final mass fixed at end

SUSER INFUT:

verbose = 1; %[either 0 or 1] if 1 is selected, the expression of K, V, and of H, C and Tau are printed on matlab screen.

RUSER INPUT:

SPOTENTIAL ENERGY OF THE SYSTEM (up to an addittive constant)

$the first motor is at the joint 1 and the second motor is at joint 2
V= 0; %flat space hypothesis

SRERRRRRRRRENRS
% USER INPUT END
EREEIRRRRRRRRRR RN RRRRARRRRRRRRRRRRRRRRRARARRRY

% WARNING:

% DO NOT MODIFY ANY CODE UNDERNEATH, UNLESS THERE ARE ERRORS

% OF EXECUTION AND YOU ARE SURE THAT THE INPUT ABOVE HAS BEEN PREPARED
% ACCORDINT TO THE INSTRUCTIONS

thisfilepath= fileparts(matlab.desktop.editor.getActiveFilename);

numberofbodies=size (NPositionVectors,2);

tmasses = sym('m’', [numbsrofbodies,l], 'real’) %create array of masses=[ml; m2;...ma]
for i=l:numberofbodiest(numberofbodies+l):(2*numberofbodies)

masses(i,l) = par{numberofbodies+i};
inertias(i,1) = par{2*numberofbodies+i};

end
X = PlanarChainUGMB2KE(NPositionVectors, verbose, masses,inertias)

[EcM, H, C, G] =EOM_Lagrange(K,V, numdof, verbose)

%86, C, G

$H: n-by-n symmetric positive definite Mass Matrixz of the aystem

8C: n-by-n Centrifugnal-Coriolis Matrix of the system

§G: n-by-l matrix of generalized CONSERVATIVE forces acting on the system
%

%H,C,G allows to write the equations of motion in the canonical form:
$H*qdd+Ctqd = G + GenForces (added later when building the odefun)

SCM=PlanarChainUGMB2ECM(NPositionVectors, verbose, masses, inertias);

GenerateFunctionsUG(K, V, par, SystemName, thisfilepath,H,C,C, SCM,numdof);
time_to_obtain_functionsCGHKSCMV=toc

%if outomatically create odefun

& GenerateOdefun Using Ode2VectField(EcM, K, V, par, GystemName, thisfilepath, H,C,G);
tend

SystemMame =
'PERSEUS_SC_R3'

TransKineticEnergy =

(m0* (qd1"2 + qd2"2))/2

RotKineticEnergy =

(ic0%qd3*2) /2

TransKineticEnergy =

(ml*((gd2 + qd3*cos(g3}*(10/2 + (1l%cos(g4}}/2) - (ll*gd3*sin(q3)*sin(ad))/2 - (1l*gdd*sin(ad)*sin(q4))/2 + (1l*gdi*cos(q3)*cos(qs)}/2)*2 + (ad3*sin(g

RotKineticEnergy =

(icl*(gd3 + gd4)"2)/2 + (ic0*qd3"2)/2

TransKineticEnergy

(m2+(((11/2 + (12%cos(a5))/2)*(gd3*cos(q3)*sin(qd) + gd3+cos(ad)*sin(qd) + gdi+cos(qd)*sin(gd) + qdiscos(gd)*sin(qd)) - gdl + (12+sin(g5)*(gd3*coa(ald)

RotKineticEnergy =

(icl*(gd3 + qd4)"2)/2 + (ic2*(qdd + qd5)"2)/2 + (ic0*gd3*2)/2

TransKineticEnergy

86



(m2*(((11/2 + (12%coa(a5))/2)*(aqd3*coa(q3)*sin(gd) + gd3*cos(gd)*sin(qd) + qdd*coa(qd)*sin(qd) + gdd*cos(qd)*sin(q3))
RotEineticEnergy =
(icl*(qd3 + qd4)"2)/2 + (ic2%(qdd + qd5)*2)/2 + (ic3%(qd5 + qd6)"2)/2 + (ic0*qd3*2)/2

The kinetic energy computed is

2
(m2 ((#£12 #22 - qdl + #£13 + £15 + #20 + £17 + #7 + #6 + #5)

2
+ (gd2 + #12 #21 - £14 + £16 - #4 - #3 + £19 - 18 + £8) ))/2

2 2 2
icl (gd3 + gd4) ic2 (gd4 + gds) ic3 (gd5 + gdb)
+ + +
2 2 2
/ s 13 sin(g6) #2
+ | m3 | | qd2 + #12 #21 + #11 #£1 - #14 - & #16 - # - #£3
\ ARY 2
13 qd6 cos(q6) #9
+ #£19 +
2
/ 13 sin(g6) #1
+ | #12 #22 - gdl + #11 #2 + #13 + - + #15 + #20
\ 2
13 qd6 cos(gb) #10 13 qd6 sin(gf) #9 A2 A
+ + #17 + +#7 4 #6 +#5 | | |/2
2 2 o
2
icO gd3
[
2
2 2
ml ((gd2 + #16 - #4 - #3 + 4+ (#£15 - gdl + #£7 + #6 + #5)
+
2
2 2
m0 (qdl + gd2? )
+ S
2
where

qd3 coa(a3) cos(g5) + gd5 cos(q3) cos(qs) - qd3

sin(g3) sin(g5) - qd5 sin(g3) sin(g5)

qd3 coa(q3) =in(g5) + qd3 cos(q5) =in(q3) + qds

cos(g3) sin(g5) + gd5 cos(g5) sin(a3)

11 gd4 sin(g3) sin(a4)

11 gd3 sin(g3) sin(a4)

11 qdd coa(g4) sin(a3)

11 qd4 co=(q3) =in(ad)

11 qd3 coa(g3) sin(a4)

#7

11 qdd coa(g3) cos(ad)

cos(g3) cos(g5) - sin(g3) =in(q5)

cos(g3) =in(g5) + cos(q5) =in(gd)

12 13 cos(a6)
PP

87

- gdl + (12*sin(g5)*(gd3*coa(g3)



11 12 cos(g5)
#12 == 4+ —
2 2

12 sin(g5) #21
#13 =

12 sin(gs) #22

#15 == qd3 sin(q3) #23

#16 == qd3 cos(q3) #23

12 gds sin(qs) #24

12 qd5 cos(g5) #24

12 gd5 cos(a5) #25

#20 == cmmmmmmeee
2
#21 == qd3 cos(q3) cos(qd) + qdi cos(gd) cos(al) - gd3
ain(qd) sin(gl) - qdd sin(g3) sin(ad)
#22 == gd3 cos(q3) sin(qd) + qd3 cos(gd) sin(gd) + qdi

coa(ql) min(gl) + qd4 cos(ql) sin(agd)

10 11 cos(at)
#23 == oo b e
2 2

#24 == coa(g3) cos(g4) - sin(q3d) sin(aqd)

#25 == cos(g3) sin(gd) + cos(gi) =ia(gd)

K=
(m2%((2%qd? + 10%*qd3*cos(g3) + 12*qd3*cos(qld + qi + g5) + 12%qdd*cos(q3d + qi + q5) + 12*gds*cos(ql + qi + g5) + 2#1lsqd3*cos(qd + gi) + 2*ll*gdi*cos(q

The system Mass matrix computed by the function TORO-Lagrange ConservativeSys is

| [m0 + =l +m2+m3, 0, #, #£8, - #36 - #35 - #21 - #22, 1],

[0, m0 + ml + m2 + m3, #3, #7, #31 + #£30 + £19 + £20, #19],

— 2 2 2
I 10 ml 10 m2 10 m3
| #8, #3, icl + icl + —mmmmm 4 cmmeee 4 FLL 4 —mmmee
— 1 4 1
2 2 #28 #17  #16  #29  #14
411 m2 + 11 m3 + #23 + £15 + #41 4 oo b FA0 £ oo b oo 4 o
2 2 2 2 2
#18 #43 |
4+ #13 4+ 12+~ + #25 + £24 + ——_ + . #1, #2, #6 |,
2 2 -
2 2

[#8, #7, #1, icl + ic2 + #11 + 11 m2 + 11 m3 + #23 + #26 + #25 + #24,

#5, #9],

| - #36 - #35 - #21 - #22, #31 + #30 + £19 + #20, #2,

88



#28 #43 #42 —
#5, ic2 + ic3 + #23 + #15 + #41 + —— +

where
2 2 #28  #40  #17  #16
#1 == icl + #11 + 11 m2 + 11 w3 + #23 + #26 + ——— + ——— + ——— + ——_
1 2 4 1
#14 #13  #12 £27  #42
LT T L I
4 2 2 2 1

#28  #40  #17  #16 #29 #18  #25  #24
#2 == #23 + #15 + #4L + o0 + o + o+
2 2 1

—_—

2 2

10 ml cos(q3) 10 m2 coa(g3) 10 m3 cos(q3)
+ + + #31 + #30 + #19

+ #32 + #34 + #33 + #20

10 =l sin(g3) 10 m2 sin(qg3) 10 m3 sin(q3)
- - - - #36 - #35 - #£21

— #37 - #39 - #38 - #22

#28 #40
#5 == ic2 + #23 + £26 + —— + -

#40 #29
4ot

2 4 4 4

#6 == #41 +

#31 + #30 + #32 + #34 + #33

- #36 - #35 - #37 - #39 - #38

#0  #42
#9 == ——0 4 o
2 4
#1342
#10 == ic3 + #41 + ——— + -
4 4
cos(gd)
cos(gd)

#14 == 10 11 ul cos(qd)

12 m3 cos(ad + g5)
#17 == 10 12 m2 cos(ad + g5)
#18 == 10 12 u3 cos(g5)

13 m3 cos(q3 + g5 + qb)

12 m3 cos(q3 + g5)

13 m3 sin(q3 + g5 + qb)

&9



#21 ==

12 n3 sin(g3 + g5)

#23 ==

#24 == 11 12 u3 cos(a5)

#25 == 11 12 u2 cos(qg5)

#27 == 11 12 u3 cos(ad - g5)

2
#28 = 12 m3 coa(ad)

#29 == 10 13 m3 cos(q5 + qb)
12 m3 #44
#30 = —— —
2

12 m2 #44

2

11 nl cos(q3 + gi)

P I — S

#33 == 11 m3 cos(q3 + ai)

cos(g3d + gi)

12 m3 #45
2
#45
#36 == —
2
11 ml ein(g3 + gi)
$37 == o
2
#38 == 11 m3 sin(q3 + qi)

11 m2 sin(q3 + gi)

#10 == 11 13 u3 cos(q5 - g4 + qf)

12 13 n3 cos(gd - gb)
#43 == 12 13 u3 cos(ab)
#44 == coa(g3 + qf + g5)

#45 == sin(q3 + g4 + g5)

The system Centrifugal-Coriolis matrix computed by the function TORO-Lagrange_ConservativeSys is

S / 10 nml ces(g3) 10 m2 cos(qd) 10 m3 cea(g3)
| | 0, 0, - qd4 #6 — ga3 | + +
S \ 2 2 2

A

4 #31 4 #30 + £33 + #£20 + £22 + £21 + #£32 | - £12 - #9,
/

- gd3 #6 - qdd #6 - gds (#31 + #30), - gdd (#31 + #30)

13 m3 gd3 #39 13 m3 gd5 #39

90



- qd3 (#31 + #30 + #33 + #32)

0, - #13 - qd3

+ #34

- 3

— qdd (#35 + #34) —

[0, 0, - qdd #3 — qd

- qgdd4 #5 - gd3 #4 - gd5 #4 - #10, - #11 - gd5 (#27 + #28 + #29 - #26)

- #101,

[0, 0, gd5 #2 - qdé

- #12 - 49,

7 10 ml sin(q3)

10 m2 sin(q3)

n

10 =3 sin(g3)

| +
\ 2

/

13 m3 gd3 #41

#8, - _

\
+ #37 + #23 + #25 + #24 + #36 | - qdd #7 - #8,

13 m3 gds #41

-~ |,

5 #4 - #10,

(#27 - #26) + qd3 #3,

2 -

~ qd5 #5 - qd3 #3 - gdd #3,

—qds (#18 + #18),

qdd #2 - qgd4

- qd3 (#27 - #26) - qd5 (#27 - #26)

[0, 0, gd3 #4 - odé

— qd4 #£1 - qd6

(#19 + #18) - qd6 (#27 - #26)

(#29 - #26), - qd3

(#29 - #26) - gdd #2,

+ qds #2,

- qd6 (#27 - #26)],

(#29 - #26) - qds

- qd3 #2 - qd4 #2 - qds #1,

(#29 - #26)

- qdé (#29 - #26)1,

12 13 m3 gd5 sin(ad - g6)

12 13 m3 qd4 sin(qd - gb)

+ #16 + #15

10 11 m2 sinfad)

+ #30 + #20 #22 + #21

#7 == #35 + #34 + #23 #25 + #24
13 m3 gdé #41
#8 == —__ —

2

13 m3 gdé #39

= qd6 (#27 + £28 + #29 - £26)

qdl (#27 + #28 + #29 - £26)

| 0, 0, qdd (#27 - #26) + qd5 (#29 - #26) + #11,
qd3 (#27 - #26) + gdd (#27 - #26) - ——mm—mmmmmmmm—m .
4
qd3 (#29 - #26) + qd5 (#29 - #26) - ———————
whers
2
m3 sin(q4) 12 13 m3 sin(qé - g6) 12
#1 +
1 1
#2 == #17 - #27 — #19 - #18 + £14 + #26
10 11 ml sin(g4)
#3 == #17 - #27 + #16 + #15 +
4
10 11 m3 sin(ad)
A #14 + #286
2
10 12 m3 sin(g5)
+ #16 + #15 + #28 +

+ #19 + #18 - #14

+ #35

#7 - qdd #7 - qd5 (#35 + #34), - qd3 (#35 + #34 + £37 + #36) - £13

91



qds (#31 + #30 + #33 + #32)

qd5 (#35 + #34 + #37 + #36)

11 12 m3 sin(gd - g5)

10 12 m3 sin(gd + g5)

10 12 m2 sin(gd + g5)

11 12 m3 sin(q5)

11 12 m2 sin(q5)

11 ml cea(gd + gd)

11 m3 cea(qd + gd)

11 m2 cea(q3 + qi)

11 ml =in(q3 + qi)

11 m3 =in(q3 + ai)

11 m2 sin(g3 + gd)

12 13 m3 ein(gd - qb)

11 13 m3 ein(gs - af + gb)

2

10 13 m3 sin(g5 + qb)

12 13 n3 sin(ab)

12 m2 #40

2

12 m3 ein(q3 + g5)

13 m3 #41

92



#38 == coa(q3 + af + g5)

+ ab)
#40 == ein(g3d + g4 + g5)
#41 == sin(q3 + g5 + gf)

The system Centrifugal-Coriolis matrix computed by the function TORO-Lagrange Conservativebys is

————— e ——
N ———————— -

icO*diff(a3(t), t, t) + icl*diff(q3(t), t, £) + icl*diff(ad(t), t, t) + (10°2sml*diff(ad(t), t, £))/4 + (L0°2*m2*diff(a3(t), t, t))/4 + (11°2*mlsdiff

H=
[

[

[- (10%*ml*sin(g3))/2 - (l0*m2%*sin(g3))/2 - (10*m3%sin(g3))/2 - (12*m2%sin{gd + g + g5)}/2 - (12*m3%sin(g3 + gf + g5))/2 — (13*m3*sin(g3 + g5 + gb))/2
[ ~ (12#m2%sin(g3 + qi + @5))/2 - (L
[ - (12#m2%sin(g3 + gi +
[

c =

o, o, — gdd*((12%m2*cos(gd + gd + g5))/2 + (12*m3%cos(gl + g4 + g5))/2 + (ll*ml*cos(g3d + g4))/2 + 1lsmZsc:
o, o, — qd5#*((12%m2%*sin(g3 + g4 + g5))/2 + (12*m3%sin(g3 + g4 + g5))}/2 + (13*m3%sin(qg3 + g5 + gb))/2 + (1l
[0, 0, - gdd*((12"2+m3%sin(qd))/4 - (11#13*m3%sin(g5 - g4 + g6))/2 + (L0*12+m2%sin(gd + g5)}/4 + (10*12#m3#sin(gd + g5))/4 + (10*1l#ml*sin(gd))/4 + (1|
o, o, qd5#*((12"2*m3%sin(qd)}) /4 - (11*13
1, o, @
o, o,

G =

0

0

0

0

0

0

The system CoM (NPositionVector GCM) computed by the function TORO-PlanarChainUGMB2SCM is

[[(2m0 gl +2ml ql + 2 m2 gl + 2 m3 gl + 10 ml cos(qgd) + 10 m2

coa(qd) + 10 m3 coa(g3) + 12 m2 #3 + 12 m3 #3 + 13 m3

coa(g3 + g5 + g6) + 11 ml cos(g3 + g4) + 2 11 m2 cos(gd + gd) + 2 11 m3

coa(qd + g4) + 12 m3 cos(qd + g5))/#1],

[(2m0 g2 +2mlg2*2m2a2+2mdg2+ 10mnal sin(gd) + 10 m2

sin(g3) + 10 n3 =in(qg3) + 12 m2 #2 + 12 m3 #2 + 13 m3

sin(qd + g5 + g6) + 11 ml sin(g3 + q4) + 2 11 m2 sin(qd + ad) + 2 11 m3

sin(gd + g4) + 12 m3 sin(gd + g5))/#1]]

whers
#1 == (m0 + ml + m2 + m3) 2
#2 == sin(g3 + ad + g5)

#3 == cos(g3 + qi + g5)

93



THIS PAGE INTENTIONALLY LEFT BLANK

94



APPENDIX E. TORO TRAJECTORY PROPAGATION CODE

L e T
(C) Dr. Marcello Romano, 2020-05-06
Modified on 2020-08-20
This function is part of TORO: Tool Set for Orbital RObotics

EXAMPLE 1: Numerical experiments of motion

IMPORTANT: first you need to sxecute SCRIPT 1

generated H, C, G -but odefun is not automatically gensratsdl- (this is referred to as method?)

This method should be advantageous for large dof aystem where the
function odeToVectorField get stuck

&
&
&
&
&
&
&
&
% Thia script performs numerical simulation by using the automatically
%
&
%
%
&
& Of course in those cases the Articulated Body Method approach might be a better
% option

clear all

cloae all

tpublishing:

& publish(’GCRIPT2 GIM Method2 UG Planar 5C R2.m’, 'pdf’)
BEEARERRRRERT R AT ARE

% START USER INPUT

BEARARARARRR RIS AR

SUSERINFUT:

tthis system name: you can give any name here
sysname='PERSEUS_SC_R3';

SUSERINPUT:
there the name used in the SymbolEcM file need to be used
sysclass='PERSEUS_SC_R3’

$USERINEUT:
SHERE €0 THE PARAMETERS required in TOROGen_sysclass_odefun.m after ¥

11,12,ml,m2,icl,ic2,X1,X2,X3,X4

%n in front stands for numerical value MAKE SURE TO ADD THE NEW STUFF IN
al0 = 0.27; %

all = 0.1; &u

al2 = 0.1; &

ald = 0.2 + (0.27/2); %=m

&ng= 9.8; ¥m/s"2 masses go here
9.882 + 0.3; kg

nml = 0.140 ; tkg

nm? = 0.140 ; %kg

amd = 0.140 + 9.882; kg

tamxl = 5; thg

gnmr? = nmrl; Rkg

nml

nicO = 0.2527 + PrMOI(0.14,0.05,0.2); kg m*2 principle moment of ineria of body about axia normal to the plane
nicl = PrMOI(0.1,0.04,nml); kg m*2

nic? = PrMOI(0.1,0.04,nml); kg m*2

nic3 = PrMOI(0.1,0.04,nm1)+0.2527; tkg m"2

nxl &Fm Center of Mass
nx2 &Fm Center of Mass
nxl = &N

nxd = 0.75; &N

nX5 = 0.75;

nX6 = 0.75; N

%[Xil;Xi2] = EGeneralizedTorgues(ll 12 ml m2 mrl mr2 icl ic? irl ir2 krl kr2)

RUSERINPUT

txeport the name of the parameters above in the following row matrix

RWARNTNG: the value of the parameters need to be spescified in the same

Sorder they ars appearing in the arguments of TOROGen_sysclass_odefun.m

%after Y AND in the functions H, C, G

sysparameters=[nl0 nll nl2 nl3 om0 nml ow? amd nicO nicl nic2 nic3]  REDITED THIG

$USER INEU"
finaltime=2; % mansuver to match PERGEUS experiment push

final time [s]

RUSER INPUT: INITIAL CONDITIONS

& WARNING: they need to be in the following order:

& [ql(0), gdl(0), a2(0), gd2(0),...,qn(0), gda(0)]

€let us call x0 and y0 the coordinates of \vect{r} 0 in \vectorbase{N}
&gl=x0

tqi=thetal
2¥0 =[000000.401]; rad

95



% x0 xd0 y0 yd0 thetal thetad0 thetal thetadl - are d's derivatives?

&¥0 =(10,10,00., 00.1]; trad
&¥0 =(l-2,12,1.43, 2 -1]; %xad
% Y0 =[122345674321]; this one was used $EDITED THIS TOO

% SYNTAX [x0 xd0 y0 yd0 plane spin plane updn th0 thd0 thl thdl th2 thd2 xb0 xbd0 yb0 ybd0]

Y0 = (000000 (pi/4) (-pi/8) (-pi/2) (pi/4) (pif4) (-pi/8)1; ® initial state and velocity te complete coast in 1.7 sec
£Y0 =[10.1, 1 0.2, 00.3, 00.4]; %rad
£Y0 =[67451223];

numberofbodies = 3;
tepan = [0 finaltime];

$TOROGen F5_PSC Rl odefun(0,Y0,nl0, nll, om0, aml, nic0, nicl, nXl, nX2, nX3, nX4)
RUGER INFUT: Rel and Abs Tolerance for the ODE integrator

integratorTOL=ls-13;

twhichodefun=1; %1: use odefun via Hinv, 2: use odefun generated using odelvectorfield
RAA AR RN AR AR RR AR A AR R

% END USER INFUT
RAARRREA TR AR RERIARS

% WARNING:

% DO NOT MODIFY ANY CODE UNDERNEATH, UNLESS THERE ARE ERRORS

% OF EXECUTICN AND YOU ARE SURE THAT THE INPUT ABOVE HAS BEEN PREPARED
% ACCORDING TO THE INSTRUCTIONS

close all

syspar_arg = mat2cell(sysparemeters,l,ones(l,numel (sysparamsters)))

tepan [0 finaltime];
options = odeset('RelTol’,integratorTOL, '&bsTol',integratorTOL);

% Use created .m file to solve DE

%[t, Y] = oded5(eval(strcat('@TOROGen_',sysclass,’_odefun')),tspan,¥0,options,syspar_arg{:}}

®[t, Y] = oded5(sval(strcat(’'@TOROGen_',sysclass, _odefun')),tspan,¥0,options,sysparansters_string)’
par_commaseparatedlist= aprintf('%.15f,' , sysparameters);

par_commaseparatedlist = par commaseparatedlist(l:end-1);

tic
%if whichodefun==
[t, ¥] = oded5(fodefun_via_Hinv,tspan,¥0,options,par_cemmaseparatedlist,sysclass, EGenForceFun);
telse
& eval(strcat{'[t, Y] = ode45(@TOROGen UG Planar 5C Rl odefun 0de2VF,tspan,¥0,cpticns,’,par_commassparatedlist,',@GenForceFun)’))
%end

nundof= size(¥0,2)/2;
PlotFigures

time_to_run_simulation=toc

sysclass =
'PERSEUS_SC_R3'
sysparametera =
Columns 1 through 7
0.2700  0.1000  0.1000  0.3350 10.1820  0.1400  0.1400
Columna 8 through 12
10.0220 0.2538 0.0004 0.0004 0.2531
syepar_arg =
1%12 cell array
Columns 1 through 5
{10.27001} {[0.10001} {10.10001} {[0.33501} {110.18201}
Columna 6 through 10
{10.14001} {[0.14001} {110.02201} {10.2538]} {[4.06002-04]}
Columns 11 through 12
{[4.0600=-04]} {00.25311}

AR RRERAR A AR ARRA RS
CAPTION OF FigurePERSEUS_S5C R3 NSysCOM:

Evolution in time of the coordinateas of the aystem CoM on the N CCS

each subplot is showing a gen. coordinate in darker line and the corresponding generalized velocity in lighter line.

HERRRR R AR AR AR R R AR

KR AERERRETRREIART AR
CAPTION OF FigurePERSEUS 5C R3 gs_and gds
Evolution in time of the generalized coordinates and velocites

96



each subplot is showing a gen. coordinate in darker line and the corresponding generalized velocity in lighter line.
(Unit of measurement is left unspecified as it can be different for different systems)
RERRRREREARRR R AR AR R

AR ERRAAR RS RRA SRS
CAPTION OF FigurePERSEUS_SC_R3_ENERGIES:

Evolution in time of the Energies

The first subplot is representing the Kinetic energy in full darker line, the potential energy in full lighter line and the total mech. energy in dash
The second subplot is representing in full line the Total Mechanical Energy variation relative to the initial one and in dash-dot line +/- the integra
(Unit of measurement of the Energies is [Nm = Joule] if IS units are used for the gs and gds)

D .

time to run simulation =
2.8940

goa2 5 003
B 8
g %8 & -0.035
= >
£028 £
= c -0.04
S s
= =
@ 0.26 %
& &€ -0.045
8024 é
= 2 005
'g 0.22 :
I T .0.0s5
8 o2 3
E 0.18 § -0.08
5 8
® 0.16 : @ -0.065

r
Tl

112 14 16 18 2
t[s]

t[s]

t[s]

ts]

g,

‘g. 0 02 04 06 08 1 12 14 16 18 2
t[s]

| —

‘g. 02 04 06 08 1 12 14 186 18 2
t[s]

97



01

0.5

TME(t)-TME(t0)

Published with MATLAB® R2021a

98



APPENDIX F. C++ DYNAMIXEL ACTUATION CODE.

The following code was adapted from [35].

// Modified by ENS I.A. Hardy, USN
// Adapted from Dynamixel SDK Code
// as written and published by

// Ryu Woon Jung

// As listed below

AR AR R AR R R R R R R RN AR AR R AR AR AR R AR RN RRRARER

* Copyright 2017 ROBOTIS CO., LTD.

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at

=

* http://www.apache.org/licenses/LICENSE-2.0

" Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS 1S" BASIS,

*WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

* limitations under the License.

AR RR R AR AR AR RN ARR AR AR AR R AR AR R SR RN KX AKX AR RR AR RRRRARRRERARATRXRERARKERR |

/% Author: Ryu Woon Jung (Leon) x*/

//

[ skskkokokokokok Bulk Read and Bulk Write Example sekdokdokokokok

//

4

// Available Dynamixel model on this example : All models using Protocol 2.0
// This example is tested with two Dynamixel PRO 54-28@, and an USB2DYNAMIXEL
// Be sure that Dynamixel PRO properties are already set as %% ID : 1 and 2 /
Baudnum : 1 (Baudrate : 57600)

i

#if defined(__linux__) || defined(__APPLE__)
#include <fcntl.h>

#include <termios.h>

#define STDIN_FILENO @

#elif defined(_WIN32) || defined(_WIN64)
#include <conio.h>

#endif

#include <stdlib.h>
#include <stdio.h>

#include "dynamixel_sdk.h" // Uses Dynamixel
SDK library

#include <iostream>

99



#include
#include
#include
#include
#include
#include

// Contr
#define
address
#define
#define
#define

// Data
#define
#define
#define

// Proto
#define

<fstream>
<string>
<vector>
<sstream>
<bits/stdc++.h>
<typeinfo>

ol table address
ADDR_XH430_TORQUE_ENABLE

is different in Dynamixel model
ADDR_XH430_LED_RED
ADDR_XH43@_GOAL_POSITION
ADDR_XH43@_PRESENT_POSITION

Byte Length
LEN_XH430_LED_RED
LEN_XH430_GOAL_POSITION
LEN_XH430_PRESENT_POSITION

col version
PROTOCOL_VERSION

64

65
116
132

P

2.0

protocol version is used in the Dynamixel

// Defau
#define
1
#define
2
#define
3
#define
4
#define
#define
port is

#define
enablin
#define
disabli
#define
between
#define

1t setting
DXL1_1ID

DXL2_ID
DXL3_ID
DXL&_ID

BAUDRATE
DEVICENAME
being used on your controller

TORQUE_ENABLE

g the torque

TORQUE_DISABLE

ng the torque
DXL_MINIMUM_POSITION_VALUE
this value
DXL_MAXIMUM_POSITION_VALUE

// Control table

// See which

1 // Dynamixel#l ID:
2 // Dynamixel#2 ID:
3 // Dynamixel#l ID:
4 // Dynamixel#2 ID:
57600
"/dev/ttyUSBO" // Check which
// ex) Windows:
"comi" Linux:
"/dev/ttyUSBe" Mac:
"/dev/tty.usbserial—x"
1 // Value for
2] // Value for
4] // Dynamixel will rotate
4095 // and this value

(note that the Dynamixel would not move when the position value is out of
movable range. Check e-manual about the range of the Dynamixel you use.)

#define
moving

DXL_MOVING_STATUS_THRESHOLD
status threshold

100

10

// Dynamixel



#define ESC_ASCII_VALUE 0x1b

int getch()

{

#if defined(__linux__) || defined(__APPLE__)
struct termios oldt, newt;
int ch;
tcgetattr (STDIN_FILENO, &oldt);
newt = oldt;
newt.c_1flag &= ~(ICANON | ECHO);
tcsetattr (STDIN_FILENO, TCSANOW, &newt);
ch = getchar();
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
return ch;

#elif defined(_WIN32) || defined(_WIN64)
return _getch();

#endif

}

int kbhit(void)

{

#if defined(__linux__) || defined(__APPLE__)
struct termios oldt, newt;
int ch;
int oldf;

tcgetattr (STDIN_FILENO, &oldt);

newt = oldt;

newt.c_1flag &= ~(ICANON | ECHO);

tcsetattr (STDIN_FILENO, TCSANOW, &newt);

oldf = fentl(STDIN_FILENO, F_GETFL, 0);
fcntl(STDIN_FILENO, F_SETFL, oldf | O_NONBLOCK);

ch = getchar();

tcsetattr (STDIN_FILENO, TCSANOW, &oldt);
fcntl(STDIN_FILENO, F_SETFL, oldf);

if (ch != EOQF)

{
ungetc(ch, stdin);
return 1;

}

return ©;

#elif defined(_WIN32) || defined(_WIN64)
return _kbhit();

#endif

3

101



//int testarrayl[41[11];
using namespace std;

int main()
{
// Initialize PortHandler instance
// Set the port path
// Get methods and members of PortHandlerLinux or PortHandlerWindows
dynamixel::PortHandler *portHandler =
dynamixel: :PortHandler: :getPortHandler (DEVICENAME) ;

// Initialize PacketHandler instance
// Set the protocol version
// Get methods and members of ProtocollPacketHandler or
Protocol2PacketHandler
dynamixel::PacketHandler *packetHandler =
dynamixel: :PacketHandler: :getPacketHandler (PROTOCOL_VERSION) ;

// Initialize GroupBulkWrite instance
dynamixel: :GroupBulkWrite groupBulkWrite(portHandler, packetHandler);

// Initialize GroupBulkRead instance
dynamixel: :GroupBulkRead groupBulkRead(portHandler, packetHandler);

// READ PERSEUS TEST FILE (.txt) format

int dx1l_goal_position[4]1[11];

string motorl, motor2, motor3, motor4; // parameters we want vectors for
vector<int>M1;
vector<int>M2;
vector<int>M3;
vector<int>M4;

FILE *fp;

char c_vec;

string target_array;
int readcount = 9;

fp = fopen("push2.txt","r");//("PERSEUStest.txt","r"); ///////READS THE
TEXT FILE TO A STRING OF DIGITS [1xn]
while(1)
{
c_vec = fgetc(fp);

102



if( feof(fp) )
{

break ;

}

target_array += c_vec;
printf("%c", c_vec);
readcount++;

}
fclose(fp);

cout << "CANDIDATE TRAJECTORY" << endl;
cout << target_array << endl;

stringstream stream(target_array); /IIIICONVERTS STRING OF DIGITS TO INT BY
RECOGNIZING SEPARATION BY SPACE KEYSTROKE

int target_as_num[44];
int numcount = 0;

while(stream){
int n;
stream>>n;
target_as_num[numcount] = n;
cout<<n<<endl;
cout<<typeid(n).name() <<endl;
numcount++;

}

//cout<< target_as_num <<endl;

printf("%d\n", target_as_num[43]);
cout<<typeid(target_as_num).name() <<endl;

int motorl_goall[11];
int motor2_goall[11];
int motor3_goall11];
int motor4_goall[11];

for(int vec_col_count = @;vec_col_count <l1l;vec_col_count++)
{
motorl_goallvec_col_count]
motor2_goallvec_col_count]
motor3_goallvec_col_count]
motor4_goallvec_col_count]

target_as_num[vec_col_count];

target_as_num[1ll+vec_col_count];
target_as_num[22+vec_col_count];
target_as_num[33+vec_col_count];

103



for (int 1 = 0; i < 11; i++)
{
std::cout << motorl_goall[i] << ' ';

}

int dxl_comm_result = COMM_TX_FAIL;
bool dxl_addparam_result = false;
bool dxl_getdata_result = false;

uint8_t dxl_error = 9;

uint8_t param_goal_positioni[4];
uint8_t param_goal_position2[4];
uint8_t param_goal_position3[4];
uint8_t param_goal_position4[4];

int32_t dx11_present_position
int32_t dx12_present_position
int32_t dx13_present_position
int32_t dxl4_present_position

o
~e

OO

— = =

int dx11_check_pres;
int dx12_check_pres;
int dx13_check_pres;
int dxl4_check_pres;

// Open port
if (portHandler—>openPort())

{
printf("Succeeded to open the port!\n");

}

else

{
printf("Failed to open the port!\n");
printf("Press any key to terminate...\n");
getch();
return @;

}

// Set port baudrate
if (portHandler—->setBaudRate(BAUDRATE))
{

printf("Succeeded to change the baudrate!\n");

}

104

1

1/
//
1/
I

Communication result
addParam result
GetParam result

Dynamixel error

Present position #1
Present position #2
Present position #1
Present position #2



else

{
printf("Failed to change the baudrate!\n");
printf("Press any key to terminate...\n");
getch();
return 9;

// Enable Dynamixel#l Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL1_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_ENABLE, &dx1l_error);
if (dx1_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler->getTxRxResult(dx1l_comm_result));
Y
else if (dxl_error != @)
{
printf("%s\n", packetHandler->getRxPacketError(dxl_error));
}
else
{
printf("Dynamixel#%d has been successfully connected \n", DXL1_ID);
}

// Enable Dynamixel#2 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_ENABLE, &dx1_error);
if (dx1_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler->getTxRxResult(dx1l_comm_result));
}
else if (dxl_error != @)
{
printf("%s\n", packetHandler->getRxPacketError(dxl_error));
}
else
{
printf("Dynamixel#%d has been successfully connected \n", DXL2_ID);
}

// Enable Dynamixel#3 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_ENABLE, &dx1l_error);
if (dx1_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler->getTxRxResult(dx1l_comm_result));
}
else if (dxl_error != @)

{

105



printf("%s\n", packetHandler->getRxPacketError(dxl_error));
}
else
{
printf("Dynamixel#%d has been successfully connected \n", DXL3_ID);
}

// Enable Dynamixel#4 Torque

dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL4_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_ENABLE, &dxl_error);

if (dx1_comm_result != COMM_SUCCESS)

{
printf("%s\n", packetHandler—>getTxRxResult(dxl_comm_result));
}
else if (dxl_error != @)
{
printf("%s\n", packetHandler->getRxPacketError(dx1l_error));
}
else
{
printf("Dynamixel#%d has been successfully connected \n", DXL4_ID);
}

// Add parameter storage for Dynamixel#l present position
dx1_addparam_result = groupBulkRead.addParam(DXL1_ID,
ADDR_XH438_PRESENT_POSITION, LEN_XH438_PRESENT_POSITION);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] grouBulkRead addparam failed", DXL1_ID);
return 0;

}

// Add parameter storage for Dynamixel#2 present position
dx1_addparam_result = groupBulkRead.addParam(DXL2_ID,
ADDR_XH430_PRESENT_POSITION, LEN_XH43@_PRESENT_POSITION);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] grouBulkRead addparam failed", DXL2_ID);
return 9;

¥

// Add parameter storage for Dynamixel#3 present position
dx1_addparam_result = groupBulkRead.addParam(DXL3_ID,
ADDR_XH430_PRESENT_POSITION, LEN_XH438_PRESENT_POSITION);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] grouBulkRead addparam failed", DXL3_ID);
return 0;

}

106



// Add parameter storage for Dynamixel#4 present position

dx1l_addparam_result

groupBulkRead.addParam(DXL4_ID,

ADDR_XH438_PRESENT_POSITION, LEN_XH438_PRESENT_POSITION);

if (dx1l_addparam_result != true)
{
fprintf(stderr, "[ID:%83d] grouBulkRead addparam failed", DXL4_ID);
return 8;
}
int colcount = 9;
while(colcount <11)
{

printf("Press any key to continue!

(or press ESC to quit!)\n");

if (getch() == ESC_ASCII_VALUE)

f

{

break;
or(colcount = @; colcount < 11; colcount++) // iterates through columns
of testarray-->dxl_goal_position

cout << "Column Number" << colcount << endl ;

cout << "Actuator 1 Count" << motorl_goallcolcount] << endl;

cout << "Actuator 2 Count" << motor2_goall[colcount] << endl;

cout << "Actuator 3 Count" << motor3_goallcolcount] << endl;

cout << "Actuator 4 Count" << motor4_goall[colcount] << endl;

// Allocate

actuator
param_goal_positioni[@]
param_goal_positioni[1]
param_goal_positioni[2]
param_goal_positionl[3]

param_goal_position2[@]
param_goal_position2[1]
param_goal_position2[2]
param_goal_position2[3]

param_goal_position3[@]
param_goal_position3[1]
param_goal_position3[2]
param_goal_position3[3]

param_goal_position4[@]
param_goal_position4[1]
param_goal_position4[2]
param_goal_position4[3]

goal position values into byte

arrays for each

DXL_LOBYTE(DXL_LOWORD(motorl_goallcolcountl));
DXL_HIBYTE(DXL_LOWORD(motorl_goallcolcountl));
DXL_LOBYTE(DXL_HIWORD(motorl_goallcolcountl));
DXL_HIBYTE(DXL_HIWORD(motorl_goallcolcount]));

= DXL_LOBYTE(DXL_LOWORD(motor2_goallcolcount]));

DXL_HIBYTE(DXL_LOWORD(motor2_goallcolcount]));
DXL_LOBYTE(DXL_HIWORD(motor2_goallcolcountl));
DXL_HIBYTE(DXL_HIWORD(motor2_goallcolcountl));

DXL_LOBYTE(DXL_LOWORD(motor3_goallcolcountl));
DXL_HIBYTE(DXL_LOWORD(motor3_goallcolcount]));
DXL_LOBYTE (DXL_HIWORD(motor3_goallcolcount]));

= DXL_HIBYTE(DXL_HIWORD(motor3_goallcolcount]));

DXL_LOBYTE (DXL_LOWORD(motor4_goallcolcountl]));
DXL_HIBYTE(DXL_LOWORD(motor4_goallcolcountl));
DXL_LOBYTE (DXL_HIWORD(motor4_goallcolcount]));
DXL_HIBYTE(DXL_HIWORD(motor4_goallcolcountl));

107



// Add parameter storage for Dynamixel#1l goal position
dx1_addparam_result = groupBulkWrite.addParam(DXL1_ID,
ADDR_XH430_GOAL_POSITION, LEN_XH430_GOAL_POSITION,
param_goal_positionl);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkWrite addparam failed", DXL1_ID);
return 0;

}

// Add parameter storage for Dynamixel#2 goal position
dx1_addparam_result = groupBulkWrite.addParam(DXL2_ID,
ADDR_XH43@_GOAL_POSITION, LEN_XH43@_GOAL_POSITION,
param_goal_position2);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkWrite addparam failed", DXL2_ID);
return 0;

¥

// Add parameter storage for Dynamixel#l goal position
dx1_addparam_result = groupBulkWrite.addParam(DXL3_ID,
ADDR_XH43@_GOAL_POSITION, LEN_XH43@_GOAL_POSITION,
param_goal_position3);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkWrite addparam failed", DXL3_ID);
return 0;

¥

// Add parameter storage for Dynamixel#2 goal position
dx1_addparam_result = groupBulkWrite.addParam(DXL4_ID,
ADDR_XH43@_GOAL_POSITION, LEN_XH43@_GOAL_POSITION,
param_goal_position4);
if (dxl_addparam_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkWrite addparam failed", DXL4_ID);
return 0;

}

// IMPORTANT NOTE skseksotrkskeksorkdokk ——> txPacket refers to the goal
position as the host control computer passes that value to the dxl over
serial (portHandler)

// PART 2: txRxPacket refers to the received present position value as
the result of query from host control to dxl via portHandler

// Bulkwrite goal position and LED value

108



dx1l_comm_result = groupBulkWrite.txPacket();
if (dx1l_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler->getTxRxResult(dx1l_comm_result));
}

prints string of result from comm packet

// Clear bulkwrite parameter storage
groupBulkWrite.clearParam();

do

{
// Bulkread present position and LED status /// NOTE TXRX packet
notation indicates that the function is receiving input as read from
dx1ls

// define comm result as whatever exists in txrxpacket as found in
groupBuldRead data structure

// if successful, prints the result (present) position as that exists
within dx1_comm_result

// else, throws error message tied to whichever dx1 cannot communicate
properly

dx1_comm_result = groupBulkRead.txRxPacket();
if (dxl_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler—->getTxRxResult(dx1l_comm_result));
}
else if (groupBulkRead.getError(DXL1_ID, &dx1l_error))
{
printf("[ID:%83d] %s\n", DXL1_ID,
packetHandler->getRxPacketError(dxl_error));
}
else if (groupBulkRead.getError(DXL2_ID, &dx1l_error))
{
printf("[ID:%03d] %s\n", DXL2_ID,
packetHandler—>getRxPacketError(dxl_error));
}

else if (groupBulkRead.getError(DXL3_ID, &dxl_error))
{
printf("[ID:%@3d] %s\n", DXL3_ID,
packetHandler—>getRxPacketError(dxl_error));
}
else if (groupBulkRead.getError(DXL4_ID, &dxl_error))
{
printf("[ID:%@3d] %s\n", DXL&_ID,
packetHandler->getRxPacketError(dxl_error));
}
// READS PRESENT POSITION OF ACTUATOR CHAIN

109



// the next section of dx1l_getdata_result's is to check if the
relevant data [ID, addr and len of present position] are available
// if unavailable for any dxl, error is thrown

// Check if groupbulkread data of Dynamixel#l1 is available
dx1_getdata_result = groupBulkRead.isAvailable(DXL1_ID,
ADDR_XH430_PRESENT_POSITION, LEN_XH438_PRESENT_POSITION);
if (dxl_getdata_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkRead getdata failed", DXL1_ID);
return 0;

T

// Check if groupbulkread data of Dynamixel#2 is available
dx1_getdata_result = groupBulkRead.isAvailable(DXL2_ID,
ADDR_XH43@_PRESENT_POSITION, LEN_XH430_PRESENT_POSITION);
if (dxl_getdata_result != true)
{
fprintf(stderr, "[ID:%03d] groupBulkRead getdata failed", DXL2_ID);
return 9;

¥
//REPLICATING GROUPBULKREAD CHECK /il

// Check if groupbulkread data of Dynamixel#3 is available
dx1_getdata_result = groupBulkRead.isAvailable(DXL3_ID,
ADDR_XH43@_PRESENT_POSITION, LEN_XH430_PRESENT_POSITION);
if (dxl_getdata_result != true)

{
fprintf(stderr, "[ID:%03d] groupBulkRead getdata failed", DXL3_ID);

return 9;

}

// Check if groupbulkread data of Dynamixel#4 is available
dx1_getdata_result = groupBulkRead.isAvailable(DXL4_ID,
ADDR_XH430_PRESENT_POSITION, LEN_XH430_PRESENT_POSITION);
if (dx1l_getdata_result != true)

{
fprintf(stderr, "[ID:%03d] groupBulkRead getdata failed", DXL4_ID);
return 0;

1
/CHECK REPLICATION COMPLETE/IHIITHTIIIINT

// Get DXL1 present position value

dx11_present_position = groupBulkRead.getData(DXL1_ID,

ADDR_XH43@_PRESENT_POSITION, LEN_XH43@_PRESENT_POSITION);

// Get DXL2 present position value

110



//dx12_led_value_read = groupBulkRead.getData(DXL2_ID,
ADDR_XH430_LED_RED, LEN_XH43@_LED_RED);
dx12_present_position = groupBulkRead.getData(DXL2_ID,
ADDR_XH43@_PRESENT_POSITION, LEN_XH43@_PRESENT_POSITION);

//REPLICATE POSITION GET//I

// Get DXL3 present position value
dx13_present_position = groupBulkRead.getData(DXL3_ID,
ADDR_XH438_PRESENT_POSITION, LEN_XH43@_PRESENT_POSITION);

// Get DXL4 present position value

//dx12_led_value_read = groupBulkRead.getData(DXL2_ID,
ADDR_XH430_LED_RED, LEN_XH43@_LED_RED);
dx14_present_position = groupBulkRead.getData(DXL4_ID,
ADDR_XH436_PRESENT_POSITION, LEN_XH436_PRESENT_POSITION);

/I/REPLICATE POSITION GET COMPLETE//if

//printf("[ID:%0@3d] Present Position 1 : %d \t [ID:%03d] LED Value:
%d\n", DXL1_ID, dx11_present_position, DXL2_ID, dxl12_led_value_read);

printf("[ID:%03d] Present Position 1 : %d \t [ID:%03d] Present
Position 2: %d \t ", DXL1_ID, dx11_present_position, DXL2_ID,
dx12_present_position);

printf("[ID:%03d] Present Position 3 : %d \t [ID:%@3d] Present
Position 4: %d \t ", DXL3_ID, dx13_present_position, DXL4_ID,
dx1l4_present_position);

(int) dx11_present_position;
(int) dx12_present_position;
(int) dx13_present_position;
(int) dxl4_present_position;

dx11_check_pres
dx12_check_pres
dx13_check_pres
dx1l4_check_pres

int happyguy = (abs(dx1l_goal_position[@][colcount] - dx11_check_pres));
cout << "Checksum value" << happyguy << endl;

twhile((abs(motorl_goallcolcount] - dx11_check_pres) >
DXL_MOVING_STATUS_THRESHOLD) | | (abs(motor2_goal[colcount] -
dx12_check_pres) »
DXL_MOVING_STATUS_THRESHOLD) | | (abs(motor3_goal[colcount] -
dx13_check_pres) >
DXL_MOVING_STATUS_THRESHOLD) | | (abs(motor4_goall[colcount] -
dxl4_check_pres) > DXL_MOVING_STATUS_THRESHOLD));

111



// UPON WHILE LOOP TERMINATION, PROGRAM PROCEEDS TO, disable torque CLOSE
PORT AND EXIT CLEANLY

// Disable Dynamixel#1 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL1_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_DISABLE, &dxl_error);
if (dxl_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler—>getTxRxResult(dx1l_comm_result));
b
else if (dxl_error != @)
{
printf("%s\n", packetHandler—>getRxPacketError(dxl_error));
}

// Disable Dynamixel#2 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL2_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_DISABLE, &dx1_error);
if (dx1_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler—>getTxRxResult(dxl_comm_result));
}
else if (dxl_error != @)
{
printf("%s\n", packetHandler—>getRxPacketError(dxl_error));
}

// Disable Dynamixel#3 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL3_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_DISABLE, &dx1_error);
if (dx1_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler—>getTxRxResult(dxl_comm_result));
}
else if (dxl_error != @)
{
printf("%s\n", packetHandler->getRxPacketError(dxl_error));
}

// Disable Dynamixel#%4 Torque
dx1_comm_result = packetHandler->writelByteTxRx(portHandler, DXL4_ID,
ADDR_XH430_TORQUE_ENABLE, TORQUE_DISABLE, &dxl_error);
if (dxl_comm_result != COMM_SUCCESS)
{
printf("%s\n", packetHandler—>getTxRxResult(dxl_comm_result));
}
else if (dxl_error != @)
{
printf("%s\n", packetHandler->getRxPacketError(dxl_error));
}

112



// Close port
portHandler->closePort();

return ©;

}

113



THIS PAGE INTENTIONALLY LEFT BLANK

114



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

LIST OF REFERENCES

S. Kalan et al., “History of Robotic Surgery,” J. Robot. Surg., vol. 4, no. 3, pp.
141-147, 2010, doi: 10.1007/s11701-010-0202-2.

L. Iglesias, M. A. Sebastian, and J. E. Ares, “Overview of the State of Robotic
Machining: Current Situation and Future Potential,” Procedia Eng., vol. 132, pp.
911-917, 2015, doi: https://doi.org/10.1016/j.proeng.2015.12.577.

H. S. Cho, H. J. Warnecke, and D. G. Gweon, “Robotic Assembly: a Synthesizing
Overview,” Robotica, vol. 5, no. 2, pp. 153-165, 1987, doi: DOI: 10.1017/
S0263574700015332.

V. Y. Rutkovsky, I. N. Krutova, V. M. Sukhanov, and V. M. Glumov, “Graph
Models of Orbital Assembly and Dynamics of a Large Space Structure,” IFAC
Proc. Vol., vol. 37, no. 6, pp. 77-82, 2004, doi: 10.1016/s1474-6670(17)32153-5.

R. M. Muller, “Assembly and servicing of a large telescope at the International
Space Station,” IEEE Aerosp. Conf. Proc., vol. 7, pp. 3611-3619, 2002, doi:
10.1109/AER0.2002.1035337.

T. McMahan and V. Neal, Repairing Solar Max: The Solar Maximum Repair
Mission. Goddard Spaceflight Center, Greenbelt, MD: Office of Space Science
and Applications, 1984.

D. J. Shayler and D. M. Harland, The Hubble Space Telescope: From Concept to
Success. Springer, 2015.

P. Laryssa, E. Lindsay, and O. Layi, “International space station robotics: a
comparative study of ERA, JEMRMS and MSS,” ... Robot. ..., pp. 1-8, 2002,
[Online]. Available: http://robotics.estec.esa.int/ ASTRA/Astra2002/Papers/
astra2002_1.3-1.pdf.

N. T. Redd, “Bringing Satellites Back from the Dead: Mission Extension Vehicles
Give Defunct Spacecraft a New Lease on Life,” IEEE Spectr., vol. 57, no. 8, pp.
6-7, 2020, doi: 10.1109/MSPEC.2020.9150540.

C. G. Henshaw, “The DARPA Phoenix Spacecraft Servicing Program : Overview
and Plans for Risk Reduction,” Proc. i-SAIRAS 2014 - 12th Int. Symp. Artif.
Intell. Robot. Autom. Sp., pp. 1-9, 2014, [Online]. Available: http://goo.gl/
6j7xGO.

J. M. Gregory, J. S. Kang, M. Sanders, and D. Wenberg, “Characterization of
Semi-autonomous On-orbit Assembly CubeSat Constellation,” 2019.

115



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Wenberg, A. Hardy, T. Lai, C. Wellins, and J. Kang, “Advancing On-Orbit
Assembly With ISAR,” in 32nd Annual AIAA/USU Conference on Small
Satellites, 2018, pp. 1-8.

E. Stoll et al., “On-orbit servicing,” IEEE Robot. Autom. Mag., vol. 16, no. 4, pp.
29-33, 2009, doi: 10.1109/MRA.2009.934819.

R. Zappulla, J. Virgili-Llop, C. Zagaris, H. Park, A. Sharp, and M. Romano,
“Floating spacecraft simulator test bed for the experimental testing of autonomous
guidance, navigation, and control of spacecraft proximity maneuvers and
operations,” AIAA/AAS Astrodyn. Spec. Conf. 2016, no. September, 2016, doi:
10.2514/6.2016-5268.

J. Virgili-Llop, C. Zagaris, R. Zappulla, A. Bradstreet, and M. Romano,
“Laboratory experiments on the capture of a tumbling object by a spacecraft-
manipulator system using a convex-programming-based guidance,” Adv.
Astronaut. Sci., vol. 162, pp. 787-807, 2018.

M. Romano, D. A. Friedman, and T. J. Shay, “Laboratory experimentation of
autonomous spacecraft approach and docking to a collaborative target,” Journal
of Spacecraft and Rockets, vol. 44, no. 1. American Institute of Aeronautics and
Astronautics, Reston, Va. :, p. 164, 2007, doi: 10.2514/1.22092.

T. Smith et al., “Astrobee: A New Platform for Free-Flying Robotics on the ISS,”
Intell. Robot. Group, NASA Ames Res. Cent., 2016.

E. Ackerman, “How NASA’s Astrobee Robot Is Bringing Useful Autonomy to
the ISS,” IEEE Spectrum, 2017. https://spectrum.ieee.org/automaton/robotics/

space-robots/how-nasa-astrobee-robot-is-bringing-useful-autonomy-to-the-iss
(accessed May 05, 2021).

M. C. S. 3rd C. Weston, Leonard, “Robots in Space!? NPS & NASA Team Up on
‘Astrobatics’ Project to Advance Spacecraft Robotics,” All Hands Mag., no. June,
p. 9,2021.

M. Garcia, “A pair of Astrobee robotic assistants are pictured flying around,”
2021. http://www.nasa.gov/image-feature/a-pair-of-astrobee-robotic-assistants-
are-pictured-flying-around (accessed May 05, 2021).

V. Glover, “NPS Astrobatics Session 1.” https://twitter.com/astrovicglover/status/
1372678416646955013 (accessed May 05, 2021).

H. Woo, O. Rico Perez, S. Chesi, and M. Romano, “CubeSat three axis
simulator(CubeTAS),” AIAA Model. Simul. Technol. Conf. 2011, no. August, pp.
82-89, 2011, doi: 10.2514/6.2011-6271.

116



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics Modelling,
Planning and Control. London: Springer-Verlag London Limited, 2010.

P. I. Corke, “A Simple and Systematic Approach to Assigning Denavit-
Hartenberg Parameters,” IEEE Trans. Robot., vol. 23, no. 3, pp. 590-594, 2007,
doi: 10.1109/TR0O.2007.896765.

A. E.R. Jonge, “THE CORRELATION OF HINGED FOUR-BAR STRAIGHT-
LINE MOTION DEVICES BY MEANS OF THE ROBERTS THEOREM AND
A NEW PROOF OF THE LATTER,” Ann. N. Y. Acad. Sci., vol. 84, no. 3, pp.
77-145, 1960, doi: 10.1111/5.1749-6632.1960.tb42784 x.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.
John Wiley & Sons, Inc., 2006.

P. Corke, “Robotics Toolbox.” https://petercorke.com/toolboxes/robotics-toolbox/
(accessed May 07, 2021).

M. Romano, “Tool Set for Orbital Robotics.” 2021.

The MathWorks Inc., “Solve nonstiff differential equations — medium order
method - MATLAB ode45.” https://www.mathworks.com/help/matlab/ref/
ode45.html (accessed Jun. 15, 2021).

C. Safbom, S. Kwok-Choon, and M. Romano, “DESIGN, TESTING, AND
ANALYSIS OF SELF-TOSS HOPPING MANEUVERS OF ASTROBEE AT
NPS AND NASA AMES RESEARCH CENTER,” 2020.

ROBOTIS, “XH430-W210-T/R,” ROBOTIS e-Manual, 2021.
https://emanual.robotis.com/docs/en/dx1/x/xh430-w210/ (accessed May 06, 2021).

Robotis Co LTD., “U2D2.” https://emanual.robotis.com/docs/en/parts/interface/
u2d2/ (accessed Jun. 14, 2021).

Arduino, “Getting started with the Arduino Due | Arduino,” 2021.
https://www.arduino.cc/en/Guide/ArduinoDue (accessed Jun. 14, 2021).

Arduino, “Getting Started with the Arduino WiFi Shield | Arduino,” 2021.
https://www.arduino.cc/en/Guide/ArduinoWiFiShield (accessed Jun. 14, 2021).

Robotis Co LTD. and R. W. Jung, “DYNAMIXEL SDK,” 2017.
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel sdk/
overview/ (accessed Jun. 14, 2021).

117



THIS PAGE INTENTIONALLY LEFT BLANK

118



INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library

Naval Postgraduate School
Monterey, California

119



	21Jun_Hardy_Ian_First8
	21Jun_Hardy_Ian
	I. INTRODUCTION
	A. ORBITAL ROBOTIC MANIPULATION SYSTEMS
	B. MANEUVER SIMULATION AND TESTING
	1. Planar Floating Spacecraft Simulator
	2. Astrobee Microgravity Testing


	II. SYSTEM OVERVIEW
	A. Summary
	B. Capability
	C. End-Effector
	D. Actuation
	E. Integration

	III. Mathematical Model Development
	A. Frames of Reference
	B. Denavit-Hartenberg (D-H) Parameters
	C. End-Effector Position
	D. Workspace

	IV. Kinematic simulation using toro
	A. Overview
	B. Scenario Parameters

	V. Manipulator Control
	A. Joint-Space Position Control
	B. Push Maneuver
	C. Swing Maneuver

	VI. Detailed System Design
	A. Actuators
	1. Description

	B. Structure
	1. Description
	2. Limitations

	C. Fastening
	D. Electrical design and networking
	E. Programming and operation
	1. Trajectory Generation and Verification
	2. Actuation Program
	3. Operations and Testing


	VII. Experimentation
	A. Integration
	1. Component Preparation
	2. Wire Routing
	3. Assembly
	4. FSS Installation

	B. Bench Testing
	C. Push Maneuver
	1. Setup
	2. Push Off Fixed Rail
	3. Push Off Static Simulated Spacecraft
	4. Push Off Floating Spacecraft Simulator


	VIII. Results and discussion
	A. Bench Testing
	1. Single Motor Actuation
	2. Multi-Actuator Synchronous Actuation
	3. Physical Arm Bench Testing

	B. POSEIDYN FSS Push maneuver Testing
	1. Physical System Data
	2. TORO Simulation


	IX. CONCLUSION
	A. System Design
	B. Concept of Operations
	C. Performance
	D. Summary
	E. Future Work

	Appendix b. DYNAMIXEL XH430-W210-R SPECIFICATIONS
	APPENDIX C. Trajectory Generation Code
	Appendix E. TORO Trajectory Propagation Code
	Appendix F. C++ Dynamixel Actuation Code.
	List of References
	initial distribution list




