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ABSTRACT 

 Cyber threats against the Department of Defense (DOD) and the greater U.S. 

public create an ever-increasing security challenge. Advances in information technology 

provide new capabilities and benefits but also vulnerabilities. Today, the internet of 

things (IoT) is almost everywhere. Homes, businesses, and government organizations are 

continuing to add internet-connected devices for increased productivity and convenience. 

Military IoT devices provide traditional computing as well as specific functional purpose 

sensors. The DOD will increasingly depend upon a diverse range of IoT devices to gain 

information dominance over its adversaries. IoT technology in real time can provide 

entity-level maintenance, logistics, and intelligence data that has the potential to enable 

command and control decisions with greater confidence and speed. However, IoT devices 

are vulnerable to attack by malware, which has proven to be a network security concern. 

There have been many high-profile attacks such as the Mirai botnet and SolarWinds 

breaches that demonstrate IoT vulnerabilities. Advances in machine learning offer 

potential solutions to detect the evolving nature of cyber intrusions on internet networks. 

This thesis examines approaches to detecting malware-infected devices using machine 

learning and labeled IoT network flow data. It also seeks to determine whether supervised 

machine-learning models provide generalizable solutions for malware detection on new 

networks and IoT devices. 
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Executive Summary

Cyber threats against the Department of Defense (DoD) and the greater United States
public create an ever-increasing security challenge. Advances in information technology
provide new capabilities and benefits but also vulnerabilities. Today, the internet of things
(IoT) is almost everywhere. Homes, businesses, hospitals and government organizations are
continuing to add internet connected devices for increased productivity and convenience.
These devices can be traditional computing devices or more specific sensors for a functional
purpose. The DoD will increasingly depend upon a diverse range of IoT devices to gain
advantages on the battlefield. Military IoT technology has the promise of helping deliver
information dominance over our enemies. IoT technology in real time can provide entity level
maintenance, logistics, and intelligence data that has the potential to enable command and
control decisions with greater confidence and speed. However, IoT devices are vulnerable
to attack (Wrona 2015). Malware has proven to be a continued cause of concern for IoT
devices. There have been many high-profile attacks that demonstrate IoT vulnerability. The
2016 Mirai botnet, which amassed a swarm of unsecured IoT devices which delivered a
distributed denial of service (DDoS) attack, caused a massive internet outage in the eastern
United States (Newman 2017). Other cyber threats such as the SolarWinds breach and the
Stuxnet attack highlight the evolving threat and the vulnerabilities of IoT devices.

Advances in machine learning offer potential solutions to detecting the evolving nature
of cyber intrusions on internet networks. In this context, our thesis focuses on malware
detection, and more specifically, the detection of botnet-infected devices with the use of
network flow data in the form of Zeek connection logs.We seek to understand which models
are most effective and how they can be deployed for wider use.

We examine a variety of machine learning methods: classification trees, random forests,
deep neural networks (DNN), ensemble stacked models and bidirectional long short-term
memory (LSTM) neural network models. After deliberate feature engineering we find that
each model obtains strong binary classification performance with accuracies ranging from
.96 to .998 andMatthew’s Correlation Coefficient (MCC) ranging from .86 to .998 . We find
that bidirectional LSTM models, trained with an aggregated version of the IoT-23 dataset,
achieve the best model performance. Interpreting these results in broader contexts requires

xvii



caution but also points to possible opportunities. We find that the IoT-23 network traffic is
specific to a homogeneous group of IoT devices. We learn from decision classification trees
that simple network rules can be developed for specific IoT devices that have functional
purposes. These rules, modified for a specific device, would quickly detect anomalous IoT
network behavior triggered by a botnet infection. We suggest that our modeling techniques
applied to data collected from networks and devices of interest would benefit efforts to
protect DoD IoT devices from the persistent threat of botnet malware infections.
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CHAPTER 1:
Introduction

Cyber threats against the Department of Defense (DoD) and the greater United States public
present an ever-increasing security challenge. Advances in information technology provide
new capabilities and benefits but also vulnerabilities. Today, the internet of things (IoT) is
almost everywhere. Homes, businesses, hospitals and government organizations are contin-
uing to add internet connected devices for increased productivity and convenience. These
devices can be traditional computing devices or sensors designed for a particular purpose.
The DoD increasingly depends on a diverse range of IoT devices to gain advantages on the
battlefield. Military IoT technology has the promise of helping deliver information domi-
nance over our enemies. In real time, IoT technology can provide entity-level maintenance,
logistic, and intelligence data that can facilitate command and control decision making with
greater confidence and speed. However, IoT devices also are vulnerable to attack by an
adversary (Wrona 2015). Malware has proven to be a continued cause of concern for IoT
devices, and there have been many high-profile attacks that demonstrate IoT vulnerability.
They include the Mirai botnet, which commandeered a large number of unsecured IoT
devices to deliver a distributed denial of service (DDoS) attack that caused a widespread
internet outage of the eastern part of the United States (Newman 2017). Other cyber threats
such as the SolarWinds breach and the Stuxnet attack highlight the evolving threat and the
vulnerabilities of IoT devices.

Advances in machine learning offer solutions to the problem of detecting intrusions of
internet networks that evolve with the constantly changing nature of the threats. The purpose
of our thesis is to examine the use of machine-learning solutions to detect malware, and
more specifically botnet infected devices, with the use of network flow data in the form of
Zeek connection logs. We seek to understand which models are most effective and are best
suited for wider use.

1



1.1 Thesis Purpose
The purpose of this study is to contribute to the production of trained machine learning
models capable of detecting malware-infected IoT devices using network flow data. We use
the Aposemat IoT-23 labeled dataset with malicious and benign IoT network traffic. Our
work specifically focuses on detecting malware in the form of botnets. This is considered
one of the most pressing IoT security concerns to date. Our methods of developing malware
classification algorithms may help guide machine learning solutions for specific network
applications. We not only seek to develop models but also analyze why they work and if our
methods are general enough for wider use.

1.2 Research Questions
This study examines the behaviors of IoT devices infected with malware botnets. Our
ultimate goal is the development of robust and generalizeable machine learning models
able to quickly determine if an IoT devices has been compromised to botnet infection. By
analyzing and developing various supervised machine learning models we seek to answer
the following questions:

1. Which machine learning algorithms are well suited for malware detection using
network flow data?

2. Which data features are best suited for machine learning malware botnet detec-
tion?

3. Are machine learning algorithms trained with the Iot-23 data set generalizable
for wider use?

1.3 Scope, Limitations and Assumptions
Our primary interest is the detection of IoT devices that have been infected specifically with
malware botnets, solely with the use of network flow data in the form of Zeek connection
logs.

Our work primarily relies upon the open source IoT-23 dataset. This dataset captures a wide
variety of IoT infected botnet traffic, but it is limited to only a few different IoT devices
on one particular network. This work does not encompass all forms of malware; rather it

2



focuses specifically upon botnets.

We assume the IoT-23 dataset represents the general network behaviors of IoT devices
infected with malware botnets. We accept that intricacies of specific IoT devices, hosted on
certain networks may differ from IoT devices recorded within the IoT-23 dataset. General
concepts and methods developed by our work can be applied to specific use cases.

1.4 Thesis Organization
The remaining parts of this thesis are structured as follows: Chapter II provides background
information relevant to this study by briefly describing IoT, IoT vulnerabilities, how network
data is collected, an analysis of malware with specific information concerning botnets, and
past works concerning machine learning and malware detection. Chapter III describes the
IoT-23 dataset and methodology used in this thesis. Chapter IV presents our conclusions
from decision tree (DT), random forests (RF), deep neural networks (DNN), and long
short-term memory (LSTM) neural network machine learning models. Chapter V describes
our conclusions, recommendations, and suggestions for future research concerning botnet
malware classification.

3
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CHAPTER 2:
Background

2.1 Military Internet of Things “MIoT”
The internet of things can be broadly described as a network of internet connected devices.
The term is often used to describe sensors and devices that communicate with other devices
and outside servers. IoT has become ubiquitous with domestic households as TVs, grills,
smart speakers, door locks, security systems, smartphones, watches and cameras connect to
internet networks. IoT is not just a phenomenon in American households it has widespread
applications in industry and government. For example the Lower Colorado River Authority
have deployed sensors along the Colorado river to help track increasing stream levels
that would indicate the possibility of flooding (Harbert 2017). The tech company Zubie
provides vehicle fleet monitoring through IoT devices that enable preventive maintenance
tracking, allowing for enhanced resource management. The military application of IoT
(MIoT) as is true in civilian domains, will become increasingly prominent as network-
centric warfare and information dominance grow in greater importance. Some applications
of MIoT are the use of IoT devices in logistics and maintenance, soldier healthcare sensors,
C4ISR to enable battlefield awareness, fire-control systems to enable automated response
to threats and energy management on military installations (Zheng and Carter 2015). The
promises of MIoT are coupled with the apparent vulnerabilities of MIoT (Wrona 2015).
These vulnerabilities are discussed further below. It is important to recognize that MIoT
presents both opportunities and risks.

2.2 Network Data Collection
A computer network comprises of two or more computers that are connected by a physical
layer (cables, or WiFi) for the purpose of transmitting, exchanging, or sharing data and
resources. Networked devices communicate upon protocols known as the Transmission
Control Protocol / Internet Protocol (TCP/IP) suite. With these protocols packets of in-
formation are sent across networks and reassembled by the receiving device. The network
communications process can produce a tremendous amount of data. There are two overarch-

5



ing ways to capture network data, Packet Capture (PCAP) and network flow capture. PCAP
records the actual packets and can be used to view packet content and even reconstruct
previous internet traffic (Horneman and Dell 2014). This collection method generates large
volumes of data. For medium sized networks, PCAP data may be collected in terms of
gigabytes per second. Over time, PCAP data becomes burdensome to store and analyze.
Another method of analyzing network traffic is through the collection of network flow data.
A flow is a set of IP packets between a source port and destination port that provides series
of summary statistics describing the data transaction. The summary statistics often include
the number of packets, the total number of bytes and duration. Collected network flow data
is much more efficient for long term storage and analysis. The nature of network flow data
provides manageable data sources that can be used for machine learning algorithms. There
are several popular software applications that capture network flow data, including Cisco’s
Netflow and Zeek.

2.2.1 Zeek/Bro
Zeek, formally known as Bro, is an UNIX based open-source software network analysis
framework. Zeek was developed for security monitoring and traffic analysis by Vern Paxson
at the University of California, Berkeley (Paxson 1999). Zeek produces data efficient logs
that capture network activity. It is also a Turing complete programming language which
enables the analyst to query and customize data collection. Zeek logs reference each ob-
servation as a network connection. A connection is defined as a network flow between a
so called “socket pair.” Each “socket pair” consists of a host IP address and port and a
destination IP address and port. Each Zeek network flow connection provides summary
statistics such as the number of bytes sent or received, the duration of the connection and
the protocol.

Zeek produces 60 different log files capturing 400 different network variables. The log files
capture key information pertaining that include but not limited to HTTP, DNS key headers
and SSL. Zeek’s cornerstone log is the connection log. This log tracks key statistics for both
TCP and UDP connections to answer the basic questions of “who is talking to whom, when,
for how long and with what protocol” (Zeek 2021).

The use of Zeek has becomewidespread in the network security community. The U.S. Army

6



NETCOM, as well as many other organizations extensively, use Zeek to monitor network 
behavior.

Table 2.1. Zeek Connection Log. Source: Dutta et al. (2020) and Zeek.org.

Features Description
1 fields-ts Flow start time
2 uid ID Code
3 id.orig-h Source IP address
4 id.orig-p Source port
5 id.resp-h Destination IP address
6 id.resp-p Destination port
7 proto Transaction protocol
8 service http, ftp, smtp, ssh, dns, etc.
9 duration Duration of connection
10 orig-bytes Source to destination transaction bytes
11 resp-bytes Destination to source transaction bytes
12 conn-state Connection state
13 local-orig Source local address
14 local-resp Destination local address
15 missed-bytes Missing bytes during transaction
16 history History of source packets
17 orig-ip-bytes Flow of source bytes
18 resp-pkts Destination packets
19 resp-ip-bytes Flow of destination bytes
20 tunnel-parents Traffic tunnel

2.3 Malware
Malware is an overarching term for harmful or intrusive software intentionally designed
to damage or destroy computer systems as well as compromise data integrity. It is used
for a variety of nefarious actions to include DoS & DDoS attacks, targeted intrusions,
and ransoming of information systems. Malware comes in many forms; different malware

7



classifications are based upon the means of delivery, and the intended purpose. Some of
the most common classifications of malware are: adware, spyware, viruses, worms, trojans,
keyloggers, rootkits, botnets, and ransomware. Some of the classifications are exclusive
while others have overlapping qualities. Viruses infect other files and computers but require
the user to run an executable file. Worms are similar to viruses but they do not require user
interaction. Trojans, unlike viruses and worms, do not seek to propagate. Their intended
purpose is to open system access for a hacker.

IoT devices are susceptible to malware infections and are capable of being employed to
conduct cyber-attacks. Some IoT devices are considered appealing targets because they
do not always support strong security mechanisms and are unlikely to patch software
vulnerabilities. Vulnerable IoT devices can act as an entry points into a network or be
the purpose of the attack (Meneghello et al. 2019). One of the most challenging and
consequential security issues for IoT devices are botnet infections.

2.3.1 Botnets
Botnets refer to a network of computers or IoT devices that are infected by malware and are
under the control of an attacking agent or “bot master”. Infected devices then seek to find
vulnerabilities in other devices in order to further propagate the span of the botnet. Once the
bot master has a sufficient number of infected bots it is capable of launching cyber-attacks
(Wang et al. 2008). Botnets can be considered a combination of both a worm and a trojan.

The Mirai botnet first appeared in 2016 and has been used in several large-scale DDoS
attacks after its creator released the source code to the public (Herzbeg et al. 2016). A
notable Mirai botnet attack was against the DNS provider Dyn. The Mirai botnet was used
to amass an estimated 140,000 IoT devices for the purpose of a DDoS attack (Bursztein
2017). During the attack Dyn’s servers were receiving requests at 1.2 terabytes per second
from the army of bots (Woolf 2016). The Mirai botnet disabled hundreds of well-known
websites including Amazon, Paypal, Twitter, Netflix, Reddit and Github for several hours
(Woolf 2016). The intended target was believed to be video game servers of the popular
game Minecraft, the well-known websites were likely unintended collateral damage of the
attack (Bursztein 2017).

Months later a variation of the Mirai botnet was used by other actors to attack the Liberian
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telecommunications companyLonestarCellular (Chellel 2019). Chellel (2019) notes that the
Lonestar attack primarily used infected WiFi enabled web cameras to launch DDoS attacks.
The attack resulted in thousands of customers canceling services with Lonestar Cellular.
During the Lonestar cyber-attack, the attempt to infect new devices created massive internet
outages when 900,000 routers owned by the German Internet provider Deutsche Telekom
were infected (Musil 2016). When the routers were infected, they crashed due to unintended
bugs in the malware binaries (Chellel 2019; Musil 2016).

Mirai botnets as well as other botnet variants establish command and control (C&C) servers
that provide the botmaster with a centralized management tool to coordinate new attacks.
The C&C server establishes periodic communications with infected devices to log avail-
ability statuses and provide instructions for attacks (Kolias et al. 2017). Discovered C&C
servers communicate to bots using the IRC, TCP, HTTP and POP3 protocols (Ryu et al.
2018). C&C servers conceal their identity through the use of the Onion Router (TOR) and
proxy servers. Botnets establish centralized (depicted in Figure 2.1) or peer-to-peer com-
munication networks depicted in Figure 2.2. Centralized bot networks operate with each
device communicating directly back to one of the botmaster’s C&C servers. Peer-to-peer bot
networks differ in that the bot master’s communications are distributed through the network
of bots. Peer-to-peer communication is a more sophisticated method that conceals the C&C
servers. In order for the infected bot to block commands of the C&C servers it would need to
block connections to every other bot in the network (Wang et al. 2010; Grégio et al. 2015).

Figure 2.1. Centralized Bot Network. Source: (Ryu et al. 2018).
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Figure 2.2. Peer-to-peer Bot Network. Source: (Ryu et al. 2018).

After establishing the C&C servers the botnets then scan public IP addresses looking for 
vulnerabilities and access into local networks. When vulnerable IoT devices are found, the 
botmaster through automation issues commands and payloads necessary to compromise the 
integrity of the device. After a newly infected device is under control of the botnet, it often 
closes SSH and Telnet ports as measures to protect itself from other malwares (Kolias et al. 
2017). Once the device is infected it remains in one of four states which are depicted in 
Figure 2.3. In a dormant or benign state, the bot communicates with the C&C server waiting 
for commands. On command the botmaster can issue propagation commands that instruct 
the device to find new devices. First the bot must discover other devices to infect through 
of port scanning. Once a vulnerable device is found the bot begins to attack the device in 
order to further the span network of the botnet. The original Mirai botnet relied primarily 
upon the Telenet protocol TCP ports 23 and 2323, but new variants have become more 
sophisticated using other ports and protocols making detection more challenging (Kolias 
et al. 2017). In attack mode the bot becomes part of a DDoS attack against intended targets. 
During this phase the botnet infected devices send many requests to a server in an attempt to 
overload and disable it. Botnets often generate numerous network flow connections during 
the propagation port scanning, and attack DDoS phases.
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Figure 2.3. Botnet Activity Cycle

Botnets present security concerns that are apparent to DoD. Current and future MIoT have
the potential of becoming infected and disabling key networks. MIoT sensors purchased
by the DoD may have zero-day vulnerabilities and have the potential of being infected
with malware that would behave in similar ways to the Mirai botnets and its varying
manifestations. At strategic moments DoD networks could experience denial of its services
which may have catastrophic outcomes. The DoD also has an interest in protecting the
United States in the cyber domain. The examples highlighted thus far have been carried
out by low level and at times clumsy criminals. Nation states and non-state actors have
the potential to use botnets with greater sophistication that could target attacks against
key commercial and civic organizations. Large-scale use of botnets could have profound
effects on American commerce and governance at key moments. Due to the threats posed
by botnets, developing new means for detection is of great relevance and importance to the
DoD.
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2.4 Machine Learning and Malware Detection
Past work related to the use of machine learning to detect malware can be categorized by
two approaches: static and dynamic (Gibert et al. 2020). Static techniques seek to analyze
the code structure and other data properties of the malicious binary. Dynamic techniques
seek to analyze the behaviors of executed malware on a device or network.

There have been several interesting studies that demonstrate the use of static techniques.
Naeem et al. (2018) propose a malware image classification system that is designed to trans-
pose malware binaries onto a gray-scale image. The gray-scale images are then used to train
supervised machine learning algorithms for malware detection. The authors obtain 97.4%
accuracy detecting 25 different malware variants. Other static techniques have achieved
similar rates of accuracy. However, there are disadvantages to this approach. The malware
must be known and analyzed prior to detection so it can be incorporated into the machine
learning training dataset. This method is also prone to failure due to advances in code
obfuscation techniques and file-less malware which is only represented as an abstraction in
the system’s memory (Saad et al. 2019; Gibert et al. 2020).

Dynamic approaches can be further divided into two categories. The first is instruction
traces. This method seeks to analyze how file structures change, and how malware uses the
infected devices Central processing unit (CPU) and memory. The other dynamic method
which is the focus of this thesis is a network-based approach. Network based approaches
seek to analyze the network traffic behaviors of infected devices. In past work network-based
approaches have often focused on the use of network flows data to detect traffic of malware
infected devices.

Ryu et al. (2018), explores the use of a suite of supervised machine learning algorithms to
detect botnet infected devices with network flow data. The study uses the CTU-13 labeled
NetFlows dataset for training. Ryu et al. (2018) discusses the challenges of imbalanced
response classes often present in labeledmalware detection datasets and proposesMatthew’s
Correlation Metric (MCC) as a primary performance criterion. The study finds that the
Random Forests algorithm and decision tree classification to consistently produce the best
performing models both in terms of MCC and training time.

Dutta et al. (2020), present a binary classification ensemble model that incorporates a
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Deep Sparse AutoEncoder (DSAE), a deep neural network (DNN), and a long short-term
memory (LSTM) model. The authors use the DSAE for dimensionality reduction, then use
predictions from both the DNN and LSTM as inputs to a logistic regression meta-classifier.
Their model is trained and evaluated with three labeled network flows datasets, IoT-23,
LITNET-2020 and NetML-2020. Dutta et al. (2020) only use a small subset of the IoT-23
dataset due to the volume of the data. The model achieves high performance metrics. The
article does not explore the generalizability of their model to new networks and devices.
This article was published during the development of this thesis and is interesting because
it is one of the first publications using the IoT-23 dataset.

There are only a few published works that specifically address the use of Zeek logs for
machine learning. Gustavsson (2019), demonstrates the use of several machine learning
classifiers with customized features created through the Zeek programming language. His
work demonstrates the flexibility of Zeek to produce streaming robust machine learning
features available in real time. Like other studies Gustavsson (2019) finds Random Forests
to obtain better performance than other machine learning algorithms.

Meidan et al. (2018) examine unsupervised techniques for malware detection. Their journal
article focuses specifically on IoT network traffic subject to infection from the Mirai and
Gafgyt botnets, and the use of Deep Autoencoders. This study is distinguished by its
use of autoencoders as fully automated standalone malware detectors. The most common
use of autoencoders is for dimensionality reduction, outlier detection, and labeling for
semi-supervised machine learning. Their model seeks to capture normal IoT device traffic
for specific IoT devices as baselines of normal activity within a time window. When traffic
deviates fromnormal themodel indicates possiblemalicious activity. The study incorporates
the use of various home IoT devices infected by brute force Telnet attacks. The autoencoder
model in most cases successfully detects botnet traffic within seconds of infection, with
reportedly few false positives. The authors find that IoT devices with more complicated
network traffic patterns lead to higher false positive rates. The study emphasizes that IoT
devices with predictable network traffic patterns can be profiled for normal and malicious
network behavior.

The use of machine learning in cyber security has been widely studied in technical literature.
Google scholar indicates as many as 47,200 publications concerning machine learning and
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malware detection. The works we describe represent topics most informative to our work
concerning machine learning, network flows, the use of Zeek and botnets. Our review of
the literature indicates that tree-based machine learning algorithms and LSTMmodels offer
promising results. Lacking in any of the literature known to us are inferential perspectives
concerning model performance. Most studies simply present algorithms but fail to explain
why they work or fail to work. Knowing the reason for model performance is crucial to
understanding the model’s generalizability to a wider array of network activity.

2.5 Malware Open Source Datasets
There are several labeled open-source malware datasets. The IoT-23 dataset is the only
labeled dataset built upon the framework of Zeek connection logs. The IoT-23 dataset will
be described more in detail in the following chapter. Other network flow datasets such as
DARPA 98, LITNET-2020, NetML-2020, KDD Cup 1999 are offered in Cisco NetFlow’s
logs, PCAP files, or in customized network flow extractions from PCAP data. Labeled
datasets are useful because they allow the analyst to perform a wide range of analysis to
include supervised machine learning. Supervised machine learning requires data labeling as
a means to measure loss between predicted values and true values. The loss function is then
optimized to minimize prediction error. Labels in malware dataset come in varying forms.
Some labels classify particular network traffic as either benign or malicious, other labels
include particular malicious behaviors exhibited in the network traffic and others specify the
variant of malware. Labeling of the datasets is conducted by subject matter experts (SME)
during the recording of network traffic. The SME due to the large nature of the data develops
scripts based upon analysis of the malware to facilitate the labeling process (Hussain et al.
2020). Another way analyst label datasets is by simply recording the time of the attacks
during controlled experiments. This method is common when data consist solely of PCAP
files which are ill-structured for direct labeling.

Though network captures of malware are well suited for machine learning model devel-
opment there are drawbacks. Labeled datasets can only record known or created malware
traffic. Since there is a wide array of malware variants it is impossible to fully capture all
known or future malware variants. Another limitation is that malware datasets are influ-
enced by the devices used during the controlled experiment (Hussain et al. 2020). There is a
wide range of IoT devices currently in use, each of whom use specific applications and have
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certain functionalities. Some of these limitations can be mitigated by attempting to classify
specific malicious behavior rather than specific malware variants and to retrain models for
specific IoT devices used in a production environment.
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CHAPTER 3:
Data and Methodology

This chapter provides an overview and discussion of the IoT-23 dataset, important aspects
of data cleaning, and feature engineering. It also describes methods used in our research for
mediating the effects of class imbalances in the data and discusses appropriate performance
metrics for the evaluation of machine learning models. Finally, this chapter provides an
overview of the machine learning algorithms (random forests and deep neural networks
(DNN)) used for malware detection on the IoT-23 dataset.

3.1 Analysis of IoT-23 Dataset
The primary data used for our research is the open source Aposemat IoT-23 (Parmisano et al.
2020) labeled dataset. The IoT-23 dataset contains 20 different malicious malware captures
and three benign IoT device captures (see Tables 3.2 and 3.3). Stratosphere Laboratory
generated the dataset at the Czech Technical University (CTU) and made the data available
to the public in January 2020. Stratoshpere Laboratory obtained each of the 20 data captures
by infecting an IoT device with a real-world malware variant. The entire IoT-23 dataset
consists of approximately 300 million network flows. We chose this for its accessibility,
relevancy and labeling. The data being open source allows for easy access on both personal
and NPS computing resources. The data set is relevant because its malware variants are
seen on actual IoT devices. The most important aspect of the data is its labeling (i.e., known
disposition of records as either infected with a particular type of malware or benign) that
provides an opportunity for use of supervised machine learning algorithms. Supervised
machine learning algorithms use labeling or known truths to optimize models for predicting
the disposition of newly introduced, unlabeled data.
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Parmisano et al. (2020) collected the IoT-23 dataset with raw PCAP and Zeek connection
logs (see chapter 2 section Zeek/Bro). The Stratosphere Laboratory(2020) implemented an
automated labeling scheme recorded as additional fields of the Zeek connection logs. The
dataset provides two labeled response vectors. The first is simply a binary label [malicious,
benign]. The second is a more detailed label consisting of the following label categories
(Parmisano et al. 2020):

• Attack: indicates an attack originating from a botnet infected device to another device.
The attacking IoT device is seeking to exploit known network vulnerabilities. Attack
methods include brute force attack on a telnet login, and command injection.

• Benign: indicates no malicious network flow connections.
• C&C: indicates a network flow from an infected device connected to a command and
control (C&C) server.

• DDoS: indicates that a network flow from an infected device was executing a Dis-
tributed Denial of Service (DDoS) attack against another device.

• FileDownload: indicates an infected file was download.
• HeartBeat-C&C: indicates that packets sent during the network flow connection
were being used to track an infected device by a HeartBeat C&C server.

• Mirai-C&C: indicates that the network flow connection has characteristics of aMirai
botnet C&C server.

• Okiru: indicates that the network flow connection has characteristics of an Okiru
botnet.

• PartOfAHorizontalPortScan: indicates that a network flow connection is part of a
horizontal port scan. Port scans are used to identify vulnerabilities in targeted devices.

• Torii-C&C: indicates that the network flow connection has characteristics of a Torii
botnet C&C server.

The detailed labels contain two subcategories of labels. The first category consists of
behaviors of a malware infected device. These behaviors are downloading infected binary
files, communicating with a C&C server, port scanning to find vulnerabilities in other IoT
devices, attacking or conducting DDoS in order to suppress a targeted device or server. The
other subcategory contains labels that are associated with the Okiru botnet. Okriu is a Mirai
botnet variant and it’s unclear what the label means in terms of actions taken by the infected
device. For this reason, malware captures 43-1, 17-1, 36-1, 33-1, and 7-1 which contain
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the Okriu label present a challenge for multi-class classification problems. One solution is
simply to remove these captures or filter Okriu connections from the dataset.

The dataset classes are unbalanced, posing a challenge to machine learning classifiers.
Malicious traffic composes the majority of observations with benign traffic consisting of
only 10% of the data. The primary reason for the class imbalance in the dataset is that DDoS,
port scanning and connections associated with the Okiru botnet generate large volumes of
network flow connections in small time increments. Conversely, the FileDownload label is
extremely sparse with only a total of 53 flows out of the 300 million observations in the
entire dataset. This imbalance can create challenges for machine learning classifiers as we
discuss in section 3.4. For additional reference Table 3.2 provides the number of detailed
label occurrences respectively.
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Table 3.1. Detailed Label Counts

Label Detail Counts
1 PartOfAHorizontalPortScan 213,852,924
2 Okiru 47,381,241
3 Benign 30,858,735
4 DDoS 19,538,713
5 Okiru-Attack 13,609,470
6 C&C-HeartBeat 33,673
7 C&C 21,995
8 Attack 9,398
9 C&C-PartOfAHorizontalPortScan 888

10 C&C-HeartBeat-Attack 834
11 C&C-FileDownload 53
12 C&C-Torii 30
13 FileDownload 18
14 C&C-HeartBeat-FileDownload 11
15 PartOfAHorizontalPortScan-Attack 5
16 C&C-Mirai 2

A total of four unique IoT devices were used in the formation of the dataset. In the malware
captures a Raspberry-Pi was used as the infected device. A Raspberry-Pi is a small modi-
fiable computing device popular among hobbyist. The benign honeypot captures used the
following IoT devices for data collection: Amazon Echo, Philips HUE Smart Light Bulb
and the Somfy Door Lock. The Raspberry Pi device offers advantages and disadvantages in
the creation of training datasets for malware detection. One advantage is that a Raspberry
Pi can operate on the Linux operating system. Most IoT devices use one of the many Linux
distributions available from the open-source community. The problem with using a Rasp-
berry Pi as the infected device is that it is designed for access by the end user. Easy end-user
access has the potential to create vulnerabilities that may be too trivial and unrealistic
compared to a real-world scenario, which could impart bias to the dataset. For instance, the
Raspberry Pi could leave an open and unsecured Telent or SSH port known to the dataset
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creator. Secondly, the problem with only using a Raspberry Pi is that it may not represent
the computing capacity or normal behaviors of IoT devices in general. The network flow
connections represented in a Zeek connection log may produce more variability than a
small lightweight IoT device such as a smart light bulb. These points must be considered
when constructing a machine learning classifier for generalizations used in a production
environment.

The IoT 23 dataset consists of several variations of botnets infections. TheMirai botnet is the
most represented (Table 3.2). IRCBot, Kenjiro, Gagfyt, and Muhstik botnets demonstrate
similar behaviors as theMirai but have different targets or modify communication protocols.
The Mushstik botnets propagate through routers using the open source firmware Tomato
(Hilt et al. 2020). The Hajime botnet is similar to the Mirai but more sophisticated using a
peer-to-peer C&C server method. The botnet’s purpose is unknown and somewhat mysteri-
ous. When it infects a device it seeks to remove other botnets, blocks ports 23, 5358, 5555,
7547, and then continues to propagate. Hajime leaves in a log file the message "Just a white
hat, securing some systems"(Herwig et al. 2019). The Torii and Hide and Seek botnets are
unique because they are able to survive system reboots. The Torrii botnet’s intended purpose
appears not to attack targets with DDoS rather it seeks to exfiltrate sensitive information
using "wget", "ftpget", "ftp", or "busybox wget" (Akub Kroustek and Hron 2018).
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Table 3.2. IoT-23 Datasets with Malicious Activity

Name of Dataset Duration(hrs) #ZeekFlows Malware Ratio Benign
Malware-Capture-39-1 7 73568982 IRCBot 1e-04
Malware-Capture-43-1 1 67321810 Mirai 0.30562
Malware-Capture-17-1 24 54659864 Kenjiro 0.00058
Malware-Capture-33-1 24 54454592 Kenjiro 0.02536
Malware-Capture-52-1 24 19781379 Mirai 9e-05
Malware-Capture-36-1 24 13645107 Okiru 2e-04
Malware-Capture-7-1 24 11454723 Linux.Mirai 0.00663
Malware-Capture-35-1 24 10447796 Mirai 0.79083
Malware-Capture-9-1 24 6378294 Linux.Hajime 0.00354
Malware-Capture-49-1 8 5410562 Mirai 0.00068
Malware-Capture-60-1 24 3581029 Gagfyt 0.00069
Malware-Capture-48-1 24 3394347 Mirai 0.0011
Malware-Capture-1-1 112 1008749 Hide and Seek 0.46521
Malware-Capture-3-1 36 156104 Muhstik 0.02906
Malware-Capture-34-1 24 23146 Mirai 0.08308
Malware-Capture-8-1 24 10404 Hakai 0.20965
Malware-Capture-42-1 8 4427 Trojan 0.99864
Malware-Capture-21-1 24 3287 Torii 0.99574
Malware-Capture-20-1 24 3210 Torii 0.99501
Malware-Capture-44-1 2 238 Mirai 0.8903

Table 3.3. IoT-23 Datasets without Malicious Activity

Name of Dataset Duration(hrs) #ZeekFlows Device
Honeypot-Capture-7-1 1.4 139 Somfy Door Lock
Honeypot-Capture-4-1 24 461 Philips HUE
Honeypot-Capture-5-1 5.4 1383 Amazon Echo
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3.2 Data Cleaning
Weconducted data cleaning activity primarily in theR programming language (RCore Team
2020) using the NPS Hamming HPC. First, the Zeek connection logs were parsed into R
data frames. Then the features local-orig, local-resp, and tunnel-parents were removed due
the vast majority of their observations being incomplete. Observations where the duration,
bytes or packets were incomplete were replaced with the value zero. After the initial data
cleaning was completed the data was saved to a series of comma separated values (CSV)
files.

In order to use Python programming language machine learning software (API Scikit-learn
and TesnsorFlow Keras API), categorical variables must be represented as numeric values.
We converted the categorical variables to numeric values using one-hot-encoding. Response
variables were converted to numeric values by ordinal numeric encoding.

3.2.1 Scaling and normalizing data
Neural network software usually benefits from scaling and normalization of numeric input
features to ensure faster convergence and better solutions (Stottner 2019; Hale 2019). Four
widely-used methods available in the Scikit-Learn API are min-max scaler (3.1), robust
scaler (3.2), standard scaler (3.3) and normalizer (3.4). To describe these methods we let G,
~ and I represent numerical feature vectors and G8, ~8, I8 represents individual values within
the vectors.

The min-max scaler depicted in equation (3.1) is considered a standard starting point for
DNN and most machine learning applications. It scales the values between a specified range
with the default being [0,1]. This function preserves the shape of the original distribution
and maintains the importance of outlier values.

"8="0G(20;4A (G8, G) =
G8 − <8=(G)

<0G(G) − <8=(G) (3.1)

The robust scaler incorporates inter-quartile range. This scaler reduces the influence of
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outliers within a vector.

'>1DBC(20;4A (G8, G) =
G8 −&1(G)

&3(G) −&1(G)
(3.2)

The standard scaler is used to transform the feature vector to an approximation of the normal
distribution with mean zero and unit variance.

(C0=30A3(20;4A (G8, G) =
G8 − <40=(G)
BC34{(G) (3.3)

Normalizing works differently because it transforms the data by rows instead of columns.

#>A<0;8I4A (G8, ~8, I8 ....) =
G8√

G2
8
+ ~2

8
+ I2

8
+ .....

(3.4)

3.3 Feature Engineering
After initial data cleaning, we derived several new features from the data. The purpose of
feature engineering is to create features generalizable to new data, to limit the dimension-
ality of categorical variables, to incorporate domain knowledge, and to account for time
dependency within and between network flow connections. Table 3.4 provides a summary
of our proposed engineered features.
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Table 3.4. Engineered Features

Engineered Features Description
1 time_diff_from_last_connection Time difference from last connection
2 bytes_per_sec Total bytes per second
3 bytes_per_sec_orig Source bytes per second
4 bytes_per_sec_resp Destination bytes per second
5 pkts_per_sec Total packets per second
6 hist_str_len Number of characters in history field
7 orig_class Source IP address class
8 resp_class Destination IP address class
9 orig_port_level Source port class
10 resp_port_levels Destination port class
11 ShAd_hist History String pattern ShAd
12 ShAD_hist History String pattern ShAD
13 ShAF_hist History String pattern ShAF
14 num_flows Number of client flows last 10th second
15 orig_bytes_total Total source bytes last 10th second

Beforemodeling it is important to ensure that the dataset is generalizable, such that a specific
IP address and port combination would not bias machine learning algorithms. We bin the
IP addresses contained in the features id.org-h, and id.resp-h into the following internet
protocol version 4 (IPv4) address classes: A,B,C,D,E and other. Class "other" contains
internet protocol version 6 (IPv6) addresses. The IPv4 address classes (A through C) are
based upon the network size hosting the IP address. Class A is reserved for very large
networks that offer a large number of possible IP addresses. Classes B and C are used for
smaller networks. Class D address are not assigned to host but used for mulitcasting and
class E is reserved for research purposes. Table 3.5 represents the the IP address ranges for
each class.
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Table 3.5. IP Address Classes

Class Address Range
1 Class A 1.0.0.1 to 126.255.255.254
2 Class B 128.1.0.1 to 191.255.255.254
3 Class C 192.0.1.1 to 223.255.254.254
4 Class D 224.0.0.0 to 239.255.255.255
5 Class E 240.0.0.0 to 254.255.255.254
6 Other IPv6 Address

We bin port numbers into three categories: well known ports, registered port and dy-
namic ports. Well known ports are reserved for specific TCP/IP applications such as HTTP,
HTTPS, and SSH. Registered port numbers are ports used by organizations for unique per-
sistent server applications. Often these ports are registered with Internet Assigned Numbers
Authority (IANA). One example of a registered port is UDP 1716, which is designated for
online video game America’s Army developed for the U.S. Army recruiting command. Dy-
namic ports are not controlled and intended for temporary use. Dynamic port numbers are
used typically by clients and not servers (Goralski 2017). Port number ranges are depicted
in Table 3.6.

Table 3.6. Port Categories

Category Port Number Range
1 Well Known Ports 0-1023
2 Registered Ports 1024-49151
3 Dynamic Ports 49152-65535

The Zeek connection logs contains a history field that provides a description of events that
occurred in the TCP or UPD connection. This field, which consists of a series of characters
that are represented in a ordered string, captures the process known as the “three way
TCP handshake” or a corruption of that process. We analyze labels of malicious traffic
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for common patterns presented in the history field. Flows that contain history field values
ShAd, ShAD and ShAF appear to be associated with malicious labels. Based on the analysis
of the history field, we create three new binary fields that contained these patterns. These
labels can be decoded to give actual network meaning. Capital letters refer to actions taken
by the source client IP and lower case refers to the destination client IP. For example, ShAd
translates to the following sequence of events that occurred during the connection:

1. S- The source IP sent a SYN segment,
2. h -The destination IP sent a SYN ACK segment
3. A- The source IP sent an ACK segment.
4. D- The source IP sent at least one segment with payload data.

We derive several variables to associate values with time dependency. Variable 1 (Table
3.4) measures the time difference between the current flow and the last. Variables 2-4
captures rates of specified features in units per second. Time lag features num_flows and
orig_bytes_total capture time dependencies in a series of connections. This is useful for
identifying connections associated with malicious events that generate many observations
such as DDoS and Horizontal Port Scanning. The two time lag features count the number
of connections and sum the number of source bytes associated with the current connection
IP address in the the past 10th of a second. The algorithm used to produce this feature was
implemented in Python (see NPS GitLab page).

We developed all of the features in this section in the R (R Core Team 2020) or Python
(Van Rossum and Drake Jr 1995) programming languages. For use in production these
features could be replicated in the Zeek programming language to efficiently modify Zeek
connection logs.

3.4 Data Label Imbalances
The IoT-23 dataset has imbalanced response variables. The imbalance stems from an unequal
amount of benign and malicious labeled network flow connections. Data imbalances are a
common phenomenon in machine learning classification problems and can be problematic.
Imbalanced datasets are often problematic for supervised machine learning because the
algorithm is not equally penalized for classifying minority classes (Chawla et al. 2004).
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Therefore, data imbalances often create a classification bias in favor of the majority class.
The problem is further exacerbated when a trained supervised machine learning model
is used to make predictions with new data having a different distribution of response
variables. Network traffic prior to botnet infection has few if any malicious flows. After
infection infected flows become the majority of flows. There are several methods that can
be taken in order to mitigate the negative effects sometimes attributed to machine learning
classifiers trained with imbalanced data sets. These methods are up sampling the minority
or down sampling majority response variables, synthetic creation of data, or the use of class
weights.

• Down Sampling or Up Sampling: Down sampling is the method where a subset of
the majority class is sampled without replacement. This can be an effective method,
but often valuable data is omitted from the machine learning process. Up sampling
refers to randomly sampling from the training dataset with replacement. This can
be problematic because observations are then duplicated. Duplicated observations
if replicated too often can create an artificial bias (Chawla et al. 2004). Another
disadvantage of up sampling with large data sets is explosive growth of the size of
the training data.

• Synthetic Minority Over-sampling Technique (SMOTE) SMOTE creates addi-
tional observations of the minority class through the use of the K-nearest neighbors
algorithm (Chawla et al. 2002). This is a method that has been effective in many
machine learning case studies. The API Scikit-Learn includes commonly known
SMOTE algorithms.

• ClassWeights:Another method to mitigate the effect of class imbalance is to provide
greater weight to the minority response class. Weights allow the loss function to
penalize with greater magnitude miss-classifications of minority labels. The naive
approach to assigning class weights is simply by using the proportions of the classes
found in the training dataset. This sometimes fails to increase model performance.
Different weighting ratiosmust be experimentedwith in order to find improved results.
Class weights can be problematic especially if the class proportions in a real-world
application may differ(Huang et al. 2013). In the case of IoT malware detection, if
the device is not infected benign observations will be in the majority. However, when
IoT devices are infected, the opposite would be true.
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3.5 Data Sampling Methods
We partitioned the IoT-23 dataset into testing and training based on a random 40/60 split.
A random split was used in order to capture observations from all of the 23 different IoT
malicious and benign captures. The trainset partition, due to the size of the data, allowed
for the creation further validation splits.

Due to the large size of the IoT-23 dataset, random subset sampling of training data was
used in order to experiment with different algorithmic parameters in a time efficient manner.
It was generally found that a random subset consisting of only 10% to 15% of the entire
dataset produced results similar to using the entire training data partition in both random
forest and neural network models.

3.6 Data Aggregation Methods
Data aggregation was also considered in order to reduce the number of observations.
Aggregation in some IoT-23 captures helped balance the data by reducing network flows the
IoT devices generated in quick succession. We collected summary statistics by aggregating
time windows of a 10Cℎ of a second for a particular IoT Device. The response variable
was considered malicious if at least one observation in the time window was classified as
malicious. This aggregation method reduced the number of observations from 300 million
to 2.3 million observations. The total file is reduced to 2.4 GB from the original 50 GBs. A
summary of the aggregated data is provided in Table 3.7.
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Table 3.7. IoT-23 Dataset Aggregated by 10Cℎ of Second Time Windows

Name of Dataset #Observations Malware/Device Ratio Benign
1 Malware-Capture-1-1 440734 Hide and Seek 0.21
2 Malware-Capture-17-1 344255 Kenjiro 0.05
3 Malware-Capture-35-1 334874 Mirai 0.99
4 Malware-Capture-33-1 330918 Kenjiro 0.02
5 Malware-Capture-48-1 139444 Mirai 0.01
6 Malware-Capture-39-1 130178 IRCBot 0.01
7 Malware-Capture-7-1 111545 Linux.Mirai 0.08
8 Malware-Capture-36-1 110487 Okiru 0.02
9 Malware-Capture-3-1 97070 Muhstik 0.02
10 Malware-Capture-9-1 96350 Linux.Hajime 0.04
11 Malware-Capture-49-1 72095 Mirai 0.01
12 Malware-Capture-52-1 67288 Mirai 0.02
13 Malware-Capture-43-1 36799 Mirai 0.07
14 Malware-Capture-8-1 10365 Hakai 0.21
15 Malware-Capture-34-1 8776 Mirai 0.21
16 Malware-Capture-60-1 4000 Gagfyt 0.12
17 Malware-Capture-20-1 2935 Torii 0.99
18 Malware-Capture-42-1 2911 Trojan 0.99
19 Malware-Capture-21-1 2579 Torii 0.99
20 Honeypot-Capture-5-1 804 Amazon Echo 1.00
21 Honeypot-Capture-4-1 350 Philips Hue 1.00
22 Malware-Capture-44-1 235 Mirai 0.89
23 Honeypot-Capture-7-1 115 Door Lock 1.00

3.7 Performance Metrics
Performance metrics are important when evaluating classification models. There are several
different classificationmetrics that offer advantages and disadvantages to model assessment.
This study considered accuracy, precision, recall, F1 score, the false positive rate and
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Matthew’s correlation coefficient (MCC). Each of the evaluation metrics offer insights and
disadvantages when evaluating classification models.

3.7.1 Accuracy
Accuracy is a naive performance metric that simply offers the ratio of correctly classified
observations to total observations. Mathematically accuracy is defined as:

�22DA02~ =
True Positives + True Negatives

False Positives + False Negatives + True Positives + True Negatives (3.5)

Accuracy offers a tractable performance metric, however it can be misleading when con-
sidering unbalanced data. For instance, suppose in a labeled dataset consisting of 100
observations, 5 were of class 1 the remaining 95 were of class 2. Then suppose the classifier
correctly identified none of class 1 but all of class 2. The classifier accuracy would be .95,
but the model failed completely to identify any of class 1. The problem is compounded when
there are more than 2 unbalanced classes. This hypothetical problem pertains to malware
classifiers where often data is highly unbalanced. In the case of the IoT-23 dataset malicious
network flow observations out number the total benign observations. When considering
more specific IoT-23 labels some are exceedingly rare. Because of limitations of accuracy
other metrics must be considered in conjunction with accuracy.

3.7.2 Precision, Recall, False Postitve Rate, Specificity
Precision and recall help address the problem of evaluating classification models evaluated
on unbalanced datasets. Precision is the proportion of positive identifications that were
correctly identified and is mathematically expressed as:

%A428B8>= =
True Positives

True Positives + False Positives (3.6)

Recall also known as sensitivity is the proportion of actual positives correctly identified and
can be mathematically expressed as:
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'420;; =
True Positives

True Positives + False Negatives (3.7)

The false positive rate (FPR) is the proportion of non-relevant or negative cases incorrectly
identified as positive cases in the data. It is mathematically expressed as:

�%' =
False Positives

False Positives + True Negatives (3.8)

This measure is important because false positive classifications present a problem to the
end user. Large volumes of false positives limit the capacity of the analyst.

Specificity also known as the true negative rate. Specificity refers to how well a model
classifies observations that are not considered the relevant class. It can be mathematically
expressed as:

(?428 5 828C~ =
True Negative

False Positives + True Negatives (3.9)

Precision, recall, FPR, specificity are metrics that lend insight into the model. The metrics
are non-symmetric. The metrics are dependent upon interpretation of the relevant class.
When evaluating malware detection models, expressing each of the metrics in terms of each
class provides strengths and weaknesses of the model.

3.7.3 F1 Score
F1 score is a commonly used machine learning metric. It is defined as the harmonic mean
of precision and recall. It is succinctly represented mathematically in terms of precision and
recall:

�1 =
2 × Precision × Recall
Precision + Recall (3.10)

F1 scores range in the continuous set of [0,1]. It’s important to note since F1 is formulated
by definition of precision and recall it is independent from the number of true negatives.
Another observation about F1 score is that it is not a symmetric equation. When the
relevant class is changed, so does the F1 score. When reporting F1 it’s important to analyze
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the score in terms of all response classes (Chicco and Jurman 2020). When evaluating
malware detection algorithms both classes "true malicious flows" and "true benign flows"
are important. Evaluating F1 in terms of all classes provides insight to the effect of response
class imbalance. The effect of imbalanced responses can be identified when the F1 score for
the majority class and the minority class differ drastically. Multi-class F1 score micro and
macro averaging also provide useful interpretations of the F1 score. Micro average accounts
for the relative sizes of the response were macro provides an unweighted average.

�1"82A> =

=∑
8=1

�18 ∗
)>C0;8$1B4A{0C8>=B

)>C0;$1B4A{0C8>=B
(3.11)

�1"02A> =

=∑
8=1

�18 ∗
1
=

(3.12)

3.7.4 Matthew’s correlation coefficient
Matthew’s correlation coefficient (MCC) is a symmetric performancemeasure that accounts
for both true and false positives. It can be mathematically expressed as:

"�� =
TP × TN - FP × FN

√
(TP+FP)(TP + FN)(TN + FP)(TN + FN)

(3.13)

The MCC score ranges in the continuous set of [-1, 1], where 1 is a model capable of
perfect prediction, -1 the inverse of a perfect model and 0 is equivalent to a model having
no predictive capability. MCC is considered an appropriate performance measure when
evaluating models subjected to imbalanced response classes.

3.8 Random Forest Modeling
Random Forest is a supervised non-parametric ensemble machine learning algorithm first
developed by Breiman (2001). The model creates a multitude of regression or classification
trees that each provide input toward a final prediction. In the case of classification each
tree is given an equal vote toward determining the predicted response class. The class with
the greatest number of tree votes is deemed the predicted class. The algorithm constructs
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individual trees by considering all or a subset of the training dataset features. Then the
algorithm identifies a root node based upon a feature and value that best splits the data into
homogeneous groups. The tree continues to create splits in the data based on the calculation
of the Gini Index. The Gini index is an impurity measure that calculates the sum of the
squared probabilities for each response class.

�8=8�=34G = 1 −
∑
9

?29 (3.14)

The Gini index score is calculated for each feature in a randomly selected subset of the total
number of features. The feature with the lowest Gini index score informs the algorithm of
the next node creation and split criteria. The random forest algorithm depicted in Figure 3.1
continues this process independently for each tree in the "so called" forest.

Figure 3.1. Random Forest Diagram. Source: (Abilash 2020).

When training random forest models there is a number of hyper parameters that can be tuned 
to optimize model performance. The following are the most significant hyper-parameters 
for this thesis:

• Number of trees: The number of trees used in a random forest is an important factor
in the predictive accuracy of the method. There is no bias incurred by using a large
number of trees, but there is a high computational cost. One method for determining
the appropriate number of trees is to calculate the error rate which converges when
an optimal number of trees are trained on the data.
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• Tree depth: The feature limits the number of nodes each tree is able to construct.
This is usually limited to prevent over training and to limit computational complexity
when training with large datasets.

• Minimum samples before split: This feature requires a minimum number of obser-
vations for a split node to be created. It is used to limit computational complexity in
large datasets and model overfitting.

• Maximum number of features: The random forest algorithm considers a maximum
number of features before splitting a node. In effect a subset of the feature space is
created before tree creation. The default parameter using Python module Scikit-Learn
and the R Ranger package is the rounded square root of the total number of features.
Other options are possible such as a specified integer or rounded ;>�2 of the total
number of features.

• Class Weights: Class weights can be used to penalize the model loss function for
falsely classifying minority response classes. This is one of the methods for modeling
with imbalanced datasets built into the random forest algorithm.

Random forests are constructed under an assumption that each tree is a “weak learner”.
An individual tree only understands one aspect of the relationship between a subset of
features and the response variable. In the aggregate the trees provide a stronger prediction
of the response. There are several advantages to the random forest algorithm. Random
forests have been shown to be successful in predictive modeling across a spectrum of
applications (Segal 2004). The method also limits the effects of over-fitting through a
proper selection of its hyper-parameters (Breiman 2001). Another advantage of random
forests that is important for malware detection is that it handles high dimensional data by
selecting random subsets of features. The algorithm can be trained in parallel on multiple
CPUs which can provide reasonable training times on larger datasets. However, running
random forest in parallel comes at a high memory cost that is compounded with big training
datasets. We experimented with random forest algorithms using both the R package Ranger
and the Python package Scikit-Learn. The NPS high performance computer Grace allowed
for access to 24 CPUs and 500 GBs of memory to fit a random forest to the IoT-23 dataset.

One of the disadvantages of random forests is the "black box" nature of the resulting
predictor. Although it is possible to interrogate metrics such as feature importance (which
we discuss below) and to produce graphical assessments of themarginal effects of predictors,
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there is no explicit predictor that can be examined. This limits the ability of an analyst to
understand how a prediction is formulated. This drawback, however, is shared by many
machine learners including artificial neural networks.

3.8.1 Feature importance
Feature importance calculates the effect of an individual feature in model performance.
The Sciket-learn API implements feature importance by calculating a scaled aggregate
Gini index score (Pedregosa et al. 2011). It provides tractable results that demonstrate how
features contribute to model performance. There are two disadvantages when considering
this method. The first is that its scores are calculated on the training dataset and may
not generalize to new data. The second is that importances are biased towards continuous
features with high cardinality (Pedregosa et al. 2011). Permutation importance is a variation
of the concept that overcomes these disadvantages. The latter calculates a baseline score on
a fitted model using testing data. It then randomly permutes the values of each feature and
recalculates the score. After each iteration permutation importance recalculates the score.
The features that most decrease the score after permutation are considered to be the most
important (Pedregosa et al. 2011). This method, however, is subject to bias when features are
closely correlated (Hooker and Mentch 2019). Using the results of both feature importance
and permutation importance offers a balanced approach.

3.9 Deep Neural Network Modeling
The use of DNN models have become widespread in many applications to include malware
detection. The architecture of DNNs consists of an input layer of n nodes where n equals
the number of features, a series of fully connected hidden layers consisting of activation
function nodes, and an output layer (see Figure 3.2). DDNuses gradient descent optimization
to estimate the error gradient from observations in the training dataset. Then, through back
propagation, the model weights and bias estimates associated with the nodes are updated to
reach an optimal solution (Buduma and Locascio 2017).
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Figure 3.2. Neural Network Diagram. Source: (Shukla 2019).

DNN presents a challenging optimization problem due to the number of hyper-parameters
available to the model. The hyper-parameters consist of the following:

• Number of hidden layers and nodes: The number of hidden layers, nodes and the
connections between, create an exponentially large number (relative to n) of trainable
weights that are able to be tuned in order to learn non-linear patternswithin the dataset.
Creating more layers and nodes provides additional weights. Models consisting of
just a few layers and nodes are unable to gain insights from highly non-linear patterns,
while the opposite can lead to over-fitting of the model. There are heuristics that guide
choosing the number of hidden layers but no proven methods. A limiting factor to the
number of hidden layers and nodes is computational resources. Advances in the use
of graphics processing units (GPU) to train neural networks provide faster training
times, allowing for experimentation with larger models. An effective approach is to
conduct a series of experiments with the use of cross-fold validation.

• Activation functions: Activation functions (depicted in Figure 3.3) compute the
weighted sum of inputs and biases to decide if a neuron can be fired or not. The
process takes the output signal from inputs and weights from the previous layer
and transforms it into a form that can be processed as input to nodes in the next
hidden layer. By default, DNNs without specified activation functions map to linear
outputs, although activation functions may be non-linear transformations (Buduma
and Locascio 2017; Nwankpa et al. 2018).
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Figure 3.3. Activation Function. Source: (Nwankpa et al. 2018).

Several activation functions are widely used in DNNmodeling. The sigmoid function
(3.15) is a preferred activation function in the output layer for binary classification
because it provides a probability-based outputBuduma and Locascio (2017). The
sigmoid function, however, is subject to the vanishing gradient problem, which re-
sult in the algorithm failing to properly converge after continued iterations of back
propagation (Douglas and Yu 2018).

(8�<>83 = 5 (G) = 1
1 + 4−G (3.15)

The rectified linear unit (ReLu) function (3.16) has performed well in many DDN
applications and is considered by many practitioners to be the safe default activation
function. ReLu is computationally efficient, enabling fast DNN training. The use of
this function is subject to the “dying ReLu problem” in which gradient descent fails
to alter the weights. Variations such as leaky ReLu and decreasing the learning rate
can overcome this phenomenon (Douglas and Yu 2018).

'4!D = 5 (G) = max(0, G) (3.16)

• Loss functions: Loss functions are differentiable functions that provide a prediction
error term used to informweights in a DNN. Binary cross entropy loss function (3.17)
is the defacto loss function for classification problems consisting of two classes. The
loss represents the negative log likelihood providing a probability between [0,1] for
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each predicted observation. Binary cross entropy is defined mathematically as:

�~ (~) := −
∑
8

(~8 log(~8) + (1 − ~8) log(1 − ~8)) (3.17)

Binary cross entropy requires that the sigmoid activation function be used for theDNN
output nodes. There are some possible yet unpublished alternatives to binary cross
entropy, such as modifying F1 or MCC to become a loss function. This practice is not
widespread but could possibly provide advantages with imbalanced datasets (Maiza
2019). Keras and Tensorflow allow for the backend development of customized loss
functions.

• Optimizers:DDN uses algorithms to minimize the output of the loss function by iter-
atively updating weights and bias estimates in a process known as back propagation.
There are several optimization algorithms that use gradient descent and momentum
to find a solution. We explored using mini batch stochastic gradient descent (SGD) as
presented in the Keras API, and adaptive Moment Estimation (Adam) first introduced
by Kingma and Ba (2014). Adam is a memory efficient stochastic optimization pro-
cess that uses first-order gradients. The algorithm computes individual learning rates
for each DNN weight from estimates of the first and second moments of the gradients
(Kingma and Ba 2014). Adam converges faster than traditional gradient descent and
is widely used in DNN modeling.

• Learning rates: Learning rate is a parameter that regulates the amount by which the
weights are updated during the training process. Learning rate is calculated as a scalar
between [0,1]. A large learning rate allows the gradient descent algorithm to converge
quickly but the solution may be suboptimal. On the other hand, learning rates that are
small may cause the algorithm to fail to converge. We explored the use of different
learning rates to insure optimal performance during DNN training. It is important
to note that the Adam optimization algorithm iteratively adjusts the learning rate by
multiplying an additional scalar derived from the first and second moments against
the learning rate scalar (Kingma and Ba 2014).

• Class weights: Class weights can be used to penalize the model’s loss function for
falsely classifying minority response classes. This is one of the methods for modeling
with imbalanced datasets.

• Number of epochs and batch size: Batch size is a hyper-parameter that refers
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to the number of observations that are fed through the model before updating the
model weights. The number of epochs refers to the number of iterations required
for the model to incorporate the entire training dataset. DNNs typically need several
iterations through the dataset to reach convergence. Adjusting the number of epochs
and batch size influences the ability of the model to find an optimal solution. The
optimal batch size is dependent upon the circumstances of the data. For this reason,
adjusting the number of observations in a batch and number of epochs is important
to reaching model convergence.

3.10 Long Short-Term Memory (LSTM) Models
Recurrent neural networks (RNNs) are an adaptation of artificial neural networks that enable
learning from sequences of data. Recurrent layers loop data in sequential steps through a
node allowing information to be passed from one step of the network to the next . (Buduma
and Locascio 2017; Olah 2015). RNNs have been successful in solving speech recognition,
language modeling, and translation machine learning problems.

One of the problems with RNNs is that it is prone to an inability to capture data patterns
in long sequences in part due the vanishing gradient problem. LSTM networks, introduced
by Hochreiter and Schmidhuber (1997), solve this problem by enforcing constant error flow
with an efficient gradient based algorithm. One of the key aspects of a LSTM unit is a mem-
ory cell that holds information learned sequentially (Patterson and Gibson 2017). With each
sequential step the LSTMmodifies the memory cell with additional information. Appropri-
ate information is retained by another LSTM component called the “keep gate” (Buduma
and Locascio 2017). LSTM algorithms allow for the retention of useful information and the
“forgetting“ of less important information (Olah 2015).

The same hyper-parameters discussed in section 3.9 that apply to DNNs also apply to
LSTMs, but the latter have one additional preprocessing input: the data must be trans-
formed into batches of time sequences of = time steps. Essentially, for each observation this
parameter determines the number of past time sequences the model should consider.

We use Python modules Keras and Tensorflow for DNN and LSTM modeling. We use the
high performance computing (HPC) frameworks Grace and Hamming provided by NPS.
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The HPC resources allow for various combinations of CPU, GPU, and memory based on
resource availability. These resources allowed for experimentation of various combinations
of hyper-parameters while facilitating timely results.

The advantage of DNN and LSTM modeling is the flexibility to adjust high level aspects
of the DNN and achieve excellent predictive results. The disadvantage of DNN and LSTM
modeling is the “black box effect” which disallows model inference. These models prevent
the analyst from understanding why a particular network flow is predicted malicious or
benign. For this reason we use other methods in conjunction with DNNs and LSTMs to
gain model inference.

3.11 Stacked Ensemble Modeling
Stacking is simply the use of multiple machine learning models to determine a final predic-
tion. Kaggle competitions are often won with stacked ensemble approaches (Günes 2017).
Often stacked approaches use a meta-classifier of either logistic or linear regression that in-
corporate the predicted outputs of other machine learning algorithms as features to provide
a final prediction. We propose the use of the predicted response from random forest as an
additional feature included in the training and testing datsets. With the additional feature
we train a new DNN model, foregoing the use of a meta-classifier.

5'� (-) = ~̂'� −→ 5�## (-⌢~̂'�) = ~̂�## (3.18)

This chapter provided a description of the IoT-23 dataset, the proposed methods for cleaning
and feature engineering. The chapter provided performance measures important to classi-
fication models trained with imbalanced datasets. The chapter also highlighted important
aspects of the proposed machine learning algorithms we use in this thesis for malware
detection with a emphasis on key hyper-parameters for performance optimization.
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CHAPTER 4:
Results and Analysis

Chapter 4 presents key aspects of our findings. We start with an analysis of tree-based clas-
sification and inference models. We find that classification decision trees and random forests
provide useful insights concerning feature importance, model robustness, and prediction.
Next, we discuss the findings of our traditional deep neural network models, the stacked
models and finally our LSTM models. We identify an LSTM model that is well-suited for
botnet detection due to the temporal nature of botnet activity.

4.1 Decision Tree Classification
Our decision tree classification model balances the dataset with the under-sampling tech-
nique. This method reduces the number of malicious network data flows to balance the
response class ratio. Using five-fold cross-validation we then explore a series of hyperpa-
rameter combinations. The hyperparameters that provide the best performance are: limiting
the maximum tree depth to 6, the maximum number of leaf nodes to 10, and setting the
minimum impurity decrease to 0.001. Our best model achieves an accuracy of 0.972, MCC
0.94 and F1 scores of 0.97 with the test dataset (MCC and F1 defined in Chapter 3.7). This
result indicates strong model performance. A summary of model performance is given in
Tables 4.1 and 4.2, and Figure 4.1.

Table 4.1. Binary DT Performance Metrics

Metric Value
1 Accuracy 0.972
2 MCC 0.944
3 FPR 0.040
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Table 4.2. DT Precision, Recall, F1

precision recall F1 support
Benign 0.98 0.96 0.97 53757
Malicious 0.96 0.98 0.97 54045
Maro avg 0.97 0.97 0.97 107802
Weighted avg 0.97 0.97 0.97 107802

Figure 4.1. DT Confusion Matrix

The decision classification tree renders useful diagrams (Figure 4.2) that provide insight for
malware detection. The model indicates that the features associated with well-known ports
from the destination source, and the number of flows in the past 0.1 second accounts for
much of the model variance.
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Figure 4.2. Decision Classification Tree

We then use decision classification trees to create models for each of the IoT-23 detailed
response labels. The purpose of this modeling is to provide inference for the different
behaviors demonstrated by malware botnets. Specific models were created for C&C, attack,
port scanning, and DDoS labeled traffic. Each of the subsets were filtered to include only
benign and malware behaviors of interest. For each of these models we again under-sample
the majority class in order reduce model bias. For each DT model we explore various
parameters through cross validation.

4.1.1 C&C Server Decision Tree Classification
For our C&C traffic model we consolidate all C&C variants into one global C&C label
from the training dataset. We then take C&C traffic and divide it further into another
training and test partition. The purpose of the partition is to preserve our global testing
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data for future model test set evaluation. Through cross validation, the C&C server traffic
model performs best by limiting tree maximum depth to 5 and the number of leaf nodes
to 9. The model demonstrates high predictive accuracy as shown in the summary of model
performance represented in Tables 4.3, 4.4 and Figure 4.4. We observe from Figure 4.3
that the differences between consecutive network flows, the packets per seconds, and the
protocol not being TCP traffic are able to account for much of the model variance.

Table 4.3. DT C&C Server Traffic

Metric Value
1 Accuracy 0.990
2 MCC 0.980
3 FPR 0.012

Table 4.4. DT C&C Server Traffic Precision, Recall, F1

precision recall F1 support
Benign 0.99 0.99 0.99 9948
Malicious 0.99 0.99 0.99 9948
Maro avg 0.99 0.99 0.99 19646
Weighted avg 0.99 0.99 0.99 19646
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Figure 4.3. DT for C&C server
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Figure 4.4. DT C&C Server Traffic Confusion Matrix

4.1.2 Attack Traffic Decision Tree Classification
Attack traffic accounts for a relatively small portion of the dataset with only 9,398 network
flows belonging to the class. Attack traffic is primarily distributed between the Muhstik and
Mirai botnet captures. Interestingly, the attack flows in the dataset appear to be very homo-
geneous. As witnessed in Figure 4.5 simply splitting the destination to source transaction
bytes by less than or equal to 78 the model correctly classifies 99.9% of the samples. This
likely indicates that the attacks represented in this dataset only represent a very specific
example and not generalize to other attacks. However, it does highlight a possible opportu-
nity for malware detection in IoT devices. IoT devices with specific purposes often exhibit
characteristic network traffic patterns. Therefore, simple rules developed by tools such as
decision trees may be effective in detecting malware infection for those devices.
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Figure 4.5. DT Classification for Attack Traffic

4.1.3 DDoS Traffic Decision Tree Classification
To model DDoS we again create a balanced partition of benign and DDoS labeled network
flows. Through cross-validation the model performs best by limiting the maximum tree
depth to 4, the maximum number of leaf nodes to 8, and the minimum impurity decrease
to 0.001. From Figure 4.6 we see that the DDoS model root node split is based upon
the destination port being within the dynamic port range (ports 49152-65535). Model
performance presented in Tables 4.5 and 4.6 and in Figure 4.7 demonstrates strong model
performance. However, nearly all of the DDoS traffic is correctly classified simply from the
flow association TCP in the dynamic port range. This condition is unlikely to generalize to
a wider range of IoT devices with unique applications. Many normal applications use TCP
in combination with dynamic ports.

Table 4.5. DT DDoS Traffic

Metric Value
1 Accuracy 0.999
2 MCC 0.998
3 FPR 0.002
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Table 4.6. DT DDoS Traffic Precision, Recall, F1

precision recall F1 support
Maro avg 0.998 0.998 0.998 351665
Weighted avg 0.998 0.998 0.998 351665

Figure 4.6. DDoS Traffic DT Classification
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Figure 4.7. DT DDoS Traffic Confusion Matrix

4.1.4 Port Scanning Traffic Decision Tree Classification
We randomly select a balanced subset from the training data of benign flows and flows
labeled part of a horizontal port scan. Compared to our other tree models the port scanning
model is the most complex. The complexity is demonstrated in tree depth and the large
number of leaf nodes as shown in Figure 4.8. Using cross validation, the model was
limited to a maximum tree depth of 9, a maximum number of leaf nodes of 14, and
minimum impurity decrease set to 0.001. Model accuracy and MCC is lower compared
to our other models. This indicates horizontal port scanning is more challenging to detect
with independent network flow observations. Additional model performance metrics are
represented in Tables 4.7, 4.8 and Figure 4.9. This class is also the most represented in the
IoT-23 dataset and likely is the source of most model error. The feature “number of flows in
the past 10Cℎ of a second” accounts for many of the partitions in the tree. This indicates an
important time dependence aspect for classifying port-scanning behavior.

51



Table 4.7. DT Port Scanning Traffic

Metric Value
1 Accuracy 0.976
2 MCC 0.953
3 FPR 0.030

Table 4.8. Port Scanning Traffic Precision, Recall, F1

precision recall F1 support
Benign 0.99 0.97 0.98 270030
Malicious 0.97 0.98 0.98 269747
Maro avg 0.98 0.98 0.98 539777
Weighted avg 0.98 0.98 0.98 539777
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Figure 4.8. Port Scan Traffic DT Classification
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Figure 4.9. DT Port Scan Traffic Confusion Matrix

4.2 Random Forests
With our random forests models, we again balance the data by down sampling malicious
network flows. We find that neither oversampling the minority class nor SMOTE (defined
in Chapter 3) performs better than the down-sampling technique. In order to determine
the best parameters, we use a one percent sample of the training data for the purpose of
cross-fold validation with different hyperparameters. The best model parameters obtained
from this analysis limited the depth to 15 nodes per tree, and the maximum number of
features to the square root of the total number of features per tree. We find that 100 trees is
sufficient to achieve near optimal model performance. We validate the model parameters by
retraining the model with the global training dataset and evaluating model performance with
the global test dataset. When increasing the volume of data, we find that accuracy increases
by approximately half a percentage point. Our random forest model performance is stronger
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than the single decision tree model in regards to all metrics. Notably, there is a 0.53%
reduction in the ratio of false positive classification. A summary of model performance is
presented in Tables 4.9, 4.10 and Figure 4.10.

Table 4.9. Random Forest Performance Metrics

Metric Value
1 Accuracy 0.980
2 MCC 0.959
3 FPR 0.03

Table 4.10. Random Forest Precision, Recall, F1

precision recall F1 support
Benign 0.99 0.97 0.98 12,002,794
Malicious 0.97 0.99 0.98 12,002,794
Maro avg 0.98 0.98 0.98 24,005,588
Weighted avg 0.98 0.98 0.98 24,005,588
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Figure 4.10. Random Forest Confusion Matrix

We use feature importance metrics to identify predictors that contribute most to model per-
formance. To validate feature importance we compare our results to permutation importance
and find no significant differences. The most important features are: the number of flows in
the past 10Cℎ of a second, the destination port association with well-known ports, and the
time difference between consecutive flows. Unsurprisingly, the results of this analysis agree
closely with results obtained from the decision tree classification models. These results
indicate that network flows are time dependent. Figure 4.11 provides visualization of the
most important features for the random forest model.
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Figure 4.11. Random Forest Binary Model Feature Importance

4.3 Deep Neural Network Model
We find that traditional DNN models do not perform as well as tree-based models. Again,
we find that down-sampling the majority class provides more robust model performance.
We obtain higher MCC and accuracy scores with less balanced data but at the cost of an
undesirable false positive rate. After experimentation we ultimately find the standard scaler
to offer better performance than other scaling techniques. After several trials we settle on
a five-layer model containing 67,48,34,16, and 1 nodes per respective layer. We find the
relu activation function followed by the sigmoid function on the output layer to produce the
best performing model. Modest improvements result when adding dropout layers between
each hidden layer for feature regulation. A summary of the best DDN model performance
is presented in Tables 4.11, 4.12 and Figure 4.12.

Table 4.11. Deep Neural Network Performance Metrics

Metric Value
1 Accuracy 0.959
2 MCC 0.918
3 FPR 0.048
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Table 4.12. Deep Neural Network Model Precision, Recall, F1

precision recall F1 support
Benign 0.97 0.95 0.96 12,002,794
Malicious 0.95 0.97 0.96 12,002,794
Maro avg 0.96 0.96 0.96 24,005,588
Weighted avg 0.96 0.96 0.96 24,005,588

Figure 4.12. DNN Model Confusion Matrix

4.4 Stacked Model
Our stacked model uses a similar structure to our DDN model. As an added feature the
stacked model includes the predicted values from the random forest model. Our results find
that the stacked model performs slightly better than our random forests model as indicated
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by its MMC (.965) and FPR (.023) scores. Additional stacked model performance metrics
are presented in Tables 4.13, 4.14 and Figure 4.13.

Table 4.13. Stacked Model

Metric Value
1 Accuracy 0.983
2 MCC 0.965
3 FPR 0.023

Table 4.14. Stacked Model Precision, Recall, F1

precision recall F1 support
Benign 0.99 0.98 0.98 12,002,794
Malicious 0.98 0.99 0.98 12,027,794
Maro avg 0.98 0.98 0.98 24,005,588
Weighted avg 0.98 0.98 0.99 24,005,588
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Figure 4.13. Stacked Model Confusion Matrix

4.5 LSTM Model
Our analysis of decision trees and random forest models demonstrates the temporal nature 
of malware botnet traffic in IoT devices. LSTMs are well suited for prediction problems 
with time-based dependencies. Our methods for LSTM modeling differ from our other 
models in important respects. For this analysis we use an aggregated version of the entire 
IoT-23 dataset, which we reduce from 300 million to 2.3 million network flows by 
aggregating in time windows of 10Cℎ of a second. Much of the quick succession network 
traffic generated by malware port scans and DDoS attacks is condensed within small time 
periods. The aggregation process calculates summary statistics (sum, mean, standard 
deviation) for each feature within each time window. We find the aggregation process 
important to LSTM modeling because of the computational complexity when transforming 
data into three dimensional arrays required by LSTM models and the memory cost incurred 
from the transformation.
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For LSTM modeling we adopt the framework developed for the classification of human 
activity(Zebin et al. 2018; Ordóñez and Roggen 2016). We find that our classification 
prob-lem shares similarities with this framework. Most notably, the human activity 
classification problem relies upon samples from different humans during different time 
periods. Simi-larly, our botnet detection model uses training data from different devices, at 
different time periods, and with unique botnet malwares.

Our LSTM model requires the data to be in sequences of 10 observations. We use a time step 
length of 10 as the rolling start point of each consecutive time interval sequence. The process 
creates 234,510 time intervals from the 2.3 million aggregated observations. In essence, for 
each consecutive step (10 observations) the model takes into account the feature values up to 
ten periods back in time. We designate the response variable by the most frequent class mode 
within each of the time steps. We apply this process to a partition of the data used for model 
training and to another partition designated model evaluation. The testing data consists of 
following IoT-23 data scenarios: CTU-Honeypot-Capture-7-1, CTU-IoT-Malware-
Capture-49-1, CTU-IoT-Malware-Capture-60-1, and CTU-IoT-Malware-Capture-7-1.

The model structure uses the Keras sequential model API. We use a bidirectional wrapper 
over the Keras LSTM input layer with 128 units, then add a dropout layer with rate 0.5, a 
128 unit dense layer with a relu activation function, an output layer with a softmax 
activation function. We find the Adam optimizer and categorical cross-entropy to provide 
the best model performance. We also find with batch size 32 the model converges using 
early stopping at the 73A3 epoch.

We find the LSTM model performance to be superior to our other models. This is best 
demonstrated by the confusion matrix. The model correctly identifies all 53 of the benign 
sequences while incorrectly classifying only 18 of the 18,704 malicious sequences. We are, 
however, unable to create a balanced aggregated dataset without corrupting the temporal 
nature of the data. It is important to note that MCC is disproportionately skewed by the small 
number of false negative classifications. The lower than expected MCC, benign-precision 
is attributed to the low number of benign observations. The model performance is 
especially promising because we introduce a new non-infected IoT device (Amazon 
Echo) and new botnet variants (Gagfyt) to the testing data.  Overall,  the  LSTM  model
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shows promise for malware botnet classification. A summary of model performance is 
represented in Tables 4.15, 4.16 and Figure 4.14.

Table 4.15. LSTM Model

Metric Value
1 Accuracy 0.999
2 MCC 0.863
3 FPR 0.000

Table 4.16. LSTM Model Precision, Recall, F1

precision recall F1 support
Benign 0.75 1.0 0.85 53
Malicious 1.0 1.0 1.0 18,722
Maro avg 1.0 1.0 0.93 18,775
Weighted avg 1.0 1.0 1.0 18,775
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Figure 4.14. LSTM Model Confusion Matrix

4.6 Summary of Model Performance
The models indicate that detecting various malware botnets is possible with the use of
machine learning. High accuracy with balanced datasets indicate that our models and
features enable the detection of malicious activity in the IoT-23 dataset scenarios.

One of the most interesting findings was the success found in the decision tree classification
models. We find decision tree classification particularly beneficial for detecting C&C server
traffic, attacks, and DDoS. Some of the success is likely contributed to the homogeneous
nature of the network traffic in the IoT-23 dataset. The result is promising because the analysis
of both specific IoT devices and the general behaviors of malware botnets indicate that
network flow based rules deriving from decision tree classification can provide indication
that an IoT device has been compromised. A rules-based approach would be especially
beneficial for IoT devices that have specific functionality and a limited range of benign
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network traffic activity.

Through model inference we find our features based upon time, and features engineered
with domain knowledge aid model performance. The counting of number of flows in the
10Cℎ of a second time window at each flow is especially useful for capturing the temporal
nature of botnet activity.

We discover the LSTM model performs the best compared to other models due to the
temporal nature of botnet activity. The model also indicates that data aggregation and time
series-based models can accurately detect botnet activity.
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CHAPTER 5:
Conclusion

5.1 Review of Study Questions
In this chapter we revisit the study questions that we presented in Chapter 1 and explain how
our research findings address them. We also discuss the limitations and contributions of our
work to broad efforts to detect malicious activity in DoD networks comprised of diverse
components. Finally, we describe future directions for research that we hope our research
will cultivate.

5.1.1 Which machine learning algorithms are well suited for malware
detection using network flow data?

We find that supervised machine learning classification algorithms are promising for mal-
ware botnet detection. Bidirectional LSTM models perform best in our research context
due to the temporal nature of botnet traffic. Specifically, we propose the use of aggregated
Zeek connection logs to train and deploy LSTMmodels for malware detection. Zeek greatly
reduces the number of observations compared to PCAP, although Zeek still produces large
volumes of data even for small networks. Our proposed LSTM model in conjunction with
data aggregation of network flows reduces the number of observations. Data aggregation
is useful if the client is not less concerned with determining which network connections
are malicious than if a particular IoT device is infected with botnet malware. The incurred
classification delay is at least 2.5 seconds plus computational overhead with the proposed
step size and data aggregation windows of a 10Cℎ of second. This may be sufficient for
network security operators. The step size and aggregation time window can be toggled for
specific network circumstances and still achieve good classification performance.

Classification trees can provide valuable information about the activity of botnets. We also
find that classification trees achieve high classification accuracy on balanced datasets to de-
tect C&C server, attack and DDoS network traffic. The proposed decision tree classification
models and random forests models may benefit an automated botnet detector by providing a
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network flow classification once our proposed LSTM model detects an infected IoT device
within a time window. The specific network flow classifications may provide a more refined
understanding to network security operators.

5.1.2 Which data features are best suited for machine learning mal-
ware botnet detection?

We propose a number of engineered features deriving from Zeek connection logs. The time
lag features, and time difference features are valuable for botnet malware detection due to the
temporal nature of botnet traffic. Port level features indicating well-known, registered and
dynamic ports are also important features indicated by our proposed tree-based classification
models. Tree models, variable importance derived from Gini index scoring and high test set
accuracy consistently demonstrate our engineered features are valuable for classification of
botnet infected IoT devices.

5.1.3 Are machine learning algorithms trained with the Iot-23 data set
generalizable for wider use?

Machine learning models developed solely with the use of the IoT-23 dataset will likely
produce a high volume of false positive classifications when exposed to new IoT network
traffic. The lack of diversity of IoT devices in the IoT-23 dataset prevents machine learning
models fromgeneralizing to awide range of IoT network traffic. The evidence supporting our
assessment is best demonstrated in section 4.1.2 where our decision classification treemodel
for attack traffic classified 99.99% of all labeled network flows based only on the destination
source sending greater than 78 bytes per network flow connection. There are some IoT
devices for which this could be a normal occurrence. The IoT-23 dataset captures a wide
array of IoT botnets, although the botnet behavior is relatively homogeneous across variants.
The temporal patterns of DDoS and port scanning would likely generalize to other networks.
We expect some degradation of performance relative to our findings because the tempo of
DDoS and port scanning are functions of both network bandwidth and computational power
of the IoT device . Our proposed models would benefit from being retrained with additional
data specific to IoT devices and networks of interest.
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5.2 Limitations
Our analysis considered only the IoT-23 dataset, which is limited to only a few different IoT
devices. The strength of the IoT-23 dataset is the wide variety of malware botnet variants
that it contains. A dataset with more benign and diverse IoT network traffic would increase
model performance in a more general context .

Our analysis did not explore the case of long connections. Zeek normally logs connections
after the connection is complete. Typical connections in the IoT-23 dataset last less than
a second. However, some connections associated with unique applications can last several
hours. There are open source Zeek packages that allow for longer connections to be logged
differently. More work should be conducted in order to understand the effects of long
connections and machine learning models.

We did not explore all forms of malware. We focused our study primarily on botnets found
in IoT devices. Botnets are not the only threats to those devices. Some of the methods
we propose may be adapted to new threats. Because botnets generate many network flow
connections, malware that can propagate and attack with fewer connections may present a
greater challenge for detection.

5.3 Contributions
Our work makes several contributions to the development of statistical methods for malware
detection, including the use of time-lag features, the development of inferential tree based
classification models, and the development of a bidirectional LSTMmodel with aggregated
Zeek connection logs. Although other investigators have used the IoT-23 dataset, we are
unaware of any who have trained models that encompass all IoT-23 malware captures.

There is a great deal of published research on applying machine learning algorithms to
network flow malware classification. This corpus employs a wide array of algorithms that
demonstrate high accuracy and other desirable performance metrics. But there has been
little work that explores these methods in the context of botnet classification. Our use of
decision classification trees allows us to understand the limitations of our training data.
It also exposes possible opportunities to detect malware. We demonstrate that relatively
shallow trees are able to classify, with high accuracy, malware variants that include C&C,
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DDoS and attacks on IoT devices. From the decision tree splits logical network rules can be
developed for specific IoT devices on the network. For example, an IoT device may have no
legitimate reason to receive packets and bytes above a certain threshold. These thresholds
can be derived from decision tree classification models. Simple rules derived from our
proposed models may help network security analyst detect malware infected IoT devices.

We demonstrate the benefit of time lag variables in network flow data for botnet malware
detection. Our time lag variables enhance traditional machine learning algorithms that are
based on the assumption of independent observations. Through our inferential models and
random forest variable importance metrics we demonstrate the importance of exploiting
temporal features.

Our bidirectional LSTM model is unique in that it achieves high accuracy with the use of
aggregated Zeek connection logs. This aggregation technique greatly reduces the number of
observations without loss of generality. It is important because we are thus able to train our
LSTM model using 23 different benign and malicious scenarios with less computational
cost. Our approach allows LSTM models to capture a wide variety network traffic with
fewer observations.

5.4 Future Work
We propose that researchers create a small network lab in order to study the behavior
of malware infected IoT devices. With minimal hardware and the availability of malware
open-source code there is tremendous opportunity for continued study. The ability to create
new datasets would allow malware scenarios to be simulated that pertain to unique DoD
devices and applications. There are many intricacies to network traffic that would become
more transparent through custom development. This would allow researchers to explore in
greater depth machine learning methods that generalize to specific networks of interest.

Our proposal for data aggregation techniques reduces the number observations but increases
the number of features. We did not fully explore the use of dimensionality reduction
techniques such as principal components or deep auto encoders. Dimensionality reduction
methods may have the potential to increase the efficiency of model development as datasets
increase in size.
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Our work also did not explore the use of unsupervised or semi supervised learning tech-
niques. Unsupervised learning may provide benefits independently or in conjunction with
our proposed supervised learning techniques. Unsupervised clustering techniques may also
help aid additional feature engineering. A special clustering analysis of the Zeek connection
log field “history” may be fruitful.

Finally, we suggest that future work be devoted to creating a user interface that could
leverage the machine learning models we propose in this thesis. This may entail integrating
some of our proposed feature engineering techniques within the Zeek framework. Another
important aspect would be to consider how false positive classifications would inform
decision rules and potentially update classification models or the program’s logic. All
models are inherently wrong, the question is how can machine learning malware detectors
become especially useful to the end user?
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