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ABSTRACT 

 Current and future operational environments will increasingly require Special 

Operation Forces (SOF) to be more self-sufficient while operating in contested and 

politically sensitive regions where situational awareness can be degraded. This project 

continues Semi-Autonomous Threat Learning Alert System (SATLAS) efforts to 

integrate artificial intelligence-enabled small unmanned aerial systems into SOF teams to 

increase situational awareness and survivability. Specifically, we focus on directing 

prototype development and evaluating the ability of object recognition software to detect 

and categorize trained entities including weapons, personnel, and vehicles. Collaborating 

with commercial industries, we conduct simulation and field experiments to measure the 

ability of the Surveillance, Persistent Observation and Targeting Recognition (SPOTR) 

object recognition software to meet the technical requirements of the SATLAS project 

and operational requirements of SOF teams. We evaluate SPOTR based on accuracy, 

number of entities detected, and range of detection and recommend methods to improve 

its performance and meet our determined operational requirements. We advance the 

SATLAS project and set conditions for subsequent student teams to continue these 

efforts. 
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I. INTRODUCTION 

The demand for U.S. forces, specifically Special Operations Forces (SOF), to 

address asymmetric and non-state actors is expected to increase over the next decades. 

Multidomain operations (MDO) anticipates that SOF will be required are required to 

conduct expeditionary operations independent of responsive support systems and in 

increasingly complex environments where adversaries and terrain can threaten operational 

security and restrict freedom of maneuver. The 2018 National Defense Strategy (NDS) and 

the Army’s MDO doctrine project that SOF will need to operate in contested environments 

where all types of support will be more difficult compared to Iraq and Afghanistan,1 where 

the U.S. has enjoyed air supremacy, mobility, and technically superior equipment. Army 

Special Operations doctrine clearly defines the necessity of “operations requiring unique 

modes of employment, tactical techniques, equipment, and training often conducted in 

hostile, denied, or politically sensitive environments…and characterized by a high degree 

of risk.”2 

In such conditions, SOF teams will need to be more self-sufficient in all aspects of 

their extended operations from intelligence to fires to logistics. The strategic environment 

highlighted in the National Defense Strategy warns that it may be infeasible to operate 

large unmanned aerial systems (UAS) to support small units in the presence of peer or near 

peer adversaries in politically sensitive or deep areas.3 In that context, large, expensive, 

and theater-level UAS cannot be relied upon to provide dedicated intelligence, 

surveillance, and reconnaissance (ISR), which will be essential when operating in these 

 
1 Department of the Army, The U.S. Army in Multi-Domain Operations 2028, U.S. Army TRADOC 

Pamphlet 525-3-1 (Washington, DC: Department of the Army, 2018), 17–21, December 6, 2018, 
https://api.army.mil/e2/c/downloads/2021/02/26/b45372c1/20181206-tp525-3-1-the-us-army-in-mdo-2028-
final.pdf 

2 Department of the Army, Army Special Operations, ADP 3–05 (Washington, DC: Department of the 
Army, 2019), ix, https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN18909_ADP%203-
05%20C1%20FINAL%20WEB(2).pdf 

3 Department of Defense, Summary of the 2018 National Defense Strategy of the United States of 
America. (Washington, DC: Department of Defense 2018. National Defense Strategy), 2–3, Department of 
Defense, 2018. https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-
Summary.pdf 
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environments. There is an urgent need for real-time, organic ISR capability at the team 

level.4 

Nonetheless, many SOF units continue to be equipped with small unmanned aerial 

systems (sUAS) such as the RQ-11 Raven, that possess outdated technological capabilities, 

require a dedicated operator and a large, fixed position from which to operate. Those 

systems are already inadequate, but no replacement sUAS with state-of-the-art capabilities 

has been fielded. We propose that advanced sUAS platforms could enhance situational 

awareness and survivability at the small unit level. Fortunately, military and corporate 

research continue to make significant advances in developing drone technology and 

machine learning (ML) algorithms for the Department of Defense (DOD) that promise to 

simultaneously enhance the autonomy of small units and reduce the operator’s cognitive 

load.  

The warfighter gap that we address in this research is the lack of a sUAS platform 

that meets the emerging needs at the SOF team level. Many current efforts to enhance UAS 

with Artificial Intelligence (AI)/ML are focusing on large theater level assets, such as the 

MQ-9 Reaper.5 We opine that this prioritization, intentional or not, incurs unnecessary risk 

by not also adequately focusing on adopting some of the abundant, affordable, and man-

packable commercial-off-the-shelf (COTS) sUAS to meet small unit requirements. 

A. BACKGROUND 

The first phase of the Semi-Autonomous Threat Learning Alert System (SATLAS) 

project was undertaken by Midgett et. al. from June 2019 to December 2020 and explored 

this concept through quantitative analysis and by identifying key capability requirements.6 

 
4 Department of the Army, Army Futures Command Concept for Special Operations 2028, Army 

Futures Command Pamphlet 71-20-4: (Washington, DC: Department of the Army, 2020), 18, 
https://api.army.mil/e2/c/downloads/2021/01/05/bdd61c44/20200918-afc-pam-71-20-4-afc-concept-for-
special-operations-2028-final.pdf  

5 David Hambling, “U.S. To Equip MQ-9 Reaper Drones with Artificial Intelligence,” Forbes, 
(December 2020), https://www.forbes.com/sites/davidhambling/2020/12/11/new-project-will-give-us-mq-
9-reaper-drones-artificial-intelligence/?sh=37723b3c7a8e. 

6 Midgett et. al., “Semiautonomous Threat Learning Alert System,” (master’s thesis, Naval 
Postgraduate School, 2020), 46–52, December 2020. 
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They acquired sponsor funding from the Office of Naval Research and SOCOM’s Science 

and Technology department and conducted market research to ascertain the current state 

of development of COTS and government sUAS and relevant software. Then they 

identified four priority capability requirements critical to improving situational awareness 

and decision-making for SOF teams: 1) a versatile, man-packable sUAS platform whose 

manufacturer would permit the team to integrate selected software functions, 2) AI-enabled 

object detection capable of on-the-edge processing, 3) autonomous tasking capability, and 

4) a common ground control user interface.  

They observed that the Defense Innovation Unit’s “Blue sUAS” program is 

working to introduce a man-packable sUAS platform program of record; however, fielding 

had yet to begin.7 The Defense Advanced Research Projects Agency has tested the use of 

object detection software in sUAS and in robots at the squad level and found that it can 

significantly increase survivability and decision-making, but no efforts towards 

implementation have been made.8 Autonomous tasking remains in its early stages of 

development within the commercial sector9; finally, the Android Tactical Assault Kit 

(ATAK) has proven capable of meeting the user interface demands of SOF.10 The 

objective of the ongoing SATLAS research project is to integrate these four pillars into a 

versatile ISR prototype for SOF teams.  

The purpose of this thesis is to continue a longitudinal research project that seeks 

to design and develop a prototype deep learning (DL) enabled, semi-autonomous sUAS, 

and to evaluate its feasibility to support small units. It continues advancement towards a 

proof of concept that integrates hardware and software solutions to enhance SOF team’s 

 
7 Department of Defense, Defense Innovation Unit Announces sUAS Product Availability to Provide 

Secure, Capable Small Unmanned Aerial Systems for Critical Uses Across the Government, Washington, 
DC: Department of Defense, 2020. https://www.defense.gov/Newsroom/Releases/Release/Article/2318799/
defense-innovation-unit-announces-suas-product-availability-to-provide-secure-c/ 

8 Defense Advanced Research Projects Agency,With Squad X, Dismounted Units Partner with AI to 
Dominate Battlespace, (Washington, DC: Defense Advanced Research Projects Agency, 2019), 
https://www.darpa.mil/news-events/2019-07-12 

9 Department of Defense, Eyes of the Army: U.S. Army Roadmap for UAS 2010–2035, (Washington, 
DC: Department of Defense, 2010). 7–9, https://fas.org/irp/program/collect/uas-army.pdf 

10 George Seffers, “Army Tactical Assault Kit Always Adapting for New Era,” SIGNAL Magazine, 
October 28, 2020, https://www.afcea.org/content/army-tactical-assault-kit-always-adapting-new-era. 
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combat effectiveness and survivability by providing an organic ISR platform to support 

situational awareness.  

The specific focus of this thesis is on the second pillar; the addition of an object 

recognition capability into a sUAS. Our principal task is to manage its integration onto a 

surrogate platform, and eventually onto the prototype. Working collaboratively with a 

private firm and DOD affiliates, we direct and monitor the integration and conduct interim 

performance evaluations of AeroVironment’s Surveillance, Persistent Observation and 

Targeting Recognition (SPOTR) suite in a virtual environment and on a Nibbler sUAS. 

The Nibbler serves as the surrogate experimental sUAS based on its platform 

characteristics, its availability, its compatibility with ATAK, and the willingness of the 

manufacturer to allow us to access its open architecture.  

B. RESEARCH OBJECTIVE 

In this study we incorporate emerging object recognition software on to a sUAS to 

enhance the situational awareness of SOF teams. We direct the integration process and 

conduct simulation experiments to measure the performance of the SPOTR software to 

detect and categorize entities. 

The primary research question is: 

Can the integration of SPOTR object recognition into a sUAS achieve the 

technical parameters to meet SOF team operational requirements? 

We evaluate the technical performance of the SPOTR software on a Nibbler sUAS 

for its potential operational impact. By managing this integration process, we advance the 

project toward a prototype that meets our specific performance requirements. We also 

establish a baseline for future student researchers to continue to develop this and the 

remaining pillars of the prototype with the integration of autonomous features and a 

common user interface.  

C. SCOPE AND LIMITATIONS 

We focus on Pillar 2, integrating object recognition capability into the sUAS with 

emphasis on its technical performance. Future work will address the subsequent pillars of 
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autonomous capabilities and a common user interface. This research remains unclassified 

to aid following SATLAS project teams.  

Software development cycles, the COVID 19 pandemic, and sUAS platform 

acquisition time constraints limit our ability to conduct tests in realistic operational 

scenarios. While the technical and operational requirements will vary across the various 

operating environments in which SOF may operation, we test only in the context of a 

temperate zone. In our field testing, we use the Nibbler. Our findings may not be applicable 

to other sUAS platforms and will need to be evaluated separately, depending upon which 

platform is selected as the prototype. We conduct our simulation experiments in 

collaboration with the commercial software developer.  

D. ORGANIZATION OF THESIS 

Chapter II provides a review of prior research, emerging operational doctrine and 

threat assessments, and the current state of sUAS and object recognition technology. 

Chapter III explains our research method, beginning with the background for the test 

criteria. It then describes our research design, tests, and results. Chapter IV presents the 

analysis of the results. Chapter V summarizes the significant findings and proposes the way 

ahead. 
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II. LITERATURE REVIEW 

This chapter is divided into four sections. The first section sets the tactical context 

with a factual vignette that illustrates the urgent need for a dedicated, highly capable sUAS 

for SOF teams. The second section explores what the United States has defined as the 

future operational environment and the evolving demand for technological solutions to 

better enable SOF teams. The third section examines military applications for sUAS and 

AI and the final section reviews prior work on this topic.  

A. VIGNETTE – THE WARFIGHTER ISR SHORTFALL 

In 2018, Special Forces Operational Detachment Alpha (SFOD-A) 0221 was 

deployed to a remote region in the Middle East and tasked to secure an area approximately 

50 square kilometers that was controlled by Islamic State of Iraq and Syria (ISIS) militants. 

It was given continuous access to theater-level ISR and supporting fires. As the SFOD-A 

advanced deep into enemy territory over the course of 5 weeks, the distance between their 

forward outpost and the forward line of troops grew. To maintain offensive pressure, they 

employed multiple 3-man observation and surveillance teams to detect enemy positions 

and call for indirect and aerial delivered munitions on targets. These teams were generally 

more than 10 kilometers from any friendly position.  

One day, during early morning hours, the theater-level ISR asset that had been 

providing surveillance for one of the observation teams was re-tasked to support a different 

SFOD-A. Without warning, that team was left without any external overhead surveillance 

support. The SFOD-A’s only organic sUAS, a RQ-11 Raven, was inoperable due to broken 

parts and was also too large to be man-packable. As the 3-man surveillance team increased 

its security posture to compensate for the loss of the ISR asset, a squad of ISIS militants 

quietly approached them. The militants were not detected until they were within 75 meters 

of the team, well within firing distance. The ISIS squad immediately engaged the 3-man 

team with automatic weapons and hand grenades. As the surveillance team fought back, 

the SFOD-A launched a quick reaction force to assist, and the combined elements 

eventually eliminated the militants. During the firefight one soldier on the surveillance 
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team was killed in action and the others were wounded, virtually eliminating the SFOD-

A’s combat effectiveness. 

After consolidating and reorganizing, the team resumed combat operations several 

days later. To adjust for the increasing distance between the outpost position and the 

forward line of troops, the SFOD-A emplaced check points along the route between the 

two positions. Host Nation forces were unavailable or unwilling to operate the check 

points, so local militia forces volunteered their services. After some vetting, four militia 

check points were positioned along the route to provide security. The militia forces came 

armed with their own weapons and wore modest uniforms, and required a significant 

amount of support from the SFOD-A. This support required the U.S. forces to interact with 

militia members on a regular basis through a series of key leader engagements. The 

frequent leader engagements were assessed to be at low risk despite taking place in one of 

the most violent areas within the region. Therefore, the SFOD-A was assigned a low 

priority for support from the limited theater-level ISR assets.  

It was not long before the SFOD-A again suffered the consequences of that 

prioritization. Upon departing a check point after one leader engagement, a 5-man team 

from the SFOD-A was ambushed by ISIS militants with a long burst of automatic machine 

gun fire from 50 meters away. Immediately, over half of the team was wounded or killed. 

They returned fire, began rudimentary triage, and engaged in a firefight as they desperately 

withdrew to a secure position. The team eventually received close air support and destroyed 

the enemy position. This author, the Detachment Commander of the SFOD-A, strongly 

contends that had the team been equipped with an organic sUAS, they would have detected 

the assaulting squad and prevented or effectively responded to the ambushes.  

In an earlier example, an SFOD-A on a mission in Niger in 2017 was not supported 

by any ISR assets and in that incident four service members were killed in action.11 The 

SFOD-A was engaged in a remote region in Africa with nominal external ISR support and 

was unaware that a large group of ISIS militants were quickly approaching their position. 

 
11Alice Friend, DOD’s Report on the Investigation into the 2017 Ambush in Niger, (Washington, DC: 

Center for Strategic and International Studies, 2018), 2–6, https://www.csis.org/analysis/dods-report-
investigation-2017-ambush-niger. 
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The absence of surveillance support significantly limited their situational awareness and 

the SFOD-A was rapidly overwhelmed, became separated in the confusion, and suffered 

the loss of four Soldiers’ lives.  

It is the assessment of the SATLAS project team that as SOF are increasingly tasked 

to combat asymmetric threats in remote and contested regions where they cannot depend 

upon external support, they will require a reliable, versatile organic ISR asset. We further 

propose that this warfighter shortfall is urgent and brings unacceptable risk to SOF teams, 

yet a solution should be rapidly and inexpensively achievable. 

B. THE FUTURE STRATEGIC ENVIRONMENT 

In 2014, Kremlin forces wearing green uniforms absent any rank or insignia 

encircled government buildings, secured key sites, and successfully annexed Crimea from 

Ukraine.12 Months of Russian-backed protests, propaganda campaigns, and economic 

pressure had set conditions that allowed Russia to seize the region with limited response 

from Ukraine or the West.13 Russia’s acts of irregular or hybrid warfare and China’s 

whole-of-government approach to spread influence and expand its footprint to undercut the 

United States,14 caused the United States to reevaluate its capability to deter or respond to 

near-peer adversaries.  

The 2018 National Defense Strategy shifted to prioritize Great Power Competition 

while remaining committed to the defeat of violent extremist organizations.15 The evolving 

doctrine of Multi-Domain Operations (MDO) is the U.S. Army’s response to this re-

prioritization as it attempts to grasp a future operational environment that includes the use 

 
12 Michael Kofman et al., Lessons from Russia’s Operations in Crimea and Eastern Ukraine, RR 

1498 (Santa Monica, CA: RAND, 2017), 5–16, https://www.rand.org/pubs/research_reports/RR1498.html. 
13 Heather A Conley et al., The Kremlin Playbook: Understanding Russian Influence in Central and 

Eastern Europe, (Washington, DC: Center for Strategic and International Studies, 2016), 1–5, 
https://www.csis.org/analysis/kremlin-playbook.  

14 Office of the Director of National Intelligence, Annual Threat Assessment of the U.S. Intelligence 
Community, (Washington, DC: Office of the Director of National Intelligence, 2021), 4–11, 
https://www.dni.gov/files/ODNI/documents/assessments/ATA-2021-Unclassified-Report.pdf 

15Department of Defense, National Defense Strategy, 1–3. 
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of military and non-military means by near-peer and asymmetric adversaries to degrade 

U.S. influence and deny access.16 MDO highlights four key trends to expect in the future 

operating environment; 1) adversaries will contest U.S. presence in all domains, 2) smaller 

armies will fight on larger and more lethal battlefields, 3) nation-states will be less able to 

impose their will, and 4) near-peer competition will take place below the level of armed 

conflict. The MDO also introduces three tenets to adapt the American way of war: a 

calibrated force posture, multi-domain operations, and convergence.17 Guided by these 

tenets, ARSOF leadership has assessed the unique capability that its SFOD-A teams will 

need to provide within this operational concept. They must be regionally aligned, able to 

employ clandestine infiltration techniques, and operate by, with, and through partner or 

surrogate forces to reduce large U.S. footprints in sensitive areas.18  

In addition to the changing threats, the Chief of Staff of the U.S. Army 

acknowledged the revolutionary impact that emerging technologies, such as artificial 

intelligence, nanotechnology, machine learning, and robotics, will have on the fundamental 

nature of war.19 To prepare SOF teams for the future MDO environment, U.S. Special 

Operations Command (SOCOM) recently prioritized technological solutions to increase 

situational awareness and improve decision-making for small teams. The FY 2021 U.S. 

SOCOM Acquisition, Technology, and Logistics Directorate of Science and Technology 

announcement emphasizes efforts to hyper-enable SOF teams, recognizing that the future 

operating environment will require SOF to operate in “satellite denied/disrupted 

environments, under threat of targeting by high-end military capabilities…..and where 

increased scrutiny is routine.”20  

 
16Department of the Army, The U.S. Army in Multi-Domain Operations 2028, 15–20. 
17 Department of the Army, The U.S. Army in Multi-Domain Operations 2028, 15–20. 
18 Department of the Army, Army Futures Command Concept for Special Operations 2028, 9–11. 
19 Jim Garamone, “Milley Makes Case for U.S. Military Keeping Up With Global, Technology 

Changes,” U.S. Department of Defense, (December 2, 2020): https://www.defense.gov/Explore/News/
Article/Article/2432855/milley-makes-case-for-us-military-keeping-up-with-global-technology-changes/. 

20 Department of Defense, Broad Agency Announcement For Technology Development and Advanced 
Technology Development (Washington, DC: Department of Defense, 2020). 
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U.S. SOCOM defines the Hyper Enabled Operator (HEO) as a Special Operations 

professional equipped with technology that enables more timely and accurate decision-

making while increasing situational awareness and minimizing cognitive overload.21 To 

achieve an HEO, U.S. SOCOM has designated several focus areas for future research. 

Among these are autonomy-enabled ISR/battlefield situational awareness; group 1 sUAS 

payloads; edge computing to support localized SOF teams; and sensor algorithms to locate, 

classify, characterize, and identify items of interest.22 These particular focus areas greatly 

informed the original conceptualization of the SATLAS project. 

While still in the early stages of development, there is significant potential within 

these areas to create HEOs capable of defeating asymmetric and near-peer adversaries. 

Unfortunately, the Army appears to remain locked in a culture that prioritizes large, costly, 

and expensive platforms despite acknowledging a future operational environment in which 

smaller, less expensive, unmanned UAS will be most beneficial.23 Additionally, the 

Army’s byzantine acquisition system is overly complex and unable to field technologies in 

any reasonable time.24 These disconnects and the proliferation of COTS technologies 

capable of meeting the demands of SOF teams have motivated bottom-up approaches from 

the field to solve this critical shortfall. 

C. EMERGING TECHNOLOGY 

While no single technology will help to create HEOs, there are technologies whose 

integration could hyper enable operators through the real-time collection of data, distilling 

the data down into mission relevant information, disseminating the data to personnel able 

 
21 Department of Defense, Broad Agency Announcement For Technology Development and Advanced 

Technology Development. 
22 Department of Defense, Broad Agency Announcement For Technology Development and Advanced 

Technology Development. 
23 Liam Collins and Harrison Morgan, “Affordable, Abundant, and Autonomous: The Future of 

Ground Warfare,” War on the Rocks (April 21, 2020): https://warontherocks.com/2020/04/affordable-
abundant-and-autonomous-the-future-of-ground-warfare/. 

24 Jennifer McArdle, “Simulating War: Three Enduring Lessons from the Louisiana Maneuvers,” War 
on the Rocks (March 2021), https://warontherocks.com/2021/03/simulating-war-three-enduring-lessons-
from-the-louisiana-maneuvers/. 
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to use it, and, ultimately, strengthening our capability to compete in a MDO environment.25 

While the vision of the SATLAS project team is to integrate four of these technologies, 

including a sUAS platform, AI-enabled object recognition, autonomy, and a common user 

interface, this thesis focuses on developing Pillar 2. 

1. sUAS 

Militaries have experimented with UAS since the 19th century to increase 

situational awareness and reduce what Carl Von Clausewitz described as “friction”.26 

While the explosion in the use of drones may appear to be a recent phenomenon, the first 

use military use of a drone actually occurred in 1849, when Austria used a hot air balloon 

to bomb Venice during the First Italian War of Independence.27 Though the earlier 

applications of UAS platforms were nearly indistinguishable from missiles, the 

experimental use of drones continued through nearly all major conflicts.28 Significant 

technological advancements in the late 20th and early 21st centuries have led to the use of 

drones by the United States in both lethal and nonlethal applications to address the 

asymmetric threats that have risen in the post-9/11 era.29 The capability of UAS platforms 

to provide near real time intelligence to military commanders and civilian senior leaders 

has led these systems to become associated with the American style of war.30  

Many U.S. SOF teams are still equipped with the RA-11B Raven as their organic 

UAS; however, advances in the civilian market have enabled research into smaller, more 

capable systems. The Raven has been fielded in its current form since 2006 and has been 

 
25 Department of Defense, Broad Agency Announcement For Technology Development and Advanced 

Technology Development 
26 Carl Von Clausewitz, On War, Translated by Michael Howard and Peter Paret, (Princeton 

University Press, 1976), Book 1, Chapter 7. 
27 Higinio Gonzales-Jorge et. al., Unmanned Aerial Systems for Civil Applications: A Review, (MDPI: 

July 2017), 1–2, https://doi.org/10.3390/drones1010002 
28 Jack Miller, “Strategic Significance of Drone Operations for Warfare,” E-International Relations, 

(August 2013), https://www.e-ir.info/2013/08/19/strategic-significance-of-drone-operations-for-warfare/. 
29 Milena Sterio, “The United States’ Use of Drones in the War on Terror: The Legality of Targeted 

Killings under International Law,” Case Western Reserve Journal of International Law 45 (2012), 198–
200, https://scholarlycommons.law.case.edu/cgi/viewcontent.cgi?article=1072&context=jil. 

30 Miller, “Strategic Significance of Drone Operations for Warfare,” 2013.  
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used extensively by U.S. SOF teams in nearly every region.31 The emergence of advanced 

commercial sUAS, such as the Chinese-made DJI, and their potential uses on the battlefield 

have led to significant efforts by the DOD to field similarly capable systems. Notably, UAS 

platforms have been substantially developed to include Vertical Take-Off and Landing 

(VTOL), complex camera systems, and smaller and more agile platforms. As a result, the 

DOD launched the Rucksack Portable UAS (RPUAS) program of record32 while the 

Defense Innovation Unit (DIU) initiated the Blue UAS program, both designed to introduce 

inexpensive, rucksack-portable, VTOL-capable sUAS systems to the battlefield.33  

In 2013, the U.S. Army published capability requirements for the next generation 

of sUAS designed to enhance the situational awareness of small unit commanders.34 The 

document described production threshold requirements, the minimum capabilities 

necessary for a sUAS to be considered for the program of record, and production objective 

requirements, the desired capabilities for a sUAS to move forward towards product 

development.35 Key production objectives and production threshold requirements include; 

a handheld system capable of being launched without dedicated devices and a compact 

system capable of being transported in a rucksack. Additional requirements can be seen in 

Table 1. 

 
31Department of Defense, RQ-11B Raven Small Unmanned Aircraft System (SUAS) (Washington, DC: 

Department of Defense, 2016), https://asc.army.mil/web/portfolio-item/aviation_raven-suas/  
32 Department of Defense, Capability Production Document For Rucksack Portable Unmanned 

Aircraft System (RPUAS) Increment 2, (Washington, DC; Department of Defense, 2013). 
33 Department of Defense, Defense Innovation Unit Announces sUAS Product Availability to Provide 

Secure, Capable Small Unmanned Aerial Systems for Critical Uses Across the Government (Washington, 
DC: Department of Defense, 2020) https://www.defense.gov/Newsroom/Releases/Release/Article/
2318799/defense-innovation-unit-announces-suas-product-availability-to-provide-secure-
c/#:~:text=The%20Defense%20Innovation%20Unit%20(DIU,options%20to%20the%20U.S.%20Governm
ent. 

34 Department of Defense, Capability Production Document For Rucksack Portable Unmanned 
Aircraft System (RPUAS) Increment 2. 

35 Department of Defense, Capability Production Document For Rucksack Portable Unmanned 
Aircraft System (RPUAS) Increment 2 (Washington, DC: Department of Defense, 2013). 
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Table 1. RPUAS Capability Requirements36 

Joint Capability Area Production Threshold Production Objective 
2. Battlespace Awareness 
2.1 Planning & Direction 
5. Command & Control 
5.1 Organize 
5.2 Understand 
5.5 Direct 

30-minute time of flight and a 
flight range of 3km 

45-minute time of flight and a 
flight range of 5km 

2. Battlespace Awareness 
2.1 Planning & Direction 
3. Force Application 
3.1 Maneuver 

- Payload with sufficient 
resolution for an operator to 
have a 90% Probability of 
Detection (PD) of a man-
sized target during day at 
300m and 200m at night.  
- 90% PD of a vehicle during 
day at 400m and 300m at 
night 
- 90% PD of a vehicle or 
person during day at 250m 
and 150m at night 

- Payload with sufficient 
resolution for an operator to 
have a 95% PD of a man-
sized target during day at 
600m and 450m at night 
- 95% PD of a vehicle during 
day at 800m and 600m at 
night 
-95% PD of a vehicle or 
person during day at 600m 
and 450m at night 

3. Force Application 
3.1 Maneuver 

- Contain one handheld 
ground control station (H-
GCS) 
- Weigh no more than 19lbs 

- Contain one handheld H-
GCS 
- Weigh no more than 8lbs 

2. Battlespace Awareness 
3. Force Application 
3.1 Maneuver 
7. Protection 
7.2 Mitigate 

- Inaudible at 200 feet AGL 
with a background noise of 
65 dBA 

- Inaudible at 100 feet AGL 
with a background noise of 
35 dBA 

2. Battlespace Awareness 
2.1 Planning & Direction 
2.2 Collection 
3. Force Application 
5. Command & Control 
6. Net-Centric 
 

- The system must have a 
modular FMV payload 
containing day, night (passive 
infrared), and laser 
illuminator 
- The system must have the 
ability to observe a stationary 
object/location while sending 
and receiving C2 data to/from 
the H-GCS 
- The H-GCS display must 
have the detail/quality of a 
Soldier with 20/20 vision 
observing the object. 

- The system must have a 
modular FMV payload 
containing day, night (passive 
infrared), laser illuminator, 
and Laser Target Marker). 
- Both day and night cameras 
must have optical zoom 
capability 

 

 
36 Department of Defense, Capability Production Document For Rucksack Portable Unmanned 

Aircraft System (RPUAS) Increment 2. 
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Additionally, a key component of both the RPUAS and Blue UAS programs is 

ensuring the security and safety of any potential sUAS systems introduced into the DOD. 

To secure the integrity of UAS platforms and mitigate the risks of foreign intrusions into 

the supply chain, SRR and Blue UAS were both designed to comply with Section 848 of 

the National Defense Authorization Act (NDAA) for Fiscal Year 2020.37 This section 

prohibits the use or procurement of foreign-made UAS platforms and attempts to prevent 

foreign adversaries, including China, from compromising sensitive areas of DOD 

research.38 As a result of 18-months of testing and supply chain inspection, DIU and the 

DOD announced the availability of five UAS options able to be purchased by DOD 

organizations in September 2020 including: Altavian, Parrot, Skydio, Teal, and Vantage 

Robotics.39 The SATLAS project team was able to acquire three Altavian M440s for 

testing and prototype development and plans to eventually integrate the Skydio X2D. 

2. Object Recognition 

As sUAS platforms now play a significant role in increasing the situational 

awareness of ground forces, the employment of object recognition algorithms is even more 

feasible. Object recognition is a longstanding problem within computer vision but is an 

area in which deep learning techniques have enabled recent break throughs.40 The goal of 

object recognition is to determine whether specific objects from given categories (e.g., 

humans, vehicles, or weapons) are present in an image. Deep learning allows for the use of 

multilayered algorithms to enable software to learn the representation of images through 

multiple levels of abstraction.41 This type of learning allows algorithms to be trained using 

 
37  The Department of Defense, Defense Innovation Unit Announces sUAS Product Availability to 

Provide Secure, Capable Small Unmanned Aerial Systems for Critical Uses Across the Government. 
38 National Defense Authorization Act for Fiscal Year 2020, S.1790, 116th Congress (2019-2020) 

https://www.congress.gov/bill/116th-congress/senate-bill/1790/text. 
39 The Department of Defense, Defense Innovation Unit Announces sUAS Product Availability to 

Provide Secure, Capable Small Unmanned Aerial Systems for Critical Uses Across the Government. 
40 Li Liu et al., “Deep Learning for Generic Object Detection: A Survey,” International Journal of 

Computer Vision 128, no. 2 (February 2020): 261–318, https://doi.org/10.1007/s11263-019-01247-4. 
41 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep Learning,” Nature, no. 7553 (May 

2015): 436–44, https://doi.org/10.1038/nature14539. 
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known data sets on which objects to recognize and can be tailored to best meet the needs 

of the operator. 

The use of object recognition in military applications has been considered in several 

projects and studies, including the highly publicized Project Maven42; however, this 

capability has yet to be implemented nor have the requirements for DOD use been clearly 

defined.,43 ISR systems capable of accurately recognizing potential threats on the 

battlefield have the potential to significantly improve the survivability of SOF teams.  

One common critique of using object recognition to assist military operations is the 

question of accuracy. Object recognition performance is often evaluated using three 

criteria: frames per second, precision, and recall. Precision is a measure of how frequently 

an algorithm correctly recognizes an object.44 Recall measures whether the algorithm 

recognized an object every time it should.45 As an algorithm’s recall rate increases, its 

precision often decreases creating the precision-recall curve (Figure 1). The area 

underneath the precision-recall curve is referred to as the average precision and indicates 

correct guesses on object recognition based on the correct number of times the algorithm 

should have made a guess. Thus, an algorithm can be set on a sensitivity continuum to 

either make only correct guesses while missing opportunities in which it should have 

guessed (false negative) or to make guesses at every opportunity which will result in 

inaccurate guesses (false positives) or somewhere in the middle. This has significant 

implications for use by the DOD, especially with human-in-the-loop systems. An operator 

 
42 Lucy Suchman, “Algorithmic Warfare and the Reinvention of Accuracy,” Critical Studies on 

Security 8, no. 2 (May 3, 2020): 175–87, https://doi.org/10.1080/21624887.2020.1760587. 
43 Doaa Mohey El-Din, Aboul Ella Hassanein, and Ehab E. Hassanien, “An Automatic Detection of 

Military Objects and Terrorism Classification System Based on Deep Transfer Learning,” in Proceedings 
of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), ed. Aboul-Ella 
Hassanien et al., Advances in Intelligent Systems and Computing (Cham: Springer International 
Publishing, 2020), 594–603, https://doi.org/10.1007/978-3-030-44289-7_56; Zhi Yang et al., “Deep 
Transfer Learning for Military Object Recognition under Small Training Set Condition,” Neural 
Computing and Applications, no. 10 (October 1, 2019): 6469–78, https://doi.org/10.1007/s00521-018-
3468-3. 

44 Shivy Yohanandan, “MAP (Mean Average Precision) Might Confuse You!,” Medium, June 9, 
2020, https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2. 

45 Yohanandan, “MAP (Mean Average Precision) Might Confuse You!”. 

https://doi.org/%E2%80%8B10.1007/%E2%80%8B978-3-030-44289-7_56
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can opt to set the level of sensitivity to mitigate risk during high consequence scenarios46 

in order to sacrifice some precision to increase recall abilities.  

 
Figure 1. Precision-Recall Curve47 

D. PRIOR WORK 

This section provides an overview of research that informed this thesis. These 

research efforts are addressed individually in the following sections. 

1. Deep Learning and sUAS Object Recognition 

Recent advancements may allow deep learning (DL) algorithms to enable UAS 

platforms to detect threats and autonomously avoid obstacles. The use of DL techniques to 

recognize patterns from raw data captured by onboard cameras could increase the 

autonomous functionality of UAS platforms.48 Differing from classic machine learning, 

DL does not require the use of descriptor labels to categorize data. Instead, DL techniques 

can both identify and categorize data simultaneously. In essence, DL algorithms process 

raw video from camera systems or sensors onboard UAS and determine if the data 

represents a threat. Fraga-Lamas et. al. proposed a cloud-based communication system that 

 
46 DataLabeler L, “Human-in-the-Loop Machine Learning Approach,” Medium, March 24, 2020, 

https://datalabeler.medium.com/human-in-the-loop-machine-learning-approach-b130102b94e5. 
47 Joe Kehoe, email message to author, May 7, 2021. 
48 Paula Fraga-Lamas et. al., “A Review on IoT Deep Learning UAV Systems for Autonomous 

Obstacle Detection and Collision Avoidance,” Remote Sensing 11, no. 18 (January 2019): 2144, 
https://doi.org/10.3390/rs11182144. 
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can contain the required deep learning algorithms for object recognition. The UAS could 

then automatically reposition itself to avoid objects, maintain its stealth, or alert the 

operator. Deep learning-enabled object recognition and cloud-based communication 

techniques are major considerations in this thesis’ proposed solution to increase situational 

awareness for SOF teams. 

2. SQUAD X Experiments 

Between 2018 and 2020, the DOD’s Defense Advanced Research Projects Agency 

(DARPA) conducted a series of experiments, labeled SQUAD X, to test the impact of 

enhancing U.S. Marine Corps squads with DL-enabled robots.49 DARPA also employed a 

cloud-based communication architecture connected to ground stations that controlled aerial 

and land-based robots. Both robots employed a version of AeroVironment’s (formerly 

Progeny Solutions) Surveillance, Persistent Observation and Targeting Recognition 

(SPOTR) suite. While focusing on developing modular and open architecture-based 

software, AeroVironment integrated computer vision analytics, namely object recognition, 

and machine learning through deep neural networks to develop their SPOTR technology.50 

SPOTR has been tailored for use in unmanned applications through its embedded and edge-

processing configurations and, once integrated into a UAS’ computer vision, enables the 

system to recognize and detect threats. SPOTR employs complex algorithms and training 

sets to detect, recognize, categorize, and track potential threats. Detection implies that 

SPOTR discovers than an object is present through processing camera footage. The object 

is then recognized as an object that SPOTR has been trained to identify. It is then 

categorized as the specific trained object (a weapon, person, or vehicle in our case). SPOTR 

then follows the object and tracks its movement. As seen in Figure 2, potential threats are 

identified to the operator by outlining the object with a green box in the user interface. A 

single platform can track multiple threats. 

 
49 Defense Advanced Research Projects Agency, “With Squad X, Dismounted Units Partner with AI 

to Dominate Battlespace,” (July 2019): https://www.darpa.mil/news-events/2019-07-12 
50 Daniel Midgett, email message to author, September 4, 2020. 
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SPOTR Object Recognition Model51 

During a series of four experiments, AeroVironment’s SPOTR software was 

integrated into UASs to enable U.S. Marines tasked to execute a series of operations in 

urban areas.52 DARPA discovered that not only could the object detection algorithms 

significantly increase the situational awareness of ground forces, it also provided the forces 

enough digestible information to adjust their ground scheme of maneuver without cognitive 

overload when the data was shared among the team through the Android Tactical Assault 

Kit (ATAK).53 Additionally, feedback from the Marine squad members demonstrated the 

user-friendly nature of the system. The users also gained trust in the reliability of the system 

after a single iteration.54 SQUAD X demonstrated that it is feasible to employ object 

recognition capability in a human-in-the loop system to increase situational awareness for 

ground forces. The tool must not cognitively overload the operator, and trust in the tool 

can be built through reliable detection of enemy threats. SPOTR is the software that we 

evaluate for its object recognition capabilities. 

 
51 AeroVironment, “SATLAS SPOTR Metrics”. 
52 Defense Advanced Research Projects Agency, “With Squad X, Dismounted Units Partner with AI 

to Dominate Battlespace,” (July 2019): https://www.darpa.mil/news-events/2019-07-12. 
53 Keenan Kline, email message to author, November 12, 2020. 
54 Keenan Kline, email message to author, November 23, 2020. 
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3. Object Recognition and Super-Resolution 

Developing trust in object recognition systems requires accurate and reliable 

detections across all conditions. Traditional object recognition is usually performed when 

images that the algorithm is trained to detect occupy a large portion of the image frame. 

This technique is largely dependent on the quality of the training data, or group of images 

used as samples to train deep neural networks on what to detect, and the quality of the 

image observed. All object recognition models require a certain number of pixels to 

recognize an item. As the quality of observed images decreases, the risk of mis-

categorization or completely missed items increases. Nearly all object recognition training 

data introduce some level of image degradation to allow for accurate detection when items 

are small or are partially obscured. This is especially important when considering sUAS 

which are equipped with smaller, less capable cameras to minimize weight and remain man 

packable. Additionally, SOF operations often occur in environments with limited visibility, 

and required standoff that stress traditional camera systems, incurring risk to the team. 

In 2019, Christoph Borel-Donohue and Susan Young proposed super-resolution as 

a technique to increase accurate object recognition rates on degraded images.55 They used 

low-resolution images of parking lots and fed them into the You Only Look Once (YOLO) 

object recognition network to test the number of cars and trucks detected. After the low-

resolution frames were scanned by YOLO, they processed the images through a super-

resolution algorithm to produce full size images then rescanned them. Their findings show 

that the number of detections improved two-fold after the images were super-resolved and 

matched the detection results of an image four times its size. Each object recognition model 

requires different image sizes and qualities for accurate detection; however, introducing a 

super-resolution algorithm can help increase detection accuracy while avoiding increased 

hardware or payload requirements. This suggests that super-resolution algorithms may 

provide a method to increase object recognition capabilities while avoiding increased 

sUAS payload weights. This technique informed our analysis of the relationship between 

 
55 Christoph Borel and S. Young, “Image Quality and Super Resolution Effects on Object Recognition 

Using Deep Neural Networks,” in 2019 SPIE Conference for Artificial Intelligence and Machine Learning 
for Multi-Domain Operations Applications. (SPIE, 2019), 7–8, https://doi.org/10.1117/12.2518524. 



21 

object recognition algorithms and onboard camera systems and presents opportunities to 

improve the range of SPOTR while minimizing weight. 

4. AI Robots and Increased Combat Effectiveness 

There are several important implications for the use of DL-enabled sUAS organic 

to a SOF team. In 2020, Midgett et. al. analyzed simulation data from the Maneuver Battle 

Lab at Fort Benning, GA to estimate the additional combat strength gained by augmenting 

U.S. Mechanized Infantry platoons with AI-enabled robots and precision strike 

capabilities.56 The lab provided data from four controlled simulations in which the 

simulated engagements did not include AI-enabled robots, and from nine experiment 

simulations that included the robots. The robots employed deep neural network (DNN) AI 

and comprised armed ground robots, armed aerial robots, and company-level precision 

strike robot systems.  

Midgett et. al. analyzed the data from simulated engagements between friendly 

mechanized infantry platoons and enemy forces that ranged in size from a platoon to a 

battalion. They found a strong statistical significance (r = 0.96) between the use of armed 

aerial robots and precision strikes and improved platoon-level combat effectiveness. 

Furthermore, they assessed that the addition of AI robots and precision strikes accounted 

for 92% of the platoon’s increase in combat effectiveness. They were unable to determine 

with any statistical significance whether the use of ground robots impacted combat 

effectiveness but found that the aerial robot systems could explain 56% of the observed 

effects of engagements. As seen in Figure 3, this finding suggests that there may be merit 

in reexamining the traditional rule of only attacking when one holds a three to one force 

advantage over an opponent. For the purposes of this thesis, Midgett et. al. demonstrated 

the significant advantage that AI-enabled sUAS might provide to small teams and 

strengthened our notion to focus on integrating inexpensive systems for SOF teams. 

 
56 Midgett et. al., “Semiautonomous Threat Learning Alert System,” 46–52. 
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Figure 2. Correlation of Forces Calculator Results of AI-Enabled 

Platoons57 

Since the concept of using an sUAS platform with an object recognition tool to 

increase SOF situational awareness is only theoretical, the first step in this thesis is to assess 

whether the integration of object recognition software onto a versatile and robust UAS 

platform is feasible. This thesis focuses on Pillar 2 while managing the integration into a 

specific sUAS platform. The next chapter describes the research process, experiment 

design, execution, and the results.  

 
57Midgett et. al., “Semiautonomous Threat Learning Alert System,” 46–52. 
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III. EXPERIMENT DESIGN 

This chapter describes the series of experiments conducted to evaluate the object 

recognition integration and our findings. We tested the performance of AeroVironment’s 

SPOTR object recognition algorithm to determine the feasibility of integrating it into a 

surrogate sUAS platform to enhance situational awareness for SOF units. 

We conducted our experiments in four phases. During Phase 0 we participated in 

simulation software validation with AeroVironment engineers, and to become familiar with 

their progress in coding SPOTR’s ability to detect and categorize individuals and vehicles in 

a fully simulated environment. In Phase 0 we sought to determine whether the simulated 

environment that we had selected could adequately and reliably represent the ability of 

SPOTR to process raw data from a ArduCopter sUAS platform and categorize moving entities 

as individuals, weapons, or vehicles. We refined and scoped our draft research questions and 

measures of performance in order to transition to Phase I.  

Phase I consisted of discovery experiments using an Alienware laptop loaded with the 

SPOTR software and the simulated environment. The simulated environment was a synthetic 

representation of the Urban Training Center at the U.S. Marine Corps base in Quantico, VA. 

This phase allowed us to examine whether the simulation capabilities through multiple 

iterations of runs and narrow our research questions while collecting SPOTR performance 

data. The Alienware laptop provided sufficient processing power to support the simulation 

and SPOTR software without limiting performance. This allowed us to become familiar with 

SPOTR in a fully unconstrained processing power environment. 

Phase II consisted of initial evaluation experiments to limit the processing load 

available to SPOTR to that available onboard current sUAS to determine the feasibility of 

integrating the two. We hypothesized that onboard processing power would be sufficient to 

reliably run the algorithms and wanted to measure the impacts of a constrained environment 

on the software.  

Phase III was designed to test whether the surrogate sUAS could support the object 

recognition algorithms. This phase involved transitioning from the simulated environment to 



24 

a field environment to measure the impact on platform and software performance once 

integrated. The experiments were designed to be basic but provide evidence to further advance 

the project to determine the feasibility of eventually introducing the technology into the DOD. 

Figure 4 describes our experiment design plan. 

 
Figure 3. Experiment Design Campaign Plan 

Each phase of the experiment campaign was designed with a systems approach in 

mind and considered the parameter space investigation (PSI) method as well as the DOD’s 

Code of Best Practices for Experimentation. Section A describes the design methodology 

while Section B details the findings for each phase. 

A. EXPERIMENT DESIGN METHODOLOGY 

The PSI method, or Multicriteria Analysis, is designed to meet the demands of 

engineer optimization problems and one that offers important considerations for our project. 

R. Statnikov et. al. describes this method as a process of correctly identifying a problem and 

then constructing and analyzing a feasible solution.58 Important features of this method are 

 
58 R. Statnikov et. al., “Multicriteria Analysis Tools in Real-Life Problems,” Computers & 

Mathematics with Applications 52 (2006) 1–32. https://doi.org/10.1016/j.camwa.2006.08.002 
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the design variables, functional constraints, and criterion variables. Design variables are often 

independent variables and the factors thought to be responsible for change in performance. 

These variables are often limited due to the available resources or technology and often 

require extensive market research to properly identify. Functional constraints are factors that 

often fall outside of the intended area of interest yet play an important role in the design and 

execution of any experiment. These constraints include factors such as the time available, 

testing sites, and weather, which must also be properly considered. Finally, criterion variables 

are often those considered to be essential by the designer for the proposed solution to be 

feasible. These variables may involve a required time of flight, a flight range, or the amount 

of data able to be processed. Table 2 lists the design variables, functional constraints, and 

criteria constraints specific to this project. The following section outlines how each impacted 

this study. 

Table 2. Design, Functional, and Criterion Variables59 

Design Variables Functional Constraints Criterion Variables 
sUAS altitude Software integration timeline SPOTR accuracy 

sUAS Slant Range 
Distance from entity 

Testing Window Number of entities detected 

Number of entities Test environment Maximum distance of 
detection and 
categorization 

Target location   

 

The following section describes our down select process and how each of these 

variables and constraints impacted our study and influenced our results.  

1. Down Select Considerations 

We initially selected specific hardware and software products for our study. In most 

cases, several options of each product were available to our team but only one could move 

 
59 R. Statnikov et. al., “Multicriteria Analysis Tools in Real-Life Problems,”1-32. 
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forward in the experiment phases. In some cases, only one product was available. The 

following section describes the products that we selected for our experiments. 

a. SPOTR Object Recognition Software 

As discussed in Chapter II, AeroVironment’s SPOTR is the only object recognition 

software that we considered which is designed to be integrated with sUAS and able to detect 

potential threats to ground forces. SPOTR is unique is in its ability to detect objects at the 

edge. The data is streamed directly from the platform to the operator’s GCS component and 

it can be integrated into the onboard computer vision of most sUAS platforms.60 The SPOTR 

includes a NVIDIA Jetson TX2 processor, a camera system capable of EO/IR configurations 

and a Microhard pDDL data radio. Once integrated into a sUAS platform, SPOTR employs 

custom-tailored DNN and DL algorithms that detect patterns consistent with known targets. 

As seen in Figure 5, SPOTR is being designed to detect, categorize, localize, and then track 

(DCLT) potential targets based on identifiers detected during training and validation. 

 
Figure 4. SPOTR Classification Process61 

The object recognition algorithms currently used by the SPOTR software support 

detection in three categories: individuals, weapons, and vehicles. However, the version used 

 
60 Daniel Midgett, email message to author, September 4, 2020. 
61 Daniel Midgett, email message to author, September 4, 2020. 
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in our laptop-based simulation testing was limited to two categories: individuals and vehicles. 

This was the only model ready to be downloaded onto a third-party computer. 

b. Platform 

The SATLAS team originally selected the Altavian M440 as our preferred sUAS 

platform for prototype development and testing; however, discussions with the manufacturer 

about integration and the requirement of non-disclosure agreements prevented the Altavian 

from being available. While AeroVironment (formerly Progeny Solutions) and Altavian 

worked through the bureaucratic requirements, testing moved forward with the Nibbler sUAS 

platform.  

Although limited on advanced technology, the Nibbler sUAS platform has been 

successfully fielded with the U.S. Marine Corps. It can be 3-D printed and assembled and 

repaired at the unit level.62 Not only does this keep the platform relatively cheap (costing 

around $2,000 per platform) but it also avoids the extensive DOD acquisition process.63 The 

Nibbler is a small, lightweight, VTOL-capable, four rotor quadcopter fitted with a single lens 

camera capable of visible detection (Figure 6). It has a 20-minute time of flight and was 

designed to increase situational awareness by conducting reconnaissance in support of small 

units. It was designed and developed through a collaborative effort between the MITRE 

Corporation and the U.S. Marines.  

 
62 Megan Eckstein, “Marines’ 3D-Printed ‘Nibbler’ Drone Creating Lessons Learned on Logistics, 

Counter-UAS,” USNI News, (September 2017), https://news.usni.org/2017/09/27/marines-3d-printed-
nibbler-drone-creating-lessons-learned-logistics-counter-uas. 

63 Bill Eidson, “Nibbler Drone Is an Advanced Manufacturing ‘Flagship’ for Marines,” MITRE, 
(January 2019), https://www.mitre.org/publications/project-stories/nibbler-drone-is-an-advanced-
manufacturing-flagship-for-marines. 
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Figure 5. Nibbler sUAS64 

Engineers from AeroVironment have worked extensively with the Nibbler and, 

therefore, integration with this platform was not an issue. The Nibbler is approved for use by 

the DOD and has been employed almost solely by the U.S. Marines since 2017. However, the 

Nibbler was not considered by the RPUAS program due to its limited autonomous capability. 

Nonetheless, it served adequately as the surrogate for our research pertaining to object 

recognition.  

c. Microprocessor 

The NVIDIA Jetson TX2 microprocessor is considered the fastest and most power-

efficient microchip for advanced AI computing65 and is the only microprocessor used by 

AeroVironment. The TX2 has 8 GB of memory and uses 7.5 watts of power to enable on-the-

edge AI computing. The TX2 is one of the most common microprocessors employed for AI 

processing. The TX2 was the only processor used during our experiments. Results on other 

microprocessors may vary. 

d. Onboard Camera 

The simulated environment and live experiments employed an onboard camera 

system equivalent to the GoPro Hero 4 Silver. This is the camera available on the Nibbler and 

 
64 Bill Eidson, “Nibbler Drone Is an Advanced Manufacturing ‘Flagship’ for Marines,”. 
65NVIDIA,  “Jetson TX2 Module,” NVIDIA Developer, (May 2017), https://developer.nvidia.com/

embedded/jetson-tx2. 
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the specifications of the simulated environment were adjusted to match. The Hero 4 records 

video in 1080p resolution at 30 frames per second and operates at a super wide, wide or narrow 

field of view.66 The GoPro Hero 4 is primarily designed to record objects in close proximity. 

The lack of zoom capabilities limits its performance as compared to other sUAS onboard 

cameras. For our research, this restricted the range at which SPOTR was able to detect and 

categorize entities. 

e. Simulation Software 

We used AeroVironment’s simulation as the environment to evaluate the SPOTR 

software while integration efforts were ongoing. To examine the capabilities of SPOTR, we 

loaded the simulated environment on the Alienware laptop. The laptop provided an 

unconstrained setting for the software to perform its tasks. 

A constraint for this study was that the only simulated environment available for 

experimentation was the one created by AeroVironment. The simulation is designed to 

replicate the Urban Training Center at the U.S. Marine Corps base in Quantico, VA. It 

incorporates a small urban area of approximately 150 buildings while the rural areas are 

limited to open fields. This restricted our tests to take place in a temperate environment only. 

Additionally, the standard version of the simulation limits the number of detectable objects to 

13 individuals, 13 weapons, and 1 vehicle depending on the region scanned. This limited our 

ability to detect more than 13 objects simultaneously. 

2. Design Variables 

Design variables are often described as the independent variable.67 They are the knobs 

that we turn in order to measure the impacts. We selected the following four design variables 

specific to this part of the project include: 1) operating altitude of the sUAS, 2) the slant range 

distance between the sUAS and the entity, 3) the number of entities available for detection 

and categorization, and 4) target location. During our early test phases, we conducted 

 
66 GoPro, GoPro Hero 4 Silver User Manual, 2014. https://gopro.com/content/dam/help/hero4-silver/

manuals/UM_H4Silver_ENG_REVA_WEB.pdf. 
67 R. Statnikov et. al., “Multicriteria Analysis Tools in Real-Life Problems,”1-32. 
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discovery experiments to determine the appropriate parameters of our independent variables 

as they had not yet been specified. 

a. sUAS Altitude 

The altitude of the sUAS was the most easily manipulable design variable and 

revealed the most about SPOTR’s capabilities. In both the simulation and field tests, the 

altitude of the virtual ArduCopters could be adjusted in five-meter increments using the 

mission control panel in the application screen. SPOTR is trained to detect entities based on 

pattern recognition and pixel size. Increasing the sUAS altitude reduced the pixel size of the 

detection. By adjusting the altitude, we identified optimal performance parameters and 

limitations of SPOTR to detect and categorize entities based on the available experiment 

settings and conditions. 

b. Slant Range Distance from Entity 

Similar to altitude, the distance between the entity and the sUAS was easy to 

manipulate and impacted the number of pixels available for SPOTR to detect and categorize 

entities. This distance could be adjusted using the mission control panel to alter the flight path 

of the drone either manually or by inputting a route for the sUAS to automatically fly. Changes 

in distance and altitude showed similar impacts on SPOTR’s accuracy and were recorded as 

the slant range distance as discussed in Chapter II. From these, we established initial 

performance parameters. 

c. Number of Entities 

An important research question for the SATLAS project involves the maximum 

number of entities SPOTR is able to detect and categorize simultaneously. To measure this, 

we manipulated the number of entities available to be detected and categorized. The intent 

was to identify the limitations of the system and direct the necessary design adjustments to 

meet our evaluation criteria.  
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d. Target Location 

Target location is important as pixel size and contrast directly impact object 

recognition capabilities. Within a given test environment, shadows, vegetation, and dark 

backgrounds negatively impact SPOTR’s ability to detect and categorize entities. We 

measured detection and categorization accuracy in various locations within the available 

testing environments to evaluate these impacts. Entities within the simulation travel on 

programmed routes and are not easily adjustable. We were, however, able to select different 

regions within the simulated test environments that offered varying conditions of shadows 

and background contrast. Target location proved much easier to manipulate during the field 

experiment; live targets could travel within any micro-terrain at the test site. These variations 

enabled us to gather initial data regarding the impacts of vegetation, shadows, and varying 

backgrounds on SPOTR accuracy. We used those data to guide the software developers. 

3. Functional Constraints 

Dr. Alberts describes functional constraints as variables or environmental factors 

accepted by the designer.68 These constraints impact the relationship between design 

variables and the criteria constraints and directly influence experiment results. Several 

functional constraints impacted this research and the results that follow. 

a. Software Integration Timeline 

This study relied on government funding and commercial industry experts to 

successfully integrate object recognition software into a sUAS platform. As a result, the 

experiments were limited to testing the products available within the scope of what could be 

produced and funded in the given time. This timeline was further constrained by an 18-month 

academic period. These constraints limited testing window and required the study to employ 

a simulated environment while observing remotely. This did not allow the team to test the 

Altavian and Skydio platforms, and required the use of the Nibbler sUAS platform to evaluate 

the object recognition performance. 

 
68 David S. Alberts and Richard E. Hayes, Code of Best Practice for Experimentation, CCRP 

Publication Series ([Washington, D.C: DOD Command and Control Research Program, 2002), 68-73, 
http://dodccrp.org/files/Alberts_Experimentation.pdf 
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b. Testing Window 

As a result of the software integration timeline constraint, the timeline for testing was 

limited to a period of six weeks. This constraint, and the required coordination with industry 

partners, meant that the experiments had to remain relatively small and necessitated the use 

of simulations and subsequent observing field experiments.  

c. Test Environment 

The testing environment was limited to what was available in the prototype 

developers’ virtual environment simulating a training site at the U.S. Marine Corps base in 

Quantico, Virginia. The field test environment was an open wooded area in Prince William 

County, Virginia. We were relegated to temperate zones with limited foliage; follow-on 

research should be conducted in various environments. 

4. Criterion Variables 

Criterion variables are defined as the dependent variables of the experiment and are 

the outputs. These can be thought of as the behaviors the system will perform as a function of 

technical capabilities and operator settings.69 Prior to the experimentation phase, we 

identified several criteria variables that we believed would be of significance in determining 

the feasibility of employing the object recognition software to increase the situational 

awareness of ground forces. 

This part of the longitudinal study focused on discovery testing and, as such, our 

criteria variables were defined as: 1) the ability of the object recognition software to accurately 

detect and categorize entities, 2) the number of entities capable of being detected and 

categorized simultaneously, and 3) the slant range distance at which targets can be accurately 

detected and categorized. Our initial research questions addressed the capabilities of the object 

recognition algorithm.  

Detection was defined as a binary yes or no that the software successfully registered 

that an entity was present. Categorization was defined as accurately classifying the entity as a 

 
69 Alberts et. al., Code of Best Practice for Experimentation, 68–73. 
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weapon, person, or vehicle. Accuracy was measured as a function of the number of entities 

(individuals, weapons, and vehicles) correctly detected and categorized versus the number of 

actual entities present. These measurements were taken at the optimal performance altitude 

based on the pixel size of the entity and the training data used to recognize the entity. The 

number of entities capable of being accurately detected and categorized was intended to stress 

the SPOTR software and determine its limits. Similarly, we manipulated the distance between 

the drone and the simulated entities to identify the range limits at which the platform could 

accurately detect and categorize. Simulated environments were used to examine the 

functionality of this software while acknowledging that real-world performance may vary 

significantly. Table 3 defines our technical requirements compared to the RPUAS 

requirements discussed in Chapter II. Our distances are defined as the slant range distance 

between the sUAS and the entity as we assume SOF teams will avoid operating a sUAS 

directly overhead to prevent compromising their position. Instead, we assess that a sUAS will 

operate at a minimum offset distance away from the team. 

Table 3. SATLAS and RPUAS Requirements70 

Requirement Area  RPUAS Performance 
Requirements 

SATLAS Performance 
Requirements* 

Detection Accuracy  -90% PD: 
 Day Night 
Person 300m 200m 
Vehicle 400m 300m 

 

-90% PD: 
 Day Night 
Person 300m 200m 
Vehicle 400m 300m 
Weapon 200m 150m 

 

Categorization Accuracy N/A -90% PC: 
 Day Night 
Person 100m 75m 
Vehicle 200m 150m 
Weapon 75m 50m 

 

Number of Entities Detected/
Categorized 

N/A 
 

Squad-sized element 
(approximately 10–12) detected 

Noise Inaudible at 200 feet AGL Inaudible at 200 feet AGL 
Flight Range 3 km 3 km  
Time of Flight 30-minutes 30-minutes 
*This was measured for temperate zones. Additional testing will be required in varying 
environments. 

 
70 Department of Defense, Capability Production Document For Rucksack Portable Unmanned 

Aircraft System (RPUAS) Increment 2. 
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a. Detection 

We determined that the RPUAS accuracy requirements for personnel and vehicle 

detection were sufficient to support SOF operational requirements and, therefore, sufficient 

for SATLAS experimentation criteria. The detection of personnel at 300 meters places 

them outside the range of typical small arms fire and allows sufficient reaction time for a 

team to maneuver the sUAS closer to investigate or take appropriate action. Likewise, 

detection of vehicles at 400 meters increases standoff distance and allows a SOF team to 

react accordingly. As discussed in Chapter II, smaller targets create less pixels for the 

object recognition software to process and are more difficult to detect. While weapon 

detection at 200 meters places SOF teams within small arms range, it is more realistic given 

the distance requirements for personnel and vehicle entities. Additionally, the accuracy 

requirement of a 90% probability of detection (PD) establishes a reliable detection model 

that will create trust in the system. 

b. Categorization 

The U.S. Army did not factor in object categorization since it was not a RPUAS 

technical requirement; however, it is exceptionally important for our project due to its 

potential to increase situational awareness for SOF teams. We defined the minimum 

categorization distance for vehicles to 200 meters during day at 150 meters at night with a 

90% probability of categorization (PC). Personnel should be categorized at 100 meters 

during the day and 75 meters at night with a 90% PC and weapons should be categorized 

at 75 meters during the day and at 50 meters at night with a 90% PC. Categorization 

requires multiple detections before the SPOTR software is confident enough to label an 

entity as a vehicle, person, or weapon, thus these distances will be much closer than 

detection distances. Detection at the specified distances will provide sufficient standoff for 

SOF teams to maneuver the sUAS to a closer distance to enable successful categorization. 

c. Tracks 

The U.S. Army also did not define a minimum number of entities that the object 

recognition software should be able to be detect and track simultaneously. This is also 

important to SATLAS because we assess that simultaneously detecting 10 entities would 
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provide sufficient situational awareness to deployed SOF teams. A key consideration will 

be to balance the frame rate for the object recognition software against additional power 

requirements for the platform.  

d. Noise 

We determined that the RPUAS noise requirements were sufficient to support SOF 

operational requirements and sufficient for SATLAS experimentation criteria. Remaining 

inaudible at 200 feet AGL enables a sUAS to remain outside of the required detection range 

for both personnel and vehicles. This provides sufficient standoff distance and will mitigate 

the extent to which a sUAS could compromise a SOF team’s location. 

e. Flight Range 

We determined that the RPUAS flight range requirement was sufficient for SOF 

operational requirements as well as for SATLAS technical parameters. Flight range 

remains dependent on a direct line-of-sight between the ground control station and a sUAS. 

Current state of the art sUAS technology is mostly limited to a 3-kilometer flight range due 

to the increased signal strength required to operate outside of this range and the 

complexities involved in operating a sUAS beyond-line-of-sight. Exceeding a 3-kilometer 

flight range requirement will severely limit the available sUAS.  

Additionally, a 3-kilometer range would provide sufficient standoff for SOF teams. 

At an average walking speed of 3 miles per hour, this range could provide a SOF team 

nearly 40 minutes to react if the personnel are detected at the maximum flight range of the 

sUAS. Detecting a vehicle traveling at 20 miles per hour at the maximum flight range will 

provide 5 minutes to react. Maximum reaction time will often be preferred; however, we 

assess that these times will provide a sufficient reaction time for SOF teams. This will need 

to be evaluated in future field experiments. 

f. Time of Flight 

We also concur with the RPUAS requirement of a 30-minute time of flight. Like 

flight range, the current state of the art sUAS technology is mostly limited to a 30–35-

minute time of flight. Integrating object recognition software and a robust camera into the 
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sUAS platform is expected to increase the power load and decrease flight time. Therefore, 

increasing this requirement would severely degrade available sUAS and require larger 

platforms with more battery life which become too big to remain man packable.  

There are, however, important implications sUAS flight time will have on SOF 

operations. Considering the vignette in Chapter II, many SOF operations and ISR 

requirements exceed 30 minutes. SOF teams will be required to select the most desirable 

times for organic ISR coverage and carry multiple batteries and charging stations should 

they use these platforms. This will increase the logistical burden of teams until the 

technology advances beyond a 30-minute time of flight for VTOL sUAS. 

5. Relationship Between Variables 

We expected to discover several relationships among the variables. Within the 

criteria variables, the accuracy, maximum number of entities that can be detected, and 

maximum range at which accurate detection can occur are all dependent on the onboard 

camera system. The object recognition algorithms rely on a pixel size ratio to correctly 

categorize entities as individuals, vehicles, or weapons. And as each sUAS manufacturer 

uses different cameras, SPOTR could be expected to perform better on certain sUAS 

platforms than others. Finally, we expected SPOTR to perform better at test sites that had 

terrain more aligned with the training data used to develop the algorithms. We expect the 

data from our research to necessitate additional feedback into Pillar 1. The next section 

describes the phases of our experiments. 

B. EXPERIMENT PHASES 

The tests in each phase were designed to evaluate SPOTR performance and identify 

needed adjustments prior to completion of the software integration onto the platform. In 

Phase 0 we participated in a simulation validation with AeroVironment engineers to 

determine the limitations of the simulation and better define our research questions and 

measures of performance. In Phase I we purchased an Alienware laptop that we loaded 

with a version of SPOTR and a simulated environment to conduct our own experiments in 

a completely simulated environment. The algorithms were tested using virtual sUAS 

platforms hovering over the simulated training site and all data processing was done 
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through the laptop. We then moved on to Phase II in which the data processing was done 

on a Nibbler sUAS platform with an onboard NVIDA Jetson TX2 microprocessor while 

operating over the same virtual training site. This represented a more constrained 

processing environment that could better simulate how the software would perform in a 

real-world scenario. Phase III then transitioned into field testing the Nibbler sUAS over 

Camp Snyder while detecting role players.  

 The experiment concluded with Phase III testing and preparation for subsequent 

Phase IV testing for future student teams. The next sections describe in detail the testing 

performed for Phases 0 – III as well as the scenarios that were used in Phases II and III.  

1. Phase 0 – Simulation Software Validation 

a. Setup 

Phase 0 began with months of coordination with AeroVironment’s engineer team 

and culminated with a virtual SPOTR familiarization on April 23, 2021. The software 

verification used a simulated environment resembling the urban training site in Quantico, 

VA. Two AeroVironment engineers executed the demonstration with the NPS student team 

and faculty advisors through Zoom.  

As seen in Figure 7, the simulation replicates a real-world urban training site to 

validate the SPOTR software. It primarily used light urban areas and open fields to employ 

SPOTR. The simulation used two ArduCopter sUAS to scan the designated areas (Figure 

8). Additionally, the standard simulation setup had limited the number of entities for 

SPOTR to recognize to 12 individuals and 1 vehicle. Their location and movements were 

controlled by the simulation were unable to be manipulated under normal circumstances.  
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Figure 6. Aerial View of Simulated Environment 

 
Figure 7. ArduCopter sUAS Used in Simulated Environment 

The AeroVironment engineers controlled the movement of the ArduCopters and 

maneuvered them through the simulated environment to demonstrate the capabilities of the 

simulation and SPOTR. We did not approach Phase 0 with any assumptions or research 

questions. We had considered measurements that may be beneficial to collect, including 

accuracy, number of entities detected, distance of detection, and altitude of detection; 

however, our intent was to determine whether the simulation provided sufficient feedback 

to effectively evaluate SPOTR during future phases. 
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b. Execution7 

The AeroVironment engineers initially launched the two simulated ArduCopters to 

demonstrate the control mechanisms, explain the view panels, and display the SPOTR 

software in action. We were able to observe the overview imagery and the SPOTR-enabled 

camera imagery (Figure 9). The left screen was used to observe the location of the 

ArduCopters in relation to the imagery while the right screen displayed the footage  

 
Figure 8. April 23 Demonstration Footage 

• through the lens of the sUAS. The ArduCopters were brought to a hover at 

an altitude of 15 meters AGL to demonstrate the ability of SPOTR to 

recognize individuals and vehicles in the simulated environment. 

Highlighted green boxes indicate the detection of an individual or vehicle. 

The ArduCopters remained over the light urban area while individuals and 

vehicles moved throughout. We gradually increased the altitude in 5 meter 

increments up to 40 meters AGL to determine the distance at which 

SPOTR becomes unreliable.  

c. Findings 

We determined that the simulation would serve as a sufficient method to evaluate 

SPOTR during future experiments. It provided an acceptable method to operate SPOTR in 
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a simulated urban environment. SPOTR was able to detect and categorize vehicles and 

personnel in the simulation despite being developed using live training data. Additionally, 

the ArduCopters could be maneuvered throughout the simulation to allow SPOTR to scan 

areas that offered different background contrasts. The simulation does have several 

limitations, however. The standard configuration limits the number of entities available for 

detection. Throughout most zones of the simulation, entities were limited to 8–13 personnel 

and one vehicle. This is a limitation that was unavailable for this thesis. Additionally, the 

simulation only includes urban terrain and open areas and does not have the ability to 

generate entities within vegetated regions. Based on the findings in Phase 0, our proposed 

research questions for Phase I were: 

• Can the Nibbler sUAS equipped with integrated SPOTR software 

accurately recognize and categorize personnel and vehicles as potential 

threats? 

• How many entities can be detected and categorized simultaneously given 

the current processing power? 

• At what slant range can the software reliably recognize entities? 

As seen in Figure 10, slant range distance factors into both sUAS altitude and lateral 

distance from the target and is defined as line-of-sight distance between two points. 
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Figure 9. Slant-Range Distance71 

Phase 0 concluded with revised research questions but confirmed the viability of 

testing SPOTR functionality in a simulated environment. Given the delays in the software 

integration, the ability to test SPOTR software in a synthetic environment proved 

beneficial. This helped us conclude that the simulation software was a viable testing 

platform to evaluate SPOTR, develop measurable research questions, and identify 

collectable measures of performance. 

2. Phase I – SPOTR Software Familiarization 

a. Setup  

Phase I began with the purchase of an Alienware Area 51M laptop and the 

installation of the SPOTR software and virtual environment. We received the laptop in 

February 2021; however, the findings from Phase 0 enabled us to better tailor our 

experiments with regards to our initial research questions.  

The software installed on the laptop has the same specifications as that observed 

during the software verification on April 23, 2021. The simulation is loaded with SPOTR’s 

personnel and vehicle detection model and was, therefore, unable to recognize weapons. 

Having unrestricted access to the software allowed us to conduct multiple experiments to 

 
71 Joe Kehoe, email message to author, May 7, 2021. 
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test the capabilities and limitations of the software while avoiding coordination with 

outside organizations. Our assumptions included:  

• Assumption 1: The virtual environment adequately simulates a real-world 

environment. 

• Assumption 2: The virtual entities adequately simulate personnel and 

vehicles. 

Additionally, our initial research questions remained consistent with the findings in Phase 

0 and included: 

• Can the Nibbler sUAS equipped with integrated SPOTR software 

accurately detect and categorize personnel and vehicles as potential 

threats? 

• How many entities can be detected and categorized simultaneously in a 

constrained processing environment? 

• At what slant range distance can the software reliably recognize entities? 

b. Execution 

Phase I experiments were conducted numerous times as we became more familiar 

with the software; however, our research questions remained the same. To determine how 

accurately the SPOTR software could detect and categorize entities, the ArduCopters were 

launched and hovered at the designated optimal slant range distance of 20 meters. We then 

counted the number of personnel and vehicles that had been observed compared to the 

number of those detected, and those correctly categorized. This was repeated 5 times to 

ensure reliability. Each iteration was recorded. 

Our second research question was answered by hovering the ArduCopter at the 

optimal slant range distance for detection (20 meters) and measuring the number of entities 

detected and categorized simultaneously. Different zones were programmed with varying 

numbers of entities to detect; therefore, we maneuvered the ArduCopter through each zone 

to ensure reliability. Each zone was recorded. 
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Our third research question was answered using slant range to measure the distance 

between the ArduCopter and each entity being detected to determine the distance where 

detection accuracy begins to degrade. Slant range accounts for both sUAS altitude and the 

ground distance from the sUAS to the entity. Scans began at the optimal slant range 

distance of 20 meters and increased by five meters until reaching the maximum altitude of 

60 meters available on the simulation. The ArduCopter remained in position while the 

number of targets detected was compared to the number of targets observed to determine 

the accuracy. This was repeated five times and the average detection percentage was 

recorded. As seen in Figure 11, the SPOTR software indicates a detection by highlighting 

the entity with a white square while items categorized are highlighted with a green square.  

  
Figure 10. SPOTR Simulation View 

c. Findings  

For each launch to 20 meters AGL, SPOTR was able to detect 100% of the 

observable entities. This supported first research question that, at the optimal slant range 

distance, SPOTR is able to accurately recognize and categorize personnel and vehicles in 

a simulated environment. 

To examine our second research question, we maneuvered the ArduCopter between 

zones to find its limit. Software restrictions did not allow us to fully explore this capability 

as we were unable to manually increase the number of detectable entities; however, we 
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determined that the software could detect up to 11 entities and categorize 8 simultaneously. 

SPOTR was not limited in the number of entities it can detect but it is currently limited to 

8 simultaneous categorizations. This limit allows the system to maintain a sufficiently high 

frame rate for additional processing and is a restraint placed on the system by 

AeroVironment engineers. Future testing is planned by AeroVironment to remove this 

internal limitation and evaluate the limits of the software, but the current parameters are 

sufficient for SATLAS. 

To measure our third research question, we began at the optimal slant range for 

detection (10 meters for weapons and 20 meters for personnel and vehicles) and increased 

the distance by 5-meter increments. The number of entities detected and categorized was 

compared to the number of entities present and recorded as a percentage. Interviews with 

AeroVironment engineers indicated that accurate detection would require an 

approximately 25–35 pixels per meter. This equated to SPOTR being able to detect 

weapons at approximately 10 meters – 15 meters slant range, personnel could be detected 

out to 40 meters slant range, and vehicles were detected out to 60 meters. 

Figure 12 summarizes the findings for our third research question regarding the 

maximum slant range at which SPOTR is capable of recognizing personnel and vehicle 

entities. SPOTR was able to detect 100% of the entities up to a slant range of 40 meters. 

At 50 meters, the recognition accuracy dropped slightly to 90% while entities at 60 meters 

were only recognized at 44% accuracy. False positives became evident at 60 meters and 

buildings began being categorized as vehicles. Entities at 70 meters were recognized with 

a 33% accuracy which then dropped to 22% at 80 meters. From 80 meters to 100 meters 

slant range, SPOTR was able to detect entities with a 22% accuracy. 
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Figure 11. SPOTR Performance (Phase 1) 

According to AeroVironment engineers, the simulated environment is primarily 

intended to test the functionality of the threat detection software. It did, however, enable 

us to measure initial performance parameters during prototype development despite 

caveats that real-world performance will likely vary as the training data used to tune the 

algorithms are better tuned to actual environments. Additionally, Phase I experiments 

allowed us to measure the performance of the algorithms in an unconstrained processing 

environment prior to moving to Phase II. Given our findings, we requested for 

AeroVironment to develop a method to evaluate SPOTR performance while constrained 

by the processing power of a NVIDIA TX2 microprocessor. 

3. Phase II – Discovery Experiments: Simulation 

a. Setup 

Phase II experiments were conducted on May 7, 2021 and used Zoom to enable 

screen sharing and communication between AeroVironment engineers in Virginia and NPS 

students and faculty located on campus at NPS. The experiment was conducted employing 

the same virtual environment replicating the Urban Training Center in Quantico, VA. The 

primary difference for Phase II testing included the use of a hardware-in-the-loop set up to 
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constrain the processing power of SPOTR. As seen in Figure 13, a NVIDIA Jetson TX2 

microprocessor mounted on a Nibbler was used to conduct the SPOTR processing while 

the virtual ArduCopter’s maneuvered through the simulated environment. Additionally,  

 
Figure 12. Phase II: Hardware-in-the-Loop Setup72 

SPOTR’s personnel and weapon model was used instead of the personnel and vehicle 

model employed in Phase I. As seen in Figure 14, the simulated environment was also 

broken down into 8 zones with varying numbers of targets available in each. 

 
72Joe Kehoe, email message to author, May 7, 2021. 
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Figure 13. Simulated Environment Zones Used during Phase II 

Testing73 

Incorporating the hardware-in-the-loop design did not alter our assumptions for this 

phase. We did, however, adjust Assumption 2 to include personnel and weapon entities 

while removing vehicles due to the change in detection model. The new assumptions were:  

• Assumption 1: The virtual environment adequately simulates a real-world 

environment. 

• Assumption 2: The virtual entities adequately simulate personnel and 

weapons. 

Also, because of the varying detection model and the limited processing power, we refined 

our research questions to included: 

• Can the Nibbler sUAS equipped with integrated SPOTR software 

accurately recognize and categorize personnel and weapons as potential 

threats? 

• How many entities can be detected and categorized simultaneously in a 

constrained processing environment? 

 
73 Joe Kehoe, email message to author, May 7, 2021. 
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• At what slant range distance can the software reliably recognize entities?  

b. Execution 

Phase II testing was conducted in two separate zones within the simulation. Testing 

began in Zone 7 which was programmed to include 6 personnel targets all carrying 

weapons. To answer Research Question 1, the ArduCopters were launched and hovered at 

the optimal slant range distance of 20 meters. We then counted the number of personnel 

observed and compared this to the number of those detected as well as those correctly 

categorized. The ArduCopters were then lowered to an altitude of 10 meters to examine 

the weapons detection abilities of SPOTR. This was repeated twice for Zone 7.  

We continued our experiment in Zone 7 to answer Research Question 2 by adjusting 

the hovering altitude from 15 meters AGL to 40 meters AGL. The ArduCopter was paused 

at every 5-meter increase in elevation and the number of personnel detected was compared 

to the number of personnel targets observed. Figure 15 displays a test iteration of SPOTR 

in Zone 7 at 20 meters slant range distance. After answering our two research questions in 

Zone 7, the ArduCopters were moved to Zone 1 to repeat the process. 

 
Figure 14. Phase II Test of Zone 7 
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Zone 1 was programmed to include 13 personnel targets carrying weapons. To 

answer Research Question 1, the ArduCopters were brought to a hover at 20 meters altitude 

to examine the number of personnel targets detected. The ArduCopters were again lowered 

to 10 meters altitude to measure the number of weapons detected. This was repeated twice 

for Zone 1. 

We addressed Research Question 2 by adjusting the hovering altitude of the 

ArduCopters between 15 meters AGL and 60 meters AGL. The ArduCopters were halted 

at every 5-meter increase and the number of personnel targets detected was compared to 

those observed on the screen. 

c. Findings 

For each launch to 20 meters AGL in both Zone 7 and Zone 1, SPOTR was able to 

detect and categorize 100% of the observable personnel. This provided the data for our first 

research question to assess that, while operating at the optimal slant range distance, SPOTR 

can accurately recognize and categorize personnel in a simulated environment. However, 

in Zone 7, SPOTR was unable to detect any weapons despite 6 being present at any given 

time. Additionally, in Zone 1, SPOTR was only able to detect 2 weapons and correctly 

categorize none of the weapons while up to 13 were present. 

For our second research question, we found that SPOTR was able to simultaneously 

detect all observable personnel entities while operating at the maximum slant range 

distance of 20 meters. SPOTR detected all 6 personnel entities in Zone 7 and all 13 

personnel entities in Zone 1 when they were within line of sight.  

Figures 16 and 17 summarize our findings for our third research question regarding 

the maximum slant range at which SPOTR can recognize personnel entities. In Zone 7, 

SPOTR was able to detect 100% of the entities a slant range of 20 meters. At 25 meters, 

the recognition accuracy dropped to 83%. Recognition accuracy dropped to 67% for 

entities at 30 meters and 35 meters while recognition accuracy dropped to 0% for entities 

at 40 meters and beyond. In Zone 1, SPOTR was able to detect 100% of the personnel 

entities between 20 meters and 30 meters. At 40 and 45 meters, the recognition accuracy 
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degraded to 77%. Recognition accuracy declined to 62% at 50 meters and 15% at 60 

meters. 

 

Figure 15. SPOTR Performance for Phase II: Zone 7 

 

 
Figure 16. SPOTR Performance for Phase II: Zone 1 

Again, the simulated environment is primarily intended to test the functionality of 

the threat detection software and may not replicate real-world performance. This 
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experiment did, however, provide us another opportunity to measure initial performance 

capabilities while incorporating a hardware-in-the-loop processing. During the Phase II 

experiments we measured the performance of the algorithms in a constrained processing 

environment prior to moving to Phase III.  

4. Phase III – Discovery Experiments: Field 

a. Setup 

Phase III experiments were conducted on May 18, 2021 via Zoom to enable screen 

sharing and communication between AeroVironment engineers in Virginia and NPS 

students and faculty. This experiment served as our first field testing of a SPOTR-enabled 

sUAS. We employed a Nibbler sUAS as the surrogate platform while production 

development continued on our Altavian M440 prototypes. As seen in Figure 18, the Nibbler 

contained an internal NVIDIA Jetson TX2 microprocessor; however, the object 

recognition software was conducted on a separate TX2 microprocessor at the ground 

control station. Thus, similar to Phase II experiments, Phase III testing constrained the 

processing power to that available on the TX2 microprocessor. 

 
Figure 17. Phase III: Live Testing Setup74 

 
74 Joe Kehoe, email message to author, May 18, 2021. 
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The experiment was conducted at the William B. Snyder Boy Scout camp in 

Haymarket, Virginia. As seen in Figure 19, the camp was divided into three zones to 

evaluate SPOTR’s performance in varying environments. Zone 1 included a gravel field 

that produced significant contrast between the targets and the background. Zone 2 

introduced more vegetation that included scrub brush, waist-high brush, and fully grown 

trees. Zone 3 included a single large building, a grass field, and intermittent trees. For this 

experiment, AeroVironment was only able to provide 3 individuals to serve as genuine 

entities. The individuals carried fake weapons that simulated a standard M4 rifle while a 

single pick-up truck was available for use. These tools allowed us to test both the personnel-

weapon detection model and the vehicle-personnel detection model. 

  
Figure 18. Phase III Testing Zones75 

Our assumptions for Phase III were altered since we were able to transition to field 

testing. Our assumptions for this include: 

• Assumption 1: The surrogate platform (Nibbler sUAS) will reasonably 

replicate the performance capabilities of our Altavian M440 prototypes. 

 
75 Joe Kehoe, email message to author, May 18, 2021. 
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• Assumption 2: The field environment at Camp Snyder adequately 

replicates a representative operational environment for SOF. teams. 

Our research questions also included: 

• Can the Nibbler sUAS equipped with integrated SPOTR software 

accurately detect and categorize personnel and weapons as potential 

threats? 

• How many entities can be detected and categorized simultaneously in a 

constrained processing environment? 

• At what slant range distance can the software reliably recognize entities? 

Due to limitations, we were unable to examine the maximum number of entities 

that SPOTR is capable of detecting and categorizing during this phase. 

b. Execution 

Phase III testing was conducted in Zones 1–3 at Camp Snyder. We began in Zone 

1 which included a gravel field and 3 personnel targets, 2 of whom were carrying fake 

weapons. To answer Research Question 1 in Zone 1, the Nibbler was launched and hovered 

at the optimal slant range distance of 20 meters. We then counted the number of personnel 

present and compared this to the number of those detected as well as those correctly 

categorized. The Nibbler was then lowered to an altitude of 10 meters to examine the 

weapons detection abilities of SPOTR.  

To answer Research Question 3 in Zone 1, we incrementally increased the hovering 

altitude of the Nibbler from 10 meters to 40 meters AGL. The Nibbler was paused at every 

5-meter increase in altitude and the number of personnel detected was compared to the 

number of personnel targets observed. Weapon detection was measured; however, 

detection was not possible above 15 meters of altitude. After answering our two research 

questions in Zone 7, the Nibbler and our personnel targets were moved to Zone 2 to repeat 

the process. 
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Zone 2 included the same 3 personnel targets and 2 weapon targets but transitioned 

to a setting that included a grass field, scrub brush, and full-size trees. This setting allowed 

us to examine the impact of object obscuration on the detection models. Research Question 

1 was answered by bringing the Nibbler to a hover at 20 meters altitude to examine the 

number of personnel targets detected. The Nibbler was then lowered to 10 meters altitude 

to measure the number of weapons detected.  

We then moved to Research Question 3 by adjusting the hovering altitude of the 

Nibber from 15 meters AGL to 30 meters AGL. The Nibbler was halted every 5-meter 

increase and the number of personnel targets detected was compared to those observed on 

the screen. After recording our findings, the Nibbler and our targets were moved to Zone 

3 to repeat the process. 

Zone 3 included a single-story building, several smaller structures, and sparse trees. 

The three personnel targets were instructed to move around the structures as we 

maneuvered the Nibbler, in order to observe the impacts of man-made structures on object 

detection. Research Question 1 was answered by bringing the Nibbler to a hover at 20 

meters altitude to examine the number of personnel targets detected. The Nibbler was then 

lowered to 10 meters altitude to measure the number of weapons detected.  

We then moved to Research Question 3 by adjusting the hovering altitude of the 

Nibber from 15 meters AGL to 40 meters AGL. The Nibbler was halted at each 5-meter 

increase and the number of personnel targets detected was compared to those observed on 

the screen. 

c. Findings 

In each zone, SPOTR was able to detect and categorize 100% of the observable 

personnel targets while hovering at the optimal personnel detection altitude of 20 meters. 

Additionally, SPOTR was able to detect 100% of the weapon targets while operating at the 

optimal weapon detection altitude of 10 meters. This allowed us to confirm our first 

research question and determine that SPOTR can accurately detect and categorize 

personnel and weapons while operating at the optimal slant range distance for detection in 

a real-world environment.  
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Figures 20, 21, and 22 summarize our findings for our third research question 

regarding the maximum slant range that SPOTR can recognize personnel entities. In Zone 

1, SPOTR’s personnel and weapon algorithm was able to detect 100% of the personnel 

entities a slant range of up to 30 meters. At 35 meters, the recognition accuracy of personnel 

dropped to 66% and 0% at 40 meters. In Zone 2, SPOTR was able to detect 100% of the 

personnel entities at 20 meters. At 25 meters, SPOTR was able to detect and categorize 

66% of the personnel targets but dropped to 0% at 30 meters and beyond. In Zone 3, 

SPOTR detected 100% of the personnel targets up to 25 meters slant range. Detection and 

categorization dropped to 66% from 30 meters to 35 meters slant range and dropped again 

to 33% at 40 meters. Phase III results varied from Phase II as we observed minimal 

detection absent of categorization. Put differently, SPOTR was able to categorize the vast 

majority of the entities that it detected; however, was unable to detect entities at greater 

distances as seen in Phase II. 

 
Figure 19. SPOTR Performance for Phase III: Zone 1 
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Figure 20. SPOTR Performance for Phase III: Zone 2 

 
Figure 21. SPOTR Performance for Phase III: Zone 3 

Phase III presented performance disparities between zones. Zones 1 and 3 which 

we presume is based on background contrast. The gravel field in Zone 1 provided 

significant contrast between the background and the personnel targets and enabled 

detection out to 40 meters. Similarly, the grass field and buildings in Zone 3 provided 

contrast that allowed the targets to stand out from the background. Personnel targets could 
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obviously not be detected or categorized once they were obscured by buildings and 

performance was degraded once the personnel were covered by shadows; however, the 

background contrast did not appear to degrade performance.  

We observed the most significant degradation of detection and categorization 

accuracy in Zone 2. The Nibbler was forced to drop to an altitude of 10 meters AGL to 

allow weapons to be accurately detected and the accuracy of personnel detection dropped 

once personnel targets entered the vegetation even when the Nibbler 20 meters from the 

target. Shadows also negatively impacted SPOTR’s performance in personnel and weapons 

detection at the 20-meter range. SPOTR could accurately detect and categorize the 

personnel targets while they were maneuvering in the grass field surrounding the thicker 

vegetation; however, once they entered the scrub brush or denser vegetation, detection was 

severely degraded. 

The field testing of SPOTR’s detection and categorization supported its capability 

to detect and categorize personnel and weapons while operating at the optimal slant range 

distance for each object. Also demonstrated was the ability to detect and categorize entities 

out to a distance of approximately 40 meters when not obscured by vegetation, buildings, 

or shadows. The variances in performance, especially in Zone 2, reveals the significant 

impact that object obscuration can have accurate object detection models. Phase III, 

however, supported SPOTR’s ability to process live sUAS camera footage and detect 

trained entities while operating in a constrained, field environment. 
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IV. ANALYSIS AND IMPLICATIONS 

This section provides an analysis of the experiment results. We examine the results 

by research question within each phase of testing and compare the results to the technical 

and operational requirements for SATLAS discussed in Chapter III. Second, we analyze 

the implications of these results in the context of the SATLAS project and the ability to 

employ an object recognition-enabled sUAS within SOF teams. 

A. ANALYSIS BY PHASE 

1. Phase 0 

Phase 0 was designed to align perspectives with regards to the simulation software 

between the NPS student team and advisors and the AeroVironment engineers. The 

objective was to assess whether it was feasible to use the simulation to evaluate the 

performance of the SPOTR software on a surrogate drone. Additionally, Phase 0 provided 

the SATLAS project team with necessary familiarization with SPOTR. Phase 0 also let us 

refine measurable research questions and measures of performance in order to manage the 

software development toward a prototype. We identified data that would be necessary to 

collect in order to establish performance parameters, including 1) accuracy and recall, 2) 

quantity of entities detected, 3) distance of detection, and 4) altitude of detection. The 

following section discusses each of these measurements.  

a. Accuracy and Recall 

Accuracy was our primary requirement for SPOTR as any object recognition 

software must be able to detect trained entities accurately and reliably to be of use. 

Accuracy measurements were not recorded during Phase 0 because this was not part of the 

Phase 0 test plan; however, SPOTR did successfully detect and categorize individuals and 

vehicles in the synthetic environment. The algorithm for weapon detection was not used 

during Phase 0, therefore, we were unable to examine this capability. Despite this shortfall, 

this phase suggested that the simulation could be used to quantitatively measure SPOTR’s 

accuracy.  
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b. Quantity 

We also identified the quantity of entities detected as a possible measurement. This 

was intended to determine the limitations of the system to better design future tests and 

assess the feasibility of integrating SPOTR into SATLAS prototypes. We were able to 

confirm that SPOTR was capable of detecting and categorizing multiple entities 

simultaneously while operating in the virtual environment.  

We did, however, discover that the simulation had internal restrictions regarding 

the number of entities it could provide. Different zones within the simulation were 

programmed to provide different target profiles and was limited to 8–10 personnel and one 

vehicle. This restriction was not easily adjustable and would require significant software 

engineer support to manipulate. Despite this shortfall, we assessed that the simulation 

provided a sufficient number of targets to gather initial measurements. 

c. Distance and Altitude 

Other concerns included the distance and altitude at which SPOTR could detect and 

categorize. Phase 0 showed us that separating lateral distance and altitude to measure the 

range of SPOTR was not the most accurate method. The simulation provided targets at 

various lateral distances; therefore, we combined these two research questions to measure 

the slant range distance between the sUAS and the entity. This allowed for more accurate 

and reliable measurements in future testing. We identified that SPOTR was able to detect 

entities at various slant range distances within the simulation. We were also able to 

manipulate the slant range distance by maneuvering the ArduCopters over the target region 

which allowed us to measure the slant range distance of detection within the simulation. 

Phase 0 enabled us to determine that the simulation provided a sufficient 

environment to evaluate the SPOTR software. We were able to measure SPOTR’s 

accuracy, the quantity of entities detected, and the slant range distance of detection to 

support future experiment phases. 
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2. Phase I 

We addressed our three adjusted research questions from Phase 0 in the context of 

our stated operational requirements. We gathered initial measurements in the synthetic 

environment and determined the capabilities of the software. Each research question and 

the analysis and implications are discussed individually in the next section. 

a. Research Question I-1 

Research Question I-1 was designed to determine the ability of SPOTR to 

accurately detect and categorize vehicles and personnel. This research question considered 

only accuracy at the optimal slant range distance of 20 meters. Detection and categorization 

slant range distance were considered in Research Question 3. Additionally, we were unable 

to test SPOTR at night; therefore, these requirements are omitted from the below table. 

Table 4 displays the results of Phase I testing compared to the RPUAS and SATLAS 

technical requirements. 

Table 4. Accuracy Requirements and Accuracy Performance: Phase I* 

 RPUAS Data SATLAS Data SPOTR Data 

Detection 
Accuracy/Slant 
Range Distance 

-90% PD: 
 Day 
P 300m 
V 400m 

 
 

-90%: 

 Day 

W 200m 

P 300m 

V 400m 
 

-90% PD: 

 Day 

P 60m 

V 75m 
 

Categorization 
Accuracy 

N/A -90% PC: 

 Day 

W 75m 

P 100m 

V 200m 
 

-90% PC:  

 Day 

P 50m 

V 75m 
 

*” P” indicates personnel. “V” indicates a vehicle. “W” indicates a weapon. 
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As discussed in Chapter II, accuracy is the measure of when the object recognition 

algorithm guesses how often it is correct, whereas recall is a measure of the how often the 

algorithm guesses when it should. We measured these two dependent variables and 

measured the percentage of entities correctly detected and categorized while the sUAS 

hovered at the optimal slant range distance. We evaluated the accuracy and recall by 

recording the percentage of correctly detected and categorized entities compared to the 

number of entities present, including false positives and false negatives. Our findings 

indicate that, given an optimal slant range distance and relatively unobscured line of sight 

to an entity, SPOTR should be able to detect and categorize weapons, personnel, and 

vehicles above the 90% accuracy requirement. 

As seen in Table 4, SPOTR met both the detection and categorization requirements 

for RPUAS and SATLAS defined in Chapter III as it achieved over a 90% detection and 

categorization accuracy while operating at the optimal slant range distance in the 

simulation. Constraints of the simulation prevented the sUAS from operating above 60 

meters altitude and thus limited the slant range to approximately 75 meters. While this 

limited our ability to determine the vehicle detection and categorization range, it did allow 

us to examine the limits of the personnel detection and categorization algorithm.  

Phase I enabled us to conclude that the SPOTR software is accurate enough in the 

simulation mode to warrant further integration into the SATLAS project.  

b. Research Question I-2 

The goal of Research Question I-2 was to find the maximum quantity of entities 

SPOTR is capable of simultaneously detecting and categorizing. Phase I allowed us to 

collect this measurement while the system operated in an unconstrained processing 

environment. Table 5 displays the results of Research Question 2 during Phase I. 
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Table 5. Quantity of Entities Detected: Phase I 

 RPUAS Data SATLAS Data SPOTR Data 

Quantity of Entities 
Detected 

N/A 10 10 

 

The number of entities capable of being detected by SPOTR met the operational 

requirements of SATLAS. In this phase, the number of entities capable of being detected 

was limited by the simulation constraints that restricted the number of targets available to 

10. This constraint did not allow us to measure the number of entities SPOTR is capable 

of detecting; however, we were able to observe it detecting all 10 entities at one time. The 

number of entities capable of being categorized was limited to 8 by a software constraint 

designed to maintain a higher frame rate for the algorithms. SPOTR was able to reach this 

maximum limitation of 8 simultaneous categorizations.  

Research Question I-2 helped us to conclude that SPOTR should be able to 

simultaneously detect a sufficient number of entities while operating in an unconstrained 

and simulated environment. 

c. Research Question I-3 

Our third research question concerned the maximum slant range distance at which 

SPOTR could detect and categorize entities. As illustrated in Table 4, SPOTR did not meet 

the distance requirements for detection for RPUAS or SATLAS and did not meet the 

distance requirements for categorization for SATLAS. Detection of personnel-sized targets 

dropped significantly at slant range distances of greater than 60 meters while categorization 

began to drop when greater than 50 meters. Of note, however, the simulation replicated the 

wide-angle camera setting of a GoPro Hero 4. Additionally, SPOTR uses real-world 

training data and simulation performance is not exact to real-world performance.  

Two potential explanations for SPOTR’s performance are the differences between 

real-world training data and what the simulation can replicate as well as the wide-angle 

camera replicated in the simulation. As previously mentioned, the synthetic environment 
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is generally designed to validate the performance of the detection algorithms before 

moving into live tests. Live training data will perform differently in the virtual setting. 

Additionally, as mentioned in Chapter II, camera capabilities and pixel size are important 

factors of object recognition results. The wide-angle cameras replicated did not provide the 

desired results in the simulated environment. Thus, prototypes will likely need to employ 

both wide and narrow field of view cameras to reach the technical requirements for both 

RPUAS and SATLAS. Software improvements, such as super-resolution, may also be 

required to allow object detection at the required ranges. 

3. Phase II 

Phase II testing was designed to test our research questions in the same synthetic 

environment while integrating a hardware-in-the-loop design to constrain processing 

capabilities to that of onboard future prototypes. We approached this phase with the same 

three research questions, gather additional measurements in the simulated environment, 

and determine the feasibility of on-the-edge processing for object recognition. Each 

research question and the analysis of the findings are discussed individually in the next 

section. 

a. Research Question II-1 

Research Question II-1 remained the ability of SPOTR to accurately detect and 

categorize personnel and weapons. The loaded algorithms for Phase II included personnel 

and weapon detection but not vehicle detection; thus, vehicle detection was not measured. 

Additionally, we were unable to test SPOTR at night; therefore, this requirement is omitted 

from the below table. Table 6 displays the results of Phase II testing compared to the 

RPUAS and SATLAS technical requirements as well as the results of SPOTR testing in 

Phase I.  
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Table 6. Accuracy Requirements and Accuracy Performance: Phase II* 

 RPUAS Data SATLAS Data SPOTR Data: 
Phase I 

SPOTR Data: 
Phase II 

Detection 
Accuracy/Slant 
Range Distance 

-90% PD: 

 Day 

P 300m 
 

-90% PD: 
 Day 
W 200m 
P 300m 
V 400m 

 

-90% PD: 

 Day 

P 60m 

V 75m 
 

-Zone 7: 90% 
PD: 

 Day 

W 0m 

P 20m 

-Zone 1: 90% 
PD: 

 Day 

W 10m 

P 35m 
 

Categorization 
Accuracy 

N/A -90% PC: 
 Day 
W 75m 
P 100m 
V 200m 

 

-90% PC 

 Day 

P 50m 

V 75m 
 

-Zone 7: 90% 
PC: 

 Day 

W 0m 

P 20m 

-Zone 1: 90% 
PC: 

 Day 

W 10m 

P 35m 
 

*”P” indicates personnel. “W” indicates a weapon. “V” indicated a vehicle. 
 

SPOTR met the detection and categorization accuracy requirements for RPUAS 

and SATLAS as defined in Chapter III and maintained over 90% accuracy when operating 

at its optimal slant range distance. Interestingly, the constrained processing environment 

appeared to negatively impact object detection and categorization performance. Of 

additional interest was the performance disparity between zones during Phase II. SPOTR 

performance in Zone 1, while degraded from Phase I testing, was significantly better than 

its performance in Zone 7. Zone 1 contained a much darker background than Zone 7 which 
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allowed the targets to standout. This finding suggests that SPOTR performance improves 

with increased contrast while operating in a simulated environment. While personnel 

detection and categorization accuracy met the requirements of RPUAS and SATLAS, 

Phase II demonstrated that accuracy may be negatively impacted by limited processing 

power and the lack of contrast between entities and the observed background. This may 

necessitate considerations for Pillar 1 platform modifications. 

b. Research Question II-2 

Research Question II-2 sought to find the maximum number of entities SPOTR is 

capable of simultaneously detecting and categorizing. Software engineers were able to 

slightly increase the number of targets to 13 in different zones to further stress SPOTR 

while operating in a constrained processing environment. Table 7 displays the results of 

Research Question 2 during Phase II as compared to the RPUAS and SATLAS 

requirements as well as Phase I. 

Table 7. Quantity of Entities Detected: Phase II 

 RPUAS Data SATLAS Data SPOTR Data: 
Phase I 

SPOTR 
Data: Phase 
II 

Number of 
Entities 
Detected 

N/A 10 10 Zone 7: 13 
Zone 1: 6 

 

The quantity of entities detected by SPOTR met the technical requirements of 

SATLAS while this phase also demonstrated that detection rate was not negatively 

impacted by reduced processing power. The number of entities capable of being detected 

was limited to 13 in Zone 7 and 6 in Zone 1 and SPOTR was able to detect all available 

targets while operating at an optimal slant range distance of 20 meters. The number of 

entities capable of being categorized remained limited to 8 by the internal software 

constraints. SPOTR was able to reach this maximum limitation of 8 simultaneous 

categorizations while during this phase. From Phase II, we concluded that SPOTR is able 
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to simultaneously detect an adequate number of entities while operating on limited 

processing power and in simulated environment.  

c. Research Question II-3 

The third research question regarded the maximum slant range distance at which 

SPOTR could detect and categorize entities. As seen in Table 6, SPOTR performance did 

not meet the distance requirements for detection for RPUAS or SATLAS and did not meet 

the distance requirements for categorization for SATLAS.  

Phase II findings demonstrated a reduction in range for SPOTR while performing 

with reduced processing power. The distances at which SPOTR could detect and categorize 

entities was cut nearly in half between Phase I and Phase II. Phase II also demonstrated a 

clear impact on detection and categorization performance in different zones. The only 

observable difference between the two zones tested was that the backdrop in Zone 7 

appeared much darker and had an increased number of shadows from the buildings. Given 

that the maximum distance for detection and categorization in Zone 1 was nearly double 

that in Zone 7, this may indicate that the size of an entity is as important as background 

contrast in a simulated environment.  

Phase II suggested that increased processing power will be needed to improve 

SPOTR’s detection range. The SATLAS project may need to seek alternatives to the 

NVIDIA TX2 that provide increased processing power Additionally, this phase suggested 

that cameras that are able to emphasize contrast between entities and the background (e.g., 

EO/IR) may also improve detection range and may be valuable avenues of future research.  

4. Phase III 

Phase III testing was our first opportunity to evaluate our research questions using 

a sUAS with integrated SPOTR in a field environment. Similar to Phase II, processing 

power was limited to that available on a NVIDIA TX2 microprocessor. We intended to 

evaluate our same three research questions; however, limited role players did not allow us 

to measure the maximum quantity of entities SPOTR could detect and categorize in a live 

environment. Phase III used a surrogate sUAS (Nibbler) to gather initial measurements in 
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a field setting to determine the feasibility of on-the-edge processing for object recognition. 

Each research question and the analysis of our findings are discussed in the next sections. 

a. Research Question III-1 

Research Question III-1 was the ability of SPOTR to accurately detect and 

categorize personnel and weapons. Engineers were able to transition between the personnel 

and weapon detection model and the vehicle and personnel detection model; however, 

testing primarily focused on the former. Table 8 displays the results of Phase III testing for 

each zone compared to the RPUAS and SATLAS technical requirements as well as the 

results of SPOTR testing in Phase I and Phase II. 

Table 8. Accuracy Requirements and Accuracy Performance: Phase III* 

 RPUAS 
Data 

SATLAS 
Data 

SPOTR 
Data: Phase 
I 

SPOTR 
Data: Phase 
II 

SPOTR 
Data: Phase 
III 

Detection 
Accuracy/
Slant Range 
Distance 

-90% PD:  

 Day 

P 300m 
 

-90% PD: 

 Day 

W 200m 

P 300m 

V 200m 
 

-90% PD: 

 Day 

P 60m 

V 75m 
 

-Zone 7: 90% 
PD: 

 Day 

W 0m 

P 20m 

-Zone 1: 90% 
PD: 

 Day 

W 10m 

P 35m 
 

-Zone 1: 90% 
PD: 

 Day 

W 15m 

P 30m 

-Zone 2: 90% 
PD: 

 Day 

W 10m 

P 25m 

-Zone 3: 90% 
PD: 

 Day 

W 10m 

P 25m 
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 RPUAS 
Data 

SATLAS 
Data 

SPOTR 
Data: Phase 
I 

SPOTR 
Data: Phase 
II 

SPOTR 
Data: Phase 
III 

Categorization 
Accuracy 

N/A -90% PC: 

 Day 

W 75m 

P 100m 

V 200m 
 

-90% PC: 

 Day 

P 50m 

V 75m 
 

-Zone 7: 90% 
PC:  

 Day 

W 0m 

P 20m 

-Zone 1: 90% 
PC: 

 Day 

W 10m 

P 35m 
 

-Zone 1: 90% 
PC: 

 Day 

W 15m 

P 30m 

-Zone 2: 90% 
PC: 

 Day 

W 10m 

P 25m 

-Zone 3: 90% 
PC: 

 Day 

W 10m 

P 25m 
 

* “P” indicates personnel. “W” indicates a weapon. “V” indicated a vehicle. 
 

Field testing of SPOTR met the detection and categorization accuracy requirements 

for RPUAS and SATLAS as defined in Chapter III at the optimal slant range distance. 

Phase III demonstrated less disparity between the distance at which entities are detected 

versus the distance at which they are categorized. Essentially, once SPOTR was able to 

detect an object, it could categorize it at the same distance so long as the software was 

trained for the specific object. This phase also revealed very similar performance outcomes 

as those observed in the constrained processing environment during Phase II. 

This finding reveals the impact of object obscuration on object recognition models 

while also demonstrating some current limitations of employing these systems in wooded 

operational environments. While personnel detection and categorization accuracy met the 

requirements of RPUAS or SATLAS at the optimal slant range distance, Phase III 
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demonstrated the impact of obscuration on object detection accuracy and emphasized the 

need for improved camera systems to increase detection in varying environments. 

b. Research Question III-2 

Phase III did not measure the maximum number of entities SPOTR was capable of 

simultaneously detecting and categorizing as the experiment was limited to the three 

personnel and two weapons. The testing did reveal that at the optimal slant range distance, 

SPOTR could simultaneously detect the three personnel and two weapons; however, 

further testing will need to be conducted to determine the true limits of the system. 

c. Research Question III-3 

Our third research question considered the maximum slant range distance at which 

SPOTR could detect and categorize entities. As seen in Table 8, SPOTR did not meet the 

distance requirements for detection for RPUAS or SATLAS and did not meet the distance 

requirements for categorization for SATLAS.  

The findings from Phase III revealed similar performance metrics to Phase II which 

suggests that the constrained processing power will reduce the slant range at which entities 

can be detected and categorized. Live testing also demonstrated SPOTR’s ability to 

categorize at the same distance it could detect entities. In open areas, SPOTR could 

accurately detect and categorize personnel out to approximately 40 meters. The shadows 

and vegetation present in Zone 2 cut this range down to approximately 25 meters and 

demonstrated the severe impacts of object obscuration on object recognition.  

Despite the inadequate slant range distance, there are various options to increase 

the range of detection for SPOTR or other object recognition models. As discussed in 

Chapter II, pixel size is dependent on the camera system. Adjusting the available payload 

in favor of dual-camera systems with wide-angle cameras and narrow-angle cameras is one 

possible solution. As seen in Figure 23, narrow-angle cameras with available zoom options 

will increase the available pixel size and increase the slant range for detection and 

categorization. A second alternative is the super resolution algorithm discussed by Borel 



71 

and Young.76 Processing camera feed in a super resolution algorithm also increases the 

available pixel size for object detection but without impacting the onboard hardware. Both 

techniques offer options to increase pixel size and improve detection range and 

performance in vegetation. 

 

 

Figure 22. SPOTR Detection Range: Narrow-Camera77 

B. OPERATIONAL IMPLICATIONS 

This section provides an analysis of our three primary measurements: accuracy and 

recall, multiple target detection, and slant range. We consider the performance metrics 

achieved, the desired metrics, and the implications these will have for an SFOD-A in an 

operational context.  

 
76 Christoph Borel and S. Young, “Image Quality and Super Resolution Effects on Object Recognition 

Using Deep Neural Networks,,” 7–8. 
77 Joe Kehoe, email message to author, May 7, 2021. 
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We approach this analysis with three primary assumptions: 1) that MDO will reflect 

the predominant operating environment of the future for SOF teams and that scenarios 

resembling our vignette in Chapter II, isolated and small teams requiring organic ISR 

support, will become increasingly common, 2) that MDO will limit the degree to which 

SOF teams will be able to rely on large, theater-level ISR platforms, and 3) operators will 

need to maneuver platforms within close proximity of potential targets for positive 

identification prior to taking lethal or non-lethal action. The following sections discuss our 

three categories with these in mind. 

1. Accuracy and Recall 

The implications of such a high degree of accuracy and recall are significant for 

SATLAS and SOF teams. The ability of an organic platform to accurately detect and 

categorize trained entities provides a unique situational awareness to a SOF team. Access 

to such a system will enable SOF teams to surveil areas of interest in their immediate 

proximity and detect and categorize moving entities in order to positively identify them. In 

the vignette, the ISIS militants maneuvered undetected within 75 meters of isolated SOF 

teams, ambushed, and killed U.S. Soldiers. Because the situational awareness of these SOF 

teams was degraded, small elements of enemy combatants maneuvered through the 

restrictive terrain and urban areas while taking advantage of security gaps. Operating in a 

MDO environment will only increase the impacts of diminished situational awareness on 

small and isolated SOF teams. Politically sensitive environments, reduced air superiority, 

and the use of clandestine techniques will exacerbate situational awareness shortfalls.78 

Object recognition-capable sUAS with a 90% accuracy would present a method to increase 

situational awareness for SOF teams in future MDO environments. 

2. Quantity 

SPOTR was able to simultaneously detect and categorize enough entities in the 

simulation to suggest its potential value for SOF teams. To achieve this goal, SPOTR does 

not need to be able to detect and categorize every trained entity in a given environment. 

 
78 Department of the Army, Army Futures Command Concept for Special Operations 2028, 12–25. 
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Instead, the detection and categorization of 10 trained entities could provide sufficient 

warning to a SOF team while avoiding cognitive overload. In the vignette in Chapter II, it 

was uncommon to encounter enemy combatants maneuvering in groups that included more 

than 10 personnel. While this will vary depending on the tactical environment, a human-

in-the-loop system that alerts the operator to detections and enables the user to assess the 

entity as a threat or not provides the most value. Requiring SPOTR to simultaneously detect 

and categorize more than 10 entities would not improve its operational value and risks 

overwhelming the user with alerts in this specific context. 

Perhaps more important than the accurate detection and categorization rate is the 

ability to toggle between the different detection modes and tailor the alerts based on the 

situation. While not an initial research question nor a measurement collected, the Phase III 

experiment suggested the importance of being able to easily adjust detection modes 

between personnel/weapon and vehicle/personnel models. This capability would allow 

SOF teams to collect the desirable information based on the operational environment while 

avoiding unnecessary detections and categorizations. For example, vehicle detection would 

have proved useless in the vignette in Chapter II due to the rugged terrain and inaccessible 

routes and the personnel/weapon detection model would have been most useful. This 

requirement will likely change based on the scenario in which SOF teams find themselves. 

The ability to tailor the specific detection model to the environment will reduce 

unnecessary information overload on SOF teams and allow them to collect only the needed 

information. 

Another factor that deserves future attention is the ability to adjust the sensitivity 

of SPOTR based on the tactical environment. This consideration was beyond our scope; 

however, we were able to adjust the detection sensitivity during the Phase I experiment to 

reduce the number of false positives or false negatives. Depending on the operational 

environment, SOF teams may prefer to select a setting that makes only correct detections 

but may miss some detections or makes detections at every available opportunity and 

results in some inaccurate detections or is somewhere in the middle. This would enable the 

operator to tailor the number of detections received along with the accuracy requirement 

and control the cognitive burden of the system. 
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3. Slant Range 

SPOTR did not meet the slant range distance requirements of RPUAS or SATLAS 

and should be the focus of future experiments or software adjustments. The current RPUAS 

and SATLAS requirements call for a system capable of detecting a weapon at 200 meters, 

personnel at 300 meters, and a vehicle at 400 meters during the day. Our simulated and live 

experiments incorporated a camera with resolution equivalent to a wide-angle GoPro Hero 

4. Wide-angle cameras perform well to scan large areas; however, the lack of a narrow-

angle camera with zoom capabilities required the sUAS to get within extremely close 

proximity to the entities to enable detection and categorization. However, this does not 

mitigate the inadequate slant range detection capabilities. In an operational setting, placing 

a platform within 60 meters of a vehicle, 40 meters of a person, or 15 meters from a weapon 

incur unacceptable risk to forces and would alert the targets that they are being observed. 

However, we assess that the hardware and software solutions available to improve 

the slant range distance of detection for SPOTR also introduce technical implications worth 

noting. Improved camera systems could increase the payload weight of the sUAS which 

may impact the flight mechanics of the sUAS and the battery load. An increased battery 

load will deplete batteries quicker and could require solar panels, hand cranks, or 

generators to recharge the batteries. Adding super-resolution algorithms could increase the 

processing load of the microprocessor and limit the processing power available for SPOTR. 

These technical implications warrant further research into if and to what degree they may 

impact the current sUAS requirements and potentially reconsideration of the SATLAS 

Pillar 1. 

There are potential operational implications that could affect SOF teams. Increasing 

battery load could decrease sUAS loiter time and reduce ISR coverage time for SOF teams. 

SOF teams could then be required to carry additional batteries to account for reduced loiter 

times which would increase their truckload requirement. Better resolution often requires 

increasingly narrow fields of view and zoom capabilities. While this improves detection 

accuracy and range, it could limit the team’s overall situational awareness. Additionally, 

larger camera payloads may increase the overall size of the sUAS and impact the ability of 

SOF team members to easily transport the system in a rucksack.  
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V. CONCLUSION 

The purpose of this research was to manage the development and integration of 

SPOTR object recognition software into a sUAS and evaluate its performance. Our 

objective was to advance the SATLAS project Pillar 2, integrating object recognition 

capability into the sUAS with a focus on technical performance and operational 

implications. We used simulations and field experimentation to measure the capabilities of 

SPOTR software, determine whether it meets SATLAS and RPUAS requirements, and 

identify capability shortfalls to the developer. 

We collaborated with an industry leading software company to conduct a series of 

experiments to measure the technical requirements for accuracy, number of entities capable 

of detection, and range of detection. Although we experienced challenges with integration 

timelines and testing constraints, we were able to use a simulated environment and a 

surrogate platform that proved sufficient in answering our research questions. We assess 

that at its current stage of development, the SPOTR software can achieve the SATLAS 

technical requirements for accuracy and for the quantity of entities detected. SPOTR does 

not currently achieve the technical requirements for slant range distance of detection for 

SATLAS. 

We assess that, while additional software design and integration remain, SPOTR 

has the potential to significantly improve situational awareness for SOF teams. We 

advanced Pillar 2 of the SATLAS project by employing a sUAS that is being used by U.S. 

forces. The accuracy and number of entities SPOTR can detect present opportunities to 

increase situational awareness and survivability of deployed SOF teams. Also, we 

identified the slant range distance shortfall and methods for improvement that subsequent 

student teams can improve upon to further the overall objective of SATLAS. Overall, we 

provided a theory analysis and method that helps to evident SATLAS-type systems. 

A. SUMMARY 

Our conclusions are organized by technical findings, operational requirements, and 

integration process. 



76 

1. Technical Implications 

We assess that SPOTR can detect at over 90% accuracy and categorize entities in 

a simulated environment and temperate field environment while operating at the optimal 

slant range distance of 20 meters. We found that SPOTR was able to detect up to 13 entities 

and categorize eight when operating with limited processing power equivalent to that 

which is aboard the test drone. We also discovered that within the confines of our 

experiments and with the available camera, SPOTR was only able to detect entities out to 

approximately 40–45 meters slant range distance. Currently, SPOTR meets the technical 

requirements of SATLAS with respect to the accuracy and number of entities detected; 

however, it does not meet these requirements at the required range. There are hardware and 

software options to improve this capability, but they may introduce implications for the 

platform.  

SPOTR’s performance is dependent on pixel size and processing power to ensure 

accurate detection. Integrating a more capable and narrow view camera payload may be an 

approach to improve detection range yet this may increase the weight and battery load. 

Additionally, super-resolution algorithms offer another avenue to improve detection range, 

but this may require additional processing power and limit that available to SPOTR.  

2. Operational Implications 

The demand for SOF teams to employ small, organic sUAS in future operational 

environments will likely increase in the future. As risk to force and risk to mission factors 

increase in these scenarios, object recognition-enabled sUAS can be one tool to increase 

situational awareness and mitigate risk. We have assessed that accurate object recognition 

software maybe capable of simultaneously detecting the required number of entities aboard 

sUAS within the context of our experiment.  

The current inability of SPOTR to achieve the range of detection required by 

SATLAS has important operational implications. In order for SPOTR to be useful to an 

SFOD-A, its detection range must increase. Increased payload weight can decrease loiter 

time and require SOF teams to carry additional batteries to compensate while narrow field 

of view cameras can reduce overall situational awareness.  
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By defining the SATLAS technical requirements and evaluating the accuracy and 

number of entities capable of being detected, our study advances the SATLAS project. This 

research serves as an additional step towards integrating object recognition and sUAS that 

can improve the situational awareness and survivability of SOF teams. Our operational 

requirements are based on our operational experience and informed by Army requirements 

and MDO doctrine. 

3. Integration Process 

While managing SPOTR integration, we simultaneously tested SPOTR capabilities 

for further SATLAS research. We were unable to complete Pillar 2 analysis due to the 

complex nature of integrating systems from two different commercial industries. To 

mitigate the impact of delayed development, we employed simulations to measure object 

recognition performance. We propose that SPOTR performance in the simulated 

environment was comparable to real-world performance when camera settings were 

adjusted accordingly. This should provide an avenue for future SPOTR testing without 

being dependent on resolving commercial industry requirements to collaborate between 

competitors. Since the SATLAS prototype design currently in development incorporates a 

more capable camera than the Nibbler, adjusting the camera test specifications will enable 

future studies to accurately measure performance. The ability to integrate NPS student 

projects and commercial industry to develop solutions to real-world problems does present 

significant opportunities for SATLAS to achieve our primary objective. 

B. LIMITATIONS 

This thesis was limited in several ways. We intentionally limited its scope to Pillar 

2 of the SATLAS project while leaving Pillars 3 and 4 for future studies. An 18-month 

academic research cycle and prototype development delays did not allow us to test our 

intended prototype. Instead, we relied on simulations and a surrogate platform to examine 

the SPOTR software. The reader should keep these limitations in mind when considering 

our conclusions and recommendations. 
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C. FUTURE WORK 

This section provides recommendations for future work to develop an organic, 

object recognition-enabled sUAS for SOF teams. Our study focused on SPOTR’s detection 

and categorization performance in a simulated environment and onboard a surrogate 

platform. We recommend that future work focus on SPOTR’s capability onboard the 

SATLAS Altavian M440. Given the dependence of object recognition software on the 

available camera, we expect the M440s to perform better than the Nibbler.  

Future work that is immediately pursuable is adjusting the simulation camera 

settings to replicate the more capable camera onboard the M440. We believe this would 

facilitate measuring the comparable accuracy and range of the desired prototype. Future 

efforts will rely on continued management of the integration onto the M440 in 

collaboration with AeroVironment. Employing the simulation as a testing environment will 

allow initial measurements to be gathered while integration efforts continue. 

Additionally, we recommend that future studies examine the use of super resolution 

algorithms as a software technique to increase detection range. We found detection range 

to be the only shortcoming of the SPOTR software. Employing a more capable camera will 

undoubtedly increase detection range but it still may not meet the specifications required 

for SOF teams.  

Finally, we recommend that planning begins to integrate Pillars 3 and 4 into testing. 

Autonodyne is a California-based company that has begun development on a sUAS 

common control station that integrates several autonomous features. Given that the overall 

goal of SATLAS is to integrate all four pillars into one complete system, Autonodyne may 

offer opportunities for collaboration on the final two pillars. 
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