
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

REFINING DEEP LEARNING NEURAL NETWORKS
FOR AUTONOMOUS VEHICLE NAVIGATION

by

Marcea M. Ascencio

March 2021

Thesis Advisor: Xiaoping Yun
Co-Advisor: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2021

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
REFINING DEEP LEARNING NEURAL NETWORKS FOR AUTONOMOUS
VEHICLE NAVIGATION

5. FUNDING NUMBERS

6. AUTHOR(S) Marcea M. Ascencio

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Machine learning methods have recently increased in appearance in navigation and guidance

applications by means of image classification. This thesis sought to advance the ongoing Electrical and
Computer Engineering (ECE) Control Systems and Robotics Laboratory project in developing a system that
will autonomously navigate across the Naval Postgraduate School (NPS) campus. In pursuit of providing a
robust navigation and guidance solution to an autonomous robotic vehicle, a convolutional neural network
(CNN) was trained to classify significant objects around NPS. In addition to increasing the number of
objects that the neural network could classify, the network was also trained with varying image
augmentation techniques applied to the training and validation images. A variety of tests were performed to
evaluate the accuracy of the model when exposed to different objects and regions throughout the campus.
The tests also included running the image classification model against images that were altered with crop,
blur, rotation, and noise. The results demonstrated high classification accuracy and asserted that the output
was robust when faced with poor image quality. This work established a strong baseline for more CNN
output integration into the navigation and guidance solution of the robotic vehicle.

14. SUBJECT TERMS
navigation, autonomy, machine learning, neural networks, CNN, robotics

15. NUMBER OF
PAGES

69
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

REFINING DEEP LEARNING NEURAL NETWORKS
FOR AUTONOMOUS VEHICLE NAVIGATION

Marcea M. Ascencio
Civilian, Department of the Air Force

BS, California State University, Long Beach, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2021

Approved by: Xiaoping Yun
Advisor

James Calusdian
Co-Advisor

Douglas J. Fouts
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Machine learning methods have recently increased in appearance in navigation

and guidance applications by means of image classification. This thesis sought to

advance the ongoing Electrical and Computer Engineering (ECE) Control Systems and

Robotics Laboratory project in developing a system that will autonomously navigate

across the Naval Postgraduate School (NPS) campus. In pursuit of providing a robust

navigation and guidance solution to an autonomous robotic vehicle, a convolutional

neural network (CNN) was trained to classify significant objects around NPS. In addition

to increasing the number of objects that the neural network could classify, the network

was also trained with varying image augmentation techniques applied to the training and

validation images. A variety of tests were performed to evaluate the accuracy of the

model when exposed to different objects and regions throughout the campus. The tests

also included running the image classification model against images that were altered

with crop, blur, rotation, and noise. The results demonstrated high classification accuracy

and asserted that the output was robust when faced with poor image quality. This work

established a strong baseline for more CNN output integration into the navigation and

guidance solution of the robotic vehicle.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..1
C. PREVIOUS WORK ...2
D. THESIS ORGANIZATION ..2

II. BACKGROUND ..5
A. HARDWARE ...5
B. SOFTWARE ...6

1. Robot Operating System (ROS) ...6
2. MATLAB ..6

C. IMAGE AUGMENTATION TECHNIQUES ...7
1. Image Augmentation of the Overall Dataset7
2. Image Augmentation Specific to Training Dataset8
3. Image Augmentation Scheme for Secondary Testing

Dataset ...9
D. MACHINE LEARNING ALGORITHMS AND PROCESSES9

1. Neural Networks and Deep Learning ..11
2. Convolutional Neural Networks ...13
3. Network Architecture ..15
4. Training Setup ..17
5. Training Results ...19

III. EXPERIMENTS AND RESULTS ...21
A. TEST SETUP ...21

1. Preliminary Test – Image Augmentation Techniques21
2. Final Network Test ..23
3. Integration Testing – P3-DX with SlimPro Computer26

B. TEST RESULTS ..27
1. Preliminary Test Results – Image Augmentation

Techniques ..27
2. Final Network Test Results ...30
3. Integration Test Results – P3-DX with SlimPro Computer35

IV. CONCLUSION ..37
A. ASSESSMENT OF GOALS..37
B. FUTURE WORK ...38

viii

1. Incorporate Neural Network Outputs into Navigation
Plan ..38

2. Expand the Number of Objects for Classification38
3. Use CNNs for Object Detection and Localization39

APPENDIX A. NETWORK TRAINING SCRIPT..41

APPENDIX B. IMAGE AUGMENTATION SCRIPT..43

APPENDIX C. LIVE TEST SCRIPT ...47

LIST OF REFERENCES ..49

INITIAL DISTRIBUTION LIST ...51

ix

LIST OF FIGURES

Figure 1. P3-DX with Microsoft LifeCam Webcam ...6

Figure 2. Unaltered Image (Left) and Altered Image (Right)8

Figure 3. Unaltered Images (Left) with Altered Images (Right)9

Figure 4. Different Types of Neural Network Architectures. Source [8].11

Figure 5. Convolution of a 2×2 Convolutional Filter and a 4×4 Input. Source
[8]. ..14

Figure 6. GoogLeNet Inception Module. Source [9]. ...15

Figure 7. Simplified GoogLeNet Architecture (Left) With Layers That Were
Replaced for Transfer Learning (Right) Circled in Red17

Figure 8. MATLAB Network Training Flowchart. Source [12].18

Figure 9. Training Progress Plot with Accuracy (Top) and Loss (Bottom)20

Figure 10. Unaltered Image (Left) and Altered Image (Right)22

Figure 11. Training Progress Plot for Unaltered Image Network22

Figure 12. Training Progress Plot for Altered Image Network23

Figure 13. Training Progress Plot for Combined Image Network23

Figure 14. Representative Images of Each Object Class of the Final Network24

Figure 15. Example of an Unaltered Image (Top), Blurred Image (Middle Left),
Noisy Image (Middle Right), Rotated Imaged (Bottom Left), and
Cropped Image (Bottom Right) Used for The Secondary Test26

Figure 16. Confusion Chart for “Unaltered” Network ..28

Figure 17. Confusion Chart for “Altered” Network ..29

Figure 18. Confusion Chart for “Combined” Network ...29

Figure 19. Incorrectly Classified Image with Predicted Class and Probability
listed above (Left) and an Example of the Misclassified Class
(Right) ..30

Figure 20. Confusion Chart for the Final Network Test ...31

x

Figure 21. Confusion Chart for the Baseline Test Dataset ..33

Figure 22. Confusion Chart for the Blur Test Dataset ..33

Figure 23. Confusion Chart for the Noise Test Dataset ..34

Figure 24. Confusion Chart for the Rotate Test Dataset ...34

Figure 25. Confusion Chart for the Crop Test Dataset ..35

xi

LIST OF TABLES

Table 1. Training Options for Final Network ..19

Table 2. Preliminary Testing Results ...27

Table 3. Summary of Classification Accuracy for Each Augmented Test
Dataset..32

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AI artificial intelligence

CNN convolutional neural network

CPU central processing unit

DAG directed acyclic graph

DOD Department of Defense

ECE electrical and computer engineering

GUI graphical user interface

LIDAR light detection and ranging

P3-DX Pioneer 3-deluxe

PC personal computer

RAM random-access memory

ReLU rectified linearization unit

ROS robot operating system

SLAM simultaneous localization and mapping

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Xiaoping Yun and Dr. James Calusdian, for

their guidance and support throughout this entire experience. Despite the challenges we

have faced in the last year with distance learning, their unwillingness to sacrifice technical

rigor and their mentorship and advice shaped the success of this thesis work. Thank you

both for keeping me grounded and focused.

I would also like to thank a few professors: Dr. Brian Bingham for his excellent

mentorship on autonomous robot control and graduate-level research methods, and Dr. Brij

Agrawal and Dr. Jae Jun Kim for their fantastic deep learning course that really challenged

my understanding of neural networks. These were some of the most influential lessons that

I learned in my time here at NPS.

A final thank you to the ECE faculty, students, and community. I would have never

expected my graduate program to be finished in a distance learning environment. In the

face of these unprecedented times, there was never an instance where the technical quality

of my studies faltered. In addition to continued academic excellence, I cannot thank

everyone enough for their professionalism and efforts to keep the health and safety of

everyone as their highest priority. We have been able to come out ahead because we did

it together.

xv

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

As system sensor suites advance, complex algorithms are required to effectively

utilize the incoming information for decisions such as navigation, guidance, and control.

Machine learning models are used to interpret this incoming data and provide valuable

outputs for these systems to use. Neural networks, a form of machine learning, are used for

a variety of tasks, including object detection, image recognition, and classification. When

incorporated into a sensor suite, the output of a neural network may be used to supplement

existing navigation calculations or act as a sole input for navigation-based decisions. Since

the neural network is onboard, the system does not have the same limitations that are

commonly seen with radio or satellite navigation. As machine learning research has

progressed, applications that utilize neural networks have become more robust and reliable,

increasing the trustworthiness and usefulness of this technology.

As commercial technology has advanced towards autonomy to address the

complexities of society, the Department of Defense (DOD) too is moving towards utilizing

autonomy in warfighting technology. There is a demand for autonomous land, sea, and air

vehicles to be developed to aid the warfighter in accomplishing varying mission types. The

current DOD artificial intelligence (AI) strategy highlights focus areas such as “improving

situational awareness and decision making, increasing the safety of operating equipment,

implementing predictive maintenance and supply, and streamlining business

processes.” [1] By applying machine learning within military technology, certain decision-

making tasks can be automated, leaving the operator to focus on higher-level decisions.

B. OBJECTIVE

In pursuit of advancing the existing Electrical and Computer Engineering (ECE)

Control Systems and Robotics Laboratory project of developing a system that will navigate

across the Naval Postgraduate School (NPS) campus, this research seeks to improve and

refine the development and application of neural networks for use in the navigation and

guidance of an autonomous system. The performance of the neural network must be able

2

to use images to classify significant objects and regions around the NPS campus.

Additionally, there is a goal to create a robust neural network so that common issues such

as cropped, blurred, or rotated images used by the autonomous system do not significantly

alter the ability of the network to classify the desired objects or regions. This research will

advance the overall project and is intended to be expanded upon in future work.

C. PREVIOUS WORK

The use of neural networks in image classification has been a topic of research for

decades but has seen recent growth and popularity. Recently, convolutional neural

networks (CNNs) have taken the lead in image classification applications. Prior research

has led to a variety of algorithms, architectures, and implementations. This research is

influenced by a variety of existing architectures and methods for image classification with

neural networks. However, this thesis work on neural networks is tailored to the end goal

of autonomously navigating a robot vehicle around the NPS campus.

Several ECE students have contributed to the overall effort of providing guidance

and control to a robot vehicle so that it may autonomously traverse the NPS campus. This

includes work done to provide waypoint following and object avoidance [2], route

planning [3], terrain recognition [4], and even light detection and ranging (LIDAR)

mapping for obstacle classification [5] to the autonomous robot vehicle. Most recently,

however, this thesis furthers the work done in [6] by using CNNs for image classification

applications in autonomous navigation. In Magee’s work, a neural network was trained to

identify an image of a goal location. The mobile robot performed autonomous navigation

while simultaneously classifying images from its installed webcam. Upon identifying its

goal by image classification, the vehicle stopped its motion. This thesis work seeks to build

the database of identifiable objects around NPS, and most importantly refine the neural

networks for a more robust output to be used by onboard navigation processes.

D. THESIS ORGANIZATION

The background, design, testing, and results of this thesis research are presented in

the following three chapters. Chapter II contains a background of the hardware and

software, image augmentation techniques, machine learning algorithms, and training setup

3

used in this research. A discussion of the experiments and results from the preliminary

work, bench testing, and final classification testing are outlined in Chapter III. Finally, a

conclusion of this research and listing of future areas of work are included in Chapter IV.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

In pursuit of developing an autonomous robot vehicle that can navigate around

NPS, an array of hardware and software resources were utilized. The same robot vehicle

that was used in the previous neural network research [6] was once again employed for this

work to provide continuity and allow for more variation to be explored with the software

development. Though the software used for the robot navigation algorithms was not

altered, the neural network model was significantly improved upon. A brief overview of

this hardware and software configuration is provided in this chapter. Additionally, this

chapter elaborates on the techniques and algorithms used to refine the neural networks that

were implemented in this research.

A. HARDWARE

The hardware used in this research consisted of a robot equipped with a mini

personal computer (PC), various sensor systems, and a webcam. Additionally, an external

computer was used for the machine learning algorithm design and development. The robot

was an Omron Adept MobileRobots Pioneer 3-Deluxe (P3-DX) vehicle. Previous research

of the onboard sensor systems (sonar, LIDAR, etc.) has been performed with this robot

variant making it a prime candidate to execute the machine learning algorithms developed

in this research. The onboard mini-PC was a SlimPro SP675P Mini PC equipped with an

Intel Pentium Central Processing Unit (CPU) Model B950. The webcam used for input into

the SlimPro Mini PC was a Microsoft Life Cam, with 720p resolution and a high-precision

glass element lens. The external computer used was a Microsoft Surface Pro 6, with an

Intel Core i5 processor and 8 GB of random-access memory (RAM). This external

computer was used to develop the algorithms and models since the computations were

processed quicker with this setup than the SlimPro Mini PC installed on the robot. All code

was shared via server-based SharePoint prior to code execution that took place on the

SlimPro Mini PC. The P3-DX is shown in Figure 1 with the mini-PC and webcam

configuration.

6

Figure 1. P3-DX with Microsoft LifeCam Webcam

B. SOFTWARE

1. Robot Operating System (ROS)

Leading as the main collection of open-source software for robotic vehicles, Robot

Operating System (ROS) provides a complete environment for applications in robotics. In

previous research, comprehensive navigation scripts for the P3-DX with ROS applications

and MATLAB, including waypoint following and simultaneous localization and mapping

(SLAM) algorithms, were developed [6]. No ROS applications were modified or used for

the purpose of this research.

2. MATLAB

MATLAB 2020b was the tool used to develop, train, and execute the machine

learning networks on the P3-DX robot. All images captured via the webcam were pre-

processed with MATLAB and then used as inputs into the machine learning functions. A

variety of toolboxes were required to perform these tasks, which included the Deep

Learning, Computer Vision, and Image Processing toolboxes. In addition, the Deep

Network Designer graphical user interface (GUI) tool was used to perform a more visual-

based assessment and design of the machine learning networks. Though the full design and

training can be done within the Deep Network Design GUI, the preferred method was

7

completed within the MATLAB script editor. These MATLAB scripts are included in the

Appendix.

C. IMAGE AUGMENTATION TECHNIQUES

Prior to being used for the training, validation, and testing of the machine learning

networks, the images were pre-processed with MATLAB functions. This pre-processing

altered the images to increase the diversity within each class. As seen with many other

machine learning networks, image augmentation helps the network model increase

generalizability, or increase the likelihood that the model will correctly classify unseen

images when used in application. Training a machine learning network to correctly classify

a large variance in image quality, such as images taken during high/low lighting conditions,

in low contrast areas, or even with a noisy or blurred camera, can be challenging. The use

of image augmentation techniques addresses this challenge and produces more resilient

and robust networks.

1. Image Augmentation of the Overall Dataset

The overall dataset used to train, validate, and test this machine learning network

contained 50% standard images acquired via the webcam and 50% altered images that were

created with image augmentation techniques applied to the standard images. The

MATLAB function “jitterColorHSV” was used to randomly alter the contrast, hue,

saturation, and brightness of the images. This produced a larger dataset and increased the

variance in the images. An example of this image augmentation technique is shown in

Figure 2, where the altered image (right) was created by randomly skewing the contrast,

hue, saturation, and brightness of the unaltered image (left).

8

Figure 2. Unaltered Image (Left) and Altered Image (Right)

2. Image Augmentation Specific to Training Dataset

The images in the overall dataset were randomly split into a training dataset, a

validation dataset, and a testing dataset. A separate image augmentation technique was

applied solely to the training dataset to alter the images further. It is common practice for

most machine learning network development to highly augment the training images, but

not the validation and test images. These added augmentation techniques included a

randomized assortment of x-axis reflections, rotations, shearing, and translations. These

types of augmentations are more extreme but increase the generalizability of the machine

learning model when faced with sub-optimal conditions. An example of this image

augmentation scheme is shown Figure 3. The torpedo image was reflected about the x-axis,

rotated, and translated, and the building image was sheared.

9

Figure 3. Unaltered Images (Left) with Altered Images (Right)

3. Image Augmentation Scheme for Secondary Testing Dataset

Once the machine learning network was trained and validated with the MATLAB

tools mentioned above, the network was then tested against a separate image dataset. This

dataset consisted of the standard images and the images produced by the “jitterColorHSV”

function that were set aside for testing. As a supplementary test, the images were then

tested against a secondary dataset. Unlike the image augmentation scheme applied to the

training dataset, the secondary test dataset had four subsets. Each of the subsets contained

the same images but were separately altered by blurring, noise, rotation, and cropping

augmentation techniques. This allowed for assessment of the network classification

performance against each technique. This more isolated secondary testing method was

inspired by [7] and proved more feasible to test a variety of conditions rather than waiting

for the desired sub-optimal conditions around the school campus.

D. MACHINE LEARNING ALGORITHMS AND PROCESSES

As computer technology has advanced, research in the field of machine learning

has capitalized on this growth and has flourished once again. Though machine learning has

been used as a form of artificial intelligence for decades, recent advancements have utilized

10

the ability to apply more complex techniques to solve the most complex of problems.

Machine learning can be succinctly summarized as the method in which a model is created

from a set of training data.

There exist different methods of machine learning since varying applications

require different models and have specific desired outputs. The main types can be broken

into three categories: supervised learning, unsupervised learning, and reinforcement

learning. The supervised learning method was applied in this research and will be discussed

in this chapter. The other types, unsupervised learning and reinforcement learning, can be

reviewed in “MATLAB Deep Learning” by Kim in [8]. Supervised learning is performed

by training a model to arrive at a correct output by knowing the correct input. Common

applications of supervised learning are classification and regression. As the name suggests,

classification is the process of assigning inputs into classes. Regression applications,

however, use the model to predict a value instead of a class.

The objective of this research is to use classification methods to provide navigation

and guidance information to an autonomous robot. This is achieved by using supervised

learning to develop a trained network based on labeled image data of landmarks, then

applying the trained network to classify the desired landmarks. This application of

classification is categorized as computer vision, or using a computer to interpret captured

images. Different techniques for employing computer vision with machine learning

techniques can be used, including a type of machine learning called deep learning.

In this chapter, the machine learning algorithms and processes that were used to

create the image classifier employed by the robot are discussed. Additionally, a background

of neural networks and convolutional neural networks is provided. Since the algorithms

were modified iteratively over the course of this research and yielded a slightly different

network with each iteration, the total variations amount to a large list. Therefore, only the

final network architecture and training parameters are presented in the sections below. All

final results discussed throughout this thesis are specifically based upon the output of this

final trained network.

11

1. Neural Networks and Deep Learning

In supervised machine learning, a model is trained so it will produce a desired

output given a known input. The model architecture used in this research is a neural

network. Neural networks consist of nodes that are connected to each other with each

connection defined by a weight value. The design of these neural networks is inspired by

the neurons and connections of the human brain. Though not nearly as complex as the

human brain, neural network architecture can be as simple or as complex as the system

designer desires to achieve the end goal.

Neural networks can be broken down into three main types: a single-layer neural

network, a multi-layer (shallow) neural network, and a deep neural network. The main

difference between the three types is the increasing number of hidden layers in between

the input and output layers of the network. The different levels of the neural network are

called layers with each layer containing processing nodes. Neural networks have an input

layer and an output layer; any layer in between is considered a hidden layer. A single-layer

neural network has no hidden layers, a shallow neural network has one hidden layer, and a

deep neural network has more than one hidden layer. In Figure 4, three examples of the

neural network architecture are shown.

Figure 4. Different Types of Neural Network Architectures. Source [8].

12

During network training, the weight values of the connections are updated to

minimize the error of the network output with the correct output defined by the training

data. Despite the similarities between neural network architectures, single-layer neural

networks require a different training rule than multi-layer networks. Kim summarized the

learning rule used for single-layer neural networks, called the Delta rule, as “If an input

node contributes to the error of the output node, the weight between the two nodes is

adjusted in proportion to the input value, jx and the output error, ie “ [8]. The Delta rule is

not applicable to multi-layer training, and instead it requires an updated training rule.

In order to train a multi-layer neural network, a training rule called back-

propagation is used. This is similar to the Delta rule in that error is calculated at the output

node. However, the back-propagation algorithm takes this error and back-propagates it

through the hidden layers until it is at the first hidden layer in the network. Then in similar

fashion to the Delta rule, the weights are updated for their respective layers given the

respective error at each node. This process is repeated until the output error is minimized

to the desired value.

The output error of a network is quantified by means of a cost function also known

as a loss function. Typically, the error is proportional to the value of the loss function; a

larger error yields a larger value of the loss function. There are several different types of

loss functions used in neural networks based on the specific output needs of the model. For

multi-class classification purposes like the objective of this research, the most popular loss

function used is the cross-entropy loss function. Alternatively called the soft-max function,

this loss function utilizes logarithms to quantify the error. This allows the output value to

be proportional to the input value and producing a value between zero and one. The

function itself varies slightly as it is based on the different activation functions used within

the network. This cost function is used to derive a learning rule for the network that is

applied during network training. The goal of the learning rule is to minimize error and

reduce the likelihood of creating a model that lacks generalizability or results in overfitting.

Overall, the architecture of a neural network and the algorithms it uses can vary

greatly. This allowance has facilitated the advancement of machine learning applications

13

in everyday tasks. As described above, the deep neural networks are the networks with a

larger number of hidden layers between the input and output layers. This type of machine

learning, known as deep learning, allows for more complex problems to be solved. As

Khan cites, deep learning offers three advantages: simplicity in developing large networks

from basic building blocks, scalability that allows for large datasets to be used, and the

ability for domain transfer when applying the model to other datasets [9]. Deep learning

has achieved great success with minor improvements in the algorithms over the last few

decades. These improvements have led to the use of CNNs for image classification and

recognition allowing computer vision to take root in a variety of modern applications.

2. Convolutional Neural Networks

Convolutional Neural Networks are a specific type of a deep neural network. The

purpose of the overall design is to identify features within images and use those features as

input to the deep neural network for classification. This added section within the

architecture of the CNN is referred to as the feature extractor. The complexity of this

feature extractor can vary from a simple architecture that precedes the neural network to a

large number of layers that are embedded into the total architecture of the neural network.

There is no single formula of what a CNN architecture should look like, but the simple

building blocks are convolutional layers, nonlinear activation functions, pooling layers,

and fully connected layers. The variation of these architectures and algorithms employed

within these networks in pursuit of better model accuracy is the bulk of current research.

The key feature of a CNN is the existence of convolution layers that are responsible

for performing the convolution operations that are later fed into other layers for processing.

These layers contain convolutional filters, which are 2-dimensional matrices comprised of

discrete numbers. As the network is trained, these discrete numbers are altered for network

optimization. To apply the convolutional filter to an input, the size of the filter and the

stride length must be defined. As Kim states, “the convolution operation is the sum of the

products of the elements that are located on the same position of the two matrices.” [8] An

example of a convolution operation is shown in Figure 5. More detail can be reviewed in

the texts by Kim [8] and Khan [9].

14

Figure 5. Convolution of a 22 Convolutional Filter and a 44 Input.
Source [8].

The output of a convolutional filter is then processed through an activation function.

There are many options for an activation function, the popular ones being a rectified

linearization unit (ReLU) function, a sigmoid function, and the tanh function. More

information for each function is presented in “A Guide to Convolutional Neural Networks

for Computer Vision” by Khan in [9]. This nonlinear function modifies the output from the

convolutional filters and changes it to fit within a small range of values. From these

activation functions, a feature map is developed. The feature map is then down sampled

within the pooling layers. Similar to convolutional filters, pooling filters are 2-dimensional

matrices that are applied to the input and are defined by their size and stride. Convolutional

neural networks typically employ either a max-value or a mean-value pooling function.

Pooling is very useful when applied within networks as it reduces the computational load

and prevents the network from overfitting [8]. The last building block is the fully connected

layer, and as its name suggests, this layer is fully connected to all of the nodes in the

previous layer. The fully connected layer takes the input, applies a weighted multiplication

matrix, and introduces a bias value for the output. By combining all of the features learned

in the previous network layers, the fully connected layer creates an output that is used to

recognize the larger patterns across an input image [10]. By varying these building blocks,

a CNN architecture can have an infinite number of possible configurations that provide the

desired end result.

15

3. Network Architecture

There are several prominent CNN models that have garnered recent attention for

applications in computer vision. Though there are other CNNs that could have been

applied, this research solely focused on utilizing the CNN model, GoogLeNet. This is due

to the large success that was seen with previous research [6] and due to the promising

accuracy and efficiency as demonstrated in the ILSVRC 2014 Classification Challenge, in

which GoogLeNet scored in the first place with a top-5 error of 6.67% [11]. By use of a

method called transfer learning, GoogLeNet acted as the foundation for the CNN model

used for all classification work performed in this research.

GoogLeNet is considered a directed acyclic graph (DAG) network, in which the

architecture is typically more complex with multiple input and multiple output layers. Most

notably, the architecture of GoogLeNet employs inception modules within the network.

The central idea here is to place all the basic processing blocks (which occur in a regular

sequential convolutional network) in parallel and combine their output feature

representations [9]. An inception module is shown in Figure 6. By applying these modules

throughout the architecture, complexity can significantly increase and cause a

computational blow-up. By implementing a fully connected layer, the depth of the network

can be reduced and lead to enhanced performance without potential for computational

blow-up. Altogether, GoogLeNet shows a reduction in parameters from other CNN models

such as AlexNet, and VGGnet, as well as a smaller memory footprint, a better efficiency,

and a high accuracy [9].

Figure 6. GoogLeNet Inception Module. Source [9].

16

The GoogLeNet CNN model was adapted for this research by applying a transfer

learning process. This process varies for different types of CNNs and can be applied by

manipulating different layers within the network depending on the desired network

architecture. In the simplest method, GoogLeNet can be used for other classification tasks

by replacing two of the last few layers within the network. This process includes replacing

the existing fully connected layer with a new fully connected layer that has an output size

equal to the number of classes for the classification task. Additionally, a new output

classification layer is created. Once the new architecture is complete, MATLAB is used to

perform training on the network based on the desired input dataset. This allows the new

network to reap the benefits of the backbone CNN design. The GoogLeNet architecture

and the layers that were replaced are shown in Figure 7.

17

Figure 7. Simplified GoogLeNet Architecture (Left) With Layers That Were
Replaced for Transfer Learning (Right) Circled in Red

4. Training Setup

The method in which a network is trained can vary and is dependent on the type of

tools used. MATLAB offers a wide variety of toolboxes and functions that allow for

specific tailoring within network training. These training options are typically altered in an

iterative process of network training as the end goal of the network training is to produce

the highest accuracy and lowest training time while preventing overfitting. MATLAB also

provides a training plot that shows the network accuracy throughout training, as well as the

progression of the training loss as calculated by the loss function discussed above. These

plots are used to inform the network designer what types of training options need to be

18

altered to optimize the overall performance. Since the accuracy and speed of network

training can be affected by more than just training options, there is not one single way to

always optimize the training. However, MATLAB provides a simplified flowchart that is

used in conjunction with the training accuracy and training loss plot to determine the

suggested next step for bettering the network training, as shown in Figure 8.

Figure 8. MATLAB Network Training Flowchart. Source [12].

After creating a diversified training set of all object classes, the 1900 images were

randomly split into the following ratios: 70% for training, 20% for validation, and 10% for

testing. An image augmentation code was applied to the training dataset to increase

19

diversity in the images in pursuit of increasing generalization of the model. The training

options listed in Table 1 were used for the final network training.

Table 1. Training Options for Final Network

Training Option Value/Setting
Momentum 0.9

Initial Learn Rate 1e-3
Learn Rate Schedule None

Learn Rate Drop Factor 0.1
Learn Rate Drop Period 10

L2 Regularization 1e-4
Gradient Threshold Method L2 norm

Max Epochs 20
Mini Batch Size 40

Validation Frequency 15
Validation Patience Infinite

Shuffle Once
Sequence Length Longest

Sequence Padding Value 0
Sequence Padding Direction Right

Dispatch in Background 0
Reset Input Normalization 1

5. Training Results

The training and validation images, the neural network, and the training options

were given as input to the MATLAB function “trainNetwork” and the network training

was performed. The process took over 70 minutes to train the network, which involved

updating the network weights to increase accuracy and minimize the loss. The final

accuracy of 97.91% was achieved with a loss of 0.08. The plot in Figure 9 is the accuracy

and loss as the training progressed. In the network training phase, these plots give insight

as to whether a network is achieving its full potential for increasing accuracy and

minimizing loss. Additionally, a network designer can identify if there is overfitting by

ensuring that the validation accuracy is not less accurate than the training accuracy. Besides

20

testing the network against the test dataset, the training progress chart can give a significant

amount of information regarding expected network performance.

Figure 9. Training Progress Plot with Accuracy (Top) and Loss (Bottom)

0 100 200 300 400 500 600 700
Iteration

0

20

40

60

80

100

Training Accuracy
Validation Accuracy

Training Progress

0 100 200 300 400 500 600 700
Iteration

0

1

2

3

4

5

Training Loss
Validation Loss

Final Validation Accuracy 97.91%

Final Validation Loss 0.08

21

III. EXPERIMENTS AND RESULTS

As the neural network was developed, different types of testing were performed

and provided meaningful results that were used for network tuning and design. Prior to

developing the final neural network model, some preliminary testing was conducted. This

preliminary work explored the effects of image augmentation techniques on the network

performance, which was later used in the creation of the training, validation, and test image

datasets used for the final neural network design. Once the final neural network model had

been developed, a few quantitative and qualitative tests were performed. As a final

exercise, the neural network was tested while running on the robot vehicle hardware and

mini-PC. An overview of each test setup and results are discussed in this chapter.

A. TEST SETUP

1. Preliminary Test – Image Augmentation Techniques

It is common practice to apply image augmentation techniques to the training image

dataset used by the neural network. This idea was expanded upon by applying the image

augmentation techniques to the validation dataset as well. Three different neural networks

were trained from three different training datasets and then tested against the same test

image dataset for comparison in classification robustness. The goal was to identify an

office chair, independent of physical attributes such as size, design, shape, or color. The

neural network was trained to produce only two separate outputs, a “chair” or “other.”

The first network was trained and validated from a variety of images that had no

image augmentation techniques. The second network was the complete opposite in that all

of the images used for training and validation were augmented. The third network

combined the training image datasets from the first two networks, creating a dataset twice

as large that contained unaltered and altered images. Image augmentation techniques

included color adjustments, cropping, rotations, and blurring. An example of unaltered and

altered images used in these networks are shown in Figure 10.

22

Figure 10. Unaltered Image (Left) and Altered Image (Right)

Each neural network demonstrated quick and successful training in MATLAB and

did not require iterative attempts to refine the final validation accuracy. The training

progress charts for the unaltered image network are shown in Figure 11, the training

progress for the altered image network is shown in Figure 12, and the training progress

chart for the combined image network is shown in Figure 13. As observed from these

training progress plots, the training of each network took less than one minute and produced

a 100% final validation accuracy and near-zero loss by the end of the final iteration. Each

of these networks were tested against the same test image dataset, which was comprised of

109 unaltered images of object class “chair” and “other.”

Figure 11. Training Progress Plot for Unaltered Image Network

23

Figure 12. Training Progress Plot for Altered Image Network

Figure 13. Training Progress Plot for Combined Image Network

2. Final Network Test

a. Test Setup for Final Trained Network

The final network was trained to identify 26 different object classes around the NPS

campus. A representative image from each object class is shown in Figure 14. As

24

mentioned in the previous chapter, an image dataset containing 1900 images was used in

the network training with 70% allocated for training images, 20% allocated for validation

images, and 10% for test images. The final network was tested by classifying the images

in the test image dataset with MATLAB. The classification accuracy was calculated as the

percentage in which the predicted class matched the true class of each image.

Figure 14. Representative Images of Each Object Class of the Final Network

25

In addition to static image testing, the network was tested by performing a visual

test of the network while moving the Microsoft Life Cam around the NPS campus. This

setup included the external laptop running the MATLAB code and network model with the

Microsoft Life Cam attached to the external laptop. This was all mounted to a cart and

pushed around the campus, providing real-time image classification to the MATLAB

figure window. Of note, the webcam was placed in a similar height and orientation on the

cart that matched the mounting height and orientation of the camera on the P3-DX robot

vehicle. Though not quantifiable, this visual check provided valuable feedback about the

performance of the network.

b. Secondary Test Setup for Final Trained Network

In pursuit of a more quantifiable answer for network performance across wide

variation of input images, a secondary test was performed. The secondary test utilized four

different augmentation techniques each applied to a separate, replicated set of test images.

These augmentation techniques included blurring, noise, rotation, and cropping techniques.

The final network was tested against each augmented test dataset, including an unaltered

image test dataset to serve as a baseline comparison. The classification accuracy of

predicted class to true class was calculated and used as a measure of network performance.

The blurring augmentation was accomplished by creating a test dataset of images

pre-processed with added Gaussian blur. The MATLAB function “imgaussfilt” applied a

Gaussian blur filter with standard deviation equal to three to each image. The noise

augmentation technique was also produced via a MATLAB function “imnoise” and was

applied to each image. The function added Gaussian white noise with a zero mean and

variance of 0.01. The third test dataset consisted of rotated images. The MATLAB function

“randomAffine2d” was used to apply a randomized rotation between ±25° to the images.

Finally, the fourth test dataset contained images that were cropped. A randomized window

no smaller than 70% of the original image size was selected and then cropped with the

MATLAB function “imcrop.” An example of an image within each dataset is shown in

Figure 15.

26

Figure 15. Example of an Unaltered Image (Top), Blurred Image (Middle

Left), Noisy Image (Middle Right), Rotated Imaged (Bottom Left), and
Cropped Image (Bottom Right) Used for The Secondary Test

3. Integration Testing – P3-DX with SlimPro Computer

The majority of the network training, validation, and testing took place on the

external laptop. A simple integration test was conducted on the SlimPro computer, which

is the onboard computer for the P3-DX robot vehicle. The P3-DX was powered on with

the SlimPro actively running the MATLAB network classification loop and the webcam

mounted on the front of the robot vehicle. The loop captured snapshots as the robot moved

through the campus and performed network classification on each snapshot. The images

were reviewed after the test to ensure that the entire setup was able to run the classification

tasks by the network without power, processing, or data storage issues.

27

B. TEST RESULTS

1. Preliminary Test Results – Image Augmentation Techniques

The preliminary test revealed that each of the three networks performed differently

when tested against the same dataset. As expected, the network trained with unaltered

training images had the lowest classification accuracy, 75%. The network trained with the

altered training images and the network trained with the combined altered and unaltered

training images had the same classification accuracy, 88%. A summary of these accuracies

is presented in Table 2. Though the classification accuracies were the same for the “altered”

and “combined” networks, each produced different classification errors.

Table 2. Preliminary Testing Results

Network Training
Image Type

Classification
Accuracy

Unaltered 75.23%
Altered 88.07%

Combined 88.07%

Another method of evaluating the performance of a network in a classification task

is to examine how many of each class was predicted incorrectly. This is can often reveal

the similarities between classes, identify inconsistent weighting of classes from network

training, and highlight other unexpected downstream effects from the training dataset and

network training. MATLAB produces a chart to map these mismatches with a “confusion

chart” that displays the true class versus the predicted class for each image in the test

dataset. The chart is divided into a grid-like display, with the numbers displayed in the

boxes representing the number of predictions that were made in that category. A perfect

classification network would have numbers only occupying the diagonal boxes of the chart,

showing that the predicted class always matched the true class. However, it is more likely

to see a few incorrect predictions reflected as the numbers contained in the other boxes of

the chart. The confusion chart for the “unaltered” network is shown in Figure 16, the

confusion chart for the “altered” network is shown in Figure 17, and the confusion chart

28

for the “combined” network is shown in Figure 18. The “unaltered” network did not do as

well in classifying the “chair” class, with the highest amount of 26 incorrect classifications.

It is also observed from these charts that although the “altered” and “combined” networks

produced the same accuracies, they did not have the same classification errors.

Figure 16. Confusion Chart for “Unaltered” Network

29

Figure 17. Confusion Chart for “Altered” Network

Figure 18. Confusion Chart for “Combined” Network

30

The results from this preliminary test reaffirmed the use of image augmentation

techniques in both the training and validation images used for network training. Though

there is not a discernable difference from this testing to suggest using an “altered” or a

“combined” training and validation image dataset, the final network was developed by

using a “combined” training and validation image dataset.

2. Final Network Test Results

a. Test Results for Final Trained Network

Upon network training completion, the final validation accuracy of the network was

97.91%. When the final network was tested against the test image dataset, the classification

accuracy was 96.32%. Upon examination of the incorrectly classified images, it is evident

that the true class visually resembles the incorrectly predicted class for most of the images.

This is expected with the NPS landmarks since the school has very similar architecture and

building colors across the campus. An example of this instance is shown in Figure 19 with

the misclassified image and an example of the incorrectly identified class. The image on

the left should have been classified as “Root Hall Underneath” but was instead classified

as “Spanagel Back Door.”

Figure 19. Incorrectly Classified Image with Predicted Class and Probability

listed above (Left) and an Example of the Misclassified Class (Right)

Other similar misclassifications occurred and were made evident by examining the

confusion chart, which is shown in Figure 20. For example, there was one instance of an

image of the “Path Area” misclassified as “Courtyard.” This is understandable as these

31

landmarks both span large areas outdoors, are not described by a single and definable

feature, and are physically located near each other.

Figure 20. Confusion Chart for the Final Network Test

Another misclassification behavior was observed during the visual check. The

network would correctly classify an object and when the image input shifted by moving

the webcam, it would suddenly misclassify the object and then snap back to the correct

classification. This quick misclassification was often seen with a lower prediction

probability, typically a probability value of 85% or less. These observances suggest that if

the output classification is to be used for the robot navigation solution, there should be

hysteresis or timing thresholds applied to account for these sudden spikes in predicted

classification.

b. Secondary Test Results for Final Trained Network

When tested against the four different augmented image test datasets, the

classification accuracy of the network showed excellent results. The baseline accuracy was

32

determined by testing the network with an unaltered version of the test dataset. The baseline

accuracy was 99.2%. The network classification accuracy for each test dataset was nearly

the same, with the results summarized in Table 3. These results demonstrate that the

network is robust and can still correctly identify the object class despite adverse conditions

of the input image.

Table 3. Summary of Classification Accuracy for Each Augmented Test
Dataset

Test Dataset
Augmentation

Classification
Accuracy

Difference from
Baseline

Baseline 99.2% -
Blur 99.3% + 0.1%

Noise 99.4% + 0.2%
Rotate 99.7% + 0.5%
Crop 99.4% + 0.2%

Though the results slightly differed, there were a few of the same images that were

incorrectly classified across each dataset. The confusion chart for the baseline, blur, noise,

rotate, and crop test datasets are shown in Figure 21, Figure 22, Figure 23, Figure 24, and

Figure 25, respectively.

33

Figure 21. Confusion Chart for the Baseline Test Dataset

Figure 22. Confusion Chart for the Blur Test Dataset

34

Figure 23. Confusion Chart for the Noise Test Dataset

Figure 24. Confusion Chart for the Rotate Test Dataset

35

Figure 25. Confusion Chart for the Crop Test Dataset

3. Integration Test Results – P3-DX with SlimPro Computer

The integration test was successful, as the P3-DX robot vehicle was able to

effectively classify the images captured during the test run around the campus. There were

no obvious signs of processing degradation, power limitations, or data storage constraints.

These test results will ensure a smoother transition when the output of the network

classification is used within other robot navigation scripts.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

IV. CONCLUSION

Machine learning applications have been a topic of research for decades but have

seen a recent growth in popularity with the added capabilities provided by increased

computing power. Deep learning, a form of machine learning, has been used for a variety

of applications that require complex modeling. This research sought to apply deep learning

techniques in pursuit of providing image classification for objects and regions surrounding

the NPS campus as a means for navigation input to an autonomous robot vehicle. The

neural network, or model employed in deep learning, was developed to recognize 26

objects around the campus. Additionally, by applying a variety of image augmentation

techniques, this neural network showed robust performance when tested against blurred,

noisy, rotated, and cropped images. The robot vehicle was able to utilize this neural

network in a standalone configuration and proved that the robot vehicle can successfully

utilize the outputs of the neural network. In this chapter, an assessment of the goals is

provided as well as a discussion for future work.

A. ASSESSMENT OF GOALS

This research sought to improve and refine the application and training of neural

networks used for navigation and guidance of an autonomous robot vehicle. The goal of

this research was to further the previous ECE Control Systems and Robotics Laboratory

research [6] by expanding the number of objects that the neural network could classify.

Overall, the neural network developed in this research was able to identify 26 different

objects around the NPS campus with a 97.91% validation accuracy. The neural network

was also visually tested by running a live and continuous classification loop while moving

the webcam around campus. This test also proved that the neural network had excellent

performance of classifying the varying objects and regions through campus.

An additional goal of this research was to create a neural network that is robust and

can perform classification tasks with input images that are blurred, noisy, rotated, or

cropped. These types of altered inputs sought to reflect a more realistic scenario of real-

world image acquisition. The neural network was tested against several test image datasets

38

that contained these image augmentations. The classification performance did not show

degradation for any of the test image datasets with all of the classification accuracies above

99%. These results showed that the neural network can classify varying objects, despite

having a substandard or highly altered input.

As a final check of the neural network, the autonomous robot vehicle hosted the

classification tasks in a completely standalone configuration. This check was to ensure that

the robot vehicle could successfully power and process the neural network without

affecting the performance of object classification. There were no noticeable degradations

to the performance of the network, and the robot vehicle was able to manage and store the

output data successfully. In total, this work was successful in progressing the research of

the ECE Control Systems and Robotics Laboratory in the pursuit of providing relevant

navigation and guidance information for an autonomous robot vehicle.

B. FUTURE WORK

1. Incorporate Neural Network Outputs into Navigation Plan

The work performed in this research focused solely on developing the neural

network performance but did not develop the integration of the neural network outputs into

a robot vehicle navigation algorithm. The outputs of this neural network should be

incorporated with other autonomous navigation code that is utilized by the robot vehicle.

The results of this research have shown high fidelity in identifying objects around the

campus and can be used in conjunction with other waypoint-based navigation techniques.

2. Expand the Number of Objects for Classification

Though the neural network was trained to identify 26 different objects and regions

around the NPS campus, there are many more objects and regions that can be incorporated

into the dataset. In addition to new objects, the expansion of this dataset should also include

a greater variety of these objects with different lighting conditions and during different

types of weather. Though different techniques were applied to test the robustness of the

neural network, these techniques should be expanded upon. This increase in testing

techniques includes creating more extreme test image datasets and developing new testing

39

methods. Ultimately, this will lead to a more generalized neural network that can traverse

the entire NPS campus without issue.

3. Use CNNs for Object Detection and Localization

The output of the neural network developed in this research showed high accuracy

in object classification but did not provide precise localization information. There is current

research that utilizes CNNs in object detection algorithms that provide object classification

and localization information from input images. This localization information is in the form

of a bounding box that is placed around the object that is being classified. This type of deep

learning is processing-intensive for both training and execution but can provide enhanced

information to be used for navigation of an autonomous system.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

APPENDIX A. NETWORK TRAINING SCRIPT

%% NPS Classification Network Training
% Marcea Ascencio

% This script reads in the images for network training,
creates the
% network architecture for transfer learning, applies
required
% pre-processing, trains the network, and tests the network
accuracy.

%% Read In Images to an Image Datastore
loc='C:\Users\marce\Pictures\NPS_Thesis';
imds=imageDatastore(loc,'IncludeSubfolders',true,'LabelSour
ce','foldernames');
% montage(imds)
% Split data up into training, validation, and testing imds'
[trainds,valds,testds]=splitEachLabel(imds,0.7,0.2,0.1);

%% Load Network
net=googlenet;
%% Manipulate Layers for Transfer Learning
lgraph=layerGraph(net);
% Get number of classes from the training datastore:
numClasses=numel(categories(trainds.Labels));
% Create new fully connected layer and classification layer
newfc=fullyConnectedLayer(numClasses,"Name",'fc');
newcl=classificationLayer("Name",'cl');
% Display end of layers before replacing them
lgraph.Layers(end-2:end)
% Replace layers
lgraph=replaceLayer(lgraph,'loss3-classifier',newfc);
lgraph=replaceLayer(lgraph,'output',newcl);
% Display end of layers after replacement
lgraph.Layers(end-2:end)

%% Augment image datastores
% Get input size from the network
inputSize=net.Layers(1).InputSize

augmenter = imageDataAugmenter('FillValue',[256 256 256],...
 'RandXReflection',true,...
 'RandRotation',[-25 25],...
 'RandXShear',[-15 15],...

42

 'RandYShear',[-15 15],...
 'RandXTranslation',[-50 50],...
 'RandYTranslation',[-50 50]);

augtrainds=augmentedImageDatastore(inputSize(1:2),trainds,'
DataAugmentation',augmenter);
augvalds=augmentedImageDatastore(inputSize(1:2),valds);
augtestds=augmentedImageDatastore(inputSize(1:2),testds);

%% Training Options
miniBatchSize = 40;
options = trainingOptions('sgdm', ...
 'MiniBatchSize',miniBatchSize, ...
 'MaxEpochs',20, ...
 'InitialLearnRate',1e-3, ...
 'ValidationData',augvalds, ...
 'ValidationFrequency',15, ...
 'Verbose',true, ...
 'Plots','training-progress',...
 'ExecutionEnvironment','auto');
[net,info] = trainNetwork(augtrainds,lgraph,options);

%% Test Network with Test image datastore
%Classify test images
[YPred,probs]=classify(net,augtestds);

acc=sum(YPred==testds.Labels)/numel(testds.Labels)
perprob=max(probs,[],2)*100;

figure
confusionchart(testds.Labels,YPred)
incorrectidx=find(YPred~=testds.Labels);
%
for k=1:length(incorrectidx)
 idx=incorrectidx(k);
 im=augtestds.Files{idx};
 im=imread(im);
 figure
 imshow(im)
 title(string(YPred(idx))+' '+num2str(perprob(idx),4) +
'%')
end

43

APPENDIX B. IMAGE AUGMENTATION SCRIPT

%% Image Augmentation Script
% Marcea Ascencio

% This script reads in images, applies desired augmentation
technique(s)
% and then saves them back into the desired destination
folder. Note, the
% loop can be commented/uncommented depending on the desired
augmentation.

clear,clc

%% Read Images
loc='C:\Users\marce\Pictures\SecondaryTest_Thesis\CleanImag
es\TrashCan';
dest='C:\Users\marce\Pictures\SecondaryTest_Thesis\Crop\Tra
shCan';
imds=imageDatastore(loc,'IncludeSubfolders',true,'LabelSour
ce','foldernames');
% figure
% montage(imds)

%% Parse Out Each Image and Augment

for k=1:length(imds.Files)
 k
 tempfilename=imds.Files{k};
 tempim=imread(tempfilename);

newname=strcat(dest,'\','crop_img_DayMonth',num2str(k),'.jp
g');

 % Reflection ---

 tformA=randomAffine2d('XReflection',true);
 outputView = affineOutputView(size(tempim),tformA);

tempim=imwarp(tempim,tformA,'OutputView',outputView,'FillVa
lues',[256 256 256]);
 disp('Image was possibly reflected')

 % Rotation ---

44

 tformB=randomAffine2d('Rotation',[-25 25]);
 outputView = affineOutputView(size(tempim),tformB);

tempimrot=imwarp(tempim,tformB,'OutputView',outputView,'Fil
lValues',[256 256 256]);
 disp('Image was Rotated')

 % Shear --

 tformC=randomAffine2d('XShear',[-15 15],'YShear',[-15
15]);
% tformC=randomAffine2d('XShear',[-15 15]);
 outputView = affineOutputView(size(tempim),tformC);

tempim=imwarp(tempim,tformC,'OutputView',outputView,'FillVa
lues',[256 256 256]);
 disp('Image was Sheared')

 % Translation --

 tformD=randomAffine2d('XTranslation',[-50
50],'YTranslation',[-50 50]);
% tformD=randomAffine2d('XTranslation',[-50 50]);
 outputView = affineOutputView(size(tempim),tformD);

tempim=imwarp(tempim,tformD,'OutputView',outputView,'FillVa
lues',[256 256 256]);
 disp('Image was Translated')

 % rgb2gray ---

% rgbflag=0;
 tempim=rgb2gray(tempim);
 disp('Image was converted from RGB to Grayscale')
 rgbflag=1;

 % jitterColorHSV ---------------------------------------

tempim=jitterColorHSV(tempim,'Contrast',0.4,'Hue',0.1,'Satu
ration',0.2,'Brightness',0.3);
 disp('Image was altered with jitterColorHSV')

45

 % imnoise --

 tempim=imnoise(tempim,'gaussian');
 disp('Image was altered with imnoise')

 % imgaussfilt --

 blurval=3;
 tempim=imgaussfilt(tempim,blurval);
 disp('Image was blurred')

 % Crop ---

 h=size(tempim,1);
 w=size(tempim,2);
 percentcrop=0.3*rand;
 hcrop=round(h*(1-percentcrop));
 wcrop=round(w*(1-percentcrop));
 targetSize=[hcrop wcrop];
 win = centerCropWindow2d(size(tempim),targetSize);
 tempim = imcrop(tempim,win);

 % save image
 imwrite(tempim,newname)

end

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

APPENDIX C. LIVE TEST SCRIPT

%% Live Test Script
% Marcea Ascencio

% This script runs a live test by utilizing a trained network
and continous
% while loop to run classifications on the input images
captured by the
% webcam. The classification is displayed in the figure window
with the
% respective object class and probability. Note- make sure to
load network
% prior to executing this script.

%% Setup
% load webcam
camera=webcam('Microsoft® LifeCam Cinema(TM)');
% create input size variable for incoming images
inputSize=net.Layers(1).InputSize(1:2);
%figure handle
h = figure;

%% Execute
% continous loop will execute while figure is open
while ishandle(h)
 im = snapshot(camera);
 image(im)
 im=augmentedImageDatastore(inputSize(1:2),im);
 [label,score] = classify(net,im)
 title(string(label) + "," + num2str(100*max(score)) +
"%")
 drawnow
end

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

LIST OF REFERENCES

[1] Department of Defense, “Summary of the 2018 Department of Defense artificial
intelligence strategy.” Washington DC, USA, 2019.

[2] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured

outdoor environments,” M.S. thesis, Dept. of Elect. and Comput. Eng., NPS,
Monterey, CA, USA, 2017. [Online]. Available:
https://calhoun.nps.edu/handle/10945/56937

[3] M. R. Audette, “Interactive map making for route planning and obstacle

avoidance in an unstructured outdoor environment,” M.S. thesis, Dept. of Elect.
and Comput. Eng., NPS, Monterey, CA, USA, 2019. [Online]. Available:
https://calhoun.nps.edu/handle/10945/60406

[4] C. Lebrun, “Vision-based terrain classification and learning to improve

autonomous ground vehicle navigation in outdoor environments,” M.S. thesis,
Dept. of Elect. and Comput. Eng., NPS, Monterey, CA, USA, 2019. [Online].
Available: https://calhoun.nps.edu/handle/10945/63474

[5] A. S. Miyakawa, “Autonomous ground vehicle low-profile obstacle avoidance

using 2D LIDAR,” M.S. thesis, Dept. of Elect. and Comput. Eng., NPS,
Monterey, CA, USA, 2019. [Online]. Available:
https://calhoun.nps.edu/handle/10945/63486

[6] A. Magee, “Place-based navigation for autonomous vehicles with deep learning

neural networks,” M.S. thesis, Dept. of Elect. and Comput. Eng., NPS, Monterey,
CA, USA, 2019. [Online]. Available: https://calhoun.nps.edu/handle/10945/64012

[7] C. Liu, Y. Tao, J. Liang, K. Li, and Y. Chen, “Object detection based on YOLO

network,” in 2018 IEEE 4th Information Technology and Mechatronics
Engineering Conference (ITOEC), Dec. 2018, pp. 799–803, doi:
10.1109/ITOEC.2018.8740604.

[8] S. Kim, MATLAB Deep Learning: With Machine Learning, Neural Networks and

Artificial Intelligence. New York, NY, USA: Apress, 2017.

[9] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to

convolutional neural networks for computer vision,” Synth. Lect. Comput. Vis.,
vol. 8, no. 1, pp. 1–207, Feb. 2018. [Online]. doi:
10.2200/S00822ED1V01Y201712COV015

50

[10] Mathworks, “Fully connected layer - MATLAB.” Accessed Feb. 09, 2021.
[Online]. Available: https://www.mathworks.com/help/deeplearning/ref/
nnet.cnn.layer.fullyconnectedlayer.html

[11] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9. [Online].
doi: 10.1109/CVPR.2015.7298594

[12] Mathworks, Class Lecture, Topic: “Deep learning with MATLAB”, Mathworks,

Online. https://www.mathworks.com/training-schedule/deep-learning-with-
matlab.html

51

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

