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1. Introduction 

Improving the maneuverability of guided projectiles enables range extension using 
gliding maneuvers, and terminal-phase maneuverability enables the projectile to 
engage imperfectly located targets and evade active protection systems.1–3 
Additionally, higher velocity is advantageous for many military projectile 
applications, particularly in the terminal phase of flight, but across the entire 
trajectory as well. Projectiles lacking an in-flight propulsion system rely on low-
drag designs to maintain as much of the launch energy as possible.  

Current research into low-drag, high-lift airframes for both supersonic and subsonic 
flight regimes is improving the understanding of desirable features of the airframe 
design while reducing design-cycle iteration time to rapidly evolve capabilities.4 
One approach to long-range projectile design leverages a symmetric flight body 
with low-aspect-ratio fins for stability, lift, and control. For these designs, the static 
forces and moments can vary substantially with aerodynamic roll angle at moderate 
to high angles of attack (AoAs) desired for most maneuvers.5–6 These nonlinearities 
present a challenge to effective traditional flight-control design based on linearized 
plant models.   

Model Predictive Control (MPC) is a popular control technique based on an online 
optimization approach, which is inherently well suited for constrained state and 
input problems.7 MPC was originally developed for linear plant models,8 and 
previous research has used linear projectile models to apply MPC to guided 
projectiles.9  

However, for projectiles with nonlinear dynamics or expanded flight envelopes, a 
different approach required to adequately describe the dynamics for MPC. Several 
popular adaptations of MPC have been developed to control nonlinear processes 
over larger operational ranges.8,10,11 This research develops a Linear Parameter 
Varying (LPV) model to approximate the nonlinear dynamic behavior in the system 
model, and applies MPC techniques to develop a flight control system for 
disturbance rejection and reference tracking to control the longitudinal dynamics of 
an example high-speed guided projectile. 

2. Airframe Description 

The Laboratory Technology Vehicle (LTV) is an engineering test-bed projectile 
used by the US Army Combat Capabilities Development Command Army 
Research Laboratory to experiment with various gun-launched, guided flight and 
maneuver technologies. The LTV flight body was shaped through a series of 
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optimization analyses that identified design candidates with low drag and high lift-
to-drag ratios while maintaining marginal stability across the supersonic Mach 
regime.4–6 The body is 105 mm in diameter and 10 cal. (1.05 m) in length with a 
0.5-cal. 7° boattail, and has a center of gravity (CG) located 56% back from the 
nose. The projectile has a 30% ogive nose as a trade-off between drag and payload 
volume. There are four low-aspect-ratio fins arrayed symmetrically around the 
body. The projectile is designed to be sabot-launched from an 8-inch-diameter gun 
with no deploying aerodynamic surfaces, which limits the fin span to 8 inches tip 
to tip. Figure 1 shows an illustration of the LTV flight body in a configuration with 
a 10.5-mm-radius rounded nose tip and 80-mm chord control surfaces hinged at 
their leading edges. The mass properties for this variant are given in Table 1. 

 
Fig. 1 LTV flight body in the configuration with rounded nose and 80-mm control surfaces 
hinged at the leading edge. Dimensions given in millimeters. 

Table 1 Mass properties for LTV 

Mass 16.8 kg 
CGX 588 mm (56%) from nose  
CGY, CGZ on center line 
𝐼𝐼𝑋𝑋𝑋𝑋 0.0273 kg-m2 
𝐼𝐼𝑌𝑌𝑌𝑌 , 𝐼𝐼𝑍𝑍𝑍𝑍 1.247 kg-m2 

 
For this analysis, the projectile is configured to fly in the “X” configuration with 
the roll angle location of movable surface 𝑖𝑖 given by  
𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = [45°, 135°, 225°, 315°] for 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3, 𝛿𝛿4, respectively, as illustrated in  
Fig. 2. 
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Fig. 2 Numbering scheme of the movable aerodynamic surfaces, along with the deflection 
sign convention. View is from projectile base.  

The control mixing of the four movable surfaces into virtual control channels is 
given in Eqs. 1–3: 

𝛿𝛿𝑝𝑝 =
1
4 (−𝛿𝛿1 − 𝛿𝛿2 − 𝛿𝛿3 − 𝛿𝛿4) (1) 

𝛿𝛿𝑞𝑞 =
1
4 (−𝛿𝛿1 + 𝛿𝛿2 + 𝛿𝛿3 − 𝛿𝛿4) (2) 

𝛿𝛿𝑟𝑟 =
1
4 (−𝛿𝛿1 − 𝛿𝛿2 + 𝛿𝛿3 + 𝛿𝛿4) (3) 

3. Linearized Dynamic Model 

For this report, the longitudinal dynamics of the projectile are considered for 
simplicity, but the methodology is easily extended to the full 6 degrees of freedom 
(6DoF) system dynamics. The expressions for the linearized longitudinal 
aerodynamic model and pitch-plane equations of motion for the projectile are 
approximated using a state space model as shown in Eqs. 4 and 5: 

�̇�𝑥𝑝𝑝 = 𝐴𝐴𝑝𝑝𝑥𝑥𝑝𝑝 + 𝐵𝐵𝑝𝑝𝛿𝛿𝑞𝑞 (4) 

𝑦𝑦𝑝𝑝 = 𝐶𝐶𝑝𝑝𝑥𝑥𝑝𝑝 (5) 

with the control input defined in this example as the pitch deflection, 𝛿𝛿𝑞𝑞, and state 
vector defined as 𝑥𝑥𝑝𝑝 = [𝜃𝜃,𝑢𝑢,𝑤𝑤, 𝑞𝑞]𝑇𝑇, where 𝜃𝜃 is the pitch angle, 𝑢𝑢,𝑤𝑤 are the x,z 
velocity components, respectively, and 𝑞𝑞 is the pitch angular rate. The output 
matrix, 𝐶𝐶𝑝𝑝, is the identity matrix, and the state transition matrix, 𝐴𝐴𝑝𝑝, and the control 
input matrix, 𝐵𝐵𝑝𝑝, are of the following form12,13: 
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𝐴𝐴𝑝𝑝 = �

0 0 0 1
−𝑔𝑔 𝑋𝑋𝑢𝑢 𝑋𝑋𝑤𝑤 −𝑤𝑤0
0 𝑍𝑍𝑢𝑢 𝑍𝑍𝑤𝑤 𝑢𝑢0
0 𝑀𝑀𝑢𝑢 + 𝑀𝑀�̇�𝑤𝑍𝑍𝑢𝑢 𝑀𝑀𝑤𝑤 + 𝑀𝑀�̇�𝑤𝑍𝑍𝑤𝑤 𝑀𝑀𝑞𝑞 + 𝑀𝑀�̇�𝑤𝑢𝑢𝑜𝑜

� ,    𝐵𝐵𝑝𝑝 = �

0
𝑋𝑋𝛿𝛿
𝑍𝑍𝛿𝛿

𝑀𝑀𝛿𝛿 + 𝑀𝑀�̇�𝑤𝑢𝑢𝑜𝑜

� (6) 

where 𝑢𝑢0,𝑤𝑤0, are the x,z velocity components at the linearization point (trim 
condition), g is the gravity term, and the partial derivative terms are calculated from 
the aerodynamics and mass properties at the desired trim condition as shown in 
Table 2.  

Table 2 Longitudinal derivative terms 

𝑋𝑋𝑢𝑢 = −
𝑄𝑄𝑄𝑄
𝑚𝑚𝑢𝑢𝑜𝑜

(𝐶𝐶𝐷𝐷𝑢𝑢 + 2𝐶𝐶𝐷𝐷𝑜𝑜) 𝑀𝑀𝑢𝑢 =
𝑄𝑄𝑄𝑄𝑄𝑄
𝑢𝑢0𝐼𝐼𝑦𝑦

𝐶𝐶𝑚𝑚𝑢𝑢  

𝑋𝑋𝑤𝑤 = −
𝑄𝑄𝑄𝑄
𝑚𝑚𝑢𝑢𝑜𝑜

(𝐶𝐶𝐷𝐷𝛼𝛼 − 𝐶𝐶𝐿𝐿𝑜𝑜) 𝑀𝑀𝑤𝑤 =
𝑄𝑄𝑄𝑄𝑄𝑄
𝑢𝑢0𝐼𝐼𝑦𝑦

𝐶𝐶𝑚𝑚𝛼𝛼  

𝑋𝑋𝛿𝛿 = −
𝑄𝑄𝑄𝑄
𝑚𝑚
𝐶𝐶𝐷𝐷𝛿𝛿𝑞𝑞  𝑀𝑀�̇�𝑤 =

𝑄𝑄𝑄𝑄𝑄𝑄
𝑢𝑢0𝐼𝐼𝑦𝑦

𝑄𝑄
2𝑢𝑢0

𝐶𝐶𝑚𝑚�̇�𝛼  

𝑍𝑍𝑢𝑢 = −
𝑄𝑄𝑄𝑄
𝑚𝑚𝑢𝑢𝑜𝑜

(𝐶𝐶𝐿𝐿𝑢𝑢 + 2𝐶𝐶𝐿𝐿𝑜𝑜) 𝑀𝑀𝑞𝑞 =
𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑦𝑦

𝑄𝑄
2𝑢𝑢0

𝐶𝐶𝑚𝑚𝑞𝑞  

𝑍𝑍𝑤𝑤 = −
𝑄𝑄𝑄𝑄
𝑚𝑚𝑢𝑢𝑜𝑜

(𝐶𝐶𝐿𝐿𝛼𝛼 + 𝐶𝐶𝐷𝐷𝑜𝑜) 𝑀𝑀𝛿𝛿 =
𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑦𝑦

𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞
 

𝑍𝑍𝛿𝛿 = −
𝑄𝑄𝑄𝑄
𝑚𝑚
𝐶𝐶𝐿𝐿𝛿𝛿𝑞𝑞  

 

 
In Table 2, 𝑚𝑚 is the projectile mass, 𝑄𝑄 is the dynamic pressure, 𝑄𝑄 is the 
aerodynamic reference diameter, and 𝑄𝑄 is the reference area. 

For this research, the plant model from Eqs. 4 and 5 is augmented with an actuator 
dynamic model to account for the relevant dynamics between the commanded 
control deflection and movement of the control surface. The actuator system is 
modeled as a first-order dynamic system relating the deflection command, 𝛿𝛿𝑞𝑞𝐶𝐶𝑀𝑀𝐷𝐷, 
to the control surface deflection, 𝛿𝛿𝑞𝑞, governed by a time constant, 𝜏𝜏, chosen to be 
0.05 s.   

�̇�𝛿𝑞𝑞 = −
1
𝜏𝜏
𝛿𝛿𝑞𝑞 +

1
𝜏𝜏
𝛿𝛿𝑞𝑞𝐶𝐶𝑀𝑀𝐷𝐷 (7) 

The augmented state space model combining both the projectile and actuator 
dynamics is given by Eqs. 8–10, with the augmented state vector defined as  
𝑥𝑥 = �𝜃𝜃,𝑢𝑢,𝑤𝑤, 𝑞𝑞, 𝛿𝛿𝑞𝑞�

𝑇𝑇
,  

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝛿𝛿𝑞𝑞𝐶𝐶𝑀𝑀𝐷𝐷 (8) 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 (9) 
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𝐴𝐴 = �
𝐴𝐴𝑝𝑝 𝐵𝐵𝑝𝑝
0 −1/𝜏𝜏� ,    𝐵𝐵 = � 0

1/𝜏𝜏� ,    𝐶𝐶 = �𝐶𝐶𝑝𝑝 0
0 1

� (10) 

The specific aerodynamic force of the projectile in the body frame is the quantity 
measured by onboard accelerometers within an inertial measurement unit. The 
expression for the specific force component in the Z direction, �̃�𝐴𝑧𝑧 , can be obtained 
as shown in Eq. 11.14  

�
�̃�𝐴𝑋𝑋
�̃�𝐴𝑌𝑌
�̃�𝐴𝑍𝑍
� = 𝑇𝑇�⃑𝐵𝐵𝐵𝐵𝑇𝑇 �

𝑑𝑑𝑉𝑉�⃑ 𝐵𝐵

𝑑𝑑𝑑𝑑
− �

0
0
𝑔𝑔
�� = �

𝑑𝑑𝑉𝑉�⃑ 𝐵𝐵

𝑑𝑑𝑑𝑑
+ 𝜔𝜔��⃑ 𝐵𝐵 × 𝑉𝑉�⃑ 𝐵𝐵 − 𝑇𝑇�⃑𝐵𝐵𝐵𝐵𝑇𝑇 �

0
0
𝑔𝑔
�� (11) 

where 𝑇𝑇�⃑𝐵𝐵𝐵𝐵𝑇𝑇  is the transpose of the rotation matrix from body to earth coordinates, 
obtained by using the standard aerospace (Z-Y-X) rotation sequence. Focusing on 
the Z equation, we can see that �̃�𝐴𝑧𝑧 can be expressed as a combination of states, as 
shown in Eq. 12. Sign convention for this work is positive �̃�𝐴𝑧𝑧 aligned to the –Z 
body axis direction.  

�̃�𝐴𝑍𝑍 = −�̇�𝑤 + 𝑞𝑞𝑢𝑢 + 𝑔𝑔cos (𝜃𝜃) 
 

(12) 

After substituting �̇�𝑤 for the appropriate expression from the dynamic model in Eqs. 
8–10, an expression for �̃�𝐴𝑧𝑧 is obtained based only on the system states. 

�̃�𝐴𝑍𝑍 = 𝑔𝑔 cos(𝜃𝜃) − 𝑍𝑍𝑢𝑢𝑢𝑢 − 𝑍𝑍𝑤𝑤𝑤𝑤 − 𝑍𝑍𝛿𝛿𝛿𝛿𝑞𝑞 (13) 

4. LPV Model 

The aerodynamics of the LTV are highly nonlinear with AoA, 𝛼𝛼, and the linearized 
model presented in the previous section is only accurate within a small region of 
the flight envelope surrounding the chosen linearization point.5 To build a 
controller with desired performance across a wide flight envelope, an LPV model 
is used to capture the majority of the nonlinear behaviors without the complexity 
of the full nonlinear dynamic model.15 

In this LPV approach, the flight envelope is discretized by a representative 
sampling of linearization points, and an 𝐴𝐴, matrix is calculated at each point, 
according to Eqs. 6 and 9. The elements of this matrix are used to fit a polynomial 
function of the flight envelope parameters to approximate the full nonlinear plant 
dynamics across the flight envelope. This process is similar to traditional flight-
controller gain scheduling, where separate linear controllers are developed for the 
linear model at each scheduling point; however, instead of interpolating between 
local controllers, the LPV interpolates between local linear models at each 
scheduling point. The advantage of the LPV approach is that it enables a single 
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controller to be designed for the entire flight envelope without requiring the use of 
the full nonlinear dynamic model in the onboard calculations.  

For this work, the flight envelope, Γ, is defined to be at sea level, standard 
atmosphere with varying 𝛼𝛼 , and Mach as shown in Eq. 14. 

Γ ∶  �2 ≤ 𝑀𝑀 ≤ 3.5
|𝛼𝛼| ≤ 12𝑜𝑜 � (14) 

The flight envelope is discretized into a set of linearization points, and the projectile 
is trimmed and linearized at each point 𝜆𝜆 = [𝑀𝑀,𝛼𝛼] ∈ Γ, yielding a set of linear 
models of the form 

�̇�𝑥 = 𝐴𝐴(𝜆𝜆)𝑥𝑥 + 𝐵𝐵𝛿𝛿𝑞𝑞𝐶𝐶𝑀𝑀𝐷𝐷 (15) 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 (16) 

𝐴𝐴(𝜆𝜆) =

⎣
⎢
⎢
⎢
⎡

0 0 0 1 0
−𝑔𝑔 𝐴𝐴22(𝜆𝜆) 𝐴𝐴23(𝜆𝜆) 𝐴𝐴24(𝜆𝜆) 𝐴𝐴25(𝜆𝜆)
0 𝐴𝐴32(𝜆𝜆) 𝐴𝐴33(𝜆𝜆) 𝐴𝐴34(𝜆𝜆) 𝐴𝐴35(𝜆𝜆)
0 𝐴𝐴42(𝜆𝜆) 𝐴𝐴43(𝜆𝜆) 𝐴𝐴44(𝜆𝜆) 𝐴𝐴45(𝜆𝜆)
0 0 0 0 −1 𝜏𝜏� ⎦

⎥
⎥
⎥
⎤

   

 

(17) 

A surface function is fitted to each variable element within 𝐴𝐴(𝜆𝜆) along the flight 
envelope parameters 𝛼𝛼,𝑀𝑀. The form of the fit functions for each element is chosen 
to include minimally sufficient complexity to adequately describe the system 
dynamics. Table 3 gives the formulation of the fit functions for the LPV model, and 
Table 4 presents the coefficients associated with each element along with the 
coefficient of determination for each fit, 𝑅𝑅2.   

Table 3. Equations for LPV model fit functions 

𝑓𝑓1(𝑀𝑀,𝛼𝛼) = 𝑎𝑎 +  𝑏𝑏𝑀𝑀 +  𝑐𝑐𝛼𝛼 

𝑓𝑓2(𝑀𝑀,𝛼𝛼) = 𝑎𝑎 +  𝑏𝑏𝑀𝑀 +  𝑐𝑐𝛼𝛼 +  𝑑𝑑𝑀𝑀𝛼𝛼 +  𝑒𝑒𝛼𝛼2 

𝑓𝑓3(𝑀𝑀,𝛼𝛼) = 𝑎𝑎 +  𝑏𝑏𝑀𝑀 +  𝑐𝑐𝛼𝛼 +  𝑑𝑑𝑀𝑀𝛼𝛼 +  𝑒𝑒𝛼𝛼2  +  𝑓𝑓𝑀𝑀𝛼𝛼2  +  𝑔𝑔𝛼𝛼4  

𝑓𝑓4(𝑀𝑀,𝛼𝛼) = (𝛼𝛼/|𝛼𝛼| ) ∗ (𝑎𝑎 +  𝑏𝑏𝑀𝑀 +  𝑐𝑐|𝛼𝛼|) +  𝑑𝑑sin(𝑒𝑒|𝛼𝛼|  +  𝑓𝑓)) 

𝑓𝑓5(𝑀𝑀,𝛼𝛼) = 𝑎𝑎 +  𝑏𝑏𝑀𝑀 +  𝑐𝑐|𝛼𝛼|  +  𝑑𝑑𝛼𝛼2  +  𝑒𝑒|𝛼𝛼|3 
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Table 4 Fit coefficients for LPV model 

𝑨𝑨(𝝀𝝀) 
term 

Fit 
function 

𝑹𝑹𝟐𝟐 𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇 𝒈𝒈 

𝐴𝐴22 𝑓𝑓2 0.9063 –0.078283 –0.003616 0 0 –0.000447 … … 
𝐴𝐴23 𝑓𝑓2  0.9992 0 0 0.003946 –0.003169 0 … … 
𝐴𝐴24 𝑓𝑓1 0.9718 0 0 –15.964 … … … … 
𝐴𝐴25 𝑓𝑓2 0.9225 0 0 0.31849 –0.25938 0 … … 
𝐴𝐴32 𝑓𝑓1 0.9840 0 0 –0.025392 … … … … 
𝐴𝐴33 𝑓𝑓3 0.9176 0.014436 –0.86461 0 0 –0.026971 –0.000418 0.000132 
𝐴𝐴34 𝑓𝑓1 0.9984 0 338.31 0 … … … … 
𝐴𝐴35 𝑓𝑓3 0.9590 –0.70542 2.4468 0 0 0.04944 –0.021008 –2.99E–05 
𝐴𝐴42 𝑓𝑓4 0.9636 0.099861 –0.011662 0.004026 –0.085281 0.45937 1.1102 … 
𝐴𝐴43 𝑓𝑓5 0.9828 1.658 –0.20751 –1.2845 0.14581 –0.004767 … … 
𝐴𝐴44 𝑓𝑓1 0.9998 –0.21552 –1.3393 0 … … … … 
𝐴𝐴45 𝑓𝑓3 0.9576 –4.0724 12.342 0 0 0.25517 –0.10576 –0.00018 

 

Figure 3 plots the linear model values for the variable elements of 𝐴𝐴(𝜆𝜆) at each 
point within the flight envelope, along with identified surface fit for each element. 
All fits have an 𝑅𝑅2 value above 0.9, indicating the fit function for each element 
captures the majority of the variation within the data.  

 

Fig. 3 Surface plots of the linear model fits across 𝜶𝜶, M for each variable element in A. 
Black dots show the linearized model values at each point in the discretized flight envelope.  

The expression for �̃�𝐴𝑧𝑧 from Eq. 13 can be rewritten using Eqs. 6 and 17 to be a 
combination of these identified fit functions, giving an approximation for �̃�𝐴𝑧𝑧 across 
Γ: 

�̃�𝐴𝑍𝑍 = 𝑔𝑔 + [0 −𝐴𝐴32(𝜆𝜆) −𝐴𝐴33(𝜆𝜆) 0 −𝐴𝐴35(𝜆𝜆)]𝑥𝑥 (18) 
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5. MPC Methodology 

The MPC approach uses a model of the system dynamics to forecast future system 
behavior and calculate the control input required to optimize the future behavior 
using a given cost function. The heavy reliance on the system model makes MPC a 
good candidate for aerospace applications that have high-quality aerodynamic 
characterizations and well-understood dynamics. 

The general formulation of the MPC optimal control problem for a dynamic system 
described by 𝑥𝑥(𝑘𝑘 + 𝑖𝑖) = 𝑓𝑓�𝑥𝑥(𝑘𝑘),𝑢𝑢𝑐𝑐(𝑘𝑘)� is expressed as an optimization of the 
control input 𝑢𝑢𝑐𝑐(𝑘𝑘 + 𝑖𝑖) at each time step, 𝑖𝑖, in the sliding prediction horizon of the 
controller, 𝑁𝑁𝑝𝑝. The control inputs at each time step across 𝑁𝑁𝑝𝑝 are concatenated into 
a control vector, 𝑈𝑈, as shown in Eq. 19. 

𝑈𝑈 = [𝑢𝑢𝑐𝑐(𝑘𝑘),𝑢𝑢𝑐𝑐(𝑘𝑘 + 1), … ,𝑢𝑢𝑐𝑐(𝑘𝑘 + 𝑁𝑁𝑝𝑝 − 1)] (19) 

The optimization seeks to identify 𝑈𝑈, which minimizes a cost function, 𝐽𝐽, across 
𝑁𝑁𝑝𝑝, given the current state 𝑥𝑥(𝑘𝑘) while respecting a given set of constraints as shown 
in Eqs. 20–23. 

min
𝑈𝑈

    𝐽𝐽(𝑥𝑥(𝑘𝑘),𝑈𝑈) = � 𝐽𝐽𝑖𝑖� 𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢𝑐𝑐(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)� 

𝑁𝑁𝑝𝑝−1

𝑖𝑖=0

 (20) 

𝑠𝑠. 𝑑𝑑.     𝑥𝑥(𝑘𝑘 + 𝑖𝑖) = 𝑓𝑓�𝑥𝑥(𝑘𝑘),𝑢𝑢𝑐𝑐(𝑘𝑘)� (21) 

𝑥𝑥(𝑘𝑘 + 𝑖𝑖) ∈ 𝒳𝒳,∀𝑖𝑖 ∈ [0,𝑁𝑁𝑝𝑝] (22) 

𝑢𝑢𝑐𝑐(𝑘𝑘 + 𝑖𝑖) ∈ 𝒰𝒰,∀𝑖𝑖 ∈ [0,𝑁𝑁𝑝𝑝 − 1] (23) 

The system dynamics across 𝑁𝑁𝑝𝑝 are enforced by Eq. 21, while the state and control 
across 𝑁𝑁𝑝𝑝 are constrained by Eqs. 22 and 23, respectively.  

6. MPC Implementation and Results 

MPC is often implemented using a discrete time dynamic model. However, in this 
work, the projectile dynamic model is used in its continuous time formulation to 
preserve the more conventional form of the dynamic equations and terms. The 
discrete time implementation can have advantages in computation time, and future 
research on this topic will explore moving to discrete time for hardware 
implementation. 

The MPC is implemented using the LPV dynamics model from Eq. 15–18 along 
with Tables 3 and 4. The controller step time, 𝑇𝑇𝑠𝑠, is chosen to be 0.01 s with an 𝑁𝑁𝑝𝑝 
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of 30 steps. At each controller update, estimates of the system states are assumed 
to be available to the controller, 𝑥𝑥(𝑘𝑘), along with estimates of the current values of 
the LPV scheduling parameters, 𝜆𝜆𝑘𝑘 = [𝑀𝑀𝑘𝑘,𝛼𝛼𝑘𝑘].  

Starting with these current conditions, the system states are integrated forward at 
each 𝑖𝑖 ∈ [0,𝑁𝑁𝑝𝑝] using Runge–Kutta 4 method on the LPV model from Eqs. 15–18. 
The 𝑀𝑀 scheduling parameter is assumed constant over 𝑁𝑁𝑝𝑝 (𝑀𝑀𝑘𝑘+𝑖𝑖 = 𝑀𝑀𝑘𝑘), but the 𝛼𝛼 
parameter is updated at each 𝑖𝑖 using the 𝑤𝑤 and 𝑢𝑢 predicted velocities and an 
approximation of the arctangent function16: 

𝛼𝛼𝑘𝑘+𝑖𝑖+1 =
180
𝜋𝜋

∗
�𝑤𝑤(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)
𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)�

1 + 0.28086 ∗ �𝑤𝑤(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)
𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)�

2 (24) 

The forecasted state vectors across 𝑁𝑁𝑝𝑝 are concatenated into a state prediction 
vector, 𝑋𝑋 as shown in Eq. 25. 

𝑋𝑋 = [𝑥𝑥(𝑘𝑘),𝑥𝑥(𝑘𝑘 + 1), … , 𝑥𝑥(𝑘𝑘 + 𝑁𝑁𝑝𝑝)] (25) 

For this implementation, no constraints are placed on the states aside from the 
system dynamics, but constraints to limit motion and avoid sensor saturation could 
be included here in future work. The control deflection is limited by a max and min 
deflection angle, 𝛿𝛿𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 20𝑜𝑜, as shown in Eq. 26. 

𝒰𝒰 ∶= {−𝛿𝛿𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝛿𝛿𝑞𝑞(𝑘𝑘) ≤ 𝛿𝛿𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚} (26) 

The cost function for the optimization problem at each prediction step, 𝐽𝐽𝑖𝑖, is defined 
as a combination of individual costs based on the integral and proportional �̃�𝐴𝑧𝑧 
tracking error, termed 𝐽𝐽𝑝𝑝𝑀𝑀𝑧𝑧 and 𝐽𝐽𝑖𝑖𝑀𝑀𝑍𝑍 , respectively, as well as costs for �̇�𝑞 and �̇�𝑢, 
termed 𝐽𝐽�̇�𝑞 and 𝐽𝐽�̇�𝑢, respectively. 

𝐽𝐽𝑖𝑖 =  𝐽𝐽�̇�𝑞 + 𝐽𝐽𝑝𝑝𝑀𝑀𝑧𝑧 + 𝐽𝐽𝑖𝑖𝑀𝑀𝑍𝑍 + 𝐽𝐽�̇�𝑢 (27) 

The �̃�𝐴𝑧𝑧 value is calculated across 𝑁𝑁𝑝𝑝 using the forecasted 𝑥𝑥 at each time step, and 
the 𝐽𝐽𝑝𝑝𝑀𝑀𝑧𝑧 and 𝐽𝐽𝑖𝑖𝑀𝑀𝑍𝑍 terms are used to enforce tracking of an �̃�𝐴𝑧𝑧 reference command, 
�̃�𝐴𝑧𝑧𝑅𝑅𝐵𝐵𝑅𝑅, through the adjustment of the 𝑄𝑄𝑝𝑝𝑀𝑀𝑧𝑧 and 𝑄𝑄𝑖𝑖𝑀𝑀𝑧𝑧 weighting terms, as shown in 
Eqs. 28 and 29. 

𝐽𝐽𝑝𝑝𝑀𝑀𝑧𝑧(𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)) =  𝑄𝑄𝑝𝑝𝑀𝑀𝑧𝑧 ∗ ��̃�𝐴𝑧𝑧(𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)) − 𝐴𝐴𝑧𝑧
𝑅𝑅𝑅𝑅𝑅𝑅�

2
 (28) 

𝐽𝐽𝑖𝑖𝑀𝑀𝑧𝑧(𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)) = 𝑄𝑄𝑖𝑖𝑀𝑀𝑧𝑧 ∗ ��𝑇𝑇𝑠𝑠 ∗ ��̃�𝐴𝑧𝑧(𝑥𝑥(𝑘𝑘 + 𝑗𝑗|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑗𝑗|𝑘𝑘)) − 𝐴𝐴𝑧𝑧
𝑅𝑅𝑅𝑅𝑅𝑅�

𝑖𝑖

𝑗𝑗=0

�

2

 (29) 
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The 𝐽𝐽�̇�𝑞 term is included in the cost function to penalize the angular acceleration and 
provide a stabilizing influence on the projectile through the adjustment of the 𝑄𝑄�̇�𝑞 
weight factor. The controller forecasts 𝑞𝑞 and the other states at each time step in 
𝑁𝑁𝑝𝑝, and �̇�𝑞 is approximated across 𝑁𝑁𝑝𝑝 as shown in Eq. 30. 

𝐽𝐽�̇�𝑞(𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)) = 𝑄𝑄�̇�𝑞 ∗ �
𝑞𝑞(𝑘𝑘 + 𝑖𝑖 + 1|𝑘𝑘) − 𝑞𝑞(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)

𝑇𝑇𝑠𝑠
�
2

 (30) 

The 𝐽𝐽�̇�𝑢 term penalizes changes to 𝛿𝛿𝑞𝑞 through the 𝑄𝑄�̇�𝑢 weighting term. This term is 
used to adjust the aggressiveness of the controller demands on the actuator. The 
controller forecasts 𝛿𝛿𝑞𝑞 along with the other states at each time step in 𝑁𝑁𝑝𝑝, and �̇�𝛿𝑞𝑞 is 
approximated across 𝑁𝑁𝑝𝑝 as shown in Eq. 31. 

𝐽𝐽�̇�𝑢(𝑥𝑥(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)) = 𝑄𝑄�̇�𝑢 ∗ �
𝛿𝛿𝑞𝑞(𝑘𝑘 + 𝑖𝑖 + 1|𝑘𝑘) − 𝛿𝛿𝑞𝑞(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)

𝑇𝑇𝑠𝑠
�
2

 (31) 

The four weighting factors, 𝑄𝑄𝑝𝑝𝑀𝑀𝑧𝑧, 𝑄𝑄𝑖𝑖𝑀𝑀𝑧𝑧, 𝑄𝑄�̇�𝑞, and 𝑄𝑄�̇�𝑢 are chosen in an iterative 
process to control the relative prioritization of each element within the 
optimization. Table 5 gives the values for the weighting factor chosen for this 
implementation.  

Table 5 Weighting factors 

𝑄𝑄𝑝𝑝𝑀𝑀𝑧𝑧  0.01 
𝑄𝑄𝑖𝑖𝑀𝑀𝑧𝑧  1.0 
𝑄𝑄�̇�𝑞  0.05 
𝑄𝑄�̇�𝑢 0.0005 

 
The MPC optimal control problem from Eqs. 20–23 is implemented in Simulink 
using CasADi17 and the IPOPT solver18 in a simulation using the nonlinear 
longitudinal aerodynamics to simulate the projectile flight. Figure 4 plots the results 
for an example simulation that demonstrates the ability of the MPC to control the 
projectile across the flight envelope. The simulation is initialized with a 𝑞𝑞 of  
0.5 rad/s and 𝛼𝛼 of 5° at Mach 3.5. A series of alternating positive and negative 𝐴𝐴𝑧𝑧

𝑅𝑅𝑅𝑅𝑅𝑅 
commands are closely followed by the controller as the projectile speed decreases 
over the simulation.  
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Fig. 4 Simulation results showing controller performance for 𝑨𝑨�𝒛𝒛 reference tracking for a 
simulated flight across the desired 𝑴𝑴,𝜶𝜶 flight envelope 

7. Conclusion 

In this report, an approach is presented to apply MPC to provide stabilization and 
command tracking for a high-speed projectile with nonlinear dynamics. An LPV 
model is identified to approximate the projectile dynamics for the online control 
optimization. The implementation of the MPC methodology is shown to yield 
promising performance across a 𝑀𝑀,𝛼𝛼 flight envelope using an LPV model derived 
from the nonlinear longitudinal dynamics. 

Future research will extend this architecture to the full 6DoF system dynamics and 
explore the performance degradation due to sensor noise and model inaccuracies. 
Additionally, the flight envelope will be expanded to include the subsonic flight 
regime and a range of altitudes.  
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Nomenclature 

𝛼𝛼  = body angle of attack in pitch plane 

�̃�𝐴𝑧𝑧 = specific aerodynamic force in z direction 

𝐶𝐶𝐷𝐷  = coefficient for drag force 

𝐶𝐶𝐿𝐿 = coefficient for lift force 

𝐶𝐶𝑚𝑚  = coefficient of pitching moment  

D = reference diameter 

𝛿𝛿𝑞𝑞 = pitch control deflection angle 

𝐼𝐼𝑦𝑦 = transverse moment of inertia 

𝑀𝑀 = Mach number 

m = mass 

𝑞𝑞 = pitch rate 

Q = ½ ρV2, dynamic pressure 

S = D2π/4, aerodynamic reference area 

𝜃𝜃 = pitch angle 

𝑢𝑢 = body velocity component in x direction 

𝑢𝑢𝑐𝑐 = control input to state space model 

𝑤𝑤 = body velocity component in z direction 

𝑋𝑋 = force in the x direction (body frame) 

𝑍𝑍 = force in the z direction (body frame) 
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List of Symbols, Abbreviations, and Acronyms 

6DoF 6 degrees of freedom 

AoA angle of attack 

CG center of gravity 

LPV Linear Parameter Varying 

LTV Laboratory Technology Vehicle  

MPC Model Predictive Control 
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 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 18 DEVCOM ARL 
 (PDF) FCDD RLW A 
   F E FRESCONI 
  FCDD RLW W 
   T SHEPPARD 
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   J T BRYSON 
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     L STROHM 
   B BURCHETT 
     I CELMINS 
   J DESPIRITO 
     L FAIRFAX 
   J PAUL 
       J D VASILE 
  FCDD RLW WA 
   N TRIVEDI 
  FCDD RLW WB 
   J SADLER 
  FCDD RLW WC 
   M MINNICINO 
  FCDD RLW WE 

M ILG 
B TOPPER 
D EVERSON 

  FCDD RLW WF 
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