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ABSTRACT 

 The success of reinforcement learning (RL), as shown with video games such as 

StarCraft and DOTA 2 achieving above-human performance levels, begs questions about 

the future role of the technology in military constructive simulations. The objective of 

this study was to use  convolutional neural networks (CNN) to develop artificial 

intelligence (AI) agents capable of learning optimal behaviors in simple scenarios 

featuring multiple unit and terrain types. This thesis sought to incorporate a multi-agent 

training regimen that could be employed in the domain of military constructive 

simulations. Eight different scenarios, all with varying levels of complexity, were used to 

train agents capable of exhibiting multiple types of combat behaviors. Overall, the results 

demonstrate that the AI agents can learn robust tactical behaviors required to achieve 

optimal or near-optimal performance in each scenario. The findings additionally indicate 

that a better understanding of multi-agent training was attained. Ultimately, CNN 

combined with RL techniques prove to be an efficient and viable method to train 

intelligent agents in military constructive simulations, and their application can 

potentially save human resources in the execution of live exercises and missions. It is 

recommended that future work should investigate how to best incorporate similar 

deep-RL methods into an existing military program of record constructive simulation. 
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I. INTRODUCTION 

A. COMBAT MODELING AND WARFARE 

The desire to correctly anticipate an opponent’s strategic or tactical behavior in war 

is as old as humanity’s ability to fight these wars [1]. In ancient China, games like Wei Hei 

and Go were initially used as a method to strengthen military and political leaders’ strategic 

thinking abilities. Later the Romans utilized sandboxes to discuss own and enemy’s 

possible moves before a campaign or a battle. However, it was not before the Prussians 

with their Kriegsspiel (War Game) in the early 19th century that games with a strict set of 

rules became utilized to predict possible outcomes of military engagements. While these 

wargames became increasingly popular over the next decades in many armed forces around 

the world, a limited capacity to conduct necessary calculations always restricted the level 

of complexity these board-based wargames were able to achieve. Additionally, the physical 

limitations of board-games restricted the designers to simplified behaviors and game 

elements rather than striving for realism. However, improved computing power and user-

friendly graphical interfaces enabled designers in the late 20th century to model wargames 

in a higher complexity regarding rules and the number of components in the games. 

Furthermore, computers’ utilization allowed the implementation of computer-based 

adversaries to play successfully against a human player based on a hard-coded rule-based 

AI-software.  

Today, computer-based wargames, also referred to as constructive simulations [2], 

have become a useful tool across the Department of Defense (DOD). They allow military 

leaders to further learn and develop their operational procedures in areas that are often 

deemed too costly or dangerous to rehearse regularly. Leaders are provided the ability to 

employ their forces against multiple red force designs before any live execution, yielding 

them an opportunity to validate their scheme of maneuver without assuming any additional 

risk. Large unit staffs at the strategic level often resort to using constructive simulations as 

the method of training [3], where leaders can make inputs inside of a simulated 

environment, but they are not involved in determining the outcomes of scenarios [2].  
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B. SCOPE AND PROBLEM STATEMENT 

The method used to represent adversarial behaviors in computer-based wargames 

requires either direct encoding from the scenario designer through scripts or using live 

human players for all red force decision making. Both methods provide a sufficient 

resolution to represent adversarial behaviors, but each come with their disadvantages [4]. 

Directly encoding specific behaviors may be possible for low-level scenarios, but as 

scenarios are scaled upward, the number of units and possible actions become too 

challenging for a script to control and often result in unrealistic behaviors [4]. For the larger 

scenarios, using human players as the red force may provide more realistic results, but the 

additional human resources cause a logistical strain, and the overall productivity is limited 

on the knowledge and ability of the individual players. 

A possible approach to solve this problem may lie in the utilization of artificial 

neural networks. In the domain of computer gaming, this approach has lately proven to be 

quite successful. For instance, for the real-time strategy game StarCraft II, an artificial 

neural network was developed that defeated 99.8% of the players regularly participating in 

online competitions [5]. While in the domain of computer games, the utilization of artificial 

neural networks has made vast progress recently, but within the domain of military used 

wargames, research is only beginning. In recent research,  Boron [6] and Sun et al. [7]. 

have shown that artificial neural networks are suitable to solve challenges in simple 

military wargame scenarios. Based on the previous work, especially that conducted by 

Boron [6], this thesis aims to increase the complexity within the used military scenarios. 

While Boron used a simple Multi-Layer-Perceptron (MLP) neural network, this 

architecture turned out to be unsuitable when dealing with dynamical starting positions of 

own and enemy units as well as dynamic enemies’ behavior. Moreover, the used scenarios 

were limited to a maximum of five units on the battlefield [6]. In this thesis, a training 

simulation will be built to support a Convolutional Neural Network (CNN) architecture 

and include multiple units and terrain types to overcome these restrictions. Additionally, 

multi-agent training will be applied in a defined scenario to test if this approach can 

successfully be utilized in the domain of military constructive simulations.  
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C. BENEFIT AND STRUCTURE OF THESIS 

Due to the topic selection and aforementioned restrictions described, this thesis is 

more likely to be assigned to basic research within the field of military constructive 

simulations. A quantifiable benefit, such as savings of personnel and material, will not be 

achieved at the end of the work. Nevertheless, the work will deepen the understanding of 

the uncertainties and difficulties of utilizing neural networks and multi-agent learning to 

simulate own and enemies’ unit’s behavior. In the long run, it will contribute to saving 

human resources in the preparation and execution of exercises and missions.  

The first chapter of this thesis serves as a general introduction to the topic. The 

problem is narrowed down, and the research question is formulated. In the second chapter, 

underlying concepts such as machine learning, reinforcement learning (RL), and neural 

networks will be explained. Additionally, it will include a general overview of artificial 

intelligence (AI) applications within the military domain, including an overview of the 

current state of research within the domain of military constructive simulations. In the third 

chapter, the used software framework will be described. In the fourth chapter, the different 

used scenarios will be explained, and the results will be laid down. Thereby, the discussion 

of the results for each experiment will be included. In the fifth chapter, a general conclusion 

based on Chapters II and IV will be given.  
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II. CONCEPTS, EXAMPLES AND CURRENT RESEARCH 

In the last chapter, the goal, scope, and structure of this thesis was presented. This 

chapter aims to explain the theoretical background used for this work. In the first part, basic 

concepts will be explained. After that, an overview of the current state of research in the 

field of neural networks-based AI within the game industry and military applications are 

given.  

A. CONCEPTS 

In this sub-chapter, basic concepts such as machine learning, reinforcement 

learning, or neural network will be explained. The sub-chapter starts with an overview of 

the different kinds of simulations used within DOD. 

1. Types of Simulations 

With the exponential growth of computer technology and the improvements made 

within the field of input and output devices, simulations of all kinds have become an 

important part in preparing military forces for a battle. Simulations not only allow military 

leaders to train their forces on all operating levels, but also let them assess and improve 

current schemes of maneuver and tactics. The simulations utilized throughout the DOD can 

be categorized by the method used to represent people and the environment that they are 

interacting with. These categories include live, virtual, and constructive. 

In virtual simulations, real people operate simulated systems. A widely known form 

of such kind of simulation is an aircraft simulator. The main purpose of such simulation 

systems is to train individuals or small groups in different skills such as operating a specific 

piece of equipment, making proper decisions in prior defined situations, or communicating 

in accordance with given procedures and regulations. Live simulations, on the other hand, 

consist of actual people operating with their real equipment [2] in a real environment. Live 

simulations are used to rehearse combat drills against simulated or notional enemy in 

warlike conditions. While often effective in disseminating instant feedback to the 

individual Soldier, live simulations come with several limiting factors. To best replicate a 
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combat environment, live simulations require the participating units and equipment to 

operate at strenuous conditions for extended periods. The deterioration of the equipment 

when operated at this level requires a significant amount of maintenance, which is often 

costly and time-consuming [3]. Live simulations are often limited to the amount of 

available space that is dedicated toward training. In the United States, there are only a few 

training locations that facilitate live simulation training for units more extensive than a 

battalion. With this limitation, live simulations prohibit senior leadership’s opportunity at 

the strategic and operational level to train and exercise precise Command and Control (C2). 

To overcome this shortage, or when the training objective is to solely enhance the 

senior leaderships’ ability in conducting C2, the DOD often resorts to using constructive 

simulations as their alternative training tool. In constructive simulations, both the people 

and the environment they interact with are simulated [2]. Since constructive simulations 

are typically used on higher levels of command, units and terrain can be represented at a 

much larger scale through modeling an environment with lower fidelity. In constructive 

simulations, mathematical models and algorithms represent units, weapons, equipment, 

attrition rates, and the combat behaviors portrayed by each force operating in the 

designated environment. Commanders then observe the interactions between the two 

forces and analyze the tactics demonstrated by each force. A commander’s ability to 

interact with the constructive simulation environment can be categorized as an open form 

or a closed form [8]. A closed-form simulation requires input from the commander initially, 

but as the scenario is executed, all other decisions for each of the forces are made using 

scripted behaviors. Comparatively, in open form simulations, both forces are allowed to 

make inputs throughout the entire scenario and base their future behaviors on how the 

scenario unfolds before them. The term wargame is widely used as a synonym for military 

constructive simulations.  

2. Machine Learning and Deep Reinforcement Learning 

Machine learning (ML) is a subdivision of AI that uses computer algorithms to train 

an agent that uses its past experiences to improve its performance [9] rather than explicit 

programming to improve its performance. Based on the method that the learning algorithm is 
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provided information or feedback, machine learning can be typically broken down into three 

categories: supervised learning, unsupervised learning, and reinforcement learning [10].  

In supervised learning, an agent is presented with a data set where inputs are always 

associated with an output that is known to be correct [10]. The agent uses that information 

to learn and create a function with rules to always associate those inputs with those outputs. 

This method can also be explained as the teacher method. For instance, imagine students 

in elementary school are learning how to identify different types of animals correctly. A 

teacher might start by showing the students several pictures that explicitly state that the 

animal in the image is a dog. The students will then associate common regularities found 

in each picture, such as four legs, tail, pointy nose, and fur, to be that of a dog. The teacher 

will then test the students by showing them new images that they have never seen before, 

where they will be expected to identify all images that contain a dog correctly. If the 

students can correctly identify all of the images with dogs, learning can be deemed 

sufficient.  

Unsupervised learning on the other hand is substantially different. For unsupervised 

learning, the agent looks to associate inputs with previously undetected patterns, even 

though no known information or labels are provided [10]. Expanding on the previous 

analogy, picture again students in elementary school, but this time, they learn how to 

associate animals with each other, but they are not learning what the animals are. The 

students are once again provided with pictures of animals, except this time, they do not 

have anything labeling the animal’s identity. The students are then told to look for 

commonalities between the images and separate them into different piles however they saw 

fit. If the students could separate the images into separate piles containing the same type of 

animal, then training was practical. The students may not know that the picture of a dog is 

actually a dog, but they could find commonalities that related all images of dogs together. 

The third category of machine learning, reinforcement learning, is training an agent 

to learn specific behaviors through the process of interactions that are either returned with 

rewards, punishments [10], or nothing. With no prior experiences with the environment, 

the agent uses trial and error to find the specific sequence of actions that results in the 

highest rewards. Picture a dog learning how to sit for the first time. The owner uses treats 
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as its reward system and will provide one to the dog any time it reacts promptly to the 

command to sit. The first time the dog receives the treat, it is not specifically sure of its 

actions that led to the treat, so it starts to look back on all previous actions. During that 

time, the dog could have laid down, barked, jumped, or ran, so it is nearly impossible for 

the dog to initially connect a specific action, or sequence of actions, to be the direct cause 

of the treat. Through its training, the dog continues to perform many actions that result in 

a treat, several being received a lot sooner than others. Eventually, the dog can piece 

together that sitting directly after the owner’s command, will lead to the maximum number 

of treats. By continuously reinforcing the dog’s behaviors with treats, the owner effectively 

achieved the desired state consisting of a trained dog that sits on command.   

To further expand on RL, the general idea is that an agent decides to take a specific 

action 𝑎𝑎 based on the state of the environment he is embedded in and a specific function, 

named the policy function, 𝜋𝜋. This policy function is a tuple, containing of the state of the 

environment (s), the set of all actions the agent can conduct in a specific state, the 

probability of the actions to change the environment from its current state to a target state 

(s’), and the reward when taking a specific action in a given state. Whenever the agent has 

taken an action, 𝑎𝑎𝑡𝑡 he compares the state before and after the action and adjusts his policy 

function 𝜋𝜋 in a way, that his total reward, 𝑅𝑅𝑡𝑡 is maximized (see Figure 1). Over the last few 

decades, a broad range of algorithms were formulated to implement the general idea of RL. 

The different algorithms can be divided into classes that differ in terms of the general 

procedure that is applied. Two important classes are the value-based approach and the 

policy-gradient approach. Within the value-based class of algorithms, the purpose is to 

optimize the total discounted reward by utilizing the value function. One of the more simple 

and most popular algorithms of this class is the Q-learning algorithm. Within the class of 

the policy-gradient algorithms, an “expected” reward is optimized by finding a good 

policy. Thereby the policy is described by a set of parameters, for instance the coefficients 

of a complex polynomial function [11].  
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Figure 1. RL Structure. Source: [12]. 

A relatively new approach that has become widely used in the development of an 

RL application is the Proximal Policy Optimization (PPO). PPO is a reinforcement learning 

algorithm that uses a Policy gradient approach. It was initially developed as a refinement 

of the Trust Region Policy Optimization (TRPO), but PPO thus far has shown better or at 

least the same performance as TRPO in different applications [13]. Additionally, it has 

better performance figures than several other popular reinforcement learning algorithms, 

including the vanilla policy gradient (VPG) [14]. As with TRPO, the general idea of PPO 

is to improve a policy by taking large steps along the gradient of the policy function without 

causing performance collapse, which is the state at which the optimization algorithm does 

not converge anymore but diverges or becomes unstable. Unlike TRPO and many other 

policy-gradient algorithms, it uses a first-order instead of a second-order optimization 

method, thus implementing this algorithm easier [15]. 

While RL focuses on choosing the right action to increase a total discounted reward 

through trial and error, deep learning concentrates on the abstraction of higher-level 

features from less abstract representation observed in lower levels to include raw data. 

Several possible architectures to implement deep learning have been described in the 

literature, including Deep Neural Networks, Recurrent Neural Networks, or Convolutional 

Neural Networks [16]. Although there is a wide area of possible deep learning applications, 

including speech recognition, autonomous vehicles, or machine translation, it has lately 

drawn increasing attention when combined with RL to hopefully counteract ones of its 
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weaknesses [5],[17]. RL has been used in a wide variety of areas in recent years [18], but 

it still comes to its limits when dealing with high-dimensional, often continuous state 

spaces. In this case, neural networks’ utilization to deal with high-dimensional sensory 

inputs offers an applicable method to mitigate RL weaknesses [11]. This combination of 

RL and deep learning is widely referred to as deep RL. 

3. Neural Networks 

Although the idea of self-learning algorithms based on neural networks was already 

discussed in the mid-1940s, it went in and out of fashion several times in the following 

decades [19]. Unlike other approaches, the idea never found its specific niche of application 

at that time, although they are intensively used today. There were several reasons to blame. 

The first is that there has been a huge improvement in the capability of the discovered and 

described algorithms. While some older algorithms are still powerful within their specific 

domain, newer algorithms tend to be more flexible and more capable of solving different 

types of problems [20]. This leads into the second reason. The changing culture within the 

IT-domain, away from proprietary software toward open-source libraries and frameworks, 

makes even cutting-edge software and algorithms available to a broad range of developers 

and users. A vast amount of documentation makes it possible that even developers and 

organizations with a limited specialized expertise in that technology use it to develop 

applicable and useful tools [20].   

While these two reasons are of a more general nature and can be applied to most 

other IT subject areas, the following explanations stand out because of their special 

significance for the domain of deep RL. Due to the basic concept of deep RL, massive 

amounts of data are required during the training phase. With this mass of data becoming 

available over the past few years, this technique’s application turned much more feasible 

[20]. Besides, even though the training data is generally produced by the RL- mechanics 

itself, there was still a lasting constraint that has disappeared within the last decade. 

Possessing this massive amount of data through necessary calculations requires enormous 

amounts of computational power. Through the exponential growth of technology in recent 
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years, the required computational power has become available, and it is much more 

practical to implement deep RL, even with commodity hardware [20].          

To fully understand how to implement the mentioned deep RL process, the basics 

of neural networks must be understood. In principle, a neural network is a data structure 

which follows the architecture of a biological brain. In a mathematical context, a neural 

network is a function that can map an n-dimensional continuous input onto (generally lower 

dimensional) output. The entirety of this process revolves around connecting a specified 

number of neurons through synapses. Each neuron belongs to a specific layer, either the 

input layer, the output layer, or one out of one or many hidden layers. Each of these neurons 

are fully or partially connected with each neuron on either side of their own layer. The 

synapses making the connections between the layers each have their own specific weights. 

In addition to the weight value of the synapses, each neuron has a specific value, referred 

to as a bias, that is used in combination with the inputs to calculate, the degree to which 

the specific set of signals from the previous layer will cause the neuron to get activated 

[21]. This calculation is also known as the activation function. Refer to Figure 2 to see the 

flow between the layers.  

 
Figure 2. General Structure of a Neural Network. Source: [22]. 

Several different network structures for different applications and methods of 

training have been developed. The simplest form that follows the structure described above 
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includes an input, an output, and one or more hidden layers is known as a multilayer 

perceptron network (MLP). Learning usually works by backpropagation, meaning that 

after each data point of a training set is processed, the weights and biases are adjusted based 

on a calculated error. As soon as one data point is fully processed, the next data point of a 

set is sent through the neural network. Another general architecture of neural networks is 

recurrent neural networks. Rather than sending the data through the neural network once, 

recurrent neural networks process the achieved outputs back into the network as another 

input into the network [23].  

While each of the neural network architectures mentioned above has its own field 

of application, they are unsuitable for classification of complex images. In their structure, 

traditional neural networks use one perceptron for each input that is being processed. When 

processing images, one pixel is equal to one input, and that is multiplied by however many 

pixel layers are in the image. When dealing with a basic image consisting of red, green, 

and blue pixel layers, the neurons required quickly start to add up and become 

unmanageable for the neural network. For example, an image with a dimension of 28x28 

simple black-white pixels would need an input layer of 748 neurons if using an MLP. 

Assuming there are two hidden layers, each with 16 neurons and 10 neurons in the output 

layer, that sums up to 13,002 weight and bias values existent within the neural net. A 

picture of 200x200 pixels with 3 color channels would need 120,000 neurons on the input 

layer alone. A structure of this size can easily cause overfitting and result in poor training 

[24]. Additionally, when the images are processed through traditional neural networks, 

they are flattened, and all spatial variance information is lost [24]. Due to the lost spatial 

variance information, the neural network will not be able to identify key aspects of the 

image if they are in different locations or differ slightly.  

4. CNN’s and Multi-Agent Learning 

A separate neural network architecture, Convolutional Neural Network (CNN), has 

recently shown success in overcoming the shortfalls that traditional neural networks have 

encountered when dealing with image classification. Unlike traditional neural networks, 

where a single vector is processed through the input layer and is then transformed through 
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different layers of neurons into a vector in the output layer, a CNN arranges its neurons in 

a three-dimensional structure (inputs or color channels, height, width), and uses 

convolutional layers to identify key features or patterns in each image [25]. Multiple 

convolutional layers can be used to together to better classify and identify key features in 

images. The initial convolutional layers can typically identify shapes such as edges, 

corners, squares, and circles in the initial layers, but as the neural network goes deeper, the 

later layers can detect more specific objects, such as facial features, or classify animals (see 

Figure 3). 

 
Figure 3. Comparison of MLP and CNN. Source: [25]. 

The basis of a CNN revolves around its use of convolutional layers as its hidden 

layers. In each of the convolutional layers, there is a filter, or otherwise known as a kernel, 

used to scan the image and identify key patterns throughout the image [25]. A filter is 

simply a matrix of numbers that are typically randomly initialized. The size of the filter 

can be whatever 2-dimensional shape designated by the user, but it is typically much 

smaller than the initial input. Additional parameters that the user can specify are the number 

of filters used, padding of zeros placed around the border of the input to control the output’s 

spatial size, and stride, which is the rate at which the kernel will slide over the image. When 

receiving an input (image height, image width, number of input channels), the filter will 

slide over the input from the top left to the bottom right and will calculate the dot product 

between the filter and each set of pixels it slides over. After the full image is scanned, the 

output is now a 2-dimensional activation map. The convolutional layer is then usually 

immediately followed by a rectified linear activation function (ReLU), defined in Equation 

(1), introducing non-linearity into the activation map [24].  
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Furthermore, it is common to insert a pooling layer that reduces the activation 

map’s spatial size and the overall amount of computation in the neural networks. The most 

common approach to a pooling layer is using a 2x2 filter with a stride of two, that uses a 

max operation function over each set of values in the 2-dimensional activation map. This 

pooling technique can reduce the complexity of a 4x4 activation map by downsizing it to 

a 2x2 activation map. The last type of hidden layer in a CNN is a fully connected layer 

used to flatten the 3-dimensional activation map (see Figure 4). A single fully connected 

layer is typically placed after the last pooling layer to map the input layer to the output 

layer [25]. 

 
Figure 4. Fully Connected CNN, Source [26]. 

The use of CNNs has the ability to extend much further than basic image 

classification. By representing the state space for an RTS game or time-step-based 

simulations in an image-like manner, CNNs can be incorporated as the neural network 

architecture for deep RL. For instance, Egorov [27] used a CNN to properly train agents to 

behave in a pursuit-evasion game. The game used images like sensory information to 

represent the agent and environment state. The used CNN consisted of 2-layers, each 

consisting of 32 inputs, 3x3 filters, a stride of 1, and a ReLU. The CNN was provided four 
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input features: Obstacle Locations, Opponent Locations, Friendly Locations, and Self 

Location, which are presented in Figure 5. The information in these features was encoded 

as zero if empty or a non-zero integer if occupied. The evading agent behaviors were 

represented through a heuristic policy that moves the agent in the direction furthest from 

the closest pursuing agent. The pursuing agent behaviors were represented by a stochastic 

Q-Value policy that utilizes deep RL during its training regimen. The pursing agent’s 

behaviors are rewarded when capturing an evading agent through occupying the same grid 

square. When multiple pursuing agents are operating in the same environment, they must 

cooperate to capture the evading agents in the shortest amount of time. During the training 

phase, one agent was trained at a time, while all the other agent’s policies were kept fixed. 

After a set number of iterations, the trained policy got distributed to all of the other 

pursuing. This process allowed the agents to continuously build on and improve their 

performance over time.   

 
Figure 5. Example of State Representation Using Four Input 

Channels. Source: [27]. 

For evaluation, Egorov [27] demonstrated the agent’s ability to generalize training 

for multiple scenarios. A pursuing agent was trained on two different environments 

simultaneously, each having a different obstacle configuration, as shown in Figure 6. Once 

training was complete, the policy was evaluated in a new environment that combined the 
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two obstacles. The agent successfully generalizes the training on the two separate instances 

and achieves similar results to an agent trained solely on the evaluation environment. 

Additionally, the agent’s ability to generalize training with multiple pursuing and evading 

agents in the same scenario was evaluated. Three policies were trained for 1 vs. 1, 2 vs. 2, 

and 3 vs. 3 scenarios. Each policy was evaluated on all three scenarios. For the 1 vs. 1 

scenario, there was no need for cooperation between the agents, so all three policies could 

achieve optimal performance. When increasing the complexity in the 2 vs. 2 and 3 vs. 3 

scenarios, both policies had the best performance on their respective scenarios, but both 

still outperformed the 1 vs 1 policy [27].  

 
Figure 6. Training and Evaluation Environment in a Pursuit-Evasion 

Game. Source: [27]. 

In general, an agent trained by reinforcement-learning techniques is limited by the 

complexity of the used environment itself. This deficiency can be addressed with a multi-

agent-learning approach, where the agents are learning off of each other’s behaviors rather 

than pre-written scripts. Multi-agent learning approaches show two valuable properties. 

First, it is possible to train agents that can show highly complex behaviors even though the 

environment in which they operate is based on a limited number of simple rules. An 

example of this is DeepMind’s AlphaGo [28], where Go’s environment is limited heavily 

through the rules of the game. The complexity needed to train a highly performant agent is 

introduced into that environment using a second agent as the opponent. The other valuable 

property is that through multi-agent RL, the agent will be trained in a variable environment 
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according to its difficulty. As its performance increases, the agent will be forces to solve 

more complex as the skill level of its opponent will also increase. Through continuously 

matching opponents with comparable skills levels in multi-agent RL [29], the agents will 

continue to exploit its opponent’s vulnerabilities and successfully perform more complex 

task.  

In many recent papers, multi-agent reinforcement learning is separated into two 

phases, the exploration curriculum and a competitive phase [29]. During the exploration 

curriculum, the agents must be initially trained from a state with no prior interactions with 

the environment. A common approach that was used by Bansal et al. [29]. involves the 

agent learning all of its information about the environment by simply interacting with its 

surroundings. There is nothing injected into the environment to guide the agent’s decisions 

other than the reward system itself. A more intricate approach that has shown success in 

quickly training an agent in recent years uses supervised learning from old replays to train 

the agent initially [5]. Here the agent will mimic the behaviors shown to have success from 

prior plays, but once it learned every technique from that replay, the agent will then explore 

unidentified methods that will hopefully produce better results. With that approach, comes 

two disadvantages. In the case of commercial games, this solution is feasible as the 

developers likely have access to the replay data from thousands of played games. For other 

instances, including military simulations, a library with this amount of data is often 

unavailable. The other disadvantage is that human players might tend to apply a not optimal 

strategy to a problem. The agents trained with that replay data might be biased toward a 

solution that they would not choose if trained without such negatively biased data.  

During the competitive phase, the already trained agents will be improved by 

playing against other trained agents. In this phase, matchmaking has a huge impact on the 

trained agent’s ability to deal with complex situations. An important aspect of this phase is 

to ensure that an already trained good AI does not “forget” bad gameplays from weaker 

opponents. A possible strategy to prevent that is to let good agents play against agents of 

weaker skill frequently [5].  
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B. STATE OF RL RESEARCH IN RTS GAMES AND MILITARY 
SIMULATIONS 

Since the emergence of AI in the 1950s, people have consistently tried to find ways 

to measure its performance against human beings. Games are a common tool that 

researchers have resorted to as their platform since it allows them to measure and compare 

performance in real-time while also often resulting in a distinct winner. Therefore, the 

following chapter will first give an overview of latest successful utilization of AI, 

particularly deep RL, within the game industry. In a second step, the current research in 

regard to deep RL within military constructive simulations is described. 

1. AI in Games 

As a game that is accepted worldwide for requiring a large amount of intelligence 

and strategic ability, chess has gained a lot of attention from researchers seeking to develop 

an AI agent that can outperform top-level players. In 1997, IBM’s computer, DeepBlue 

[30], was the first to accomplish this feat by defeating the world chess champion at the 

time, Garry Kasparov, with a final score of 3.5 to 2.5 [30]. In 2017, researchers directed 

their focus toward Go, a game much larger in complexity than chess and often deemed too 

challenging for a computer to master. DeepMind Technologies’ AlphaGO, which was 

trained  using previous human and computer play combined with deep learning techniques, 

defeated one of the world’s best Go players, Lee Sedol [28].  

Despite researchers achieving success developing AI agents capable of defeating 

the best players in games where both players are visible to all information inside a state at 

any given time [31], games that withhold private information, such as poker, had yet to be 

tackled. Developing an AI agent in environments that contain private information only 

available to that individual player increases the complexity drastically. Simple solutions 

that try to search for an optimal sequence of actions are no longer applicable since certain 

information must not be revealed to their opponents. Using an approach that reassesses its 

strategy and weighs the probability of success after each decision, Brown and Sandholm 

[31] developed an AI agent, Libratus, that triumphantly defeated four professional players 

in no-limit Texas hold’em. 
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With AlphaStar, OpenAI has recently shown the power of an approach based on 

the connection of ordinal neural networks and a long-short-term memory network (LSTM) 

in an environment, far more complex than environments solved with comparable 

approaches so far. An action space including the control of hundreds of units and their 

possible actions and a state-space build-up from different feature planes result in 1026 

possible choices at each decision point. Also, a game structure where the final success is 

dependent on an overall strategy that is played over a thousand steps made the development 

of this StarCraft II AI way more complex than solutions implemented before for 

applications like Go or the ATARI games. Nonetheless, OpenAI achieved to train an agent 

who could beat 99.8% of the players ranked on the game-platform battle.net [5]. 

One reason for the success of OpenAI in StarCraft II was their approach of using 

multi-agent training. Having available the datasets of 971,000 replays of matches between 

human players, they trained their agents in a supervised learning approach based on the 

gameplay of humans that belonged to the top 22% percent of all players. They then reduced 

the exploration problem that appears when training agents from scratch with a random 

exploration schedule. In a second step, they trained their agents against each other. To 

prevent learning cycles, they used a complex matchmaking process in which their agents 

were divided into different subgroups. Based on that subgroups, they ensured that even 

high-performing agents regularly got weaker opponents, thus not “forgetting” how to react 

when less efficient strategies are played [5].  

Defense of the Ancients 2 (DotA2) is another multiplayer real-time strategy game 

(RTS) for which OpenAI successfully developed an AI algorithm based on neural 

networks. Brought onto the market in 2013, it averaged between 500,000 and 1,000,000 

players between 2013 and 2019. With an active community of professional players and 

over $35 million in prize money during the 2019 international championship, it is one of 

the major massive online player games currently on the market [32].  

As an RTS game, it has specific properties that make RL for that game significantly 

different than more “traditional” style games like chess, Go, or even arcade games. One of 

the main differences is that RTS games have a much longer time horizon than other games. 

While a usual chess game lasts approximately 80 moves, an average DotA2 game runs over 
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45 minutes with 30 frames per second. Assuming the AI will decide on the next action 

every fourth frame, that still sums up to over 20,000 steps whenever a decision has to be 

made. Moreover, unlike in chess, Go, or arcade games, the game’s state is only partially 

observable, so an agent must successfully make assumptions about the enemy’s behavior 

based on incomplete data. The last difference revolves around the number of dimensions 

present in the game’s state. While chess, Go, and comparable games are quite limited 

according to input-variables and possible course-of-actions, in RTS games, the AI has to 

deal with a vast amount of input parameters, including different unit types, map data, 

building options, etc. Furthermore, after processing this amount of input data, the AI finally 

has to choose one action out of a vast range of different actions. In DotA2, these possible 

actions range between 8,000-80,000 in each step [32].  

The developed AI successfully competed against professional players in the 2019 

international DotA2 championship. The AI’s foundation is, similar to AlphaStar, an LSTM 

with a single layer comprising of 4096 units. The multi-dimensional inputs from a current 

game state are put into a single vector that serves as input for the LSTM. Within this LSTM, 

the one-dimensional input vector is processed, leading to an output based on which the next 

action is chosen in combination with a policy function. Unlike in AlphaStar, the AI does 

not control all units with one neural network. Similar to the nature of the game where 

different players each control their own hero, each hero is controlled by a replica of the 

described LSTM. Variations in the chosen action result from a different observation space 

the various players face due to the visibility of information and the fog of war [32].  

2. Neural Networks in Military Applications 

Based on the successful developments related to games, advanced deep RL 

approaches were applied for military research. One application that lately drew the 

attention of the publicity was an AI developed within a Defense Advanced Research 

Project Agency research project. The developed AI algorithm, called AlphaDogfight, was 

trained to successfully control a fighter plane in a dogfight against a real human pilot, 

displaying tactics that resulted in the AI winning all five runs [33].   
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Within the military constructive simulation domain, Moy and Shekh [34]  utilized 

an AlphaZero-algorithm as the agent to play the Hexagon-wargame Coral Sea, a wargame 

used by the Australian Defense Forces. It is a turn-based game that is played on a 

hexagonal-grid board with two players (see Figure 7). To win the game, a player has to 

achieve defined objectives within a specific number of rounds. A turn consists of three 

phases. In the movement phase, players move their units from one hexagon to another. It 

is possible to have more than one unit occupy the same hexagon. In the acquisition phase, 

players define which enemy units their units shall target and fire upon. In the fire phase, 

the firing order from the acquisition phase are executed. After each turn is finished, the 

Initiative Card is turned over to the other player. The player holding the Initiative Card 

goes first during the movement and acquisition phase, but second during the firing phase. 

In their research, Moy and Shekh used a simple scenario with one red and one blue unit. 

The red unit was initially posted on the top left corner of the board, the blue unit in the 

lower right (see Figure 8). The red unit had to defend its position; the blue unit had to reach 

the red starting position. When both players conduct no action, red would win this game 

by default. However, due to players’ changing order of precedence between the acquisition 

and firing phase, the blue player would always win when showing optimal behavior. 

 
Figure 7. Coral Sea Board Game. Source: [34]. 
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AlphaZero was originally developed by DeepMind and trained to play games like Go 

or chess and consists of a neural network combined with a Monte Carlo Tree Search (MCTS) 

algorithm. The algorithm starts with an “empty” neural network that is only provided the basic 

rules of the game. Using this approach for conducting training from scratch in a given scenario, 

many computational resources are often required. This requirement stems from the wide range 

of exploration needed to calculate the possible moves between the blue player’s initial position 

and destination. Moy and Shekh implemented three predefined behaviors to solve this 

problem: SafeGoalMove, GoalMove, and RandomLegal. SafeGoalMove is used to move into 

the next closest hexagon to the objective and only moves into the range of enemy fire if the 

Initiative Card is held. GoalMove is used to move to the next closest hexagon to the objective 

without when the Initiative Card is not held. A RandomLegal behavior is any move allowed 

by the game rules.  

 
Figure 8. Used Coral Sea Scenario. Source: [34]. 

During the training phase, an agent now takes one of the above strategies using a 

probability of Ph. If 1-Ph is selected, the traditional MCTS solution from the Alpha Zero-

approach is used. Using this strategy, it was possible to reduce the training time and 

computational resources down from approximately 24 hours to 15 minutes. 
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Additional research using neural networks in constructive military simulations was 

completed by Sun et al., where they used Prior Knowledge-Deep Q Network (PK-DQN) 

within a constructive hex-based military simulation [7]. In this simulation, two parties, red 

and blue, each command units to move across a battlefield and fire once their opponent is 

within range. Each player’s goal is to win a specific hex, or waypoint, marked by a flag, as 

shown in Figure 9.  

 
Figure 9. Structure of an Underlying Hex-Based Simulation. Source: 

[7]. 

Instead of using the PPO RL algorithm to train the agent, Sun et al. utilized a modified 

approach. Typically, Q-Learning takes all possible actions for a unit on the battlefield at each 

specific state and places them into a table with the expected reward for that action-state 

combination. Unfortunately, this approach in complex environments causes the table to 

increase drastically with each additional game state or possible action added to the scenario. 

To deal with that shortcoming of a traditional Q-Learning approach in complex scenarios, 

DQL was developed. Here, the Q-learning table is replaced by a neural network that is 

utilized to determine an agent’s next action given the current state [35].  
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DQL has recently proved to be a successful approach for a huge range of problems. 

However, for their simulation, Sun et al. identified a high level of randomness between the 

games and an overall slow speed of convergence. To address this problem, they introduce 

“prior knowledge” into the learning process. “Prior knowledge” is defined as a function, 

mapping a set of specific characteristic states P={p1..pn}  onto an optimal action 

a*∈{a1..an}. Whenever a given state S is an element of P, the mapped optimal action a*, is 

used as final action instead of the original estimated “deep learning” solution. For a set of 

generic states, the action an agent takes is not determined by a trained neural network 

anymore, but by a set of pre-defined rules (Figure 10). This causes the number of 

explorative moves, especially at the beginning of each game, to be reduced drastically. 

 
Figure 10. General Architecture to Include a-Priori Knowledge into 

Learning Process. Source: [7]. 

For evaluation, Sun et al. created a scenario in which an agent, trained by PK-DQN, 

plays against a rule-based opponent. The results are compared with results produced by 

utilizing an unmodified DQN for training. With the modified PK-DQN, stable results are 

achieved much faster than with an unmodified DQN. While the traditional DQN approach 

required 33 hours, a PK-DQN approach reached similar results after only 23 hours. 

Sun et al. used a hex-based grid as the foundation for the simulation where a unit is 

either located in a hex-field or not, which allowed for a basic state representation for the 

units. Another possible approach was conducted by Boron [6]. In his simulation, entities 

move over a plain battlefield consisting of featureless terrain. For the battlefield 

representation, a rectangular grid where each grid section hosts a sensor in its center is 
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used. By calculating the distance of a unit to each of the 4 closest sensors and normalizing 

this distance over the sum of the four distances, he determines a rational value indicating 

if and how much of a unit is positioned in a grid cell (see Figure 11). Boron’s question in 

his research focuses on whether an AI agent utilizing an MLP framework can be trained to 

apply the economy of mass and economy of force within simple military scenarios. In his 

results, Boron trained AI agents to show stable optimal tactical behavior within simple 2 

versus 1, 2 versus 2, and 3 versus 2 scenarios. Using different optimization algorithms, he 

found that TRPO might outperform PPO and VPG when applying deterministic combat 

models. Furthermore, trained AI agents learn to apply the tactical principle of mass or 

economy of force depending on the discount factor used during the training.  

 
Figure 11. Actual Position and State Representation of Units in a 

Rectangular Based Simulation. Source: [6]. 
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III. FRAMEWORK 

Within the last chapter, basic concepts such as machine learning, neural networks, 

and multi-agent-learning were explained. Moreover, the current state of research within the 

field of constructive simulations was presented. In this chapter, the used simulation 

software, called Atlatl, will be explained. Atlatl is an AI training environment developed 

within the MOVES Institute at the Naval Postgraduate School (NPS). In the first part of 

the chapter, the basic architecture will be explained and the reason for using different 

external software packages is given. In the second part, the capabilities and general rules 

of Atlatl will be laid down.  

A. ARCHITECTURE 

Atlatl is implemented in a client-server architecture that uses JSON for 

communication between the participating entities. The server and AI clients are both 

implemented in Python, as it offers a large variety of open-source projects, and it is popular 

throughout the deep RL research community. JavaScript is used to create the user interface 

needed for human client interactions. To illustrate the hexagonal grid and the unit icons in 

a graphical representation, Scalable Vector Graphics (SVG) [36] is incorporated. SVG is a 

specification developed by the World Wide Web Consortium that allows the two-

dimensional vector display to be easily represented in an HTML browser. SVG stores the 

exact coordinates for each part of each object represented, enabling the graphics to be easily 

scaled. The ease of scaling vectors allows SVG to have clearer graphics over a bitmap 

image. The architecture for a match including a human player versus an AI player is shown 

in Figure 12.  
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Figure 12. Architecture Human versus AI Match. 

Stable Baselines3 was selected as the RL resource for this research. The Stable 

Baselines3 library is an improved version of its original project, Stable Baselines, a fork of 

Open AI’s Baselines library that creates a common interface for many RL algorithms and 

includes simple and understandable documentation [37]. Although Stables Basslines3 can 

be used on all operating systems, it is advised for Windows users to utilize Anaconda, an 

open source Python distributor that allows for an easier installation of packages and 

required libraries [38]. Python 3.6+ and PyTorch 1.4+ installations are required before 

using Stable Baselines3. The Stable Baselines3 library currently implements twelve 

different RL algorithms, including multiple on-policy and off-policy algorithms, that can 

easily be bound into self-developed Python code [38]. As with Open AI’s Baseline, the 

Stable Baselines3 algorithms can only be applied in environments that are compliant to the 

OpenAI’s Gym library. As such, a Gym-compliant interface is implemented in Atlatl that 

serves as bridge between the original Atlatl environment and the algorithms implemented 

in Stable Baselines3. The architecture for a training setup utilizing Stable Baselines3 is 

shown in Figure 13. 
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Figure 13. Architecture Utilizing Stable Baselines3 for Training. 

The steps involved during a training run with the shown architecture replicate the 

same agent-environment loop discussed previously during the explanation of RL, in which 

an agent chooses an action in an environment and is returned with an observation and award 

[39]. When using Gym, the agent-environment loop is implemented using four values that 

consist of the observation the agent makes, the reward it receives, a Boolean representing 

the status of the environment, and diagnostic information that can be used to improve the 

environment [39].  

B. TRAINING ENVIRONMENT 

The developed training environment allows the representation of different unit 

types and various terrains in a two-player turn-based wargame. The tiles of the map are in 

hexagonal shape, and the map size is not restricted. Combat outcomes for each scenario 

are determined by a deterministic Lanchester model. In each turn, a player can order a unit 

either to move or to shoot according to the range restrictions applied to the units’ type and 

location. Each player takes successive turns, where the acting player may take one action 

for each of its units. The order in which each unit acts is based on a pre-determined fixed 

rotation, which is pre-determined when creating the order of battle for the scenario. Both 
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players aim to maximize their score, where the blue player maximizes a positive score 

value, and the red player maximizes a negative score value. A game always begins with a 

setup phase and ends if either one player has all units destroyed or the maximum number 

of turns is reached. 

Currently, there are four-unit types allowed in the player’s force structure. The unit 

types include infantry, mechanized infantry, armor, and artillery. These units are 

represented as entities at the regimental level and will abide by NATO Joint Military 

Symbology when graphically displayed in the simulation, as shown in Figure 14.  

 

Figure 14. Unit Types (Infantry, Mechanized Infantry, Armor, 
Artillery).  

When creating a simulation scenario, five separate terrain types can be selected: 

clear, water, marsh, rough, and urban. Figure 15 shows the graphical representation of the 

different terrain types in the simulation. 

 
Figure 15. Terrain Types (Clear, Water, Marsh, Rough, Urban). 
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The clear terrain type can be thought of as a flat plain that allows freedom of 

movement through its space for all unit types. Marsh terrain represents the wetlands 

typically found at the edge of rivers and lakes, full of high grass and areas that restrict 

movement. The rate and distance at which a unit can move through different terrain types 

are determined by a mobility value. This value indicates the percentage of a turn required 

for a unit to navigate through a specific terrain type. This value is also dependent on both 

the terrain and unit type, as shown in Table 1. For example, an infantry unit moving into 

clear terrain has a mobility factor of 100, indicating that the unit cannot move anywhere 

during that move since 100 percent of its time in the current turn is needed to conduct the 

moving order. Armor units have a mobility factor of 50 when moving into clear terrain 

though so they can conduct a second move into another clear terrain if desired. Artillery 

units are not able to move into marsh terrain, indicated by ‘NA’ in the table. All unit types 

cannot move into water. 

Table 1. Mobility Adjustment Based on Unit Type and Terrain. 

 
 

For each hexagon, it is determined for which side it can be utilized as setup hexagon 

during the setup phase. A blue dot indicates a possible setup hexagon for the blue player, 

a red dot a possible setup hexagon for red player. Which hexagons are finally chosen by 

the player as starting hexagon for his units is determined by the used AI respectively by 

the human player (see Figure 16). 
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Figure 16. Setup Hexagons (Blue Player, No Setup Hexagon, Red 

Player). 

When entering combat with the opposing force, all unit types have the ability to 

fire into neighboring hexagons. However, as an indirect fire weapon system, artillery units 

have a fire range of two hexagons. The rate of attrition (ATTR) for an attacked unit in 

combat is modeled by the attacker’s strength (ATCKStr), the attacker’s firepower (FP) 

based on attacker and target unit type (ATCKType/ TARType), and the defender’s bonus (DB) 

based on target unit type (TARType) and the terrain type the target unit is located in 

(TARTerrain). The value gotten based on that numbers is finally adjusted by a scaling factor 

(SF) (see Equation (2)). The scaling factor was set to 0.5 during the whole thesis research.  

 , ,Str Type Type Type TerATTR ATCK FP Atck Tar DB Tar Tar SF   = • • •     (2) 

Each unit type has a separate strength scale determined based on their target’s unit 

types. This simulation provides an advantage to armor by giving it the most protection and 

a disadvantage to artillery with it having the least protection. Table 2 describes the entire 

scaling relationships between each unit type and shows how the firing power is determined 

based on attacker’s and defender’s unit types. While in combat, once each unit reaches a 

strength level below 50 percent, the unit is deemed combat ineffective and is removed from 

the simulation. 
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Table 2. Firing Power (FP) Based on Shooter and Target Type. 

 
 

When a non-infantry unit does occupy marsh terrain in the simulation, it receives a 

defensive disadvantage as it would be more exposed and have limited areas to navigate. 

This is modelled by a defender’s bonus (DB) of 2 (see Table 3). When an infantry unit 

occupies a rough or urban terrain hexagon however, it is considered that their foot mobile 

troops will have more objects to use as cover. Thus, they receive 50 percent less damage 

in the simulation.  

Table 3. Defender Bonus (DB) Based on Unit Type and Terrain Type. 

 

 

The score of a game is calculated based on the losses each side suffered. For each 

point of attrition, the blue player inflicts onto red units, +1 is added to the game score. For 

each attrition inflicted onto the blue units, -2 is added to the game score. Control over city 

hexes generate an additional change of the score value, positive if blue owns a city and 

negative if red owns a city.  
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C. STATE REPRESENTATION 

As mentioned in Chapter III.A, the utilization of Stable Baselines3 presupposes a 

OpenAI Gym conform RL environment. With that, it is necessary to transform the native 

Atlatl state and action space into a representation than can be used for RL. To deal with 

some disadvantages in regard to the coordination system in hexagonal based simulations 

compared to a rectangular grid system, Atlatl uses a double coordinate system [40]. In a 

usual offset hexagonal coordinate system, the hexagon located at the top left of the grid 

would be labeled as (0,0), the hexagon adjacent to the right of it as (1,0), and the hexagon 

in the third column as (2,0). In the double coordinate system, coordinates in the y-axis 

direction will be incremented by 2. For instance, the hexagon perpendicular below the 

(0,0)-hexagon is the (0,2)-hexagon, and the (0,4)-hexagon follows that. With that pattern, 

directions of movement can be directly translated into a new hexagon coordinate. A 

movement to the top-left always comes with a decrease of 1 on both axes. In a coordinate 

system without double coordinates, the change on the y-axis would be dependent on 

whether the x-value is odd or even (see Figure 17).  

 
Figure 17. Hexagonal Board without/with Double Coordinates. 

Source: [40]. 
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The state space provides by the Atlatl framework based on the double coordinate 

system will be transformed into a Gym conform observation space by the implemented 

Gym interface. By default, the neural network is provided three inputs to represent the state 

space in the simulation. These inputs include the location of the moving units, the locations 

and strengths of all blue force units, and the locations and strengths of all red units. A fourth 

input was added during the research to include a terrain’s locations and identity. The 

different inputs are represented as arrays. For its representation, a 1.0 or strength value is 

used to represent if a hexagonal tile is occupied, and a 0.0 is used to represent the space as 

empty. Due to the formatting when using a 2-dimesional array, the x-axis and y-axis are 

flipped for the inputs. To ensure a fixed convolutional kernel can see the same set of 

neighbors regardless of where it is centered when using 2-dimensional arrays, an additional 

row is added, and objects located in odd columns are represented one row lower than 

objects in even columns (see Figure 18). 

 

Figure 18. Stretching of the Y-Axis. 
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Figure 19 demonstrates the full observation space given to the neural network for 

the shown situation in the simulation. The top array holds the information which unit is the 

acting unit. The unit in the top left on hexagon (2,2) is the first unit in the turn. This is 

represented by a 1.0 in the third row, third column of the array. The second input is the 

locations and strengths of all blue units. Since both units still have full strength, there is a 

1.0 in the corresponding positions of the second array. As for the blue units, the third array 

holds the information about location and strength of all red units. After each unit 

movement, the features are updated to correctly reflect. 

 
Figure 19. Complete State Space Representation with Three Inputs 

(Mover, Blue Units, Red Units). 

Based on the given inputs, the neural network decides on an action in accordance with 

the rules of the wargame. The used action space is discrete numbers ranging from 0 to 18, 

representing the 19 possibilities a unit can choose as its next move or fire target (see Figure 20). 
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If the neural network selects an action outside the boundaries for the acting unit, that action is 

suppressed, and the unit will receive a hold older to remain in the same hexagon for that move.  

 
Figure 20. Action Space (Green: No Action, Brown: Move/ Fire with 

Distance 1, Blue: Move/ with Distance 2). 
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IV. SCENARIOS AND RESULTS 

In the last chapters, an overview of theoretical concepts used in this thesis was 

provided. Moreover, the state of current research within the game industry as well as in the 

domain of military constructive simulations was laid down. After that, the used simulation 

framework, called Atlatl, was described. In this chapter, the scenarios investigated within 

this thesis are described. The observed AI agent’s behavior is explained, and possible 

conclusions are formulated. In total, six scenarios are investigated. In a first step, the results 

gained from the scenarios used by Boron [6], 2-versus-1, 2-versus-2 and, 3-versus-2, are 

shown. While the starting positions of the blue and red player and the red player’s behavior 

are fixed in Boron’s scenarios, the scenarios in this thesis will bring in variability during 

the blue and red players’ setup phase and in the red behavior. In a second step, the results 

gained from more complex scenarios are shown. These scenarios differ from the first three 

scenarios in complexity due to different unit types, terrain types, or multi-agent training 

approaches. 

For all scenarios except the multi-agent training, the blue player was the only player 

trained by the neural network. The number of turns played in the game was by default set 

to 20. As for scoring values the default settings of -2 and 1 are used (see Chapter III.B.). 

To account for the red force has an embedded advantage within Atlatl’s structure, changing 

the score multiplier to -2 points instead of just -1 point for each strength point caused by 

the blue force helps simulate the existent defensive superiority. For the red player, the 

following hard-coded AIs are used: 

• “passive”: A passive red AI does not move at all. Furthermore, it does not 

react when blue units enter adjacent hexagons.  

• “shootback”: A shootback red AI does not move at all. However, whenever a 

blue unit is in an adjacent hexagon, the red unit opens fire. If there is more 

than one blue unit in the adjacent fields, the target unit is selected randomly. 
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• “withdraw”: A withdraw red AI only moves when two or more blue units are 

in adjacent hexagons. If no blue unit is adjacent, the red unit does not move at 

all. If there is one blue unit adjacent to the red unit, the red unit opens fire. 

• “random move”: A random move red AI moves with a chance of 40% into a 

random direction. However, as soon as blue units are within adjacent hexes, it 

opens fire as if it were a shootback AI. 

As an optimization algorithm, PPO is known for its forgiveness when conducting 

hyperparameter initialization [41]. As the focus of this thesis is not to maximize the use of 

the neural network, but to explore the RL capabilities in constructive simulations, PPO 

seemed to be an excellent fit. The learning parameters were kept constant during all 

scenarios with a learning rate of 0.0003 and a clip range of 0.2. For the underlying neural 

network architecture, a 3-layer CNN is used (see Table 4). For the first layer, a kernel size 

of 3 by 5 was chosen to adjust for the used double coordinates, where the y-axis is stretched 

in the underlying hexagon board structure.  

Table 4. Used CNN-Architecture. 

 

The reward system used to reinforce the behavior of the agent during training 

incorporates the Atlatl score value achieved by the player at the end of each turn. However, 

this value is modified. A reward is only given to the agent if the score value during that 

turn is greater than 0. All rewards greater than 0 are then discounted based on the number 

units still alive compared to the number of units at the start of the scenario (see Equation 

(3)). The same reward structure is used for all scenarios. 

 if  > 0,   =  * number of  blue units alivescore value Reward score value
total number of  blue units

 (3) 

Layer Input Channels Output 
channels 

Kernel size Stride Padding 

1 3 32 (3,5) (1,2) 2 
2 32 64 (3,3) (1,1) 1 
3 64 64 (3,3) (1,1) 1 
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A. TWO-VERSUS-ONE 

1. Description 

The training scenario entails a two-versus-one configuration comprising two blue 

units attacking a single stationary red unit on a 7x7 terrain. The scenario is used in four 

different configurations. In the first configuration (“fixed”), all units are set up in a fixed 

absolute position on the battlefield. The shootback AI is used for the red force behavior. 

For the second configuration (“fixed formation”), the first configuration is modified so that 

the relative position of the units during the setup phase is kept constant. Still, the whole 

formation is shifted randomly over the battlefield (see Figure 21). 

 
Figure 21. Two-versus-One Configuration with Fixed Staring 

Positions (left) and Changing Position of the Whole Units’ 
Formation (middle/ right).  

In the third configuration (“random”), the units are randomly positioned on the 

allowed setup fields and the red force’s behavior are still described by the shootback AI 

(see Figure 22). For the fourth configuration (“withdraw”), the units set up positions are 

consistent with the second configuration. However, instead of a shootback AI, a withdraw 

AI is used for the red forces.  
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Figure 22. Example of Possible Setups in the Two-versus-One 

Configuration 3. 

Due to the simple configuration of the scenarios, the optimal score was manually 

calculated. In the first three configurations, the maximum score for the blue force is 

achieved when it manages to move both units next to the red unit simultaneously. In this 

case, the red force will cause 50 damage to the blue force in an initial attack, leading to a 

scoring value of -100 points. In the next turn, both blue units attack the red unit causing 75 

damage points. However, since the red unit is below the strength threshold of 50 percent, 

the unit is deemed combat ineffective and is removed from the simulation. Resulting from 

the attack, the blue force scores 100 points, leading to a final game score of 0 points and a 

remaining strength value of 150. The reward used for the training process in this scenario 

is slightly different from the default reward previously described. Instead of discounting 

the reward based on the number of remaining blue units, the discount factor is calculated 

as the quotient of the remaining blue strength divided by blue strength at the start of the 

game. The optimal reward in these three configurations is 75 (see Table 5). 
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Table 5. Two-versus-One Optimal Behavior Performance Values 

Configuration Optimal Blue 
Strength 

Optimal Total 
Discounted Reward 

Optimal Score 

fixed 150 75 0 
fixed formation 150 75 0 
random 150 75 0 
withdraw 200 100 100 

 

In the fourth configuration (“withdraw”), the values differ. This is because an 

optimal behaving blue force will force the red unit to retreat by attacking simultaneously 

with both units. As result, two situations can occur. In the first situation, the red unit retreats 

onto a hexagon where it is out of range of both blue units. In that case the blue units 

advance, and both get into contact with the red unit. In the second situation, the red unit 

retreats onto a hexagon that is in range of one blue unit. In that case, the one unit opens 

fire, causing 50 point on the score. The second unit will advance into contact with the red 

unit, forcing it to retreat again. In the next situation where the red unit is in contact with 

only one blue unit, the unit gets destroyed (see Figure 23). 

 
Figure 23. Red Forces Behavior in a Withdraw Situation 
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2. Results 

For the first configuration (“fixed”) of this scenario five blue agents are trained for 

2,000,000 training steps. After training, each agent is tested in 10 full repetitions against a 

red force using the shootback AI. To measure the agent’s training progression, the average 

achieved score and percentage of repetitions played with perfect behavior were collected 

at an increment of 100,000 training steps. Three out of the five agents started to show 

perfect behavior already after a few thousand training steps (see Figure 24). One agent 

adapted perfect behavior early in the training process but switched to imperfect behavior 

at around 600,000 training steps. Another agent quickly learned to attack with just one unit, 

but never learned to attack with both.  

 
Figure 24. Two-versus-One Fixed Starting Positions Training 

Progression. 

For the second configuration (“fixed formation”) of this scenario, five agents are 

trained for 5,000,000 training steps. As with configuration 2, each agent is tested in 10 full 

repetitions against a shootback AI. One agent achieved stable, perfect behavior for the first 

time at around 2,000,000 steps. In general, all agents improved their average achieved score 

value over time, ending up with an average score value close to 0 after 5,000,000 training 

steps (see Figure 25). However, only one agent came into a position of winning all 10 

repetitions with optimal behavior. Overall, the percentage of repetitions played with 

optimal behavior ranges between 40–100% when conducting more than 4,000,000 training 

steps. 
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Figure 25. Two-versus-One Fixed Starting Formation Training 

Progression. 

Similar to the second configuration, the agents in the third configuration 

(“random”) were trained with 5,000,000 training steps. Over the whole training process, 

none of the agents managed to show perfect behavior in all of the played ten repetitions. 

As a result, the average achieved score always stayed below the value 0 (see Figure 26). 

Based on a visual assessment of the percentage of optimal played repetitions, it seems that 

above 4,100,000 training steps, all agents arrive at a state where they win at least 20% of 

the played games with optimal behavior. However, a training process going above the used 

5,000,000 training steps might deliver more reliable data for this assessment. 

 
Figure 26. Two-versus-One Random Starting Formation Training 

Progression. 
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For the fourth configuration (“withdraw”), 10,000,000 training steps were used. 

Again, five agents were trained and evaluated in 10 repetitions against a withdraw AI at 

each increment of 1,000,000 training steps. Two agents achieved nearly optimal scores on 

average after 7,000,000 training steps and kept that performance for the remain of their 

training regimen. Two agents achieve a stable average score value of about -37.5 points, 

but optimal performance was never achieved. These agents demonstrated a behavior in 

which both units attacked in a straight line, with one blue unit directly following the other. 

The fifth agent started to improve his behavior at about 5,000,000 steps but never achieved 

am average score value comparable with the two best agents (see Figure 27).  

  
Figure 27. Two-versus-One Withdraw AI Formation Training 

Progression. 

B. TWO-VERSUS-ONE SPATIAL INVARIANCE 

1. Description 

CNNs and their convolutional layers are specifically designed to achieve spatial 

invariance, meaning the neural network is capable of identifying key features in an image 

no matter where they are located. In this scenario, an agent will be evaluated on its ability 

to achieve spatial invariance by performing the same behaviors across the entire map after 

training on a fixed two-versus-one configuration. As shown in Figure 28, the agent will be 

trained on a map where all units are set up in fixed absolute positions. Once training is 

complete, the agent will then be evaluated on a map consisting of fourteen different setup 

positions. The setup up positions will start with setup 1 in the top left where the top blue 

unit is located in hexagon (0,0) and will scan left to right, top to bottom, ending with setup 
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14 where the top blue unit is in hexagon (6,2). The relative positioning of the units during 

the setup phase will be kept constant in the stack formations, and they will all be shifted 

randomly over the battlefield. The agent must perform the same massing behavior 

described in the previous scenario for all fourteen setup configurations to achieve optimal 

performance. 

 
Figure 28. Two-versus-One Spatial Invariance Setup Configurations 

(left: training map / right: evaluation map) 

To reduce the number of values being outputted by the neural network during 

training, an additional MaxPool2D layer was added. The standard CNN structure for this 

thesis typically outputs a 9-by-8 activation map. By inserting a 9-by-8 MaxPool2D layer 

after the third convolutional layer, the final activation map is reduced to only a single 

number (see Table 6). By minimizing the neural network’s outputs, the agent’s behaviors 

should remain the same throughout the battlefield as long as the same activation map value 

is achieved. 
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Table 6. Spatial Invariance CNN-Architecture 

 

2. Results 

The neural network trained five separate agents for 2,000,000 training steps. After 

training, each agent was evaluated on its ability to demonstrate optimal performance on all 

fourteen possible setup configurations in the evaluation map. Ten complete repetitions 

were completed for each setup position and the total discounted reward was logged. The 

total discounted reward was the only performance value used for this scenario. To achieve 

optimal performance, the trained agent needs to receive a total discounted reward of 100 

points.  

All five agents’ behaviors were identical (see Table 7). Each agent  learned the 

optimal behavior on the center setup position (setup 6) in which it was trained, where both 

blue units entered hexagons adjacent to the red unit on the same turn and destroyed the red 

unit in two attacks. However, once the agents were shifted to other setup positions, their 

performances varied depending on which column they started in. 

Table 7. Two-versus-One Spatial Invariance Agent Evaluation at 2,000,000 
Training Steps 

 

 

Layer Input Channels Output 
channels 

Kernel 
size 

Stride Padding 

1 3 32 (3,5) (1,2) 2 
2 32 64 (3,3) (1,1) 1 
3 64 64 (3,3) (1,1) 1 
MaxPool2D - - (9,8) (1,1) - 
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For all setup positions in odd columns, the agents’ tactics mimicked what was 

shown on the training setup positions as shown in Figure 29.  

 
Figure 29. Two-versus-One Spatial Invariance Odd Column 

Demonstration 

When the agents were evaluated in setup positions starting in even columns though, 

only random movements were shown by the trained agent for the entirety of the repetition 

(see Figure 30). It was evident that the agents did not recognize that current state and did 

not know what behaviors needed to be performed.  

 
Figure 30. Two-versus-One Spatial Invariance Even Column 

Demonstration 
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C. TWO-VERSUS-TWO 

1. Description 

Increasing the number of units from the first scenario, this scenario is comprised of 

a two-versus-two engagement where two blue units attack two red units. The red force will 

remain stationary and solely use the shootback AI for its combat behaviors. As shown in 

Figure 31, two different configurations will be evaluated for this scenario. The first 

configuration entails both the red and blue forces having fixed starting positions that remain 

constant during each iteration. In the second configuration, the blue force’s starting 

position will vary during each repetition. Each unit has a set of six possible starting 

locations of which one is randomly chosen at the start of each repetition. However, the red 

force will continue to remain in a fixed starting position located at the center of the map. 

 
Figure 31. Two-versus-Two Setup Configurations (left: Fixed 

Positions / right: Multiple-Starting-Positions).  

For the trained agent to achieve optimal performance in this scenario, it must 

successfully learn how to conduct two coordinated attacks. The blue units must first start by 

simultaneously attacking one of the red units. Once that red unit has been destroyed, both blue 

units need to navigate to the remaining red unit and conduct another simultaneous attack. If the 

two blue units accomplish successful coordination, then the resulting blue force will have only 
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one unit remaining with either 50 or 75 heath depending on who the red units randomly decide 

to attack. The optimal behavior will remain the same no matter the configuration. 

Similar to the two-versus-one scenario, Atatl’s scoring system in combination with 

the blue agent’s discounted reward will be used to evaluate the blue agent’s performance. 

The optimal score the blue agent is seeking to achieve is either -50 or -100 points, and a 

discounted reward of either 150 or 175 points. After conducting the first simultaneous 

attack, the score will be 0 due to the trained agent having one unit at full health and one 

unit at 50 health and the red force having only one unit with full health. As both blue units 

are still alive, the trained agent will receive the full reward of 100 points for the first attack.  

During the second attack, if the red unit decides to attack the blue unit with 50 

health, that unit will be destroyed, but the other blue unit can attack using its full strength 

to inflict 50 damage on the first turn and 25 damage on the second turn. That unit’s health 

will also reduce by 25 health from the red attack. With only one blue unit alive, the reward 

will now be discounted by 50 percent, so the trained agent will only receive 50 points for 

the destruction of the red unit. The final score of this iteration will be -50, and the trained 

agent will receive a discounted reward of 150 points. If the remaining red unit decides to 

attack the blue unit with full health instead, both blue units will now be left with 50 health. 

During the trained agent’s initial attack, it will receive the full 50 points for the damage 

inflicted as both units are still alive but will have one unit destroyed during the red unit’s 

attack. In the final turn, the final blue unit will destroy the red unit and receive a discounted 

reward of 25 points. The final score for this iteration will be -75 points, with a total 

discounted reward of 175 points. There is an even distribution between the two possibilities 

this scenario can unfold.  

Table 8. Two-versus-Two Scenario Optimal Behavior Performance Values. 

Configuration Optimal Blue 
Strength 

Optimal Total 
Discounted Reward 

Optimal Score 

Fixed 50/75 150/ 175 -50/ -100 
Multiple-Starting 50/75 150/175 -50/ -100 
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2. Results 

For each configuration in this scenario, five different blue agents were trained at 

2,000,000 and 3,000,000 training steps, respectively. Each agent was evaluated with 100 

repetitions at every increment of 100,000 training steps. Each repetition completes a full 

engagement between the blue and red forces, and the resulting score is recorded. The 

achieved score and discounted reward for each agent at the specific training step is shown 

in  Figure 32. The optimal values, as described in Table 8, are visualized as black lines. 

All five trained agents were able to achieve the required score and discounted 

reward needed for optimal performance by the conclusion of their training. While four out 

of the five agents reached optimal performance before 500,000 training steps, Agent 2 

required 1,800,000 training steps before learning the optimal behaviors. The slight 

differences in the input features based on which blue unit received damage during the first 

simultaneous attack caused the neural network difficulty understanding the appropriate 

tactics needed for the second attack. While all of the other agents did achieve optimal 

behaviors much earlier, there were brief instances of instability where their average score 

and discounted reward dropped below the optimal threshold. Each of the agents were able 

to make the quick corrections needed to get back on track.  

 
Figure 32. Two-versus-Two Fixed Starting Positions Training 

Progression. 

After training, all of the agents yielded an average score close to -75 and an average 

discounted reward of near 160. This score validated that no matter what blue unit was 
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initially attacked, the blue agent displayed the appropriate tactics needed to destroy the red 

force while receiving the fewest number of casualties. Figure 33 displays the resulting 

tactics for a single repetition that resulted in a resulting score of -50 and a total discounted 

reward of 150, with one blue unit remaining with 75 health. The tactics show the trained 

agent massed both units simultaneously on the left red unit, reorienting themselves after 

the first unit is destroyed, then conducted another simultaneous attack on the right red unit. 

Through understanding the importing of massing its forces, the blue force effectively 

destroyed each of the red units. 

Table 9. Two-versus-Two Fixed Starting Positions Agent Evaluation at 
2,000,000 Training Steps. 

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 
Avg. 
Discounted 
Reward 

160.3  
+/- 1.2 

159.3  
+/- 1.8 

162.0  
+/- 1.3 

163.8  
+/- 1.3 

162.6  
+/-1.3 

Avg. Score -70.5  
+/- 2.5 

-76.0  
+/- 4.1 

-75.8  
+/- 2.7 

-77.5  
+/- 2.5 

-77.5  
+/- 3.1 

Optimal 
Performance 

Yes Yes Yes Yes Yes 
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Figure 33. Two-versus-Two Fixed Starting Position Optimal 

Performance Demonstration. 

Due to the increased complexity when introducing multiple starting positions in the 

2v2-MSP-configuration, an additional 1 million training steps were awarded to each agent 

when training. However, the method for evaluating each agent remains the same. Unlike 

in the previous configuration, all five trained agents achieved the average score needed for 

optimal performance at similar times, but as expected, they required an additional 300,000 

training steps. The majority of the training progression remained stable, but each agent also 

experienced a brief portion of instability where corrections needed to be made. Overall, the 

neural networks effectively learned the optimal behaviors and retained the appropriate 

tactics throughout the training.  
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Figure 34. Two-versus-Two Multiple Starting Positions Training 

Progression. 

After 3,000,000 training steps, each trained agent achieved an optimal average 

score near -75 points, and an average discounted reward close to 160 points. While the 

starting positions may have differed, the tactics displayed remain the same as the fixed 

position configuration tactics. The results show the blue units coordinating their first attack 

where both units move into the left red unit’s range on the same turn. After the left red unit 

is destroyed, the blue units reorganize, then conduct another simultaneous attack on the 

right red unit. Figure 35 displays the results when the outcome has a blue unit with 50 

strength, a final score of -100 points, and a total discount reward of 175 points. 

Table 10. Two-versus-Two Multiple Starting Positions Agent Evaluation at 
3,000,000 Training Steps. 

  Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 
Average Score -74.5 +/- 

2.5 
-76.0 +/- 
4.5 

-78.0 +/- 
2.5 

-79.8 +/- 
3.0 

-79.8 +/- 
3.0 

Average Discounted 
Reward 

162.2 +/- 
1.3 

163.0 +/- 
1.3 

164.0 +/- 
1.3 

160.9 +/- 
1.6 

162.3 +/- 
1.4 

Optimal Performance? Yes Yes Yes Yes Yes 
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Figure 35. Two-versus-Two Multiple Starting Position Optimal 

Performance Demonstration 

D. THREE-VERSUS-TWO  

1. Description  

Further expanding on the two previous scenarios, this scenario encompasses a 

three-versus-two engagement, where three blue units attack two red units. To replicate 

Boron’s three-versus-two scenario [6] accurately where one red unit was a lower echelon 

than the other red unit, the red force in this scenario will have one red unit with 25 reduced 

strength points at the start of each iteration. The red force’s behavior will remain the same, 

where the units are stationary throughout the engagement and will utilize the shootback AI 

for its combat behaviors. The neural network will train the blue force on two different 

scenario configurations, as shown in Figure 36. The first configuration entails fixed starting 

positions for both the blue and red forces. For the second configuration, the red force will 
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start in the same location, but the blue force will be distributed throughout three separate 

regions located in the northwest, northeast, and southern portions of the map. In each 

region, each unit has a set of six possible starting locations of which one is randomly chosen 

at the start each repetition.  

 
Figure 36. Three-versus-Two Setup Configurations (left: Fixed 

Positions / right: Multiple-Starting-Positions) 

In Boron’s three-versus-two scenario [6], the agent’s performance was evaluated 

on its ability to exhibit both economy of force and massing through utilization of a discount 

factor. If a discount factor higher than 0.98 was used, the agent attacked using massing 

behaviors where all three blue units destroyed the stronger red unit simultaneously before 

moving toward the other weaker unit. If using a discount factor lower than 0.98, the agent 

looked to win the engagement as quickly as possible by having two units simultaneously 

attack the stronger red unit while the other blue unit attacked the other red unit alone. Once 

the stronger red unit was destroyed, the two other blue units would mass on the remaining 

blue unit. While this thesis aims to recreate all of Boron’s scenarios utilizing a CNN instead 

of an MLP neural network, due to the difference in how combat is modeled in Atlatl, 

economy of force will be the only combat behavior evaluated for the blue force. For 

infantry engagements in Atlatl, most cases only require two successful attacks to destroy 
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another unit. If the third blue unit were to try to participate in that engagement to show a 

massing behavior as seen in Boron’s work, the red unit will be destroyed before the it has 

an opportunity to attack.  

For this scenario, optimal performance can only be achieved if the trained agent is 

able to properly learn how to use economy force to engage both red units simultaneously. 

One blue unit must start by attacking the weaker red unit on the right, while the other two 

blue units simultaneously attack the left red unit. If successful economy of force behavior 

is shown, then the blue agent will have one unit with full strength, one unit with 75 strength, 

and one unit with 50 strength. The trained agent’s performance will be evaluated using 

Atlatl’s scoring system and their total discount reward.  

The optimal performance scores the trained blue agents need to achieve are the 

same for both configurations and was calculated through manual iterations of the scenario 

(see Table 11). When the single blue unit attacks the weaker red unit on the right, it will 

initially take 25 damage before destroying the red unit with 75 damage, causing the score 

to be 0. When the two blue units attack the red unit on the left, one blue unit will receive a 

50-damage loss before both of them destroy the red unit with 100 damage, resulting in a 

score of 0. Due to all three blue units being alive at the end of the scenario, the trained 

agent will receive the full reward of 175 points. 

Table 11. Three-versus-Two Scenario Optimal Behavior Performance Values 

Configuration Optimal Blue 
Strength 

Optimal Total 
Discounted Reward 

Optimal Score 

Fixed 225 175 0 
Multiple-Starting 225 175 0 

 

2. Results 

The neural network trained five different agents for each configuration in this 

scenario. With the increased complexity when adding an additional blue unit, additional 

training time was awarded. 3,000,000 training steps was used for the fixed starting position 

configuration, and 4,000,000 was used for the multiple starting positions configuration.  
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As shown in Figure 37, four out of the five trained agents learned the behaviors 

needed to achieve the optimal score and discounted reward for the fixed starting position 

configuration. Most of the agents learned the tactics needed to destroy the red unit with full 

health almost immediately, as depicted by the average discounted reward of 100 at 100,000 

training steps. However, it was not until approximately 2,000,000 training steps before 

most of the agents learned how to use the additional blue unit to attack the remaining red 

unit. Once the agent achieved the optimal score and discounted reward, their behavior 

remained relatively stable for the remainder of the training. For the agent that did not 

achieve optimal performance, Agent 2, proper economy of force tactics was never learned. 

Rather than splitting its forces and using all three units to attack each red unit 

simultaneously, the same two blue units destroyed the first red unit to attack the other red 

unit then, leaving one blue unit utterly unused for the entirety of the iteration. As the same 

two units were used for both attacks, the trained agent risked having the complete 

destruction of one blue units which would results in 33.3% lower discounted reward. 

 
Figure 37. Three-versus-Two Fixed Starting Positions Training 

Progression 

When evaluating the trained agents at 3,000,000 training steps, all agents besides 

Agent 2 achieve an average score close to 0 and an average discounted reward near 173 

points (see Table 12). These scores show that most agents understood the importance of 

distributing their forces to appropriately attack both red units simultaneously, as described 

previously and shown in Figure 38.  
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Table 12. Three-versus-Two Fixed Starting Positions Agent Evaluation at 
3,000,000 Training Steps. 

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 
Avg. 
Discounted 
Reward 

0.0 +/-  
0.0 

-15.5 +/- 
4.6 

-1.5 +/-  
1.1 

3.5 +/-  
2.2 

-4.8 +/-  
2.9 

Avg. Score 175.0 +/-  
0 

131.8 +/- 
3.8 

172.8 +/- 
1.3 

172.0 +/- 
1.5 

172.8 +/- 
1.3 

Optimal 
Performance 

Yes No Yes Yes Yes 

 

 
Figure 38. Three-versus-Two Fixed Starting Position Optimal 

Performance Demonstration. 

Unlike the previous configuration, all agents trained on the multiple starting 

position configuration achieved the optimal score and discount reward needed for optimal 

performance by the end of their training regimen. Surprisingly, the neural network had 

better performance when training the agents on the multiple starting position configuration 

than the stack configuration. Rather than starting in a stack formation that required a high 

level of coordination between the units during initial turns, the units could move freely 

during their initial turns. The only coordination that needed to occur between the blue units 

was for them to occupy adjacent hexagons to the red unit in the same turn. The more 

straightforward tactical approach allowed the agents to learn the optimal quicker than the 

fixed configuration. 
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The agents learned how to split their forces and coordinate a simultaneous attack 

early on during their training. As shown in Figure 39, it only took four out of five agents 

500,000 training steps to achieve the optimal performance values, vise the 2,000,000 in the 

fixed configuration. While the performance was initially better, there were some 

occurrences of instability for several starting positions where the trained agents did not 

coordinate their attack on the stronger red unit appropriately. This behavior resulted in two 

units with 50 health and one unit with 75 health, which cause the final score to be lower 

without affecting the discounted reward (see Table 13). 

 
Figure 39. Three-versus-Two Multiple Starting Positions Training. 

Progression 

Figure 40 demonstrates the optimal performance achieved by one of the trained 

agents. The units positioned in the northwest and south starting regions initially start by 

moving toward the red unit with full health, while the blue unit starting in the northeast 

region moves toward the red unit with reduced health. Simultaneously, all three blue units 

coordinate an attack where each red unit is destroyed, leaving one blue unit with full health, 

one with 75 health, and one with 50 health. 
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Table 13. Three-versus-Two Multiple Starting Positions Agent Evaluation at 
4,000,000 Training Steps. 

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 
Avg. 
Discounted 
Reward 

7.8 +/- 
2.9 

-10.5 +/- 
3.83 

-6.5 +/-  
1.8 

-2.0 +/-  
1.2 

-0.5 +/-  
0.5 

Avg. Score 173.5 +/- 
0.8 

174.8 +/- 
0.2 

173.4 +/- 
0.9 

174.8 +/- 
0.2 

174.8 +/- 
0.3 

Optimal 
Performance 

Yes No Yes Yes Yes 

 
 

 
 

Figure 40. Three-versus-Two Multiple Starting Position Optimal 
Performance Demonstration. 

E. URBAN TERRAIN 

1. Description 

The training scenario involved a two-versus-one configuration where two blue units 

attack a single stationary red unit. Expanding on previous two-versus-one configurations, 

the complexity of the training environment was increased by introducing a single urban 

terrain hexagon in the southwest portion of the map (see Figure 41). The urban terrain 

hexagon rewards a fixed bonus to a force if one of their units occupies the hexagon at the 

end of each turn. To continuously receive the urban terrain’s bonus after initial occupation, 

one unit in that force must remain in the hexagon; otherwise, no bonus will be received. 
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For this scenario, agents will be trained on three different urban terrain hexagon values (0, 

20, and 40), and the responding behaviors will be analyzed.  

 
Figure 41. Two-versus-One Urban Terrain Scenario Setup 

Configuration. 

When examining behaviors for the scenario with the urban terrain hexagon valued 

at 0 points, the optimal behavior requires the trained agent to mass its force on the red unit 

with complete disregard for the urban terrain hexagon. Similar to the previous two-versus-

one configuration, the final score will be zero, and the total discounted reward will be 100. 

For the configuration with urban terrain valued at 60 points, optimal performance is 

achieved when both blue units bypass the red unit and occupy the urban terrain using the 

shortest and quickest possible route. After initial occupation on the 11th turn, the blue force 

must continue to have one unit remain in the hexagon for the rest of the iteration, resulting 

in a final score and total discount reward of 600 points. 

For the second configuration, when the urban terrain hexagon is valued at 20 points,  

more robust behaviors are required from the trained agent to achieve optimal performance. 

Both blue units must initially start by moving toward the red unit and occupy hexagons 

adjacent to the red unit on the same turn, allowing the red unit to attack first. There are two 

possible courses of action for optimal performance, both of which depend on the blue unit 

initially attacked. If the right blue unit is attacked first, both blue units will remain in a 
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position to attack and destroy the red unit. Once it has been destroyed, the left blue unit 

needs to navigate to the urban terrain hexagon and occupy it on the 15th turn. However, if 

the left blue unit is attacked first, it will immediately start heading toward the urban terrain 

hexagon instead of participating in the attack. Due to the left blue unit being attacked first, 

the right blue unit with full strength now has the attacking advantage and can destroy the 

red unit independently. While the strength of the blue force and the score will be lower at 

the end of the iteration, the reward for occupying the urban terrain hexagon on the 13th 

turn versus the 15th outweighs the reduced combat reward. The specific values needed for 

optimal performance are outlined in Table 14. 

Table 14. Two-versus-One Urban Terrain Scenario Optimal Behavior 
Performance Values. 

Urban Terrain 
Value 

Optimal Blue 
Strength 

Optimal Red 
Strength 

Optimal Total 
Discounted Reward 

Optimal 
Score 

0 150 0 100 0 
20 (Left/ Right Attack) 125/ 150 0 220/ 260 110/ 120 

60 200 100 600 600 

 

2. Results 

Five separate agents were trained at 2,000,000 training steps against a red force 

using the shootback AI for each urban terrain hexagon value. In total, there were 15 agents 

trained for this scenario. 

By adjusting the urban terrain hexagon value, the agents successfully learned three 

district behaviors that maximize the total discounted reward received for each 

configuration. As expected, when the urban terrain value was 0 or 60 points, all agents 

could easily learn the optimal behaviors quickly, as no other behaviors resulted in a final 

discounted reward near the value of the optimal behavior. When the urban terrain was 

valued at 20 or 60 points, all five agents learned the optimal behavior in less than 100,000 

training steps and retained those behaviors for the duration of training. When evaluated 

after 2,000,000 training steps, each agent for those two urban terrain achieved the optimal 

score during each repetition (see Table 15). However, when the urban terrain was valued 
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at 20 points, only three of the five agents were able to learn the optimal behaviors. The 

other two agents got stuck in a local optimum where they completely ignored the red unit 

and went straight to occupying the urban terrain hexagon. The two blue agents never 

learned that destroying the red unit before occupying the urban terrain hexagon would 

result in their total discounted reward approximately 60-points greater. 

Table 15. Two-versus-One Urban Terrain Agent Evaluation at 2,000,000 
Training Steps. 

 Urban 
Value 

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 

Avg. Score 0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 
Avg. Disc. 
Reward 

0 100.0 +/- 
0.0 

100.0 +/- 
0.0 

100.0 +/- 
0.0 

100.0 +/- 
0.0 

100.0 +/- 
0.0 

Avg. Score 20 239.6 +/- 
2.0 

180.0 +/- 
0.0 

243.6 +/- 
2.0 

180.0 +/- 
0.0 

238.8 +/- 
2.0 

Avg. Disc. 
Reward 

20 115.1 +/- 
0.5 

80.0 +/- 0.0 114.1 +/- 
0.5 

80.0 +/- 0.0 115.3 +/- 
0.5 

Avg. Score 60 600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

Avg. Disc. 
Reward 

60 600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

600.0 +/- 
0.0 

 
 

Figure 42 demonstrates the behaviors displayed by the trained agents during their 

evaluations when the urban terrain hexagon was valued at 0 and 60 points. When valued at 

0 points, the blue agent demonstrated the same behavior previously seen in the two-versus-

one scenario. Both units coordinated their attack, so they occupy the hexagons adjacent to 

the red unit on the same turn, receive minimal casualties, then destroy the red unit on the 

following turn. As the urban terrain hexagon provides no bonus for occupation, the trained 

agent remained in place following the destruction of the red unit. When the urban terrain 

hexagon value was worth 60 points, the trained agent decided to bypass the red unit 

altogether and head straight to the urban terrain. If the trained agent decided to attack the 

red unit then occupy the urban terrain hexagon, the maximum discounted reward it could 

have received was 340 points, 160 points less than the optimal behavior. 
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Figure 42. Two-versus-One Urban Terrain Value 0 Points (top) and 60 

Points (bottom) Optimal Performance Demonstration. 

While observing each agent’s training progression when the urban terrain hexagon 

was valued at 20 points, it showed how critical the exploration in the first 200,000 training 

steps was for the agent’s success. Each agent reached its highest or close to its highest 

discounted reward value that it would receive throughout the entire training regimen early 

on in their training. Due to the structure of PPO, the agent’s exploration rate is at its highest 

during the initial training steps but then dramatically decreases as the training progresses. 

Due to this structure, the exploration rate is too low after 200,000 training steps for two of 

the agents to find another behavior outside of their local optimum, resulting in them never 

learning the optimal behaviors. However, the other three agents learned the optimal 

behavior before 200,000 training steps and retained it throughout the entire training 

regimen (see Figure 43).  
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Figure 43. Two-versus-One Urban Terrain Value 20 Training 
Progression. 

The optimal behaviors shown by Agents 1, 3, and 5 during their evaluation when 

the urban terrain hexagon is valued at 20 points is presented in Figure 44. The two 

demonstrations reveal how the trained agent’s behavior differs based on which unit is 

randomly attacked by the red unit. If the left blue unit is attacked first, the left blue unit 

immediately travels toward the urban terrain and allows the right blue unit to destroy the 

red unit on its own. The iteration ends with the left blue unit occupying the urban terrain 

hexagon with 50 health and the right blue unit left with 75 health after destroying the red 

unit. However, when the red unit attacks the right blue unit, the left blue unit must help 

with the attack otherwise, the right blue unit will be killed. Once both blue units attack and 

destroy the red unit, the left blue unit advances toward and occupies the urban terrain 

hexagon. 
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Figure 44. Two-versus-One Urban Terrain Value 20 Optimal 

Performance Demonstration (top: attack left first/ bottom: 
attack right first) 

F. CHANGING URBAN TERRAIN LOCATION 

1. Description 

After manipulating an agent’s behavior through altering the value of an urban 

terrain hexagon, this scenario will now look to observe the effect on an agent’s behaviors 

when the urban terrain hexagon is moved around the map. In this scenario, an agent will 

be trained on five separate maps that will rotate consecutively after each training iteration 

of the scenario. When the agent starts its training, it will start on the first map. After 20 

turns and that iteration is complete, the scenario will reset with the subsequent map loaded. 

This process will continue until the agent reaches its maximum training steps.  

In each map, the units are placed in the identical location. The only thing that 

changes between each map is the location of the urban terrain hexagon. As seen in Figure 

45, the five urban terrain locations include a center, northern, eastern, southern, and 

western position. The urban terrain hexagon rewards a fixed bonus of 24 points to a force 
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if one of their units occupies the hexagon at the end of each turn. As in the previous 

scenario, the unit must remain in the hexagon to continuously receive the additional bonus 

in the following turns. 

 
Figure 45. Changing Urban Terrain Location Maps (left to right: maps 

1 to 5).  

To account for the different urban terrain hexagon location in each of the maps, the 

neural network is provided an additional input that denotes the location of the urban terrain. 

Similar to the other input layers, a 1.0 is used to represent the hexagon as urban terrain and 

a 0.0 as clear terrain. As illustrated in Figure 46, the fourth array represents how the urban 

terrain location is represented as an input. Since the urban terrain is located in the (4,6) 

hexagon, there is 1.0 denoted in the 4th row, 11th column in the fourth array. 
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Figure 46. Space Representation with Four Inputs (Mover, Blue Units, 

Red Units, Terrain). 

Unlike any previous scenario where an agent only had to learn a single behavior, 

the agent now has five different behaviors to learn during its training regimen with each 

map having its own corresponding behaviors. The performance values needed to achieve 

optimal performance on each map are summarized in Table 16. Due to the randomness of 

the shootback AI causing iterations to end with different blue strength values, several maps 

will have multiple optimal performance values.  

Table 16. Changing Urban Terrain Location Optimal Performance Values. 

Map Optimal Blue 
Strength 

Optimal Red 
Strength 

Optimal Total 
Discounted Reward 

Optimal Score 

1 100/ 125 0 212.8/ 388/ 436 44/ 81.5/ 129.5 
2 150/ 125 0 436/ 484 336/ 334 
3 200 100 480 480 
4 150 0 340 240 
5 150/ 125 0 436/ 484 336/ 334 
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For Map 1, both blue units must converge on the red unit, destroy it, then have one 

blue unit occupy the urban terrain hexagon. The blue units will require three attacks on the 

red unit before destroying it due to the defensive advantage given by the urban terrain. In 

Maps 2 and 5, the behavior remains consistent with the Urban Terrain scenario when it was 

valued at 20 points. If the blue unit closest to the urban terrain hexagon is attacked first 

after they converge on the red unit, it will move into the urban terrain hexagon, leaving the 

other blue unit with full health to independently destroy the red unit. If the unit opposite to 

the urban terrain hexagon is attacked first, then both units will stay to destroy the red unit 

before one occupies the urban terrain hexagon. In Map 3, one blue unit must occupy the 

urban terrain hexagon and remain stationary for the entirety of the iteration. The other blue 

unit should do nothing, leaving the red unit completely untouched. Lastly, in Map 4, both 

blue units need to attack and destroy the red unit simultaneously, then have one blue unit 

quickly occupy the urban terrain hexagon.  

2. Results 

Five separate agents were trained for 3,000,000 training steps. After their training, 

each agent was evaluated based on their ability to achieve optimal performance on all five 

maps. Only the agent’s performance after 3,000,000 training steps was used. As a 

consequence of the multiple optimal performance values for each map, the method for 

displaying the agent’s results needed to be simplified from the previous scenarios. The 

percentage of optimal performance repetitions each agent performed during its evaluation 

was recorded. 

Given multiple maps, each with different urban terrain hexagon locations, the 

agents were able to learn the optimal behaviors for most of the configurations. Using the 

additional input feature that denotes the terrain location, the agents properly adjusted their 

behavior to receive the highest discounted reward for each location. As shown in Table 17, 

for Maps 1–4, all agents displayed optimal performance for all 100 repetitions during their 

evaluation. Map 5, however, was deemed challenging for most agents as only Agent 2 was 

able to learn the optimal behaviors. All the other agents failed to recognize the discounted 

reward benefit of destroying the red unit, and their only tactic entailed solely occupying 
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the city. Map 2 and Map 5 were the most complex configurations in the scenario as they 

required the most robust behaviors for optimal performance. Although successful for Map 

2, the agents were not able to learn the robust behaviors during the exploration phase. 

Table 17. Changing Urban Terrain Location Percentage of Optimal 
Performance Evaluation at 3,000,000 Training Steps. 

 Map 1 Map 2 Map 3 Map 4 Map 5 
Agent 1 100.0% 100.0% 100.0% 100.0% 0.0% 
Agent 2 100.0% 100.0% 100.0% 100.0% 100.0% 
Agent 3 100.0% 100.0% 100.0% 100.0% 0.0% 
Agent 4 100.0% 100.0% 100.0% 100.0% 0.0% 
Agent 5 100.0% 100.0% 100.0% 100.0% 0.0% 

 

 In Map 1, each of the agents used the simultaneous massing technique displayed in 

each of the previous scenarios, where both blue units entered into the red unit’s combat 

range during the same turn (see Figure 47). Due to the defensive advantage awarded to the 

red unit for occupying the urban terrain hexagon, the trained agent needed three attacks to 

finally destroy the red unit. Immediately following the attack, one blue unit occupied the 

urban terrain hexagon and remain stationary for the remainder of the repetition. As a result 

of the red unit’s occupation of the urban terrain hexagon for 7 or 8 turns before it is 

destroyed, the resulting score for all runs (44,  81.5, or 129.5) was lower than the total 

discounted reward (212.8, 388, or 436). 

 

 
Figure 47. Changing Urban Terrain Location Map 1 Optimal 

Performance Demonstration. 
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In Map 2, the agents identified they would receive the highest total discounted 

reward if the red unit is attacked and destroyed before occupying the urban terrain hexagon 

(see Figure 48). In their evaluation, the agent’s behaviors were slightly different depending 

on which blue unit was attacked first. As described in the scenario description, if the right 

blue unit was attacked first, it will immediately occupy the urban terrain hexagon while the 

left blue unit destroys the red unit independently. However, if the left unit is engaged first, 

it no longer has the advantage, so the blue unit must stay for the attack until the red unit is 

killed before occupying the urban terrain hexagon. Depending on the tactics displayed, the 

trained blue received a final score of  336 or 334 and a total discounted reward of 436 or 

484 for each repetition. 

 

 
 

Figure 48. Changing Urban Terrain Location Map 2 Optimal 
Performance Demonstration. 

Map 3 was the simplest of all the urban terrain hexagon configurations. Depicted 

in Figure 49, all the trained agents quickly identified they would receive the highest reward 

for solely occupying the urban terrain hexagon for the entirety of each repetition. Each 

agent earned 480 points for their final score and total discounted reward.  
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Figure 49. Changing Urban Terrain Location Map 3 Optimal 

Performance Demonstration. 

The behaviors displayed by the trained agents during the evaluation for Map 4, as 

demonstrated in Figure 50, are relatable to the behaviors seen in Map 1. The agents first 

started by converging on the red unit to destroy it. The blue units only required two attacks 

during their engagement due to the red unit no longer having the defensive advantage. Once 

destroyed, the blue takes the fastest route to occupy the urban terrain hexagon on the 13th 

turn. For all repetitions during their evaluation, each agent earned a score of 240 and a total 

discounted reward of 340.  

 
Figure 50. Changing Urban Terrain Location Map 4 Optimal 

Performance Demonstration. 

The behaviors required to achieve optimal performance in Map 5 were the same as 

in Map 2, except it needed to be the left blue unit deciding when to occupy the urban terrain 
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hexagon vise the right blue unit. Although all trained agents learned the optimal behaviors 

for Map 2, only one agent learned the optimal behaviors needed for Map 5. As shown in 

Figure 51, four agents went straight to occupying the urban terrain hexagon instead of 

initially destroying the red unit. Not learning the optimal behaviors caused the agents to 

earned a total discount reward of 384 points instead of the 436 or 484 points they could 

have earned by using the optimal behaviors. 

 

 
Figure 51. Changing Urban Terrain Location Map 5 Non-Optimal 

(top) and Optimal (bottom) Performance Demonstration. 

G. MULTI-AGENT TRAINING 

1. Description 

Unlike in the other scenarios, the purpose of the Multi-Agent Training scenario is 

to train agents for both the blue and red force that are capable of learning behaviors to 

combat each other’s tactics. The training scenario involves a two-versus-one configuration 

where two blue units attack a single red unit. To set up a battlefield where both forces have 

the ability to achieve success, additional rough and urban hexagons were added to offer 
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cover to an occupying unit. An impassable barrier with two passages was additionally built-

in to the battlefield to separate the blue setup zone from the red setup zone (see Figure 52). 

The training regimen for the scenario starts by training a blue agent against a shootback 

red AI. The expected behavior of trained blue agent is to engage the red unit by moving 

one of the blue units into the rough terrain field north of the red unit. Using the terrain’s 

defensive advantage after occupation, the train blue agent should destroy the red unit and 

be left with 187.5 strength points.  

 
Figure 52. Multi-Agent Scenario. 

Following a successful training of the blue agent, its behaviors will now be used as 

the opponent to train a red agent. For the red agent to achieve optimal performance, it must 

learn to move its unit north into the rough terrain field during its initial moves. Holding 

that position, the red unit will now have the advantage needed to destroy both blue units 

during their attack.  

For the scenario, the default reward function and network structure was used. For 

the training of the red agent, the score values were adapted in a way that a loss on the blue 

side generated a score value of 2 while a loss on the red side generated a score value of -1. 
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2. Results 

In a first attempt, a blue agent successfully learned to defeat the red force by moving 

one unit into the rough hexagon north of the red unit. However, when attempting to use the 

blue agent to train the red agent, the blue agent could no longer show any reasonable 

behaviors. Introducing a red force that could now take actions other than what was directed 

by the shootback AI created states that were now unrecognizable to the blue agent when 

fed into the neural network as inputs. This resulted in having the blue agent take random 

actions for the entirety of the red agent’s training.  

Another blue agent was trained against a red force using the random move AI in an 

attempt to correct the previous blue agent’s behavior. As described earlier, the random 

move AI allows the red force to randomly move into an adjacent hexagon 40 percent of the 

time unless a blue unit is within combat range. Following the training, the blue agent 

exhibited three different behaviors depending on the current position of the red unit. The 

blue agent either proceeded towards the city, moved onto the rough hexagon, or did not 

attack at all. As a general pattern, the blue agent moved towards the city, whenever the red 

unit was close to the lower left of the map (see Figure 53). If the red unit was in its initial 

setup position, then the blue unit would opt to destroy it first before moving into the city.   

 

Figure 53. Movement of Blue and Red Agents. 
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The trained blue agent was then used as the opponent to train three red agents for 

5,000,000 training steps each. The first agent showed a behavior where it would first move 

towards the upper right direction before turning and start moving towards the city. Since 

one of the blue agent’s behaviors was to occupy the urban terrain hexagon, the red agent 

decided to meet the blue unit there to attack the blue unit. Unfortunately, the blue agent 

was still unable to recognize an increased dynamic state from its training, so it typically 

did not shoot back against the red unit. Although the blue agent had the defensive advantage 

in the urban terrain and outnumbered the red agent, this battle was typically won by the red 

unit (see Figure 54). The other two trained red agents showed a behavior in which they 

would move to the upper right direction and position on the right rough hexagon. However, 

these two agents did not proceed with an attack on the blue unit during any of the 

repetitions. 

 

Figure 54. Battle Development of Blue Versus Red Agent. 

To confront the shortcomings of an unstable blue behavior on a map with limited 

blue and red set up hexagons, the amount of possible set up zones was expanded in the next 

step (Figure 55). Keeping the neural network structure, reward function, and random AI 

constant, another blue agent was trained for 10,000,000 training steps. The resulting blue 

agent’s behavior highly depended on the position of the red unit. The most common 

behavior when the red unit was on the eastern side of the map involved the trained blue 

agent moving both units to the southern portion of the map to occupy the urban terrain 
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hexagon. The scenario typically ended with one blue unit positioned in the urban terrain 

hexagon and one blue unit positioned in the left rough hexagon (see Figure 55). 

 
Figure 55. Standard Behavior of Blue Player in Complex Setup. 

However, when the random AI positioned the red unit adjacent to the rough 

hexagon, the blue agent attacked the red unit from the rough hexagon. After the attack of 

the red unit, the blue agent moved the then damaged unit away and replaced it with the 

other full-strength blue unit positioned in the back (see Figure 56). The trained blue agent 

would then destroy the red unit and conquer the urban hexagon. 
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Figure 56. Blue Behavior when Red Unit is Adjacent to Rough 

Hexagon. 

For occurrences when the passageway from the northern part of the map to the 

southern part was blocked, the blue agent would use its first unit to damage the red unit as 

much as possible. After the destruction of his first unit by the red unit, it would then use its 

remaining strength to destroy the red unit and conquer the city (see Figure 57). 

 
Figure 57. Blue Behavior when Red locks Passage. 

Using the newly trained blue agents as opponents, two red agents were trained for 

2,000,000 training steps. However, both agents always moved southwards no matter which 

behavior was shown by the blue agent. A reasonable explanation for this behavior could 
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not be found other than human error while setting up the code for multi-Agent Learning. 

Unfortunately, due to time constraints, an additional red agent could not be trained to 

correct these issues. 

H. LARGE-SCALE SCENARIO 

1. Description 

In this scenario, a blue force of twelve units featuring armor, artillery, and 

mechanized infantry unit types competes against a six-unit red force composition that 

included infantry, artillery, and armor unit types (see Figure 58). The setup positions for 

each unit remain fixed for the entirety of the scenario. As described at the beginning of the 

chapter, the default neural network structure and reward function were used to train the 

blue agent. With an increased terrain size and number of units compared to any of the other 

scenarios, the number of turns in a game was increased from 20 to 30. Due to the high 

complexity of the scenario, an optimal score and reward could not be calculated as the 

number of possible actions was too high. However, the theoretical score and reward could 

be inferred based on the assumption that it would be possible for the blue agent to destroy 

all red units without having any blue unit killed and conquer the urban hexagon in a 

minimal amount of time. However, these values would not give any further insight when 

comparing different agents. 

In total, three agents will be trained, with each using different input layers to 

represent the state of the scenario. One agent will use the default input layers as described 

in Chapter III. The second agent will have four additional input layers to represent all of 

the unit types in the scenario for a total of seven layers. The third agent will be the same as 

the second agent, except an additional layer will be added to represent the rough terrain 

locations for eight inputs total. Each agent will be trained for 3,000,000 training steps, and 

the resulting behaviors will be analyzed.  

In a separate analysis to compare the performance of an MLP neural network to a 

CNN in a large-scale scenario, two additional agents will be trained for  10,000,000 training 

steps. Each agent will have four input layers, including three default layers and an 
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additional one representing the artillery units. Following their training, the performance of 

the two agents will be assessed.  

 
Figure 58. Large-Scale Scenario Setup. 

2. Results 

As shown in Figure 59, the structure and amount of input layers given to the neural 

network do not seem to make a difference for the agent’s performance. The achieved total 

discounted rewards each show a similar pattern for all three agents during the training 

process, where a maximum of nearly 400 points is reached after approximately 2,000,000 

training steps. While the second agent with seven input layers showed some instability 

during the training process, the other two agents seemed to remain stable. For the other two 

agents with only the added artillery unit layer used for the CNN and MLP network 

comparison, the training was expanded up to 10,000,000 training steps. However, even 

with that additional training steps, the performance did not improve further.  
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Figure 59. Reward Compared between Different Input Layer Variants. 

When comparing the trained CNN agent with the MLP agent, both show similar 

promising behaviors (see Figure 60). The CNN agent starts by initially moving its units 

southwest in a large formation. Once the first contact is made with a red unit on the 

northwest side, the south units shift their movement and start heading west. In a combined 

effort, the trained agent continues moving westward to attack the remaining red units 

further while consistently keeping the artillery units in the rear to take advantage of its 

more extended range. The scenario typically ends due to time constraints, but the agent 

was able to destroy most of the red units and occupy the urban terrain hexagon. 

 
Figure 60. Behavior of a CNN Agent after 30,000,000 Training Steps. 
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The MLP agent, however, used a slightly different approach. At the start of the 

scenario, the agent takes advantage of the increased speed for mechanized units when 

traveling over clear terrain. Three blue units quickly maneuver to destroy the most eastern 

red infantry unit, which allows for a clear passageway to southern red units. The agent then 

splits its forces to attack the two red units at the north of the map simultaneously as the 

three units at the south of the map using similar tactics shown by the CNN agent. The faster 

movements allow the MLP agent to conquer the urban terrain hexagon and destroy all the 

red units within the time constraints, as shown in Figure 61. 

 
Figure 61. Behavior of MLP Agent after 30,000,000 Training Steps. 

As expected, based on the more effective behaviors during initial combat, the MLP 

agent achieved an average higher total discounted reward and score than the CNN agent 

(see Figure 62). Still, it should be reminded that only one agent was trained for each neural 

network, so there is nowhere near enough evidence to decide which structure is a better fit 

for training a combat agent in a larger scenario. Both structures, however, did show the 

capability to learn coordinating behaviors for scenarios with far more complexity than 

previously encountered.   
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Figure 62. Score Progression and Adjusted Reward of MLP and CNN 

Agent. 
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V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE 
WORK 

The objectives of this thesis focused on determining whether a CNN can be used to 

train agents capable of learning the optimal behaviors achieved by Boron [6], as well as in 

scenarios of increased complexity. Furthermore, this thesis explored whether a multi-agent 

training regimen can be utilized in the domain of military constructive simulations. In total, 

eight different scenarios were created in the AI training environment, Atlatl, all varying in 

size, number of units, unit and terrain types, or scripted red force behaviors. Overall, the 

objectives were accomplished as the agents demonstrated robust attacking behaviors in 

each of the scenarios, and a basic understanding of the applications Atlatl can be applied 

to multi-agent training was accomplished. In this chapter, the principal conclusions of the 

scenarios will be summarized, recommendations for improvement will be mentioned, and 

suggestions for future work will be offered. 

A. CONCLUSIONS 

In this sub-chapter, the conclusions will be provided for each scenario category. The 

sub-chapter starts with the finding when replicating the scenarios described by Boron [6]. 

1. Replication of Boron’s Scenarios 

Although the scenarios were modeled slightly differently due to the differences in 

the AI training environments, the agents using a CNN as the neural network structure were 

able to achieve optimal performance for all three simple scenarios described in Boron’s [6] 

research. Each agent understood the importance of coordinating each of the blue units’ 

actions to ensure simultaneously massing of forces when conducting an attack. In most 

situations, two blue units coordinated their movements to enter hexagons adjacent to the 

red unit on the same turn. Using these tactics guaranteed the agents received minimal 

casualties and allowed them to maximize the total discounted reward in each of the 

scenarios. While the scenarios with fixed starting positions were too simple enough to 

require the spatial invariance advantages a CNN can provide, they did confirm that a CNN 
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structure is an effective tool when using RL to train combat agents in constructive 

simulations.  

2. Increasing the complexity of Boron’s Scenarios 

As scenarios consisting of multiple starting positions and formations were 

introduced, the spatial invariance advantages of  CNN were leveraged more frequently than 

previously described in the more straightforward scenarios. Instead of everything 

remaining constant during the agents’ training regimen, the units were positioned randomly 

throughout the map, depending on the scenario. The agents were now required to learn 

multiple behaviors in a single scenario to continuously defeat the red force. Even with the 

increased complexity, most agents could achieve optimal performance for each scenario in 

the same amount of training steps required to learn the optimal performance when the 

configurations were fixed. The CNN’s ability to recognize similar features or patterns in 

the unit positions allowed the agents to deduce the required behavior for optimal 

performance quickly. Additionally, the convolutional layers allowed an agent to learn the 

behaviors needed to defeat a retreating enemy. Although the opponent’s behaviors was 

simple and only near-optimal performance was achieved, an agent capable of learning how 

to defeat a moving enemy shows the potential of using CNN in scenarios of much higher 

complexity.   

3. Spatial Invariance 

Although the different state representations for units located in odd columns 

compared to even columns caused the agent to exhibit spatial invariant behavior for only 

six out of fourteen possible configurations, that issue is specific to the Atlatl training 

environment and should not discourage future researchers from using similar approaches 

in their experimentations. While using arrays with the double coordinate system helped 

ensure a fixed convolutional kernel can see the same set of neighbors regardless of where 

it is centered, there remained several differences in the representation of units located in 

adjacent rows. Instead of using a fixed convolutional kernel, a possible solution to address 

the state representation issue is to incorporate a hexagonal convolution tool such as 

HexagDLy [42]. HexagDLy is open-source software that is specifically designed for 
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convolutional operations on hexagonal state-spaces, where it translates the hexagonal 

information onto a 2-dimensional grid that can be processed as inputs for frameworks such 

as PyTorch. Overall, developing fully spatially invariant agents capable of performing the 

same optimal behaviors no matter where it is located on the map has the potential to 

decrease the time required for training significantly and can allow for more robust agents. 

4. Scenarios with Urban Terrain Features 

Learning the optimal behaviors in scenarios featuring an urban terrain hexagon did 

not seem to be a challenging task for each of the agents. The agents quickly identified the 

terrain feature and exhibited different behaviors depending on its value or location. Simply 

adjusting the value of the urban terrain value to represent cities of varying importance 

forced the agents to learn three distinct behaviors, with each maximizing the total 

discounted reward for its configuration. This straightforward implementation can allow for 

more dynamic agents that exhibit multiple behaviors in a single scenario within a 

constructive simulation. By introducing an urban terrain hexagon that changes position 

during the training regimen, an additional input layer for the neural network was required. 

Even with the added layer, though, the neural network effectively processed the 

information needed to achieve optimal performance or near-optimal performance on all 

five urban terrain locations. A single agent trained only once can now perform numerous 

distinct actions for multiple configurations inside of a scenario through this training 

process. 

5. Multi-Agent Learning 

From the results, it is clear that using a multi-agent learning approach in Atlatl 

requires some amount of variability during the training process. Before OpenAI’s 

AlphaStar even entered the competition phase in StarCraft II, where multi-agent training 

occurred, it had spent days using a combination of supervised learning and RL [5]. 

Studying over 900,000 replays from the top 22 percent of players provided AlphaStar the 

variability needed to understand the regularly occurring situations in the game. Not having 

the resources or library of replays for the agents to study in Atlatl, the agents were left 

relying on the behavioral scripts, which were visibly not enough. Without this variability, 
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the trained agents rarely recognized a familiar state and resorted to unexplainable behaviors 

as their default. While the resulting agent behaviors are not as strong as this research hoped 

for, a better understanding of the training process required has been accomplished. 

6. Large-Scale Scenario 

Based on the Large Scale Scenario, it appears that in a static setup and map design, 

additional input layers do not bring additional benefits in the sense of decreased learning 

time or better results. Due to the consistent results shown when varying the number of input 

layers, the additional amount of information did not seem to benefit the agents in any way. 

The simplicity of the scenario allowed for the training steps to be enough for agents to 

teach themselves the behaviors that provided the largest discounted reward. However, 

additional input layers are necessary for future work if more complex or moving terrain 

features are introduced, as shown in the Changing Urban Terrain Location Scenario.  

While the resulting CNN and MLP structure trained agents showed interesting 

tactical behaviors during their evaluation, there was no way to validate if their actions were 

optimal. However, a more appropriate and promising determination is that the 

methodology in this thesis has the potential to tackle much more extensive and complex 

scenarios in the future. 

B. RECOMMENDATIONS AND FUTURE WORK 

Due to the exploratory nature of this thesis, hyperparameter optimization, as it 

usually takes place with comparable papers, did not occur. The solutions found are 

therefore not optimal in terms of the training time required. Particularly when the scenarios 

become more complex regarding the allowed starting positions during the setup phase for 

the units or include more dynamic scripted red force behaviors, the training time in this 

thesis has increased drastically. Future works should therefore start with a hyperparameter 

optimization before continuing with more complex scenarios. Another possibility for 

optimizing the required training time is the use of hexagonal filters within the CNN 

structure. The infrastructure used in the context of this thesis is designed to recognize 

patterns in images containing a rectangular pixel scheme. To compensate for the hexagonal 

structure, a double coordinate system with the stretching of the y-axis was used to ensure 
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a fixed convolutional kernel can see the same set of neighbors regardless of where it is 

centered when using 2-dimensional arrays. However, filter shapes that are specifically 

tailored to hexagonal fields could be more effective for future work. 

The used Atlatl-Framework uses a scoring system in which a deduction of a single 

blue strength value is worth -2 points while a deduction of a single red strength value is 

worth 1 point. These values were introduced arbitrarily to the Atlatl framework. However, 

matches that typically ended with scores of negative or zero values were not conducive to 

training an offensive agent. The trained agents would rather avoid the red units altogether 

than learn the optimal behavior with the negative rewards from taking damage outweighing 

the positive rewards achieved by attacking. To encourage attacking behaviors from the 

agents during training, all negative rewards were then ignored, and the positive rewards 

were discounted proportionally to the number of blue units still alive. 

For the multi-agent approach, this thesis showed that a trained agent is sensitive to 

a change in the opponent’s behavior whenever it encounters behaviors never experienced 

before. The AI scripted behaviors used within this thesis to train each agent initially were 

simply structured and could perform only a few actions. When competition between the 

two agents began, the drastic increase of behaviors exhibited by the opposing force was 

too foreign for the agent to respond appropriately. Improving and increasing the complexity 

of scripted enemy behaviors for multi-agent training in the future could potentially produce 

better insights into the usage of multi-agent training for military applications. Another 

promising way to deal with the stability of an agent’s behavior when increasing the 

complexity of a scenario could be the implementation of a league-based training system. 

In combination with a more dynamic enemy, it should be investigated how the combination 

of deep-RL with other ML techniques can be used to produce more stable behaviors with 

fewer training steps. Sun et al. [7]. incorporated an approach that combined deep-RL with 

PKQ-Learning to develop an agent capable of exhibiting many different behaviors. The 

utilization of these or similar technologies might allow more agents capable of performing 

optimal behavior in more complex scenarios with fewer training steps.  

In general, this thesis and comparable theses, done at the MOVES Institute before, 

are theoretical in nature. Future research should investigate how deep-RL techniques can 
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be integrated into existing DOD programs of record constructive simulation systems such 

as MTWS,  Combat XXI, or OneSAF for a more practical benefit. Part of the research 

should focus on developing an API capable of integrating deep-RL tools like 

StableBaselines3 into these simulations, and it should be structured according to 

architecture and interfaces. 

C. SUMMARY 

This thesis confirmed the applicability of using deep-RL techniques to develop 

robust artificial agents capable of achieving optimal performance in scenarios featuring 

multiple unit and terrain types. Additionally, the foundation for multi-agent learning and 

fully spatially invariant agents was established. While the work presented strengthens the 

promising efforts of these tools in military research, all of the results were accomplished 

using heavily abstracted scenarios in an AI training environment specially designed to 

incorporate external RL applications into its framework. Additional research should look 

to discover an approach to apply similar methods to an existing DOD program of record 

constructive simulation. Having this capability to act as the red force in existing 

constructive simulations could save human resources and allow commanders to test current 

tactics, highlight any vulnerabilities in their current plan, and validate their scheme of 

maneuver before conducting a single live rehearsal or execution. 
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APPENDIX. DATA 

A. TWO-VERSUS-ONE

Fixed-Positions 
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Fixed-Formation 

%-perfect 
game

Score
%-perfect 

game
Score

%-perfect 
game

Score
%-perfect 

game
Score

%-perfect 
game

Score

100000 0.1 -157.5 0 -165 0 -175 0 -175 0 -175
200000 0.1 -122.5 0 -147.5 0.1 -170 0 -155 0.2 -140
300000 0.1 -177.5 0.1 -107.5 0 -187.5 0 -182.5 0 -175
400000 0.1 -147.5 0.1 -162.5 0 -185 0 -152.5 0 -175
500000 0 -165 0.4 -50 0 -175 0 -147.5 0 -175
600000 0 -182.5 0.6 -55 0.2 -127.5 0.1 -145 0 -155
700000 0.1 -150 0.2 -85 0.1 -157.5 0.1 -177.5 0 -162.5
800000 0.2 -132.5 0.4 -70 0.1 -177.5 0.2 -140 0.1 -147.5
900000 0.1 -140 0.1 -85 0.1 -157.5 0 -152.5 0.1 -150

1000000 0.1 -127.5 0.3 -57.5 0 -175 0 -162.5 0.4 -105
1100000 0.1 -147.5 0.5 -37.5 0.1 -157.5 0.3 -135 0.3 -112.5
1200000 0.2 -112.5 0.3 -55 0.1 -157.5 0.2 -112.5 0.1 -140
1300000 0.8 -35 0.4 -62.5 0.2 -140 0.3 -95 0.3 -92.5
1400000 0.2 -132.5 0.2 -122.5 0.1 -157.5 0.5 -75 0.3 -90
1500000 0.4 -90 0.5 -105 0.1 -150 0.1 -142.5 0.6 -60
1600000 0.7 -32.5 0.5 -37.5 0.1 -177.5 0.4 -65 0.5 -107.5
1700000 0.7 -35 0.4 -42.5 0.3 -122.5 0.5 -65 0.4 -77.5
1800000 0.8 -35 0.6 -32.5 0 -175 0.4 -62.5 0.6 -50
1900000 1 0 0.3 -95 0.3 -122.5 0.3 -72.5 0.2 -140
2000000 0.7 -72.5 0.3 -72.5 0.4 -105 0.4 -85 0.6 -55
2100000 0.9 -17.5 0.2 -92.5 0.3 -122.5 0.5 -55 0.6 -45
2200000 1 0 0.4 -75 0.2 -140 0.4 -42.5 0.6 -47.5
2300000 1 0 0.7 -25 0.3 -122.5 0.3 -65 0.4 -67.5
2400000 0.6 -70 0.7 -22.5 0.2 -140 0.3 -72.5 0.7 -20
2500000 0.9 -17.5 0.2 -62.5 0.3 -122.5 0.6 -52.5 0.4 -57.5
2600000 0.8 -35 0.3 -47.5 0.8 -35 0.3 -62.5 0.6 -55
2700000 0.9 -17.5 0.5 -100 0.8 -35 0.3 -62.5 0.8 -15
2800000 0.7 -52.5 0.7 -22.5 0.2 -140 0.7 -35 0.6 -45
2900000 0.9 -17.5 0.5 -45 0.4 -105 0.7 -22.5 0.4 -50
3000000 1 0 0.3 -60 0.1 -157.5 0.4 -100 0.5 -37.5
3100000 0.9 -17.5 0.4 -62.5 0.2 -140 0.5 -65 0.8 -15
3200000 0.9 -17.5 0.5 -42.5 0.4 -105 0.4 -72.5 0.6 -35
3300000 0.8 -35 0.6 -32.5 0.3 -122.5 0.3 -67.5 0.5 -52.5
3400000 0.7 -52.5 0.4 -50 0.2 -140 0.3 -82.5 0.6 -32.5
3500000 0.9 -17.5 0.4 -50 0.5 -87.5 0.5 -47.5 0.6 -32.5
3600000 0.9 -17.5 0.3 -57.5 0.6 -107.5 0.5 -42.5 0.7 -15
3700000 0.8 -25 0.3 -52.5 0.6 -70 0.4 -60 0.7 -25
3800000 0.7 -52.5 0.7 -27.5 0.5 -80 0.6 -42.5 0.6 -35
3900000 0.9 -17.5 0.8 -17.5 0.4 -97.5 0.7 -32.5 0.6 -32.5
4000000 1 0 0.5 -42.5 0.3 -82.5 0.4 -62.5 0.8 -27.5
4100000 1 0 0.5 -72.5 0.4 -97.5 0.4 -57.5 0.8 -25
4200000 1 0 0.9 -5 0.4 -105 0.6 -42.5 0.6 -32.5
4300000 0.8 -35 0.7 -20 0.7 -52.5 0.5 -40 0.8 -15
4400000 1 0 0.7 -57.5 0.6 -47.5 0.6 -40 0.6 -30
4500000 0.9 -17.5 0.4 -70 0.4 -67.5 0.4 -55 0.5 -35
4600000 0.6 -70 0.8 -15 0.4 -57.5 0.5 -40 0.8 -17.5
4700000 0.8 -35 0.8 -15 0.7 -42.5 0.5 -50 0.6 -37.5
4800000 0.8 -35 0.7 -22.5 0.7 -47.5 0.5 -65 0.6 -32.5
4900000 0.8 -35 0.9 -10 0.7 -27.5 0.4 -45 0.7 -25
5000000 1 0 0.8 -15 0.8 -20 0.7 -17.5 0.7 -25

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4
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Random 
 

 
 

% perfect 
Games

Score
% perfect 

Games
Score

% perfect 
Games

Score
% perfect 

Games
Score

% perfect 
Games

Score

100000 0.6 -92.5 0.4 -160 0.7 -75 0.3 -175 0.3 -155
200000 0.3 -170 0 -197.5 0.4 -137.5 0.2 -155 0.1 -185
300000 0.4 -185 0.4 -175 0.1 -237.5 0 -182.5 0 -272.5
400000 0 -247.5 0.3 -162.5 0.4 -112.5 0 -152.5 0.1 -232.5
500000 0.1 -177.5 0.3 -117.5 0.1 -205 0 -147.5 0 -217.5
600000 0.1 -187.5 0 -195 0.2 -177.5 0.1 -145 0.1 -180
700000 0.1 -185 0.3 -130 0.2 -127.5 0 -177.5 0.5 -82.5
800000 0.2 -127.5 0.2 -155 0.3 -120 0.2 -140 0.1 -212.5
900000 0.4 -107.5 0 -217.5 0.4 -157.5 0 -152.5 0.1 -205

1000000 0.2 -200 0.3 -125 0.4 -142.5 0.4 -162.5 0.4 -120
1100000 0.6 -67.5 0.1 -202.5 0.2 -132.5 0.3 -135 0.3 -132.5
1200000 0.4 -127.5 0.2 -152.5 0.4 -127.5 0.4 -112.5 0.2 -177.5
1300000 0.8 -22.5 0.3 -120 0.4 -77.5 0.3 -95 0.5 -122.5
1400000 0.3 -165 0.3 -87.5 0.3 -90 0.3 -75 0.1 -187.5
1500000 0.5 -85 0.4 -120 0.4 -70 0.1 -142.5 0.5 -72.5
1600000 0.2 -107.5 0.3 -75 0.3 -67.5 0.3 -65 0.1 -160
1700000 0.2 -137.5 0.3 -130 0.5 -72.5 0.4 -65 0.4 -80
1800000 0.3 -130 0.3 -120 0.4 -65 0.6 -62.5 0.5 -120
1900000 0.4 -127.5 0.2 -137.5 0.5 -85 0.3 -72.5 0.6 -80
2000000 0.6 -35 0.2 -107.5 0.3 -130 0.1 -85 0.4 -127.5
2100000 0.5 -65 0.1 -155 0.2 -140 0.3 -55 0.3 -92.5
2200000 0.3 -145 0.7 -70 0.4 -120 0.1 -42.5 0.5 -52.5
2300000 0.3 -137.5 0.3 -135 0.3 -117.5 0.2 -65 0.2 -155
2400000 0.5 -87.5 0.3 -120 0.3 -95 0.2 -72.5 0.6 -62.5
2500000 0.2 -125 0 -117.5 0.4 -95 0.3 -52.5 0.3 -122.5
2600000 0.6 -67.5 0.4 -77.5 0.6 -82.5 0.3 -62.5 0.3 -135
2700000 0.5 -60 0.1 -127.5 0.6 -47.5 0.4 -62.5 0.5 -72.5
2800000 0.4 -70 0.2 -85 0.5 -67.5 0.7 -35 0.6 -45
2900000 0.4 -80 0.3 -85 0.4 -85 0.4 -22.5 0.5 -85
3000000 0.5 -97.5 0.2 -97.5 0.7 -27.5 0 -100 0.3 -117.5
3100000 0.5 -92.5 0.3 -67.5 0.4 -100 0.2 -65 0.4 -87.5
3200000 0.4 -80 0.4 -107.5 0.6 -55 0.5 -72.5 0.3 -120
3300000 0.5 -67.5 0.6 -45 0.4 -82.5 0.6 -67.5 0.4 -122.5
3400000 0.4 -85 0.4 -55 0.5 -95 0.4 -82.5 0.2 -152.5
3500000 0.3 -85 0.4 -100 0.5 -52.5 0.6 -47.5 0.5 -57.5
3600000 0.3 -115 0.2 -97.5 0.6 -75 0.2 -42.5 0.2 -127.5
3700000 0.3 -70 0.7 -67.5 0.4 -85 0.4 -60 0.5 -45
3800000 0.4 -90 0.6 -55 0.5 -80 0.5 -42.5 0.4 -75
3900000 0.2 -92.5 0.5 -57.5 0.5 -55 0.7 -32.5 0.4 -110
4000000 0.6 -67.5 0 -150 0.4 -60 0.3 -62.5 0.2 -147.5
4100000 0.6 -42.5 0.1 -125 0.4 -77.5 0.2 -57.5 0.3 -150
4200000 0.4 -65 0.5 -52.5 0.5 -80 0.4 -42.5 0.4 -85
4300000 0.3 -72.5 0.4 -80 0.6 -47.5 0.4 -40 0.6 -95
4400000 0.3 -97.5 0.6 -35 0.5 -75 0.4 -40 0.5 -55
4500000 0.4 -72.5 0.3 -87.5 0.5 -60 0.3 -55 0.4 -80
4600000 0.3 -90 0.6 -35 0.4 -72.5 0.2 -40 0.6 -57.5
4700000 0.6 -80 0.4 -105 0.7 -47.5 0.6 -50 0.2 -105
4800000 0.3 -110 0.2 -82.5 0.5 -60 0.3 -65 0.3 -67.5
4900000 0.6 -52.5 0.4 -70 0.5 -52.5 0.5 -45 0.6 -62.5
5000000 0.5 -72.5 0.7 -27.5 0.6 -52.5 0.4 -17.5 0.4 -92.5

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4
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Withdraw 
 

 
 

% perfect 
Games

Score
% perfect 

Games
Score

% perfect 
Games

Score
% perfect 

Games
Score

% perfect 
Games

Score

1000000 0 -37.5 0 -26.25 0 -37.5 0 -41.25 0 -37.5
2000000 0 -26.25 0 -37.5 0 -37.5 0 -37.5 0 -37.5
3000000 0 -32.5 0 -37.5 0.1 17.5 0 -52.5 0 -37.5
4000000 0.1 -28.75 0 -37.5 0.4 12.5 0 -37.5 0 -37.5
5000000 0.2 1.25 0.1 -12.5 0.4 61.25 0 -37.5 0 -37.5
6000000 0.1 16.25 0.1 -28.75 0.4 62.5 0 -37.5 0 -37.5
7000000 0.7 73.75 0.1 2.5 0.7 90 0 -37.5 0 -28.75
8000000 0.5 46.25 0.1 -15 0.6 82.5 0 -37.5 0 -22.5
9000000 0.4 45 0.3 13.75 0.6 62.5 0 -37.5 0 -26.25

10000000 0.8 81.25 0.1 2.5 0.7 87.5 0 -37.5 0 -23.75

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4
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B. TWO-VERSUS-ONE SPATIAL INVARIANCE 

 
 

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7 Setup 8 Setup 9 Setup 10 Setup 11 Setup 12 Setup 13 Setup 14
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
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C. TWO-VERSUS-TWO 

Fixed-Positions 
 

 
 
Multiple-Starting-Positions 

 
 

Training Steps
Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

100000 92.5 -37.5 99.75 -4 96.75 -22.75 80.625 -97.5 87.875 -48.75
200000 99.625 -1 120.625 -182 98.5 -10.25 82 -77.25 125.5 -230.3
300000 97.75 -19.5 130.625 -247.5 120.25 -233.8 97.125 -18.5 137.625 -205.8
400000 130.625 -164.8 137.125 -244 160.25 -81 152.75 -109.75 135.375 -205
500000 162.25 -80.75 145.875 -174.5 159.75 -75.5 160.5 -91.5 139.375 -206.5
600000 161.25 -82.5 147.5 -165 160.375 -80.75 162.25 -77.75 134.75 -201
700000 161.875 -76 147.5 -160.3 160.375 -76 161.5 -73.5 136.875 -201.8
800000 159 -72.25 150 -164.5 161.75 -73.5 153.375 -77.5 152.5 -104.5
900000 160.75 -73.25 145.875 -161.3 163 -76 161.5 -73 0 0

1000000 158 -80.75 149.875 -155.5 161.375 -75.75 161.75 -73.5 153.375 -113
1100000 162.25 -78 148.5 -166.3 162.75 -79.25 160.625 -74.5 153.75 -113.5
1200000 161.75 -76.75 149.125 -157.3 159.375 -75.5 163.75 -77.5 153 -103
1300000 164.25 -78.5 148.25 -155.5 162.75 -77.25 159.25 -78 153 -114.8
1400000 160.75 -91.25 150 -167 162.75 -75.5 163.25 -78.5 161.75 -77.25
1500000 156.5 -82 152.25 -162.5 163.5 -77 113.3125 -154.13 163 -76
1600000 163.25 -76.5 148 -165.3 163.25 -76.5 161.25 -74.25 163 -76
1700000 164 -78 149.75 -162.8 161.5 -81.75 161.25 -72.5 161.25 -72.5
1800000 161.25 -80.5 148.125 -164 160.5 -73.75 163.25 -80.75 114.5 -50.25
1900000 160.75 -71.5 161.5 -74.75 149.25 -88.5 161.75 -74.5 163.375 -79
2000000 160.25 -70.5 159.25 -76 162 -75.75 163.75 -77.5 162.625 -77.5

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Training Steps

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

100000 75 -116.25 79.125 -95.5 84.375 -83.25 82 -197.75 71.375 -145
200000 112.875 -245 97.375 -29.75 98.375 -89.25 134.96875 -163.813 98.625 -13.5
300000 150.125 -112.5 150.78125 -124.438 152.90625 -94.4375 152.875 -101.25 106.75 -224.75
400000 142.1875 -132.375 151 -104.5 99.625 -204.5 154 -92.5 148.6875 -121.375
500000 153.53125 -78.6875 55.34375 -291.563 150.75 -96 159.25 -89.25 155 -81.25
600000 146.15625 -109.188 155.25 -87 95.5 -193.5 157.375 -86 123.25 -177.75
700000 131.125 -158.5 160 -82.5 161.875 -78.75 160.25 -71 157.125 -92
800000 154.53125 -92.6875 151.625 -97.75 161.875 -76.75 117.5 -62.75 141.75 -108.5
900000 134.8125 -102.625 159.75 -83.5 144 -89.5 144.875 -126.5 139.25 -105.5

1000000 162 -84.5 147.875 -96 162.53125 -83.1875 162 -76 159.125 -91
1100000 158 -84.75 160.75 -71.5 155.75 -91 162 -78 156.625 -81.75
1200000 145.8125 -106.125 158.375 -85.75 153 -84.5 148.03125 -112.688 162.875 -82.25
1300000 160.75 -80.25 158.25 -88.5 121.375 -106.25 159.875 -75.25 165 -80
1400000 160.5 -75 162.5 -77.75 142.75 -86.5 159.125 -79.75 162.125 -76.5
1500000 156.125 -89.25 79.5 -244.25 158.625 -80.5 88.5 -217.5 159.75 -79.75
1600000 162 -75 102.34375 -263.063 160 -73.5 161.125 -84.5 161.75 -75.5
1700000 159.875 -72 105.1875 -246.875 157 -86 161.875 -76.75 155.5 -93.25
1800000 158.53125 -81.6875 97.6875 -270.625 159.25 -84.75 161.75 -79.75 162.5 -75
1900000 161.25 -79 120.53125 -205.188 160.25 -72.5 163.5 -77 163.5 -77
2000000 163 -78 50.125 -81.75 162.25 -80.75 160.75 -78 163 -80.5
2100000 160.375 -76 92.375 -276.25 163.625 -87.25 3.25 -272 157.625 -77.75
2200000 162.5 -77.75 161 -79 156.125 -75.75 158.8125 -84.125 1 -0.5
2300000 162.875 -78.75 160.75 -84 160.9375 -74.625 163.25 -76.5 0 0
2400000 158.875 -81 160.375 -75.75 159.75 -69.5 160.5 -72.75 17 -36
2500000 161.75 -74 163 -76 163.25 -79.25 162.375 -86 63.5 -165.5
2600000 157.5 -76.75 75.40625 -48.6875 161.25 -72.5 163 -76 135.1875 -151.125
2700000 160.75 -71.5 159.5 -79 162.75 -75.5 148.40625 -104.438 162 -74
2800000 152 -100.5 160.75 -71.5 161.125 -75.25 162 -79.5 161.5 -75.5
2900000 162.25 -77 161.25 -72.5 163.25 -76.5 161.5 -73 161.125 -78.75
3000000 162.25 -74.5 163 -76 164 -78 160.875 -76.5 162.25 -79.75

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
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D. THREE-VERSUS-TWO 

Fixed Positions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Training 
Steps

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

100000 98.5 -25.5 94.58333333 -42.5 97.75 -16 99.75 -2.75 74.5 -181.5
200000 99 -10 97.91666667 -17 97.83333333 -15.5 99.16666667 -9 74.66666667 -182.25
300000 100 -3 99.25 -10 99.75 -7.5 99.33333333 -4.5 74.5 -180.25
400000 99.66666667 -13.5 85.08333333 -98.75 98.41666667 -38.25 98.41666667 -8.75 75.16666667 -201
500000 100 -4.75 98.16666667 -17.25 98.16666667 -16.5 99 -9.25 108.5 -246.5
600000 97.66666667 -17.5 99.33333333 -6.75 100 -16 99.83333333 -8 113.6666667 -235.75
700000 97.33333333 -24.5 99.5 -3 99.58333333 -11.5 99.33333333 -6.75 122.25 -181
800000 100 0 100 -11 99.75 -5 98.91666667 -6.5 123.5 -183.5
900000 97.08333333 -23.75 98.41666667 -18.5 99.75 -1 99 -7.25 123 -183

1000000 98.41666667 -20.75 99.5 -7.75 100 -20.5 99 -4.25 119 -199.5
1100000 99.16666667 -9.5 99 -37.5 90.33333333 -92.5 98.66666667 -15.75 123.5 -181
1200000 99.33333333 -9.5 95.75 -38 140.75 -57.5 99.25 -5.75 94.25 -227.75
1300000 100 -1.75 99.66666667 -5.5 143.5 -39 91.08333333 -35.5 122.25 -187.5
1400000 100 -1 124.75 -31.5 132.4166667 -41 102.25 -14 149.5833333 -91.25
1500000 106.0833333 -14.25 130.75 -67.25 139.0833333 -37.25 104.75 -17.75 149.25 -90
1600000 131.3333333 -42 137.3333333 -62 139.1666667 -41.5 138.3333333 -48.5 152.5 -86.25
1700000 139.75 -28 139.75 -49 166.75 -8 137.75 -46.75 150.75 -88.75
1800000 147 -34.5 145.75 -35.25 170.5 -1.5 138.5 -34 151 -87
1900000 161.6666667 -13.25 138.25 -54 169.5 -2.5 140.5 -33.25 148.5 -91.75
2000000 170.25 -4.25 141.6666667 -22.5 171.75 -3.75 169 -2.75 167 -24.25
2100000 172 -3.25 131 -33.5 172 -2.25 168.25 -5.75 172.75 -6
2200000 172.75 -1.75 134.0833333 -14.25 174.25 -0.75 173.25 -1.75 173.25 -4
2300000 175 0 137.5 -5.75 174.75 -1 169 -7 172.5 -6.75
2400000 173.5 -2 138.25 -9.75 172.75 -1.75 164.5 -10.25 172.5 -11.25
2500000 172.5 -3.5 138.3333333 -14 168.25 -5.25 169.75 -4.5 170.5 -13
2600000 174.25 -0.75 137.75 -22.5 172.75 0 168.25 -6 172.3333333 -6.25
2700000 174.25 -0.75 137.9166667 -11 169.75 -3.25 171.25 -2.75 174.25 -2
2800000 174.25 -0.75 140.5 -0.5 173.25 -1.75 169.25 -6.75 165.75 -28
2900000 174 -4 144.6666667 -22 171.75 -5.5 169.75 -5.5 172.75 -6
3000000 175 0 131.8333333 -15.5 172.75 -1.5 172 -3.5 172.75 -4.75

Agent 5Agent 4Agent 3Agent 2Agent 1
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Multiple Starting Positions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Training 
Steps

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

Total Discounted 
Reward Score

100000 25 -176.5 95.75 -177 33.5 -132 93 -167.75 94.75 -176.7675
200000 101.8333333 -181 99.75 -175 66.75 -37.5 100.0833333 -189.25 94.16666667 -224.49
300000 168.4166667 -20 98 -179 92.41666667 -147.5 154.5 -130.5 173 -11.11
400000 171.4166667 -12.25 94.5 -136.5 167.75 -39.25 172.5833333 -17.25 171.3333333 -22.22
500000 173.5 -4.75 98.33333333 -180.25 172.1666667 -10.5 173.75 -8.75 165.8333333 -47.975
600000 174.25 -2.75 95.25 -185.75 169.75 -33.75 173.6666667 -9.25 169.4166667 -21.9675
700000 171.9166667 -12.25 95.16666667 -187.25 172.25 -14.75 174.3333333 -9 170.25 -21.21
800000 171.0833333 -12.25 96.75 -178 173.4166667 -12.5 174 -9.25 173 -10.3525
900000 174 -4.5 99.75 -175.25 168.5833333 -25.5 169.3333333 -30 139 -132.5925

1000000 174.8333333 -2 100 -175 173.5833333 -4.75 172.3333333 -19 173 -9.595
1100000 173.6666667 -5.5 125 -190.75 167.6666667 -22.5 174.75 -2.75 174.0833333 -5.555
1200000 173.3333333 -9.75 162.1666667 -99.75 169.8333333 -25.5 170.1666667 -17 173.3333333 -14.3925
1300000 171.9166667 -10.25 160.4166667 -101.5 171.9166667 -14.75 173.4166667 -11.5 172.8333333 -12.3725
1400000 175 -2.25 162.75 -84.25 160.9166667 -74.75 173 -10.25 173.75 -8.3325
1500000 172.5 -13.5 166.75 -54.75 171.75 -6.5 171 -23.75 174 -5.05
1600000 172 -11.75 173.9166667 -7.75 162.6666667 -71.75 173.3333333 -19.5 174.5833333 -4.04
1700000 166.4166667 -34.75 173.5 -8 174.5833333 -5.75 173.8333333 -13 174.5 -4.04
1800000 171.0833333 -16.75 173.4166667 -8 173.5833333 -8.25 160.8333333 -73.25 173.5 -2.7975
1900000 173.0833333 -13.25 172.25 -20.25 174.8333333 -3.25 57.75 -134.5 173.75 -6.8175
2000000 174.6666667 -2.5 173.6666667 -12.25 173.0833333 -5 174.8333333 -4.5 168.0833333 -21.4625
2100000 165.0833333 -25.25 173.9166667 -5.75 173.75 -12 165.0833333 -37.5 169 -17.9275
2200000 174.5 -2 174.5833333 -6.75 174.6666667 -2.5 175 -5.5 174.75 -1.01
2300000 173.25 -9.25 171.9166667 -17.5 173.25 -11.5 173.6666667 -9.75 170.5 -16.665
2400000 165.3333333 -28.25 174.3333333 -7.5 174.75 -1.5 168.8333333 -42.5 174.25 -3.7875
2500000 171 -8.25 174.8333333 -1 167.3333333 -39.75 174.75 -5 174.25 -3.2825
2600000 171.5 -17.25 174.75 -2.25 174 -3.5 175 -2.5 140 -128.27
2700000 172.5833333 -15.75 169.75 -33.25 166.6666667 -58.75 153.6666667 -69.75 174.25 -1.7675
2800000 173.25 -9.75 174.5 -3.25 173.3333333 -7.5 169.25 -33.5 175 -0.505
2900000 172.3333333 -6.5 175 -1.25 173.5 -9 174.0833333 -15.75 169.75 -19.9475
3000000 174.3333333 -3.5 165.25 -18.75 174.25 -5.5 174.8333333 -16.5 174.75 -4.2925
3100000 170.0833333 -12.75 174.75 -1 174.5 -3.5 166.25 -50.75 170.5 -19.19
3200000 174.8333333 -1.5 166.6666667 -25.5 174.5833333 -2 175 -6.5 174.25 -6.3175
3300000 167.0833333 -19.25 172.9166667 -18 173.0833333 -7.75 157.3333333 -73.25 173 -6.3125
3400000 171.6666667 -20 168.75 -25.75 154.5 -23 172.9166667 -12.25 170.3333333 -14.645
3500000 173.1666667 -6.5 175 0 173.9166667 -2.5 174.75 -4 174.4166667 -2.525
3600000 173.1666667 -8 172.25 -18.5 171.75 -23 174.0833333 -7.5 173.9166667 -4.545
3700000 174.6666667 -9.5 169.1666667 -28.75 172.9166667 -7.75 171 -25.5 172.75 -12.12
3800000 173.1666667 -26.5 173.75 -8.75 174.25 -11.5 174.75 -5.25 175 -5.555
3900000 174.8333333 -1.5 172.75 -9 173.1666667 -12 175 -15.75 175 -0.505
4000000 173.5 -7.75 173.4166667 -10.5 174.8333333 -6.5 174.8333333 -2 174.75 -0.505

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
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E. URBAN TERRAIN 

Urban Terrain Value 0 

 
 
Urban Terrain Value 20 
 

 

Training 
Steps

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

100000 98.875 -7.25 98 -10 98.875 -7 100 0 100 0
200000 99 -4 99.25 -5 99.5 -3.5 98.125 -8.25 100 -0.5
300000 100 0 99 -4 100 0 98.875 -5.5 100 0
400000 100 0 90.25 -57.75 99.625 -2.25 99.25 -1.75 97.625 -7.75
500000 52.875 -116 97.25 -17.5 100 -1.25 100 -0.5 100 0
600000 99.25 -5 98.25 -9 99.75 -1 89.125 -54.25 94.25 -32.5
700000 100 0 99.5 -4.25 99.25 -3.75 99 -3.25 95.5 -22.25
800000 100 -0.5 100 0 100 0 100 0 100 0
900000 100 -0.75 96.25 -21 99.75 -1 100 0 96.5 -16.5

1000000 100 -1.25 99.625 -1.5 96.125 -22.75 99.25 -2.75 99.125 -4.5
1100000 99.25 -3.75 98.75 -8.25 100 0 99 -6.25 94.25 -33
1200000 99.25 -4.75 100 0 99.25 -4.75 97.875 -8.5 99.375 -2
1300000 100 0 100 -0.75 87.875 -64.25 99 -5.5 98.875 -5
1400000 100 0 100 -0.5 100 0 100 -1 100 0
1500000 100 0 93.125 -42.25 98.875 -5.5 99.5 -3.5 100 0
1600000 100 -0.5 100 0 100 -0.75 99.25 -3.75 99.25 -1.75
1700000 96.75 -14.75 99.25 -3.75 99.75 -1 100 -2 100 -0.5
1800000 100 0 99.75 -2 99.25 -4.25 99.5 -2 100 0
1900000 99.625 -1.75 100 -0.75 97 -17 100 0 100 0
2000000 100 0 100 0 100 0 100 0 100 0

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Training 
Steps

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

100000 218.4 118.4 157.2 58.8 180.85 77.35 99.125 -3.75 218.15 117.4
200000 230.05 115.85 158.8 78 240.8 113.8 174.975 73.6 232.65 109.9
300000 237.35 113.1 160 78.2 237.6 115.6 179.2 79.2 239.75 110.9
400000 238.9 112.6 156 80 240.4 114.9 170.825 52.65 239.2 115.2
500000 238.05 113.85 164.4 72.4 240 113.5 180 80 239.2 115.2
600000 238.4 115.4 159.2 80 237.6 115.6 178.45 75.45 245.2 113.7
700000 238.05 112.85 160.4 71.7 241.2 114.7 179.2 79.2 242 114.5
800000 238.4 113.9 160.8 80 239.6 115.1 179.6 79.6 238.4 113.1
900000 239.6 115.1 158.8 78.8 238 115.5 178.825 78.2 238.4 115.4

1000000 244 113.5 156.8 79.6 239.6 115.1 177.125 73 238 115.5
1100000 238 115.5 162 80 240 115 178 77.5 240.4 114.9
1200000 240 115 157.6 80 240.85 113.15 178.95 77.2 240.8 114.8
1300000 238.4 115.4 158.8 79.6 238.5 112.85 180 80 239.35 113.5
1400000 241.6 114.6 178.425 80 240.8 114.8 180.4 79.9 240.4 114.9
1500000 241.6 114.6 178.025 80 238.4 115.4 177.95 65.05 241.2 114.2
1600000 237.6 115.6 179.5 80 240 115 180 80 239.6 115.1
1700000 242.8 114.3 176.05 80 240 115 180 80 243.2 114.2
1800000 243.2 114.2 179.35 80 238 115.5 180 80 239.2 115.2
1900000 240.4 114.9 178.55 80 236 116 179.75 78 239.2 115.2
2000000 239.6 115.1 180 80 243.6 114.1 180 80 238.8 115.3

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
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Urban Terrain Value 40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Training 
Steps

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

Total 
Discounted 
Reward Score

100000 586.8 585.8 586.8 586.8 596.4 596.4 585.25 586.25 485.3 485.3
200000 596.4 596.4 596.4 596.4 598.8 598.8 596.4 596.4 498.8 498.8
300000 597.6 597.6 597.6 597.6 600 600 600 600 500 500
400000 598.8 598.8 598.8 598.8 598.8 598.8 600 600 542.7 542.7
500000 600 600 600 600 600 600 600 600 600 600
600000 600 600 600 600 600 600 600 600 600 600
700000 600 600 600 600 600 600 600 600 600 600
800000 598.8 598.8 598.8 598.8 600 600 600 600 600 600
900000 600 600 600 600 600 600 598.8 598.8 600 600

1000000 600 600 600 600 600 600 600 600 600 600
1100000 600 600 600 600 600 600 600 600 600 600
1200000 600 600 600 600 600 600 597.6 597.6 600 600
1300000 600 600 600 600 600 600 600 600 600 600
1400000 600 600 600 600 600 600 600 600 600 600
1500000 600 600 600 600 600 600 600 600 598.8 598.8
1600000 600 600 600 600 600 600 600 600 600 600
1700000 600 600 600 600 600 600 594 594 600 600
1800000 600 600 600 600 600 600 600 600 600 600
1900000 600 600 600 600 600 600 600 600 600 600
2000000 600 600 600 600 600 600 600 600 600 600

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
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F. MULTI-AGENT-TRAINING 

Blue performance in complex setup (10 repetition) 
 

 
 
 
 
 
  

Training 
Steps Reward Score

1000000 380.375 315.35
2000000 399.8594 304.9094
3000000 495.05 449.05
4000000 494.9 395.375
5000000 569.2625 458.9125
6000000 496.9125 384.8875
7000000 572.8 535.3
8000000 438 383.7
9000000 403.65 298.15

10000000 591.25 500

Blue Agent



104 

G. LARGE-SCALE SCENARIO 

Different Input Layers 
 

 
 

Reward Score Reward Score Reward Score
50000 25.7198058 -758.877 0 -690 23.3288043 -572.5

100000 67.0820028 -1458.84 28.125 -785 0 -600
150000 231.276946 -2086.01 165.521744 -590 15 -632.5
200000 196.072486 -2166.61 220.692483 -520 13.75 -692.5
250000 264.312991 -1759.69 219.043631 -580 58.75 -687.5
300000 304.553839 -1883.72 219.043631 -1000 228.695867 -817.5
350000 293.231944 -1623.13 219.043631 -740 230.840506 -1437.19
400000 189.018528 -2198.22 219.043631 -780 44.0558511 -707.5
450000 204.467487 -2251.01 239.043631 -650.8 281.142992 -779.375
500000 188.467909 -1865.94 219.043631 -640 312.911326 -637.7
550000 241.137307 -1654.69 219.167194 -710 65.0587263 -610
600000 226.205485 -1551.21 219.043631 -720 219.367956 -565
650000 221.967277 -1535.55 219.043631 -680 219.530118 -557.5
700000 231.9116 -1615 219.043631 -620 309.058749 -395.8
750000 255.835588 -1560.63 219.043631 -680 268.905892 -561.963
800000 195.377071 -1136.41 215.368998 -573.75 319.05119 -324.9
850000 267.516954 -1652.03 224.043631 -685 319.058749 -466.6
900000 240.880728 -1404.69 233.816359 -665 161.152476 -603.3
950000 218.864251 -1391.88 250.026572 -610 319.061269 -379.1

1000000 233.339807 -1427.3 267.453617 -541.25 319.05371 -382.2
1050000 204.440082 -1244.69 324.600206 -458.75 267.166436 -625.663
1100000 191.697725 -1399.06 320.15678 -447.5 323.284377 -599.838
1150000 230.638432 -1260 323.589086 -499.9 358.475501 -357.2
1200000 188.874607 -1237.81 319.043631 -388.8 326.940985 -607.213
1250000 236.130714 -1333.13 279.043631 -704.5 359.788754 -357.9
1300000 244.282483 -1502.66 311.543631 -535.5 393.351438 -408.3
1350000 272.999633 -1677.66 307.596846 -450.1 404.562639 -453.138
1400000 251.626972 -1458.91 331.543631 -401.1 418.573809 -299.5
1450000 238.821008 -1162.89 321.786875 -411.1 418.763727 -269.5
1500000 251.281375 -1328.98 240.234905 -660.8 418.353782 -282.2
1550000 287.597869 -1543.13 307.139268 -414.9 359.592259 -592.838
1600000 339.590149 -1664.84 211.77155 -520.6 261.951933 -877.125
1650000 350.520434 -1488.59 0 -480 338.641232 -685
1700000 206.192767 -1461.04 0 -480 335.012405 -702.5
1750000 297.763594 -1669.38 123.315326 -690.313 307.448488 -673.425
1800000 351.962078 -1433.48 289.043631 -481.2 308.346545 -600.938
1850000 357.736374 -1322.23 339.043631 -388 210.45277 -667.675
1900000 356.688509 -1537.23 331.543631 -390.7 394.037767 -416.9
1950000 240.841815 -1942.87 344.043631 -359 397.887745 -366.7
2000000 368.979912 -1513.44 344.043631 -359 349.373572 -581
2050000 332.547977 -1631.36 299.731491 -475.3 394.515133 -492.313
2100000 340.899863 -1550.78 336.543631 -426.5 331.258053 -444.3
2150000 346.934973 -1461.09 152.355763 -1033.44 418.811816 -254.5
2200000 371.164771 -1527.34 324.043631 -446.2 250.271674 -680.408
2250000 360.581356 -1398.91 341.543631 -361.5 418.775928 -261.8
2300000 352.796811 -1385.63 344.043631 -359 356.064569 -863.175
2350000 343.960811 -1455 341.543631 -457.5 363.56075 -697.6
2400000 348.475469 -1470.63 331.543631 -467.5 95.7118882 -848.75
2450000 338.409107 -1570.78 304.639268 -462.5 141.937983 -765
2500000 296.426394 -1704.79 316.543631 -482.5 327.788462 -824.213
2550000 385.118886 -1455.16 339.043631 -460 310.517198 -722.45
2600000 379.757016 -1331.25 311.543631 -487.5 367.444762 -785.3
2650000 338.922441 -1498.71 339.043631 -460 365.938097 -705.1
2700000 362.916117 -1277.66 329.043631 -470 413.24266 -622.5
2750000 365.036163 -1442.66 311.543631 -487.5 281.127356 -758.425
2800000 367.541673 -1375.47 68.8087263 -635 330.502425 -773.938
2850000 373.565682 -1346.88 0 -1140 353.427637 -602.55
2900000 343.42124 -1410.16 148.550974 -1500.31 404.212193 -575.2
2950000 377.432847 -1387.66 187.536102 -1447.21 308.640424 -701.25
3000000 367.911695 -1330.04 272.907637 -1309.38 413.449835 -597.5

Training
Steps

Standart Unit Layers Terrain Layers
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MLP/ CNN 
 

 
  

Reward Score Reward Score
1000000 584.286914 -199.388 237.57487 -1284.38
2000000 775.636353 -250.593 265.922038 -1330.83
3000000 787.578446 -213.474 314.437109 -1444.77
4000000 785.254675 -177.587 288.128874 -1676.06
5000000 774.320915 -225.487 356.492155 -1466.53
6000000 790.564478 -166.618 135.20682 -2273.04
7000000 785.122811 -202.611 221.153361 -1602.27
8000000 740.768164 -79.15 247.592773 -1516.88
9000000 752.968164 -79.55 265.680237 -1563.21

10000000 750.576497 -41.325 248.955078 -1471.41

Training
Steps

MLP CNN
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