

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

USING CONVOLUTION NEURAL NETWORKS TO
DEVELOP ROBUST COMBAT BEHAVIORS THROUGH

REINFORCEMENT LEARNING

by

Christopher T. Cannon and Stefan Goericke

June 2021

Thesis Advisor: Christian J. Darken
Second Reader: Sean A. Clement

Research for this thesis was performed at the MOVES Institute.
Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2021

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
USING CONVOLUTION NEURAL NETWORKS TO DEVELOP ROBUST
COMBAT BEHAVIORS THROUGH REINFORCEMENT LEARNING

5. FUNDING NUMBERS

6. AUTHOR(S) Christopher T. Cannon and Stefan Goericke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The success of reinforcement learning (RL), as shown with video games such as StarCraft and DOTA 2

achieving above-human performance levels, begs questions about the future role of the technology in
military constructive simulations. The objective of this study was to use convolutional neural networks
(CNN) to develop artificial intelligence (AI) agents capable of learning optimal behaviors in simple
scenarios featuring multiple unit and terrain types. This thesis sought to incorporate a multi-agent training
regimen that could be employed in the domain of military constructive simulations. Eight different
scenarios, all with varying levels of complexity, were used to train agents capable of exhibiting multiple
types of combat behaviors. Overall, the results demonstrate that the AI agents can learn robust tactical
behaviors required to achieve optimal or near-optimal performance in each scenario. The findings
additionally indicate that a better understanding of multi-agent training was attained. Ultimately, CNN
combined with RL techniques prove to be an efficient and viable method to train intelligent agents in
military constructive simulations, and their application can potentially save human resources in the
execution of live exercises and missions. It is recommended that future work should investigate how to best
incorporate similar deep-RL methods into an existing military program of record constructive simulation.

14. SUBJECT TERMS
artificial intelligence, neural network, machine learning, constructive simulation, combat
behaviors, reinforcement learning, RL, convolutional neural networks, CNN, artificial
intelligence, AI

15. NUMBER OF
PAGES

131
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

USING CONVOLUTION NEURAL NETWORKS TO DEVELOP ROBUST
COMBAT BEHAVIORS THROUGH REINFORCEMENT LEARNING

Christopher T. Cannon
Captain, United States Marine Corps

BS, U.S. Naval Academy, 2015

Stefan Goericke
Major, German Army

B.Sc. in Economics, Helmut-Schmidt-University, 2009
M.Sc. in Economics, Helmut-Schmidt-University, 2011

B.Sc. in Business Information Systems, University of Applied Science Wismar, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Christian J. Darken
Advisor

Sean A. Clement
Second Reader

Gurminder Singh
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The success of reinforcement learning (RL), as shown with video games such as

StarCraft and DOTA 2 achieving above-human performance levels, begs questions about

the future role of the technology in military constructive simulations. The objective of

this study was to use convolutional neural networks (CNN) to develop artificial

intelligence (AI) agents capable of learning optimal behaviors in simple scenarios

featuring multiple unit and terrain types. This thesis sought to incorporate a multi-agent

training regimen that could be employed in the domain of military constructive

simulations. Eight different scenarios, all with varying levels of complexity, were used to

train agents capable of exhibiting multiple types of combat behaviors. Overall, the results

demonstrate that the AI agents can learn robust tactical behaviors required to achieve

optimal or near-optimal performance in each scenario. The findings additionally indicate

that a better understanding of multi-agent training was attained. Ultimately, CNN

combined with RL techniques prove to be an efficient and viable method to train

intelligent agents in military constructive simulations, and their application can

potentially save human resources in the execution of live exercises and missions. It is

recommended that future work should investigate how to best incorporate similar

deep-RL methods into an existing military program of record constructive simulation.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. COMBAT MODELING AND WARFARE...1
B. SCOPE AND PROBLEM STATEMENT ...2
C. BENEFIT AND STRUCTURE OF THESIS ...3

II. CONCEPTS, EXAMPLES AND CURRENT RESEARCH5
A. CONCEPTS ..5

1. Types of Simulations ..5
2. Machine Learning and Deep Reinforcement Learning6
3. Neural Networks ..10
4. CNN’s and Multi-Agent Learning ..12

B. STATE OF RL RESEARCH IN RTS GAMES AND
MILITARY SIMULATIONS ...18
1. AI in Games ..18
2. Neural Networks in Military Applications20

III. FRAMEWORK ..27
A. ARCHITECTURE ...27
B. TRAINING ENVIRONMENT ...29
C. STATE REPRESENTATION ..34

IV. SCENARIOS AND RESULTS ...39
A. TWO-VERSUS-ONE ...41

1. Description ..41
2. Results ...44

B. TWO-VERSUS-ONE SPATIAL INVARIANCE46
1. Description ..46
2. Results ...48

C. TWO-VERSUS-TWO..50
1. Description ..50
2. Results ...52

D. THREE-VERSUS-TWO ...56
1. Description ..56
2. Results ...58

E. URBAN TERRAIN ..62
1. Description ..62
2. Results ...64

viii

F. CHANGING URBAN TERRAIN LOCATION68
1. Description ..68
2. Results ...71

G. MULTI-AGENT TRAINING ...75
1. Description ..75
2. Results ...77

H. LARGE-SCALE SCENARIO...81
1. Description ..81
2. Results ...82

V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK87
A. CONCLUSIONS ..87

1. Replication of Boron’s Scenarios ..87
2. Increasing the complexity of Boron’s Scenarios88
3. Spatial Invariance ..88
4. Scenarios with Urban Terrain Features89
5. Multi-Agent Learning ..89
6. Large-Scale Scenario ...90

B. RECOMMENDATIONS AND FUTURE WORK90
C. SUMMARY ..92

APPENDIX. DATA ..93
A. TWO-VERSUS-ONE ...93
B. TWO-VERSUS-ONE SPATIAL INVARIANCE97
C. TWO-VERSUS-TWO..98
D. THREE-VERSUS-TWO ...99
E. URBAN TERRAIN ..101
F. MULTI-AGENT-TRAINING ...103
G. LARGE-SCALE SCENARIO...104

LIST OF REFERENCES ..107

INITIAL DISTRIBUTION LIST ...111

ix

LIST OF FIGURES

Figure 1. RL Structure. Source: [12]. ..9

Figure 2. General Structure of a Neural Network. Source: [22].11

Figure 3. Comparison of MLP and CNN. Source: [25]. ...13

Figure 4. Fully Connected CNN, Source [26]. ..14

Figure 5. Example of State Representation Using Four Input Channels.
Source: [27]. ...15

Figure 6. Training and Evaluation Environment in a Pursuit-Evasion Game.
Source: [27]. ...16

Figure 7. Coral Sea Board Game. Source: [34]. ..21

Figure 8. Used Coral Sea Scenario. Source: [34]. ...22

Figure 9. Structure of an Underlying Hex-Based Simulation. Source: [7].23

Figure 10. General Architecture to Include a-Priori Knowledge into Learning
Process. Source: [7]. ..24

Figure 11. Actual Position and State Representation of Units in a Rectangular
Based Simulation. Source: [6]. ..25

Figure 12. Architecture Human versus AI Match. ..28

Figure 13. Architecture Utilizing Stable Baselines3 for Training...............................29

Figure 14. Unit Types (Infantry, Mechanized Infantry, Armor, Artillery).30

Figure 15. Terrain Types (Clear, Water, Marsh, Rough, Urban).30

Figure 16. Setup Hexagons (Blue Player, No Setup Hexagon, Red Player).32

Figure 17. Hexagonal Board without/with Double Coordinates. Source: [40].34

Figure 18. Stretching of the Y-Axis. ...35

Figure 19. Complete State Space Representation with Three Inputs (Mover,
Blue Units, Red Units). ..36

Figure 20. Action Space (Green: No Action, Brown: Move/ Fire with Distance
1, Blue: Move/ with Distance 2). ...37

x

Figure 21. Two-versus-One Configuration with Fixed Staring Positions (left)
and Changing Position of the Whole Units’ Formation (middle/
right). ..41

Figure 22. Example of Possible Setups in the Two-versus-One Configuration 3.42

Figure 23. Red Forces Behavior in a Withdraw Situation ..43

Figure 24. Two-versus-One Fixed Starting Positions Training Progression.44

Figure 25. Two-versus-One Fixed Starting Formation Training Progression.45

Figure 26. Two-versus-One Random Starting Formation Training Progression.45

Figure 27. Two-versus-One Withdraw AI Formation Training Progression.46

Figure 28. Two-versus-One Spatial Invariance Setup Configurations (left:
training map / right: evaluation map) ...47

Figure 29. Two-versus-One Spatial Invariance Odd Column Demonstration49

Figure 30. Two-versus-One Spatial Invariance Even Column Demonstration49

Figure 31. Two-versus-Two Setup Configurations (left: Fixed Positions / right:
Multiple-Starting-Positions). ...50

Figure 32. Two-versus-Two Fixed Starting Positions Training Progression.52

Figure 33. Two-versus-Two Fixed Starting Position Optimal Performance
Demonstration. ...54

Figure 34. Two-versus-Two Multiple Starting Positions Training Progression.55

Figure 35. Two-versus-Two Multiple Starting Position Optimal Performance
Demonstration ..56

Figure 36. Three-versus-Two Setup Configurations (left: Fixed Positions /
right: Multiple-Starting-Positions) ...57

Figure 37. Three-versus-Two Fixed Starting Positions Training Progression59

Figure 38. Three-versus-Two Fixed Starting Position Optimal Performance
Demonstration. ...60

Figure 39. Three-versus-Two Multiple Starting Positions Training. Progression61

Figure 40. Three-versus-Two Multiple Starting Position Optimal Performance
Demonstration. ...62

xi

Figure 41. Two-versus-One Urban Terrain Scenario Setup Configuration.63

Figure 42. Two-versus-One Urban Terrain Value 0 Points (top) and 60 Points
(bottom) Optimal Performance Demonstration. ..66

Figure 43. Two-versus-One Urban Terrain Value 20 Training Progression.67

Figure 44. Two-versus-One Urban Terrain Value 20 Optimal Performance
Demonstration (top: attack left first/ bottom: attack right first)68

Figure 45. Changing Urban Terrain Location Maps (left to right: maps 1 to 5).69

Figure 46. Space Representation with Four Inputs (Mover, Blue Units, Red
Units, Terrain). ...70

Figure 47. Changing Urban Terrain Location Map 1 Optimal Performance
Demonstration. ...72

Figure 48. Changing Urban Terrain Location Map 2 Optimal Performance
Demonstration. ...73

Figure 49. Changing Urban Terrain Location Map 3 Optimal Performance
Demonstration. ...74

Figure 50. Changing Urban Terrain Location Map 4 Optimal Performance
Demonstration. ...74

Figure 51. Changing Urban Terrain Location Map 5 Non-Optimal (top) and
Optimal (bottom) Performance Demonstration. ..75

Figure 52. Multi-Agent Scenario...76

Figure 53. Movement of Blue and Red Agents. ..77

Figure 54. Battle Development of Blue Versus Red Agent.78

Figure 55. Standard Behavior of Blue Player in Complex Setup.79

Figure 56. Blue Behavior when Red Unit is Adjacent to Rough Hexagon.80

Figure 57. Blue Behavior when Red locks Passage. ...80

Figure 58. Large-Scale Scenario Setup. ..82

Figure 59. Reward Compared between Different Input Layer Variants.83

Figure 60. Behavior of a CNN Agent after 30,000,000 Training Steps.83

xii

Figure 61. Behavior of MLP Agent after 30,000,000 Training Steps.84

Figure 62. Score Progression and Adjusted Reward of MLP and CNN Agent.85

xiii

LIST OF TABLES

Table 1. Mobility Adjustment Based on Unit Type and Terrain.31

Table 2. Firing Power (FP) Based on Shooter and Target Type.33

Table 3. Defender Bonus (DB) Based on Unit Type and Terrain Type.33

Table 4. Used CNN-Architecture...40

Table 5. Two-versus-One Optimal Behavior Performance Values43

Table 6. Spatial Invariance CNN-Architecture ..48

Table 7. Two-versus-One Spatial Invariance Agent Evaluation at 2,000,000
Training Steps ..48

Table 8. Two-versus-Two Scenario Optimal Behavior Performance Values.51

Table 9. Two-versus-Two Fixed Starting Positions Agent Evaluation at
2,000,000 Training Steps. ..53

Table 10. Two-versus-Two Multiple Starting Positions Agent Evaluation at
3,000,000 Training Steps. ..55

Table 11. Three-versus-Two Scenario Optimal Behavior Performance Values58

Table 12. Three-versus-Two Fixed Starting Positions Agent Evaluation at
3,000,000 Training Steps. ..60

Table 13. Three-versus-Two Multiple Starting Positions Agent Evaluation at
4,000,000 Training Steps. ..62

Table 14. Two-versus-One Urban Terrain Scenario Optimal Behavior
Performance Values. ..64

Table 15. Two-versus-One Urban Terrain Agent Evaluation at 2,000,000
Training Steps. ...65

Table 16. Changing Urban Terrain Location Optimal Performance Values.70

Table 17. Changing Urban Terrain Location Percentage of Optimal
Performance Evaluation at 3,000,000 Training Steps.72

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence
C2 Command and Control
CNN Convolutional Neural Network
DOD Department of Defense
DotA2 Defense of the Ancients 2
DQL deep Q-Learning
LSTM long-short-term memory network (LSTM)
MAGTF Marine Air-Ground Task Force
MCTS Monte-Carlo Tree Search
ML Machine Learning
MLP Multi-Layer-Perceptron
MTWS MAGTF Tactical Warfare Simulation
OneSAF One Semi-Automated Force
PPO Proximal Policy Optimization
PK-DQN Prior Knowledge-Deep Q Network
ReLU rectified linear activation function
RL Reinforcement Learning
RTS real-time strategy game
SVG Scalable Vector Graphics
TRPO Trust Region Policy Optimization
VPG vanilla policy gradient

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

We would like to thank Dr. Chris Darken for his unwavering support and guidance

throughout our time at NPS. We are incredibly grateful for the countless hours of

professional guidance you graciously offered on a weekly basis to help complete this thesis.

We would also like to thank Major Sean Clement and TRAC-Monterey for the substantial

amount of knowledge, resources, and advice provided throughout our research.

Additionally, we would like to thank Mr. Chris Fitzpatrick for opening up the MOVES

laboratory and allowing us to use every single machine on a daily basis to train each of our

agents. The number of scenarios explored would not have been possible without his

assistance. Finally, we would like to thank the best MOVES cohort ever for making our

experience at NPS truly unforgettable.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. COMBAT MODELING AND WARFARE

The desire to correctly anticipate an opponent’s strategic or tactical behavior in war

is as old as humanity’s ability to fight these wars [1]. In ancient China, games like Wei Hei

and Go were initially used as a method to strengthen military and political leaders’ strategic

thinking abilities. Later the Romans utilized sandboxes to discuss own and enemy’s

possible moves before a campaign or a battle. However, it was not before the Prussians

with their Kriegsspiel (War Game) in the early 19th century that games with a strict set of

rules became utilized to predict possible outcomes of military engagements. While these

wargames became increasingly popular over the next decades in many armed forces around

the world, a limited capacity to conduct necessary calculations always restricted the level

of complexity these board-based wargames were able to achieve. Additionally, the physical

limitations of board-games restricted the designers to simplified behaviors and game

elements rather than striving for realism. However, improved computing power and user-

friendly graphical interfaces enabled designers in the late 20th century to model wargames

in a higher complexity regarding rules and the number of components in the games.

Furthermore, computers’ utilization allowed the implementation of computer-based

adversaries to play successfully against a human player based on a hard-coded rule-based

AI-software.

Today, computer-based wargames, also referred to as constructive simulations [2],

have become a useful tool across the Department of Defense (DOD). They allow military

leaders to further learn and develop their operational procedures in areas that are often

deemed too costly or dangerous to rehearse regularly. Leaders are provided the ability to

employ their forces against multiple red force designs before any live execution, yielding

them an opportunity to validate their scheme of maneuver without assuming any additional

risk. Large unit staffs at the strategic level often resort to using constructive simulations as

the method of training [3], where leaders can make inputs inside of a simulated

environment, but they are not involved in determining the outcomes of scenarios [2].

2

B. SCOPE AND PROBLEM STATEMENT

The method used to represent adversarial behaviors in computer-based wargames

requires either direct encoding from the scenario designer through scripts or using live

human players for all red force decision making. Both methods provide a sufficient

resolution to represent adversarial behaviors, but each come with their disadvantages [4].

Directly encoding specific behaviors may be possible for low-level scenarios, but as

scenarios are scaled upward, the number of units and possible actions become too

challenging for a script to control and often result in unrealistic behaviors [4]. For the larger

scenarios, using human players as the red force may provide more realistic results, but the

additional human resources cause a logistical strain, and the overall productivity is limited

on the knowledge and ability of the individual players.

A possible approach to solve this problem may lie in the utilization of artificial

neural networks. In the domain of computer gaming, this approach has lately proven to be

quite successful. For instance, for the real-time strategy game StarCraft II, an artificial

neural network was developed that defeated 99.8% of the players regularly participating in

online competitions [5]. While in the domain of computer games, the utilization of artificial

neural networks has made vast progress recently, but within the domain of military used

wargames, research is only beginning. In recent research, Boron [6] and Sun et al. [7].

have shown that artificial neural networks are suitable to solve challenges in simple

military wargame scenarios. Based on the previous work, especially that conducted by

Boron [6], this thesis aims to increase the complexity within the used military scenarios.

While Boron used a simple Multi-Layer-Perceptron (MLP) neural network, this

architecture turned out to be unsuitable when dealing with dynamical starting positions of

own and enemy units as well as dynamic enemies’ behavior. Moreover, the used scenarios

were limited to a maximum of five units on the battlefield [6]. In this thesis, a training

simulation will be built to support a Convolutional Neural Network (CNN) architecture

and include multiple units and terrain types to overcome these restrictions. Additionally,

multi-agent training will be applied in a defined scenario to test if this approach can

successfully be utilized in the domain of military constructive simulations.

3

C. BENEFIT AND STRUCTURE OF THESIS

Due to the topic selection and aforementioned restrictions described, this thesis is

more likely to be assigned to basic research within the field of military constructive

simulations. A quantifiable benefit, such as savings of personnel and material, will not be

achieved at the end of the work. Nevertheless, the work will deepen the understanding of

the uncertainties and difficulties of utilizing neural networks and multi-agent learning to

simulate own and enemies’ unit’s behavior. In the long run, it will contribute to saving

human resources in the preparation and execution of exercises and missions.

The first chapter of this thesis serves as a general introduction to the topic. The

problem is narrowed down, and the research question is formulated. In the second chapter,

underlying concepts such as machine learning, reinforcement learning (RL), and neural

networks will be explained. Additionally, it will include a general overview of artificial

intelligence (AI) applications within the military domain, including an overview of the

current state of research within the domain of military constructive simulations. In the third

chapter, the used software framework will be described. In the fourth chapter, the different

used scenarios will be explained, and the results will be laid down. Thereby, the discussion

of the results for each experiment will be included. In the fifth chapter, a general conclusion

based on Chapters II and IV will be given.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. CONCEPTS, EXAMPLES AND CURRENT RESEARCH

In the last chapter, the goal, scope, and structure of this thesis was presented. This

chapter aims to explain the theoretical background used for this work. In the first part, basic

concepts will be explained. After that, an overview of the current state of research in the

field of neural networks-based AI within the game industry and military applications are

given.

A. CONCEPTS

In this sub-chapter, basic concepts such as machine learning, reinforcement

learning, or neural network will be explained. The sub-chapter starts with an overview of

the different kinds of simulations used within DOD.

1. Types of Simulations

With the exponential growth of computer technology and the improvements made

within the field of input and output devices, simulations of all kinds have become an

important part in preparing military forces for a battle. Simulations not only allow military

leaders to train their forces on all operating levels, but also let them assess and improve

current schemes of maneuver and tactics. The simulations utilized throughout the DOD can

be categorized by the method used to represent people and the environment that they are

interacting with. These categories include live, virtual, and constructive.

In virtual simulations, real people operate simulated systems. A widely known form

of such kind of simulation is an aircraft simulator. The main purpose of such simulation

systems is to train individuals or small groups in different skills such as operating a specific

piece of equipment, making proper decisions in prior defined situations, or communicating

in accordance with given procedures and regulations. Live simulations, on the other hand,

consist of actual people operating with their real equipment [2] in a real environment. Live

simulations are used to rehearse combat drills against simulated or notional enemy in

warlike conditions. While often effective in disseminating instant feedback to the

individual Soldier, live simulations come with several limiting factors. To best replicate a

6

combat environment, live simulations require the participating units and equipment to

operate at strenuous conditions for extended periods. The deterioration of the equipment

when operated at this level requires a significant amount of maintenance, which is often

costly and time-consuming [3]. Live simulations are often limited to the amount of

available space that is dedicated toward training. In the United States, there are only a few

training locations that facilitate live simulation training for units more extensive than a

battalion. With this limitation, live simulations prohibit senior leadership’s opportunity at

the strategic and operational level to train and exercise precise Command and Control (C2).

To overcome this shortage, or when the training objective is to solely enhance the

senior leaderships’ ability in conducting C2, the DOD often resorts to using constructive

simulations as their alternative training tool. In constructive simulations, both the people

and the environment they interact with are simulated [2]. Since constructive simulations

are typically used on higher levels of command, units and terrain can be represented at a

much larger scale through modeling an environment with lower fidelity. In constructive

simulations, mathematical models and algorithms represent units, weapons, equipment,

attrition rates, and the combat behaviors portrayed by each force operating in the

designated environment. Commanders then observe the interactions between the two

forces and analyze the tactics demonstrated by each force. A commander’s ability to

interact with the constructive simulation environment can be categorized as an open form

or a closed form [8]. A closed-form simulation requires input from the commander initially,

but as the scenario is executed, all other decisions for each of the forces are made using

scripted behaviors. Comparatively, in open form simulations, both forces are allowed to

make inputs throughout the entire scenario and base their future behaviors on how the

scenario unfolds before them. The term wargame is widely used as a synonym for military

constructive simulations.

2. Machine Learning and Deep Reinforcement Learning

Machine learning (ML) is a subdivision of AI that uses computer algorithms to train

an agent that uses its past experiences to improve its performance [9] rather than explicit

programming to improve its performance. Based on the method that the learning algorithm is

7

provided information or feedback, machine learning can be typically broken down into three

categories: supervised learning, unsupervised learning, and reinforcement learning [10].

In supervised learning, an agent is presented with a data set where inputs are always

associated with an output that is known to be correct [10]. The agent uses that information

to learn and create a function with rules to always associate those inputs with those outputs.

This method can also be explained as the teacher method. For instance, imagine students

in elementary school are learning how to identify different types of animals correctly. A

teacher might start by showing the students several pictures that explicitly state that the

animal in the image is a dog. The students will then associate common regularities found

in each picture, such as four legs, tail, pointy nose, and fur, to be that of a dog. The teacher

will then test the students by showing them new images that they have never seen before,

where they will be expected to identify all images that contain a dog correctly. If the

students can correctly identify all of the images with dogs, learning can be deemed

sufficient.

Unsupervised learning on the other hand is substantially different. For unsupervised

learning, the agent looks to associate inputs with previously undetected patterns, even

though no known information or labels are provided [10]. Expanding on the previous

analogy, picture again students in elementary school, but this time, they learn how to

associate animals with each other, but they are not learning what the animals are. The

students are once again provided with pictures of animals, except this time, they do not

have anything labeling the animal’s identity. The students are then told to look for

commonalities between the images and separate them into different piles however they saw

fit. If the students could separate the images into separate piles containing the same type of

animal, then training was practical. The students may not know that the picture of a dog is

actually a dog, but they could find commonalities that related all images of dogs together.

The third category of machine learning, reinforcement learning, is training an agent

to learn specific behaviors through the process of interactions that are either returned with

rewards, punishments [10], or nothing. With no prior experiences with the environment,

the agent uses trial and error to find the specific sequence of actions that results in the

highest rewards. Picture a dog learning how to sit for the first time. The owner uses treats

8

as its reward system and will provide one to the dog any time it reacts promptly to the

command to sit. The first time the dog receives the treat, it is not specifically sure of its

actions that led to the treat, so it starts to look back on all previous actions. During that

time, the dog could have laid down, barked, jumped, or ran, so it is nearly impossible for

the dog to initially connect a specific action, or sequence of actions, to be the direct cause

of the treat. Through its training, the dog continues to perform many actions that result in

a treat, several being received a lot sooner than others. Eventually, the dog can piece

together that sitting directly after the owner’s command, will lead to the maximum number

of treats. By continuously reinforcing the dog’s behaviors with treats, the owner effectively

achieved the desired state consisting of a trained dog that sits on command.

To further expand on RL, the general idea is that an agent decides to take a specific

action 𝑎𝑎 based on the state of the environment he is embedded in and a specific function,

named the policy function, 𝜋𝜋. This policy function is a tuple, containing of the state of the

environment (s), the set of all actions the agent can conduct in a specific state, the

probability of the actions to change the environment from its current state to a target state

(s’), and the reward when taking a specific action in a given state. Whenever the agent has

taken an action, 𝑎𝑎𝑡𝑡 he compares the state before and after the action and adjusts his policy

function 𝜋𝜋 in a way, that his total reward, 𝑅𝑅𝑡𝑡 is maximized (see Figure 1). Over the last few

decades, a broad range of algorithms were formulated to implement the general idea of RL.

The different algorithms can be divided into classes that differ in terms of the general

procedure that is applied. Two important classes are the value-based approach and the

policy-gradient approach. Within the value-based class of algorithms, the purpose is to

optimize the total discounted reward by utilizing the value function. One of the more simple

and most popular algorithms of this class is the Q-learning algorithm. Within the class of

the policy-gradient algorithms, an “expected” reward is optimized by finding a good

policy. Thereby the policy is described by a set of parameters, for instance the coefficients

of a complex polynomial function [11].

9

Figure 1. RL Structure. Source: [12].

A relatively new approach that has become widely used in the development of an

RL application is the Proximal Policy Optimization (PPO). PPO is a reinforcement learning

algorithm that uses a Policy gradient approach. It was initially developed as a refinement

of the Trust Region Policy Optimization (TRPO), but PPO thus far has shown better or at

least the same performance as TRPO in different applications [13]. Additionally, it has

better performance figures than several other popular reinforcement learning algorithms,

including the vanilla policy gradient (VPG) [14]. As with TRPO, the general idea of PPO

is to improve a policy by taking large steps along the gradient of the policy function without

causing performance collapse, which is the state at which the optimization algorithm does

not converge anymore but diverges or becomes unstable. Unlike TRPO and many other

policy-gradient algorithms, it uses a first-order instead of a second-order optimization

method, thus implementing this algorithm easier [15].

While RL focuses on choosing the right action to increase a total discounted reward

through trial and error, deep learning concentrates on the abstraction of higher-level

features from less abstract representation observed in lower levels to include raw data.

Several possible architectures to implement deep learning have been described in the

literature, including Deep Neural Networks, Recurrent Neural Networks, or Convolutional

Neural Networks [16]. Although there is a wide area of possible deep learning applications,

including speech recognition, autonomous vehicles, or machine translation, it has lately

drawn increasing attention when combined with RL to hopefully counteract ones of its

10

weaknesses [5],[17]. RL has been used in a wide variety of areas in recent years [18], but

it still comes to its limits when dealing with high-dimensional, often continuous state

spaces. In this case, neural networks’ utilization to deal with high-dimensional sensory

inputs offers an applicable method to mitigate RL weaknesses [11]. This combination of

RL and deep learning is widely referred to as deep RL.

3. Neural Networks

Although the idea of self-learning algorithms based on neural networks was already

discussed in the mid-1940s, it went in and out of fashion several times in the following

decades [19]. Unlike other approaches, the idea never found its specific niche of application

at that time, although they are intensively used today. There were several reasons to blame.

The first is that there has been a huge improvement in the capability of the discovered and

described algorithms. While some older algorithms are still powerful within their specific

domain, newer algorithms tend to be more flexible and more capable of solving different

types of problems [20]. This leads into the second reason. The changing culture within the

IT-domain, away from proprietary software toward open-source libraries and frameworks,

makes even cutting-edge software and algorithms available to a broad range of developers

and users. A vast amount of documentation makes it possible that even developers and

organizations with a limited specialized expertise in that technology use it to develop

applicable and useful tools [20].

While these two reasons are of a more general nature and can be applied to most

other IT subject areas, the following explanations stand out because of their special

significance for the domain of deep RL. Due to the basic concept of deep RL, massive

amounts of data are required during the training phase. With this mass of data becoming

available over the past few years, this technique’s application turned much more feasible

[20]. Besides, even though the training data is generally produced by the RL- mechanics

itself, there was still a lasting constraint that has disappeared within the last decade.

Possessing this massive amount of data through necessary calculations requires enormous

amounts of computational power. Through the exponential growth of technology in recent

11

years, the required computational power has become available, and it is much more

practical to implement deep RL, even with commodity hardware [20].

To fully understand how to implement the mentioned deep RL process, the basics

of neural networks must be understood. In principle, a neural network is a data structure

which follows the architecture of a biological brain. In a mathematical context, a neural

network is a function that can map an n-dimensional continuous input onto (generally lower

dimensional) output. The entirety of this process revolves around connecting a specified

number of neurons through synapses. Each neuron belongs to a specific layer, either the

input layer, the output layer, or one out of one or many hidden layers. Each of these neurons

are fully or partially connected with each neuron on either side of their own layer. The

synapses making the connections between the layers each have their own specific weights.

In addition to the weight value of the synapses, each neuron has a specific value, referred

to as a bias, that is used in combination with the inputs to calculate, the degree to which

the specific set of signals from the previous layer will cause the neuron to get activated

[21]. This calculation is also known as the activation function. Refer to Figure 2 to see the

flow between the layers.

Figure 2. General Structure of a Neural Network. Source: [22].

Several different network structures for different applications and methods of

training have been developed. The simplest form that follows the structure described above

12

includes an input, an output, and one or more hidden layers is known as a multilayer

perceptron network (MLP). Learning usually works by backpropagation, meaning that

after each data point of a training set is processed, the weights and biases are adjusted based

on a calculated error. As soon as one data point is fully processed, the next data point of a

set is sent through the neural network. Another general architecture of neural networks is

recurrent neural networks. Rather than sending the data through the neural network once,

recurrent neural networks process the achieved outputs back into the network as another

input into the network [23].

While each of the neural network architectures mentioned above has its own field

of application, they are unsuitable for classification of complex images. In their structure,

traditional neural networks use one perceptron for each input that is being processed. When

processing images, one pixel is equal to one input, and that is multiplied by however many

pixel layers are in the image. When dealing with a basic image consisting of red, green,

and blue pixel layers, the neurons required quickly start to add up and become

unmanageable for the neural network. For example, an image with a dimension of 28x28

simple black-white pixels would need an input layer of 748 neurons if using an MLP.

Assuming there are two hidden layers, each with 16 neurons and 10 neurons in the output

layer, that sums up to 13,002 weight and bias values existent within the neural net. A

picture of 200x200 pixels with 3 color channels would need 120,000 neurons on the input

layer alone. A structure of this size can easily cause overfitting and result in poor training

[24]. Additionally, when the images are processed through traditional neural networks,

they are flattened, and all spatial variance information is lost [24]. Due to the lost spatial

variance information, the neural network will not be able to identify key aspects of the

image if they are in different locations or differ slightly.

4. CNN’s and Multi-Agent Learning

A separate neural network architecture, Convolutional Neural Network (CNN), has

recently shown success in overcoming the shortfalls that traditional neural networks have

encountered when dealing with image classification. Unlike traditional neural networks,

where a single vector is processed through the input layer and is then transformed through

13

different layers of neurons into a vector in the output layer, a CNN arranges its neurons in

a three-dimensional structure (inputs or color channels, height, width), and uses

convolutional layers to identify key features or patterns in each image [25]. Multiple

convolutional layers can be used to together to better classify and identify key features in

images. The initial convolutional layers can typically identify shapes such as edges,

corners, squares, and circles in the initial layers, but as the neural network goes deeper, the

later layers can detect more specific objects, such as facial features, or classify animals (see

Figure 3).

Figure 3. Comparison of MLP and CNN. Source: [25].

The basis of a CNN revolves around its use of convolutional layers as its hidden

layers. In each of the convolutional layers, there is a filter, or otherwise known as a kernel,

used to scan the image and identify key patterns throughout the image [25]. A filter is

simply a matrix of numbers that are typically randomly initialized. The size of the filter

can be whatever 2-dimensional shape designated by the user, but it is typically much

smaller than the initial input. Additional parameters that the user can specify are the number

of filters used, padding of zeros placed around the border of the input to control the output’s

spatial size, and stride, which is the rate at which the kernel will slide over the image. When

receiving an input (image height, image width, number of input channels), the filter will

slide over the input from the top left to the bottom right and will calculate the dot product

between the filter and each set of pixels it slides over. After the full image is scanned, the

output is now a 2-dimensional activation map. The convolutional layer is then usually

immediately followed by a rectified linear activation function (ReLU), defined in Equation

(1), introducing non-linearity into the activation map [24].

14

 () max(0,)f x x= (1)

Furthermore, it is common to insert a pooling layer that reduces the activation

map’s spatial size and the overall amount of computation in the neural networks. The most

common approach to a pooling layer is using a 2x2 filter with a stride of two, that uses a

max operation function over each set of values in the 2-dimensional activation map. This

pooling technique can reduce the complexity of a 4x4 activation map by downsizing it to

a 2x2 activation map. The last type of hidden layer in a CNN is a fully connected layer

used to flatten the 3-dimensional activation map (see Figure 4). A single fully connected

layer is typically placed after the last pooling layer to map the input layer to the output

layer [25].

Figure 4. Fully Connected CNN, Source [26].

The use of CNNs has the ability to extend much further than basic image

classification. By representing the state space for an RTS game or time-step-based

simulations in an image-like manner, CNNs can be incorporated as the neural network

architecture for deep RL. For instance, Egorov [27] used a CNN to properly train agents to

behave in a pursuit-evasion game. The game used images like sensory information to

represent the agent and environment state. The used CNN consisted of 2-layers, each

consisting of 32 inputs, 3x3 filters, a stride of 1, and a ReLU. The CNN was provided four

15

input features: Obstacle Locations, Opponent Locations, Friendly Locations, and Self

Location, which are presented in Figure 5. The information in these features was encoded

as zero if empty or a non-zero integer if occupied. The evading agent behaviors were

represented through a heuristic policy that moves the agent in the direction furthest from

the closest pursuing agent. The pursuing agent behaviors were represented by a stochastic

Q-Value policy that utilizes deep RL during its training regimen. The pursing agent’s

behaviors are rewarded when capturing an evading agent through occupying the same grid

square. When multiple pursuing agents are operating in the same environment, they must

cooperate to capture the evading agents in the shortest amount of time. During the training

phase, one agent was trained at a time, while all the other agent’s policies were kept fixed.

After a set number of iterations, the trained policy got distributed to all of the other

pursuing. This process allowed the agents to continuously build on and improve their

performance over time.

Figure 5. Example of State Representation Using Four Input

Channels. Source: [27].

For evaluation, Egorov [27] demonstrated the agent’s ability to generalize training

for multiple scenarios. A pursuing agent was trained on two different environments

simultaneously, each having a different obstacle configuration, as shown in Figure 6. Once

training was complete, the policy was evaluated in a new environment that combined the

16

two obstacles. The agent successfully generalizes the training on the two separate instances

and achieves similar results to an agent trained solely on the evaluation environment.

Additionally, the agent’s ability to generalize training with multiple pursuing and evading

agents in the same scenario was evaluated. Three policies were trained for 1 vs. 1, 2 vs. 2,

and 3 vs. 3 scenarios. Each policy was evaluated on all three scenarios. For the 1 vs. 1

scenario, there was no need for cooperation between the agents, so all three policies could

achieve optimal performance. When increasing the complexity in the 2 vs. 2 and 3 vs. 3

scenarios, both policies had the best performance on their respective scenarios, but both

still outperformed the 1 vs 1 policy [27].

Figure 6. Training and Evaluation Environment in a Pursuit-Evasion

Game. Source: [27].

In general, an agent trained by reinforcement-learning techniques is limited by the

complexity of the used environment itself. This deficiency can be addressed with a multi-

agent-learning approach, where the agents are learning off of each other’s behaviors rather

than pre-written scripts. Multi-agent learning approaches show two valuable properties.

First, it is possible to train agents that can show highly complex behaviors even though the

environment in which they operate is based on a limited number of simple rules. An

example of this is DeepMind’s AlphaGo [28], where Go’s environment is limited heavily

through the rules of the game. The complexity needed to train a highly performant agent is

introduced into that environment using a second agent as the opponent. The other valuable

property is that through multi-agent RL, the agent will be trained in a variable environment

17

according to its difficulty. As its performance increases, the agent will be forces to solve

more complex as the skill level of its opponent will also increase. Through continuously

matching opponents with comparable skills levels in multi-agent RL [29], the agents will

continue to exploit its opponent’s vulnerabilities and successfully perform more complex

task.

In many recent papers, multi-agent reinforcement learning is separated into two

phases, the exploration curriculum and a competitive phase [29]. During the exploration

curriculum, the agents must be initially trained from a state with no prior interactions with

the environment. A common approach that was used by Bansal et al. [29]. involves the

agent learning all of its information about the environment by simply interacting with its

surroundings. There is nothing injected into the environment to guide the agent’s decisions

other than the reward system itself. A more intricate approach that has shown success in

quickly training an agent in recent years uses supervised learning from old replays to train

the agent initially [5]. Here the agent will mimic the behaviors shown to have success from

prior plays, but once it learned every technique from that replay, the agent will then explore

unidentified methods that will hopefully produce better results. With that approach, comes

two disadvantages. In the case of commercial games, this solution is feasible as the

developers likely have access to the replay data from thousands of played games. For other

instances, including military simulations, a library with this amount of data is often

unavailable. The other disadvantage is that human players might tend to apply a not optimal

strategy to a problem. The agents trained with that replay data might be biased toward a

solution that they would not choose if trained without such negatively biased data.

During the competitive phase, the already trained agents will be improved by

playing against other trained agents. In this phase, matchmaking has a huge impact on the

trained agent’s ability to deal with complex situations. An important aspect of this phase is

to ensure that an already trained good AI does not “forget” bad gameplays from weaker

opponents. A possible strategy to prevent that is to let good agents play against agents of

weaker skill frequently [5].

18

B. STATE OF RL RESEARCH IN RTS GAMES AND MILITARY
SIMULATIONS

Since the emergence of AI in the 1950s, people have consistently tried to find ways

to measure its performance against human beings. Games are a common tool that

researchers have resorted to as their platform since it allows them to measure and compare

performance in real-time while also often resulting in a distinct winner. Therefore, the

following chapter will first give an overview of latest successful utilization of AI,

particularly deep RL, within the game industry. In a second step, the current research in

regard to deep RL within military constructive simulations is described.

1. AI in Games

As a game that is accepted worldwide for requiring a large amount of intelligence

and strategic ability, chess has gained a lot of attention from researchers seeking to develop

an AI agent that can outperform top-level players. In 1997, IBM’s computer, DeepBlue

[30], was the first to accomplish this feat by defeating the world chess champion at the

time, Garry Kasparov, with a final score of 3.5 to 2.5 [30]. In 2017, researchers directed

their focus toward Go, a game much larger in complexity than chess and often deemed too

challenging for a computer to master. DeepMind Technologies’ AlphaGO, which was

trained using previous human and computer play combined with deep learning techniques,

defeated one of the world’s best Go players, Lee Sedol [28].

Despite researchers achieving success developing AI agents capable of defeating

the best players in games where both players are visible to all information inside a state at

any given time [31], games that withhold private information, such as poker, had yet to be

tackled. Developing an AI agent in environments that contain private information only

available to that individual player increases the complexity drastically. Simple solutions

that try to search for an optimal sequence of actions are no longer applicable since certain

information must not be revealed to their opponents. Using an approach that reassesses its

strategy and weighs the probability of success after each decision, Brown and Sandholm

[31] developed an AI agent, Libratus, that triumphantly defeated four professional players

in no-limit Texas hold’em.

19

With AlphaStar, OpenAI has recently shown the power of an approach based on

the connection of ordinal neural networks and a long-short-term memory network (LSTM)

in an environment, far more complex than environments solved with comparable

approaches so far. An action space including the control of hundreds of units and their

possible actions and a state-space build-up from different feature planes result in 1026

possible choices at each decision point. Also, a game structure where the final success is

dependent on an overall strategy that is played over a thousand steps made the development

of this StarCraft II AI way more complex than solutions implemented before for

applications like Go or the ATARI games. Nonetheless, OpenAI achieved to train an agent

who could beat 99.8% of the players ranked on the game-platform battle.net [5].

One reason for the success of OpenAI in StarCraft II was their approach of using

multi-agent training. Having available the datasets of 971,000 replays of matches between

human players, they trained their agents in a supervised learning approach based on the

gameplay of humans that belonged to the top 22% percent of all players. They then reduced

the exploration problem that appears when training agents from scratch with a random

exploration schedule. In a second step, they trained their agents against each other. To

prevent learning cycles, they used a complex matchmaking process in which their agents

were divided into different subgroups. Based on that subgroups, they ensured that even

high-performing agents regularly got weaker opponents, thus not “forgetting” how to react

when less efficient strategies are played [5].

Defense of the Ancients 2 (DotA2) is another multiplayer real-time strategy game

(RTS) for which OpenAI successfully developed an AI algorithm based on neural

networks. Brought onto the market in 2013, it averaged between 500,000 and 1,000,000

players between 2013 and 2019. With an active community of professional players and

over $35 million in prize money during the 2019 international championship, it is one of

the major massive online player games currently on the market [32].

As an RTS game, it has specific properties that make RL for that game significantly

different than more “traditional” style games like chess, Go, or even arcade games. One of

the main differences is that RTS games have a much longer time horizon than other games.

While a usual chess game lasts approximately 80 moves, an average DotA2 game runs over

20

45 minutes with 30 frames per second. Assuming the AI will decide on the next action

every fourth frame, that still sums up to over 20,000 steps whenever a decision has to be

made. Moreover, unlike in chess, Go, or arcade games, the game’s state is only partially

observable, so an agent must successfully make assumptions about the enemy’s behavior

based on incomplete data. The last difference revolves around the number of dimensions

present in the game’s state. While chess, Go, and comparable games are quite limited

according to input-variables and possible course-of-actions, in RTS games, the AI has to

deal with a vast amount of input parameters, including different unit types, map data,

building options, etc. Furthermore, after processing this amount of input data, the AI finally

has to choose one action out of a vast range of different actions. In DotA2, these possible

actions range between 8,000-80,000 in each step [32].

The developed AI successfully competed against professional players in the 2019

international DotA2 championship. The AI’s foundation is, similar to AlphaStar, an LSTM

with a single layer comprising of 4096 units. The multi-dimensional inputs from a current

game state are put into a single vector that serves as input for the LSTM. Within this LSTM,

the one-dimensional input vector is processed, leading to an output based on which the next

action is chosen in combination with a policy function. Unlike in AlphaStar, the AI does

not control all units with one neural network. Similar to the nature of the game where

different players each control their own hero, each hero is controlled by a replica of the

described LSTM. Variations in the chosen action result from a different observation space

the various players face due to the visibility of information and the fog of war [32].

2. Neural Networks in Military Applications

Based on the successful developments related to games, advanced deep RL

approaches were applied for military research. One application that lately drew the

attention of the publicity was an AI developed within a Defense Advanced Research

Project Agency research project. The developed AI algorithm, called AlphaDogfight, was

trained to successfully control a fighter plane in a dogfight against a real human pilot,

displaying tactics that resulted in the AI winning all five runs [33].

21

Within the military constructive simulation domain, Moy and Shekh [34] utilized

an AlphaZero-algorithm as the agent to play the Hexagon-wargame Coral Sea, a wargame

used by the Australian Defense Forces. It is a turn-based game that is played on a

hexagonal-grid board with two players (see Figure 7). To win the game, a player has to

achieve defined objectives within a specific number of rounds. A turn consists of three

phases. In the movement phase, players move their units from one hexagon to another. It

is possible to have more than one unit occupy the same hexagon. In the acquisition phase,

players define which enemy units their units shall target and fire upon. In the fire phase,

the firing order from the acquisition phase are executed. After each turn is finished, the

Initiative Card is turned over to the other player. The player holding the Initiative Card

goes first during the movement and acquisition phase, but second during the firing phase.

In their research, Moy and Shekh used a simple scenario with one red and one blue unit.

The red unit was initially posted on the top left corner of the board, the blue unit in the

lower right (see Figure 8). The red unit had to defend its position; the blue unit had to reach

the red starting position. When both players conduct no action, red would win this game

by default. However, due to players’ changing order of precedence between the acquisition

and firing phase, the blue player would always win when showing optimal behavior.

Figure 7. Coral Sea Board Game. Source: [34].

22

AlphaZero was originally developed by DeepMind and trained to play games like Go

or chess and consists of a neural network combined with a Monte Carlo Tree Search (MCTS)

algorithm. The algorithm starts with an “empty” neural network that is only provided the basic

rules of the game. Using this approach for conducting training from scratch in a given scenario,

many computational resources are often required. This requirement stems from the wide range

of exploration needed to calculate the possible moves between the blue player’s initial position

and destination. Moy and Shekh implemented three predefined behaviors to solve this

problem: SafeGoalMove, GoalMove, and RandomLegal. SafeGoalMove is used to move into

the next closest hexagon to the objective and only moves into the range of enemy fire if the

Initiative Card is held. GoalMove is used to move to the next closest hexagon to the objective

without when the Initiative Card is not held. A RandomLegal behavior is any move allowed

by the game rules.

Figure 8. Used Coral Sea Scenario. Source: [34].

During the training phase, an agent now takes one of the above strategies using a

probability of Ph. If 1-Ph is selected, the traditional MCTS solution from the Alpha Zero-

approach is used. Using this strategy, it was possible to reduce the training time and

computational resources down from approximately 24 hours to 15 minutes.

23

Additional research using neural networks in constructive military simulations was

completed by Sun et al., where they used Prior Knowledge-Deep Q Network (PK-DQN)

within a constructive hex-based military simulation [7]. In this simulation, two parties, red

and blue, each command units to move across a battlefield and fire once their opponent is

within range. Each player’s goal is to win a specific hex, or waypoint, marked by a flag, as

shown in Figure 9.

Figure 9. Structure of an Underlying Hex-Based Simulation. Source:

[7].

Instead of using the PPO RL algorithm to train the agent, Sun et al. utilized a modified

approach. Typically, Q-Learning takes all possible actions for a unit on the battlefield at each

specific state and places them into a table with the expected reward for that action-state

combination. Unfortunately, this approach in complex environments causes the table to

increase drastically with each additional game state or possible action added to the scenario.

To deal with that shortcoming of a traditional Q-Learning approach in complex scenarios,

DQL was developed. Here, the Q-learning table is replaced by a neural network that is

utilized to determine an agent’s next action given the current state [35].

24

DQL has recently proved to be a successful approach for a huge range of problems.

However, for their simulation, Sun et al. identified a high level of randomness between the

games and an overall slow speed of convergence. To address this problem, they introduce

“prior knowledge” into the learning process. “Prior knowledge” is defined as a function,

mapping a set of specific characteristic states P={p1..pn} onto an optimal action

a*∈{a1..an}. Whenever a given state S is an element of P, the mapped optimal action a*, is

used as final action instead of the original estimated “deep learning” solution. For a set of

generic states, the action an agent takes is not determined by a trained neural network

anymore, but by a set of pre-defined rules (Figure 10). This causes the number of

explorative moves, especially at the beginning of each game, to be reduced drastically.

Figure 10. General Architecture to Include a-Priori Knowledge into

Learning Process. Source: [7].

For evaluation, Sun et al. created a scenario in which an agent, trained by PK-DQN,

plays against a rule-based opponent. The results are compared with results produced by

utilizing an unmodified DQN for training. With the modified PK-DQN, stable results are

achieved much faster than with an unmodified DQN. While the traditional DQN approach

required 33 hours, a PK-DQN approach reached similar results after only 23 hours.

Sun et al. used a hex-based grid as the foundation for the simulation where a unit is

either located in a hex-field or not, which allowed for a basic state representation for the

units. Another possible approach was conducted by Boron [6]. In his simulation, entities

move over a plain battlefield consisting of featureless terrain. For the battlefield

representation, a rectangular grid where each grid section hosts a sensor in its center is

25

used. By calculating the distance of a unit to each of the 4 closest sensors and normalizing

this distance over the sum of the four distances, he determines a rational value indicating

if and how much of a unit is positioned in a grid cell (see Figure 11). Boron’s question in

his research focuses on whether an AI agent utilizing an MLP framework can be trained to

apply the economy of mass and economy of force within simple military scenarios. In his

results, Boron trained AI agents to show stable optimal tactical behavior within simple 2

versus 1, 2 versus 2, and 3 versus 2 scenarios. Using different optimization algorithms, he

found that TRPO might outperform PPO and VPG when applying deterministic combat

models. Furthermore, trained AI agents learn to apply the tactical principle of mass or

economy of force depending on the discount factor used during the training.

Figure 11. Actual Position and State Representation of Units in a

Rectangular Based Simulation. Source: [6].

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

III. FRAMEWORK

Within the last chapter, basic concepts such as machine learning, neural networks,

and multi-agent-learning were explained. Moreover, the current state of research within the

field of constructive simulations was presented. In this chapter, the used simulation

software, called Atlatl, will be explained. Atlatl is an AI training environment developed

within the MOVES Institute at the Naval Postgraduate School (NPS). In the first part of

the chapter, the basic architecture will be explained and the reason for using different

external software packages is given. In the second part, the capabilities and general rules

of Atlatl will be laid down.

A. ARCHITECTURE

Atlatl is implemented in a client-server architecture that uses JSON for

communication between the participating entities. The server and AI clients are both

implemented in Python, as it offers a large variety of open-source projects, and it is popular

throughout the deep RL research community. JavaScript is used to create the user interface

needed for human client interactions. To illustrate the hexagonal grid and the unit icons in

a graphical representation, Scalable Vector Graphics (SVG) [36] is incorporated. SVG is a

specification developed by the World Wide Web Consortium that allows the two-

dimensional vector display to be easily represented in an HTML browser. SVG stores the

exact coordinates for each part of each object represented, enabling the graphics to be easily

scaled. The ease of scaling vectors allows SVG to have clearer graphics over a bitmap

image. The architecture for a match including a human player versus an AI player is shown

in Figure 12.

28

Figure 12. Architecture Human versus AI Match.

Stable Baselines3 was selected as the RL resource for this research. The Stable

Baselines3 library is an improved version of its original project, Stable Baselines, a fork of

Open AI’s Baselines library that creates a common interface for many RL algorithms and

includes simple and understandable documentation [37]. Although Stables Basslines3 can

be used on all operating systems, it is advised for Windows users to utilize Anaconda, an

open source Python distributor that allows for an easier installation of packages and

required libraries [38]. Python 3.6+ and PyTorch 1.4+ installations are required before

using Stable Baselines3. The Stable Baselines3 library currently implements twelve

different RL algorithms, including multiple on-policy and off-policy algorithms, that can

easily be bound into self-developed Python code [38]. As with Open AI’s Baseline, the

Stable Baselines3 algorithms can only be applied in environments that are compliant to the

OpenAI’s Gym library. As such, a Gym-compliant interface is implemented in Atlatl that

serves as bridge between the original Atlatl environment and the algorithms implemented

in Stable Baselines3. The architecture for a training setup utilizing Stable Baselines3 is

shown in Figure 13.

29

Figure 13. Architecture Utilizing Stable Baselines3 for Training.

The steps involved during a training run with the shown architecture replicate the

same agent-environment loop discussed previously during the explanation of RL, in which

an agent chooses an action in an environment and is returned with an observation and award

[39]. When using Gym, the agent-environment loop is implemented using four values that

consist of the observation the agent makes, the reward it receives, a Boolean representing

the status of the environment, and diagnostic information that can be used to improve the

environment [39].

B. TRAINING ENVIRONMENT

The developed training environment allows the representation of different unit

types and various terrains in a two-player turn-based wargame. The tiles of the map are in

hexagonal shape, and the map size is not restricted. Combat outcomes for each scenario

are determined by a deterministic Lanchester model. In each turn, a player can order a unit

either to move or to shoot according to the range restrictions applied to the units’ type and

location. Each player takes successive turns, where the acting player may take one action

for each of its units. The order in which each unit acts is based on a pre-determined fixed

rotation, which is pre-determined when creating the order of battle for the scenario. Both

30

players aim to maximize their score, where the blue player maximizes a positive score

value, and the red player maximizes a negative score value. A game always begins with a

setup phase and ends if either one player has all units destroyed or the maximum number

of turns is reached.

Currently, there are four-unit types allowed in the player’s force structure. The unit

types include infantry, mechanized infantry, armor, and artillery. These units are

represented as entities at the regimental level and will abide by NATO Joint Military

Symbology when graphically displayed in the simulation, as shown in Figure 14.

Figure 14. Unit Types (Infantry, Mechanized Infantry, Armor,
Artillery).

When creating a simulation scenario, five separate terrain types can be selected:

clear, water, marsh, rough, and urban. Figure 15 shows the graphical representation of the

different terrain types in the simulation.

Figure 15. Terrain Types (Clear, Water, Marsh, Rough, Urban).

31

The clear terrain type can be thought of as a flat plain that allows freedom of

movement through its space for all unit types. Marsh terrain represents the wetlands

typically found at the edge of rivers and lakes, full of high grass and areas that restrict

movement. The rate and distance at which a unit can move through different terrain types

are determined by a mobility value. This value indicates the percentage of a turn required

for a unit to navigate through a specific terrain type. This value is also dependent on both

the terrain and unit type, as shown in Table 1. For example, an infantry unit moving into

clear terrain has a mobility factor of 100, indicating that the unit cannot move anywhere

during that move since 100 percent of its time in the current turn is needed to conduct the

moving order. Armor units have a mobility factor of 50 when moving into clear terrain

though so they can conduct a second move into another clear terrain if desired. Artillery

units are not able to move into marsh terrain, indicated by ‘NA’ in the table. All unit types

cannot move into water.

Table 1. Mobility Adjustment Based on Unit Type and Terrain.

For each hexagon, it is determined for which side it can be utilized as setup hexagon

during the setup phase. A blue dot indicates a possible setup hexagon for the blue player,

a red dot a possible setup hexagon for red player. Which hexagons are finally chosen by

the player as starting hexagon for his units is determined by the used AI respectively by

the human player (see Figure 16).

32

Figure 16. Setup Hexagons (Blue Player, No Setup Hexagon, Red

Player).

When entering combat with the opposing force, all unit types have the ability to

fire into neighboring hexagons. However, as an indirect fire weapon system, artillery units

have a fire range of two hexagons. The rate of attrition (ATTR) for an attacked unit in

combat is modeled by the attacker’s strength (ATCKStr), the attacker’s firepower (FP)

based on attacker and target unit type (ATCKType/ TARType), and the defender’s bonus (DB)

based on target unit type (TARType) and the terrain type the target unit is located in

(TARTerrain). The value gotten based on that numbers is finally adjusted by a scaling factor

(SF) (see Equation (2)). The scaling factor was set to 0.5 during the whole thesis research.

 , ,Str Type Type Type TerATTR ATCK FP Atck Tar DB Tar Tar SF   = • • •    (2)

Each unit type has a separate strength scale determined based on their target’s unit

types. This simulation provides an advantage to armor by giving it the most protection and

a disadvantage to artillery with it having the least protection. Table 2 describes the entire

scaling relationships between each unit type and shows how the firing power is determined

based on attacker’s and defender’s unit types. While in combat, once each unit reaches a

strength level below 50 percent, the unit is deemed combat ineffective and is removed from

the simulation.

33

Table 2. Firing Power (FP) Based on Shooter and Target Type.

When a non-infantry unit does occupy marsh terrain in the simulation, it receives a

defensive disadvantage as it would be more exposed and have limited areas to navigate.

This is modelled by a defender’s bonus (DB) of 2 (see Table 3). When an infantry unit

occupies a rough or urban terrain hexagon however, it is considered that their foot mobile

troops will have more objects to use as cover. Thus, they receive 50 percent less damage

in the simulation.

Table 3. Defender Bonus (DB) Based on Unit Type and Terrain Type.

The score of a game is calculated based on the losses each side suffered. For each

point of attrition, the blue player inflicts onto red units, +1 is added to the game score. For

each attrition inflicted onto the blue units, -2 is added to the game score. Control over city

hexes generate an additional change of the score value, positive if blue owns a city and

negative if red owns a city.

34

C. STATE REPRESENTATION

As mentioned in Chapter III.A, the utilization of Stable Baselines3 presupposes a

OpenAI Gym conform RL environment. With that, it is necessary to transform the native

Atlatl state and action space into a representation than can be used for RL. To deal with

some disadvantages in regard to the coordination system in hexagonal based simulations

compared to a rectangular grid system, Atlatl uses a double coordinate system [40]. In a

usual offset hexagonal coordinate system, the hexagon located at the top left of the grid

would be labeled as (0,0), the hexagon adjacent to the right of it as (1,0), and the hexagon

in the third column as (2,0). In the double coordinate system, coordinates in the y-axis

direction will be incremented by 2. For instance, the hexagon perpendicular below the

(0,0)-hexagon is the (0,2)-hexagon, and the (0,4)-hexagon follows that. With that pattern,

directions of movement can be directly translated into a new hexagon coordinate. A

movement to the top-left always comes with a decrease of 1 on both axes. In a coordinate

system without double coordinates, the change on the y-axis would be dependent on

whether the x-value is odd or even (see Figure 17).

Figure 17. Hexagonal Board without/with Double Coordinates.

Source: [40].

35

The state space provides by the Atlatl framework based on the double coordinate

system will be transformed into a Gym conform observation space by the implemented

Gym interface. By default, the neural network is provided three inputs to represent the state

space in the simulation. These inputs include the location of the moving units, the locations

and strengths of all blue force units, and the locations and strengths of all red units. A fourth

input was added during the research to include a terrain’s locations and identity. The

different inputs are represented as arrays. For its representation, a 1.0 or strength value is

used to represent if a hexagonal tile is occupied, and a 0.0 is used to represent the space as

empty. Due to the formatting when using a 2-dimesional array, the x-axis and y-axis are

flipped for the inputs. To ensure a fixed convolutional kernel can see the same set of

neighbors regardless of where it is centered when using 2-dimensional arrays, an additional

row is added, and objects located in odd columns are represented one row lower than

objects in even columns (see Figure 18).

Figure 18. Stretching of the Y-Axis.

36

Figure 19 demonstrates the full observation space given to the neural network for

the shown situation in the simulation. The top array holds the information which unit is the

acting unit. The unit in the top left on hexagon (2,2) is the first unit in the turn. This is

represented by a 1.0 in the third row, third column of the array. The second input is the

locations and strengths of all blue units. Since both units still have full strength, there is a

1.0 in the corresponding positions of the second array. As for the blue units, the third array

holds the information about location and strength of all red units. After each unit

movement, the features are updated to correctly reflect.

Figure 19. Complete State Space Representation with Three Inputs

(Mover, Blue Units, Red Units).

Based on the given inputs, the neural network decides on an action in accordance with

the rules of the wargame. The used action space is discrete numbers ranging from 0 to 18,

representing the 19 possibilities a unit can choose as its next move or fire target (see Figure 20).

37

If the neural network selects an action outside the boundaries for the acting unit, that action is

suppressed, and the unit will receive a hold older to remain in the same hexagon for that move.

Figure 20. Action Space (Green: No Action, Brown: Move/ Fire with

Distance 1, Blue: Move/ with Distance 2).

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

IV. SCENARIOS AND RESULTS

In the last chapters, an overview of theoretical concepts used in this thesis was

provided. Moreover, the state of current research within the game industry as well as in the

domain of military constructive simulations was laid down. After that, the used simulation

framework, called Atlatl, was described. In this chapter, the scenarios investigated within

this thesis are described. The observed AI agent’s behavior is explained, and possible

conclusions are formulated. In total, six scenarios are investigated. In a first step, the results

gained from the scenarios used by Boron [6], 2-versus-1, 2-versus-2 and, 3-versus-2, are

shown. While the starting positions of the blue and red player and the red player’s behavior

are fixed in Boron’s scenarios, the scenarios in this thesis will bring in variability during

the blue and red players’ setup phase and in the red behavior. In a second step, the results

gained from more complex scenarios are shown. These scenarios differ from the first three

scenarios in complexity due to different unit types, terrain types, or multi-agent training

approaches.

For all scenarios except the multi-agent training, the blue player was the only player

trained by the neural network. The number of turns played in the game was by default set

to 20. As for scoring values the default settings of -2 and 1 are used (see Chapter III.B.).

To account for the red force has an embedded advantage within Atlatl’s structure, changing

the score multiplier to -2 points instead of just -1 point for each strength point caused by

the blue force helps simulate the existent defensive superiority. For the red player, the

following hard-coded AIs are used:

• “passive”: A passive red AI does not move at all. Furthermore, it does not

react when blue units enter adjacent hexagons.

• “shootback”: A shootback red AI does not move at all. However, whenever a

blue unit is in an adjacent hexagon, the red unit opens fire. If there is more

than one blue unit in the adjacent fields, the target unit is selected randomly.

40

• “withdraw”: A withdraw red AI only moves when two or more blue units are

in adjacent hexagons. If no blue unit is adjacent, the red unit does not move at

all. If there is one blue unit adjacent to the red unit, the red unit opens fire.

• “random move”: A random move red AI moves with a chance of 40% into a

random direction. However, as soon as blue units are within adjacent hexes, it

opens fire as if it were a shootback AI.

As an optimization algorithm, PPO is known for its forgiveness when conducting

hyperparameter initialization [41]. As the focus of this thesis is not to maximize the use of

the neural network, but to explore the RL capabilities in constructive simulations, PPO

seemed to be an excellent fit. The learning parameters were kept constant during all

scenarios with a learning rate of 0.0003 and a clip range of 0.2. For the underlying neural

network architecture, a 3-layer CNN is used (see Table 4). For the first layer, a kernel size

of 3 by 5 was chosen to adjust for the used double coordinates, where the y-axis is stretched

in the underlying hexagon board structure.

Table 4. Used CNN-Architecture.

The reward system used to reinforce the behavior of the agent during training

incorporates the Atlatl score value achieved by the player at the end of each turn. However,

this value is modified. A reward is only given to the agent if the score value during that

turn is greater than 0. All rewards greater than 0 are then discounted based on the number

units still alive compared to the number of units at the start of the scenario (see Equation

(3)). The same reward structure is used for all scenarios.

 if > 0, = * number of blue units alivescore value Reward score value
total number of blue units

 (3)

Layer Input Channels Output
channels

Kernel size Stride Padding

1 3 32 (3,5) (1,2) 2
2 32 64 (3,3) (1,1) 1
3 64 64 (3,3) (1,1) 1

41

A. TWO-VERSUS-ONE

1. Description

The training scenario entails a two-versus-one configuration comprising two blue

units attacking a single stationary red unit on a 7x7 terrain. The scenario is used in four

different configurations. In the first configuration (“fixed”), all units are set up in a fixed

absolute position on the battlefield. The shootback AI is used for the red force behavior.

For the second configuration (“fixed formation”), the first configuration is modified so that

the relative position of the units during the setup phase is kept constant. Still, the whole

formation is shifted randomly over the battlefield (see Figure 21).

Figure 21. Two-versus-One Configuration with Fixed Staring

Positions (left) and Changing Position of the Whole Units’
Formation (middle/ right).

In the third configuration (“random”), the units are randomly positioned on the

allowed setup fields and the red force’s behavior are still described by the shootback AI

(see Figure 22). For the fourth configuration (“withdraw”), the units set up positions are

consistent with the second configuration. However, instead of a shootback AI, a withdraw

AI is used for the red forces.

42

Figure 22. Example of Possible Setups in the Two-versus-One

Configuration 3.

Due to the simple configuration of the scenarios, the optimal score was manually

calculated. In the first three configurations, the maximum score for the blue force is

achieved when it manages to move both units next to the red unit simultaneously. In this

case, the red force will cause 50 damage to the blue force in an initial attack, leading to a

scoring value of -100 points. In the next turn, both blue units attack the red unit causing 75

damage points. However, since the red unit is below the strength threshold of 50 percent,

the unit is deemed combat ineffective and is removed from the simulation. Resulting from

the attack, the blue force scores 100 points, leading to a final game score of 0 points and a

remaining strength value of 150. The reward used for the training process in this scenario

is slightly different from the default reward previously described. Instead of discounting

the reward based on the number of remaining blue units, the discount factor is calculated

as the quotient of the remaining blue strength divided by blue strength at the start of the

game. The optimal reward in these three configurations is 75 (see Table 5).

43

Table 5. Two-versus-One Optimal Behavior Performance Values

Configuration Optimal Blue
Strength

Optimal Total
Discounted Reward

Optimal Score

fixed 150 75 0
fixed formation 150 75 0
random 150 75 0
withdraw 200 100 100

In the fourth configuration (“withdraw”), the values differ. This is because an

optimal behaving blue force will force the red unit to retreat by attacking simultaneously

with both units. As result, two situations can occur. In the first situation, the red unit retreats

onto a hexagon where it is out of range of both blue units. In that case the blue units

advance, and both get into contact with the red unit. In the second situation, the red unit

retreats onto a hexagon that is in range of one blue unit. In that case, the one unit opens

fire, causing 50 point on the score. The second unit will advance into contact with the red

unit, forcing it to retreat again. In the next situation where the red unit is in contact with

only one blue unit, the unit gets destroyed (see Figure 23).

Figure 23. Red Forces Behavior in a Withdraw Situation

44

2. Results

For the first configuration (“fixed”) of this scenario five blue agents are trained for

2,000,000 training steps. After training, each agent is tested in 10 full repetitions against a

red force using the shootback AI. To measure the agent’s training progression, the average

achieved score and percentage of repetitions played with perfect behavior were collected

at an increment of 100,000 training steps. Three out of the five agents started to show

perfect behavior already after a few thousand training steps (see Figure 24). One agent

adapted perfect behavior early in the training process but switched to imperfect behavior

at around 600,000 training steps. Another agent quickly learned to attack with just one unit,

but never learned to attack with both.

Figure 24. Two-versus-One Fixed Starting Positions Training

Progression.

For the second configuration (“fixed formation”) of this scenario, five agents are

trained for 5,000,000 training steps. As with configuration 2, each agent is tested in 10 full

repetitions against a shootback AI. One agent achieved stable, perfect behavior for the first

time at around 2,000,000 steps. In general, all agents improved their average achieved score

value over time, ending up with an average score value close to 0 after 5,000,000 training

steps (see Figure 25). However, only one agent came into a position of winning all 10

repetitions with optimal behavior. Overall, the percentage of repetitions played with

optimal behavior ranges between 40–100% when conducting more than 4,000,000 training

steps.

45

Figure 25. Two-versus-One Fixed Starting Formation Training

Progression.

Similar to the second configuration, the agents in the third configuration

(“random”) were trained with 5,000,000 training steps. Over the whole training process,

none of the agents managed to show perfect behavior in all of the played ten repetitions.

As a result, the average achieved score always stayed below the value 0 (see Figure 26).

Based on a visual assessment of the percentage of optimal played repetitions, it seems that

above 4,100,000 training steps, all agents arrive at a state where they win at least 20% of

the played games with optimal behavior. However, a training process going above the used

5,000,000 training steps might deliver more reliable data for this assessment.

Figure 26. Two-versus-One Random Starting Formation Training

Progression.

46

For the fourth configuration (“withdraw”), 10,000,000 training steps were used.

Again, five agents were trained and evaluated in 10 repetitions against a withdraw AI at

each increment of 1,000,000 training steps. Two agents achieved nearly optimal scores on

average after 7,000,000 training steps and kept that performance for the remain of their

training regimen. Two agents achieve a stable average score value of about -37.5 points,

but optimal performance was never achieved. These agents demonstrated a behavior in

which both units attacked in a straight line, with one blue unit directly following the other.

The fifth agent started to improve his behavior at about 5,000,000 steps but never achieved

am average score value comparable with the two best agents (see Figure 27).

Figure 27. Two-versus-One Withdraw AI Formation Training

Progression.

B. TWO-VERSUS-ONE SPATIAL INVARIANCE

1. Description

CNNs and their convolutional layers are specifically designed to achieve spatial

invariance, meaning the neural network is capable of identifying key features in an image

no matter where they are located. In this scenario, an agent will be evaluated on its ability

to achieve spatial invariance by performing the same behaviors across the entire map after

training on a fixed two-versus-one configuration. As shown in Figure 28, the agent will be

trained on a map where all units are set up in fixed absolute positions. Once training is

complete, the agent will then be evaluated on a map consisting of fourteen different setup

positions. The setup up positions will start with setup 1 in the top left where the top blue

unit is located in hexagon (0,0) and will scan left to right, top to bottom, ending with setup

47

14 where the top blue unit is in hexagon (6,2). The relative positioning of the units during

the setup phase will be kept constant in the stack formations, and they will all be shifted

randomly over the battlefield. The agent must perform the same massing behavior

described in the previous scenario for all fourteen setup configurations to achieve optimal

performance.

Figure 28. Two-versus-One Spatial Invariance Setup Configurations

(left: training map / right: evaluation map)

To reduce the number of values being outputted by the neural network during

training, an additional MaxPool2D layer was added. The standard CNN structure for this

thesis typically outputs a 9-by-8 activation map. By inserting a 9-by-8 MaxPool2D layer

after the third convolutional layer, the final activation map is reduced to only a single

number (see Table 6). By minimizing the neural network’s outputs, the agent’s behaviors

should remain the same throughout the battlefield as long as the same activation map value

is achieved.

48

Table 6. Spatial Invariance CNN-Architecture

2. Results

The neural network trained five separate agents for 2,000,000 training steps. After

training, each agent was evaluated on its ability to demonstrate optimal performance on all

fourteen possible setup configurations in the evaluation map. Ten complete repetitions

were completed for each setup position and the total discounted reward was logged. The

total discounted reward was the only performance value used for this scenario. To achieve

optimal performance, the trained agent needs to receive a total discounted reward of 100

points.

All five agents’ behaviors were identical (see Table 7). Each agent learned the

optimal behavior on the center setup position (setup 6) in which it was trained, where both

blue units entered hexagons adjacent to the red unit on the same turn and destroyed the red

unit in two attacks. However, once the agents were shifted to other setup positions, their

performances varied depending on which column they started in.

Table 7. Two-versus-One Spatial Invariance Agent Evaluation at 2,000,000
Training Steps

Layer Input Channels Output
channels

Kernel
size

Stride Padding

1 3 32 (3,5) (1,2) 2
2 32 64 (3,3) (1,1) 1
3 64 64 (3,3) (1,1) 1
MaxPool2D - - (9,8) (1,1) -

49

For all setup positions in odd columns, the agents’ tactics mimicked what was

shown on the training setup positions as shown in Figure 29.

Figure 29. Two-versus-One Spatial Invariance Odd Column

Demonstration

When the agents were evaluated in setup positions starting in even columns though,

only random movements were shown by the trained agent for the entirety of the repetition

(see Figure 30). It was evident that the agents did not recognize that current state and did

not know what behaviors needed to be performed.

Figure 30. Two-versus-One Spatial Invariance Even Column

Demonstration

50

C. TWO-VERSUS-TWO

1. Description

Increasing the number of units from the first scenario, this scenario is comprised of

a two-versus-two engagement where two blue units attack two red units. The red force will

remain stationary and solely use the shootback AI for its combat behaviors. As shown in

Figure 31, two different configurations will be evaluated for this scenario. The first

configuration entails both the red and blue forces having fixed starting positions that remain

constant during each iteration. In the second configuration, the blue force’s starting

position will vary during each repetition. Each unit has a set of six possible starting

locations of which one is randomly chosen at the start of each repetition. However, the red

force will continue to remain in a fixed starting position located at the center of the map.

Figure 31. Two-versus-Two Setup Configurations (left: Fixed

Positions / right: Multiple-Starting-Positions).

For the trained agent to achieve optimal performance in this scenario, it must

successfully learn how to conduct two coordinated attacks. The blue units must first start by

simultaneously attacking one of the red units. Once that red unit has been destroyed, both blue

units need to navigate to the remaining red unit and conduct another simultaneous attack. If the

two blue units accomplish successful coordination, then the resulting blue force will have only

51

one unit remaining with either 50 or 75 heath depending on who the red units randomly decide

to attack. The optimal behavior will remain the same no matter the configuration.

Similar to the two-versus-one scenario, Atatl’s scoring system in combination with

the blue agent’s discounted reward will be used to evaluate the blue agent’s performance.

The optimal score the blue agent is seeking to achieve is either -50 or -100 points, and a

discounted reward of either 150 or 175 points. After conducting the first simultaneous

attack, the score will be 0 due to the trained agent having one unit at full health and one

unit at 50 health and the red force having only one unit with full health. As both blue units

are still alive, the trained agent will receive the full reward of 100 points for the first attack.

During the second attack, if the red unit decides to attack the blue unit with 50

health, that unit will be destroyed, but the other blue unit can attack using its full strength

to inflict 50 damage on the first turn and 25 damage on the second turn. That unit’s health

will also reduce by 25 health from the red attack. With only one blue unit alive, the reward

will now be discounted by 50 percent, so the trained agent will only receive 50 points for

the destruction of the red unit. The final score of this iteration will be -50, and the trained

agent will receive a discounted reward of 150 points. If the remaining red unit decides to

attack the blue unit with full health instead, both blue units will now be left with 50 health.

During the trained agent’s initial attack, it will receive the full 50 points for the damage

inflicted as both units are still alive but will have one unit destroyed during the red unit’s

attack. In the final turn, the final blue unit will destroy the red unit and receive a discounted

reward of 25 points. The final score for this iteration will be -75 points, with a total

discounted reward of 175 points. There is an even distribution between the two possibilities

this scenario can unfold.

Table 8. Two-versus-Two Scenario Optimal Behavior Performance Values.

Configuration Optimal Blue
Strength

Optimal Total
Discounted Reward

Optimal Score

Fixed 50/75 150/ 175 -50/ -100
Multiple-Starting 50/75 150/175 -50/ -100

52

2. Results

For each configuration in this scenario, five different blue agents were trained at

2,000,000 and 3,000,000 training steps, respectively. Each agent was evaluated with 100

repetitions at every increment of 100,000 training steps. Each repetition completes a full

engagement between the blue and red forces, and the resulting score is recorded. The

achieved score and discounted reward for each agent at the specific training step is shown

in Figure 32. The optimal values, as described in Table 8, are visualized as black lines.

All five trained agents were able to achieve the required score and discounted

reward needed for optimal performance by the conclusion of their training. While four out

of the five agents reached optimal performance before 500,000 training steps, Agent 2

required 1,800,000 training steps before learning the optimal behaviors. The slight

differences in the input features based on which blue unit received damage during the first

simultaneous attack caused the neural network difficulty understanding the appropriate

tactics needed for the second attack. While all of the other agents did achieve optimal

behaviors much earlier, there were brief instances of instability where their average score

and discounted reward dropped below the optimal threshold. Each of the agents were able

to make the quick corrections needed to get back on track.

Figure 32. Two-versus-Two Fixed Starting Positions Training

Progression.

After training, all of the agents yielded an average score close to -75 and an average

discounted reward of near 160. This score validated that no matter what blue unit was

53

initially attacked, the blue agent displayed the appropriate tactics needed to destroy the red

force while receiving the fewest number of casualties. Figure 33 displays the resulting

tactics for a single repetition that resulted in a resulting score of -50 and a total discounted

reward of 150, with one blue unit remaining with 75 health. The tactics show the trained

agent massed both units simultaneously on the left red unit, reorienting themselves after

the first unit is destroyed, then conducted another simultaneous attack on the right red unit.

Through understanding the importing of massing its forces, the blue force effectively

destroyed each of the red units.

Table 9. Two-versus-Two Fixed Starting Positions Agent Evaluation at
2,000,000 Training Steps.

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg.
Discounted
Reward

160.3
+/- 1.2

159.3
+/- 1.8

162.0
+/- 1.3

163.8
+/- 1.3

162.6
+/-1.3

Avg. Score -70.5
+/- 2.5

-76.0
+/- 4.1

-75.8
+/- 2.7

-77.5
+/- 2.5

-77.5
+/- 3.1

Optimal
Performance

Yes Yes Yes Yes Yes

54

Figure 33. Two-versus-Two Fixed Starting Position Optimal

Performance Demonstration.

Due to the increased complexity when introducing multiple starting positions in the

2v2-MSP-configuration, an additional 1 million training steps were awarded to each agent

when training. However, the method for evaluating each agent remains the same. Unlike

in the previous configuration, all five trained agents achieved the average score needed for

optimal performance at similar times, but as expected, they required an additional 300,000

training steps. The majority of the training progression remained stable, but each agent also

experienced a brief portion of instability where corrections needed to be made. Overall, the

neural networks effectively learned the optimal behaviors and retained the appropriate

tactics throughout the training.

55

Figure 34. Two-versus-Two Multiple Starting Positions Training

Progression.

After 3,000,000 training steps, each trained agent achieved an optimal average

score near -75 points, and an average discounted reward close to 160 points. While the

starting positions may have differed, the tactics displayed remain the same as the fixed

position configuration tactics. The results show the blue units coordinating their first attack

where both units move into the left red unit’s range on the same turn. After the left red unit

is destroyed, the blue units reorganize, then conduct another simultaneous attack on the

right red unit. Figure 35 displays the results when the outcome has a blue unit with 50

strength, a final score of -100 points, and a total discount reward of 175 points.

Table 10. Two-versus-Two Multiple Starting Positions Agent Evaluation at
3,000,000 Training Steps.

 Policy 1 Policy 2 Policy 3 Policy 4 Policy 5
Average Score -74.5 +/-

2.5
-76.0 +/-
4.5

-78.0 +/-
2.5

-79.8 +/-
3.0

-79.8 +/-
3.0

Average Discounted
Reward

162.2 +/-
1.3

163.0 +/-
1.3

164.0 +/-
1.3

160.9 +/-
1.6

162.3 +/-
1.4

Optimal Performance? Yes Yes Yes Yes Yes

56

Figure 35. Two-versus-Two Multiple Starting Position Optimal

Performance Demonstration

D. THREE-VERSUS-TWO

1. Description

Further expanding on the two previous scenarios, this scenario encompasses a

three-versus-two engagement, where three blue units attack two red units. To replicate

Boron’s three-versus-two scenario [6] accurately where one red unit was a lower echelon

than the other red unit, the red force in this scenario will have one red unit with 25 reduced

strength points at the start of each iteration. The red force’s behavior will remain the same,

where the units are stationary throughout the engagement and will utilize the shootback AI

for its combat behaviors. The neural network will train the blue force on two different

scenario configurations, as shown in Figure 36. The first configuration entails fixed starting

positions for both the blue and red forces. For the second configuration, the red force will

57

start in the same location, but the blue force will be distributed throughout three separate

regions located in the northwest, northeast, and southern portions of the map. In each

region, each unit has a set of six possible starting locations of which one is randomly chosen

at the start each repetition.

Figure 36. Three-versus-Two Setup Configurations (left: Fixed

Positions / right: Multiple-Starting-Positions)

In Boron’s three-versus-two scenario [6], the agent’s performance was evaluated

on its ability to exhibit both economy of force and massing through utilization of a discount

factor. If a discount factor higher than 0.98 was used, the agent attacked using massing

behaviors where all three blue units destroyed the stronger red unit simultaneously before

moving toward the other weaker unit. If using a discount factor lower than 0.98, the agent

looked to win the engagement as quickly as possible by having two units simultaneously

attack the stronger red unit while the other blue unit attacked the other red unit alone. Once

the stronger red unit was destroyed, the two other blue units would mass on the remaining

blue unit. While this thesis aims to recreate all of Boron’s scenarios utilizing a CNN instead

of an MLP neural network, due to the difference in how combat is modeled in Atlatl,

economy of force will be the only combat behavior evaluated for the blue force. For

infantry engagements in Atlatl, most cases only require two successful attacks to destroy

58

another unit. If the third blue unit were to try to participate in that engagement to show a

massing behavior as seen in Boron’s work, the red unit will be destroyed before the it has

an opportunity to attack.

For this scenario, optimal performance can only be achieved if the trained agent is

able to properly learn how to use economy force to engage both red units simultaneously.

One blue unit must start by attacking the weaker red unit on the right, while the other two

blue units simultaneously attack the left red unit. If successful economy of force behavior

is shown, then the blue agent will have one unit with full strength, one unit with 75 strength,

and one unit with 50 strength. The trained agent’s performance will be evaluated using

Atlatl’s scoring system and their total discount reward.

The optimal performance scores the trained blue agents need to achieve are the

same for both configurations and was calculated through manual iterations of the scenario

(see Table 11). When the single blue unit attacks the weaker red unit on the right, it will

initially take 25 damage before destroying the red unit with 75 damage, causing the score

to be 0. When the two blue units attack the red unit on the left, one blue unit will receive a

50-damage loss before both of them destroy the red unit with 100 damage, resulting in a

score of 0. Due to all three blue units being alive at the end of the scenario, the trained

agent will receive the full reward of 175 points.

Table 11. Three-versus-Two Scenario Optimal Behavior Performance Values

Configuration Optimal Blue
Strength

Optimal Total
Discounted Reward

Optimal Score

Fixed 225 175 0
Multiple-Starting 225 175 0

2. Results

The neural network trained five different agents for each configuration in this

scenario. With the increased complexity when adding an additional blue unit, additional

training time was awarded. 3,000,000 training steps was used for the fixed starting position

configuration, and 4,000,000 was used for the multiple starting positions configuration.

59

As shown in Figure 37, four out of the five trained agents learned the behaviors

needed to achieve the optimal score and discounted reward for the fixed starting position

configuration. Most of the agents learned the tactics needed to destroy the red unit with full

health almost immediately, as depicted by the average discounted reward of 100 at 100,000

training steps. However, it was not until approximately 2,000,000 training steps before

most of the agents learned how to use the additional blue unit to attack the remaining red

unit. Once the agent achieved the optimal score and discounted reward, their behavior

remained relatively stable for the remainder of the training. For the agent that did not

achieve optimal performance, Agent 2, proper economy of force tactics was never learned.

Rather than splitting its forces and using all three units to attack each red unit

simultaneously, the same two blue units destroyed the first red unit to attack the other red

unit then, leaving one blue unit utterly unused for the entirety of the iteration. As the same

two units were used for both attacks, the trained agent risked having the complete

destruction of one blue units which would results in 33.3% lower discounted reward.

Figure 37. Three-versus-Two Fixed Starting Positions Training

Progression

When evaluating the trained agents at 3,000,000 training steps, all agents besides

Agent 2 achieve an average score close to 0 and an average discounted reward near 173

points (see Table 12). These scores show that most agents understood the importance of

distributing their forces to appropriately attack both red units simultaneously, as described

previously and shown in Figure 38.

60

Table 12. Three-versus-Two Fixed Starting Positions Agent Evaluation at
3,000,000 Training Steps.

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg.
Discounted
Reward

0.0 +/-
0.0

-15.5 +/-
4.6

-1.5 +/-
1.1

3.5 +/-
2.2

-4.8 +/-
2.9

Avg. Score 175.0 +/-
0

131.8 +/-
3.8

172.8 +/-
1.3

172.0 +/-
1.5

172.8 +/-
1.3

Optimal
Performance

Yes No Yes Yes Yes

Figure 38. Three-versus-Two Fixed Starting Position Optimal

Performance Demonstration.

Unlike the previous configuration, all agents trained on the multiple starting

position configuration achieved the optimal score and discount reward needed for optimal

performance by the end of their training regimen. Surprisingly, the neural network had

better performance when training the agents on the multiple starting position configuration

than the stack configuration. Rather than starting in a stack formation that required a high

level of coordination between the units during initial turns, the units could move freely

during their initial turns. The only coordination that needed to occur between the blue units

was for them to occupy adjacent hexagons to the red unit in the same turn. The more

straightforward tactical approach allowed the agents to learn the optimal quicker than the

fixed configuration.

61

The agents learned how to split their forces and coordinate a simultaneous attack

early on during their training. As shown in Figure 39, it only took four out of five agents

500,000 training steps to achieve the optimal performance values, vise the 2,000,000 in the

fixed configuration. While the performance was initially better, there were some

occurrences of instability for several starting positions where the trained agents did not

coordinate their attack on the stronger red unit appropriately. This behavior resulted in two

units with 50 health and one unit with 75 health, which cause the final score to be lower

without affecting the discounted reward (see Table 13).

Figure 39. Three-versus-Two Multiple Starting Positions Training.

Progression

Figure 40 demonstrates the optimal performance achieved by one of the trained

agents. The units positioned in the northwest and south starting regions initially start by

moving toward the red unit with full health, while the blue unit starting in the northeast

region moves toward the red unit with reduced health. Simultaneously, all three blue units

coordinate an attack where each red unit is destroyed, leaving one blue unit with full health,

one with 75 health, and one with 50 health.

62

Table 13. Three-versus-Two Multiple Starting Positions Agent Evaluation at
4,000,000 Training Steps.

 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Avg.
Discounted
Reward

7.8 +/-
2.9

-10.5 +/-
3.83

-6.5 +/-
1.8

-2.0 +/-
1.2

-0.5 +/-
0.5

Avg. Score 173.5 +/-
0.8

174.8 +/-
0.2

173.4 +/-
0.9

174.8 +/-
0.2

174.8 +/-
0.3

Optimal
Performance

Yes No Yes Yes Yes

Figure 40. Three-versus-Two Multiple Starting Position Optimal
Performance Demonstration.

E. URBAN TERRAIN

1. Description

The training scenario involved a two-versus-one configuration where two blue units

attack a single stationary red unit. Expanding on previous two-versus-one configurations,

the complexity of the training environment was increased by introducing a single urban

terrain hexagon in the southwest portion of the map (see Figure 41). The urban terrain

hexagon rewards a fixed bonus to a force if one of their units occupies the hexagon at the

end of each turn. To continuously receive the urban terrain’s bonus after initial occupation,

one unit in that force must remain in the hexagon; otherwise, no bonus will be received.

63

For this scenario, agents will be trained on three different urban terrain hexagon values (0,

20, and 40), and the responding behaviors will be analyzed.

Figure 41. Two-versus-One Urban Terrain Scenario Setup

Configuration.

When examining behaviors for the scenario with the urban terrain hexagon valued

at 0 points, the optimal behavior requires the trained agent to mass its force on the red unit

with complete disregard for the urban terrain hexagon. Similar to the previous two-versus-

one configuration, the final score will be zero, and the total discounted reward will be 100.

For the configuration with urban terrain valued at 60 points, optimal performance is

achieved when both blue units bypass the red unit and occupy the urban terrain using the

shortest and quickest possible route. After initial occupation on the 11th turn, the blue force

must continue to have one unit remain in the hexagon for the rest of the iteration, resulting

in a final score and total discount reward of 600 points.

For the second configuration, when the urban terrain hexagon is valued at 20 points,

more robust behaviors are required from the trained agent to achieve optimal performance.

Both blue units must initially start by moving toward the red unit and occupy hexagons

adjacent to the red unit on the same turn, allowing the red unit to attack first. There are two

possible courses of action for optimal performance, both of which depend on the blue unit

initially attacked. If the right blue unit is attacked first, both blue units will remain in a

64

position to attack and destroy the red unit. Once it has been destroyed, the left blue unit

needs to navigate to the urban terrain hexagon and occupy it on the 15th turn. However, if

the left blue unit is attacked first, it will immediately start heading toward the urban terrain

hexagon instead of participating in the attack. Due to the left blue unit being attacked first,

the right blue unit with full strength now has the attacking advantage and can destroy the

red unit independently. While the strength of the blue force and the score will be lower at

the end of the iteration, the reward for occupying the urban terrain hexagon on the 13th

turn versus the 15th outweighs the reduced combat reward. The specific values needed for

optimal performance are outlined in Table 14.

Table 14. Two-versus-One Urban Terrain Scenario Optimal Behavior
Performance Values.

Urban Terrain
Value

Optimal Blue
Strength

Optimal Red
Strength

Optimal Total
Discounted Reward

Optimal
Score

0 150 0 100 0
20 (Left/ Right Attack) 125/ 150 0 220/ 260 110/ 120

60 200 100 600 600

2. Results

Five separate agents were trained at 2,000,000 training steps against a red force

using the shootback AI for each urban terrain hexagon value. In total, there were 15 agents

trained for this scenario.

By adjusting the urban terrain hexagon value, the agents successfully learned three

district behaviors that maximize the total discounted reward received for each

configuration. As expected, when the urban terrain value was 0 or 60 points, all agents

could easily learn the optimal behaviors quickly, as no other behaviors resulted in a final

discounted reward near the value of the optimal behavior. When the urban terrain was

valued at 20 or 60 points, all five agents learned the optimal behavior in less than 100,000

training steps and retained those behaviors for the duration of training. When evaluated

after 2,000,000 training steps, each agent for those two urban terrain achieved the optimal

score during each repetition (see Table 15). However, when the urban terrain was valued

65

at 20 points, only three of the five agents were able to learn the optimal behaviors. The

other two agents got stuck in a local optimum where they completely ignored the red unit

and went straight to occupying the urban terrain hexagon. The two blue agents never

learned that destroying the red unit before occupying the urban terrain hexagon would

result in their total discounted reward approximately 60-points greater.

Table 15. Two-versus-One Urban Terrain Agent Evaluation at 2,000,000
Training Steps.

 Urban
Value

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Avg. Score 0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0
Avg. Disc.
Reward

0 100.0 +/-
0.0

100.0 +/-
0.0

100.0 +/-
0.0

100.0 +/-
0.0

100.0 +/-
0.0

Avg. Score 20 239.6 +/-
2.0

180.0 +/-
0.0

243.6 +/-
2.0

180.0 +/-
0.0

238.8 +/-
2.0

Avg. Disc.
Reward

20 115.1 +/-
0.5

80.0 +/- 0.0 114.1 +/-
0.5

80.0 +/- 0.0 115.3 +/-
0.5

Avg. Score 60 600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

Avg. Disc.
Reward

60 600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

600.0 +/-
0.0

Figure 42 demonstrates the behaviors displayed by the trained agents during their

evaluations when the urban terrain hexagon was valued at 0 and 60 points. When valued at

0 points, the blue agent demonstrated the same behavior previously seen in the two-versus-

one scenario. Both units coordinated their attack, so they occupy the hexagons adjacent to

the red unit on the same turn, receive minimal casualties, then destroy the red unit on the

following turn. As the urban terrain hexagon provides no bonus for occupation, the trained

agent remained in place following the destruction of the red unit. When the urban terrain

hexagon value was worth 60 points, the trained agent decided to bypass the red unit

altogether and head straight to the urban terrain. If the trained agent decided to attack the

red unit then occupy the urban terrain hexagon, the maximum discounted reward it could

have received was 340 points, 160 points less than the optimal behavior.

66

Figure 42. Two-versus-One Urban Terrain Value 0 Points (top) and 60

Points (bottom) Optimal Performance Demonstration.

While observing each agent’s training progression when the urban terrain hexagon

was valued at 20 points, it showed how critical the exploration in the first 200,000 training

steps was for the agent’s success. Each agent reached its highest or close to its highest

discounted reward value that it would receive throughout the entire training regimen early

on in their training. Due to the structure of PPO, the agent’s exploration rate is at its highest

during the initial training steps but then dramatically decreases as the training progresses.

Due to this structure, the exploration rate is too low after 200,000 training steps for two of

the agents to find another behavior outside of their local optimum, resulting in them never

learning the optimal behaviors. However, the other three agents learned the optimal

behavior before 200,000 training steps and retained it throughout the entire training

regimen (see Figure 43).

67

Figure 43. Two-versus-One Urban Terrain Value 20 Training
Progression.

The optimal behaviors shown by Agents 1, 3, and 5 during their evaluation when

the urban terrain hexagon is valued at 20 points is presented in Figure 44. The two

demonstrations reveal how the trained agent’s behavior differs based on which unit is

randomly attacked by the red unit. If the left blue unit is attacked first, the left blue unit

immediately travels toward the urban terrain and allows the right blue unit to destroy the

red unit on its own. The iteration ends with the left blue unit occupying the urban terrain

hexagon with 50 health and the right blue unit left with 75 health after destroying the red

unit. However, when the red unit attacks the right blue unit, the left blue unit must help

with the attack otherwise, the right blue unit will be killed. Once both blue units attack and

destroy the red unit, the left blue unit advances toward and occupies the urban terrain

hexagon.

68

Figure 44. Two-versus-One Urban Terrain Value 20 Optimal

Performance Demonstration (top: attack left first/ bottom:
attack right first)

F. CHANGING URBAN TERRAIN LOCATION

1. Description

After manipulating an agent’s behavior through altering the value of an urban

terrain hexagon, this scenario will now look to observe the effect on an agent’s behaviors

when the urban terrain hexagon is moved around the map. In this scenario, an agent will

be trained on five separate maps that will rotate consecutively after each training iteration

of the scenario. When the agent starts its training, it will start on the first map. After 20

turns and that iteration is complete, the scenario will reset with the subsequent map loaded.

This process will continue until the agent reaches its maximum training steps.

In each map, the units are placed in the identical location. The only thing that

changes between each map is the location of the urban terrain hexagon. As seen in Figure

45, the five urban terrain locations include a center, northern, eastern, southern, and

western position. The urban terrain hexagon rewards a fixed bonus of 24 points to a force

69

if one of their units occupies the hexagon at the end of each turn. As in the previous

scenario, the unit must remain in the hexagon to continuously receive the additional bonus

in the following turns.

Figure 45. Changing Urban Terrain Location Maps (left to right: maps

1 to 5).

To account for the different urban terrain hexagon location in each of the maps, the

neural network is provided an additional input that denotes the location of the urban terrain.

Similar to the other input layers, a 1.0 is used to represent the hexagon as urban terrain and

a 0.0 as clear terrain. As illustrated in Figure 46, the fourth array represents how the urban

terrain location is represented as an input. Since the urban terrain is located in the (4,6)

hexagon, there is 1.0 denoted in the 4th row, 11th column in the fourth array.

70

Figure 46. Space Representation with Four Inputs (Mover, Blue Units,

Red Units, Terrain).

Unlike any previous scenario where an agent only had to learn a single behavior,

the agent now has five different behaviors to learn during its training regimen with each

map having its own corresponding behaviors. The performance values needed to achieve

optimal performance on each map are summarized in Table 16. Due to the randomness of

the shootback AI causing iterations to end with different blue strength values, several maps

will have multiple optimal performance values.

Table 16. Changing Urban Terrain Location Optimal Performance Values.

Map Optimal Blue
Strength

Optimal Red
Strength

Optimal Total
Discounted Reward

Optimal Score

1 100/ 125 0 212.8/ 388/ 436 44/ 81.5/ 129.5
2 150/ 125 0 436/ 484 336/ 334
3 200 100 480 480
4 150 0 340 240
5 150/ 125 0 436/ 484 336/ 334

71

For Map 1, both blue units must converge on the red unit, destroy it, then have one

blue unit occupy the urban terrain hexagon. The blue units will require three attacks on the

red unit before destroying it due to the defensive advantage given by the urban terrain. In

Maps 2 and 5, the behavior remains consistent with the Urban Terrain scenario when it was

valued at 20 points. If the blue unit closest to the urban terrain hexagon is attacked first

after they converge on the red unit, it will move into the urban terrain hexagon, leaving the

other blue unit with full health to independently destroy the red unit. If the unit opposite to

the urban terrain hexagon is attacked first, then both units will stay to destroy the red unit

before one occupies the urban terrain hexagon. In Map 3, one blue unit must occupy the

urban terrain hexagon and remain stationary for the entirety of the iteration. The other blue

unit should do nothing, leaving the red unit completely untouched. Lastly, in Map 4, both

blue units need to attack and destroy the red unit simultaneously, then have one blue unit

quickly occupy the urban terrain hexagon.

2. Results

Five separate agents were trained for 3,000,000 training steps. After their training,

each agent was evaluated based on their ability to achieve optimal performance on all five

maps. Only the agent’s performance after 3,000,000 training steps was used. As a

consequence of the multiple optimal performance values for each map, the method for

displaying the agent’s results needed to be simplified from the previous scenarios. The

percentage of optimal performance repetitions each agent performed during its evaluation

was recorded.

Given multiple maps, each with different urban terrain hexagon locations, the

agents were able to learn the optimal behaviors for most of the configurations. Using the

additional input feature that denotes the terrain location, the agents properly adjusted their

behavior to receive the highest discounted reward for each location. As shown in Table 17,

for Maps 1–4, all agents displayed optimal performance for all 100 repetitions during their

evaluation. Map 5, however, was deemed challenging for most agents as only Agent 2 was

able to learn the optimal behaviors. All the other agents failed to recognize the discounted

reward benefit of destroying the red unit, and their only tactic entailed solely occupying

72

the city. Map 2 and Map 5 were the most complex configurations in the scenario as they

required the most robust behaviors for optimal performance. Although successful for Map

2, the agents were not able to learn the robust behaviors during the exploration phase.

Table 17. Changing Urban Terrain Location Percentage of Optimal
Performance Evaluation at 3,000,000 Training Steps.

 Map 1 Map 2 Map 3 Map 4 Map 5
Agent 1 100.0% 100.0% 100.0% 100.0% 0.0%
Agent 2 100.0% 100.0% 100.0% 100.0% 100.0%
Agent 3 100.0% 100.0% 100.0% 100.0% 0.0%
Agent 4 100.0% 100.0% 100.0% 100.0% 0.0%
Agent 5 100.0% 100.0% 100.0% 100.0% 0.0%

 In Map 1, each of the agents used the simultaneous massing technique displayed in

each of the previous scenarios, where both blue units entered into the red unit’s combat

range during the same turn (see Figure 47). Due to the defensive advantage awarded to the

red unit for occupying the urban terrain hexagon, the trained agent needed three attacks to

finally destroy the red unit. Immediately following the attack, one blue unit occupied the

urban terrain hexagon and remain stationary for the remainder of the repetition. As a result

of the red unit’s occupation of the urban terrain hexagon for 7 or 8 turns before it is

destroyed, the resulting score for all runs (44, 81.5, or 129.5) was lower than the total

discounted reward (212.8, 388, or 436).

Figure 47. Changing Urban Terrain Location Map 1 Optimal

Performance Demonstration.

73

In Map 2, the agents identified they would receive the highest total discounted

reward if the red unit is attacked and destroyed before occupying the urban terrain hexagon

(see Figure 48). In their evaluation, the agent’s behaviors were slightly different depending

on which blue unit was attacked first. As described in the scenario description, if the right

blue unit was attacked first, it will immediately occupy the urban terrain hexagon while the

left blue unit destroys the red unit independently. However, if the left unit is engaged first,

it no longer has the advantage, so the blue unit must stay for the attack until the red unit is

killed before occupying the urban terrain hexagon. Depending on the tactics displayed, the

trained blue received a final score of 336 or 334 and a total discounted reward of 436 or

484 for each repetition.

Figure 48. Changing Urban Terrain Location Map 2 Optimal
Performance Demonstration.

Map 3 was the simplest of all the urban terrain hexagon configurations. Depicted

in Figure 49, all the trained agents quickly identified they would receive the highest reward

for solely occupying the urban terrain hexagon for the entirety of each repetition. Each

agent earned 480 points for their final score and total discounted reward.

74

Figure 49. Changing Urban Terrain Location Map 3 Optimal

Performance Demonstration.

The behaviors displayed by the trained agents during the evaluation for Map 4, as

demonstrated in Figure 50, are relatable to the behaviors seen in Map 1. The agents first

started by converging on the red unit to destroy it. The blue units only required two attacks

during their engagement due to the red unit no longer having the defensive advantage. Once

destroyed, the blue takes the fastest route to occupy the urban terrain hexagon on the 13th

turn. For all repetitions during their evaluation, each agent earned a score of 240 and a total

discounted reward of 340.

Figure 50. Changing Urban Terrain Location Map 4 Optimal

Performance Demonstration.

The behaviors required to achieve optimal performance in Map 5 were the same as

in Map 2, except it needed to be the left blue unit deciding when to occupy the urban terrain

75

hexagon vise the right blue unit. Although all trained agents learned the optimal behaviors

for Map 2, only one agent learned the optimal behaviors needed for Map 5. As shown in

Figure 51, four agents went straight to occupying the urban terrain hexagon instead of

initially destroying the red unit. Not learning the optimal behaviors caused the agents to

earned a total discount reward of 384 points instead of the 436 or 484 points they could

have earned by using the optimal behaviors.

Figure 51. Changing Urban Terrain Location Map 5 Non-Optimal

(top) and Optimal (bottom) Performance Demonstration.

G. MULTI-AGENT TRAINING

1. Description

Unlike in the other scenarios, the purpose of the Multi-Agent Training scenario is

to train agents for both the blue and red force that are capable of learning behaviors to

combat each other’s tactics. The training scenario involves a two-versus-one configuration

where two blue units attack a single red unit. To set up a battlefield where both forces have

the ability to achieve success, additional rough and urban hexagons were added to offer

76

cover to an occupying unit. An impassable barrier with two passages was additionally built-

in to the battlefield to separate the blue setup zone from the red setup zone (see Figure 52).

The training regimen for the scenario starts by training a blue agent against a shootback

red AI. The expected behavior of trained blue agent is to engage the red unit by moving

one of the blue units into the rough terrain field north of the red unit. Using the terrain’s

defensive advantage after occupation, the train blue agent should destroy the red unit and

be left with 187.5 strength points.

Figure 52. Multi-Agent Scenario.

Following a successful training of the blue agent, its behaviors will now be used as

the opponent to train a red agent. For the red agent to achieve optimal performance, it must

learn to move its unit north into the rough terrain field during its initial moves. Holding

that position, the red unit will now have the advantage needed to destroy both blue units

during their attack.

For the scenario, the default reward function and network structure was used. For

the training of the red agent, the score values were adapted in a way that a loss on the blue

side generated a score value of 2 while a loss on the red side generated a score value of -1.

77

2. Results

In a first attempt, a blue agent successfully learned to defeat the red force by moving

one unit into the rough hexagon north of the red unit. However, when attempting to use the

blue agent to train the red agent, the blue agent could no longer show any reasonable

behaviors. Introducing a red force that could now take actions other than what was directed

by the shootback AI created states that were now unrecognizable to the blue agent when

fed into the neural network as inputs. This resulted in having the blue agent take random

actions for the entirety of the red agent’s training.

Another blue agent was trained against a red force using the random move AI in an

attempt to correct the previous blue agent’s behavior. As described earlier, the random

move AI allows the red force to randomly move into an adjacent hexagon 40 percent of the

time unless a blue unit is within combat range. Following the training, the blue agent

exhibited three different behaviors depending on the current position of the red unit. The

blue agent either proceeded towards the city, moved onto the rough hexagon, or did not

attack at all. As a general pattern, the blue agent moved towards the city, whenever the red

unit was close to the lower left of the map (see Figure 53). If the red unit was in its initial

setup position, then the blue unit would opt to destroy it first before moving into the city.

Figure 53. Movement of Blue and Red Agents.

78

The trained blue agent was then used as the opponent to train three red agents for

5,000,000 training steps each. The first agent showed a behavior where it would first move

towards the upper right direction before turning and start moving towards the city. Since

one of the blue agent’s behaviors was to occupy the urban terrain hexagon, the red agent

decided to meet the blue unit there to attack the blue unit. Unfortunately, the blue agent

was still unable to recognize an increased dynamic state from its training, so it typically

did not shoot back against the red unit. Although the blue agent had the defensive advantage

in the urban terrain and outnumbered the red agent, this battle was typically won by the red

unit (see Figure 54). The other two trained red agents showed a behavior in which they

would move to the upper right direction and position on the right rough hexagon. However,

these two agents did not proceed with an attack on the blue unit during any of the

repetitions.

Figure 54. Battle Development of Blue Versus Red Agent.

To confront the shortcomings of an unstable blue behavior on a map with limited

blue and red set up hexagons, the amount of possible set up zones was expanded in the next

step (Figure 55). Keeping the neural network structure, reward function, and random AI

constant, another blue agent was trained for 10,000,000 training steps. The resulting blue

agent’s behavior highly depended on the position of the red unit. The most common

behavior when the red unit was on the eastern side of the map involved the trained blue

agent moving both units to the southern portion of the map to occupy the urban terrain

79

hexagon. The scenario typically ended with one blue unit positioned in the urban terrain

hexagon and one blue unit positioned in the left rough hexagon (see Figure 55).

Figure 55. Standard Behavior of Blue Player in Complex Setup.

However, when the random AI positioned the red unit adjacent to the rough

hexagon, the blue agent attacked the red unit from the rough hexagon. After the attack of

the red unit, the blue agent moved the then damaged unit away and replaced it with the

other full-strength blue unit positioned in the back (see Figure 56). The trained blue agent

would then destroy the red unit and conquer the urban hexagon.

80

Figure 56. Blue Behavior when Red Unit is Adjacent to Rough

Hexagon.

For occurrences when the passageway from the northern part of the map to the

southern part was blocked, the blue agent would use its first unit to damage the red unit as

much as possible. After the destruction of his first unit by the red unit, it would then use its

remaining strength to destroy the red unit and conquer the city (see Figure 57).

Figure 57. Blue Behavior when Red locks Passage.

Using the newly trained blue agents as opponents, two red agents were trained for

2,000,000 training steps. However, both agents always moved southwards no matter which

behavior was shown by the blue agent. A reasonable explanation for this behavior could

81

not be found other than human error while setting up the code for multi-Agent Learning.

Unfortunately, due to time constraints, an additional red agent could not be trained to

correct these issues.

H. LARGE-SCALE SCENARIO

1. Description

In this scenario, a blue force of twelve units featuring armor, artillery, and

mechanized infantry unit types competes against a six-unit red force composition that

included infantry, artillery, and armor unit types (see Figure 58). The setup positions for

each unit remain fixed for the entirety of the scenario. As described at the beginning of the

chapter, the default neural network structure and reward function were used to train the

blue agent. With an increased terrain size and number of units compared to any of the other

scenarios, the number of turns in a game was increased from 20 to 30. Due to the high

complexity of the scenario, an optimal score and reward could not be calculated as the

number of possible actions was too high. However, the theoretical score and reward could

be inferred based on the assumption that it would be possible for the blue agent to destroy

all red units without having any blue unit killed and conquer the urban hexagon in a

minimal amount of time. However, these values would not give any further insight when

comparing different agents.

In total, three agents will be trained, with each using different input layers to

represent the state of the scenario. One agent will use the default input layers as described

in Chapter III. The second agent will have four additional input layers to represent all of

the unit types in the scenario for a total of seven layers. The third agent will be the same as

the second agent, except an additional layer will be added to represent the rough terrain

locations for eight inputs total. Each agent will be trained for 3,000,000 training steps, and

the resulting behaviors will be analyzed.

In a separate analysis to compare the performance of an MLP neural network to a

CNN in a large-scale scenario, two additional agents will be trained for 10,000,000 training

steps. Each agent will have four input layers, including three default layers and an

82

additional one representing the artillery units. Following their training, the performance of

the two agents will be assessed.

Figure 58. Large-Scale Scenario Setup.

2. Results

As shown in Figure 59, the structure and amount of input layers given to the neural

network do not seem to make a difference for the agent’s performance. The achieved total

discounted rewards each show a similar pattern for all three agents during the training

process, where a maximum of nearly 400 points is reached after approximately 2,000,000

training steps. While the second agent with seven input layers showed some instability

during the training process, the other two agents seemed to remain stable. For the other two

agents with only the added artillery unit layer used for the CNN and MLP network

comparison, the training was expanded up to 10,000,000 training steps. However, even

with that additional training steps, the performance did not improve further.

83

Figure 59. Reward Compared between Different Input Layer Variants.

When comparing the trained CNN agent with the MLP agent, both show similar

promising behaviors (see Figure 60). The CNN agent starts by initially moving its units

southwest in a large formation. Once the first contact is made with a red unit on the

northwest side, the south units shift their movement and start heading west. In a combined

effort, the trained agent continues moving westward to attack the remaining red units

further while consistently keeping the artillery units in the rear to take advantage of its

more extended range. The scenario typically ends due to time constraints, but the agent

was able to destroy most of the red units and occupy the urban terrain hexagon.

Figure 60. Behavior of a CNN Agent after 30,000,000 Training Steps.

84

The MLP agent, however, used a slightly different approach. At the start of the

scenario, the agent takes advantage of the increased speed for mechanized units when

traveling over clear terrain. Three blue units quickly maneuver to destroy the most eastern

red infantry unit, which allows for a clear passageway to southern red units. The agent then

splits its forces to attack the two red units at the north of the map simultaneously as the

three units at the south of the map using similar tactics shown by the CNN agent. The faster

movements allow the MLP agent to conquer the urban terrain hexagon and destroy all the

red units within the time constraints, as shown in Figure 61.

Figure 61. Behavior of MLP Agent after 30,000,000 Training Steps.

As expected, based on the more effective behaviors during initial combat, the MLP

agent achieved an average higher total discounted reward and score than the CNN agent

(see Figure 62). Still, it should be reminded that only one agent was trained for each neural

network, so there is nowhere near enough evidence to decide which structure is a better fit

for training a combat agent in a larger scenario. Both structures, however, did show the

capability to learn coordinating behaviors for scenarios with far more complexity than

previously encountered.

85

Figure 62. Score Progression and Adjusted Reward of MLP and CNN

Agent.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE
WORK

The objectives of this thesis focused on determining whether a CNN can be used to

train agents capable of learning the optimal behaviors achieved by Boron [6], as well as in

scenarios of increased complexity. Furthermore, this thesis explored whether a multi-agent

training regimen can be utilized in the domain of military constructive simulations. In total,

eight different scenarios were created in the AI training environment, Atlatl, all varying in

size, number of units, unit and terrain types, or scripted red force behaviors. Overall, the

objectives were accomplished as the agents demonstrated robust attacking behaviors in

each of the scenarios, and a basic understanding of the applications Atlatl can be applied

to multi-agent training was accomplished. In this chapter, the principal conclusions of the

scenarios will be summarized, recommendations for improvement will be mentioned, and

suggestions for future work will be offered.

A. CONCLUSIONS

In this sub-chapter, the conclusions will be provided for each scenario category. The

sub-chapter starts with the finding when replicating the scenarios described by Boron [6].

1. Replication of Boron’s Scenarios

Although the scenarios were modeled slightly differently due to the differences in

the AI training environments, the agents using a CNN as the neural network structure were

able to achieve optimal performance for all three simple scenarios described in Boron’s [6]

research. Each agent understood the importance of coordinating each of the blue units’

actions to ensure simultaneously massing of forces when conducting an attack. In most

situations, two blue units coordinated their movements to enter hexagons adjacent to the

red unit on the same turn. Using these tactics guaranteed the agents received minimal

casualties and allowed them to maximize the total discounted reward in each of the

scenarios. While the scenarios with fixed starting positions were too simple enough to

require the spatial invariance advantages a CNN can provide, they did confirm that a CNN

88

structure is an effective tool when using RL to train combat agents in constructive

simulations.

2. Increasing the complexity of Boron’s Scenarios

As scenarios consisting of multiple starting positions and formations were

introduced, the spatial invariance advantages of CNN were leveraged more frequently than

previously described in the more straightforward scenarios. Instead of everything

remaining constant during the agents’ training regimen, the units were positioned randomly

throughout the map, depending on the scenario. The agents were now required to learn

multiple behaviors in a single scenario to continuously defeat the red force. Even with the

increased complexity, most agents could achieve optimal performance for each scenario in

the same amount of training steps required to learn the optimal performance when the

configurations were fixed. The CNN’s ability to recognize similar features or patterns in

the unit positions allowed the agents to deduce the required behavior for optimal

performance quickly. Additionally, the convolutional layers allowed an agent to learn the

behaviors needed to defeat a retreating enemy. Although the opponent’s behaviors was

simple and only near-optimal performance was achieved, an agent capable of learning how

to defeat a moving enemy shows the potential of using CNN in scenarios of much higher

complexity.

3. Spatial Invariance

Although the different state representations for units located in odd columns

compared to even columns caused the agent to exhibit spatial invariant behavior for only

six out of fourteen possible configurations, that issue is specific to the Atlatl training

environment and should not discourage future researchers from using similar approaches

in their experimentations. While using arrays with the double coordinate system helped

ensure a fixed convolutional kernel can see the same set of neighbors regardless of where

it is centered, there remained several differences in the representation of units located in

adjacent rows. Instead of using a fixed convolutional kernel, a possible solution to address

the state representation issue is to incorporate a hexagonal convolution tool such as

HexagDLy [42]. HexagDLy is open-source software that is specifically designed for

89

convolutional operations on hexagonal state-spaces, where it translates the hexagonal

information onto a 2-dimensional grid that can be processed as inputs for frameworks such

as PyTorch. Overall, developing fully spatially invariant agents capable of performing the

same optimal behaviors no matter where it is located on the map has the potential to

decrease the time required for training significantly and can allow for more robust agents.

4. Scenarios with Urban Terrain Features

Learning the optimal behaviors in scenarios featuring an urban terrain hexagon did

not seem to be a challenging task for each of the agents. The agents quickly identified the

terrain feature and exhibited different behaviors depending on its value or location. Simply

adjusting the value of the urban terrain value to represent cities of varying importance

forced the agents to learn three distinct behaviors, with each maximizing the total

discounted reward for its configuration. This straightforward implementation can allow for

more dynamic agents that exhibit multiple behaviors in a single scenario within a

constructive simulation. By introducing an urban terrain hexagon that changes position

during the training regimen, an additional input layer for the neural network was required.

Even with the added layer, though, the neural network effectively processed the

information needed to achieve optimal performance or near-optimal performance on all

five urban terrain locations. A single agent trained only once can now perform numerous

distinct actions for multiple configurations inside of a scenario through this training

process.

5. Multi-Agent Learning

From the results, it is clear that using a multi-agent learning approach in Atlatl

requires some amount of variability during the training process. Before OpenAI’s

AlphaStar even entered the competition phase in StarCraft II, where multi-agent training

occurred, it had spent days using a combination of supervised learning and RL [5].

Studying over 900,000 replays from the top 22 percent of players provided AlphaStar the

variability needed to understand the regularly occurring situations in the game. Not having

the resources or library of replays for the agents to study in Atlatl, the agents were left

relying on the behavioral scripts, which were visibly not enough. Without this variability,

90

the trained agents rarely recognized a familiar state and resorted to unexplainable behaviors

as their default. While the resulting agent behaviors are not as strong as this research hoped

for, a better understanding of the training process required has been accomplished.

6. Large-Scale Scenario

Based on the Large Scale Scenario, it appears that in a static setup and map design,

additional input layers do not bring additional benefits in the sense of decreased learning

time or better results. Due to the consistent results shown when varying the number of input

layers, the additional amount of information did not seem to benefit the agents in any way.

The simplicity of the scenario allowed for the training steps to be enough for agents to

teach themselves the behaviors that provided the largest discounted reward. However,

additional input layers are necessary for future work if more complex or moving terrain

features are introduced, as shown in the Changing Urban Terrain Location Scenario.

While the resulting CNN and MLP structure trained agents showed interesting

tactical behaviors during their evaluation, there was no way to validate if their actions were

optimal. However, a more appropriate and promising determination is that the

methodology in this thesis has the potential to tackle much more extensive and complex

scenarios in the future.

B. RECOMMENDATIONS AND FUTURE WORK

Due to the exploratory nature of this thesis, hyperparameter optimization, as it

usually takes place with comparable papers, did not occur. The solutions found are

therefore not optimal in terms of the training time required. Particularly when the scenarios

become more complex regarding the allowed starting positions during the setup phase for

the units or include more dynamic scripted red force behaviors, the training time in this

thesis has increased drastically. Future works should therefore start with a hyperparameter

optimization before continuing with more complex scenarios. Another possibility for

optimizing the required training time is the use of hexagonal filters within the CNN

structure. The infrastructure used in the context of this thesis is designed to recognize

patterns in images containing a rectangular pixel scheme. To compensate for the hexagonal

structure, a double coordinate system with the stretching of the y-axis was used to ensure

91

a fixed convolutional kernel can see the same set of neighbors regardless of where it is

centered when using 2-dimensional arrays. However, filter shapes that are specifically

tailored to hexagonal fields could be more effective for future work.

The used Atlatl-Framework uses a scoring system in which a deduction of a single

blue strength value is worth -2 points while a deduction of a single red strength value is

worth 1 point. These values were introduced arbitrarily to the Atlatl framework. However,

matches that typically ended with scores of negative or zero values were not conducive to

training an offensive agent. The trained agents would rather avoid the red units altogether

than learn the optimal behavior with the negative rewards from taking damage outweighing

the positive rewards achieved by attacking. To encourage attacking behaviors from the

agents during training, all negative rewards were then ignored, and the positive rewards

were discounted proportionally to the number of blue units still alive.

For the multi-agent approach, this thesis showed that a trained agent is sensitive to

a change in the opponent’s behavior whenever it encounters behaviors never experienced

before. The AI scripted behaviors used within this thesis to train each agent initially were

simply structured and could perform only a few actions. When competition between the

two agents began, the drastic increase of behaviors exhibited by the opposing force was

too foreign for the agent to respond appropriately. Improving and increasing the complexity

of scripted enemy behaviors for multi-agent training in the future could potentially produce

better insights into the usage of multi-agent training for military applications. Another

promising way to deal with the stability of an agent’s behavior when increasing the

complexity of a scenario could be the implementation of a league-based training system.

In combination with a more dynamic enemy, it should be investigated how the combination

of deep-RL with other ML techniques can be used to produce more stable behaviors with

fewer training steps. Sun et al. [7]. incorporated an approach that combined deep-RL with

PKQ-Learning to develop an agent capable of exhibiting many different behaviors. The

utilization of these or similar technologies might allow more agents capable of performing

optimal behavior in more complex scenarios with fewer training steps.

In general, this thesis and comparable theses, done at the MOVES Institute before,

are theoretical in nature. Future research should investigate how deep-RL techniques can

92

be integrated into existing DOD programs of record constructive simulation systems such

as MTWS, Combat XXI, or OneSAF for a more practical benefit. Part of the research

should focus on developing an API capable of integrating deep-RL tools like

StableBaselines3 into these simulations, and it should be structured according to

architecture and interfaces.

C. SUMMARY

This thesis confirmed the applicability of using deep-RL techniques to develop

robust artificial agents capable of achieving optimal performance in scenarios featuring

multiple unit and terrain types. Additionally, the foundation for multi-agent learning and

fully spatially invariant agents was established. While the work presented strengthens the

promising efforts of these tools in military research, all of the results were accomplished

using heavily abstracted scenarios in an AI training environment specially designed to

incorporate external RL applications into its framework. Additional research should look

to discover an approach to apply similar methods to an existing DOD program of record

constructive simulation. Having this capability to act as the red force in existing

constructive simulations could save human resources and allow commanders to test current

tactics, highlight any vulnerabilities in their current plan, and validate their scheme of

maneuver before conducting a single live rehearsal or execution.

93

APPENDIX. DATA

A. TWO-VERSUS-ONE

Fixed-Positions

94

Fixed-Formation

%-perfect
game

Score
%-perfect

game
Score

%-perfect
game

Score
%-perfect

game
Score

%-perfect
game

Score

100000 0.1 -157.5 0 -165 0 -175 0 -175 0 -175
200000 0.1 -122.5 0 -147.5 0.1 -170 0 -155 0.2 -140
300000 0.1 -177.5 0.1 -107.5 0 -187.5 0 -182.5 0 -175
400000 0.1 -147.5 0.1 -162.5 0 -185 0 -152.5 0 -175
500000 0 -165 0.4 -50 0 -175 0 -147.5 0 -175
600000 0 -182.5 0.6 -55 0.2 -127.5 0.1 -145 0 -155
700000 0.1 -150 0.2 -85 0.1 -157.5 0.1 -177.5 0 -162.5
800000 0.2 -132.5 0.4 -70 0.1 -177.5 0.2 -140 0.1 -147.5
900000 0.1 -140 0.1 -85 0.1 -157.5 0 -152.5 0.1 -150

1000000 0.1 -127.5 0.3 -57.5 0 -175 0 -162.5 0.4 -105
1100000 0.1 -147.5 0.5 -37.5 0.1 -157.5 0.3 -135 0.3 -112.5
1200000 0.2 -112.5 0.3 -55 0.1 -157.5 0.2 -112.5 0.1 -140
1300000 0.8 -35 0.4 -62.5 0.2 -140 0.3 -95 0.3 -92.5
1400000 0.2 -132.5 0.2 -122.5 0.1 -157.5 0.5 -75 0.3 -90
1500000 0.4 -90 0.5 -105 0.1 -150 0.1 -142.5 0.6 -60
1600000 0.7 -32.5 0.5 -37.5 0.1 -177.5 0.4 -65 0.5 -107.5
1700000 0.7 -35 0.4 -42.5 0.3 -122.5 0.5 -65 0.4 -77.5
1800000 0.8 -35 0.6 -32.5 0 -175 0.4 -62.5 0.6 -50
1900000 1 0 0.3 -95 0.3 -122.5 0.3 -72.5 0.2 -140
2000000 0.7 -72.5 0.3 -72.5 0.4 -105 0.4 -85 0.6 -55
2100000 0.9 -17.5 0.2 -92.5 0.3 -122.5 0.5 -55 0.6 -45
2200000 1 0 0.4 -75 0.2 -140 0.4 -42.5 0.6 -47.5
2300000 1 0 0.7 -25 0.3 -122.5 0.3 -65 0.4 -67.5
2400000 0.6 -70 0.7 -22.5 0.2 -140 0.3 -72.5 0.7 -20
2500000 0.9 -17.5 0.2 -62.5 0.3 -122.5 0.6 -52.5 0.4 -57.5
2600000 0.8 -35 0.3 -47.5 0.8 -35 0.3 -62.5 0.6 -55
2700000 0.9 -17.5 0.5 -100 0.8 -35 0.3 -62.5 0.8 -15
2800000 0.7 -52.5 0.7 -22.5 0.2 -140 0.7 -35 0.6 -45
2900000 0.9 -17.5 0.5 -45 0.4 -105 0.7 -22.5 0.4 -50
3000000 1 0 0.3 -60 0.1 -157.5 0.4 -100 0.5 -37.5
3100000 0.9 -17.5 0.4 -62.5 0.2 -140 0.5 -65 0.8 -15
3200000 0.9 -17.5 0.5 -42.5 0.4 -105 0.4 -72.5 0.6 -35
3300000 0.8 -35 0.6 -32.5 0.3 -122.5 0.3 -67.5 0.5 -52.5
3400000 0.7 -52.5 0.4 -50 0.2 -140 0.3 -82.5 0.6 -32.5
3500000 0.9 -17.5 0.4 -50 0.5 -87.5 0.5 -47.5 0.6 -32.5
3600000 0.9 -17.5 0.3 -57.5 0.6 -107.5 0.5 -42.5 0.7 -15
3700000 0.8 -25 0.3 -52.5 0.6 -70 0.4 -60 0.7 -25
3800000 0.7 -52.5 0.7 -27.5 0.5 -80 0.6 -42.5 0.6 -35
3900000 0.9 -17.5 0.8 -17.5 0.4 -97.5 0.7 -32.5 0.6 -32.5
4000000 1 0 0.5 -42.5 0.3 -82.5 0.4 -62.5 0.8 -27.5
4100000 1 0 0.5 -72.5 0.4 -97.5 0.4 -57.5 0.8 -25
4200000 1 0 0.9 -5 0.4 -105 0.6 -42.5 0.6 -32.5
4300000 0.8 -35 0.7 -20 0.7 -52.5 0.5 -40 0.8 -15
4400000 1 0 0.7 -57.5 0.6 -47.5 0.6 -40 0.6 -30
4500000 0.9 -17.5 0.4 -70 0.4 -67.5 0.4 -55 0.5 -35
4600000 0.6 -70 0.8 -15 0.4 -57.5 0.5 -40 0.8 -17.5
4700000 0.8 -35 0.8 -15 0.7 -42.5 0.5 -50 0.6 -37.5
4800000 0.8 -35 0.7 -22.5 0.7 -47.5 0.5 -65 0.6 -32.5
4900000 0.8 -35 0.9 -10 0.7 -27.5 0.4 -45 0.7 -25
5000000 1 0 0.8 -15 0.8 -20 0.7 -17.5 0.7 -25

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4

95

Random

% perfect
Games

Score
% perfect

Games
Score

% perfect
Games

Score
% perfect

Games
Score

% perfect
Games

Score

100000 0.6 -92.5 0.4 -160 0.7 -75 0.3 -175 0.3 -155
200000 0.3 -170 0 -197.5 0.4 -137.5 0.2 -155 0.1 -185
300000 0.4 -185 0.4 -175 0.1 -237.5 0 -182.5 0 -272.5
400000 0 -247.5 0.3 -162.5 0.4 -112.5 0 -152.5 0.1 -232.5
500000 0.1 -177.5 0.3 -117.5 0.1 -205 0 -147.5 0 -217.5
600000 0.1 -187.5 0 -195 0.2 -177.5 0.1 -145 0.1 -180
700000 0.1 -185 0.3 -130 0.2 -127.5 0 -177.5 0.5 -82.5
800000 0.2 -127.5 0.2 -155 0.3 -120 0.2 -140 0.1 -212.5
900000 0.4 -107.5 0 -217.5 0.4 -157.5 0 -152.5 0.1 -205

1000000 0.2 -200 0.3 -125 0.4 -142.5 0.4 -162.5 0.4 -120
1100000 0.6 -67.5 0.1 -202.5 0.2 -132.5 0.3 -135 0.3 -132.5
1200000 0.4 -127.5 0.2 -152.5 0.4 -127.5 0.4 -112.5 0.2 -177.5
1300000 0.8 -22.5 0.3 -120 0.4 -77.5 0.3 -95 0.5 -122.5
1400000 0.3 -165 0.3 -87.5 0.3 -90 0.3 -75 0.1 -187.5
1500000 0.5 -85 0.4 -120 0.4 -70 0.1 -142.5 0.5 -72.5
1600000 0.2 -107.5 0.3 -75 0.3 -67.5 0.3 -65 0.1 -160
1700000 0.2 -137.5 0.3 -130 0.5 -72.5 0.4 -65 0.4 -80
1800000 0.3 -130 0.3 -120 0.4 -65 0.6 -62.5 0.5 -120
1900000 0.4 -127.5 0.2 -137.5 0.5 -85 0.3 -72.5 0.6 -80
2000000 0.6 -35 0.2 -107.5 0.3 -130 0.1 -85 0.4 -127.5
2100000 0.5 -65 0.1 -155 0.2 -140 0.3 -55 0.3 -92.5
2200000 0.3 -145 0.7 -70 0.4 -120 0.1 -42.5 0.5 -52.5
2300000 0.3 -137.5 0.3 -135 0.3 -117.5 0.2 -65 0.2 -155
2400000 0.5 -87.5 0.3 -120 0.3 -95 0.2 -72.5 0.6 -62.5
2500000 0.2 -125 0 -117.5 0.4 -95 0.3 -52.5 0.3 -122.5
2600000 0.6 -67.5 0.4 -77.5 0.6 -82.5 0.3 -62.5 0.3 -135
2700000 0.5 -60 0.1 -127.5 0.6 -47.5 0.4 -62.5 0.5 -72.5
2800000 0.4 -70 0.2 -85 0.5 -67.5 0.7 -35 0.6 -45
2900000 0.4 -80 0.3 -85 0.4 -85 0.4 -22.5 0.5 -85
3000000 0.5 -97.5 0.2 -97.5 0.7 -27.5 0 -100 0.3 -117.5
3100000 0.5 -92.5 0.3 -67.5 0.4 -100 0.2 -65 0.4 -87.5
3200000 0.4 -80 0.4 -107.5 0.6 -55 0.5 -72.5 0.3 -120
3300000 0.5 -67.5 0.6 -45 0.4 -82.5 0.6 -67.5 0.4 -122.5
3400000 0.4 -85 0.4 -55 0.5 -95 0.4 -82.5 0.2 -152.5
3500000 0.3 -85 0.4 -100 0.5 -52.5 0.6 -47.5 0.5 -57.5
3600000 0.3 -115 0.2 -97.5 0.6 -75 0.2 -42.5 0.2 -127.5
3700000 0.3 -70 0.7 -67.5 0.4 -85 0.4 -60 0.5 -45
3800000 0.4 -90 0.6 -55 0.5 -80 0.5 -42.5 0.4 -75
3900000 0.2 -92.5 0.5 -57.5 0.5 -55 0.7 -32.5 0.4 -110
4000000 0.6 -67.5 0 -150 0.4 -60 0.3 -62.5 0.2 -147.5
4100000 0.6 -42.5 0.1 -125 0.4 -77.5 0.2 -57.5 0.3 -150
4200000 0.4 -65 0.5 -52.5 0.5 -80 0.4 -42.5 0.4 -85
4300000 0.3 -72.5 0.4 -80 0.6 -47.5 0.4 -40 0.6 -95
4400000 0.3 -97.5 0.6 -35 0.5 -75 0.4 -40 0.5 -55
4500000 0.4 -72.5 0.3 -87.5 0.5 -60 0.3 -55 0.4 -80
4600000 0.3 -90 0.6 -35 0.4 -72.5 0.2 -40 0.6 -57.5
4700000 0.6 -80 0.4 -105 0.7 -47.5 0.6 -50 0.2 -105
4800000 0.3 -110 0.2 -82.5 0.5 -60 0.3 -65 0.3 -67.5
4900000 0.6 -52.5 0.4 -70 0.5 -52.5 0.5 -45 0.6 -62.5
5000000 0.5 -72.5 0.7 -27.5 0.6 -52.5 0.4 -17.5 0.4 -92.5

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4

96

Withdraw

% perfect
Games

Score
% perfect

Games
Score

% perfect
Games

Score
% perfect

Games
Score

% perfect
Games

Score

1000000 0 -37.5 0 -26.25 0 -37.5 0 -41.25 0 -37.5
2000000 0 -26.25 0 -37.5 0 -37.5 0 -37.5 0 -37.5
3000000 0 -32.5 0 -37.5 0.1 17.5 0 -52.5 0 -37.5
4000000 0.1 -28.75 0 -37.5 0.4 12.5 0 -37.5 0 -37.5
5000000 0.2 1.25 0.1 -12.5 0.4 61.25 0 -37.5 0 -37.5
6000000 0.1 16.25 0.1 -28.75 0.4 62.5 0 -37.5 0 -37.5
7000000 0.7 73.75 0.1 2.5 0.7 90 0 -37.5 0 -28.75
8000000 0.5 46.25 0.1 -15 0.6 82.5 0 -37.5 0 -22.5
9000000 0.4 45 0.3 13.75 0.6 62.5 0 -37.5 0 -26.25

10000000 0.8 81.25 0.1 2.5 0.7 87.5 0 -37.5 0 -23.75

Agent 5Training
Steps

Agent 1 Agent 2 Agent 3 Agent 4

97

B. TWO-VERSUS-ONE SPATIAL INVARIANCE

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7 Setup 8 Setup 9 Setup 10 Setup 11 Setup 12 Setup 13 Setup 14
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 1 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 2 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 3 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 4 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0
Agent 5 0 100 0 100 0 100 0 0 100 0 100 0 100 0

98

C. TWO-VERSUS-TWO

Fixed-Positions

Multiple-Starting-Positions

Training Steps
Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

100000 92.5 -37.5 99.75 -4 96.75 -22.75 80.625 -97.5 87.875 -48.75
200000 99.625 -1 120.625 -182 98.5 -10.25 82 -77.25 125.5 -230.3
300000 97.75 -19.5 130.625 -247.5 120.25 -233.8 97.125 -18.5 137.625 -205.8
400000 130.625 -164.8 137.125 -244 160.25 -81 152.75 -109.75 135.375 -205
500000 162.25 -80.75 145.875 -174.5 159.75 -75.5 160.5 -91.5 139.375 -206.5
600000 161.25 -82.5 147.5 -165 160.375 -80.75 162.25 -77.75 134.75 -201
700000 161.875 -76 147.5 -160.3 160.375 -76 161.5 -73.5 136.875 -201.8
800000 159 -72.25 150 -164.5 161.75 -73.5 153.375 -77.5 152.5 -104.5
900000 160.75 -73.25 145.875 -161.3 163 -76 161.5 -73 0 0

1000000 158 -80.75 149.875 -155.5 161.375 -75.75 161.75 -73.5 153.375 -113
1100000 162.25 -78 148.5 -166.3 162.75 -79.25 160.625 -74.5 153.75 -113.5
1200000 161.75 -76.75 149.125 -157.3 159.375 -75.5 163.75 -77.5 153 -103
1300000 164.25 -78.5 148.25 -155.5 162.75 -77.25 159.25 -78 153 -114.8
1400000 160.75 -91.25 150 -167 162.75 -75.5 163.25 -78.5 161.75 -77.25
1500000 156.5 -82 152.25 -162.5 163.5 -77 113.3125 -154.13 163 -76
1600000 163.25 -76.5 148 -165.3 163.25 -76.5 161.25 -74.25 163 -76
1700000 164 -78 149.75 -162.8 161.5 -81.75 161.25 -72.5 161.25 -72.5
1800000 161.25 -80.5 148.125 -164 160.5 -73.75 163.25 -80.75 114.5 -50.25
1900000 160.75 -71.5 161.5 -74.75 149.25 -88.5 161.75 -74.5 163.375 -79
2000000 160.25 -70.5 159.25 -76 162 -75.75 163.75 -77.5 162.625 -77.5

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Training Steps

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

100000 75 -116.25 79.125 -95.5 84.375 -83.25 82 -197.75 71.375 -145
200000 112.875 -245 97.375 -29.75 98.375 -89.25 134.96875 -163.813 98.625 -13.5
300000 150.125 -112.5 150.78125 -124.438 152.90625 -94.4375 152.875 -101.25 106.75 -224.75
400000 142.1875 -132.375 151 -104.5 99.625 -204.5 154 -92.5 148.6875 -121.375
500000 153.53125 -78.6875 55.34375 -291.563 150.75 -96 159.25 -89.25 155 -81.25
600000 146.15625 -109.188 155.25 -87 95.5 -193.5 157.375 -86 123.25 -177.75
700000 131.125 -158.5 160 -82.5 161.875 -78.75 160.25 -71 157.125 -92
800000 154.53125 -92.6875 151.625 -97.75 161.875 -76.75 117.5 -62.75 141.75 -108.5
900000 134.8125 -102.625 159.75 -83.5 144 -89.5 144.875 -126.5 139.25 -105.5

1000000 162 -84.5 147.875 -96 162.53125 -83.1875 162 -76 159.125 -91
1100000 158 -84.75 160.75 -71.5 155.75 -91 162 -78 156.625 -81.75
1200000 145.8125 -106.125 158.375 -85.75 153 -84.5 148.03125 -112.688 162.875 -82.25
1300000 160.75 -80.25 158.25 -88.5 121.375 -106.25 159.875 -75.25 165 -80
1400000 160.5 -75 162.5 -77.75 142.75 -86.5 159.125 -79.75 162.125 -76.5
1500000 156.125 -89.25 79.5 -244.25 158.625 -80.5 88.5 -217.5 159.75 -79.75
1600000 162 -75 102.34375 -263.063 160 -73.5 161.125 -84.5 161.75 -75.5
1700000 159.875 -72 105.1875 -246.875 157 -86 161.875 -76.75 155.5 -93.25
1800000 158.53125 -81.6875 97.6875 -270.625 159.25 -84.75 161.75 -79.75 162.5 -75
1900000 161.25 -79 120.53125 -205.188 160.25 -72.5 163.5 -77 163.5 -77
2000000 163 -78 50.125 -81.75 162.25 -80.75 160.75 -78 163 -80.5
2100000 160.375 -76 92.375 -276.25 163.625 -87.25 3.25 -272 157.625 -77.75
2200000 162.5 -77.75 161 -79 156.125 -75.75 158.8125 -84.125 1 -0.5
2300000 162.875 -78.75 160.75 -84 160.9375 -74.625 163.25 -76.5 0 0
2400000 158.875 -81 160.375 -75.75 159.75 -69.5 160.5 -72.75 17 -36
2500000 161.75 -74 163 -76 163.25 -79.25 162.375 -86 63.5 -165.5
2600000 157.5 -76.75 75.40625 -48.6875 161.25 -72.5 163 -76 135.1875 -151.125
2700000 160.75 -71.5 159.5 -79 162.75 -75.5 148.40625 -104.438 162 -74
2800000 152 -100.5 160.75 -71.5 161.125 -75.25 162 -79.5 161.5 -75.5
2900000 162.25 -77 161.25 -72.5 163.25 -76.5 161.5 -73 161.125 -78.75
3000000 162.25 -74.5 163 -76 164 -78 160.875 -76.5 162.25 -79.75

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

99

D. THREE-VERSUS-TWO

Fixed Positions

Training
Steps

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

100000 98.5 -25.5 94.58333333 -42.5 97.75 -16 99.75 -2.75 74.5 -181.5
200000 99 -10 97.91666667 -17 97.83333333 -15.5 99.16666667 -9 74.66666667 -182.25
300000 100 -3 99.25 -10 99.75 -7.5 99.33333333 -4.5 74.5 -180.25
400000 99.66666667 -13.5 85.08333333 -98.75 98.41666667 -38.25 98.41666667 -8.75 75.16666667 -201
500000 100 -4.75 98.16666667 -17.25 98.16666667 -16.5 99 -9.25 108.5 -246.5
600000 97.66666667 -17.5 99.33333333 -6.75 100 -16 99.83333333 -8 113.6666667 -235.75
700000 97.33333333 -24.5 99.5 -3 99.58333333 -11.5 99.33333333 -6.75 122.25 -181
800000 100 0 100 -11 99.75 -5 98.91666667 -6.5 123.5 -183.5
900000 97.08333333 -23.75 98.41666667 -18.5 99.75 -1 99 -7.25 123 -183

1000000 98.41666667 -20.75 99.5 -7.75 100 -20.5 99 -4.25 119 -199.5
1100000 99.16666667 -9.5 99 -37.5 90.33333333 -92.5 98.66666667 -15.75 123.5 -181
1200000 99.33333333 -9.5 95.75 -38 140.75 -57.5 99.25 -5.75 94.25 -227.75
1300000 100 -1.75 99.66666667 -5.5 143.5 -39 91.08333333 -35.5 122.25 -187.5
1400000 100 -1 124.75 -31.5 132.4166667 -41 102.25 -14 149.5833333 -91.25
1500000 106.0833333 -14.25 130.75 -67.25 139.0833333 -37.25 104.75 -17.75 149.25 -90
1600000 131.3333333 -42 137.3333333 -62 139.1666667 -41.5 138.3333333 -48.5 152.5 -86.25
1700000 139.75 -28 139.75 -49 166.75 -8 137.75 -46.75 150.75 -88.75
1800000 147 -34.5 145.75 -35.25 170.5 -1.5 138.5 -34 151 -87
1900000 161.6666667 -13.25 138.25 -54 169.5 -2.5 140.5 -33.25 148.5 -91.75
2000000 170.25 -4.25 141.6666667 -22.5 171.75 -3.75 169 -2.75 167 -24.25
2100000 172 -3.25 131 -33.5 172 -2.25 168.25 -5.75 172.75 -6
2200000 172.75 -1.75 134.0833333 -14.25 174.25 -0.75 173.25 -1.75 173.25 -4
2300000 175 0 137.5 -5.75 174.75 -1 169 -7 172.5 -6.75
2400000 173.5 -2 138.25 -9.75 172.75 -1.75 164.5 -10.25 172.5 -11.25
2500000 172.5 -3.5 138.3333333 -14 168.25 -5.25 169.75 -4.5 170.5 -13
2600000 174.25 -0.75 137.75 -22.5 172.75 0 168.25 -6 172.3333333 -6.25
2700000 174.25 -0.75 137.9166667 -11 169.75 -3.25 171.25 -2.75 174.25 -2
2800000 174.25 -0.75 140.5 -0.5 173.25 -1.75 169.25 -6.75 165.75 -28
2900000 174 -4 144.6666667 -22 171.75 -5.5 169.75 -5.5 172.75 -6
3000000 175 0 131.8333333 -15.5 172.75 -1.5 172 -3.5 172.75 -4.75

Agent 5Agent 4Agent 3Agent 2Agent 1

100

Multiple Starting Positions

Training
Steps

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

Total Discounted
Reward Score

100000 25 -176.5 95.75 -177 33.5 -132 93 -167.75 94.75 -176.7675
200000 101.8333333 -181 99.75 -175 66.75 -37.5 100.0833333 -189.25 94.16666667 -224.49
300000 168.4166667 -20 98 -179 92.41666667 -147.5 154.5 -130.5 173 -11.11
400000 171.4166667 -12.25 94.5 -136.5 167.75 -39.25 172.5833333 -17.25 171.3333333 -22.22
500000 173.5 -4.75 98.33333333 -180.25 172.1666667 -10.5 173.75 -8.75 165.8333333 -47.975
600000 174.25 -2.75 95.25 -185.75 169.75 -33.75 173.6666667 -9.25 169.4166667 -21.9675
700000 171.9166667 -12.25 95.16666667 -187.25 172.25 -14.75 174.3333333 -9 170.25 -21.21
800000 171.0833333 -12.25 96.75 -178 173.4166667 -12.5 174 -9.25 173 -10.3525
900000 174 -4.5 99.75 -175.25 168.5833333 -25.5 169.3333333 -30 139 -132.5925

1000000 174.8333333 -2 100 -175 173.5833333 -4.75 172.3333333 -19 173 -9.595
1100000 173.6666667 -5.5 125 -190.75 167.6666667 -22.5 174.75 -2.75 174.0833333 -5.555
1200000 173.3333333 -9.75 162.1666667 -99.75 169.8333333 -25.5 170.1666667 -17 173.3333333 -14.3925
1300000 171.9166667 -10.25 160.4166667 -101.5 171.9166667 -14.75 173.4166667 -11.5 172.8333333 -12.3725
1400000 175 -2.25 162.75 -84.25 160.9166667 -74.75 173 -10.25 173.75 -8.3325
1500000 172.5 -13.5 166.75 -54.75 171.75 -6.5 171 -23.75 174 -5.05
1600000 172 -11.75 173.9166667 -7.75 162.6666667 -71.75 173.3333333 -19.5 174.5833333 -4.04
1700000 166.4166667 -34.75 173.5 -8 174.5833333 -5.75 173.8333333 -13 174.5 -4.04
1800000 171.0833333 -16.75 173.4166667 -8 173.5833333 -8.25 160.8333333 -73.25 173.5 -2.7975
1900000 173.0833333 -13.25 172.25 -20.25 174.8333333 -3.25 57.75 -134.5 173.75 -6.8175
2000000 174.6666667 -2.5 173.6666667 -12.25 173.0833333 -5 174.8333333 -4.5 168.0833333 -21.4625
2100000 165.0833333 -25.25 173.9166667 -5.75 173.75 -12 165.0833333 -37.5 169 -17.9275
2200000 174.5 -2 174.5833333 -6.75 174.6666667 -2.5 175 -5.5 174.75 -1.01
2300000 173.25 -9.25 171.9166667 -17.5 173.25 -11.5 173.6666667 -9.75 170.5 -16.665
2400000 165.3333333 -28.25 174.3333333 -7.5 174.75 -1.5 168.8333333 -42.5 174.25 -3.7875
2500000 171 -8.25 174.8333333 -1 167.3333333 -39.75 174.75 -5 174.25 -3.2825
2600000 171.5 -17.25 174.75 -2.25 174 -3.5 175 -2.5 140 -128.27
2700000 172.5833333 -15.75 169.75 -33.25 166.6666667 -58.75 153.6666667 -69.75 174.25 -1.7675
2800000 173.25 -9.75 174.5 -3.25 173.3333333 -7.5 169.25 -33.5 175 -0.505
2900000 172.3333333 -6.5 175 -1.25 173.5 -9 174.0833333 -15.75 169.75 -19.9475
3000000 174.3333333 -3.5 165.25 -18.75 174.25 -5.5 174.8333333 -16.5 174.75 -4.2925
3100000 170.0833333 -12.75 174.75 -1 174.5 -3.5 166.25 -50.75 170.5 -19.19
3200000 174.8333333 -1.5 166.6666667 -25.5 174.5833333 -2 175 -6.5 174.25 -6.3175
3300000 167.0833333 -19.25 172.9166667 -18 173.0833333 -7.75 157.3333333 -73.25 173 -6.3125
3400000 171.6666667 -20 168.75 -25.75 154.5 -23 172.9166667 -12.25 170.3333333 -14.645
3500000 173.1666667 -6.5 175 0 173.9166667 -2.5 174.75 -4 174.4166667 -2.525
3600000 173.1666667 -8 172.25 -18.5 171.75 -23 174.0833333 -7.5 173.9166667 -4.545
3700000 174.6666667 -9.5 169.1666667 -28.75 172.9166667 -7.75 171 -25.5 172.75 -12.12
3800000 173.1666667 -26.5 173.75 -8.75 174.25 -11.5 174.75 -5.25 175 -5.555
3900000 174.8333333 -1.5 172.75 -9 173.1666667 -12 175 -15.75 175 -0.505
4000000 173.5 -7.75 173.4166667 -10.5 174.8333333 -6.5 174.8333333 -2 174.75 -0.505

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

101

E. URBAN TERRAIN

Urban Terrain Value 0

Urban Terrain Value 20

Training
Steps

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

100000 98.875 -7.25 98 -10 98.875 -7 100 0 100 0
200000 99 -4 99.25 -5 99.5 -3.5 98.125 -8.25 100 -0.5
300000 100 0 99 -4 100 0 98.875 -5.5 100 0
400000 100 0 90.25 -57.75 99.625 -2.25 99.25 -1.75 97.625 -7.75
500000 52.875 -116 97.25 -17.5 100 -1.25 100 -0.5 100 0
600000 99.25 -5 98.25 -9 99.75 -1 89.125 -54.25 94.25 -32.5
700000 100 0 99.5 -4.25 99.25 -3.75 99 -3.25 95.5 -22.25
800000 100 -0.5 100 0 100 0 100 0 100 0
900000 100 -0.75 96.25 -21 99.75 -1 100 0 96.5 -16.5

1000000 100 -1.25 99.625 -1.5 96.125 -22.75 99.25 -2.75 99.125 -4.5
1100000 99.25 -3.75 98.75 -8.25 100 0 99 -6.25 94.25 -33
1200000 99.25 -4.75 100 0 99.25 -4.75 97.875 -8.5 99.375 -2
1300000 100 0 100 -0.75 87.875 -64.25 99 -5.5 98.875 -5
1400000 100 0 100 -0.5 100 0 100 -1 100 0
1500000 100 0 93.125 -42.25 98.875 -5.5 99.5 -3.5 100 0
1600000 100 -0.5 100 0 100 -0.75 99.25 -3.75 99.25 -1.75
1700000 96.75 -14.75 99.25 -3.75 99.75 -1 100 -2 100 -0.5
1800000 100 0 99.75 -2 99.25 -4.25 99.5 -2 100 0
1900000 99.625 -1.75 100 -0.75 97 -17 100 0 100 0
2000000 100 0 100 0 100 0 100 0 100 0

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Training
Steps

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

100000 218.4 118.4 157.2 58.8 180.85 77.35 99.125 -3.75 218.15 117.4
200000 230.05 115.85 158.8 78 240.8 113.8 174.975 73.6 232.65 109.9
300000 237.35 113.1 160 78.2 237.6 115.6 179.2 79.2 239.75 110.9
400000 238.9 112.6 156 80 240.4 114.9 170.825 52.65 239.2 115.2
500000 238.05 113.85 164.4 72.4 240 113.5 180 80 239.2 115.2
600000 238.4 115.4 159.2 80 237.6 115.6 178.45 75.45 245.2 113.7
700000 238.05 112.85 160.4 71.7 241.2 114.7 179.2 79.2 242 114.5
800000 238.4 113.9 160.8 80 239.6 115.1 179.6 79.6 238.4 113.1
900000 239.6 115.1 158.8 78.8 238 115.5 178.825 78.2 238.4 115.4

1000000 244 113.5 156.8 79.6 239.6 115.1 177.125 73 238 115.5
1100000 238 115.5 162 80 240 115 178 77.5 240.4 114.9
1200000 240 115 157.6 80 240.85 113.15 178.95 77.2 240.8 114.8
1300000 238.4 115.4 158.8 79.6 238.5 112.85 180 80 239.35 113.5
1400000 241.6 114.6 178.425 80 240.8 114.8 180.4 79.9 240.4 114.9
1500000 241.6 114.6 178.025 80 238.4 115.4 177.95 65.05 241.2 114.2
1600000 237.6 115.6 179.5 80 240 115 180 80 239.6 115.1
1700000 242.8 114.3 176.05 80 240 115 180 80 243.2 114.2
1800000 243.2 114.2 179.35 80 238 115.5 180 80 239.2 115.2
1900000 240.4 114.9 178.55 80 236 116 179.75 78 239.2 115.2
2000000 239.6 115.1 180 80 243.6 114.1 180 80 238.8 115.3

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

102

Urban Terrain Value 40

Training
Steps

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

Total
Discounted
Reward Score

100000 586.8 585.8 586.8 586.8 596.4 596.4 585.25 586.25 485.3 485.3
200000 596.4 596.4 596.4 596.4 598.8 598.8 596.4 596.4 498.8 498.8
300000 597.6 597.6 597.6 597.6 600 600 600 600 500 500
400000 598.8 598.8 598.8 598.8 598.8 598.8 600 600 542.7 542.7
500000 600 600 600 600 600 600 600 600 600 600
600000 600 600 600 600 600 600 600 600 600 600
700000 600 600 600 600 600 600 600 600 600 600
800000 598.8 598.8 598.8 598.8 600 600 600 600 600 600
900000 600 600 600 600 600 600 598.8 598.8 600 600

1000000 600 600 600 600 600 600 600 600 600 600
1100000 600 600 600 600 600 600 600 600 600 600
1200000 600 600 600 600 600 600 597.6 597.6 600 600
1300000 600 600 600 600 600 600 600 600 600 600
1400000 600 600 600 600 600 600 600 600 600 600
1500000 600 600 600 600 600 600 600 600 598.8 598.8
1600000 600 600 600 600 600 600 600 600 600 600
1700000 600 600 600 600 600 600 594 594 600 600
1800000 600 600 600 600 600 600 600 600 600 600
1900000 600 600 600 600 600 600 600 600 600 600
2000000 600 600 600 600 600 600 600 600 600 600

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

103

F. MULTI-AGENT-TRAINING

Blue performance in complex setup (10 repetition)

Training
Steps Reward Score

1000000 380.375 315.35
2000000 399.8594 304.9094
3000000 495.05 449.05
4000000 494.9 395.375
5000000 569.2625 458.9125
6000000 496.9125 384.8875
7000000 572.8 535.3
8000000 438 383.7
9000000 403.65 298.15

10000000 591.25 500

Blue Agent

104

G. LARGE-SCALE SCENARIO

Different Input Layers

Reward Score Reward Score Reward Score
50000 25.7198058 -758.877 0 -690 23.3288043 -572.5

100000 67.0820028 -1458.84 28.125 -785 0 -600
150000 231.276946 -2086.01 165.521744 -590 15 -632.5
200000 196.072486 -2166.61 220.692483 -520 13.75 -692.5
250000 264.312991 -1759.69 219.043631 -580 58.75 -687.5
300000 304.553839 -1883.72 219.043631 -1000 228.695867 -817.5
350000 293.231944 -1623.13 219.043631 -740 230.840506 -1437.19
400000 189.018528 -2198.22 219.043631 -780 44.0558511 -707.5
450000 204.467487 -2251.01 239.043631 -650.8 281.142992 -779.375
500000 188.467909 -1865.94 219.043631 -640 312.911326 -637.7
550000 241.137307 -1654.69 219.167194 -710 65.0587263 -610
600000 226.205485 -1551.21 219.043631 -720 219.367956 -565
650000 221.967277 -1535.55 219.043631 -680 219.530118 -557.5
700000 231.9116 -1615 219.043631 -620 309.058749 -395.8
750000 255.835588 -1560.63 219.043631 -680 268.905892 -561.963
800000 195.377071 -1136.41 215.368998 -573.75 319.05119 -324.9
850000 267.516954 -1652.03 224.043631 -685 319.058749 -466.6
900000 240.880728 -1404.69 233.816359 -665 161.152476 -603.3
950000 218.864251 -1391.88 250.026572 -610 319.061269 -379.1

1000000 233.339807 -1427.3 267.453617 -541.25 319.05371 -382.2
1050000 204.440082 -1244.69 324.600206 -458.75 267.166436 -625.663
1100000 191.697725 -1399.06 320.15678 -447.5 323.284377 -599.838
1150000 230.638432 -1260 323.589086 -499.9 358.475501 -357.2
1200000 188.874607 -1237.81 319.043631 -388.8 326.940985 -607.213
1250000 236.130714 -1333.13 279.043631 -704.5 359.788754 -357.9
1300000 244.282483 -1502.66 311.543631 -535.5 393.351438 -408.3
1350000 272.999633 -1677.66 307.596846 -450.1 404.562639 -453.138
1400000 251.626972 -1458.91 331.543631 -401.1 418.573809 -299.5
1450000 238.821008 -1162.89 321.786875 -411.1 418.763727 -269.5
1500000 251.281375 -1328.98 240.234905 -660.8 418.353782 -282.2
1550000 287.597869 -1543.13 307.139268 -414.9 359.592259 -592.838
1600000 339.590149 -1664.84 211.77155 -520.6 261.951933 -877.125
1650000 350.520434 -1488.59 0 -480 338.641232 -685
1700000 206.192767 -1461.04 0 -480 335.012405 -702.5
1750000 297.763594 -1669.38 123.315326 -690.313 307.448488 -673.425
1800000 351.962078 -1433.48 289.043631 -481.2 308.346545 -600.938
1850000 357.736374 -1322.23 339.043631 -388 210.45277 -667.675
1900000 356.688509 -1537.23 331.543631 -390.7 394.037767 -416.9
1950000 240.841815 -1942.87 344.043631 -359 397.887745 -366.7
2000000 368.979912 -1513.44 344.043631 -359 349.373572 -581
2050000 332.547977 -1631.36 299.731491 -475.3 394.515133 -492.313
2100000 340.899863 -1550.78 336.543631 -426.5 331.258053 -444.3
2150000 346.934973 -1461.09 152.355763 -1033.44 418.811816 -254.5
2200000 371.164771 -1527.34 324.043631 -446.2 250.271674 -680.408
2250000 360.581356 -1398.91 341.543631 -361.5 418.775928 -261.8
2300000 352.796811 -1385.63 344.043631 -359 356.064569 -863.175
2350000 343.960811 -1455 341.543631 -457.5 363.56075 -697.6
2400000 348.475469 -1470.63 331.543631 -467.5 95.7118882 -848.75
2450000 338.409107 -1570.78 304.639268 -462.5 141.937983 -765
2500000 296.426394 -1704.79 316.543631 -482.5 327.788462 -824.213
2550000 385.118886 -1455.16 339.043631 -460 310.517198 -722.45
2600000 379.757016 -1331.25 311.543631 -487.5 367.444762 -785.3
2650000 338.922441 -1498.71 339.043631 -460 365.938097 -705.1
2700000 362.916117 -1277.66 329.043631 -470 413.24266 -622.5
2750000 365.036163 -1442.66 311.543631 -487.5 281.127356 -758.425
2800000 367.541673 -1375.47 68.8087263 -635 330.502425 -773.938
2850000 373.565682 -1346.88 0 -1140 353.427637 -602.55
2900000 343.42124 -1410.16 148.550974 -1500.31 404.212193 -575.2
2950000 377.432847 -1387.66 187.536102 -1447.21 308.640424 -701.25
3000000 367.911695 -1330.04 272.907637 -1309.38 413.449835 -597.5

Training
Steps

Standart Unit Layers Terrain Layers

105

MLP/ CNN

Reward Score Reward Score
1000000 584.286914 -199.388 237.57487 -1284.38
2000000 775.636353 -250.593 265.922038 -1330.83
3000000 787.578446 -213.474 314.437109 -1444.77
4000000 785.254675 -177.587 288.128874 -1676.06
5000000 774.320915 -225.487 356.492155 -1466.53
6000000 790.564478 -166.618 135.20682 -2273.04
7000000 785.122811 -202.611 221.153361 -1602.27
8000000 740.768164 -79.15 247.592773 -1516.88
9000000 752.968164 -79.55 265.680237 -1563.21

10000000 750.576497 -41.325 248.955078 -1471.41

Training
Steps

MLP CNN

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

LIST OF REFERENCES

[1] R. Smith, “The long history of gaming in military training,” Simul. Gaming,
vol. 41, no. 1, pp. 6–19, 2010. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a550307.pdf

[2] E. H. Page and R. Smith, “Introduction to military training simulation: a guide for

discrete event simulationists,” in 1998 Winter Simulation Conference.
Proceedings (Cat. No.98CH36274), Dec. 1998, vol. 1, pp. 53–60 vol.1,
 doi: 10.1109/WSC.1998.744899.

[3] D. H. Andrews, T. Dineen, and H. H. Bell, “The use of constructive modeling and

virtual simulation in large-scale team training: A military case study,” Educ.
Technol., vol. 39, no. 1, pp. 24–28, 1999.

[4] S. Yildirim and S. B. Stene, “A survey on the need and use of AI in game agents,”

Model. Simul. Optim. - Focus Appl., Mar. 2010, doi: 10.5772/8968.

[5] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent

reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019, doi:
10.1038/s41586-019-1724-z.

[6] J. Boron, “Developing combat behavior through reinforcement learning,” Master

M.S. Thesis, Dept. of Comp. Sci, NPS, Monterey, CA, USA, 2020. [Online].
Available:
https://calhoun.nps.edu/bitstream/handle/10945/65414/20Jun_Boron_Jonathan.pd
f?sequence=1&isAllowed=y

[7] Y. Sun, B. Yuan, T. Zhang, B. Tang, W. Zheng, and X. Zhou, “Research and

implementation of intelligent decision based on a priori knowledge and DQN
algorithms in wargame environment,” Electronics, vol. 9, no. 10, p. 1668, Oct.
2020, doi: 10.3390/electronics9101668.

[8] W. M. Lian, “Using neural networks to determine course of action for a land-

based constructive simulation,” Dept. of Comp. Sci, NPS, Monterey, CA, USA,
2020. [Online]. Available:
https://calhoun.nps.edu/bitstream/handle/10945/63476/19Sep_Lian_Weiwen%20
Mervyn.pdf?sequence=1&isAllowed=y

[9] Thomas Mitchell, Machine Learning, 1st ed. McGraw-Hill, Inc., 1997.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.

Upper Saddle River, NJ: Prentice Hall Press, 2009.

108

[11] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An
introduction to deep reinforcement learning,” Found. Trends® Mach. Learn., vol.
11, no. 3–4, pp. 219–354, 2018, doi: 10.1561/2200000071.

[12] H. Wang et al., “Integrating reinforcement learning with multi-agent techniques

for adaptive service composition,” ACM Trans. Auton. Adapt. Syst., vol. 12, pp.
1–42, May 2017, doi: 10.1145/3058592.

[13] L. Engstrom et al., “Implementation matters in deep policy gradients: A case

study on PPO and TRPO,” ArXiv200512729 Cs Stat, May 2020, Accessed: Oct.
21, 2020. [Online]. Available: http://arxiv.org/abs/2005.12729.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” ArXiv170706347 Cs, Aug. 2017, Accessed: Oct.
21, 2020. [Online]. Available: http://arxiv.org/abs/1707.06347.

[15] OpenAI, “Proximy policy optimization,” OpenAI Spinning Up, 2018. Accessed

Mar. 23, 2021 [Online]. Available:
https://spinningup.openai.com/en/latest/algorithms/ppo.html

[16] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications of deep

learning and reinforcement learning to biological data,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2063–2079, Jun. 2018, doi:
10.1109/TNNLS.2018.2790388.

[17] OpenAI, “OpenAI Five defeats Dota 2 world champions,” OpenAI, Apr. 15, 2019.

Accessed Oct. 15, 2020 [Online]. Available: https://openai.com/blog/openai-five-
defeats-dota-2-world-champions/#fn2

[18] D. Mwiti, “10 real-life applications of reinforcement learning,” neptune.ai, Jul.

22, 2020. Accessed Oct. 21, 2020. [Online]. Available:
https://neptune.ai/blog/reinforcement-learning-applications

[19] L. Hardesty, “Explained: Neural networks - Ballyhooed artificial-intelligence

technique known as ‘deep learning’ revives 70-year-old idea.,” MIT News on
Campus and around the world, Apr. 14, 2017. Accessed Oct. 14, 2020. [Online].
Available: https://news.mit.edu/2017/explained-neural-networks-deep-learning-
0414

[20] G. Allen, “Understanding AI technology. A concise, practical, and readable

overview of artificial Intelligence and machine Learning technology designed for
non-technical managers, officers, and executives.” Joint Artificial Intelligence
Center (JAIC), Apr. 2020, Accessed: Oct. 14, 2020. [Online]. Available:
https://www.ai.mil/docs/Understanding%20AI%20Technology.pdf

109

[21] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms, 4th
ed. Cambridge University Press, 2003.

[22] F. Bre, J. M. Gimenez, and V. D. Fachinotti, “Prediction of wind pressure

coefficients on building surfaces using artificial neural networks,” Energy Build.,
vol. 158, pp. 1429–1441, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.045.

[23] A. Shertinsky, “Fundamentals of recurrent neural network (RNN) and long short-

term memory (LSTM) network,” Phys. Nonlinear Phenom., vol. 404, Mar. 2020.

[24] M. S. Researcher PhD, “simple introduction to convolutional neural networks,”

Medium, Jul. 29, 2020. Accessed Mar. 05, 2021. [Online]. Available:
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-
networks-cdf8d3077bac

[25] “CS231n convolutional neural networks for visual recognition.” Accessed Oct.

21, 2020. [Online]. Available: https://cs231n.github.io/convolutional-networks/

[26] M. Mishra, “Convolutional neural networks, explained,” Medium, Sep. 02, 2020.

Accessed Mar. 05, 2021. [Online]. Available:
https://towardsdatascience.com/convolutional-neural-networks-explained-
9cc5188c4939

[27] M. Egorov, “Multi-agent deep reinforcement learning,” 2016. Accessed Nov. 27,

2020. [Online]. Available:
http://cs231n.stanford.edu/reports/2016/pdfs/122_Report.pdf

[28] M. C. Fu, “AlphaGo and Monte Carlo tree search: The simulation optimization

perspective,” in 2016 Winter Simulation Conference (WSC), Dec. 2016, pp. 659–
670, doi: 10.1109/WSC.2016.7822130.

[29] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent

complexity via multi-agent competition,” ArXiv171003748 Cs, Mar. 2018,
Accessed: Nov. 13, 2020. [Online]. Available: http://arxiv.org/abs/1710.03748.

[30] Feng-Hsiung Hsu, “IBM’s Deep Blue Chess grandmaster chips,” IEEE Micro,

vol. 19, no. 2, pp. 70–81, Mar. 1999, doi: 10.1109/40.755469.

[31] N. Brown and T. Sandholm, “Superhuman AI for heads-up no-limit poker:

Libratus beats top professionals,” Science, vol. 359, no. 6374, pp. 418–424, Jan.
2018, doi: 10.1126/science.aao1733.

[32] OpenAI et al., “Dota 2 with large scale deep reinforcement learning,”

ArXiv191206680 Cs Stat, Dec. 2019, Accessed: Oct. 15, 2020. [Online].
Available: http://arxiv.org/abs/1912.06680.

110

[33] L. Stone, “AI pilot beats human 5:0 in DARPA dogfight,” AI BUSINESS, Aug.
24, 2020. Accessed Mar. 16, 2021. [Online]. Available:
https://aibusiness.com/document.asp?doc_id=763402

[34] G. Moy and S. Shekh, “The Application of AlphaZero to Wargaming,” in AI

2019: Advances in Artificial Intelligence, vol. 11919, J. Liu and J. Bailey, Eds.
Cham: Springer International Publishing, 2019, pp. 3–14.

[35] A. Choudhary, “A hands-on introduction to Deep Q-Learning using OpenAI Gym

in Python,” Analytics Vidhya, Apr. 18, 2019. Accessed: Oct. 20, 2020. [Online].
Available: https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-
learning-python/

[36] “SVG Tutorial.” Accessed Mar. 18, 2021. [Online]. Available:

https://www.w3schools.com/graphics/svg_intro.asp.

[37] A. Raffin, “Stable Baselines: a fork of OpenAI Baselines — reinforcement

learning made easy,” Medium, May 08, 2020. Accessed Nov. 06, 2020. [Online].
Available: https://towardsdatascience.com/stable-baselines-a-fork-of-openai-
baselines-reinforcement-learning-made-easy-df87c4b2fc82

[38] “Welcome to Stable Baselines3 docs! - RL Baselines made easy — Stable

Baselines3 0.11.0a0 documentation.” Accessed Nov. 06, 2020. [Online].
Available: https://stable-baselines3.readthedocs.io/en/master/

[39] OpenAI, “Gym: A toolkit for developing and comparing reinforcement learning

algorithms.” Accessed Nov. 06, 2020. [Online]. Available:
https://gym.openai.com

[40] A. Patel, “Hexagonal grids,” Red Blob Games, May 2020. Accessed Apr. 14,

2021. [Online]. Available: https://www.redblobgames.com/grids/hexagons/

[41] AurelianTactics, “PPO hyperparameters and ranges,” Medium, Jul. 28, 2018.

Accessed Mar. 18, 2021. [Online]. Available:
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-
6fc2d29bccbe

[42] C. Steppa and T. L. Holch, “HexagDLy—Processing hexagonally sampled data

with CNNs in PyTorch,” SoftwareX, vol. 9, pp. 193–198, Jan. 2019, doi:
10.1016/j.softx.2019.02.010.

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Jun_Cannon_Christopher_First8
	21Jun_Cannon_Goericke
	I. Introduction
	A. Combat Modeling and Warfare
	B. Scope and Problem Statement
	C. Benefit and Structure of Thesis

	II. Concepts, Examples And Current Research
	A. Concepts
	1. Types of Simulations
	2. Machine Learning and Deep Reinforcement Learning
	3. Neural Networks
	4. CNN’s and Multi-Agent Learning

	B. State of RL research in RTS games and Military SIMULATIONS
	1. AI in Games
	2. Neural Networks in Military Applications

	III. Framework
	A. Architecture
	B. Training Environment
	C. State Representation

	IV. Scenarios and Results
	A. Two-Versus-One
	1. Description
	2. Results

	B. Two-Versus-One Spatial Invariance
	1. Description
	2. Results

	C. Two-versus-Two
	1. Description
	2. Results

	D. Three-versus-Two
	1. Description
	2. Results

	E. Urban Terrain
	1. Description
	2. Results

	F. Changing Urban Terrain Location
	1. Description
	2. Results

	G. Multi-Agent Training
	1. Description
	2. Results

	H. Large-Scale Scenario
	1. Description
	2. Results

	V. Conclusions, Recommendations, and Future Work
	A. Conclusions
	1. Replication of Boron’s Scenarios
	2. Increasing the complexity of Boron’s Scenarios
	3. Spatial Invariance
	4. Scenarios with Urban Terrain Features
	5. Multi-Agent Learning
	6. Large-Scale Scenario

	B. Recommendations and Future Work
	C. Summary

	Appendix A. Data
	A. Two-versus-One
	B. Two-Versus-One Spatial Invariance
	C. Two-versUs-Two
	D. Three-versus-Two
	E. Urban Terrain
	F. Multi-Agent-Training
	G. Large-Scale Scenario

	List of References
	Initial distribution list

