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ABSTRACT 

 As cellular technology continues to advance, Fifth Generation (5G) delivers a 

network capacity and speed to mobile devices unmatched by its predecessors. This 

heterogeneous network has improved efficiency that connects multiple platforms to 

create a new experience for its users. The new improvements introduced by 5G also 

include the increased bands into mmWave and beamforming capabilities that 

significantly improve the efficiency of 5G. With these improvements, location-based 

services are more accurate, but also lead to increased vulnerabilities. Location-based 

attacks via the uplink timing management commands have been studied in previous 

networks and are susceptible in 5G due to the nearly unchanged timing management 

structure and increased location accuracy. This thesis comprehensively analyzes cellular 

positioning, which leverages the 5G timing advance and beamforming for the end user’s 

location. We evaluated the efficiency of varying remote radio heads in an environment to 

find the most precise location error with the new addition of beamforming. Additionally, 

we demonstrate how architectural density affects the position estimate in the 5G 

environment. 
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CHAPTER 1:
Introduction

1.1 Motivation
Since its beginning in the mid-1990s, cellular technology has adapted and grown with each
generation of cellular networks’ increased goals to push the limits of cellular capability.
The goal of large-scale circuit switched networks was used in Second Generation (2G) but
evolved as data on wireless devices were added to the circuit-switched networks in Third
Generation (3G). With higher data rates needed, Fourth Generation (4G) moved to packet-
switched networks and incorporated newer technologies, such as Internet of Things (IoT)
and Vehicle to Everything (V2X). In the era of Fifth Generation (5G), higher bandwidth and
efficiency, higher data rates, and massive IoT have driven this 5G New Radio (NR) to push
limits that reach beyond the initial start of the IoT and V2X [1]. 5G is pushing the limits
of Internet of Skills (IoS), Virtual Reality (VR), Augmented Reality (AR), and Artificial
Intelligence (AI).

The idea of privacy is at the forefront of every individual’s mind but seems to lose its
stamina when paired with the convenience of life applications. With the increase and
advancement of technology, debates over digital privacy are becoming even more important
as private life is more transparent than before. Location-Based Services (LBS) are utilized
so frequently that they have become ubiquitous in our everyday lives. Services such as
ride-share, food delivery, maps, emergency calls, and various other cell phone applications
continuously calculate one’s location to provide the user with a better service. The IoT also
uses LBS to run its applications to serve the user better. With 5G, LBS are used in the
Federal Communication Commission (FCC)’s Enhanced 911 (E-911), the health industry,
autonomous driving, and other trafficking control systems [1].

The evolution of 5G creates an environment enriched with large amounts of cellular capa-
bilities with known and unknown vulnerabilities. It is projected that by 2023 over 70 percent
of the global population will have mobile connectivity, 29.3 billion networked devices, and
over 10 percent of those networked devices (roughly 1.4 billion) will be 5G devices [2].
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Technology can be viewed in many ways but often breaks down into two schools of thought.
First, the benefits of the LBSs mentioned above outweigh the loss of privacy. The other side
sees that this loss of privacy and the dangers that the evolving technology brings without
proper protections are creating vulnerabilities that will not be reversed. Location privacy
is vulnerable to leaks in the 5G network by access point algorithms [3] and also shows
vulnerabilities in its unencrypted timing management signaling that can exploit the loca-
tion of the target User Equipment (UE) [4]. The 5G network also introduces Sub-Carrier
Spacing (SCS), known as “numerologies”, that support a range of deployment scenarios.
With the increase of capabilities in 5G, the Department of Defense (DoD) must utilize
these capabilities while also ensuring that those systems are robust, protected, resilient, and
reliable [5].

1.2 Objective
As mobile users go through their everyday routines, their mobile devices actively connect
to a numerous amount of base stations. While this daily routine happens, we may not fully
consider the concept of location privacy. New concepts are implemented to provide the
services that are in demand as 5G continues its set up throughout the United States. These
services are created to encompass high data rates, low latency, and other additions to allow
the user to get the best network services to date. Although these services are engineered
to be the best network option, those creating these services and the mobile users who
utilize the network must be cognizant of our location privacy and approach this issue in an
ethical and measured way. What are the new changes that affect our location privacy? The
5G network made changes to the base waveform, the directionality associated with base
stations, and their communications that boost signal to noise ratio (SNR) to create a more
robust and more reliable network. However, there are also consequences to these changes
with location privacy. This thesis takes a geometric view of this phenomenon and quantifies
the discoveries for location privacy in 5G. With this, we aim to form better decisions about
our privacy as we move into this new era.

1.3 Approach and Chapter Breakdown
Chapter 2 will first look at the unique differences between 4G Long-Term Evolution (LTE)
and 5G. It will also include discussions on LBS, the technical evolution of 5G, the newly

2



implemented beamforming, and the architectural density in the 5G environment. Chapter 3
will look at questions that this thesis is based on and the methodology approach taken for
the 5G simulation. The final results of the simulations and answers to the posed questions
from Chapter 3 will be discussed in Chapter 4. Chapter 5 will consist of the final thoughts,
limitations, and recommendations for future work.
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CHAPTER 2:
Background

2.1 Changes to Location-based Services in 5G
The changes in 5G technology have included the promise of higher bandwidths, large
capacities, and low latencies. Positioning services, architecture, emergency calling, and
3rd Generation Partnership Project (3GPP) positioning requirements are directly affected
by the move to 5G. In this section, we will discuss how positioning is used in LBS and
multilateration techniques used to compute the position estimate of an end user.

2.1.1 Positioning and LBS
Devices are exposed with location data, even when powering on. Our devices trust the
network as it connects, and our real-time location information is provided to the cellular
provider. Trust in the network creates vulnerabilities that could be exploited for various
reasons [6]. Historically, positioning in cellular technology was utilized for emergency calls
and services. The localization of UE started in 1996 as the FCC mandated standardized
accuracy requirements for E-911 calls [7]. As the requirements continue to be revised, the
accuracy requirements are becoming more precise with each iteration. 4G LTE built on the
technology to expand on other uses such as navigation, maps, health and fitness, and fraud
prevention. 4G LTE continued this trend with other commercial applications that would
enhance the way people use mobile technology with the demand for faster, more accurate
services. In doing so, LTE became the forefront of positioning technology [1]. The results
of these requirements have numerous effects on the use of users’ location data.

2.1.2 Trilateration
The five fundamental positioning techniques utilizing radio signals as identified byRosado et
al. [8] are trilateration, triangulation, proximity, scene-analysis, and hybrid. This thesis will
focus on trilateration, or more generally known as multilateration, and multiangulation.
Multiangulation is the approach used that is based on the angle measurements [9]. The
process of multilateration is the intersection of geometric constructs based onmeasurements

5



Figure 2.1. Example of trilateration in a wireless network. Source: [11].

that are calculated between the UE and the reference transmitter/receiver, such as Time of
Arrival (ToA), Received Signal Strength (RSS), Angle of Arrival (AoA), etc. to find its
position solution. Figure 2.1 is an illustration that shows this method. Research continues to
be conducted on the network and mobile-based trilateration techniques to meet regulatory
requirements [10].

2.2 Technical Evolution from 4G to 5G
As mobile users move from one location to the next, their connection to the network
is not interrupted as they move away from a cell tower to which they are connected. The
development of 4G gave users seamless transition services and the ability to use their mobile
equipment in variousways nomatter their position or time. To create this seamless transition,
4Gwould no longer use circuit-switch capabilities but would instead transition to Voice over
Internet Protocol (VoIP) [12]. It was years later when LTE evolved its compatibility to work
in areas without coverage throughDevice to Device (D2D) andMachine ToMachine (M2M)
communications that changed the way cellular technology would be used [13]. 5G altered its
architecture and spectrum to allow for the change in technology but made slight changes in

6



Figure 2.2. 5G Multi-tier Network. Source: [14].

its timing management. These concepts will be discussed more in the following subsections.
Figure 2.2 [14] shows an example of a multi-tier 5G network which shows the complexity
of the macro and small cells, Remote Radio Head (RRH)s, Baseband Unit (BBU)s, UEs,
and a core network. A fronthaul/backhaul connection is visible in Figure 2.2, which will be
discussed in Section 2.2.1. We will first look at the changes in the 5G architecture to better
understand how the network is connected.

2.2.1 Architecture
The 5G network strives to improve upon the 4G LTE architecture to allow for services
that push the limits of reliability. The 5G architecture takes on 4G LTE primary services of
Mobile Broadband (MBB) andMachine Type Communications (MTC) but is also including
the service of Ultra-Reliable Low Latency (URLLC) [15]. The use of URLLC creates
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Figure 2.3. Example of C-RAN Architecture with physical layer splits identi-
fied. Source: [11].

high reliability with low latency for V2X, remote surgery, video surveillance, medical and
health services, and other safety-critical applications [1]. The Cloud-Radio Access Network
(C-RAN) architecture was created from the previous 4G LTE network architecture and
protocols, Radio Access Network (RAN), which is implemented in 5G. The architecture was
created to allow as many base station (BS)s that the network needs by way of virtualization
[16]. The C-RAN design differs in two primary categories: physical restructuring of the
network and interface updates.

As depicted in Figure 2.3, the physical restructuring of the network comprised of a grouping
of centrally located BBUs, better known as "BBU pools," and their affiliated RRHs. In the
traditional LTE network, the BBUs and RRHs are conjoined as the BS. In 5G, each BBU is
located in its serving geographic region and is connected to variousRRHs that are distributed
near the UEs. This connection between the BBUs and RRHs is called a fronthaul network.
There are many physical layer proposals to connect the BBU pools to the RRHs [17].

It was essential to create an interface update to implement key metrics in 5G. Many LTE

8



Figure 2.4. Physical Layer Split. Source: [19].

connections utilized the Common Public Radio Interface (CPRI) protocol but with 5G are 
evolving to Enhanced Common Public Radio Interface (eCPRI). The LTE split fronthaul 
was intended to be for one use case and proves to be too restrictive for connections that 
must be flexible. The proposed eCPRI will desegregate the network, allowing high levels of 
virtualization, and use packet-based synchronization. This will allow 5G to support various 
needs of users on the same network, at the same time [18]. The 5G fronthaul architecture has 
eight functional deployment options, which vary on benefits and possible drawbacks when 
depicting latency, complexity, and capacity. As seen in Figure 2.4, the options are defined 
at the points between the Physical, Data, and Network layers found in the Open Systems 
Interconnection (OSI) model. Option 8 is depicted as the current CPRI configuration where 
the high-level split is found between the low Physical layer of the BBU and the RRH [20]. 
The Physical Layer Split (PLS) architecture presented by 3GPP gives the network engineers 
options for how they want to set out responsibilities between the BBU and RRH. In this 
option, the BBU maintains all radio link control and media access control layer functions. 
It also maintains the lower physical layer functions, such as modulation and fast Fourier 
transforms, which are delegated to the RRH [21]. The BBU will be conducting most of 
the digital baseband radio functions, as the RRH carries out mostly analog radio frequency 
tasks. This will allow for the most cost-effective spatial separation that is desired [17]. The 
BBU supports a large number of RRHs and variables that are needed to be optimized, such 
as beamforming vectors, in a dense C-RAN. The BBU computes beamforming-vectors that 
are compressed for each RRH [22].

This section has emphasized how the new 5G architecture has allowed for a more reliable
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network with low latency with its physical restructuring. Next, we will discuss how the
changes to the base waveform and the increased spectrum provide amore improved network.

2.2.2 Spectrum
The 5G network increased the use of the spectrum and implemented changes to the base
waveform to increase spectrum efficiency and reduce intersymbol interference (ISI) for
mobile users. In 5G, the use of the spectrum in cellular technology allows for an increase
of capacity and decreased congestion. LTE was one of the first designs to show spectrum
flexibility with the ability to have a joint Frequency Division Duplex (FDD)/Time-Division
Duplex (TDD) andmulti bandwidth support. This allowed LTE to utilize carrier aggregation
and have access to unlicensed spectra to adhere to higher bandwidths and fragmented
spectra. LTE supports licensed spectra at 3.5 GHz and unlicensed at 5 GHz. 5G significantly
expanded the frequency range with its radio-access technology in its support to the licensed
spectrum by dividing the spectrum into two ranges. Frequency Range 1 (FR1) includes
bands from below 6 GHz, and Frequency Range 2 (FR2) includes bands from 24.25 GHz
up to 52.6 GHz [13].

Millimeter wave (mmWave) uses the radio frequency (RF) spectrum from approximately
30 to 300 GHz. 5G is able to operate at mmWave frequencies which allows for high traffic
and extreme data rates due to the large amounts of the spectrum use and wide transmission
bandwidths. The ability for 5G to operate in these ranges are needed due to the large
quantities of the spectrum that are available at high-frequency ranges. Another reason for
5G to operate in this spectrum are for the spatial degrees of freedom that are used with high-
dimensional antenna arrays, which are possible due to the smaller size of antenna elements
at these higher frequencies [23]. Using mmWave frequencies creates limitations because
of poor isotropic propagation and shadowing at the higher frequencies. However, by using
directional antennas that have high gain, overcoming these limitations is possible [23].
Section 2.3 will further discuss how beamforming in 5G is an effort to neutralize these
limitations.

Modulation schemes in 5G will mirror those in LTE, which utilizes Orthogonal Frequency-
Division Multiplexing (OFDM) and Orthogonal Frequency-Division Multiple Access
(OFDMA). A visual representation of the time and frequency domain view of OFDM can

10



Figure 2.5. Frequency and Time of OFDM. Source: [26].

be seen in Figure 2.5. 5G NR’s highly flexible spectrum establishes multiple numerologies
`, defined by the specific SCS [24]. The SCSs are evaluated as

Δ 5(�( = 15 × 2` kHz for ` ∈ [0, 4], (2.1)

and allows for a novel SCS range of 15 (standard LTE) to 240 kHz. Generally, higher SCS
is used for shorter transmission time intervals required for mmWave while lower SCS is
optimal for higher throughput performance [25]. Increasing this flexibility of SCS allows
for more efficient use of the available spectrum.

2.2.3 Timing Management
Timing management in the OFDMA construct is vital to creating a successful network
operation. It is necessary in cellular systems to ensure that the transmissions from the UEs
are synchronized when received by the RRH. It is a requirement by OFDMA that the uplink
frames arrive at the cell towers that a specific user is scheduled. Without this requirement,
the uplink frames are susceptible to inter-symbol interference, which would degrade the
wireless link [27]. Cellular networks must incorporate propagation delay into its scheduling
in order to prevent inter-symbol interference, since that delay between the user and the RRH

11



will not be constant. To do this, a Timing Advance (TA) parameter is used as a control
element in the medium access control (MAC) layer to modify the users uplink burst timing
to allow for adjustments in the propagation delay [27]. Like LTE, the 5G TA command is
made up of two prominent parts, the timing advance value #)� and the Timing Advance
Group (TAG) [28]. The TA command must ensure that a UE is able to move within a
serviceable environment as its transmissions arrive at the RRH in its given time slot. The
propagation time for its transmissions will change as the UE moves, significantly at times,
requiring some synchronization method.

TAG, a 2-bit field, allows for a unique association of the TA command to a particular RRH
to specifically account for communication with multiple RRHs. This is done through carrier
aggregation [13] and the high unlikelihood that they are equal distance from the UE. #)�
has an associated fixed time value due to the unchanging basic time in LTE, )B, detailed in

)B =
1

Δ 5A4 5 × # 5 ,A4 5

=
1

15 × 103 × 2048
≈ 32.6 nsec, (2.2)

where Δ 5A4 5 is the LTE SCS and # 5 ,A4 5 the maximum number of subcarriers. The TA
values are represented as integers and account for 16 sample time units such that

#)� = 16)B . (2.3)

Equations (2.2) and (2.3) are used to calculate the one-way distance resolution as shown

A =
2#)�

2
= 78.125 meters. (2.4)

To employ the NR numerologies, the new base unit of time is employed in [29]

)2 =
1

Δ 5<0G × # 5

=
1

480 × 103 × 4096
≈ .51 nsec, (2.5)

where Δ 5<0G is the maximum SCS and # 5 the maximum number of subcarriers. The
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Figure 2.6. Visual representation of a TA command with TA = 2 and the
associated distances with ` = 0. Source: [11].

relationship between )2 and )B previously stated in [24], which introduces ^ defined as

^ =
)B

)2
= 64. (2.6)

The basic slot time in 5G is redefined as

)B =
1

Δ 5A4 5 × # 5 ,A4 5

=
1

15 × 103 × 2` × 2048
, (2.7)

where Δ 5A4 5 is the standard LTE SCS. It is then multiplied by 2` for various numerologies
while # 5 ,A4 5 is the same as (2.2). #) � is now defined as

#)� =
16^)2

2`
. (2.8)

Based on equation (2.6), )2 is nullified which leaves
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#)� =
16)B
2`

. (2.9)

Thus, using the equations (2.4) and (2.9), the distance resolutions are now calculated as

A =
2#)�

2
=

78.125
2`

meters, (2.10)

which directly shows the dependence of 5G TA distance resolutions on the associated
numerology. Table 2.1 summarizes these new resolutions and Figure 2.6 exhibits a visual
understanding of the TA.

Table 2.1. 5G NR Numerology Distance Resolutions. Adapted from [30] and
[31].

`
Distance Resolution

(m)
Subcarrier Spacing

(kHz)
OFDM Symbol
Duration (`)

Slot Duration
(ms)

0 78.125 15 66.67 1
1 39.06 30 33.33 0.5
2 19.53 60 16.67 0.25
3 9.77 120 8.33 0.125
4 4.88 240 4.17 0.0625

2.3 Beamforming in 5G
To improve on 4G LTE communication from the eNB to the user, 5G changed the direc-
tionality associated with each RRH by way of beamforming. Although beamforming is new
to cellular technology starting in 5G, the concept of RF beams has been around for many
years. Beamforming is the controlled interference of multiple waves to increase the strength
of transmitted signals in a specific direction [32]. The beams are used to identified the best
data-delivery route to the UE and that will also reduce interference [13]. This increase in
spectrum efficiency is especially useful in mmWave technology [13]. As cellular signals are
transmitted, signals can be blocked or weakened over long distances. While using beam-
forming techniques, the signal is sent in a concentrated direction to a specific user, which
allows for the strengthening of a signal and allows for improved probability of interference.
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There are multiple ways to deploy this technology in 5G depending on the equipment the
user has available [33].

2.3.1 Motivation
5G NR utilizes multiple steerable antenna elements or arrays of radiators to capture or
radiate energy in a specific direction over its aperture to transmit and receive data [34]. These
antennas make it possible for mmWave devices to overcome propagation effects [23]. The
higher-frequency bands are primarily used for beamforming for extended coverage, while the
lower-frequency bands are used to enable massiveMultiple Input, Multiple Output (MIMO)
and interference avoidance [13]. All NR channels and signals have been designed for
beamforming support. Analog beamforming is possible at high frequencies where the
receiver and transmit beams can be one-directional at a given time [13]. Beam-sweeping
is method that is utilized because the same signal is repeated in multiple OFDM symbols.
Beam-sweeping ensures that any signal can be transmitted with a narrow beam and a high
gain to reach the coverage area [13].

High propagation losses in FR2 create the need for improvement in the link budget and
enable this frequency range for 5G cellular networks. 5G NR uses a large number of beams
to cover legacy networks’ spatial areas as seen in Figure 2.7. 5G uses multiple beams for
transmitting and receiving signals in different directions allows for higher antenna gain than
the previous LTE use of beamforming.

2.4 Massive MIMO
MIMO is the use of multiple transmitters and receivers on a device to increase performance.
Massive MIMO extends beyond MIMO by adding a significant number of antennas on base
stations. The added antennas focus more energy to increase throughput and efficiency for
5G [35].

2.4.1 Massive MIMO and Beamforming
A type of legacy beamforming design, known as Advanced Antenna Systems (AAS), uses
static beamforming in the radio and is applicable in limited coverage networks. 5G networks
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Figure 2.7. Beamforming Deployment. Source: [13].

utilize digital beamforming to obtain the maximum spectral efficiency improvements. Mas-
sive MIMO adds a spatial dimension to frequency and time dimensions to boost spectral
efficiency. By adding spatial dimensions, the SNR is improved because of the array gain
and orthogonality of multiple beams. This allows the frequency and time allocations to be
reused by other users [36]. Figure 2.8 shows a comparison of AAS and massive MIMO.

2.4.2 Variations of MIMO
Spatial processing for 5G NR is based on beamforming, Single User MIMO (SU-MIMO),
and Multiple User MIMO (MU-MIMO). Beamforming concentrates energy to the UE and
reduces interference with other UEs. MIMO beamforming techniques compensate for high
attenuation caused by theoretical free space path loss, which is governed by Friis’ equation
as discussed in [37] and [23]. Theoretical free space path loss is proportional to the square of
the frequency and results in themagnitude of power received for ammWave signal being over
30 dB less than the conventional cellular systems [37] [23]. The antenna size and spacing
compacts to millimeters and then packs hundreds of elements onto cell base stations and
handheld devices in mmWave. The smaller antennas allow for integrating multiple arrays
onto the mobile devices to stay connected, even if the signal is blocked from one array [23].
SU-MIMO splits Signal to Interference+Noise Ratio (SINR) between multiple layers to
the target UE to improve user throughput. MU-MIMO shares SINR between multiple data
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Figure 2.8. AAS vs massive MIMO. Source: [36].

layers to multiple UEs where each layer is separately beamformed to improve capacity and
throughput for the user [38]. Figure 2.9 shows the spatial processing.

2.5 Base Station Density in 5G
Base station density is increasing as 5G continues to be established in the United States.
To ensure that the network capacity increases in 5G, decreasing cell sizes have proven to
be most effective. In shrinking the cells, spectrum reuse is utilized to allow a reduction in
the number of users needing to compete for resources at their respective BS. Cells are able
to shrink without sacrificing the signal to interference (SIR), proven in [39]. Because of
this, every BS is able to use its resources and backhaul connection to a small number of
users [40].

The shift to higher frequencies in 5G, namely mmWave that range from 24GHz to nearly 53
GHz, creates disadvantages, such as the frequencies can only be used at shorter distances
and are susceptible to obstructions in its path. Significant obstructions that affect mmWave
include buildings, trees, humidity, and rain [41]. Because of these obstructions for higher
frequencies, the 5G network must utilize many more base stations than the previous LTE
network.
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Figure 2.9. Beamforming and MIMO. Adapted from [38].

2.6 Summary
This chapter discussed the fundamental topics for 5G for comprehension of the simulation
parameters, methods of testing, and the final results. We gave an overview of LBS and
its advances in 5G that include positioning. We followed with a look at the technical
changes that included the architecture, spectrum, and timing advance. We then reviewed
beamforming followed by a deeper dive into massive MIMO. We ended this chapter with
5Gs base station density that will impact areas across the United States. In the next chapter,
we will present the methodology processes that were derived from our guiding questions as
presented in Chapter 3.
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CHAPTER 3:
Methodology

In this chapter, we will describe the processes used to create our schemes based on the
background information previously discussed in Chapter 2. We will further discuss our
scheme, equations, and our methodology to evaluate questions presented about the 5G
environment. Simulations that we created were based on finding accurate results to the
following questions:

1. At what point do the number of servicing RRHs not provide a significant improvement
in the positioning performance, both with and without beamforming?

2. How do results change per numerology used?
3. How does architectural density marginalize the benefit of a multilateration approach

to a location estimate? To demonstrate this we show at what point, if ever, would the
position estimate be more accurate by utilizing the closest servicing RRH in a 5G
environment.

3.1 Position Estimates based on RRH and Numerology
Simulation Without Beamforming

This scheme was partially set up in [11] and modified for this thesis. To answer the first
question, we have to first use a range of RRHs that our UE will be communicating with and
evaluate that data per numerology being used. The range of RRHs tested range from 3 to
11 with one UE located at (0,0). This range started at 3 RRHs, based on the trilateration
techniques and ended at 11 RRH, which allowed a large range to observe the changes in
our scheme. The RRHs were randomly placed throughout a 1,000,000 m2 area. We then
calculated the TA for each RRH to the UE. Each TA has associated rings of the uncertainty
of equal distance, depending on the numerology used as seen previously in Table 2.1.
The rings are used to find the possible location that the UE could be located. Non-Linear
Least Squares (NLLS) was the method used to find the position estimate of the UE. After
calculating the true distances from the RRH to the UE, Gaussian noise was added and
formed our distance estimates, 3̂8. The estimates were then quantized into the appropriate
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Figure 3.1. A basic example of populating RRHs in a 5G environment with
the addition of noise.

TAs. This process can be seen in Figure 3.1, where i represents the number of RRHs in
the 5G environment. The known range values for each TA were then used to calculate the
target’s position Maximum Likelihood Estimate (MLE), p̂, through the employment of the
NLLS method presented in [42], and [43], and [11]. This involves the minimization of
x = [G, ~]) in the following

p̂ = arg min
x

#∑
8=1
[38 − ‖x − xi ‖]2 (3.1)

where the position estimate is represented by p̂ = [Ĝ, ~̂]) , 38 represents the distance from the
center of the TA to each RRH, xi = [G8, ~8]) represents the positions of each RRH, and 8 is
an integer ranging from 1 to the total number of RRHs. The squared distance error solution
from (3.1) is calculated by squaring the distance between p̂ and the true UE position p.

3.2 Position Estimates with Beamforming
We now include beamforming to test the proposed scheme’s positioning performance.
Beamforming, based on AoA, is used in the geometric approach for angle-based positioning
performance. The range and angle of this positioning system follows a geometric approach
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for localization and uses measured distances or angles from one node (UE) to the anchor
node (RRH) [44]. The distances based localization utilizes the lateration methods to find
the approximate location of a certain node [44]. In a geometric localization system, an
incident signal’s AoA is represented by straight lines [44]. The intersection of lines from its
respective anchor node represents the location of that UE.

In addition to the RRHs and novel 5G numerologies found in Section 3.1, zero mean
Guassian noise was added before the calculations of the angles of arrival. This noise was
implemented in the x and the y coordinates by addingGaussian noisewith standard deviation
sigma to all coordinates in the RRHs. The standard deviation sigma was found by taking the
distance resolutions found in Table 2.1 and dividing it by a fixed annulus previously found
in [45].

The range of RRHs tested were again looked at in the range of 3 to 11 with the UE located at
(0,0). The RRHs were randomly placed throughout a 1,000,000 m2 area that was identical
to the scheme without the beamforming. We then calculated the TA for each RRH to
the UE. Each TA has associated rings of uncertainty of equal distance, depending on the
numerology used. We again calculated the true distances from the RRH to the UE with
the added Gaussian noise and formed our distance estimates, 3̂8. The estimates were then
calculated into the appropriate TAs. The known range values for each TA were then used
to calculate the target’s position MLE, ˆ̂p, through the employment of the NLLS method
presented in [42], and [43], and [11]. In addition to the previous NLLS, we utilized the AoA
for estimating the position of the UE. Figure 3.2 shows the basic concept of calculating the
AoA to (3.1) for the added calculation of beamforming. An overview of this model can be
seen in Figure 3.3. Figure 3.4 shows a closer look at 3.3 and the beams being discussed.

We first accounted for the slope, m, of each line from the RRH to the position estimate of
the UE. The perpendicular of the slope, <̂, was found by using the negative reciprocal of m,
<̂. We then continued our calculations with the added beam. This involves the minimization
of x = [G, ~]) in the following

ˆ̂p = arg min
x

#∑
8=1
( [38 − ‖x − xi ‖]2 + (n8)2), (3.2)
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Figure 3.2. A basic example populating RRHs in 5G environment with the
addition of noise and beamfoming.

where p̂ = [Ĝ, ~̂]) , 38 represents the distance from each RRH to the center of its TA ring,
xi = [G8, ~8]) represents the positions of each RRH, and 8 is an integer ranging from 1
to the total number of RRHs. The squared distance error solution from (3.2) is calculated
by squaring the distance between p̂, the true UE position p, and the magnitude of the
line segment perpendicular to the beam and that contains the beam and the point x as its
endpoints, n8.

3.3 Architectural Density in the 5G Environment
The scheme in Section 3.1 was modified to examine the density of base stations placed
within a city-like environment. To answer the last question posed in this thesis, we first
had to use a range of RRHs that our UE will be communicating with and then observe the
outcome of the data per numerology being used. The range of RRHs tested again ranged
from 3 to 11 with one UE located at (0,0). This range started at 3 RRHs, which we found to
be the most effective starting point for multilateration since any number of RRHs less than
three will not have an unambiguous solution. Our range ended at 11 servicing RRHs since
we found that the data does not show any significant change after this range. The location
of the RRHs were uniformly random and placed throughout a 1,000,000 m2 area.
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Figure 3.3. A basic example of two RRHs with beamforming to visualize the
5G location estimate. The beams are shown with the slopes represented by
<1 and <2, starting from the RRHs to the estimated UE location.

In this approach, we varied the density of RRHs placed within our simulated area. We 
started with ten RRHs and tested up to 250 RRHs placed in the area. The large amount 
of RRHs was used to simulate a city-like location where an abundance of RRHs could be 
found, such as businesses, housing communities, and other various locations. We used this 
environment to compare two options. The first option would be for the UE to connect to 
the closest RRH. The second option would be for the UE to connect to the closest 3 to 11 
RRHs, utilizing multilateration discussed in Chapter 2.

Following this, Equation (3.1) was used to find the position estimate of the UE. True 
distances from the RRH to the UE were again calculated, and Gaussian noise was added as 
used in the previous Equation (3.1) to form our estimated distance, 3̂8. The estimates were 
again quantized into the appropriate TAs. The known range values for each TA were then 
used to calculate the target’s position MLE, p̂, through the employment of the NLLS as 
seen in Section 3.1 and equation (3.1). We then find the MLE and the mean square error 
(MSE) of both options.
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Figure 3.4. A basic example of two RRHs with beamforming to visualize the
5G location estimate. The beams are shown with the slopes represented by
<1 and <2, starting from the RRHs to the estimated UE location.

3.4 Summary
In this chapter, we proposed three schemes to answer the guiding questions stated at the 
beginning of this chapter: at what point do the number of servicing RRHs not provide a 
significant improvement in the UEs positioning performance, how do results change per 
numerology used, how does architectural density marginalize the benefit of a multilateration 
approach to a location estimate, and at what point, if ever, would the position estimate be 
more accurate by utilizing the closest servicing RRH in a 5G environment? We will now 
move to our results found and the implications for 5G in Chapter 4.
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Figure 3.5. Image to depict cell tower density in 5G environment. The light
colored antennas show the three nearest RRHs to the end user.
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CHAPTER 4:
Results

This chapter describes the development and evaluation of the results found in the dense 5G
environment created from the questions formulated in Chapter 3. We organized our results
into two categories: the simulation of RRH and numerology, and the architectural density
simulation. Each of theseMonte Carlo simulations were calculated no less than 1,000 times.

4.1 Simulation of RRH and Numerology
We had anticipated that our simulations for the position accuracy would increase as the
number of RRHs increased and as well as when the SCS became larger. As seen in Figures
4.1 and 4.2, our results showed that our expectations were correct. It is evident in the results
showed that as the numerology increases, theMSE decreases per BS. Not only does theMSE
become halved for each numerology when there are 3 RRHs, the MSE from 5G without a
beam is nearly halved when a beam is added. As the number of RRHs increase, the margin
of MSE between the data with and without beamforming decrease. Beamforming adds
significant value to minimizing the location error when compared to simulations without
beamforming when there are less than 6 servicing RRHs. In answering our first question,
the position estimate difference in MSEs with and without beamforming per numerology
became negligible at 9 RRHs for ` = 0 and 1, at 8 RRHs for ` = 2 and 3, and 7 RRHs when
` = 4.

We then found the 90% and 95% circular error probable (CEP) for each RRH shown in
Tables 4.1-4.3. The CEP creates a ring of precision around a target that relates the location
distance error and confidence location error. A chosen percentage of location estimates are
contained in the ring of precision (90% and 95% respectively). The radius of this circle is
equal to the furthest location distance error among those contained points [11] [46]. As the
numerology, `, increases, the data shows that the location error decreases by nearly half for
each RRH tested. Beamforming also significantly decreases the location error, especially
when there are 3 to 5 RRHs. The most accurate scenario is when ` = 4 and beamforming
is used.
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Figure 4.1. Mean square error for the position estimate for all numerologies
when estimating distances from only servicing RRHs and both RRHs and
beams.

4.2 Architectural Density Simulation in the 5G Environ-
ment

We had anticipated that at some point, the saturation of remote radio heads would create
an environment that would make the UE location less accurate. However, Figures A.1-A.7
found in Appendix A show a closer look at our dense 5G environment. It is visible that at
each numerology tested, the UE selecting the closest RRH will always have a higher MSE
as compared with the UE selecting 3 to 11 of the closest RRHs for its location estimate.
Figures A.1 and A.7 presented in Appendix A show zoomed out images where the top blue
line represents the UE selecting the closest remote radio head, and below, the 3 through
11 of the closest RRHs selected by the UE. Figures A.3-A.6 also presented in Appendix A
show a zoomed-in image for their respective `.

Overall, as seen in the previous images presented in Appendix A and in Tables B.2-B.6
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Figure 4.2. This image is the close-up of Figure 4.1. The mean square error
for the position estimate of the UE for all numerologies when estimating
distances from only servicing RRHs and both RRHs and beams. `= 0 and
1 not pictured.

found in Appendix B, it is evident that the MSE is lowest when a UE can utilize more
servicing RRHs for a more accurate location estimate. The results in Table B.2 show the
location error results when ` = 0. The difference between the MSE of the closest RRH to
the UE compared to the UE selecting the 3 closest RRH was a larger deficit than expected.
As the density of these increases, it is still significant that choosing the closest 3 RRHs
would give a much smaller MSE than choosing the single closest. This difference is even
more drastic when comparing the selection of the closest 11 RRHs to the closest UE.

The comparisons found in Table B.2 become more severe as the MSE continues to rapidly
decrease as the numerology increases. These relationships can be seen in Tables B.3-B.6.
When ` = 4, it is a striking difference in the location error, as the |acMSE of the closest 3
RRHs is under 35 m2, no matter how dense the infrastructure deployment, and even more
accurate at MSE of the closest 11 RRHs that is under 5 m2.
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3 Remote Radio Heads
90% CEP 95% CEP

` SCS (kHz) Beamforming
Without

Beamforming Beamforming
Without

Beamforming
0 15 66.37 77.49 71.27 92.68
1 30 33.27 40.23 37.00 46.23
2 60 17.10 21.51 18.83 24.86
3 120 8.39 10.72 9.22 12.68
4 240 4.29 5.24 4.69 5.97
Table 4.1. Circular error probable for 3 RRHs per numerology. Comparison
of 90% and 95% CEP both with and without beamforming.

5 Remote Radio Heads
90% CEP 95% CEP

` SCS (kHz) Beamforming
Without

Beamforming Beamforming
Without

Beamforming
0 15 58.72 63.64 65.29 74.47
1 30 31.19 34.06 34.60 39.57
2 60 15.58 17.25 17.25 19.70
3 120 7.82 8.51 9.08 9.97
4 240 3.91 4.35 4.55 5.30
Table 4.2. Circular error probable for 5 RRHs per numerology. Comparison
of 90% and 95% CEP both with and without beamforming.

Other observations found in this simulation is the point at which selecting a certain number
of RRHs will not affect the MSE. At its most dense point of 250 RRHs, when ` = 0, the
range of MSE between 3 and 11 RRHs is from 514 m2 to 368 m2 respectively. This range
becomes more accurate as the numerology increases, as seen when ` = 4 where 3 and 11
RRHs have a MSE of nearly 32 m2 and 4 m2, respectively.

Lastly, as expected, it can be seen in the previous tables and figures that the density is
affected more when at a lower numerology. As expected, when ` = 0, the lowest MSE was
with 11 selected RRHs in a highly dense environment of nearly 250 RRHs. The MSE for
these parameters was about 368 m2. Comparing this result to ` = 4, the average MSE for
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9 Remote Radio Heads
90% CEP 95% CEP

` SCS (kHz) Beamforming
Without

Beamforming Beamforming
Without

Beamforming
0 15 46.92 47.46 52.61 53.91
1 30 25.34 24.83 28.40 29.08
2 60 12.91 12.82 14.14 14.59
3 120 6.56 6.50 7.39 7.53
4 240 3.35 3.39 3.66 3.85
Table 4.3. Circular error probable for 9 RRHs per numerology. Comparison
of 90% and 95% CEP both with and without beamforming.

11 RRHs is 4 m2. This is a significant difference in location error.

4.3 Summary
Looking back at the questions posed in Chapter 3, we are able to summarize our findings
based on the parameters and results of the simulations conducted. Our first simulation
objective was to observe the point at which the number of servicing RRHs stop providing a
significant improvement in the UEs positioning performance. We conducted this both with
and without beamforming in the 5G environment. We found that as the number of RRHs
increase, so too does the accuracy of our location estimates. With these results, we were
also able to see that as the numerology increased, the MSE decreased, making our location
estimate even more accurate. Beamforming made our results much more accurate when
there were 3 and 4 servicing RRHs. As the numerology increases, our accuracy of finding
our UE position increases, both with and without beamforming.

Our final question that we simulated set out how BS density affected our location estimate
and at what point, if ever, would the UE become easier to find utilizing the closest RRH.
Our results showed that no matter how dense the RRHs become, the location accuracy will
increase accuracy with more RRH options available.
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CHAPTER 5:
Conclusion and Recommendations

The purpose of this thesis was to determine whether the TA localization method results in
a low MSE with 5G beamforming, how beamforming changes the 5G environment, and
how dense RRH areas affect location privacy. We have shown that by using the multiple
unencrypted TA commands of a target UE, an adversary can calculate the user with a
small margin of error with the proper equipment. We believe that with the preciseness of
beamforming, the location error is lowered in areas with fewer RRHs for the user to utilize.
We also were able to find that a user is vulnerable to more accurate position estimates in
RRH dense areas. With our findings, we believe that end-user privacy is at greater risk with
the evolution of 5G technology.

5.1 Limitations
There were limitations with the implementations of this thesis. Beamforming in 5G is
a significant concept utilized in its most basic form for this thesis. Beam management,
specifically beam-sweeping, measurement, determination, and reporting, was not discussed
in-depth or simulated. The element patterns and array factors were also not discussed or
simulated for this thesis. Another limitation was the two-dimensional simulation setting.
Beamforming utilized in urban areas creates an interesting dynamic as antennas are utilized
at various heights that depend on environmental factors.

5.2 Follow-on Research Recommendations
Follow-on recommendations for this thesis are based on the limitations found in this thesis
and the logical "next step" to this research. The first recommendation would be to create
a three-dimensional version of this study and add a dynamically moving UE to test how
well the algorithms can localize the target. Conducting this research in an operational 5G
environment would allow the algorithm to be tested in a true environment with real signals
to test the accuracy of locating the end user.

A final recommendation would be to analyze the data found in the 5G beamforming mini-
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mization equation 3.2 to determine whether or not it is a MLE that includes beamforming.
Future research should include detailed mathematical analysis of finding this objectiveMLE
function.
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APPENDIX A:
Figures of Mean Square Error Results for Location

Error

Each figure in this section show the results found from the simulations detailed in Chapter
3 and Chapter 4. Each figure displays the resulting MSE for the location error of each `
with increasing architectural density.

Figure A.1. This image shows the mean square error of location error when
` = 0. The RRHs in the given area range from 3 to 250.
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Figure A.2. Above is a close-up of the mean square error for the location
error when ` = 0. The RRHs in the given area range from 3 to 250.

Figure A.3. Above is the zoomed in view of mean square error for the location
error when ` = 1. The RRHs in the given area range from 3 to 250. Closest
RRH to UE and closest 3 RRHs to UE not pictured.
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Figure A.4. The zoomed in view of mean square error for the location error
when ` = 2. The RRHs in the given area range from 3 to 250. Closest RRH
to UE not pictured.

Figure A.5. The zoomed in view of mean square error for the location error
when ` = 3. The RRHs in the given area range from 3 to 250. Closest RRH
to UE not pictured.
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Figure A.6. Mean square error of location error when ` = 4. The RRHs in
the given area range from 3 to 250.

Figure A.7. The zoomed in view of mean square error for location error when
` = 4. The RRHs in the given area range from 3 to 250. Closest RRH to UE
not in picture. Closest RRH to UE and closest 3 RRHs to UE not pictured.
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APPENDIX B:
Tables of Mean Square Error Results for Location

Error

The tables in this section show the results found from the simulations detailed in Chapter 3
and Chapter 4. Each table describes the resulting MSE for the location error of each ` with
increasing architectural density.

Location Error when `=0

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 28580.70 3158.52 1322.05

100 RRHs per
1 km2 3648.96 1442.16 850.49

250 RRHs per
1 km2 857.11 514.14 368.43

Table B.1. Mean Square Error Results for the location error when `=0 for
density of 10, 100 and 250 RRHs in a given area.

Location Error when `=0

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 28580.70 3158.52 1322.05

100 RRHs per
1 km2 3648.96 1442.16 850.49

250 RRHs per
1 km2 857.11 514.14 368.43

Table B.2. Mean Square Error Results for the location error when `=0 for
density of 10, 100 and 250 RRHs in a given area.
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Location Error when `=1

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 31356.60 1191.89 257.36

100 RRHs per
1 km2 3292.96 691.47 174.05

250 RRHs per
1 km2 1273.24 484.98 142.10

Table B.3. Mean Square Error Results for the location error when `=1 for
density of 10, 100 and 250 RRHs in a given area.

Location Error when `=2

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 29014.4 339.24 64.97

100 RRHs per
1 km2 3054.19 233.45 52.74

250 RRHs per
1 km2 1281.62 188.89 49.38

Table B.4. Mean Square Error Results for the location error when `=2 for
density of 10, 100 and 250 RRHs in a given area.
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Location Error when `=3

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 28524 110.79 17.16

100 RRHs per
1 km2 3081.94 80.99 14.02

250 RRHs per
1 km2 1208.77 67.80 13.89

Table B.5. Mean Square Error Results for the location error when `=3 for
density of 10, 100 and 250 RRHs in a given area.

Location Error when `=4

Density of RRHs MSE of Closest
RRH to UE (m2)

MSE of Closest
3 RRHs to UE (m2)

MSE of Closest
11 RRHs to UE (m2)

10 RRHs per
1 km2 27692.8 33.18 4.45

100 RRHs per
1 km2 3087.95 21.69 3.73

250 RRHs per
1 km2 1264.45 31.69 3.54

Table B.6. Mean Square Error Results for the location error when `=4 for
density of 10, 100 and 250 RRHs in a given area.
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