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ABSTRACT 

 Popular video conferencing platforms, such as Skype, Zoom, and Facebook 

Messenger, use Variable Bit Rate (VBR) codecs to perform audio compression, which 

allows the system to dynamically change the audio encoding rate based upon the 

complexity of a sound. While this significantly reduces network bandwidth usage, past 

work has shown that using VBR codecs results in the length of packets, even when 

encrypted, being highly correlated to the phonemes (basic building blocks of speech) they 

encode. Previous papers have demonstrated how this vulnerability, which also exists in 

Voice over Internet Protocol (VoIP) technology, allows an adversary to determine the 

language in use and the existence of specific phrases within a conversation. From this 

data, an adversary can even produce a transcript of the entire call. In this paper, we 

explore the use of this exploit on video conferencing traffic in four domains: 

identification, authentication, profiling, and correlation to audio amplitudes. Significant 

limiting factors, including an extremely small dataset, preclude achieving statistically 

significant performance in the first three areas; we do discover and present a high 

correlation between lengths of encrypted packets and the amplitudes of the audio they are 

transmitting. 
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CHAPTER 1:
Introduction

Voice over Internet Protocol (VoIP) is a technology that utilizes the Internet as a medium
for telephonic voice communications. When compared to traditional phone providers and
mediums of transmission, VoIP offers several advantages. VoIP is cheaper, more portable,
and easier to scale than a wired phone service, which has contributed to its widespread
adoption across sectors [1]. To transition from spoken voice to bits travelling across the
Internet, VoIP technology utilizes audio codecs, which capture speech at its most basic
building block, a phoneme, and map them to a set of pre-encoded sounds. Different from
generic audio codecs, speech codecs utilized by popular VoIP technologies take advantage
of the limited range of sounds the human voice can produce and the periods of silence
that naturally occur in speech (pausing for effect, not talking while someone else is, etc.) to
efficiently utilize network bandwidth. Thismanifests itself inVariable Bit Rate (VBR)mode,
a very popular option that allows the codec to set its encoding rate based on the complexity
of the sound to encode, and shift this rate dynamically during a conversation [2].

The drawback to the bandwidth saving use of VBRmode is that, by definition, the encoding
rate changes based on sounds, and therefore each basic unit of speech will be encoded at
a different rate, resulting in differently sized payloads (assuming a constant time interval
per packet). In practice, this results in a strong correlation between the length of a packet
and the phoneme(s) it is encoding, which creates a serious leak of information. However,
as one would expect, VoIP packets are encrypted before being sent across the Internet to
protect the privacy and integrity of the call. The encryption protocol that VoIP uses, Secure
Real-time Transport Protocol (SRTP) does not pad the length of the packets, so while the
data is encrypted, the original length remains, and therefore so does the relationship between
packet length and phonemes. Several papers have demonstrated how this leak of information
can be used to identify the language spoken over a call, identify the existence of specific
phrases within a call, and even develop a transcript of the entire conversation [2], [3].

Video conferencing technology, widely used today through platforms such as Skype, Zoom,
and Facebook (FB) Messenger, were developed after the emergence and success of VoIP
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technology, and importantly built on existing VoIP technology. The speech codecs used in
video conferencing software also utilize VBR mode, which means the fundamental infor-
mation leak produced by the correlation between audio packet lengths and the phonemes
they encode still remains. In this project, we examine we examine how this exploit might
be leveraged in the video conferencing domain rather than VoIP.

Specifically, we attempt to perform identification, authentication, and profiling using en-
crypted video conferencing traffic, and examine the correlation between packet lengths and
audio amplitude.

1.1 Contributions
While building upon existing work, this project also makes several key, new contributions,
listed below.

1. Apply the phoneme/packet length exploit to video conferencing software instead of
VoIP platforms.

2. Examine whether this attack is viable given variable packet time sizing when using
SILK.

3. Attempt to perform gender and dialect profiling from encrypted video conferencing
network traffic.

4. Examine the correlation between packet size and audio amplitude.

1.2 Motivation
The Covid-19 pandemic brought on sudden changes to every aspect of our lives, and long
periods of stay at home orders and social distancing guidelines pushed many businesses to
operate remotely. Accordingly, many organizations, including the Department of Defense
(DOD), turned to video conferencing platforms like Zoom to hold meetings and coordinate
work. Zoom alone saw its use rise from roughly 10 million participants a day in December
of 2019 to over 300 million users per day in April of 2020. Similarly, its yearly revenue
increased from $330.5 million in FY2019 to $622.7 million for FY2020 [4].

The rapid expansion in video conferencing use raised questions about how secure the
technology actually was. Previous work nearly ten years prior had identified serious vulner-
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abilities in VoIP audio codecs operating in VBR mode, and we wondered whether similar
vulnerabilities existed in video chat platforms such as Zoom or Skype. A short amount of
research revealed that no work had been done to address the previously identified VoIP
information leaks, and, most importantly, all of the major video chat providers (Skype,
Zoom, FB Messenger, etc.) were using VBR codecs for audio. This made the security of
encrypted video chat traffic a timely and important issue to investigate.

The implications of such an exploit, considering the sudden and massive rise in VoIP and
video conferencing usage, are not too hard to imagine. From an adversarial perspective,
knowing who is meeting with whom can reveal a lot of sensitive information. For example,
if a traffic capture reveals that I am meeting with an oncologist, an attacker can deduce,
with some degree of certainty, that I may have cancer. Conversely, this exploit could also be
leveraged defensively. A network administrator could constantly monitor VoIP and video
conferencing traffic, checking for unknown or unauthorized users. In practice, this could
help prevent users who have been banned from certain platforms for violating terms of use
from simply creating a new account and continuing their antics.

Now, with multiple vaccines in production and distribution, there seems to be an end in
sight to the pandemic, but perhaps not work from home. Many workers enjoy the flexibility
of remote work, and significant numbers plan to continue working remotely, full or part
time [5]. If this work from home paradigm will become the new normal, it is imperative that
businesses and governments alike truly understand the security implications of conducting
their meetings over the Internet via video conferencing software.

1.3 Thesis Organization
The rest of this paper is organized in the following manner. Chapter 2 explores related
works and establishes a baseline understanding of VoIP and video conferencing technology
which is necessary to understand the rest of the paper. Chapter 3 details our process of data
collection and training paradigms used to accomplish each goal. Chapter 4 provides insight
into what the encrypted traffic data looks like. Chapter 5 presents experimental results for
each area of interest. Finally, Chapter 6 offers analysis, mitigation, and limitations of this
approach to exploiting video conferencing traffic.

3
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CHAPTER 2:
Background

2.1 Voice Over IP
VoIP technology utilizes the Internet as a medium for telephonic voice communications.
When compared to traditional phone providers and mediums of transmission, VoIP offers
several advantages. First is cost; IP telephony is less expensive than a traditional, wired
phone service. Second, VoIP is portable; the service is available anywhere that has access
to the Internet. Third is scale; VoIP allows telephony providers to piggyback off of already
existing Internet connections rather than taking the time and resources to establish traditional
wired connections [1]. For these reasons VoIP has exploded in popularity and deployment
over the past two decades, becoming integral to telecommunication systems throughout the
world.

The process of encoding speech into packets and transmitting them across the Internet is the
foundation of VoIP technology. The following sections will break apart this complex process
into more manageable pieces, highlighting the steps most important to understanding this
project’s motivation.

2.1.1 Phonemes
Speech can be broken down into a series of smaller pieces; some concepts, like vowels and
consonants, will be familiar to most readers, even without a phonetics background. Others,
like phone and phoneme, are less familiar. Regardless, this section will briefly break down
speech to its smallest elements and build back up to arrive at a workable definition of the
key term phoneme.

A phone is a specific speech sound, usually represented by a single letter in the English
language. However, drawing too close a connection between letters and sounds can be
misleading, as often the same letter is pronounced in vastly different ways based upon the
other letters around it. Consider the sound of the letter c in the words car and cell. For
this reason, the International Phonetic Alphabet (IPA) was created to accurately represent
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phones.1 Phones are organized into two main classes: consonants and vowels. Consonants
are generally produced in human speech by restricting or blocking airflow in some way.
Vowels, on the other hand, are characterized by less obstruction and being louder and longer
lasting than consonants [6].

A phoneme is an abstraction that represents similar phones with one symbol. For example,
the letter f in the words fat, often, and cliff are all represented by different phones but share a
phoneme [3]. From this perspective, phonemes help simplify language classification and are
more intuitive to the lay reader, to whom all the f’s sound very similar. This more simplistic
view of speech is a key reason why many of the most popular speech codecs are phoneme
based.

2.1.2 Speech Codecs
Audio for VoIP is generally encoded with speech specific audio codecs, such as the SILK
codec used by Skype and Zoom. Speech codes are more efficient in terms of network usage
than generic audio codecs because they advantage of 1) the periodic rests inherent in most
speech patterns and 2) the limited range of sounds that can be produced by a human mouth.

Most modern speech codecs are based on a process known as Code-Excited Linear Pre-
diction (CELP). For each sound, a CELP encoder searches through a codebook to find the
sound that most closely matches [2]. Most modern codecs, including Skype’s SILK, encode
sound in VBR mode. This means the encoder chooses the bit rate for each packet in order
to reduce bandwidth usage. Because some sounds are more complex than others, and often
regular speech patterns include long pauses (e.g. while someone else is speaking), VBR
mode allows substantial savings in packet length, and therefore network usage. In practice,
phonemes known as fricatives (“f” or “s” sounds) will be encoded at lower bit rates than
vowels [7].

VoIP packets are encrypted and transmitted using SRTP. Importantly, SRTP does not
alter the size of the payload with padding, which means the original packet lengths are
transmitted across the Internet [3]. Because packet payloads differ based on the phoneme(s)
they are transmitting, the packet length of this encrypted traffic leaks a significant amount

1The IPA is not the only phonetic alphabet, but is the most widely used standard in phonetics. ARPAbet is
another common phonetic alphabet.
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of information — since phonemes are the basic units of speech, if an eavesdropper knows
what phonemes are being used, they can work backwards and reconstruct the actual speech.

2.2 Video Conferencing
Just as the telephone was developed decades before the Internet, video conferencing (or
video chatting) was similarly envisioned in a pre-Internet world. AT&T introduced the
Picturephone in 1964 at theWorld’s Fair in NewYork City, but it, andmany of its successors,
were incredible failures. The high cost of these first machines and the aversion of many
people to being seen while on a call prohibited mass adoption of the technology [8]. The
rise of the Internet provided a more cost-effective medium for video conferencing to take
place, and as consumers got over their fear of being on camera, video chat technology was
widely and rapidly adopted in the early 21st century.

VoIP technology laid the groundwork for video conferencing platforms, like Skype, to come
onto the scene. Fundamentally, video conferencing on the Internet is VoIP with the addition
of real-time video. To accomplish this, video conferencing also utilizes the same basic
paradigm as VoIP:

1. Use a video codec (H264, Xvid, MPEG-1, etc.) to compress video into packets.
2. Establish a User Datagram Protocol (UDP) connection.
3. Transport packets using Real-time Transport Protocol (RTP).

The audio and video is therefore recorded and transmitted concurrently but separately. It
is then assembled and presented to user by the client machine. The extent to which we
must understand modern video conferencing software is this: it utilizes VoIP technology
for audio, and adds an additional layer of video on top. Therefore, the same relationship
between packet lengths and phonemes, discussed earlier, should exist in video conferencing
traffic once the audio packets have been separated from the video packets.

2.2.1 Video Conferencing Speech Codecs
This paper will utilize Skype, Zoom, and FB Messenger video conferencing platforms to
collect data. A brief survey of their underlying speech codecs is provided below.
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SILK
The SILK audio codec is used by both Skype and Zoom to encode and transmit audio
during video calls. It is designed and maintained by Skype. SILK is a VBR codec that can
set its encoding rate between 6 and 40 kbps [9]. Interestingly, SILK will vary the number
of frames per packet based on network conditions: each packet could contain 20, 40, 60,
80, or 100 ms worth of encoded audio [3]. The effect of this on the phoneme/packet length
exploit has not been explored.

Opus
The Opus audio codec is used by Zoom and FB Messenger. It is now the default codec for
real-time audio communications because WebRTC (an HTML5 specification for real-time
media communications) has required its use [10]. Opus is a VBR codec with ranges from
6 to 510 kbps.

2.3 Related Works

2.3.1 Spot me if you can
In the 2008 paper Spot me if you can: Uncovering spoken phrases in encrypted VoIP
conversations, authors Wright, Ballard, Coull, Monrose, and Masson propose identifying
spoken phrases in encrypted VoIP traffic by leveraging the relationship between phonemes
and packet length when using a VBR codec since SRTP does not pad the packet lengths [7].

To accomplish this, the authors use the DARPA - Texas Instruments/Massachusetts Institute
of Technology Acoustic-Phonetic Continuous Speech Corpus (TIMIT), a database that
contains 10 phonetically rich sentences spoken by 630 English speaking individuals. These
speakers are distributed between male and female and 8 dialects, for a total of 6300 spoken
sentences [11]. After encoding the speech in TIMIT with the Speex codec in VBR mode,
the authors trained a Hidden Markov Model (HMM) to search for phrases held within a
conversation. Their results show 50% accuracy overall, with over 90% accuracy for certain,
more common phrases.

8



2.3.2 Speaker recognition from encrypted VoIP communications
The 2010 paper Speaker recognition from encrypted VoIP communications applies the
observed packet-length/phoneme correlation to the realms of speaker identification and
verification [12]. Given a set of speakers with previously recorded speech segments, iden-
tification is defined as identifying the suspect to whom a disputed speech segment can be
attributed. Verification, on the other hand, is the probability that two speech segments, one
known and one unknown, are from the same person.

After packet length extraction from VoIP traffic, the authors apply various approaches to
each domain. For speaker recognition, the authors explore using HMM, Gaussian Mixture
Model (GMM), and Ensemble of NestedDichotomies (END) tomodel the speaker’s identity
based on packet length sequences. For verification, the authors approach it as a two-class
classification problem and a regression problem.

Final results yielded identification accuracy of 70-75% for a group of 10 speakers, and
Equal Error Rate (EER) of 17% in the case of verification.

2.3.3 Hookt on fon-iks
The 2011 paper Phonotactic reconstruction of encrypted VoIP conversations: Hookt on fon-
iks, by authorsWhite, Matthews, Snow, andMonrose, builds on the success and motivations
of Spot me if you can. They attempt to construct a hypothetical transcript of the entire
encrypted VoIP call [3]. This work also seeks to exploit the relationship between SRTP
packet lengths and phonemes.

The authors break this complex objective into smaller segments, and build a complete
pipeline to go from encrypted VoIP packets to words of a transcript. The first step is to
extract packet lengths from encrypted VoIP traffic. The authors use TIMIT sentences to
create the conversations transmitted with VoIP. The second step is to segment the sequence
of packet lengths into phonemes using maximum entropy modeling. The third is to classify
the segments into concrete phonemes with a combination of maximum entropy modeling
and profile HMM. The fourth step is to turn the phonemes into word segments using a
phonetic constraint model. Finally, the authors use a phonetic edit distance metric to turn
the word segments (comprised of phonemes) into English words that together form the
transcript of a conversation.
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Through this pipeline, which relies heavily on the fields of phonetics and phonotactics,
the authors were able to successfully transcribe several segments of an encrypted VoIP
conversation. This paper represents the height of what has so far been achieved with regards
to the packet length/phoneme exploit demonstrated in Section 2.1.2.

2.3.4 TypeNet
In the 2020 paper TypeNet: Scaling up keystroke biometrics, authors Acien, Morales, Vera-
Rodriguez, Fierrez, and Monaco investigate using keystroke dynamics to authenticate users
typing free-text [13]. To accomplish this, the team built a Recurrent Neural Network (RNN)
with two Long Short-Term Memory (LSTM) layers of 128 units each. The authors then
used Siamese training, with two inputs (keystroke sequences) and two outputs (embedding
vectors). During training, the model learned information about the keystroke sequences so
that the distance between embedding vectors would be small for keystrokes from the same
user and large for keystrokes of different users.

With this framework, the team achieved an EER from 9.53% to 3.33%, depending on the
amount of user data employed. We see similarities between the keystroke sequences used
in this paper and the sequences of packet lengths produced by VoIP traffic. For this reason,
we believe that this model of training for authentication can be applied to our domain of
interest.

2.3.5 Side-Channel Leaks in Web Applications
The 2010 paper Side-channel leaks in web applications: A reality today, a challenge to-
morrow details so called “side channel leaks” from software-as-a-service applications [14].
Web applications are split into two parts: the browser/client side and server side. As in-
formation traverses from client to server, there is a potential for leaks of information to be
revealed through various means: packet sizes, sequence of states, etc. Therefore, despite
the encryption that has become commonplace throughout the Internet (via HTTPS or other
standards), valuable information is leaked constantly.

The authors examine the extent of this danger, and find that an eavesdropper can deduce the
medical status of a user based on her interactions with an online health site, a user’s salary
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and investment choices based on his use of an investment website, and many similar leaks
of personal information.

Importantly, the authors note that the exploits they discovered are not specific to the targeted
applications; rather, the root causes go to the very structure of web applications today:
stateful communication, low entropy input, and significant traffic distinctions, all of which
are characteristics of modern video conferencing applications as well.

2.3.6 Skype & Type
The 2019 paper Skype & Type: Keyboard eavesdropping in voice-over-IP explores keyboard
acoustic eavesdropping over VoIP, primarily with the Skype platform [15]. Keyboard acous-
tic eavesdropping involves mapping the sound of typing on a keyboard to text, and this paper
applies it to a new domain by extracting erroneous keyboard sounds from a VoIP call. By
assuming the realistic scenario in which a target is multi-tasking by typing on his computer
while also on a VoIP call, the authors investigate the extent to which an adversary can
perform acoustic keyboard eavesdropping in this environment, in particular by discovering
sensitive information the target is typing, such as personal details or a password.

To accomplish this attack, the authors break the problem into four phases: Data Collection,
Feature Extraction, Model Training, and Attack. Feature Extraction involves isolating key-
board sounds from the rest of the audio, segmenting them into single keystrokes, and then
mapping the audio to a single feature per stroke. Then, for Model Training, the authors use
popular machine learning algorithms (Logistic Regression, Linear Discriminant Analysis,
Support Vector Machine, Random Forest, and K-Nearest Neighbor) to perform multi-class
classification, where each character on the keyboard is a class. From this classification they
can string together characters to create words and potential passwords.

The authors demonstrate significant success with this exploit, 91.7% accuracy in guessing
a random key when the attacker has some knowledge on the target’s past typing style and
keyboard model.
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CHAPTER 3:
Methodology

3.1 Overview
Our methodology for this project consisted of two parts. First is data collection. We set up
video calls between two machines on Skype, Zoom, and FB Messenger and used the audio
files from TIMIT to simulate a conversation; we then captured the encrypted traffic as it
travelled between the two hosts. The second step was to isolate the packet lengths for the
audio traffic and put them into chronological sequences for each sentence, associating each
sequence with its matching sentence label from TIMIT, which gives information on dialect,
gender, and a unique ID number to differentiate speakers in those same subcategories. We
investigated four uses of this captured data:

1. Identification — Can we match a sequence to a previously recorded individual?
2. Authentication — Do two sequences belong to the same person?
3. Profiling — Can we identify other features, specifically gender and dialect, from the

sequence patterns?
4. Amplitude Correlation — Do the packets lengths correlate to the amplitude of the

original audio?

Each problem requires a different approach in terms ofmachine learning design and training,
as well as testing and evaluation methods. These will be expanded upon in Section 3.3.

3.2 Data Collection

3.2.1 Enabling Simultaneous Output
To come as close as possible to replicating live human voices on the video call and limit
background noise, it is necessary to enable simultaneous output so audio will play from
the regular speaker and be directed into the microphone as well. This provides better sound
quality (closer to live speech) than playing the sound from one speaker while holding a
microphone nearby. All data collection was performed using an Ubuntu 20.04 system, and
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the necessary steps to enable simultaneous output (provided below) are specific to that
operating system.

To enable this feature, two dependencies are needed: PulseAudio Preferences (paprefs) and
PulseAudio Volume Control (pavucontrol). These can be installed with the command:

$ sudo ap t − g e t i n s t a l l p a p r e f s p a v u c o n t r o l

Skype and FB Messenger
To set this feature for Skype and FB Messenger, we started by initiating a call. Next, we
launched the paprefs program, navigated to the Simultaneous Output tab and checked the
box. Finally, we launched pavucontrol, navigated to the Recording Tab, and changed the
device to "Monitor..." [16]. This allowed audio to simultaneously play out of the speakers
and directly into the microphone, to be treated as input audio for the speech codecs.

Zoom
Zoom does not allow for simultaneous output in the Ubuntu 20.04 environment. Instead of
following the steps for Skype and FB, we had to create virtual audio sources and sinks with
the following commands:

$ p a c t l load −module module− nu l l − s i n k s ink_name=
zoom_input s i n k _ p r o p e r t i e s = d ev i c e . d e s c r i p t i o n =
zoom_input

$ p a c t l load −module module−remap− s o u r c e mas t e r =
zoom_input . mon i t o r source_name=zoom_mic
s o u r c e _ p r o p e r t i e s = d ev i c e . d e s c r i p t i o n =" zoom_mic "

Next, we initiated a Zoom call and launched pavucontrol. In the Output tab of pavucontrol,
we selected “zoom_input” for the application playing audio. Finally, in Zoom we selected
“zoom_mic” as the microphone. After this, the audio was treated as input to the microphone
and only played over the Zoom call [17].
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3.2.2 Video Call Setup
To collect our data for this project, we set up a video call between two machines, Host A
and Host B, for Skype, Zoom, and FB Messenger. Host A, running Ubuntu 20.04, was the
worker for this experiment, while host B, running Windows 10, served as the other end of
the call, and did not play an active role in the data collection other than to maintain the call
for the duration of the collection phase. Once the call was setup between hosts A and B, we
enabled simultaneous output using the methods described in the previous section. Then we
ran a Bash script that accomplished three tasks:

1. Launch a Python program to play each of the 6300 TIMIT sentences, one at a time.
Because simultaneous output is enabled, this will be treated by Host A as microphone
input audio to the video call.

2. Record the timestamp before and after each sentence is played and the corresponding
TIMIT label (Accomplished in the same Python program as Task 1).

3. Capture all outgoing traffic from Host A using tcpdump.

After running this script, we were left with a Packet Capture (pcap) of the video chat traffic,
and a file containing the start and stop times for each of the 6300 TIMIT sentences.

3.2.3 Parsing the Packet Capture
The first step to parsing the resulting pcap was to remove any packets that fell outside the
range of the first sentence being played and the last sentence finishing.2

We then created 6300 arrays, one for each sentence in the TIMIT database. Next, we used the
Python library dpkt to parse through the packets in the pcap file and extract the timestamp
and length of the Transport Layer data field for every packet that matched the following
criteria: IPv4, destination IP address equal to that of Host B, and UDP protocol [18].3

We identified the sentence the packet belonged to by searching through the list of (start_time,

2Because the call had to be manually stopped after six hours of playing, tcpdump captured some packets
that did not fall within the appropriate time zone. We used Wireshark and two time filters (start and stop) to
filter out any unnecessary packets, but this can also be accomplished with command line tools such as editcap.

3We only captured outgoing packets with tcpdump so there was no reason to check for source IP address.
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stop_time, label) 3-tuples, and finding the correct tuple such that:

BC0AC_C8<4 < C8<4BC0<? < BC>?_C8<4 (3.1)

After finding the appropriate label, we placed the (timestamp, length) tuple into its cor-
responding array, and then sorted chronologically. This left us with a sequence of packet
lengths and timestamps for each of the 6300 sentences in the TIMIT repository. Chapter 4
offers an in-depth analysis of the data we extracted from the pcap files.

3.3 Training and Testing

3.3.1 Feature Extraction
This section will overview the general process of feature extraction used in Identification,
Authentication, and Profiling.

In their original state, the timestamps in the pcap files are strictly increasing, even among
different samples, due to the fact that we collected the data by playing each sample sequen-
tially over time. This results in the last packet of Sentence 1 having a timestamp roughly six
hours earlier than the first packet of Sentence 6300, which is not ideal. To move away from
these non-stationary timestamps, we calculated the difference between each timestamp and
the previous, to produce bounded values that can be compared across samples. We per-
formed the same operation with the packet lengths as an additional feature that might be
useful. Because each sequence has a different length, we padded all of the shorter sequences
with a value of -1, to prevent any data loss. This left us with a feature space of size (6300 x
max_sample_length x 2).

We created labels based on the specific goal of the training. For identification and authenti-
cation, the labels identify a unique individual, resulting in 630 labels. For gender profiling,
there are two labels, male and female, and for dialect training there are 8 labels correspond-
ing to the eight dialects present in the TIMIT dataset. We then partitioned the features and
labels into training and testing subsets: - ,. , -′, and. ′, where - and -′ designate features,
and . and . ′ designate labels.

Because the feature space was so small, we built a Neural Network (NN) to extract a larger
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feature space for each sample. This feature extraction NN will be referred to as NN1 for the
rest of this chapter. NN1’s architecture is described in Table 3.1.

Table 3.1. NN1 Architecture

Layer Number Layer Type # Nodes Activation Function
1 Masking n.a. n.a
2 Bidirectional LSTM 64 None
3 Dense 64 None

We applied L2 normalization to every layer in NN1, and then compiled it with the Adam
optimizer and triplet semi-hard loss function. We then trained NN1 with X and Y, using
200 epochs and a batch size of 512.

The triplet loss function is the key to NN1’s function as a feature extractor. Through its
architecture, it transforms an input array of shape (length x 2) to a vector of shape (64). With
this 64 dimensional vector, we can calculate a distance from the origin, or from another data
point of equal dimension. The triplet loss function identifies three samples: an anchor 0, a
positive ?, and a negative =. Generally, 0 and ? will be two samples from the same class,
while = is drawn from a different class. The loss ! is then calculated as:

! (0, ?, =) = <0G(0, � (0, ?) − � (0, =) + <0A�8=) (3.2)

where � (G, ~) represents the distance between points G and ~ [19]. What this loss function
does is reward NN1 when the distances between samples from the same class are small,
and distances from samples of different classes are large. Using this training paradigm, we
used NN1 to extract features that we hope can differentiate samples based on their class.

The fully trained NN1 changed our input of shape (num_samples x max_sample_length x
2) to (length x 64), which enabled us to use more traditional machine learning approaches
in the “true” training phase.
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3.3.2 Identification
In identification, we attempt to determine which speaker, from a pool of potential suspects,
a sentence can be attributed to based on previously captured samples from each potential
speaker.

To accomplish this, using - , . , -′, . ′, and NN1, we first calculated an expanded feature
space, -′′, by using NN1’s predict function on -′. Then, -′′ and . ′ are further partitioned
into G, ~, G′, and ~′ for training and testing, respectively.

Since NN1 learned how to create a more expressive feature space from the original input,
we were able to transition to more basic machine learning algorithms in the second phase of
this process. Therefore, we built a K-Nearest Neighbor Classifier (KNN)with K=1 neighbor,
and trained it with G and ~. Finally, we evaluated its performance with G′ and ~′. The results
will be presented in Chapter 5.

3.3.3 Authentication
In authentication, we attempt to determine whether two sentences are spoken by the same
person, or translated into the vernacular of this project, whether two sequences of packet
lengths can be attributed to the same speaker with any degree of certainty.

Starting with - , . , -′, . ′, and NN1, we use NN1’s predict function on -′ to create -′′. We
then partition -′′ and . ′ equally (in a stratified fashion) into G, G′, ~, and ~′ for the second
stage of the authentication process.

Next, we compute the distances of each pair between G and G′, and flatten the result into a
1-dimensional array called dists. Correspondingly, we create an array called genuine, such
that for index i in genuine, genuine[i] is equal to True if dists[i] represents a pair from
the same speaker, and False otherwise. If authentication is possible, we would expect the
distances between sentences from the same speaker to be relatively small, while distances
between sentences of different speakers would be larger. The best way to check for this
relationship is via a Receiver Operating Characteristic (ROC) curve, which plots the True
Positive (TP) rate in relation to the False Positive (FP) rate, where TP and FP are defined
as:

)% =
# 2>AA42C;~ 834=C8 5 843 B0<?;4B

# > 5 B0<?;4B
(3.3)
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�% =
# 8=2>AA42C;~ 834=C8 5 843 B0<?;4B

# > 5 B0<?;4B
(3.4)

Finally, we calculate such anROC curve using genuine and dists. The results will be provided
in Chapter 5.

3.3.4 Profiling
TIMIT provides two features for each speaker in addition to the unique speaker identification
number: gender and dialect. Given that speech tends to differ based on these two categories,
we attempted to learn to identify gender and dialect from the TIMIT dataset.

Gender
Starting with - ,. , -′,. ′, and NN1, we first calculated -′′ by using NN1’s predict function
on -′.

For the second phase of gender profiling, we built a NN, called GNN, with architecture
described in Table 3.2.

Table 3.2. GNN Architecture

Layer Number Layer Type # Nodes Activation Function
1 Bidirectional Masking n.a. n.a
2 Dense 100 “relu”
2 Dense 100 “relu”
3 Dense 100 “relu”
4 Dense 100 “relu”
5 Dense 2 “sigmoid”

GNN was compiled with the Adam optimizer and binary cross-entropy loss function.

To avoid overfitting, we utilized stratified K-fold cross validation, with K=20 in this instance.
Therefore, we calculated 20 train/test splits fromX” and Y’, and iterated through them; each
round creating a new instance of GNN, training with 200 epochs, and finally testing it. The
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scores from each round of testing were averaged together at the end. The final results are
presented in Chapter 5.

Dialect
The TIMIT dataset contains labels for 8 different United States dialect groups: NewEngland,
Northern, North Midland, South Midland, Southern, New York City, Western, and Army
Brat. We treated this as a standard multi-class classification problem and constructed a NN
to solve it.

Starting with - ,. , -′,. ′, and NN1, we first calculated -′′ by using NN1’s predict function
on -′.

The dialect NN, referred to as DNN, we built is very similar in structure to GNN. Its
architecture is presented in Table 3.3.

Table 3.3. DNN Architecture

Layer Number Layer Type # Nodes Activation Function
1 Bidirectional Masking n.a. n.a
2 Dense 100 “relu”
2 Dense 100 “relu”
3 Dense 100 “relu”
4 Dense 100 “relu”
5 Dense 8 “softmax”

DNN was compiled with the Adam optimizer and sparse categorical cross-entropy loss
function.

To avoid overfitting, we utilized stratified K-fold cross validation, with K equal to 20.
Therefore, we calculated 20 train/test splits from -′′ and. ′, and iterated through them; each
round creating a new instance of DNN, training with 200 epochs, and finally testing it. The
scores from each round of testing were averaged together at the end. The final results are
presented in Chapter 5.
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3.3.5 Amplitude Correlation
The final area of investigation for this project was the relationship between packet lengths
and amplitude of the corresponding audio file. The underlying motivation for this line of
questioning was to determine if we could detect periods of silence vs. speech happening for
a user in a video call.

To accomplish this, we examined the correlation between a sequence of packet lengths and
the sequence of amplitudes contained withing the corresponding .wav file from TIMIT. We
started with a single label/list combination, where label is the absolute path to a TIMIT
audio file, and list is the sequence of packet lengths collected during the transmission of that
sentence. Using the soundfile Python library, we read in the .wav file referenced in label as a
list of amplitudes and the sampling rate for the file. Figure 3.1 shows the results of plotting
the amplitudes without any modification.

Figure 3.1. Amplitudes over time for a sample sentence. We calculated a
moving average of these values to examine correlation with packet lengths.

The amplitude sequence containsmanymore values than the sequence of packet lengths, and
therefore we cannot simply conduct a 1-to-1 correlation calculation. Our first solution was to
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divide the amplitude sequence into = equally sized subsets, where = is equal to the number
of packet lengths in list, and then calculate the mean for each of the amplitude subsets,
providing us a moving average across the amplitude capture. This yielded two equally sized
arrays for which we calculated a Pearson correlation coefficient. We performed this same
process for each of the 6300 sentences in the TIMIT repository, and then calculated the
mean, median, and standard deviation of the Pearson correlation coefficients.

Since we are most interested in detecting periods with no sound, which generally last much
longer than 20ms, we also explored dividing both the amplitude and packet length sequences
into smaller subsets in order to reduce noise. To do this, we made a rough assumption that
each packet represents 20 ms of time (see Chapter 4), and then recalculated the Pearson
correlation coefficient for partitions of different time blocks (50 ms, 100 ms, 200 ms, etc.).

We present the results of this investigation in Chapter 5.

Pearson Correlation Coefficient
The Pearson correlation coefficient provides a measure for the linear relationship between
two data samples. The coefficient A is calculated according to the equation below:

A =

∑(G − <G) (~ − <~)√∑(G − <G)2(~ − <~)2 (3.5)

where <G is the mean of vector G and <~ is the mean of vector ~ [20]. Translating this
into our amplitude correlation problem, we can consider G the sequence of packet lengths,
and ~ the sequence of amplitudes. Therefore, calculating the Pearson correlation coefficient
is an effective and popular method to measure the linear relationship between these two
sequences.

The Pearson correlation coefficient is a number between −1.0 and 1.0, where −1.0 indicates
a perfect negative relationship, 1.0 indicates a perfect positive relationship, and 0.0 indicates
no correlation between the sequences. If the coefficient lies between ±0.50 and ±1.0, the
sequences are considered to be strongly correlated. If the coefficient lies between ±0.30
and ±0.49, the sequences are considered moderately correlated. Any value below ±0.29
indicates a low level of correlation [21].
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CHAPTER 4:
Data Analysis

Before discussing the results of each experiment, we believe it will be beneficial to consider
what the extracted data looks like. Data collection, described in Section 3.2, was performed
for three of the most popular video conferencing platforms: Skype, Zoom, and FB Messen-
ger. For each of the data captures, there are 6300 rows of data, corresponding to the 6300
unique speaker/sentence combinations in the TIMIT dataset. Each row of data contains a
sequence of tuples in the following form: (timestamp, packet length). The sequences vary
in length depending on the length of the sentence they represent, the talking speed of the
speaker, and the sampling frequency of the audio codec. Section 4.1 details some general
statistics for the resulting dataset we worked with, while Section 4.2 provides visualizations
of the data in different formats.

4.1 Data Statistics
First, we examined the overall size of the data we collected, by looking at the number of
tuples in each sequence, and the time span for each sample. We present these features in
Tables 4.1 and 4.2, respectively.

Table 4.1. Sequence Lengths

Software Mean Median Standard Deviation
Skype 163.33 157.0 44.78
Zoom 159.32 153.0 44.04

FB Messenger 116.32 112.0 31.3
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Table 4.2. Sequence Times (s)

Software Mean Median Standard Deviation
Skype 3.14 3.02 0.87
Zoom 3.23 3.12 0.86

FB Messenger 3.22 3.12 0.86

The lengths and times we observed from these sequences correspond to the information we
have concerning the audio codecs in use by Skype, Zoom, and FB Messenger. This gives
us confidence in the completeness and correctness of the capture. Both the SILK codec,
used by Skype and Zoom, and the Opus codec, used by Zoom and FBMessenger, default to
encoding 20 ms of speech per packet [9], [10].4 Using the values from Table 4.1 and Table
4.2, we calculated the estimated sampling rates used by each of the software platforms,
presented in Table 4.3. Both Skype and Zoom have values very close to 20 ms/packet,
whereas FB Messenger has values almost a third higher at 27 ms/packet. However, while
the mean and median are very close to the values we expect, the large standard deviations
indicate that the amount of time each packet represents changed significantly during the
course of data collection.

Table 4.3. Calculated Sampling Rates (ms/packet)

Software Mean Median Standard Deviation
Skype 19.22 19.24 19.43
Zoom 20.27 20.39 19.53

FB Messenger 27.68 27.86 27.48

Next, we examined the magnitude of each packet length contained within the 6300 se-
quences of tuples in Table 4.4. Significantly, the values vary greatly between each of the
platforms, which is curious given they are theoretically encoding the same information.

4As noted in Section 2.2.1, SILK can vary the number of frames per packet based on network conditions,
between 20 and 100 ms per packet. Anecdotally, we do not see this occur in our data sample based on the
observed time/sequence length ratio.
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These large differences are likely the result of platform-specific design choices, such as
metadata included in each packet. Since we do not test across platforms in this project, there
is not a need to normalize the lengths.

Table 4.4. Packet Lengths

Software Mean Median Standard Deviation
Skype 100.5 100.5 18.43
Zoom 233.98 233.98 71.71

FB Messenger 138.63 138.63 41.73

In Table 4.5, we examined the packet inter-arrival times for each platform: the difference
in time between each packet arriving during transmission. As expected, these values align
very closely to those presented in Table 4.3, with very slight variations. The similarity
between the values, especially the high standard deviations, presented in each table affirm
our previous observation that packet times vary significantly. This indicates that 1) each
platformmade large changes in howmany milliseconds each packet encodes during the data
capture or 2) that timestamps are an unreliable metric to use in training. Either case would
have negative consequences on the outcome of this project.

Table 4.5. Packet Inter-arrival Times (ms)

Software Mean Median Standard Deviation
Skype 19.36 23.08 12.57
Zoom 20.43 20.81 27.48

FB Messenger 27.95 30.74 9.58

4.1.1 Histograms
To view this data in a different way, we constructed histograms to illustrate the distribution
of sequence lengths (i.e. number of packets per sequence) and time duration across the three
platforms, shown in Figures 4.1 and 4.2, respectively.
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In Figure 4.1 we see the sequence length distributions are very closely correlated for Skype
and Zoom, while FB Messenger tends to have shorter sequence lengths. This corresponds
with the data presented in Tables 4.1 and 4.4, which show shorter average sequence lengths
and longer average packet lengths for FB Messenger, indicating that there is more informa-
tion contained within each packet for that platform.

Figure 4.1. Histogram of sequence lengths. We see the distribution of se-
quence lengths across the three platforms. Notice that Skype and Zoom are
very closely correlated, while FB Messenger tends to have a heavier distri-
bution toward shorter lengths.

In Figure 4.2, we see that all three platforms have sequence times very close to each other.
Intuitively, this makes sense because they are all transporting audio of the same length,
and when using real-time protocols, must necessarily then take the same amount of time to
transmit regardless of platform.
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Figure 4.2. Histogram of sequence times. The distributions of sequence times
across the three platforms are all very similar.

4.2 Visualization
As all of our efforts focused on extracting sequences of packet lengths from various speaker
and sentence combinations and identifying the patterns that arose, we logically wondered
how different these sequences are from one another. To get a glimpse at the data and how
it relates to itself, we modeled three pairs of randomly selected sentences: two different
sentences spoken by different people, two different sentences spoken by the same person,
and the same sentence spoken by two different people. The following sections will examine
these sentence combinations from a variety of perspectives.

4.2.1 Packet Lengths
First we examined the plots of packet lengths over time. This is the fundamental relationship
we investigated and trained our models on throughout the course of the project.

Figure 4.3 shows a different sentence spoken by different people. As we might expect, the
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two sequences vary quite significantly; there are local maxima in Sentence 1 in the same
time as a local minima forms in Sentence 2.

Figure 4.3. Variance in packet lengths over time for different sentences with
different speakers. Two different speakers, one male from New England (Sen-
tence 1), the other a woman from North Midland (Sentence 2), speak two
different sentences. This graphic illustrates the changes in packet lengths
over time for each speaker and sentence.

Figure 4.4 shows a different sentence spoken by the same person. Immediately we can tell
the sentences are different as Sentence 2 lasts much longer than Sentence 1. However, we
also see a tighter grouping of the two lines; despite being different sentences, they track
much more closely with each other, which may indicate that the idiosyncratic differences
between each person’s speech can be accurately represented by the packet-length/phoneme
exploit.
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Figure 4.4. Variance in packet lengths over time for different sentences with
the same speaker. One speaker, a male from New England (Sentence 1 and
2), speaks two different sentences. This graphic illustrates the changes in
packet lengths over time for each sentence.

Figure 4.5 illustrates the same sentence spoken by two different people. We see, in line with
the observations made with Figures 4.3 and 4.4, that there appear to be more significant
differences when the speaker is different than when the sentence is different. Here, when
the sentence is the same, we again see the phenomena where one sentence peaks while the
other troughs.
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Figure 4.5. Variance in packet lengths over time for the same sentence spoken
by different speakers. Two different speakers, one male from New England
(Sentence 1), the other a woman from North Midland (Sentence 2), speak
the same sentence. This graphic illustrates the changes in packet lengths
over time for each speaker.

These plots were useful in helping us visualize the data and how it changes with regards
to sentence and speaker selection. However, since we only examined 3 out of 19,216,900
possible sentence combinations, we can only use these plots as helpful examples and not
definitive sources for the entire dataset.

4.2.2 Packet Inter-arrival Times
Though we primarily examined packet lengths in this project, we also took an interest in
packet inter-arrival times, or the difference in time between one packet arriving and the
next. Since the combination of packet lengths and inter-arrival times is what theoretically
informs the sampling rate of the packet in question (which should be most closely tied to
specific phonemes) we investigated the feasibility of using this approach while training.
In this section, we perform the same visualization analysis as in Section 4.2.1, but plot
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inter-arrival times over time instead of packet lengths over time. Figures 4.6, 4.7, and 4.8
provide this data.

Figure 4.6. Variance in packet inter-arrival times over time for different sen-
tences spoken by different speakers. Two different speakers, one male from
New England (Sentence 1), the other a woman from North Midland (Sen-
tence 2), speak the same sentence. This graphic illustrates the changes in
packet inter-arrival times over time for each speaker.
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Figure 4.7. Variance in packet inter-arrival times over time for different sen-
tences spoken by the same speaker. One speaker, a male from New England
(Sentence 1 and 2), speaks two different sentences. This graphic illustrates
the changes in packet inter-arrival times over time for each speaker.
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Figure 4.8. Variance in packet inter-arrival times over time for the same sen-
tence spoken by different speakers. Two different speakers, one male from
New England (Sentence 1), the other a woman from North Midland (Sen-
tence 2), speak the same sentence. This graphic illustrates the changes in
packet inter-arrival times over time for each speaker.

We see an interesting phenomena in all three of these plots, which obscures any patterns
that might actually exist in the data. About every third point, the inter-arrival time drops
down to near zero and then shoots right back up immediately after. This happened for every
sentence we sampled, and is irregular behavior that we did not expect. While the reason
for this continual, order of magnitude change in packet inter-arrival times is not certain,
the implications are clear. If we cannot trust the packet inter-arrival times to accurately
represent the time that each packet encodes, we cannot use these values to calculate an
encoding rate. We are left with packet lengths alone as a training metric.

4.2.3 Cross-correlation
We also calculated cross-correlation between the sequences to get another view on their
relationships to each other. Cross-correlation compares the values of two time series at
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different time shifts, or lags. Correlation with lag : is defined as:∑
=

G [= + :] · ~∗ [=] (4.1)

where ~∗ is the complex conjugate of ~ [22].

The following figures illustrate the correlation between three categories of sentence com-
binations: different sentences spoken by a different speaker, different sentences spoken by
the same speaker, and the same sentence spoken by different speakers. These results are
presented in Figures 4.9, 4.10, and 4.11, respectively.

Figure 4.9. Cross-correlation of packet-length sequences for different sen-
tences spoken by different speakers. Two different speakers, one male from
New England (Sentence 1), the other a woman from North Midland (Sen-
tence 2), speak two different sentences. This graphic illustrates the cross
correlation between packet lengths of the two sequences.
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Figure 4.10. Cross-correlation of packet-length sequences for different sen-
tences spoken by the same speaker. One speaker, a male from New England
(Sentence 1 and 2), speaks two different sentences. This graphic illustrates
the cross correlation between packet lengths of the two sequences.
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Figure 4.11. Cross-correlation of packet length sequences for the same sen-
tence spoken by different speakers. Two different speakers, one male from
New England (Sentence 1), the other a woman from North Midland (Sen-
tence 2), speak the same sentence. This graphic illustrates the cross corre-
lation between packet lengths of the two sequences.

We see that all three plots look very similar, which gave us an indication that cross-
correlation between sequences of packet lengths would not be a worthwhile relationship to
explore further as we developed our training methods.
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CHAPTER 5:
Results

In this chapter, we will examine the results from each of our four domains of interest:
identification, authentication, profiling, and audio amplitude correlation. We will show that
our models for authentication, identification, and profiling have slightly better performance
than a “random” classifier, but do not achieve significant levels of accuracy. However, we
do discover and present a high correlation between audio amplitudes and packet lengths.

5.1 Identification
Identification performance is primarily measured by classification accuracy. We also calcu-
late recall, precision, and F1 as secondary performance metrics. The following equations
will define each of these metrics.

�22DA02~ =
# �>AA42C %A4382C8>=B
# )>C0; %A4382C8>=B

(5.1)

'420;; =
)%

)% + �# (5.2)

%A428B8>= =
)%

)% + �% (5.3)

�1 =
2 × %A428B8>= × '420;;
%A428B8>= × '420;; (5.4)

To test the identification models we built (described in Chapter 3), we reserved 20 of the 630
total speakers, with 10 sentences per speaker, for the second phase of training and testing,
with a 75% allocation to training. This resulted in 150 samples used to train and 50 to test.
Table 5.1 presents the results of this testing. All metrics are presented on a scale from 0 to
1.
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Table 5.1. Identification Results

Software Accuracy Recall Precision F1
Skype 0.04 0.04 0.0344 0.0341
Zoom 0.133 0.00667 0.0133 0.00889

FB Messenger 0.04 0.04 0.044 0.0412

An initial baseline to test any model’s performance against would be a random guesser: for
each example, randomly pick a label from the pool of potential labels. With 20 possible
labels and 50 samples, we can calculate the expected accuracy of thismethod in the following
manner:

1
20∗50
100 = 0.025. Our identification model beat this simple metric for all three of the

examined video chat platforms. However, performance does not progress much beyond that
starting point.

5.2 Authentication
We assess the performance of our authentication approach (discussed in Chapter 3) by
examining the ROC curves developed by computing distances between each pair of test
sentences and applying a label (True or False) to that pair. Because an ROC curve plots
the true positive rate against the false positive rate, a good result would show a high true
positive rate relative to the false positive rate, especially on the left end of the graph. Figures
5.1, 5.2, and 5.3 present these curves.
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Figure 5.1. Skype ROC curve

Figure 5.2. Zoom ROC curve
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Figure 5.3. FB Messenger ROC curve

Another usefulway to examine the results of anROCcurve is to calculate the area underneath
the curve. Since we hope to see the true positive rate higher than the false positive rate as a
sign of success, we would look for an area closer to 1.0 as a good result. Intuitively, an area
of 0.5 would indicate a random model, where the true positive rate and false positive rate
are completely in step. The areas for the curves presented above are contained in Table 5.2.

Table 5.2. Authentication Results

Software Area Under ROC Curve
Skype 0.569
Zoom 0.547

FB Messenger 0.534

Based on a visual analysis of the graphs and the quantitative results provided in Table 5.2,
we do not see any significant success in this area, with the curves barely beating the baseline
y=x line, and the areas barely rising above 0.5.
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5.3 Profiling
Before examining the results of our profiling models, we must examine the underlying
male/female and dialect distribution of speakers in the TIMIT dataset. This data is provided
in Table 5.3.

Table 5.3. Gender and Dialect Distribution of Speakers in TIMIT [11]

Dialect Region # Male # Female Total
New England 31 (63%) 18 (27%) 49 (8%)
Northern 71 (70%) 31 (30%) 102 (16%)

North Midland 79 (77%) 23 (30%) 102 (16%)
South Midland 69 (69%) 31 (30%) 100 (16%)

Southern 62 (63%) 36 (37%) 98 (16%)
New York City 30 (65%) 16 (35%) 46 (7%)

Western 74 (74%) 26 (26%) 100 (16%)
Army Brat 22 (67%) 11 (33%) 33 (5%)

Total 438 (70%) 192 (30%) 630 (100%)

5.3.1 Gender
Results from our attempt at gender profiling are presented in Table 5.4. From Table 5.3,
we know that the data is weighted 70% toward male speakers, which means the most
basic baseline for our model would be a random generator that guesses male 70% of the
time, yielding an accuracy of 0.70. The accuracy for all of our tests fell very close to this
baseline value, which leads us to believe our model was not able to learn anything other
than the underlying distribution of male to female speakers in the dataset, instead of any
discriminative patterns in packet length sequences between the genders.
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Table 5.4. Gender Profiling Results

Software Accuracy Recall Precision F1
Skype 0.654 0.654 0.594 0.600
Zoom 0.6833 0.6833 0.470 0.555

FB Messenger 0.690 0.690 0.625 0.610

5.3.2 Dialect
Results from our dialect profiling model are presented in Table 5.5. Because of the unbal-
anced distribution of dialects in the TIMIT dataset, establishing an initial “random” baseline
to compare our results to is not as straightforward as with gender or identification. There
are two options for this: 1) choose one of the eight labels with equally random chance for
each sentence 2) choose the label with most occurrences for every sentence. Based on the
option we choose, there will be differences across the four metrics we use to evaluate. The
random baseline metrics are presented in Table 5.6.

Table 5.5. Dialect Profiling Results

Software Accuracy Recall Precision F1
Skype 0.164 0.164 0.088 0.106
Zoom 0.161 0.161 0.0875 0.0950

FB Messenger 0.167 0.167 0.095 0.0858

Table 5.6. Dialect Random Baselines

Option Accuracy Recall Precision F1
2 0.102 0.102 0.128 0.101
1 0.167 0.167 0.0279 0.0478

From the results presented in Tables 5.5 and 5.6, we see our model beating Option 1 in
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accuracy, recall, and F1, while falling short of precision.We achieved parity with Option 2 in
accuracy and clearly beat Option 2 in the remainder of the metrics. From these observations,
we can safely claim our model to be as good or slightly better than a truly random classifier.
However, its performance is still generally low.

5.4 Amplitude Correlation
As discussed in Chapter 3, we investigate the correlation between audio amplitude and
packet length sequences broken into subsets based on time: 20 ms up to 500 ms.5 Plotting
segment size against the mean Pearson correlation coefficient allows us to see the effect of
different spacing and select the optimal size for correlation based on the video conferencing
software being examined. Figures 5.4, 5.5, and 5.6 present these lines for Skype, Zoom, and
FB Messenger, respectively.

Figure 5.4. Skype correlations vs. segment size. Correlation peaks for Skype
when we divide data into 380 ms chunks.

5We roughly estimate 1 packet equals 20ms based on calculations performed in Section 4.1. For example,
to break the data into chunks of 40ms we took the total length ℓ of the packet length sequence, divided ℓ by 2
( 40 <B

20 <B ?4A ?02:4C = 2 ?02:4CB ), and then separated both the amplitude and packet length sequences into ℓ
2

subsets.
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Figure 5.5. Zoom correlations vs. segment size. Correlation peaks for Zoom
when we divide data into 300 ms chunks.
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Figure 5.6. FB Messenger correlations vs. segment size. Correlation peaks
for FB Messenger when we divide data into 200 ms chunks.

From these plots, we are able to determine the optimal segment size for each software
platform. For Skype, we see optimal results at 380 ms (19 packets). For Zoom, optimal
correlation occurs at 300ms (15 packets). Finally, for FBMessenger, the optimal correlation
happens at 200 ms (10 packets). Using these values, we calculate the maximum mean
correlation for each platform, and present the results in Table 5.7.

Table 5.7. Maximum Correlations

Software Mean Median Standard Deviation
Skype 0.271 0.317 0.292
Zoom 0.576 0.317 0.185

FB Messenger 0.526 0.538 0.161

As explained in Section 3.3.5, a Pearson correlation coefficient between ±0.50 and ±1.0
is considered strong correlation, a coefficient between ±0.30 and ±0.49 shows moderate
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correlation, and a value below ±0.29 shows a low level of correlation between the two
sequences [21]. Based on these thresholds, we see high correlation for Zoom and FB, and
moderate to low correlation for the Skype packet sequences.

5.4.1 Example Correlation
To see the effect that different size subsets have on correlation in a more accessible manner,
we examine a single sentence, looking at plots of its amplitude and packet lengths broken
into subsets based on three different time intervals (20 ms, 100 ms, and 200 ms) in order
to visualize how the correlation of packet lengths and amplitude changes in response to
different time divisions.

Figure 5.7 represents our first attempt at correlation, treating each packet length as a discrete
data point and breaking the amplitude array into the same number of subsets. This approach
is very sensitive to changes, and there does not appear to be a high level of correlation, as
sometimes the lines appear to track together, while at others they move completely opposite
from each other. By visualizing plots like this, we decided to investigate the effect that
creating fewer data points, and therefore smoothing the lines, would have on correlation.

46



Figure 5.7. Example amplitude/packet length correlation with 20ms group-
ings. At such high granularity, correlation does not appear to be very high,
and the lines appear to move independently of each other. The Pearson
correlation coefficient for this plot is 0.286.

Figure 5.8 shows the results of reducing the number of data points by a factor of 5. Put
another way, we create subsets that roughly represent 100 ms of data, using the conversion
factor of 20 ms per packet. With this small change to the data, we immediately see much
smoother lines, and importantly, growing correlation. There are still instances where the
lines move in opposite directions, but overall they track together much more strongly.
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Figure 5.8. Example amplitude/packet length correlation with 100ms group-
ings. Splitting the data into groups of 100ms, we see the lines become
smoother and a greater level of correlation to be revealed. The Pearson
correlation coefficient for this plot is 0.379.

Figure 5.9 shows a more drastic reduction in data by a factor of 10, or splitting the data
into groups of 200 ms. At this lower level of granularity, we see very smooth lines and even
higher correlation.
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Figure 5.9. Example amplitude/packet length correlation with 200ms group-
ings. At this level of granularity, we see very smooth lines and even higher
correlation. The Pearson Correlation Coefficient for this plot is 0.466.
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CHAPTER 6:
Conclusions

The goal of this project was to investigate and develop methods to perform identification,
authentication, profiling, and amplitude correlation analysis based solely on captured, en-
crypted video conferencing traffic from platforms such as Skype, Zoom, and FBMessenger.
To accomplish these tasks, we sought to leverage a serious leak of information that occurs
when encoding and sending audio across the Internet: due to the use of VBR audio codecs,
there is a high correlation between the size of an audio packet and the phoneme (building
block of speech) that it encodes. Because SRTP does not pad the packet lengths before
encryption, this correlation is carried forward and accessible to a third party eavesdropper.

We did not see any appreciable levels of success in identification, authentication, or profiling.
However, we obtained very encouraging results by identifying a strong correlation between
our extracted sequences of packet lengths and the amplitudes of the corresponding audio
files, given the appropriate level of granularity. We achieved this granularity by splitting
both the packet length sequences and the amplitudes into a smaller number of equally time-
spaced subsets, which smooths out noise in both sequences while still providing enough
detail to constitute meaningful results.

The remainder of this final chapter will elaborate on the implications of our results in
Section 6.1, some limiting factors that may have contributed to our poor results in Section
6.2, mitigation against the exploits we explored throughout this paper in Section 6.3, and
finally some areas of future work in Section 6.4.

6.1 Applications
Had all of the areas explored in this paper been successful, this section would be much
more robust and important — it does not take much imagination to understand the serious
implications of a third party listener being able to perform authentication, identification, or
profiling simply by analyzing a stream of encrypted video conferencing traffic. However,
since our efforts in these areas were unsuccessful, we will not elaborate on their implications
in this section, and will instead focus on amplitude correlation.
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The most interesting and potentially serious use of the correlation between packet lengths
and amplitude would be to train a model that can reproduce the amplitude given an input
sequence of packet lengths. Done perfectly, this would render the encryption moot, as we
could replay the audio exactly as it was recorded. While intriguing, this is probably not
possible for a number of reasons. First, the average number of packets for a sentence was
around 150, while the average number of amplitude data points for an audio file was 49,000.
This imbalance in granularity was proved by the extremely low correlation that happens on
the left end of each plot in Section 5.4, where each packet is considered in its own group.
Therefore, we do not expect packet lengths to convey enough information to reproduce the
original amplitude.

A second way that this correlation could be deployed is by identifying periods of silence
in a video call. Given the high correlation we achieved when examining groups of roughly
200-300 ms, we feel very confident in our ability to identify periods of silence for that same
time period and longer. Pauses and periods of silence are central to a person’s speaking style,
and also generally unique to a speaker. Some people talk quickly, with few pauses, while
others speak slowly or pause for effect often. Similar to the keystroke biometrics explored
in TypeNet, a person might be identified through the frequency and timing of pauses while
speaking [13].

Knowing when a user is or isn’t speaking, can also be very useful, especially in group
settings. In a call with many participants, the leader of the group (teacher, boss, or an enemy
commander) will generally spend the most time talking. This information could be helpful
when inferring the structure of a criminal or terrorist organization under investigation.

6.2 Limitations
Although amplitude estimation through packet size shows promise, user identification,
authentication, and profiling remain challenging problems that can possibly be addressed
through extensions to this work. This section will examine in detail the largest roadblocks
we encountered during this project, and Section 6.4 will propose potential solutions.
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6.2.1 Data Size
The most obvious limitation to this project was the size of the TIMIT dataset. While
TIMIT contains an amazing diversity of voices and phonetically rich phrases, along with
the accompanying phonetic breakdown for each sentence, the size is a major limiting factor
when trying to use the data in a machine learning environment. From our data collection
process, we only obtained 6300 samples of packet length sequences and corresponding
labels—a typical machine learning project will train on millions of samples and then
evaluate performance with a large, separate test set as well. In this project, we had to suffice
with breaking up these 6300 samples into three groups: one to train our feature extraction
model (NN1), one to train the secondary classifier, and finally a third group to test on. Seeing
the first phase as the most important, we chose to allocate most of the data to that effort
(6100 samples), but even that extreme weighting of data was not enough to drive training
loss below 0.87 for any epoch. With the remaining 200 samples split between second phase
training and testing, there was not much opportunity for a model to learn any patterns that
the first phase successfully exposed, if any.

6.2.2 Rate Calculation
Section 4.2.2, which examines plots of our data capture based on packet inter-arrival times,
highlights another limitation of the collected data. During our data collection process, we
were able to extract a length and timestamp for each packet. As discussed in Section 2.1.2,
the primary leak of information occurs due to the use of VBR codecs, and how they select
different frequencies for different phonemes, such as a lower rate for a fricative like “f” or
“s” than a vowel. Theoretically, through dividing the packet length by the corresponding
packet inter-arrival time, we can derive an encoding rate, and therefore get closer to the
source of the information leak. However, this did not work in practice.

When we closely examine Figures 4.6, 4.7, and 4.8, we see rapid fluctuation between packet
inter-arrival times, from values close to 0 all the way up to 50 ms and above. With some
inter-arrival times being orders of magnitude above or below the others, our ability to
calculate the encoding rate with any degree of certainty disappears.

One explanation for this large disparity in inter-arrival times could be fragmentation hap-
pening at the first hop before we capture the traffic. If this were the case, fragments from
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the same packet would have very small inter-arrival times, while fragments from different
original packets would be further spaced out. However, a quick study of the captured traffic
reveals the Don’t Fragment (DF) bit present in every IP header carrying a UDP payload,
which rules out this theory.

A second explanation for this phenomena is simple router congestion and scheduling causing
some packets to be sent immediately, while other have to wait their turn. This is plausible,
and supported by the fact that all of our traffic captures included packets not related to the
video call, which had to be filtered out.

Regardless of the underlying reason for fluctuating inter-arrival times, it clearly limits our
ability to get closer to the source information leak, forcing us to rely on packet length alone.
In a machine learning setting, having more information (i.e. more features) is almost always
conducive to obtaining good results. In this project, we had to operate with an extremely
small feature space, which limited the ability of our models to succeed.

6.2.3 Variable Packet Timing
As discussed in Section 2.2.1, the SILK audio codec (used by Skype and optional for Zoom)
has the option to vary the number of frames per packet based on network conditions: each
packet could contain 20, 40, 60, 80, or 100 ms worth of encoded audio [3]. If this option
is used, then packet length is no longer an indication of the underlying encoding bit rate; a
larger packet could be the result of a higher encoding rate, or be because the packet contains
a longer segment of audio, or some combination of the two that makes things even more
challenging. Unfortunately, we have no way to know whether this option was used by Skype
or Zoom during our data collection6, but if it was then our ability to infer information from
the sizes of packets would be severely limited.

6.3 Mitigation
The single easiest way to prevent the leak of information that forms the basis of this
project and previous works is to pad the packets to a uniform length before encrypting.

6We assume that Skype and Zoom utilized the SILK codec, while FB Messenger used the Opus codec
during our data collection.When examining the data presented in Chapter 4, we see that Skype and Zoom have
very similar features, while FB Messenger is very different. We attribute this to the fact that FB Messenger
was using a different audio codec.
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SRTP intentionally does not pad packets because of the consequences that would have
on bandwidth use. If SRTP padded every packet to the standard Maximum Transmission
Unit (MTU) of 1500 bytes, this would cause an incredible increase of bandwidth use — for
context, more than 90% of the packets we captured for this project had fewer than 300 bytes,
so padding to 1500 bytes would cause a 5x increase in size. Also, if SRTP chose instead
to pad to a smaller value, that could cause network slowdowns by artificially lowering the
MTU, forcing more packets to be created and then be routed. Neither of these options is
desirable, which is why SRTP does not pad packet lengths even though padding is generally
considered to be a best practice in the security community. While padding packets would
be costly in general use cases, this could be a viable option in instances when security is
such a priority that network usage and performance is not a concern.

A second method of mitigation may already be in place, although perhaps not to specifically
address the issue of information leaks. As described in Section 6.2, the SILK codec has the
option to change the amount of time each packet encodes based on network conditions. If
this option is used and the time per packet is changed dynamically during a call, then this
would prevent an adversary from correlating packet length to the underlying encoding rate
used by the codec because longer length could be due to higher frequency or simply more
time. Without this key relationship in place, the entire chain of exploitation breaks down.
A system could easily be configured to create this behavior purposefully and randomly to
obfuscate the encoding frequencies in use. Additionally, this approach would come at a
much lower network cost than configuring SRTP to pad all of its packets, and is therefore a
much more reasonable general-purpose solution to the information leak problem.

6.4 Future Work
We believe there is still more work to be done in this area, and many of our suggestions
for future work will be informed by the discussions in Sections 6.1 and 6.2. The first
recommendation would be to apply the same methodology used in this project to a more
appropriately sized data set that numbers in the millions of samples instead of the thousands.
To collect and label the requisite audio samples would be an intensive process, but only
with a larger set of data can we know whether the poor performance of our models was due
to the limited data set or a flawed training paradigm.
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The second area of investigation is building a model to label segments of traffic as conveying
audio or silence. This project has laid the groundwork by proving a high correlation between
packet lengths and audio amplitude, but the process of capturing both long periods of silence
and audio transported by video conferencing software and then building models to classify
them fell outside the scope and time frame of this project.
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