

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

MODEL OPTIMIZATION FOR VEHICLE RECOGNITION
ON EDGE DEVICES

by

Zong Long Goh

June 2021

Thesis Advisor: Gurminder Singh
Co-Advisor: Marko Orescanin

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2021 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
MODEL OPTIMIZATION FOR VEHICLE RECOGNITION
ON EDGE DEVICES

 5. FUNDING NUMBERS

 6. AUTHOR(S) Zong Long Goh

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Video surveillance is commonly used for the protection of military installations. Within video
surveillance, artificial intelligence (AI) techniques are often incorporated for object recognition and motion
tracking. Network communication and stable power are usually required to operate such systems. Hence,
they are not often deployed in remote areas where stable network connectivity and power supply cannot be
supported. The emergence of lightweight edge devices with low power requirements and high processing
power to run AI, however, has offered an avenue to deploy AI in remote areas. Thus, the focus shifts to the
type of AI used in video surveillance systems. One approach is machine learning (ML), in which the ML
models need to be trained and optimized within network and power constraints while maintaining good
inference performance.
 This research explores ML for vehicle recognition via transfer learning of various state-of-the-art
convolutional neural network models. Also, we study the effects of applying optimization techniques,
pruning, and quantization, to improve performance and allow for deployment of the models on an edge
device, the Raspberry Pi 4. This study found that the MobileNet model, when trained on a vehicle’s dataset
and optimized with post-training weights pruning and full integer quantization, achieves an inference
accuracy of 81.88% with a latency of 132 ms and a compressed model size of 3.44 MB, making it viable for
real-time inference applications.

 14. SUBJECT TERMS
convolutional neural networks, vehicle classification, vehicle recognition, surveillance,
model optimization, edge device, quantization, pruning, transfer learning, data augmentation

 15. NUMBER OF
PAGES
 75
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

MODEL OPTIMIZATION FOR VEHICLE RECOGNITION
ON EDGE DEVICES

Zong Long Goh
Civilian, Ministry of Defence, Singapore

BCE, Nanyang Technological University, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Gurminder Singh
 Advisor

 Marko Orescanin
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Video surveillance is commonly used for the protection of military installations.

Within video surveillance, artificial intelligence (AI) techniques are often incorporated

for object recognition and motion tracking. Network communication and stable power are

usually required to operate such systems. Hence, they are not often deployed in remote

areas where stable network connectivity and power supply cannot be supported. The

emergence of lightweight edge devices with low power requirements and high processing

power to run AI, however, has offered an avenue to deploy AI in remote areas. Thus, the

focus shifts to the type of AI used in video surveillance systems. One approach is

machine learning (ML), in which the ML models need to be trained and optimized within

network and power constraints while maintaining good inference performance.

 This research explores ML for vehicle recognition via transfer learning of various

state-of-the-art convolutional neural network models. Also, we study the effects of

applying optimization techniques, pruning, and quantization, to improve performance and

allow for deployment of the models on an edge device, the Raspberry Pi 4. This study

found that the MobileNet model, when trained on a vehicle’s dataset and optimized with

post-training weights pruning and full integer quantization, achieves an inference

accuracy of 81.88% with a latency of 132 ms and a compressed model size of 3.44 MB,

making it viable for real-time inference applications.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..2
B. OBJECTIVES ..2
C. CONTRIBUTIONS..2
D. THESIS ORGANIZATION ..3

II. BACKGROUND AND RELATED WORKS ..5
A. RELATED RESEARCH ...5
B. DEEP LEARNING ..6

1. Feed Forward Neural Network ...6
2. Convolutional Neural Networks ...7
3. Training Techniques ..12
4. Development Frameworks ..14

C. DEEP LEARNING ON EDGE DEVICES ..15
D. CHAPTER SUMMARY ..16

III. METHODOLOGY ..17
A. SYSTEM ARCHITECTURE ...17
B. DATASET ...19
C. CLASSIFIER ARCHITECTURE ..22

1. Design ..22
2. Pre-trained Model Selection ..25
3. Top Layers ..26

D. MODEL OPTIMIZATION FOR PERFORMANCE...........................28
1. Pruning..28
2. Quantization ...29

E. TRAINING AND TESTING SETUP ...30
F. CHAPTER SUMMARY ..33

IV. RESULTS AND ANALYSIS ..35
A. OVERVIEW ...35
B. MODEL PERFORMANCE ..36

1. Effects of Optimization ..36
2. Model Selection for Vehicle Recognition44

C. CHAPTER SUMMARY ..45

viii

V. CONCLUSIONS AND FUTURE WORK ...47
A. SUMMARY ..47
B. FUTURE WORK ...48

LIST OF REFERENCES ..51

INITIAL DISTRIBUTION LIST ...57

ix

LIST OF FIGURES

Figure 1. Simple Feed Forward Neural Network. Adapted from [8].7

Figure 2. CNN Sequence for Vehicle Recognition. Source: [10].8

Figure 3. Convolutional Layer Illustration. Adapted from [14].9

Figure 4. Zero Padding. Source: [17]. ...9

Figure 5. Activation Functions. Source: [20]. ...10

Figure 6. Pooling Layer Illustration. Adapted from [14]. ...11

Figure 7. Fully Connected Layer Illustration. Adapted from [14].11

Figure 8. How TensorFlow Lite Works. Source: [6]. ...15

Figure 9. System Architecture. ..18

Figure 10. Example Images from Stanford Cars Dataset. Source: [34].20

Figure 11. Example Images with Data Augmentation. Adapted from [34].22

Figure 12. Keras Classifier Architecture. ..23

Figure 13. TF Lite Classifier Architecture. ...23

Figure 14. Experimental Classifier. ...24

Figure 15. Classifier Top Layers. ..26

Figure 16. Initial MobileNetV2 Training and Validation Accuracy.27

Figure 17. Improved MobileNetV2 Training and Validation Accuracy.28

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Available Keras Application Models. Source: [32].25

Table 2. Keras Models Training Parameters ..31

Table 3. TF Lite Models Training Parameters ...32

Table 4. Models Test Parameters ...33

Table 5. Pruning on Keras Models ...37

Table 6. Quantized Keras Applications Models (Compressed Size)39

Table 7. Quantized TF Lite Models (Compressed Size) ..41

Table 8. Quantized Keras Applications Models (Latency)42

Table 9. Quantized TF Lite Models (Latency) ..43

Table 10. Keras and TF Lite Models with Above 80% Accuracy45

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

CNN Convolutional Neural Networks

Colab Colaboratory

CONV Convolutional

CPU Central Processing Unit

CV Computer Vision

DNN Deep Neural Network

FNN Feed Forward Neural Network

GPU Graphical Processing Unit

ML Machine Learning

NLP Natural Language Processing

POOL Pooling

RNN Recurrent Neural Network

RPi Raspberry Pi

TF TensorFlow

TFMOT TensorFlow Model Optimization Toolkit

TPU Tensor Processing Unit

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my thesis advisor,

Dr. Gurminder Singh, for accepting me as his thesis student and offering insightful advice

on getting my thesis done on time. I am grateful for his patience and support that allowed

me to complete my thesis through the extraordinary times of the Covid-19 pandemic.

I also want to thank my thesis co-advisor, Dr. Marko Orescanin, for his time and

expert guidance on the topic of machine learning. He has offered me exceptional advice on

getting me started on the subject and helped me navigate through the many unknowns.

Lastly, I am eternally thankful to my loved ones for all their love, sacrifice, and

unwavering support throughout my time at the Naval Postgraduate School.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Video surveillance is an essential tool for the security and protection of a facility.

Be it highly secure environments such as military bases, airports, power plants, or

environments with less stringent security requirements such as in schools and shopping

malls, video surveillance is prevalent. Systems deployed for surveillance purposes have

long relied on recorded videos for post-incident reviews. Several cameras are typically

deployed in a facility to recognize and track an object of interest. Often, manual reviews

of copious amounts of footage are required to identify a target and track it across different

camera views to deduce a suspect’s motive. This task is time-consuming, attention-

intensive, error-prone, and laborious.

In order to achieve real-time incident detection and reduce the laborious task of

manual post-incident reviews, Artificial Intelligence (AI) techniques are commonly used

for object recognition, detection, and motion tracking scenarios. One such application is to

use deep learning methods to recognize and identify objects, such as a human or a vehicle,

and build an understanding of the object’s behavior and its path of approach across a series

of cameras [1]. This understanding can be achieved by the correlation between learned

information from the parsed image/video capture of each camera. Yet, the deployment of

such intelligent camera nodes constantly communicating and running deep learning

algorithms for object recognition and detection usually requires high network

communication bandwidth and a stable supply of power. Consequently, this method is not

commonly deployed in remote areas where the power supply may be low and inconsistent,

leading to surveillance outages and poor network connectivity and bandwidth.

The emergence of lightweight edge devices has offered an avenue to apply

distributed deep learning methods for video surveillance. Drawing low power and being

able to run on batteries, these devices enable the deployment of intelligent surveillance to

areas with an inconsistent power supply. With that problem solved, the only concern left

for this video surveillance approach is the training and optimization of machine learning

(ML) models to run within the network bandwidth and power supply constraints while

maintaining reasonably good inference accuracy.

2

A. MOTIVATION

Seeking to enhance surveillance by incorporating deep learning methods in a

distributed learning fashion and deploying the system to remote areas with low network

bandwidth and low or inconsistent power supply, we recognize the advantages of running

video surveillance systems on edge devices in such scenarios. Hence, we think it is crucial

to study the resultant effects of training and optimizing ML image classification models

for deployment on edge devices.

B. OBJECTIVES

This research explores training deep learning models for vehicle recognition and

studies the resultant effects of applying specific model optimization techniques, pruning

and quantization, on the models to eventually identify the best performing model for

vehicle recognition on a lightweight edge device. The models, originally pre-trained for

generic image classification, are transfer learned on a vehicles dataset and optimized to

allow the models to run on an edge device. The models’ performance is evaluated based

on three main criteria: model compressed size, inference latency, and accuracy.

C. CONTRIBUTIONS

This work makes three key contributions to achieving the deployment of deep

learning methods for vehicle recognition on edge devices. Ultimately, the work is done in

support of a greater goal of having a distributed learning surveillance system for installation

security in remote areas.

The three key contributions of this work are:

1. The identification of pre-trained deep learning models suitable to be

trained for deployment on an edge device when transfer learned on an

vehicles dataset.

2. The demonstration of the application and improvements gained from

applying pruning and quantization optimization techniques on the models.

3

3. The identification of the best-performing model, trained and optimized to

run on an edge device, evaluated based on compressed model size,

inference latency, and accuracy.

D. THESIS ORGANIZATION

Following this chapter, this thesis is organized as follows:

Chapter II discusses related works on the application of deep learning for vehicle

recognition. It provides background on deep learning concepts and available optimization

techniques. It also covers the development framework and hardware used in this study.

Chapter III covers the implementation approach to train and optimize the pre-

trained models. It discusses the challenges faced and methods used to improve training and

inference accuracy.

Chapter IV presents the experimental results and analysis of the various

optimization techniques applied to the models when run on an edge device.

Chapter V summarizes and concludes the study. Areas for possible future research

are also discussed.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND AND RELATED WORKS

This study explores the employment of Convolutional Neural Networks (CNN) to

identify cars by make, model, and year. The objective is to train, optimize, and evaluate

CNN models, enabling inference on small, low-power edge devices. We examine various

models, efficient training techniques, and optimization methods towards achieving the

objective. This chapter reviews related research on applying deep learning for vehicle

recognition and examines concepts in deep learning and training techniques to optimize

the model for execution on the edge devices.

A. RELATED RESEARCH

Deep learning has been extensively used in the field of object detection. One of the

most common deep learning networks used for object detection is the CNN. Jerry Wei [2]

describes CNN as robust models that are easy to control and train and seldom overfit when

trained on large image datasets. Significant computational power, however, is required to

train CNNs on high-resolution images [2].

With much ongoing application and research, CNNs turn out to be well-suited for

vehicle detection and recognition tasks. Xingcheng Luo et al. [3]. used a large image

dataset and increased the layers in AlexNet to achieve vehicle and facial recognition

accuracy of up to 97.51% and 91.22%, respectively. Hyo Jong Lee et al. [4]. extracted

frontal views of vehicle images and fed them into SqueezeNet for training and testing.

Albeit running on a desktop Central Processing Unit (CPU) with a powerful Graphical

Processing Unit (GPU) setup, the study managed to achieve a 96.3% recognition accuracy

with the inference tasks running at a mean of 108 ms. Their model also required less than

5 MB of space, making it broadly viable for real-time inference applications.

The proven success of applying CNN to vehicle recognition tasks and the

advancement of small embedded systems, such as dedicated GPU boards and Tensor

Processing Unit (TPU) accelerators coupled with lightweight micro-computers, has led to

the exploration of running vehicle recognition tasks on such devices. Sanghyeop Lee et al.

[5]. ran AlexNet on a dedicated NVIDIA Jetson TX1 board system for vehicle license plate

6

recognition and achieved accuracy of 95.24%. In a study [6] on objection detection and

tracking, a MobileNet TensorFlow (TF) model was converted to a TF Lite object detection

model and was run on a Raspberry Pi (RPi) with Coral Edge TPU USB Accelerator,

achieving tracking speeds of 24 fps.

The ability to achieve automated vehicle identification through the classification of

make, model, year, color, and identification of the license plate is crucial for security and

traffic surveillance systems. As such, many studies apply deep learning models, CNNs in

particular, on vehicle detection and recognition. Yet most studies execute deep learning

model training and inference on systems with powerful CPUs and GPUs. This study

focuses on furthering the research of employing CNN on a lightweight device, such as an

RPi, through transfer learning on pre-trained models and evaluates various optimization

techniques such as pruning and quantization to find the optimum configuration for vehicle

recognition.

B. DEEP LEARNING

AI includes ML, where, through experience, machines acquire skills necessary to

complete a specific task without human involvement. Deep learning is a subspecialty of

ML, and it models the human brain’s biological neural network. The result is an artificial

neural network, and most advancements of AI in recent years revolve around CNN. This

section reviews various concepts related to CNN.

1. Feed Forward Neural Network

A Feed Forward Neural Network (FNN) is a typical neural network that consists of

many connected nodes, called neurons, arranged in layers. Input neurons are activated by

sensors perceiving the environment or by input data like images, and neurons in subsequent

layers are activated via weighted connections from active neurons of the prior layer [7].

Due to its simplicity, the most common model in artificial neural networks is the FNN,

where signals propagate in one direction from input to output nodes.

Figure 1 depicts a simple model of an FNN, consisting of neurons aggregated into

layers; input data could be training data or environmental data, which is fed into the first

7

layer, putting the data through an activation function and passing the output on to the

hidden layer. The process repeats from the hidden layer to the output layer, eventually

producing a set of weights that define the network model. It can then produce a prediction

result based on the set of trained weights and an input.

Figure 1. Simple Feed Forward Neural Network. Adapted from [8].

2. Convolutional Neural Networks

An FNN that works particularly well on classifying images is the CNN. It is built

upon a sequence of layers of neurons that have learnable weights and biases. A dot product

is performed on some inputs, sometimes followed by a non-linearity function, and each

neuron’s output is fed into the following layers [9]. CNN architectures typically consist of

four main layers: Convolutional Layer, Activation Layer, Pooling Layer, and Fully

Connected Layer. They are stacked to form a complete CNN architecture.

Figure 2 shows a CNN sequence applied to the task of vehicle recognition. We shall

review the essential layers for a CNN in the following sections.

Input Layer

Hidden Layer

Output Layer

8

Figure 2. CNN Sequence for Vehicle Recognition. Source: [10].

a. Convolutional Layer

The Convolutional (CONV) layer is the critical layer of a CNN and also the most

computationally intensive layer [11]. The CONV layer uses filters, which are the “neurons”

of the layer. A filter can be applied to any object in an image; for images of vehicles, a

filter could be associated with distinguishing car logos. The logo filter would indicate how

strongly the logo appears in the image, noting the count and location of appearances [12].

At the construction of a CNN, filter values are randomly specified, and they will be

continuously updated as the network is trained. It is improbable that two identical filters

are produced unless the number of chosen filters is extremely large [13].

Adapted from [14], Figure 3 depicts a filter scanning across the entire input layer,

moving one pixel at a time where each position can possibly activate a neuron. The output

is then collected and forms a feature map. If the CONV layer is an input layer, then the

input will be pixel values, for example, 0–255. However, when a CONV layer is deeper in

the CNN architecture, a feature map derived from the previous layer will be its input [14].

9

Figure 3. Convolutional Layer Illustration. Adapted from [14].

As shown in Figure 4, when the size of the previous layer cannot be cleanly divided

by the filter boundaries and the stride length, a technique used is to insert pad values to

serve as mock inputs, called zero padding [15]. Full padding is applied to ensure that all

pixels are visited the same number of times by the filter, and it increases the size of the

output. The same padding, on the other hand, ensures the output is the same size as the

input [16].

Figure 4. Zero Padding. Source: [17].

10

b. Activation Layer

The activation layer is placed at the end of a neural network or between CONV

layers. The activation layer decides whether a neuron activates or “fires.” It essentially

does a non-linear transformation on the input signal, and the transformed output is then

sent to the next layer as input [18]. A widely used activation function is the ReLU function.

As it does not activate all neurons simultaneously, its advantage over other activation

functions is computation efficiency.

Figure 5 shows that the ReLU function converts all negative inputs to zero, and

unlike Sigmoid and tanh functions, it does not saturate at the positive range. Further, [19]

shares that ReLU enables models to converge six times faster than applying tanh and

Sigmoid functions.

Figure 5. Activation Functions. Source: [20].

c. Pooling Layer

Pooling (POOL) layers are commonly placed after one or more CONV layers and

are used to reduce the dimensions of the previous layer’s feature map. The use of POOL

layers can be considered a technique to reduce dimensionality and generalize feature

representations, reducing overfitting [21]. POOL layers are often simple and perform a

specific function. Figure 6 depicts the process of taking the maximum value or average

value in a filter region, named Max Pooling or Average Pooling, respectively.

11

Figure 6. Pooling Layer Illustration. Adapted from [14].

d. Fully Connected Layer

After features extraction and consolidation by the CONV and POOL layers,

respectively, fully connected layers are inserted at the end of the CNN to produce

predictions for the given input. A non-linear function, such as the Softmax activation, is

commonly used in a fully connected layer to generate predictions as output [17]. Figure 7

depicts an example of a feature map being flattened and fed into the fully connected layers

to generate an inference output.

Figure 7. Fully Connected Layer Illustration. Adapted from [14].

12

3. Training Techniques

The advancement of deep learning networks, especially CNNs, has enabled their

wide usage in multiple AI fields such as Computer Vision (CV), Natural Language

Processing (NLP), and audio processing. At present, AI implementations have not fully

proliferated in consumer-level applications and have limited capabilities when running on

resource-constrained devices. Hence, reducing the gap between high-powered proprietary

implementations and consumer-level applications is an increasingly active research topic

[22].

a. Transfer Learning

Training a Deep Neural Network (DNN) from scratch is an extremely time-

consuming and resource-intensive task. It is especially so for complex object recognition

tasks. As increasingly different networks are trained for various tasks, Lorien Pratt [23]

sought to avoid separate training and re-training of networks for similar purposes and

instead built on previously trained network results. By reusing previously trained models,

transfer learning can considerably speed up the learning process.

Wei Zhao [12] demonstrated training a CNN with the MNIST handwritten digital

dataset, then transferred the learned model to train on a vehicle logo dataset by adding a

fully connected layer and Softmax activation. The studied CNN recognized vehicle logos

with higher efficiency and accuracy compared to directly training a CNN on the vehicle

logo dataset.

b. Network Quantization

A way to reduce computational demands and increase power efficiency is through

quantization. Quantization involves transforming an ML model into an approximated

representation with available lower precision operations [24]. In deep learning,

quantization generally refers to converting floating-point values to fixed point integers, for

example, the numbers 0, 1, 2, …, 255 for pixel color or tone representation of a digital

image.

13

In most cases, the primary source of latency when running a DNN is caused by the

transfer of the network weights and data between the main memory and the processing

cores. Reducing the data from 32-bit floating-point values to 16-bit floating-point values

or 8-bit integers increases the efficiency of computing and hardware compatibility and

reduces memory, power, and network bandwidth utilization.

Studies [25, 26, 27] have shown that the loss in accuracy is still manageable with

variations in applying quantization during and post training. There are also variations of

quantization types; each has its own set of pros and cons.

1. Reduced Float – reduction of 32-bit float to 16-bit float reduces

complexity and generally produces negligible accuracy loss.

2. Hybrid – reduction of specific 32-bit float to 8-bit integer parameters, for

example, 8-bit integer weights and 32-bit float biases and activation,

achieving 10% to 50% faster execution on CNN models.

3. Integer – only contains 16-bit and 8-bit integers, enabling support for

running on ML accelerators.

c. Network Pruning

Network Pruning is another optimization technique where redundant neurons and

connections are removed, enabling a model to be compressed more efficiently. In one study

[28], Hao Li et al. suggest that “filters with smallest weights tend to produce feature maps

with weak activations compared to other filters in that layer.” By pruning off the smallest

filters instead of the same number of random or largest filters, it is possible to enable better

optimization results [28].

Similar work in [29], which pruned filters with weights very close to zero and

removed the feature maps completely from the layer, showed that a CNN model was still

able to operate efficiently with minimal accuracy loss even when 76% of feature maps were

removed. On the other hand, [29] also highlights that the percentage of channels a model

can afford to lose before it starts losing significant accuracy varies from model to model

but concluded that a significant portion of CNN parameters does not play an important

14

role. The concept of pruning is potentially very valuable in the application of ML on

lightweight embedded devices.

4. Development Frameworks

In recent years, we have seen accelerated advancement in AI development and

applications. Once a very specialized field of information technology, AI has become a

much more manageable and widely applied technology due to the development of multiple

libraries and frameworks. Development frameworks for AI come in various programming

languages such as C, C++, C#, and Python. A group of frameworks by Google, TensorFlow

(TF), TF Lite, and Keras utilizes the Python language and is one of the most mature for

deployment in embedded applications. As this study concerns deployment of deep learning

on lightweight edge devices, we review the Google frameworks in this section.

a. TensorFlow

TF is an open-source library widely used for large-scale ML. TF applications are

built with Python, providing a convenient front-end application programming interface

(API), while the backend processes execute in high-performance C++. TF can train and

run a wide range of DNNs such as handwritten digit classification, image recognition, word

embeddings, Recurrent Neural Networks (RNN), and NLP. TF 2.0, released in October

2019, incorporated the Keras API for model training and provided support for distributed

training [30].

b. TensorFlow Lite

An extension to TF, TF Lite is an open-source deep learning framework for on-

device inference. It enables the deployment of models on various platforms such as mobile

devices running Android and IOS and micro computing devices like Raspberry Pi.

Figure 8 shows the TF Lite process that would enable DNN models to be converted,

compressed, or optimized by quantization and executed on lightweight devices such as

mobile and embedded devices.

15

Figure 8. How TensorFlow Lite Works. Source: [6].

c. Keras

Keras is a wrapper to the TF framework, designed specifically for easy deployment

of DNNs. Keras allows for easy and fast prototyping as well as seamless performance on

CPU and GPU. Furthermore, DNN models developed on Keras can be converted to TF

Lite to be optimized for deployment on lightweight edge devices.

C. DEEP LEARNING ON EDGE DEVICES

Applying AI on edge devices is an emerging paradigm that combines AI, Internet

of Things (IoT), and Edge Computing technologies. As the name implies, it pushes

“computing tasks and services from the network core to the network edge” [31]. With the

advancement of robust and low power consumption IoT devices, advanced ML models can

now be executed on edge devices such as robots and video cameras. By processing data on

the edges, less data will be transmitted, hence reducing network communication overhead.

In this research, we explore running deep learning models for vehicle recognition

on an edge device, the Raspberry Pi (RPi). It is a low-cost, versatile microcomputer used

mainly for educational purposes and projects where features like portability and low power

consumption are desired. In general, the RPi is incapable of training large datasets or

complex ML models, and further optimizations on trained models are required to enable

inference or prediction tasks on it. At the time of this study, the latest version features a

64-bit Quad-core ARM processor and up to 8 GB of RAM, making it adequately capable

of running optimized deep learning models for vehicle recognition.

16

D. CHAPTER SUMMARY

Chapter II has discussed the background study of components required to train and

optimize neural network models for inference on small, low-power edge devices. The

chapter also covered related research on applying deep learning for vehicle recognition and

examined concepts in deep learning and training techniques to optimize the models for

execution on the edge devices.

Next, Chapter III describes implementing a classifier architecture and sharing the

parameters required to fulfill our research objective.

17

III. METHODOLOGY

This chapter discusses the design and implementation of an ML system using

various training and optimization techniques. It describes the dataset, data pre-processing

methods, classifier architecture, and techniques applied to optimize inference performance.

A. SYSTEM ARCHITECTURE

This system aims to train, optimize, and identify the best performing model for

vehicle recognition from a selected set of pre-trained Keras Applications models [32] and

TF Lite models [33]. Inference tests are conducted on a lightweight edge device, the RPi

4, and results are evaluated in this study. The pre-trained models are re-trained on the

Stanford Cars dataset [34] with transfer learning then optimized by various model

optimization techniques. The eventual goal is to measure and compare the model size

reduction and on-device inference performance (accuracy and latency) of the optimized

models. All training and optimization of the models is conducted using the NVIDIA Tesla

P100 and V100 GPUs on the Google Colaboratory (Colab) platform. All inference

performance tests are conducted on a Raspberry Pi Model 4B, 4 GB, running ARM

architecture Linux-based 32-bit Raspberry Pi OS.

Figure 9 depicts key components of the system architecture and flow. Starting with

the classifier architecture, it consists of input data pre-processing, model training

operations, and optimization. Only one dataset is used for training and test inputs, whereas

multiple pre-trained models are fitted in the classifier, and variants of optimized models

for each pre-trained model are produced. The original model size and its compressed size

are recorded. Additionally, inference accuracy and latency of tests conducted on the RPi

are also recorded. They are subsequently evaluated to identify the best model to perform

vehicle recognition on the RPi 4.

18

Figure 9. System Architecture.

The dataset encompasses a training set and a test set. For the entire setup, the

training set is further split into a training set and a validation set with a proportion of 80%

and 20%, respectively, while the test set is used for testing all trained and optimized

models.

The pre-trained models selected for the tests are Keras models, MobileNet,

MobileNetV2, NASNetMobile, DenseNet121, and DenseNet169, and TF Lite models,

19

EfficientNetLite0 through 4. The same configuration of top layers is added to all Keras

models, and default top layers provided by TF Lite Model Maker are applied for all TF

Lite models. Re-training the pre-trained models involves loading weights trained on

ImageNet as initial weights and training the full model (the pre-trained and top layers) on

a vehicles dataset. Models are trained using the Adam optimizer with a learning rate of

0.0001. As the TF Lite models do not converge well with the learning rate of 0.0001, a rate

of 0.001 is used instead.

Training times were a maximum of 200 epochs with early stopping imposed for 20

epochs if there was no improvement in validation accuracy. The early stopping strategy is

employed in [35] as regularization for overfitting. On every improvement of validation

accuracy in training, a model checkpoint is saved. Doing so ensures that the best accuracy

model is saved and used in subsequent transfer learning and optimization steps.

Pruning is applied to the Keras models, and the resultant model size and its

compressed size are recorded. TF Lite models, particularly the EfficientNetLite models, do

not support pruning at the time of this study. Therefore, they do not go through the pruning

process. Subsequently, the transfer learned models are quantized using various techniques

mentioned in section D.2. The resultant model sizes are recorded and tested for inference

performance on the RPi. Finally, the results are tabulated and analyzed in the next chapter.

Evaluation criteria to find the best performing model for the task of vehicle

recognition by make, model, and year, include model accuracy, model size (compressed

and uncompressed), and inference latency when run on an RPi 4.

B. DATASET

The Stanford Cars dataset [34] was used for the entirety of this study. It consists of

16,185 images labeled with 196 classes of vehicles by make, model, and year. The dataset

has a proportion of 8,144 images for training and 8,041 images for testing. It is one of the

more comprehensive publicly available datasets and is widely used as a benchmark dataset

for ML research on vehicle recognition.

20

As shown in Figure 10, images are of various sizes, and each contains a vehicle in

the foreground taken from various angles against a random background. The quality of

images also varies from professionally taken shots to low-quality screenshots taken off

online advertisements.

The distribution of images per vehicle class in the dataset has an average of 83

images per class, with a minimum of 48 images and a maximum of 138 images per

class [36]. Initial trials on training the models did not yield good accuracy performance.

The models tended to overfit, which can be attributed to the small number of images per

class and overall small dataset. Thus, data pre-processing is introduced to counter the

effects of the lack of training samples and overfitting.

Figure 10. Example Images from Stanford Cars Dataset. Source: [34].

21

a. Pre-processing

The data pre-processing techniques used in this implementation serve two

purposes. One is to ensure uniformity of image size and to normalize the input scale

received by the model. Another is to use data augmentation and create more variation in

images for each class of vehicles, effectively increasing the diversity of the dataset.

(1) Rescale and Resize

All Keras models selected in this study accept an input image size of 224 x 224

pixels with three channels of RGB colors per pixel. Thus, all input images must be resized

to 224 x 224 pixels and have the RGB values normalized by dividing each channel by a

factor of 255.0.

For the TF Lite models, each variant of the EfficientNetLite models accepts

different fixed test image sizes for inference. From EfficientLite0 to EfficientLite4, the

models accept 224 x 224, 240 x 240, 260 x 260, 280 x 280, and 300 x 300 pixels,

respectively. Test images have to be resized accordingly, while training images are resized

by default when data is input into TF Lite Model Maker.

(2) Data Augmentation

For Keras models, a variety of data augmentation techniques have been used to

increase the diversity of the training set. In this study, random but realistic transformations

were applied by building custom pipelines with TF’s “tf.image” library. The augmentation

methods used in this experiment include random horizontal flip, resize by crop or pad,

random crop, random contrast, brightness, saturation, and hue.

Figure 11 shows examples of vehicle images with their RGB channels rescaled,

image size resized to 224 x 224 pixels, and augmentation applied. Augmentation is

typically applied only on the training set and not on the validation and test sets.

As for TF Lite models, the default data augmentation option is applied for training.

22

Figure 11. Example Images with Data Augmentation. Adapted from [34].

C. CLASSIFIER ARCHITECTURE

Building the classifier for transfer learning consists of three components: designing

the classifier, selecting pre-trained models for our experiment, and adding appropriate top

layers with suitable parameters.

1. Design

The classifier is built for three objectives. First, it pre-processes the input data.

Next, it trains and produces machine-learned models for vehicle recognition with

hyperparameters tuning to speed up and improve the training process and accuracy. Lastly,

it applies optimization techniques to reduce the model size and improve inference speed

for execution on the RPi.

A selected set of pre-trained models designed for resource-constrained devices is

evaluated in this study, and these models are discussed in the next section.

Figure 12 depicts the components of the Keras Classifier Architecture. Pruning is

applied to all fully connected layers of the top layers only, and the stages, namely Pre-

trained Model and Quantization, vary with the options listed in the figure.

23

Figure 12. Keras Classifier Architecture.

Figure 13 depicts the components of the TF Lite Classifier Architecture available

with the TF Lite Model Maker. Data preprocessing and top layers are handled by default

by the classifier. Like the Keras Classifier, the Pre-trained Model and Quantization stages

vary with the options listed in the figure.

Figure 13. TF Lite Classifier Architecture.

24

a. Improving Classification

Figure 14 shows an experimental Keras classifier architecture built with the

MobileNetV2 model as a base model. The top layers were stacked with a Global Average

Pooling layer and two fully connected (dense) layers of a dimensionality of 1,500 and 196.

A Dropout layer of 50% separated the dense layers to prevent overfitting. Weights trained

on the ImageNet dataset were preloaded to the network, and the Adam optimizer with a

learning rate of 0.0001 was applied for training. The base model was frozen, with only the

top layers trained.

Figure 14. Experimental Classifier.

After more than 70 epochs of training, the model only managed to attain an

accuracy of approximately 41% on both the validation and test sets. It was hypothesized

that the poor accuracy was caused by a variety of factors, such as:

1. Small dataset size for each class. The size of the Stanford Cars dataset was

relatively small for each of the 196 classes of vehicles.

2. Low variation between designs. Vehicles of the same model usually have

minor variations between them, making them hard to classify.

3. Weights not optimized for vehicle classification. The proportion of vehicle

image classes in ImageNet is unbalanced compared to other classes. There

are 317K images of vehicles versus 1,567K images of animals (mammals

and birds) and 414K images of objects [37].

25

The factors identified mainly point to issues with the dataset image diversity and

insufficiently trained weights on vehicle images. The issues were eventually resolved

through data augmentation and re-training the entire model instead of only the top layers.

2. Pre-trained Model Selection

Keras API [32] provides a list of deep learning models with pre-trained weights

that can be used for prediction, feature extraction, and fine-tuning in transfer learning.

Extracted from the Keras Applications, Table 1 lists the models trained on the ImageNet

dataset.

Table 1. Available Keras Application Models. Source: [32].

Model Size Top-1
Accuracy

Top-5
Accuracy

Parameters Depth

Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -
EfficientNetB0 29 MB - - 5,330,571 -
EfficientNetB1 31 MB - - 7,856,239 -
EfficientNetB2 36 MB - - 9,177,569 -
EfficientNetB3 48 MB - - 12,320,535 -
EfficientNetB4 75 MB - - 19,466,823 -
EfficientNetB5 118 MB - - 30,562,527 -
EfficientNetB6 166 MB - - 43,265,143 -
EfficientNetB7 256 MB - - 66,658,687 -

26

Since this study concerns finding a best performing vehicle recognition model to

run on the RPi, we base the model selection criteria on the size and number of parameters.

The size affects the transmission of trained models across devices, while the number of

parameters reflects the complexity and, in turn, affects inference speed. Using the attributes

of models trained on ImageNet as a reference, we limit the model size to less than 100 MB

and 20 million parameters. The Keras models are highlighted in blue in Table 1, while

models highlighted in green have their corresponding TF Lite models evaluated in this

study.

3. Top Layers

A usual approach for transfer learning is to add a pooling layer followed by fully

connected layers on top of the base model. The final output layer should have an output

size equivalent to the output classes; for example, 196 classes of vehicles will require 196

output nodes. The fully connected layers should provide sufficient learnable space for the

new model.

Figure 15 shows the eventual top layers added to the base (pre-trained) model. A

Global Average Pool layer is added first, followed by a Fully Connected layer of size 1,500

for a sizeable learning space. A Dropout layer of 70% is added to help with overfitting, and

finally, an output layer of size 196 to provide inference classification for 196 classes of

vehicles. “SoftMax” is applied as the activation function for the output layer.

Figure 15. Classifier Top Layers.

27

An initial training test was done with the base model loaded with pre-trained

weights from ImageNet, and the classifier was trained only on its top layers. The accuracy

achieved was an average of 41%, which is still far from reaching the approximately 71%

accuracy when MobileNetV2 was trained on ImageNet. Figure 16 depicts the initial

training versus validation accuracy. Validation accuracy remained at approximately 41%

while the training accuracy increased to 90%, a sign of overfitting.

Figure 16. Initial MobileNetV2 Training and Validation Accuracy.

To improve the accuracy, a significant change was to train the entire classifier on

the dataset instead of only training the top layers. Since only the inference performance on

the RPi is evaluated, there was no concern about training time as it is done off-device for

this study. Data augmentation also helped in improving the validation accuracy of the

model. Figure 17 shows the improved validation accuracy of approximately 75%.

28

Figure 17. Improved MobileNetV2 Training and Validation Accuracy.

D. MODEL OPTIMIZATION FOR PERFORMANCE

In this study, we look at optimization techniques to increase inference efficiency as

it is a concern when conducting inference on resource-constrained devices. Particularly on

devices like the RPi, model size and computation efficiency are significant concerns when

factoring for latency, memory utilization, and power consumption.

By combining pruning and quantization techniques in the TensorFlow Model

Optimization Toolkit (TFMOT), this study intends to minimize the complexity of ML

models and reduce their size while maintaining inference accuracy.

1. Pruning

Pruning essentially removes parameters from a model, without having a critical

impact on its predictions. This technique is used to gradually zero out parameters during

the training process to achieve model sparsity [38]. When sparse, a model can be easily

compressed, and the zeroed-out parameters can be skipped to improve inference latency.

Enabling effective compression makes pruning a helpful technique in reducing model

download size and shortens transmission time. On the other hand, it is noted in [39] that

pruned models generally remain the same size on disk and have a similar latency at runtime

as unpruned models.

29

It is also noted that pruning a model may negatively affect accuracy [40]. As such,

in this study, pruning is done post-training and restricted to only the fully connected (dense)

layers in the top layers to minimize disruption to the critical layers of the pre-trained

models. Pruning is applied by further training the Keras models with the TFMOT sparsity

library, having the model’s low magnitude parameters pruned off. Pruning is not applied

to TF Lite EfficientNetLite models as it is not supported at the time of this study.

2. Quantization

Two forms of quantization are available in the TFMOT, post-training quantization

and quantization-aware training. Post-training quantization is more straightforward to

implement, but quantization-aware training often offers better model accuracy.

Quantization-aware training is only available to a limited set of Keras models [41]; thus,

this study explores post-training quantization only.

Post-training quantization converts a trained model’s weights and activation

outputs from 32-bit floating-point numbers to either 16-bit floating-point or 8-bit integers,

depending on requirements. The result is a smaller model and increased inference speed,

critical to resource-constrained devices like the RPi and required by integer-only

accelerators such as the Edge Tensor Processing Unit (TPU). In general, 16-bit floats are

recommended for inference on GPU acceleration and the 8-bit integer for CPU executions.

Three post-training quantization techniques available for TF Lite models are

explored in this study.

a. Dynamic Range Quantization

Dynamic quantization involves converting only model weights from floating-point

to 8-bit integer precision. Depending on the inference operation, activations (outputs of

intermediate layers) can be dynamically quantized to 8-bit, and computations are

performed with 8-bit weights and activations. Although doing so can achieve near fixed-

point inference latencies, the outputs will remain in floating point precision; thus, latencies

will still be higher than fixed-point integer computation [42]. In this study, dynamic

quantization is achieved with the “Optimize” flag on the TF Lite converter library.

30

b. 16-bit Float Quantization

16-bit float quantization converts all weights from 32-bit to 16-bit floating-point

precision. This technique effectively reduces accuracy loss and results in two times

reduction in model size since all weights are reduced to half of their original size. However,

latency improvement can only be achieved when inference operations are done on GPUs

that natively operate on 16-bit float data. The weights are dynamically “dequantized” to

32-bit floats when operating on CPUs [42]. Nonetheless, this study evaluates the accuracy

and size reduction properties of this quantization scheme.

c. 8-bit Full Integer Quantization

Full integer quantization involves converting “32-bit floating-point numbers (such

as weights and activation outputs) to the nearest 8-bit fixed-point numbers” [43]. The range

of floating-point parameters in a model, however, needs to be calibrated or known before

a conversion can be done. Model weights and biases are constant parameters, but variable

parameters like model inputs, activations, and model output cannot be calibrated unless the

input data is put through a few inference cycles. TF Lite converter allows for such

calibration using a representative dataset of 100 to 500 samples [42]. In order to study the

latency improvements, full integer quantization is enforced for all parameters, including

the input and output data types in this study.

E. TRAINING AND TESTING SETUP

The setup leverages Keras (for Keras Applications models) and TF Lite Model

Maker (for TF Lite models) frameworks to optimize selected pre-trained models on the

Stanford Cars dataset [34]. All training and optimizations of the models are done on the

Google Colaboratory (Colab) platform with GPU, and High RAM settings turned on.

31

Parameters used for optimizing the performance of the Keras models are given in

Table 2:

Table 2. Keras Models Training Parameters

Dataset
Stanford Cars training set 80% training. 20 % validation
Data Augmentation
Resizing and Rescaling
(applied to entire dataset)

Cast image values to 32-bit float, Rescale RGB
by 255, Resize images to 224x224 pixels

Image Augmentation
(applied only on training split)

Random flip left and right, Resize by crop or
pad, Random cropping, Random contrast,
Random brightness, Random saturation, Random
hue

Model Training
Base Models MobileNet, MobileNetV2, NASNetMobile,

DenseNet121, DenseNet169
Optimizer Adam
Learning rate 0.0001
Training epoch 200
Early stopping patience 10
Pre-train weights ImageNet
Top Layers Global Average Pooling

Dense (1500, “ReLU” activation”)
Dropout (0.7)
Dense (196, “SoftMax” activation)

Training Entire model (Base + Top layers)
Pruning
Learning rate 0.0001
Training epoch 30
Sparsity function Polynomial Decay (Initial sparsity 0.5, Final

sparsity 0.8)
Layers trained Only Dense layers
Quantization
Dynamic Optimizations - tf.lite.Optimize.DEFAULT
Float16 Optimizations - tf.lite.Optimize.DEFAULT

Target spec – tf.float16
Integer8 Optimizations - tf.lite.Optimize.DEFAULT

Representative data – 400 images from training
set
Target spec -
tf.lite.OpsSet.TFLITE_BUILTINS_INT8

Output
Type TF Lite model

32

Parameters used for optimizing the performance of the TF Lite models on the TF

Lite Model Maker are given in Table 3:

Table 3. TF Lite Models Training Parameters

Dataset
Stanford Cars training set 80% training. 20 % validation
Model Training

Base Models EfficientNetLite0, EfficientNetLite1,
EfficientNetLite2, EfficientNetLite3,
EfficientNetLite4

Data Augmentation True
Data shuffle True
Learning rate 0.001
Training epoch 200
Dropout Rate 0.7
Layers trained Entire model
Pruning (not supported)
Quantization
Dynamic Optimizations – tf.lite.Optimize.DEFAULT
Float16 Optimizations – tf.lite.Optimize.DEFAULT
Integer8 Optimizations – tf.lite.Optimize.DEFAULT

Representative data – training set
Output
Type TF Lite model

All generated TF Lite models are tested on a Raspberry Pi 4 Model B, 4 GB

computer. It runs an ARM architecture Linux-based 32-bit Raspberry Pi OS with Python

3.7 and TF 2.4.0-rc2 library and dependencies.

33

Inference tests are coded in Python, and the test parameters are given in Table 4:

Table 4. Models Test Parameters

Dataset
Stanford Cars testing set 100% testing
Data Augmentation
Rescaling Cast image values to 32-bit float, Rescale RGB by

255
Input image size • 224 x 224 pixels for MobileNet,

MobileNetV2, NASNetMobile, DenseNet121,
DenseNet169, EfficientNetLite0

• 240 x 240 pixels for EfficientNetLite1
• 260 x 260 pixels for EfficientNetLite2
• 280 x 280 pixels for EfficientNetLite3
• 300 x 300 pixels for EfficientNetLite4

Test Readings
Inference latency Average of total inference process time / total

images in testing set
Accuracy Correct classification / total classifications made
Model file size Model file sizes and compressed file sizes both

collected upon generation from training

F. CHAPTER SUMMARY

This chapter discussed the entire process of implementing a classifier architecture

to train, optimize, and test different state-of-the-art Keras Applications and TF Lite models

for vehicle recognition. It also covered the necessary steps and optimization required to

improve overall model performance.

Chapter IV analyzes the results obtained through training and testing the generated

models with the different optimization techniques applied.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. RESULTS AND ANALYSIS

This chapter presents the results and analysis of tests conducted on the selected

Keras and TF Lite models trained on the Stanford Cars dataset [34] using the implemented

system architecture described in the previous chapter. It provides an overview of primary

findings for this study and the models’ performance analysis and comparisons.

A. OVERVIEW

As noted earlier, TF model optimizations enable a model to run more efficiently

and be deployed on edge devices such as the Raspberry Pi. This study demonstrates the

effects of optimization on the selected models and attempts to find a model best suited to

run vehicle recognition on the RPi, based on the evaluation criteria of compressed model

size, inference accuracy, and latency.

The primary findings in this study include the following:

1. When applied to the models, both pruning and quantization reduce the

model size by more than a factor of 2. At the same time, accuracy is

maintained within the range of plus or minus 2.5% from the baseline

models’ accuracy.

2. Pruning only the fully connected (dense) layers of the added top layers

drastically reduces the model sizes by up to 4.57 times and improves

accuracy slightly across all models.

3. Selected quantization techniques, when applied to the models, performed

as intended. Dynamic and Integer 8-bit quantization methods reduce

weights and activations from 32 bits to 8 bits, reducing the model sizes by

up to 4.39 times. Float 16-bit quantization reduces model weights and

activations from 32 bits to 16 bits, reducing the model sizes by up to 2

times.

36

4. Through prioritization of the collected metrics, MobileNet pruned and

quantized to full 8-bit integer is identified as the model best suited for

vehicle recognition on the RPi.

B. MODEL PERFORMANCE

This section presents the results of testing the CNN models transfer learned on the

Stanford Cars dataset [34], on an RPi. Readings gathered from the tests include Top-1

accuracy, model original size, compressed model size, and inference latency.

1. Effects of Optimization

Optimization techniques, pruning, and quantization, were applied post-training on

the models. It should be noted, however, pruning was not supported for the

EfficientNetLite models on TF Lite Model Maker at the time of this study. Thus, it was

only applied to the Keras Application models.

a. Evaluating Pruned Models

The Keras Applications models MobileNet, MobileNetV2, NASNetMobile,

DenseNet121, and DenseNet169 were selected as they meet the selection criteria of within

100 MB and 20 million parameters when trained on the ImageNet dataset.

Table 5 tabulates each model’s accuracy, original size, compressed size, and factor

of size reduction on its compressed base Keras model to its compressed pruned TF Lite

model. All Keras models were trained and evaluated for accuracy on the Google

Colaboratory (Colab) platform. In contrast, the TF Lite models were converted from the

Keras models on Colab, then evaluated for accuracy on the Raspberry Pi. When

considering model transmission between server and edge devices or between edge devices,

transferring compressed versions of the model is considered a more efficient use of network

bandwidth. Thus, the compressed model sizes were used for comparison in this analysis.

The tabulated compressed sizes demonstrated a significant size reduction ranging

from 3.18x to 4.57x after pruning and converting to TF Lite. We also noted that a

conversion of the pruned models from Keras to TF Lite does not affect the accuracy of the

37

models when tested on separate platforms. Moreover, there is further model size reduction

across all models in the range of 0.2 to 1.4 MB after the model conversion from Keras to

TF Lite.

The accuracy of the pruned models is also observed to improve with an increase in

the range of 0.18% to 2.32%. As we learned from [37], if done incorrectly, pruning might

negatively affect model accuracy. We found that pruning only the fully connected (dense)

layers of the top layers can drastically reduce model size and improve accuracy across all

models. Based on the findings, model pruning of dense layers should always be considered

for deployment efficiency.

Table 5. Pruning on Keras Models

 Generated
Model

Top-1
Accuracy Size (MB) Compressed

Size (MB)
Size

Reduction

MobileNet
Base (Keras) 81.21% 58.10 52.86

3.97x Pruned (Keras) 82.19% 19.46 13.50
Pruned (TF Lite) 82.19% 19.20 13.31

MobileNetV2
Base (Keras) 77.34% 51.60 46.78

4.57x Pruned (Keras) 77.52% 17.35 10.49
Pruned (TF Lite) 77.52% 16.91 10.24

NASNetMobile
Base (Keras) 72.89% 72.97 64.77

3.80x Pruned (Keras) 73.62% 24.67 17.30
Pruned (TF Lite) 73.62% 23.47 17.06

DenseNet121
Base (Keras) 83.56% 102.38 89.51

3.34x Pruned (Keras) 85.36% 34.49 27.14
Pruned (TF Lite) 85.36% 33.59 26.80

DenseNet169
Base (Keras) 83.19% 177.53 151.95

3.18x Pruned (Keras) 85.51% 59.78 48.30
Pruned (TF Lite) 85.51% 58.38 47.75

Size reduction is derived from the size comparison between the respective networks Base
(Keras) model and Pruned (TF Lite) model.

b. Evaluating Quantized Models

With pruning shown to reduce the model size drastically, we now evaluate the

effects of model quantization.

First, we look at the effects of quantization on the size of the models. Table 6

tabulates the test results recorded for three types of quantization done on the Keras models

38

that were pruned and converted to TF Lite. All optimized TF Lite models were ported over

and tested on the RPi. Across all quantized models, further size reductions of between

1.38x to 4.39x are observed. The size reductions are significant, considering there was

already a 3.18x to 4.57x reduction from the original Keras models to the pruned TF Lite

models.

Dynamic quantization offers a good model size reduction of 2.63x to 4.25x. Top-1

accuracy of the models generally held up well, with only minor drops of 0.17%, 0.25%,

0.27%, and 0.01% on the MobileNet, MobileNetV2, NASNetMobile, and DenseNet121

models, respectively. And there is a negligible accuracy increase of 0.03% on the

DenseNet169 model.

Float 16-bit quantization is observed to produce a moderate size reduction of 1.38x

to 2.00x, yet it maintains the models’ accuracy very well, with a slight drop of 0.2% on

only the MobileNet and NASNetMobile models. The size reduction demonstrated the

expected behavior of cutting weights and activations of 32 bits to 16 bits, effectively

reducing the model size by approximately half. The model size is not expected to reduce

by an absolute half as it is dependent on a model’s structure and composition.

Lastly, Integer 8-bit quantization offered size reductions similar to those from

dynamic quantization. Compressed model size reductions range between 2.56x and 4.39x

from the pruned TF Lite models. Similarly, model size is not expected to reduce by an

absolute quarter as it largely depends on a model’s structure and composition. It is also

observed to have a slightly larger negative impact on accuracy compared to dynamic

quantization. The accuracy drops are 0.31%, 0.48%, 0.65%, 2.39%, and 0.41% for

MobileNet, MobileNetV2, NASNetMobile, DenseNet121, and DenseNet169 models,

respectively.

The tests demonstrated that model quantization can further reduce model size while

maintaining accuracy, with a majority of the drops at less than 1%.

39

Table 6. Quantized Keras Applications Models (Compressed Size)

 Optimized Model Top-1
Accuracy

Size
(MB)

Compressed
Size (MB)

Size
Reduction

MobileNet

Base (Keras) 81.21% 58.10 52.86 -
Pruned (TF Lite) 82.19% 19.20 13.31 -
Dynamic Quan. 82.02% 5.06 5.06 2.63x

Float 16bit Quan. 82.17% 9.62 9.62 1.38x
Int 8bit Quan. 81.88% 5.19 5.19 2.56x

MobileNetV2

Base (Keras) 77.34% 51.60 46.78 -
Pruned (TF Lite) 77.52% 16.91 10.24 -
Dynamic Quan. 77.27% 4.64 2.88 3.57x

Float 16bit Quan. 77.52% 8.49 5.34 1.92x
Int 8bit Quan. 77.04% 4.84 2.92 3.51x

NASNetMobile

Base (Keras) 72.89% 72.97 64.77 -
Pruned (TF Lite) 73.05% 23.47 17.06 -
Dynamic Quan. 73.13% 6.81 4.80 3.55x

Float 16bit Quan. 73.03% 11.94 8.74 1.95x
Int 8bit Quan. 72.40% 7.01 4.75 3.59x

DenseNet121

Base (Keras) 83.56% 102.38 89.51 -
Pruned (TF Lite) 85.36% 33.59 26.80 -
Dynamic Quan. 85.35% 8.90 6.43 4.17x

Float 16bit Quan. 85.36% 16.89 13.48 1.99x
Int 8bit Quan. 82.97% 8.84 6.27 4.27x

DenseNet169

Base (Keras) 83.19% 177.53 151.95 -
Pruned (TF Lite) 85.51% 58.38 47.75 -
Dynamic Quan. 85.54% 15.42 11.24 4.25x

Float 16bit Quan. 85.51% 29.32 23.90 2.00x
Int 8bit Quan. 85.10% 15.20 10.90 4.39x

Size reduction is derived from the size comparison between the respective networks’
individual quantized models and their Pruned (TF Lite) model. The Base (Keras) model
results are inserted for reference only.

Table 7 tabulates the test results recorded for the three types of quantization done

on the EfficientNetLite TF Lite models. Since pruning is not supported on TF Lite models,

comparisons were made against the base EfficientNetLite TF Lite models re-trained on the

Stanford Cars dataset [34]. All trained and quantized models were tested on an RPi.

The quantized EfficientNetLite models’ compressed size reductions range from

1.92x to 4.38x, which has a similar upper bound but better lower bound than the Keras

models.

Dynamic quantization generated models with a size reduction range of 3.55x to

4.25x demonstrated a better lower bound and similar upper bound when compared against

40

the dynamic quantization on the Keras models. With slight drops in accuracy of 0.23%,

0.05%, 0.01%, and 0.21% for EfficientNetLite0, 1, 2, and 3 respectively, and a minuscule

increase in accuracy of 0.01% for EfficientNetLite4, we observe minimal impact on the

models’ Top-1 accuracy.

Float 16-bit quantization produced models with a size reduction of 1.92x to 2.00x,

which is again in line with the reduction of weights and activations from 32 bits to 16 bits,

effectively cutting the model size by approximately half. Interestingly, besides

EfficientNetLite2, which has an accuracy drop of 0.01%, the rest of the EfficientNetLite

models have slight improvements in accuracy. The accuracy improvements are 0.01%,

0.03%, 0.03%, and 0.01% for EfficientNetLite0, 1, 3, and 4, respectively.

Similar to Dynamic quantization, Int 8-bit quantization on the EfficientNetLite

models produced a size reduction range of 3.51x to 4.38x. It performed better than Integer

8-bit quantization on the Keras models for both lower and upper bounds. Accuracy,

however, experienced a slight drop across all the models except the EfficientNetLite3. Top-

1 accuracy drops are 0.15%, 0.16%, 0.14% and 0.16% for EfficientNetLite0, 1, 2 and 4,

respectively. The EfficentNetLite3 model has its accuracy improved by 0.08%.

Summarizing the results, quantization on the EfficientNetLite models produced

models with size reduction very close to their respective intended specifications, and

accuracy is maintained well, with drops of less than 0.23%.

41

Table 7. Quantized TF Lite Models (Compressed Size)

 Optimized
Model

Top-1
Accuracy

Size
(MB)

Compressed
Size (MB)

Size
Reduction

EfficientNetLite0

Base (TF Lite) 77.83% 19.20 19.20 -
Dynamic Quan. 77.60% 5.06 5.06 3.79x

Float 16bit Quan. 77.84% 9.62 9.62 2.00x
Int 8bit Quan. 77.68% 5.19 5.19 3.70x

EfficientNetLite1

Base (TF Lite) 79.59% 16.91 10.24 -
Dynamic Quan. 79.54% 4.64 2.88 3.56x

Float 16bit Quan. 79.62% 8.49 5.34 1.92x
Int 8bit Quan. 79.43% 4.84 2.92 3.51x

EfficientNetLite2

Base (TF Lite) 80.09% 23.47 17.06 -
Dynamic Quan. 80.08% 6.81 4.80 3.55x

Float 16bit Quan. 80.08% 11.94 8.74 1.95x
Int 8bit Quan. 79.95% 7.01 4.75 3.59x

EfficientNetLite3

Base (TF Lite) 81.02% 33.59 26.80 -
Dynamic Quan. 80.81% 8.90 6.43 4.17x

Float 16bit Quan. 81.05% 16.89 13.48 1.99x
Int 8bit Quan. 81.10% 8.84 6.27 4.27x

EfficientNetLite4

Base (TF Lite) 84.43% 58.38 47.75 -
Dynamic Quan. 84.44% 15.42 11.24 4.25x

Float 16bit Quan. 84.44% 29.32 23.90 2.00x
Int 8bit Quan. 84.27% 15.20 10.90 4.38x

Size reduction is derived from the size comparison between the respective networks’
individual quantized models and their Base (TF Lite) model.

Next, we examine the inference latency of optimized models. Latency readings are

obtained using the average of the total time taken for inference operations on the entire test

set. Table 8 tabulates the inference latency for the optimized Keras models. It is observed

that quantization does not necessarily improve inference speeds.

Dynamic quantization on MobileNetV2, DenseNet121, and DenseNet169 resulted

in higher latencies than the baseline pruned models. The increase could be attributed to the

time spent when activations of the intermediate layers are dynamically quantized during

inference. The latency increments on MobileNetV2, DenseNet121, and DenseNet169 are

5 ms, 17 ms, and 20 ms, respectively. Latency improvements on MobileNet and

NASNetMobile are 3 ms and 2 ms, respectively, which are negligible considering the

latencies are in the hundreds of milliseconds range.

42

Across all models, except for the NASNetMobile, Float 16-bit quantization ran with

the same or negligible differences in latency compared to the respective pruned models.

This performance is expected since the true advantage of Float 16-bit quantization is only

realized when the inference operations are running on GPUs that natively operate on 16-

bit computations. Thus, Float 16-bit quantization affected the models minimally when they

were running on the RPi’s 32-bit CPU.

All models optimized with Integer 8-bit quantization generated the lowest latency

among the optimization methods, albeit with a slight decrement in accuracy on all models.

Latency improvements are 38 ms, 24 ms, 8 ms, 143 ms, and 169 ms for MobileNet,

MobileNetV2, NASNetMobile, DenseNet121, and DenseNet169, respectively. The

significant latency improvements demonstrate the advantage of Integer 8-bit quantization

on lightweight edge devices like the RPi.

Table 8. Quantized Keras Applications Models (Latency)

 Optimized Model Top-1 Accuracy Latency (ms)

MobileNet

Pruned (TF Lite) 82.19% 170
Dynamic Quan. 82.02% 167

Float 16bit Quan. 82.17% 170
Int 8bit Quan. 81.88% 132

MobileNetV2

Pruned (TF Lite) 77.52% 147
Dynamic Quan. 77.27% 152

Float 16bit Quan. 77.52% 132
Int 8bit Quan. 77.04% 123

NASNetMobile

Pruned (TF Lite) 73.05% 314
Dynamic Quan. 73.13% 310

Float 16bit Quan. 73.03% 311
Int 8bit Quan. 72.40% 306

DenseNet121

Pruned (TF Lite) 85.36% 710
Dynamic Quan. 85.35% 727

Float 16bit Quan. 85.36% 656
Int 8bit Quan. 82.97% 567

DenseNet169

Pruned (TF Lite) 85.51% 833
Dynamic Quan. 85.54% 853

Float 16bit Quan. 85.51% 827
Int 8bit Quan. 85.10% 664

Table 9 records the inference latency for the optimized EfficientNetLite models. It

is observed that the Top-1 accuracy of the models increases with each variant of

43

EfficientNetLite, 0 to 4. However, at the same time, inference latency also increases

significantly. This is due to the complexity increase across the EfficientNetLite models.

Dynamic quantization resulted in higher latencies across all models, which

similarly is due to activations being dynamically quantized to 8 bits during the inference

operations. Latency increments are 14 ms, 6 ms, 15 ms, 49 ms, and 96 ms for

EfficientNetLite0 to 4, respectively.

Float 16-bit quantization has very minimal impact on the EfficientNetLite0 and 1

models. Both accuracy and latency differences are negligible. For EfficientNetLite2 and 3,

latency improvements are 36 ms and 45 ms, respectively. There is a slight increase in

latency of 5 ms on EfficientNet4. Negligible accuracy changes of less than 0.03% are

observed.

Lastly, Integer 8-bit quantization vastly improves latency with minor impact on

accuracy across all models. Latency improvements are 27 ms, 58 ms, 75 ms, 97 ms, and

139 ms for EfficientNetLite0 to 4, respectively.

Table 9. Quantized TF Lite Models (Latency)

 Optimized Model Top-1 Accuracy Latency (ms)

EfficientNetLite0

Base (TF Lite) 77.83% 157
Dynamic Quan. 77.60% 171

Float 16bit Quan. 77.84% 157
Int 8bit Quan. 77.68% 130

EfficientNetLite1

Base (TF Lite) 79.59% 254
Dynamic Quan. 79.54% 260

Float 16bit Quan. 79.62% 255
Int 8bit Quan. 79.43% 196

EfficientNetLite2

Base (TF Lite) 80.09% 337
Dynamic Quan. 80.08% 352

Float 16bit Quan. 80.08% 301
Int 8bit Quan. 79.95% 262

EfficientNetLite3

Base (TF Lite) 81.02% 490
Dynamic Quan. 80.81% 539

Float 16bit Quan. 81.05% 445
Int 8bit Quan. 81.10% 393

EfficientNetLite4

Base (TF Lite) 84.43% 789
Dynamic Quan. 84.44% 885

Float 16bit Quan. 84.44% 794
Int 8bit Quan. 84.27% 650

44

2. Model Selection for Vehicle Recognition

There is no straightforward way of determining a model best suited for vehicle

recognition on the RPi with the metrics collected on inference accuracy, latency, and

compressed model size. Nonetheless, we can formulate some prioritization principles to

reach a decision.

From a security system implementation perspective, inference accuracy must be the

top priority. Recognizing a vehicle incorrectly may hamper investigations or, in the worst

case, wrongly accuse a suspect due to incorrect information. Similarly, to support real-time

video surveillance, the next metric we should prioritize is the inference latency of the CNN.

The latency has to be as low as possible and preferably below the threshold of human

awareness of 200 ms as described in [44]. Model size is prioritized as the least important

metric simply because models can be split or retransmitted after a failed attempt, and we

have already capped the model size to under 100 MB from the initial pre-trained model

selection phase.

From the test results generated in Tables 6, 7, 8, and 9, we observe that the inference

accuracy ranges between 72.89% and 85.54%. Since accuracy is the top priority, we filter

out the less accurate models of lower than 80% accuracy.

Presented in Table 10 are models that generate inference accuracy of above 80%.

We can now sieve out MobileNet, highlighted in green borders, as the only model that

fulfills both prioritized criteria of above 80% accuracy and lower than 200 ms latency. It

also seems that any quantized versions of the MobileNet model are viable for vehicle

recognition. On the other hand, when we consider accuracy to be rounded to 82% across

all MobileNet variants and ignore the negligible compressed size difference between Float

16-bit and Integer 8-bit, the latter offered the lowest inference latency. Hence, in this case

MobileNet with Integer 8-bit quantization is the model best suited for vehicle recognition

on the RPi.

45

Table 10. Keras and TF Lite Models with Above 80% Accuracy

 Optimized Model Top-1
Accuracy

Latency
(ms)

Compressed
Size (MB)

MobileNet

Pruned (TF Lite) 82.19% 170 13.31
Dynamic Quan. 82.02% 167 5.06

Float 16bit Quan. 82.17% 170 9.62
Int 8bit Quan. 81.88% 132 5.19

DenseNet121

Pruned (TF Lite) 85.36% 710 26.80
Dynamic Quan. 85.35% 727 6.43

Float 16bit Quan. 85.36% 656 13.48
Int 8bit Quan. 82.97% 567 6.27

DenseNet169

Pruned (TF Lite) 85.51% 833 47.75
Dynamic Quan. 85.54% 853 11.24

Float 16bit Quan. 85.51% 827 23.90
Int 8bit Quan. 85.10% 664 10.90

EfficientNetLite2

Base (TF Lite) 80.09% 337 17.06
Dynamic Quan. 80.08% 352 4.80

Float 16bit Quan. 80.08% 301 8.74
Int 8bit Quan. 79.95% 262 4.75

EfficientNetLite3

Base (TF Lite) 81.02% 490 26.80
Dynamic Quan. 80.81% 539 6.43

Float 16bit Quan. 81.05% 445 13.48
Int 8bit Quan. 81.10% 393 6.27

EfficientNetLite4

Base (TF Lite) 84.43% 789 47.75
Dynamic Quan. 84.44% 885 11.24

Float 16bit Quan. 84.44% 794 23.90
Int 8bit Quan. 84.27% 650 10.90

C. CHAPTER SUMMARY

This chapter shared the primary findings of this study and discussed the effects of

pruning and quantization on the selected Keras and TF Lite models. It also described the

selection methodology to find the model best suited for vehicle recognition on the RPi.

In the next chapter, we conclude the study and discuss possible future work.

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

V. CONCLUSIONS AND FUTURE WORK

This research focused on training deep learning models for vehicle recognition,

studying the resultant effects of applying model optimization techniques, pruning and

quantization, and eventually identifying the best performing model for vehicle recognition

on a lightweight and low-power edge device, the Raspberry Pi.

Two classifier architectures were developed on the Google Colaboratory (Colab)

platform to perform transfer learning of selected Keras and TensorFlow Lite models on the

Stanford Cars dataset [34]. The models were then optimized with post-training pruning and

quantization and evaluated with a Python script on an RPi 4. Metrics including model

accuracy, latency, and model size were collected for analysis and evaluation.

Our research analyzed the performance of the models trained with transfer learning

from ImageNet checkpoints [32] and optimized with pruning and quantization. By

prioritizing the metrics based on the usage scenario, we have identified the MobileNet

model, pruned and quantized to Integer 8-bit, as the model best suited to run vehicle

recognition on the RPi.

A. SUMMARY

This research explored transfer learning of state-of-the-art deep learning models

pre-trained on ImageNet, with the Stanford Cars dataset [34] for the task of vehicle

recognition. Referencing the list of Keras Application models trained on ImageNet in Table

1 (Chapter III, Section C.2), we proposed a model selection criteria of model size within

100 MB and 20 million parameters. Models with larger sizes or a higher number of

parameters are expected not to perform well on resource-constrained devices such as the

RPi in inference latency and compressed model size.

Initially, top layers were added to the Keras models, and only the top layers were

trained on the cars dataset in the transfer learning process. This approach, however, had led

to a poor accuracy score of 41% on the MobileNetV2 model. The issue was resolved by

first augmenting the training data with selected random effects and training the entire

model on the data instead of only training the added top layers.

48

The research also demonstrated the effects of optimization techniques, pruning and

quantization, on the transfer learned models. It was observed that applying both pruning

and quantization reduces all model sizes by more than half of the baseline models. At the

same time, accuracy is maintained within the range of plus or minus 2.5% from the baseline

models’ accuracy. Specifically, pruning only the fully connected (dense) layers of the

added top layers was found to drastically reduce the model sizes by a range of 3.18x to

4.57x and improve accuracy slightly, in the range of 0.18% and 2.32%, across all models.

In addition, all quantization methods, when applied to the models, are observed to perform

as intended. Dynamic and Integer 8-bit quantization reduced model sizes by up to 4.39x,

and Float 16-bit quantization reduced model sizes by up to 2.00x, on top of the size

reduction achieved via pruning. In latency, Dynamic quantization caused some latency

increments, whereas Integer 8-bit quantization provided significant latency improvements,

and Float 16-bit quantization caused a negligible impact on latency for most models.

With the models optimized, we found no straightforward way to determine the best

performing model simply by looking at the inference accuracy, latency, and compressed

model sizes. Hence, principles to prioritize the metrics were formulated to aid the selection

process. The MobileNet model, pruned and quantized to 8-bit Integer, is identified as the

model best suited for vehicle recognition on the RPi.

B. FUTURE WORK

While there is success in applying the optimization techniques, pruning and

quantization, and identifying the best performing model, this research also presents several

challenges that warrant future work.

As mentioned, the dataset used in this study is a widely used benchmark dataset for

machine learning research on vehicle recognition. Nevertheless, the small number of

images per class and overall small dataset size require much data pre-processing to achieve

an acceptable accuracy score. It is also observed that the dataset contains car models

manufactured before 2013, which is considered outdated for practical usage of vehicle

recognition today. Future work in this area should collect real-world images of the latest

vehicles, constantly update the dataset, and re-train the network on the new data. A good

49

source for capturing such data is at the facility of interest, which presents applicable real-

world data. Alternatively, vehicle images by make, model, and year can be collected by

scraping images off the web, then annotating and adding them to the current dataset to

maintain relevance and improve diversity.

Although re-training and optimizing the pre-trained models with the existing cars

dataset achieved reasonable accuracy levels, to push the boundaries of improving

performance, further research into customizing existing models or developing lightweight

custom models specifically to run vehicle recognition tasks on resource-constrained

devices or environments should be explored.

Another area for research is to combine federated learning with the identified

transfer learned model to enable distributed learning across edge devices. Doing so enables

the training tasks to be shifted to the edge devices and allows constant updating of the

model as new data is captured on the edge devices.

Furthermore, additional work on license plate recognition should be included to

achieve a complete vehicle recognition system for security at military bases and facilities.

This approach, however, would add latency when both recognition tasks run sequentially.

One way to resolve that issue would be to explore training an ML model capable of multi-

tasking via dual head output.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

LIST OF REFERENCES

[1] H. T. Ozdemir and K. C. Lee, “Threat-detection in a distributed multi-camera
surveillance system,” U.S. Patent No. 8,760,519 B2, Jun. 24, 2014. [Online].
Available: https://patents.google.com/patent/US20080198231

[2] J. Wei, “AlexNet: The architecture that challenged CNNs,” Towards Data
Science. Accessed Nov.15, 2020. [Online]. Available:
https://towardsdatascience.com/alexnet-the-architecture-that-challenged-cnns-
e406d5297951

[3] X. Luo, R. Shen, J. Hu, J. Deng, L. Hu, and Q. Guan, “A deep convolution neural
network model for vehicle recognition and face recognition,” Procedia Computer
Science, vol. 107, pp. 715–720, Dec. 2017.

[4] H. J. Lee, I. Ullah, W. Wan, Y. Gao, and Z. Fang, “Real-time vehicle make and
model recognition with the residual SqueezeNet architecture,” Sensors, vol. 19,
no. 5, p. 982, Feb. 26, 2019.

[5] S. Lee, K. Son, H. Kim, and J. Park, “Car plate recognition based on CNN using
embedded system with GPU,ˮ 2017 10th International Conference on Human
System Interactions (HSI), 2017, pp. 239–241, doi: 10.1109/HSI.2017.8005037.

[6] L. Johnson, “Real-time object tracking with TensorFlow, Raspberry Pi, and Pan-
Tilt HAT,” Towards Data Science. Accessed Nov. 15, 2020. [Online]. Available:
https://towardsdatascience.com/real-time-object-tracking-with-tensorflow-
raspberry-pi-and-pan-tilt-hat-2aeaef47e134

[7] J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural
Networks, vol. 61, pp. 88–117, Jan. 2015.

[8] J. McGonagle et al., “Feedforward neural networks,” Brilliant. Accessed Nov. 15,
2020. [Online]. Available: https://brilliant.org/wiki/feedforward-neural-networks/

[9] “Convolutional neural network,” eLtronics villa. Accessed Nov. 15, 2020.
[Online]. Available: https://medium.com/@eltronicsvilla17/convolutional-neural-
network-1a02f472a90c

[10] “An intuitive guide to convolutional neural networks,” FreeCodeCamp. Accessed
Nov. 15, 2020. [Online]. Available: https://www.freecodecamp.org/news/an-
intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

52

[11] “Convolutional layer,” class notes for CS231n: Convolutional Neural Networks
for Visual Recognition, Dept. of Comp. Sci., Stanford University, Palo Alto, CA,
USA, spring 2021. Accessed Nov. 15, 2020. [Online]. Available:
https://cs231n.github.io/convolutional-networks/#conv

[12] W. Zhao, “Research on the transfer learning of the vehicle logo recognition,” AIP
Conference Proceedings, vol. 1864, p. 020058, Aug. 2017.

[13] M. Stewart, “Simple introduction to convolutional neural networks,” Towards
Data Science. Accessed Nov. 15, 2020. [Online]. Available:
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-
networks-cdf8d3077bac

[14] S. Amidi and A. Amidi, “Convolutional neural networks cheatsheet,” Stanford.
Accessed Nov. 15, 2020. [Online]. Available: https://stanford.edu/~shervine/
teaching/cs-230/cheatsheet-convolutional-neural-networks

[15] I. Shafkat, “Intuitively Understanding Convolutions for Deep Learning,” Towards
Data Science. Accessed Nov. 15, 2020. [Online]. Available:
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faee1

[16] A. Kumar, S. Sarkar, and C. Pradhan, “Malaria disease detection using CNN
technique with SGD, RMSprop and ADAM optimizers,” in Deep Learning
Techniques for Biomedical and Health Informatics, S. Dash, B. Acharya, M.
Mittal et al., Eds. Cham, Switzerland: Springer, Nov. 2019, pp. 211–230.
[Online]. https://doi.org/10.1007/978-3-030-33966-1_11

[17] S. Saha, “A comprehensive guide to convolutional neural networks,” Towards
Data Science. Accessed Feb. 26, 2021. [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53

[18] D. Gupta, “Fundamentals of deep learning – activation functions and when to use
them?” Analytics Vidhya. Accessed Nov. 13, 2020. [Online]. Available:
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-
activation-functions-when-to-use-them

[19] M. Labs, “Secret sauce behind the beauty of deep learning: Beginners guide to
activation functions,” Towards Data Science. Accessed Nov. 13, 2020. [Online].
Available: https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-
deep-learning-beginners-guide-to-activation-functions-a8e23a57d046

[20] S. Jadon, “Introduction to different activation functions for deep learning,”
Medium. Accessed Nov. 13, 2020. [Online]. Available:
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-
deep-learning-9689331ba092

53

[21] “Introduction to pooling layer, “ Geeks for Geeks. Accessed Nov. 15, 2020.
[Online]. Available: https://www.geeksforgeeks.org/cnn-introduction-to-pooling-
layer/

[22] L. Guerra, B. Zhuang, I. Reid and T. Drummond, Automatic pruning for
quantized neural networks. ArXiv, abs/2002.00523v1, Feb. 2020. [Online].
https://arxiv.org/abs/2002.00523

[23] L. Y. Pratt, “Discriminability-based transfer between neural networks,” in
Proceedings of the 5th International Conference on Neural Information
Processing Systems (NIPS’92), 1992, pp. 204–211.

[24] “Quantization,” TensorFlow. Accessed Mar. 9, 2021. [Online]. Available:
https://www.tensorflow.org/lite/performance/model_optimization#quantization

[25] R. Zhao, Y. Hu, J. Dotzel, C. D. Sa, and Z. Zhang, Improving neural network
quantization without retraining using outlier channel splitting. ArXiv, abs/
1901.09504v3, May 2019. [Online]. https://arxiv.org/abs/1901.09504

[26] B. Jacob et al., “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2704–2713, doi: 10.1109/CVPR.2018.00286.

[27] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization for highly
accurate and compact deep neural networks,” in Computer Vision – ECCV 2018,
V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss, Eds. ECCV 2018. Lecture
Notes in Computer Science, Springer, Cham, vol 11212, Oct. 2018.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for
efficient ConvNets. ArXiv, abs/1608.08710v3, Aug. 2016. [Online].
https://arxiv.org/abs/1608.08710

[29] A. Chen, “Pruning convolutional neural networks,” Towards Data Science.
Accessed Nov.12, 2020. [Online]. Available: https://towardsdatascience.com/
pruning-convolutional-neural-networks-cae7986cbba8

[30] S. Yegulalp, “What is TensorFlow? The machine learning library explained,”
InfoWorld. Accessed Nov. 13, 2020. [Online]. Available:
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-
learning-library-explained.html

[31] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” in
Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019, doi:
10.1109/JPROC.2019.2918951.

54

[32] “Keras applications,” Keras. Accessed Mar. 1, 2021. [Online]. Available:
https://keras.io/api/applications/

[33] “TensorFlow lite model maker,” TensorFlow. Accessed Mar. 1, 2021. [Online].
Available: https://www.tensorflow.org/lite/guide/model_maker

[34] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations for fine-
grained categorization,” 2013 IEEE International Conference on Computer Vision
Workshops, Sydney, NSW, Australia, 2013, pp. 554–561, doi: 10.1109/
ICCVW.2013.77.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA, MIT Press, 2016.

[36] N. Benavides and C. Tae, “Fine-grained image classification for vehicle makes
and models using convolutional neural networks.” Accessed Mar. 1, 2021.
[Online]. Available: http://cs230.stanford.edu/projects_spring_2019/reports/
18681590.pdfns/

[37] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” 2009 IEEE Conference on Computer Vision
and Pattern Recognition, Miami, FL, USA, 2009, pp. 248–255, doi: 10.1109/
CVPR.2009.5206848.

[38] “Model optimization,” TensorFlow. Accessed Mar. 9, 2021. [Online]. Available:
https://www.tensorflow.org/model_optimization/guide/pruning#overview

[39] “Trim insignificant weights,” TensorFlow. Accessed Mar. 9, 2021. [Online].
Available: https://www.tensorflow.org/lite/performance/
model_optimization#pruning

[40] “Pruning comprehensive guide,” TensorFlow, Accessed Mar. 9, 2021. [Online].
Available: https://www.tensorflow.org/model_optimization/guide/pruning/
comprehensive_guide

[41] “Quantization aware training,” TensorFlow. Accessed Mar. 9, 2021. [Online].
Available: https://www.tensorflow.org/model_optimization/guide/quantization/
training#general_support_matrix

[42] “Post-training quantization,” TensorFlow. Accessed Mar. 9, 2021. [Online].
Available: https://www.tensorflow.org/lite/performance/
post_training_quantization

[43] “TensorFlow models on the Edge TPU,” Coral. Accessed Mar. 9, 2021. [Online].
Available: https://coral.ai/docs/edgetpu/models-intro/#quantization

55

[44] “Upgrade to superhuman reflexes without feeling like a robot,” IEEE Spectrum.
Accessed Apr. 27, 2021. [Online]. Available: https://spectrum.ieee.org/the-
human-os/biomedical/devices/enabling-superhuman-reflexes-without-feeling-
like-a-robot

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Jun_Goh_Zong Long_First8
	21Jun_Goh_Zong_Long
	I. INTRODUCTION
	A. MOTIVATION
	B. OBJECTIVES
	C. CONTRIBUTIONS
	D. THESIS ORGANIZATION

	II. BACKGROUND AND RELATED WORKS
	A. RELATED RESEARCH
	B. DEEP LEARNING
	1. Feed Forward Neural Network
	2. Convolutional Neural Networks
	a. Convolutional Layer
	b. Activation Layer
	c. Pooling Layer
	d. Fully Connected Layer

	3. Training Techniques
	a. Transfer Learning
	b. Network Quantization
	c. Network Pruning

	4. Development Frameworks
	a. TensorFlow
	b. TensorFlow Lite
	c. Keras

	C. DEEP LEARNING ON EDGE DEVICES
	D. CHAPTER SUMMARY

	III. Methodology
	A. SYSTEM ARCHITECTURE
	B. DATASET
	a. Pre-processing
	(1) Rescale and Resize
	(2) Data Augmentation

	C. CLASSIFIER ARCHITECTURE
	1. Design
	a. Improving Classification

	2. Pre-trained Model Selection
	3. Top Layers

	D. MODEL OPTIMIZATION FOR PERFORMANCE
	1. Pruning
	2. Quantization
	a. Dynamic Range Quantization
	b. 16-bit Float Quantization
	c. 8-bit Full Integer Quantization

	E. TRAINING AND TESTING SETUP
	F. CHAPTER SUMMARY

	IV. RESULTS AND ANALYSIS
	A. OVERVIEW
	B. MODEL PERFORMANCE
	1. Effects of Optimization
	a. Evaluating Pruned Models
	b. Evaluating Quantized Models

	2. Model Selection for Vehicle Recognition

	C. CHAPTER SUMMARY

	V. CONCLUSIONS AND FUTURE WORK
	A. SUMMARY
	B. FUTURE WORK

	List of References
	initial distribution list

