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ABSTRACT 

 The connection between updraft and downdraft size in cumulus clouds is an 

important part of weather prediction and thunderstorms. Understanding updraft width is 

important because of the connection between updraft width and entrainment. For 

instance, entrainment will have a greater negative effect on wider updrafts when 

compared to narrow updrafts. The larger the cloud width and updraft, the bigger the 

storm and potential impact. Yet updrafts are difficult to observe and measure from a 

single scanning radar because of variable beam angles relative to ascending air. 

Downdrafts, on the other hand, are readily observed by radar via the precipitation they 

contain because radar specifically detects the signal that is scattered back from 

precipitation particles. Therefore, with a consistent connection between updraft and 

downdraft width, radar measurements can provide better understanding of updraft 

attributes indirectly through observing downdrafts. In this study, the connection between 

updraft and downdraft width will be established through comparing updraft vertical 

velocities, downdraft radar reflectivity, and simulated radar attributes of cumulus clouds 

in a high-resolution numerical simulation. 
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I. INTRODUCTION 

A. BACKGROUND 

Strong updrafts in cumulonimbus clouds contribute to a wide range of severe 

weather hazards, including thunderstorms. Thunderstorms are important to understand 

because they produce even more hazardous weather like hail (Amburn and Wolf 1997), 

damaging winds (Brooks 2013), floods (Smith et al. 2001), tornadoes (Brooks 2013), and 

lightning (Marshall et al. 1995), which can impact daily life. Not only do they influence 

our daily lives, but also they are an integral part of our climate system as a major source of 

uncertainty in climate models (Brooks 2013). Stronger vertical velocities can equate to 

greater weather hazards and have a large influence on clouds in their surrounding 

environments (Giangrande et al. 2016). They are also able to more substantially redistribute 

heat and moisture vertically (Donner 1993). This influences synoptic and global-scale 

climate circulations (Price 2009).  

Updraft vertical velocities (w) are primarily determined by buoyancy and pressure 

gradient accelerations (Peters et al. 2019). The two primary factors that influence buoyancy 

are convective available potential energy (CAPE) and entrainment (Zhang 2009). By far, 

the largest uncertainty in predicting storm characteristics from a given environment comes 

from predicting entrainment. Entrainment is also very difficult to measure in the field, and 

most studies of entrainment rely on large eddy simulations (LESs) rather than observations. 

In general, observational efforts to characterize entrainment rely on proxies, such as the 

degree of updraft dilution at a given height (Peters et al. 2020) and cloud top ascent rate 

(Gregory 2001). Another possible proxy that has been underused to date is updraft width. 

Theoretical studies and analyses of numerical simulations suggest that the width of updrafts 

is inversely correlated with their fractional entrainment rates (Peters et al. 2020). Thus, if 

we could measure updraft width, we would know a lot about entrainment.  

B. MOTIVATION 

Unfortunately, measuring updraft characteristics, including its width, in the real 

world is difficult, albeit less difficult than measuring entrainment. Such observation in 
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updraft characteristics require a vertically pointing radar that has a storm directly passing 

over in order to be perfectly observed (Battan et al. 1966) or a dual Doppler analysis that 

has limited area coverage and resolution (Oue et al. 2019). Dual Doppler analysis in 

particular requires two or more radars; they tend to have low resolution and are also 

inaccurate in the upper-troposphere.  

Compared to updraft characteristics, precipitation is somewhat easy to measure via 

radar reflectivity. Furthermore, there is some evidence that downdraft size should correlate 

with updraft size (Moeng 2014). Since precipitation is connected to downdrafts, this means 

downdrafts may be more readily measurable than updrafts. By extension, this connection 

suggests that updraft area and precipitation area should be connected.  

C. OBJECTIVES 

There are other reasons that updraft area and precipitation area should be correlated. 

For example, greater vertical mass flux equates to greater precipitation production. 

Therefore, the main question is whether we can observe a precipitation area as a proxy for 

updrafts. The purpose of this project is to connect the updraft and downdraft using 

simulated radar reflectivity. The hypothesis is that if there is a large numerical outcome 

from both the precipitation area and vertical updraft, then a connection exists.  

The organization of this thesis is as follows. Chapter II describes the setup for our 

numerical simulation, along with our methods for analyzing the simulation. Chapter III 

describes the results from this analysis. Finally, Chapters IV and V summarize the study, 

list the primary conclusions, and discuss the meaning of the results in the context of past 

and future work.  



3 

II. EXPERIMENT DESIGN 

To address our objective, we ran a 36-hour-long LES of a thunderstorm 

environment. The goal of the analyses of the simulation was to correlate updraft and 

precipitation areas in the simulated results. 

A. MODEL SETUP 

This project uses a simulation of deep moist convection that was originally 

introduced by Peters et al. (2020). The simulation is run with Cloud Model 1 (CM1) version 

19.10 (Bryan and Fritsch 2002). CM1 uses an acoustic time-splitting integration scheme 

(Durran and Klemp 1982), with a small time step used to integrate the equation terms that 

encapsulate acoustic dynamics, and the rest of the model prognostic variables integrated 

with a comparatively long-time step. Our long time step was set to 1 second. The vertical 

grid spacing was 50 m in the lowest 2 km that was linearly stretched to 250 m and then 

held constant at 250 m up to the top of the model at 20 km (Peters 2020). Similar to the 

setup in Peters et al. (2020), the grid spacing horizontally was set at 0.1 km, and the east 

and west domain lengths were both 64 km, with periodic boundary conditions. Initial and 

lateral boundaries were periodic, with a constant enthalpy flux from the ocean and a semi-

slip lower boundary, and a free-slip upper boundary. Turbulence also plays a factor in 

entrainment in deep convection. Temperature perturbations with an amplitude of 0.25 K 

were included in the initial conditions to facilitate the development of turbulence, as was 

done in Peters et al. (2020). The simulation then ran for 36 hours. We parameterized 

microphysics by applying the double moment scheme of Morrison et al. (2009) with hail 

mixing ratios and number concentrations explicitly predicted. The first 20 hours displayed 

shallow- to-mid-level convection with maximum cloud top below 10 km (Peters et al. 

2020). Beyond 20 hours, bursts of deep convection occurred with less active periods.  

1. 0-hour Model Profile 

Peters et al. (2020) uses Yoneyama’s 2013 Atmospheric Radiation Measurement 

(ARM) Madden-Julian Oscillation Investigation experiment, which derives a sounding 

from a tropical environment using rawinsonde data and was post-processed and quality 
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controlled by Ciesielski (2014). The sounding is shown in Figure 1. This project was 

modeled after Peters et al. (2020) in order to further investigate connections between 

updrafts and radar reflectivity. The parameters used, as in Peters et al. (2020), were mean 

values of temperature and horizontal wind profiles obtained during the time period of 1 

October 2011—15 January 2012. To compute the mass fraction of water vapor, we use the 

mean value it was observed during rainy days from radiosonde launches during the same 

time period within 150 km radius of the launch site (Peters et al. 2020). The surface 

pressure and water vapor were also collected during the rainy periods and the surface 

temperature was the mean value across all soundings during this time period (Peters et al. 

2020) in order to give the most accurate model that relays a real-time dynamic atmosphere. 

The skew T-log p diagram represents an air parcel that was lifted adiabatically as 

shown in the black line. The red line displays the temperature (oC), the green line displays 

dewpoint temperature (oC), and the thin red line represent virtual temperature (oC). Overall, 

this environment shows a convectively unstable atmosphere. There is moderate CAPE 

around ~2000 J kg-1 and small convective inhibition (CIN), with a relatively moist free 

troposphere.  
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Figure 1. Profiles of temperature and dewpoint were used to initialize the 

simulations, shown in a Skew-T log-P format. In red: temperature, (oC); 
green: dewpoint temperature (oC); thin red: virtual temperature (oC); black: 
the temperature an air parcel lifted adiabatically from the surface. Source: 
Peters et al. (2021). 

2. 32-hour Model Simulation 

This simulation was run for a total of 36 hours showing the 32-hour profile depicted 

in Figure 2. The same initial process was used in Figure 1 as well as the same represented 

in the skew T-log p diagram. This environment displays a similar profile as Figure 1, but 

slightly warmer air near the surface. There is also an increase in CAPE to ~3000 J kg-1. 
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Figure 2. As in Figure 1, but showing the horizontally averaged properties of 

the simulation at 32 hours. Source: Peters et al. (2021). 

B. METHODS FOR ANALYZING LES RESULTS 

1. Threshold Values for w and R 

At each time in the simulation, we computed a 2-dimensional map of the column 

maximum vertical velocity, w, at each grid point, along with a 2-dimensional map of S-

band radar reflectivity factor, R, at 1 km above ground level (AGL). We then identified 

continuous regions within these w and R fields that exceeded threshold values. The 

thresholds used for w were greater than 1, 5, 10, 15 and 20 m s-1. The thresholds used for 

R were greater than 30, 40 and 50 dBZ.  
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2. Histogram Percentiles and Time Series 

Once these continuous regions were established, we calculated the areas of each 

one. At each time, histograms of the areas of continuous w and R were created for each 

threshold. From the histogram, the 50th, 60th, 70th, 80th, and 90th percentiles of w and R were 

computed. This resulted in the times series of percentiles of w and R. Lastly, correlations 

between the two time series were computed. To validate the primary hypothesis of the 

thesis, we looked for statistically significant positive linear correlations between the time 

series of w percentiles, and the time series of R percentiles. Statistical significance was 

determined using a 95% confidence level, which was obtained via a Student’s t-test, 

assuming that both variables were normally distributed. All the discussed correlation 

coefficients were tested to be statistically significant, unless stated otherwise. 
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III. RESULTS 

A. HISTOGRAMS 

In Figure 3, histograms were created for continuous areas of vertical velocity larger 

than 5, 10, and 15 m s-1. These histograms show a large number of small w areas and fewer 

large ones. This result is consistent with previous studies by Neggers et al. (2019) and 

Peters et al. (2020), which have shown that the distribution of cloud sizes tends to be 

inverse exponential with respect to updraft width. 

 
Figure 3. From left to right, area occupied by vertical velocity greater than 5 

m s-1, 10 m s-1, and 15 m s-1 in km2. 

In Figure 4, histograms were created for continuous areas of reflectivity greater 

than 30, 40, and 50 dBZ. These also display large numbers of small R continuous areas 

with few large area coverages. The general shape is similar to that of vertical velocity and 

has decreasing numbers as the area increases. At face value, these trends point to a possible 

connection between w and R that is explored further later.  
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Figure 4. From left to right, area occupied by reflectivity greater than 30 dBZ, 

40 dBZ, and 50 dBZ in km2. 

B. CORRELATION  

The goal of the correlation in Figure 5 was to match an attribute from the R, on the 

x-axis, to an attribute from the w on the y-axis. The shading shows the correlation. When 

there is red, there is a positive correlation. When there is blue, there is a negative 

correlation. Overall, the correlations varied throughout. However, the maximum values 

were on the order of ±0.5, which is considered a “moderate” correlation.  

Figure 5 also displays a magenta ‘x’ where the best correlation is located at the 90th 

percentile for 20 m s-1 in w and the 80th percentile for 50 dBZ in R. In order to visualize 

these time series, they are plotted against each other in Figure 6. 
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Figure 5. Correlation coefficients (CC, shading) between time series of each 

dBZ threshold and percentile (x-axis) and each w threshold and percentile 
(y-axis). Red shading indicates positive CC, and blue shading indicated 
negative CC.  
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Figure 6. Time series on a time (hours) versus area (km2) between R raw data 

at the 80th percentile and 50 dBZ (light blue) and w raw data at the 90th 
percentile and 10 m s-1. Superimposed R data over 1 hour at the 80th 
percentile and 50 dBZ (bold blue) and superimposed w data over 1 hour at 
the 90th percentile and 10 m s-1 (bold red).  

C. TIME SERIES 

Overall, a moderate correlation can be observed in Figure 6. The bold blue and bold 

red line represent superimposed data averaged over 1 hour to display less noise within each 

time series. During the first 22 hours, both w and R show similar variation to one another, 

having peaks and minima at similar times. This is representative of the simulated shallow 

convection. After 22 hours, the shallow convection transitions to deep convection. When 
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following the time series, there are several similarities among the w and R during deep 

convection. Around 23 hours, both demonstrate an increase in area as well as around 24 

hours. At 25 hours, they display a decrease in area at the same time, and so on and so forth 

until the end. The only time they do not perfectly align is right at the end. The R shows an 

increase while the w shows a decrease of area over time. Although the correlation does not 

display the exact same area per variable, it does demonstrate a similar trend. 
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IV. CONCLUSIONS 

Thunderstorms play an important role in both weather and climate. Accurate 

weather and climate forecasts require that numerical weather prediction and climate models 

correctly represent the effects of thunderstorms. In this thesis, we have investigated the 

potential connection between the size of thunderstorm updrafts, and the size of their areas 

of observable simulated radar reflectivity. We investigated this connection to see if 

reflectivity areas, which is relatively easily measurable using radar observations, can be 

used as a proxy for observing updraft area, which is comparatively difficult to directly 

observe.  

Our conclusions are as follows: 

• In a large eddy simulation, updraft areas are moderately correlated with 

reflectivity areas when certain specific thresholds for defining updraft and 

reflectivity area are used. 

• The maximum correlation coefficient between updraft area and reflectivity 

area was approximately 0.5. This maximum correlation occurred when 

updrafts were defined as regions of maximum column vertical velocity 

greater than 10 m s-1, and simulated composite reflectivity greater than 50 

dBZ. 

This work is significant because radar measurements of refractivity from field 

campaigns can be used to infer updraft characteristics. With these characteristics, possible 

connections can be made to environmental qualities such as wind shear, CAPE, CIN, 

vorticity, and updraft area. In addition, forecasters can use this as a proxy for updraft size 

and strength in convective events. 
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V. FUTURE WORK 

A moderate correlation between w area and R area was found, however, there is 

still work that needs to be done. Since comparing distributions were made, it would be of 

more interest and beneficial to match the w areas with the R areas in a more robust manner. 

Future work should also look at simulations and observations over a range of different 

environments since only one environment was used in the simulation here. Additionally, 

observations of non-precipitating shallow convection using precipitation radar do not 

capture the downdrafts of many clouds. The downdraft and updraft characteristics of these 

clouds should be observed using higher-frequency cloud radar such as scanning Ka-band 

radars in order to conduct a similar analysis.  
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