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ABSTRACT 

Machine learning methods have recently increased in appearance in navigation 

and guidance applications by means of image classification. This thesis sought to 

advance the ongoing Electrical and Computer Engineering (ECE) Control Systems and 

Robotics Laboratory project in developing a system that will autonomously navigate 

across the Naval Postgraduate School (NPS) campus. In pursuit of providing a robust 

navigation and guidance solution to an autonomous robotic vehicle, a convolutional 

neural network (CNN) was trained to classify significant objects around NPS. In addition 

to increasing the number of objects that the neural network could classify, the network 

was also trained with varying image augmentation techniques applied to the training and 

validation images. A variety of tests were performed to evaluate the accuracy of the 

model when exposed to different objects and regions throughout the campus. The tests 

also included running the image classification model against images that were altered 

with crop, blur, rotation, and noise. The results demonstrated high classification accuracy 

and asserted that the output was robust when faced with poor image quality. This work 

established a strong baseline for more CNN output integration into the navigation and 

guidance solution of the robotic vehicle. 
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I. INTRODUCTION

A. BACKGROUND

As system sensor suites advance, complex algorithms are required to effectively

utilize the incoming information for decisions such as navigation, guidance, and control. 

Machine learning models are used to interpret this incoming data and provide valuable 

outputs for these systems to use. Neural networks, a form of machine learning, are used for 

a variety of tasks, including object detection, image recognition, and classification. When 

incorporated into a sensor suite, the output of a neural network may be used to supplement 

existing navigation calculations or act as a sole input for navigation-based decisions. Since 

the neural network is onboard, the system does not have the same limitations that are 

commonly seen with radio or satellite navigation. As machine learning research has 

progressed, applications that utilize neural networks have become more robust and reliable, 

increasing the trustworthiness and usefulness of this technology. 

As commercial technology has advanced towards autonomy to address the 

complexities of society, the Department of Defense (DOD) too is moving towards utilizing 

autonomy in warfighting technology. There is a demand for autonomous land, sea, and air 

vehicles to be developed to aid the warfighter in accomplishing varying mission types. The 

current DOD artificial intelligence (AI) strategy highlights focus areas such as “improving 

situational awareness and decision making, increasing the safety of operating equipment, 

implementing predictive maintenance and supply, and streamlining business 

processes.” [1] By applying machine learning within military technology, certain decision-

making tasks can be automated, leaving the operator to focus on higher-level decisions. 

B. OBJECTIVE

In pursuit of advancing the existing Electrical and Computer Engineering (ECE)

Control Systems and Robotics Laboratory project of developing a system that will navigate 

across the Naval Postgraduate School (NPS) campus, this research seeks to improve and 

refine the development and application of neural networks for use in the navigation and 

guidance of an autonomous system. The performance of the neural network must be able 
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to use images to classify significant objects and regions around the NPS campus. 

Additionally, there is a goal to create a robust neural network so that common issues such 

as cropped, blurred, or rotated images used by the autonomous system do not significantly 

alter the ability of the network to classify the desired objects or regions. This research will 

advance the overall project and is intended to be expanded upon in future work.  

C. PREVIOUS WORK

The use of neural networks in image classification has been a topic of research for

decades but has seen recent growth and popularity. Recently, convolutional neural 

networks (CNNs) have taken the lead in image classification applications. Prior research 

has led to a variety of algorithms, architectures, and implementations. This research is 

influenced by a variety of existing architectures and methods for image classification with 

neural networks. However, this thesis work on neural networks is tailored to the end goal 

of autonomously navigating a robot vehicle around the NPS campus.  

Several ECE students have contributed to the overall effort of providing guidance 

and control to a robot vehicle so that it may autonomously traverse the NPS campus. This 

includes work done to provide waypoint following and object avoidance [2], route 

planning [3], terrain recognition [4], and even light detection and ranging (LIDAR) 

mapping for obstacle classification [5] to the autonomous robot vehicle. Most recently, 

however, this thesis furthers the work done in [6] by using CNNs for image classification 

applications in autonomous navigation. In Magee’s work, a neural network was trained to 

identify an image of a goal location. The mobile robot performed autonomous navigation 

while simultaneously classifying images from its installed webcam. Upon identifying its 

goal by image classification, the vehicle stopped its motion. This thesis work seeks to build 

the database of identifiable objects around NPS, and most importantly refine the neural 

networks for a more robust output to be used by onboard navigation processes.  

D. THESIS ORGANIZATION

The background, design, testing, and results of this thesis research are presented in

the following three chapters. Chapter II contains a background of the hardware and 

software, image augmentation techniques, machine learning algorithms, and training setup 
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used in this research. A discussion of the experiments and results from the preliminary 

work, bench testing, and final classification testing are outlined in Chapter III. Finally, a 

conclusion of this research and listing of future areas of work are included in Chapter IV.  



4 

THIS PAGE INTENTIONALLY LEFT BLANK 



5 

II. BACKGROUND

In pursuit of developing an autonomous robot vehicle that can navigate around 

NPS, an array of hardware and software resources were utilized. The same robot vehicle 

that was used in the previous neural network research [6] was once again employed for this 

work to provide continuity and allow for more variation to be explored with the software 

development. Though the software used for the robot navigation algorithms was not 

altered, the neural network model was significantly improved upon. A brief overview of 

this hardware and software configuration is provided in this chapter. Additionally, this 

chapter elaborates on the techniques and algorithms used to refine the neural networks that 

were implemented in this research.  

A. HARDWARE

The hardware used in this research consisted of a robot equipped with a mini

personal computer (PC), various sensor systems, and a webcam. Additionally, an external 

computer was used for the machine learning algorithm design and development. The robot 

was an Omron Adept MobileRobots Pioneer 3-Deluxe (P3-DX) vehicle. Previous research 

of the onboard sensor systems (sonar, LIDAR, etc.) has been performed with this robot 

variant making it a prime candidate to execute the machine learning algorithms developed 

in this research. The onboard mini-PC was a SlimPro SP675P Mini PC equipped with an 

Intel Pentium Central Processing Unit (CPU) Model B950. The webcam used for input into 

the SlimPro Mini PC was a Microsoft Life Cam, with 720p resolution and a high-precision 

glass element lens. The external computer used was a Microsoft Surface Pro 6, with an 

Intel Core i5 processor and 8 GB of random-access memory (RAM). This external 

computer was used to develop the algorithms and models since the computations were 

processed quicker with this setup than the SlimPro Mini PC installed on the robot. All code 

was shared via server-based SharePoint prior to code execution that took place on the 

SlimPro Mini PC. The P3-DX is shown in Figure 1 with the mini-PC and webcam 

configuration.  
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Figure 1. P3-DX with Microsoft LifeCam Webcam 

B. SOFTWARE

1. Robot Operating System (ROS)

Leading as the main collection of open-source software for robotic vehicles, Robot 

Operating System (ROS) provides a complete environment for applications in robotics. In 

previous research, comprehensive navigation scripts for the P3-DX with ROS applications 

and MATLAB, including waypoint following and simultaneous localization and mapping 

(SLAM) algorithms, were developed [6]. No ROS applications were modified or used for 

the purpose of this research.  

2. MATLAB

MATLAB 2020b was the tool used to develop, train, and execute the machine 

learning networks on the P3-DX robot. All images captured via the webcam were pre-

processed with MATLAB and then used as inputs into the machine learning functions. A 

variety of toolboxes were required to perform these tasks, which included the Deep 

Learning, Computer Vision, and Image Processing toolboxes. In addition, the Deep 

Network Designer graphical user interface (GUI) tool was used to perform a more visual-

based assessment and design of the machine learning networks. Though the full design and 

training can be done within the Deep Network Design GUI, the preferred method was 
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completed within the MATLAB script editor. These MATLAB scripts are included in the 

Appendix. 

C. IMAGE AUGMENTATION TECHNIQUES

Prior to being used for the training, validation, and testing of the machine learning

networks, the images were pre-processed with MATLAB functions. This pre-processing 

altered the images to increase the diversity within each class. As seen with many other 

machine learning networks, image augmentation helps the network model increase 

generalizability, or increase the likelihood that the model will correctly classify unseen 

images when used in application. Training a machine learning network to correctly classify 

a large variance in image quality, such as images taken during high/low lighting conditions, 

in low contrast areas, or even with a noisy or blurred camera, can be challenging. The use 

of image augmentation techniques addresses this challenge and produces more resilient 

and robust networks.  

1. Image Augmentation of the Overall Dataset

The overall dataset used to train, validate, and test this machine learning network 

contained 50% standard images acquired via the webcam and 50% altered images that were 

created with image augmentation techniques applied to the standard images. The 

MATLAB function “jitterColorHSV” was used to randomly alter the contrast, hue, 

saturation, and brightness of the images. This produced a larger dataset and increased the 

variance in the images. An example of this image augmentation technique is shown in 

Figure 2, where the altered image (right) was created by randomly skewing the contrast, 

hue, saturation, and brightness of the unaltered image (left).  
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Figure 2. Unaltered Image (Left) and Altered Image (Right) 

2. Image Augmentation Specific to Training Dataset

The images in the overall dataset were randomly split into a training dataset, a 

validation dataset, and a testing dataset. A separate image augmentation technique was 

applied solely to the training dataset to alter the images further. It is common practice for 

most machine learning network development to highly augment the training images, but 

not the validation and test images. These added augmentation techniques included a 

randomized assortment of x-axis reflections, rotations, shearing, and translations. These 

types of augmentations are more extreme but increase the generalizability of the machine 

learning model when faced with sub-optimal conditions. An example of this image 

augmentation scheme is shown Figure 3. The torpedo image was reflected about the x-axis, 

rotated, and translated, and the building image was sheared. 
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Figure 3. Unaltered Images (Left) with Altered Images (Right) 

3. Image Augmentation Scheme for Secondary Testing Dataset

Once the machine learning network was trained and validated with the MATLAB 

tools mentioned above, the network was then tested against a separate image dataset. This 

dataset consisted of the standard images and the images produced by the “jitterColorHSV” 

function that were set aside for testing. As a supplementary test, the images were then 

tested against a secondary dataset. Unlike the image augmentation scheme applied to the 

training dataset, the secondary test dataset had four subsets. Each of the subsets contained 

the same images but were separately altered by blurring, noise, rotation, and cropping 

augmentation techniques. This allowed for assessment of the network classification 

performance against each technique. This more isolated secondary testing method was 

inspired by [7] and proved more feasible to test a variety of conditions rather than waiting 

for the desired sub-optimal conditions around the school campus. 

D. MACHINE LEARNING ALGORITHMS AND PROCESSES

As computer technology has advanced, research in the field of machine learning

has capitalized on this growth and has flourished once again. Though machine learning has 

been used as a form of artificial intelligence for decades, recent advancements have utilized 
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the ability to apply more complex techniques to solve the most complex of problems. 

Machine learning can be succinctly summarized as the method in which a model is created 

from a set of training data.  

There exist different methods of machine learning since varying applications 

require different models and have specific desired outputs. The main types can be broken 

into three categories: supervised learning, unsupervised learning, and reinforcement 

learning. The supervised learning method was applied in this research and will be discussed 

in this chapter. The other types, unsupervised learning and reinforcement learning, can be 

reviewed in “MATLAB Deep Learning” by Kim in [8]. Supervised learning is performed 

by training a model to arrive at a correct output by knowing the correct input. Common 

applications of supervised learning are classification and regression. As the name suggests, 

classification is the process of assigning inputs into classes. Regression applications, 

however, use the model to predict a value instead of a class.  

The objective of this research is to use classification methods to provide navigation 

and guidance information to an autonomous robot. This is achieved by using supervised 

learning to develop a trained network based on labeled image data of landmarks, then 

applying the trained network to classify the desired landmarks. This application of 

classification is categorized as computer vision, or using a computer to interpret captured 

images. Different techniques for employing computer vision with machine learning 

techniques can be used, including a type of machine learning called deep learning.  

In this chapter, the machine learning algorithms and processes that were used to 

create the image classifier employed by the robot are discussed. Additionally, a background 

of neural networks and convolutional neural networks is provided. Since the algorithms 

were modified iteratively over the course of this research and yielded a slightly different 

network with each iteration, the total variations amount to a large list. Therefore, only the 

final network architecture and training parameters are presented in the sections below. All 

final results discussed throughout this thesis are specifically based upon the output of this 

final trained network.  
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1. Neural Networks and Deep Learning

In supervised machine learning, a model is trained so it will produce a desired 

output given a known input. The model architecture used in this research is a neural 

network. Neural networks consist of nodes that are connected to each other with each 

connection defined by a weight value. The design of these neural networks is inspired by 

the neurons and connections of the human brain. Though not nearly as complex as the 

human brain, neural network architecture can be as simple or as complex as the system 

designer desires to achieve the end goal.  

Neural networks can be broken down into three main types: a single-layer neural 

network, a multi-layer (shallow) neural network, and a deep neural network. The main 

difference between the three types is the increasing number of hidden layers in between 

the input and output layers of the network. The different levels of the neural network are 

called layers with each layer containing processing nodes. Neural networks have an input 

layer and an output layer; any layer in between is considered a hidden layer. A single-layer 

neural network has no hidden layers, a shallow neural network has one hidden layer, and a 

deep neural network has more than one hidden layer. In Figure 4, three examples of the 

neural network architecture are shown.  

Figure 4. Different Types of Neural Network Architectures. Source [8]. 
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During network training, the weight values of the connections are updated to 

minimize the error of the network output with the correct output defined by the training 

data. Despite the similarities between neural network architectures, single-layer neural 

networks require a different training rule than multi-layer networks. Kim summarized the 

learning rule used for single-layer neural networks, called the Delta rule, as “If an input 

node contributes to the error of the output node, the weight between the two nodes is 

adjusted in proportion to the input value, jx  and the output error, ie “ [8]. The Delta rule is 

not applicable to multi-layer training, and instead it requires an updated training rule. 

In order to train a multi-layer neural network, a training rule called back-

propagation is used. This is similar to the Delta rule in that error is calculated at the output 

node. However, the back-propagation algorithm takes this error and back-propagates it 

through the hidden layers until it is at the first hidden layer in the network. Then in similar 

fashion to the Delta rule, the weights are updated for their respective layers given the 

respective error at each node. This process is repeated until the output error is minimized 

to the desired value.  

The output error of a network is quantified by means of a cost function also known 

as a loss function. Typically, the error is proportional to the value of the loss function; a 

larger error yields a larger value of the loss function. There are several different types of 

loss functions used in neural networks based on the specific output needs of the model. For 

multi-class classification purposes like the objective of this research, the most popular loss 

function used is the cross-entropy loss function. Alternatively called the soft-max function, 

this loss function utilizes logarithms to quantify the error. This allows the output value to 

be proportional to the input value and producing a value between zero and one. The 

function itself varies slightly as it is based on the different activation functions used within 

the network. This cost function is used to derive a learning rule for the network that is 

applied during network training. The goal of the learning rule is to minimize error and 

reduce the likelihood of creating a model that lacks generalizability or results in overfitting. 

Overall, the architecture of a neural network and the algorithms it uses can vary 

greatly. This allowance has facilitated the advancement of machine learning applications 
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in everyday tasks. As described above, the deep neural networks are the networks with a 

larger number of hidden layers between the input and output layers. This type of machine 

learning, known as deep learning, allows for more complex problems to be solved. As 

Khan cites, deep learning offers three advantages: simplicity in developing large networks 

from basic building blocks, scalability that allows for large datasets to be used, and the 

ability for domain transfer when applying the model to other datasets [9]. Deep learning 

has achieved great success with minor improvements in the algorithms over the last few 

decades. These improvements have led to the use of CNNs for image classification and 

recognition allowing computer vision to take root in a variety of modern applications.  

2. Convolutional Neural Networks

Convolutional Neural Networks are a specific type of a deep neural network. The 

purpose of the overall design is to identify features within images and use those features as 

input to the deep neural network for classification. This added section within the 

architecture of the CNN is referred to as the feature extractor. The complexity of this 

feature extractor can vary from a simple architecture that precedes the neural network to a 

large number of layers that are embedded into the total architecture of the neural network. 

There is no single formula of what a CNN architecture should look like, but the simple 

building blocks are convolutional layers, nonlinear activation functions, pooling layers, 

and fully connected layers. The variation of these architectures and algorithms employed 

within these networks in pursuit of better model accuracy is the bulk of current research.  

The key feature of a CNN is the existence of convolution layers that are responsible 

for performing the convolution operations that are later fed into other layers for processing. 

These layers contain convolutional filters, which are 2-dimensional matrices comprised of 

discrete numbers. As the network is trained, these discrete numbers are altered for network 

optimization. To apply the convolutional filter to an input, the size of the filter and the 

stride length must be defined. As Kim states, “the convolution operation is the sum of the 

products of the elements that are located on the same position of the two matrices.” [8] An 

example of a convolution operation is shown in Figure 5. More detail can be reviewed in 

the texts by Kim [8] and Khan [9]. 
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Figure 5. Convolution of a 22 Convolutional Filter and a 44 Input. 
Source [8]. 

The output of a convolutional filter is then processed through an activation function. 

There are many options for an activation function, the popular ones being a rectified 

linearization unit (ReLU) function, a sigmoid function, and the tanh function. More 

information for each function is presented in “A Guide to Convolutional Neural Networks 

for Computer Vision” by Khan in [9]. This nonlinear function modifies the output from the 

convolutional filters and changes it to fit within a small range of values. From these 

activation functions, a feature map is developed. The feature map is then down sampled 

within the pooling layers. Similar to convolutional filters, pooling filters are 2-dimensional 

matrices that are applied to the input and are defined by their size and stride. Convolutional 

neural networks typically employ either a max-value or a mean-value pooling function. 

Pooling is very useful when applied within networks as it reduces the computational load 

and prevents the network from overfitting [8]. The last building block is the fully connected 

layer, and as its name suggests, this layer is fully connected to all of the nodes in the 

previous layer. The fully connected layer takes the input, applies a weighted multiplication 

matrix, and introduces a bias value for the output. By combining all of the features learned 

in the previous network layers, the fully connected layer creates an output that is used to 

recognize the larger patterns across an input image [10]. By varying these building blocks, 

a CNN architecture can have an infinite number of possible configurations that provide the 

desired end result.  
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3. Network Architecture

There are several prominent CNN models that have garnered recent attention for 

applications in computer vision. Though there are other CNNs that could have been 

applied, this research solely focused on utilizing the CNN model, GoogLeNet. This is due 

to the large success that was seen with previous research [6] and due to the promising 

accuracy and efficiency as demonstrated in the ILSVRC 2014 Classification Challenge, in 

which GoogLeNet scored in the first place with a top-5 error of 6.67% [11]. By use of a 

method called transfer learning, GoogLeNet acted as the foundation for the CNN model 

used for all classification work performed in this research. 

GoogLeNet is considered a directed acyclic graph (DAG) network, in which the 

architecture is typically more complex with multiple input and multiple output layers. Most 

notably, the architecture of GoogLeNet employs inception modules within the network. 

The central idea here is to place all the basic processing blocks (which occur in a regular 

sequential convolutional network) in parallel and combine their output feature 

representations [9]. An inception module is shown in Figure 6. By applying these modules 

throughout the architecture, complexity can significantly increase and cause a 

computational blow-up. By implementing a fully connected layer, the depth of the network 

can be reduced and lead to enhanced performance without potential for computational 

blow-up. Altogether, GoogLeNet shows a reduction in parameters from other CNN models 

such as AlexNet, and VGGnet, as well as a smaller memory footprint, a better efficiency, 

and a high accuracy [9]. 

Figure 6. GoogLeNet Inception Module. Source [9]. 
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The GoogLeNet CNN model was adapted for this research by applying a transfer 

learning process. This process varies for different types of CNNs and can be applied by 

manipulating different layers within the network depending on the desired network 

architecture. In the simplest method, GoogLeNet can be used for other classification tasks 

by replacing two of the last few layers within the network. This process includes replacing 

the existing fully connected layer with a new fully connected layer that has an output size 

equal to the number of classes for the classification task. Additionally, a new output 

classification layer is created. Once the new architecture is complete, MATLAB is used to 

perform training on the network based on the desired input dataset. This allows the new 

network to reap the benefits of the backbone CNN design. The GoogLeNet architecture 

and the layers that were replaced are shown in Figure 7.  
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Figure 7. Simplified GoogLeNet Architecture (Left) With Layers That Were 
Replaced for Transfer Learning (Right) Circled in Red 

4. Training Setup

The method in which a network is trained can vary and is dependent on the type of 

tools used. MATLAB offers a wide variety of toolboxes and functions that allow for 

specific tailoring within network training. These training options are typically altered in an 

iterative process of network training as the end goal of the network training is to produce 

the highest accuracy and lowest training time while preventing overfitting. MATLAB also 

provides a training plot that shows the network accuracy throughout training, as well as the 

progression of the training loss as calculated by the loss function discussed above. These 

plots are used to inform the network designer what types of training options need to be 
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altered to optimize the overall performance. Since the accuracy and speed of network 

training can be affected by more than just training options, there is not one single way to 

always optimize the training. However, MATLAB provides a simplified flowchart that is 

used in conjunction with the training accuracy and training loss plot to determine the 

suggested next step for bettering the network training, as shown in Figure 8.  

 
Figure 8. MATLAB Network Training Flowchart. Source [12]. 

After creating a diversified training set of all object classes, the 1900 images were 

randomly split into the following ratios: 70% for training, 20% for validation, and 10% for 

testing. An image augmentation code was applied to the training dataset to increase 
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diversity in the images in pursuit of increasing generalization of the model. The training 

options listed in Table 1 were used for the final network training.  

Table 1. Training Options for Final Network 

Training Option Value/Setting 
Momentum 0.9 

Initial Learn Rate 1e-3 
Learn Rate Schedule None 

Learn Rate Drop Factor 0.1 
Learn Rate Drop Period 10 

L2 Regularization 1e-4 
Gradient Threshold Method L2 norm 

Max Epochs 20 
Mini Batch Size 40 

Validation Frequency 15 
Validation Patience Infinite 

Shuffle Once 
Sequence Length Longest 

Sequence Padding Value 0 
Sequence Padding Direction Right 

Dispatch in Background 0 
Reset Input Normalization 1 

 

5. Training Results 

The training and validation images, the neural network, and the training options 

were given as input to the MATLAB function “trainNetwork” and the network training 

was performed. The process took over 70 minutes to train the network, which involved 

updating the network weights to increase accuracy and minimize the loss. The final 

accuracy of 97.91% was achieved with a loss of 0.08. The plot in Figure 9 is the accuracy 

and loss as the training progressed. In the network training phase, these plots give insight 

as to whether a network is achieving its full potential for increasing accuracy and 

minimizing loss. Additionally, a network designer can identify if there is overfitting by 

ensuring that the validation accuracy is not less accurate than the training accuracy. Besides 
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testing the network against the test dataset, the training progress chart can give a significant 

amount of information regarding expected network performance.  

 
Figure 9. Training Progress Plot with Accuracy (Top) and Loss (Bottom) 
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III. EXPERIMENTS AND RESULTS 

As the neural network was developed, different types of testing were performed 

and provided meaningful results that were used for network tuning and design. Prior to 

developing the final neural network model, some preliminary testing was conducted. This 

preliminary work explored the effects of image augmentation techniques on the network 

performance, which was later used in the creation of the training, validation, and test image 

datasets used for the final neural network design. Once the final neural network model had 

been developed, a few quantitative and qualitative tests were performed. As a final 

exercise, the neural network was tested while running on the robot vehicle hardware and 

mini-PC. An overview of each test setup and results are discussed in this chapter.  

A. TEST SETUP 

1. Preliminary Test – Image Augmentation Techniques 

It is common practice to apply image augmentation techniques to the training image 

dataset used by the neural network. This idea was expanded upon by applying the image 

augmentation techniques to the validation dataset as well. Three different neural networks 

were trained from three different training datasets and then tested against the same test 

image dataset for comparison in classification robustness. The goal was to identify an 

office chair, independent of physical attributes such as size, design, shape, or color. The 

neural network was trained to produce only two separate outputs, a “chair” or “other.”  

The first network was trained and validated from a variety of images that had no 

image augmentation techniques. The second network was the complete opposite in that all 

of the images used for training and validation were augmented. The third network 

combined the training image datasets from the first two networks, creating a dataset twice 

as large that contained unaltered and altered images. Image augmentation techniques 

included color adjustments, cropping, rotations, and blurring. An example of unaltered and 

altered images used in these networks are shown in Figure 10. 
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Figure 10. Unaltered Image (Left) and Altered Image (Right) 

Each neural network demonstrated quick and successful training in MATLAB and 

did not require iterative attempts to refine the final validation accuracy. The training 

progress charts for the unaltered image network are shown in Figure 11, the training 

progress for the altered image network is shown in Figure 12, and the training progress 

chart for the combined image network is shown in Figure 13. As observed from these 

training progress plots, the training of each network took less than one minute and produced 

a 100% final validation accuracy and near-zero loss by the end of the final iteration. Each 

of these networks were tested against the same test image dataset, which was comprised of 

109 unaltered images of object class “chair” and “other.”  

 
Figure 11. Training Progress Plot for Unaltered Image Network 
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Figure 12. Training Progress Plot for Altered Image Network 

 
Figure 13. Training Progress Plot for Combined Image Network 

2. Final Network Test  

a. Test Setup for Final Trained Network 

The final network was trained to identify 26 different object classes around the NPS 

campus. A representative image from each object class is shown in Figure 14. As 
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mentioned in the previous chapter, an image dataset containing 1900 images was used in 

the network training with 70% allocated for training images, 20% allocated for validation 

images, and 10% for test images. The final network was tested by classifying the images 

in the test image dataset with MATLAB. The classification accuracy was calculated as the 

percentage in which the predicted class matched the true class of each image.  

 
Figure 14. Representative Images of Each Object Class of the Final Network 
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In addition to static image testing, the network was tested by performing a visual 

test of the network while moving the Microsoft Life Cam around the NPS campus. This 

setup included the external laptop running the MATLAB code and network model with the 

Microsoft Life Cam attached to the external laptop. This was all mounted to a cart and 

pushed around the campus, providing real-time image classification to the MATLAB 

figure window. Of note, the webcam was placed in a similar height and orientation on the 

cart that matched the mounting height and orientation of the camera on the P3-DX robot 

vehicle. Though not quantifiable, this visual check provided valuable feedback about the 

performance of the network.  

b. Secondary Test Setup for Final Trained Network 

In pursuit of a more quantifiable answer for network performance across wide 

variation of input images, a secondary test was performed. The secondary test utilized four 

different augmentation techniques each applied to a separate, replicated set of test images. 

These augmentation techniques included blurring, noise, rotation, and cropping techniques. 

The final network was tested against each augmented test dataset, including an unaltered 

image test dataset to serve as a baseline comparison. The classification accuracy of 

predicted class to true class was calculated and used as a measure of network performance.  

The blurring augmentation was accomplished by creating a test dataset of images 

pre-processed with added Gaussian blur. The MATLAB function “imgaussfilt” applied a 

Gaussian blur filter with standard deviation equal to three to each image. The noise 

augmentation technique was also produced via a MATLAB function “imnoise” and was 

applied to each image. The function added Gaussian white noise with a zero mean and 

variance of 0.01. The third test dataset consisted of rotated images. The MATLAB function 

“randomAffine2d” was used to apply a randomized rotation between ±25° to the images. 

Finally, the fourth test dataset contained images that were cropped. A randomized window 

no smaller than 70% of the original image size was selected and then cropped with the 

MATLAB function “imcrop.” An example of an image within each dataset is shown in 

Figure 15.  
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Figure 15. Example of an Unaltered Image (Top), Blurred Image (Middle 

Left), Noisy Image (Middle Right), Rotated Imaged (Bottom Left), and 
Cropped Image (Bottom Right) Used for The Secondary Test 

3. Integration Testing – P3-DX with SlimPro Computer 

The majority of the network training, validation, and testing took place on the 

external laptop. A simple integration test was conducted on the SlimPro computer, which 

is the onboard computer for the P3-DX robot vehicle. The P3-DX was powered on with 

the SlimPro actively running the MATLAB network classification loop and the webcam 

mounted on the front of the robot vehicle. The loop captured snapshots as the robot moved 

through the campus and performed network classification on each snapshot. The images 

were reviewed after the test to ensure that the entire setup was able to run the classification 

tasks by the network without power, processing, or data storage issues. 



27 

B. TEST RESULTS 

1. Preliminary Test Results – Image Augmentation Techniques 

The preliminary test revealed that each of the three networks performed differently 

when tested against the same dataset. As expected, the network trained with unaltered 

training images had the lowest classification accuracy, 75%. The network trained with the 

altered training images and the network trained with the combined altered and unaltered 

training images had the same classification accuracy, 88%. A summary of these accuracies 

is presented in Table 2. Though the classification accuracies were the same for the “altered” 

and “combined” networks, each produced different classification errors.  

Table 2. Preliminary Testing Results 

Network Training 
Image Type 

Classification 
Accuracy 

Unaltered 75.23% 
Altered 88.07% 

Combined 88.07% 

 

Another method of evaluating the performance of a network in a classification task 

is to examine how many of each class was predicted incorrectly. This is can often reveal 

the similarities between classes, identify inconsistent weighting of classes from network 

training, and highlight other unexpected downstream effects from the training dataset and 

network training. MATLAB produces a chart to map these mismatches with a “confusion 

chart” that displays the true class versus the predicted class for each image in the test 

dataset. The chart is divided into a grid-like display, with the numbers displayed in the 

boxes representing the number of predictions that were made in that category. A perfect 

classification network would have numbers only occupying the diagonal boxes of the chart, 

showing that the predicted class always matched the true class. However, it is more likely 

to see a few incorrect predictions reflected as the numbers contained in the other boxes of 

the chart. The confusion chart for the “unaltered” network is shown in Figure 16, the 

confusion chart for the “altered” network is shown in Figure 17, and the confusion chart 
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for the “combined” network is shown in Figure 18. The “unaltered” network did not do as 

well in classifying the “chair” class, with the highest amount of 26 incorrect classifications. 

It is also observed from these charts that although the “altered” and “combined” networks 

produced the same accuracies, they did not have the same classification errors.  

 
Figure 16. Confusion Chart for “Unaltered” Network 
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Figure 17. Confusion Chart for “Altered” Network 

 
Figure 18. Confusion Chart for “Combined” Network 
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The results from this preliminary test reaffirmed the use of image augmentation 

techniques in both the training and validation images used for network training. Though 

there is not a discernable difference from this testing to suggest using an “altered” or a 

“combined” training and validation image dataset, the final network was developed by 

using a “combined” training and validation image dataset.  

2. Final Network Test Results 

a. Test Results for Final Trained Network 

Upon network training completion, the final validation accuracy of the network was 

97.91%. When the final network was tested against the test image dataset, the classification 

accuracy was 96.32%. Upon examination of the incorrectly classified images, it is evident 

that the true class visually resembles the incorrectly predicted class for most of the images. 

This is expected with the NPS landmarks since the school has very similar architecture and 

building colors across the campus. An example of this instance is shown in Figure 19 with 

the misclassified image and an example of the incorrectly identified class. The image on 

the left should have been classified as “Root Hall Underneath” but was instead classified 

as “Spanagel Back Door.” 

 
Figure 19. Incorrectly Classified Image with Predicted Class and Probability 

listed above (Left) and an Example of the Misclassified Class (Right) 

Other similar misclassifications occurred and were made evident by examining the 

confusion chart, which is shown in Figure 20. For example, there was one instance of an 

image of the “Path Area” misclassified as “Courtyard.” This is understandable as these 
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landmarks both span large areas outdoors, are not described by a single and definable 

feature, and are physically located near each other.  

 
Figure 20. Confusion Chart for the Final Network Test 

Another misclassification behavior was observed during the visual check. The 

network would correctly classify an object and when the image input shifted by moving 

the webcam, it would suddenly misclassify the object and then snap back to the correct 

classification. This quick misclassification was often seen with a lower prediction 

probability, typically a probability value of 85% or less. These observances suggest that if 

the output classification is to be used for the robot navigation solution, there should be 

hysteresis or timing thresholds applied to account for these sudden spikes in predicted 

classification.  

b. Secondary Test Results for Final Trained Network 

When tested against the four different augmented image test datasets, the 

classification accuracy of the network showed excellent results. The baseline accuracy was 
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determined by testing the network with an unaltered version of the test dataset. The baseline 

accuracy was 99.2%. The network classification accuracy for each test dataset was nearly 

the same, with the results summarized in Table 3. These results demonstrate that the 

network is robust and can still correctly identify the object class despite adverse conditions 

of the input image.  

Table 3. Summary of Classification Accuracy for Each Augmented Test 
Dataset  

Test Dataset 
Augmentation 

Classification 
Accuracy 

Difference from 
Baseline 

Baseline 99.2% - 
Blur 99.3% + 0.1% 

Noise 99.4% + 0.2% 
Rotate 99.7% + 0.5% 
Crop 99.4% + 0.2% 

 

Though the results slightly differed, there were a few of the same images that were 

incorrectly classified across each dataset. The confusion chart for the baseline, blur, noise, 

rotate, and crop test datasets are shown in Figure 21, Figure 22, Figure 23, Figure 24, and 

Figure 25, respectively.  
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Figure 21. Confusion Chart for the Baseline Test Dataset 

 
Figure 22. Confusion Chart for the Blur Test Dataset 
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Figure 23. Confusion Chart for the Noise Test Dataset 

 
Figure 24. Confusion Chart for the Rotate Test Dataset 



35 

 
Figure 25. Confusion Chart for the Crop Test Dataset 

3. Integration Test Results – P3-DX with SlimPro Computer 

The integration test was successful, as the P3-DX robot vehicle was able to 

effectively classify the images captured during the test run around the campus. There were 

no obvious signs of processing degradation, power limitations, or data storage constraints. 

These test results will ensure a smoother transition when the output of the network 

classification is used within other robot navigation scripts.  
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IV. CONCLUSION 

Machine learning applications have been a topic of research for decades but have 

seen a recent growth in popularity with the added capabilities provided by increased 

computing power. Deep learning, a form of machine learning, has been used for a variety 

of applications that require complex modeling. This research sought to apply deep learning 

techniques in pursuit of providing image classification for objects and regions surrounding 

the NPS campus as a means for navigation input to an autonomous robot vehicle. The 

neural network, or model employed in deep learning, was developed to recognize 26 

objects around the campus. Additionally, by applying a variety of image augmentation 

techniques, this neural network showed robust performance when tested against blurred, 

noisy, rotated, and cropped images. The robot vehicle was able to utilize this neural 

network in a standalone configuration and proved that the robot vehicle can successfully 

utilize the outputs of the neural network. In this chapter, an assessment of the goals is 

provided as well as a discussion for future work.  

A. ASSESSMENT OF GOALS 

This research sought to improve and refine the application and training of neural 

networks used for navigation and guidance of an autonomous robot vehicle. The goal of 

this research was to further the previous ECE Control Systems and Robotics Laboratory 

research [6] by expanding the number of objects that the neural network could classify. 

Overall, the neural network developed in this research was able to identify 26 different 

objects around the NPS campus with a 97.91% validation accuracy. The neural network 

was also visually tested by running a live and continuous classification loop while moving 

the webcam around campus. This test also proved that the neural network had excellent 

performance of classifying the varying objects and regions through campus.  

An additional goal of this research was to create a neural network that is robust and 

can perform classification tasks with input images that are blurred, noisy, rotated, or 

cropped. These types of altered inputs sought to reflect a more realistic scenario of real-

world image acquisition. The neural network was tested against several test image datasets 
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that contained these image augmentations. The classification performance did not show 

degradation for any of the test image datasets with all of the classification accuracies above 

99%. These results showed that the neural network can classify varying objects, despite 

having a substandard or highly altered input. 

As a final check of the neural network, the autonomous robot vehicle hosted the 

classification tasks in a completely standalone configuration. This check was to ensure that 

the robot vehicle could successfully power and process the neural network without 

affecting the performance of object classification. There were no noticeable degradations 

to the performance of the network, and the robot vehicle was able to manage and store the 

output data successfully. In total, this work was successful in progressing the research of 

the ECE Control Systems and Robotics Laboratory in the pursuit of providing relevant 

navigation and guidance information for an autonomous robot vehicle.  

B. FUTURE WORK 

1. Incorporate Neural Network Outputs into Navigation Plan 

The work performed in this research focused solely on developing the neural 

network performance but did not develop the integration of the neural network outputs into 

a robot vehicle navigation algorithm. The outputs of this neural network should be 

incorporated with other autonomous navigation code that is utilized by the robot vehicle. 

The results of this research have shown high fidelity in identifying objects around the 

campus and can be used in conjunction with other waypoint-based navigation techniques. 

2. Expand the Number of Objects for Classification 

Though the neural network was trained to identify 26 different objects and regions 

around the NPS campus, there are many more objects and regions that can be incorporated 

into the dataset. In addition to new objects, the expansion of this dataset should also include 

a greater variety of these objects with different lighting conditions and during different 

types of weather. Though different techniques were applied to test the robustness of the 

neural network, these techniques should be expanded upon. This increase in testing 

techniques includes creating more extreme test image datasets and developing new testing 
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methods. Ultimately, this will lead to a more generalized neural network that can traverse 

the entire NPS campus without issue.  

3. Use CNNs for Object Detection and Localization 

The output of the neural network developed in this research showed high accuracy 

in object classification but did not provide precise localization information. There is current 

research that utilizes CNNs in object detection algorithms that provide object classification 

and localization information from input images. This localization information is in the form 

of a bounding box that is placed around the object that is being classified. This type of deep 

learning is processing-intensive for both training and execution but can provide enhanced 

information to be used for navigation of an autonomous system.  
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APPENDIX A.  NETWORK TRAINING SCRIPT 

%% NPS Classification Network Training 
% Marcea Ascencio 
  
% This script reads in the images for network training, 
creates the 
% network architecture for transfer learning, applies 
required 
% pre-processing, trains the network, and tests the network 
accuracy. 
  
%% Read In Images to an Image Datastore 
loc='C:\Users\marce\Pictures\NPS_Thesis'; 
imds=imageDatastore(loc,'IncludeSubfolders',true,'LabelSour
ce','foldernames'); 
% montage(imds) 
% Split data up into training, validation, and testing imds' 
[trainds,valds,testds]=splitEachLabel(imds,0.7,0.2,0.1); 
 
%% Load Network 
net=googlenet; 
%% Manipulate Layers for Transfer Learning 
lgraph=layerGraph(net); 
% Get number of classes from the training datastore: 
numClasses=numel(categories(trainds.Labels)); 
% Create new fully connected layer and classification layer 
newfc=fullyConnectedLayer(numClasses,"Name",'fc'); 
newcl=classificationLayer("Name",'cl'); 
% Display end of layers before replacing them 
lgraph.Layers(end-2:end) 
% Replace layers  
lgraph=replaceLayer(lgraph,'loss3-classifier',newfc); 
lgraph=replaceLayer(lgraph,'output',newcl); 
% Display end of layers after replacement 
lgraph.Layers(end-2:end) 
 
%% Augment image datastores 
% Get input size from the network 
inputSize=net.Layers(1).InputSize 
  
augmenter = imageDataAugmenter('FillValue',[256 256 256],... 
    'RandXReflection',true,... 
    'RandRotation',[-25 25],... 
    'RandXShear',[-15 15],... 
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    'RandYShear',[-15 15],... 
    'RandXTranslation',[-50 50],... 
    'RandYTranslation',[-50 50]); 
  
augtrainds=augmentedImageDatastore(inputSize(1:2),trainds,'
DataAugmentation',augmenter); 
augvalds=augmentedImageDatastore(inputSize(1:2),valds); 
augtestds=augmentedImageDatastore(inputSize(1:2),testds); 
 
%% Training Options 
miniBatchSize = 40; 
options = trainingOptions('sgdm', ... 
    'MiniBatchSize',miniBatchSize, ... 
    'MaxEpochs',20, ... 
    'InitialLearnRate',1e-3, ... 
    'ValidationData',augvalds, ... 
    'ValidationFrequency',15, ... 
    'Verbose',true, ... 
    'Plots','training-progress',... 
    'ExecutionEnvironment','auto'); 
[net,info] = trainNetwork(augtrainds,lgraph,options); 
 
%% Test Network with Test image datastore 
%Classify test images 
[YPred,probs]=classify(net,augtestds); 
  
acc=sum(YPred==testds.Labels)/numel(testds.Labels) 
perprob=max(probs,[],2)*100; 
  
figure 
confusionchart(testds.Labels,YPred) 
incorrectidx=find(YPred~=testds.Labels); 
%  
for k=1:length(incorrectidx) 
    idx=incorrectidx(k); 
    im=augtestds.Files{idx}; 
    im=imread(im); 
    figure 
    imshow(im) 
    title(string(YPred(idx))+' '+num2str(perprob(idx),4) + 
'%') 
end 
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APPENDIX B.  IMAGE AUGMENTATION SCRIPT 

%% Image Augmentation Script  
% Marcea Ascencio 
  
% This script reads in images, applies desired augmentation 
technique(s) 
% and then saves them back into the desired destination 
folder. Note, the 
% loop can be commented/uncommented depending on the desired 
augmentation. 
  
clear,clc 
 
%% Read Images 
loc='C:\Users\marce\Pictures\SecondaryTest_Thesis\CleanImag
es\TrashCan'; 
dest='C:\Users\marce\Pictures\SecondaryTest_Thesis\Crop\Tra
shCan'; 
imds=imageDatastore(loc,'IncludeSubfolders',true,'LabelSour
ce','foldernames'); 
% figure 
% montage(imds) 
  
%% Parse Out Each Image and Augment 
  
for k=1:length(imds.Files) 
    k 
    tempfilename=imds.Files{k}; 
    tempim=imread(tempfilename); 
    
newname=strcat(dest,'\','crop_img_DayMonth',num2str(k),'.jp
g'); 
     
    % Reflection -------------------------------------------
--------------- 
    tformA=randomAffine2d('XReflection',true); 
    outputView = affineOutputView(size(tempim),tformA); 
    
tempim=imwarp(tempim,tformA,'OutputView',outputView,'FillVa
lues',[256 256 256]); 
    disp('Image was possibly reflected') 
     
    % Rotation ---------------------------------------------
--------------- 
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    tformB=randomAffine2d('Rotation',[-25 25]); 
    outputView = affineOutputView(size(tempim),tformB); 
    
tempimrot=imwarp(tempim,tformB,'OutputView',outputView,'Fil
lValues',[256 256 256]); 
    disp('Image was Rotated') 
  
    % Shear ------------------------------------------------
--------------- 
    tformC=randomAffine2d('XShear',[-15 15],'YShear',[-15 
15]); 
%     tformC=randomAffine2d('XShear',[-15 15]); 
    outputView = affineOutputView(size(tempim),tformC); 
    
tempim=imwarp(tempim,tformC,'OutputView',outputView,'FillVa
lues',[256 256 256]); 
    disp('Image was Sheared') 
  
    % Translation ------------------------------------------
--------------- 
    tformD=randomAffine2d('XTranslation',[-50 
50],'YTranslation',[-50 50]); 
%     tformD=randomAffine2d('XTranslation',[-50 50]); 
    outputView = affineOutputView(size(tempim),tformD); 
    
tempim=imwarp(tempim,tformD,'OutputView',outputView,'FillVa
lues',[256 256 256]); 
    disp('Image was Translated') 
  
    % rgb2gray ---------------------------------------------
------------------- 
  
%     rgbflag=0; 
    tempim=rgb2gray(tempim); 
    disp('Image was converted from RGB to Grayscale') 
    rgbflag=1; 
     
    % jitterColorHSV ---------------------------------------
------------------- 
        
    
tempim=jitterColorHSV(tempim,'Contrast',0.4,'Hue',0.1,'Satu
ration',0.2,'Brightness',0.3); 
    disp('Image was altered with jitterColorHSV') 
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    % imnoise ----------------------------------------------
--------------- 
     
    tempim=imnoise(tempim,'gaussian'); 
    disp('Image was altered with imnoise') 
     
    % imgaussfilt ------------------------------------------
--------------- 
     
    blurval=3; 
    tempim=imgaussfilt(tempim,blurval); 
    disp('Image was blurred') 
  
    % Crop -------------------------------------------------
--------------- 
    h=size(tempim,1); 
    w=size(tempim,2); 
    percentcrop=0.3*rand; 
    hcrop=round(h*(1-percentcrop)); 
    wcrop=round(w*(1-percentcrop)); 
    targetSize=[hcrop wcrop]; 
    win = centerCropWindow2d(size(tempim),targetSize);  
    tempim = imcrop(tempim,win);  
  
    % save image 
    imwrite(tempim,newname) 
     
end 
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APPENDIX C.  LIVE TEST SCRIPT 

%% Live Test Script 
% Marcea Ascencio 
  
% This script runs a live test by utilizing a trained network 
and continous 
% while loop to run classifications on the input images 
captured by the 
% webcam. The classification is displayed in the figure window 
with the 
% respective object class and probability. Note- make sure to 
load network 
% prior to executing this script. 
  
%% Setup 
% load webcam 
camera=webcam('Microsoft® LifeCam Cinema(TM)'); 
% create input size variable for incoming images 
inputSize=net.Layers(1).InputSize(1:2); 
%figure handle 
h = figure; 
  
%% Execute 
% continous loop will execute while figure is open 
while ishandle(h) 
    im = snapshot(camera); 
    image(im) 
    im=augmentedImageDatastore(inputSize(1:2),im); 
    [label,score] = classify(net,im) 
    title(string(label) + "," + num2str(100*max(score)) + 
"%") 
    drawnow 
end 
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