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1. Introduction 

The goal of the cooperative research described in this report is to discover means 
by which future Army robotic systems could learn new behaviors from human 
teammates while still verifiably meeting system and mission specifications. For 
example, a robotic ground vehicle must be able to prefer terrain with certain 
qualities (e.g., concealment or terrain type) based on the instructions of its human 
teammates. In instances in which the system’s understanding of terrain features is 
not easily explainable to humans, demonstration provides a means by which 
systems can learn to prefer appropriate types of terrain. Demonstrations, however, 
are unlikely to cover terrain that is suboptimal, and thus fail to distinguish between 
less preferred terrain and dangerous terrain. The latter could be identified by the 
system designer or human supervisor and specified as side information to be 
introduced into the learning process. Additionally, side information could inform 
the learning process by providing context for demonstrations, for example, by 
indicating that the system should exhibit one type of behavior within a secured area 
and a different behavior when within range of enemy artillery.  

Within this report, Section 2 describes the state of research in this area prior to the 
Cooperative Agreement (CA) and what was done within the first year, while 
Section 3 describes the planned path forward for the CA. 

2. Year 1 Research 

At the initiation of this CA, research into using human demonstrations to inform 
rewards (without side information) had been conducted by researchers at the US 
Army Combat Capabilities Development Command Army Research Laboratory 
(Wigness et al. 2018). Within the framework of this method (shown in Fig. 1), 
humans provided example trajectories, which determined the weights 
corresponding to human-selected terrain features via maximum entropy inverse 
reinforcement learning (IRL). This combination of weights and reward features 
then guided the robot’s planning through a trajectory planning cost map. 
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Fig. 1 The learning process followed in Wigness et al. (2018) 

This process had been demonstrated both on a physical robot and within the 
DEVCOM Army Research Laboratory autonomy stack.  

Separately, the process of IRL with side information had been demonstrated in Wen 
et al. (2017). In this research, the learning agent is given a set of specifications, for 
example, start in the blue cell, proceed to the yellow cell after passing through both 
green cells and do not contact a red cell, as depicted in Fig. 2. These specifications 
(referred to as side information) are encoded in linear temporal logic. In addition to 
this side information, demonstrations are provided to indicate user preferences on 
how navigation should take place (e.g., following a shortest path or other desired 
property). Learning is conducted jointly over the demonstrations and the 
specifications as maximum entropy IRL with a penalty for violating the 
specifications. The result of the learning is a Markov decision process–based policy 
that provides for optimal navigation within the demonstration environment. Within 
any cell of the environment, the policy directs the agent as to which direction it 
should go to conform to both the side information and demonstrations. Crucially, 
the policy is environment specific and makes no adaptations to different 
environments. Once trained on a given grid world, the policy is only applicable to 
that grid world environment.  
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Fig. 2 An example environment for IRL with side information in Wen et al. (2017) 

Also noteworthy is the size of the environment, a 10 × 10 grid world, which is 
substantially smaller that a representative environment from the DEVCOM ARL 
autonomy stack. For example, the Camp Lejeune environment in the autonomy 
stack might be decomposed as a 250 × 250 grid cell environment.  

With year 1, three parallel, though coordinated, activities took place: 

a) Students gained understanding of the DEVCOM ARL autonomy stack, with 
which they had previously not worked, and applied the methods of Wen et 
al. (2017) within that environment. 

b) We conducted research into how to handle uncertainty, in the form of partial 
observability, inherent in robotic applications of learning. 

c) Research was completed in the use of convolutional neural networks to 
model rewards for learning of the type in Wen et al. (2017). This research 
was demonstrated outside of the DEVCOM ARL autonomy stack, within a 
grid world environment. 

With respect to (a), there was considerable time invested in the first year in 
understanding the DEVCOM ARL autonomy stack and attempting to apply the 
algorithm from Wen et al. (2017) to the map created during robot navigation. In 
particular, in the DEVCOM ARL autonomy stack, the robot creates a map as it 
navigates and labels terrain by type based on a semantic segmentation of that terrain 
via its perceptual system. This means there is no canonical grid world of the type 
depicted in Fig. 2. We addressed this challenge by having the robot navigate 
throughout a region of interest in the Camp Lejeune environment, and then 
extracting a grid cell representation of the semantically labeled terrain types within 
that environment.  

This led to a second challenge, which is that the labels of terrain types may change 
as the robot moves through the environment, which is being addressed by research 
thrust (b). We were able to integrate the algorithms from Wen et al. (2017) into the 
DEVCOM ARL autonomy stack. Within the Camp Lejeune environment, we could 
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train a robot, via demonstrations, to prefer certain terrain types while avoiding no-
go areas specified with side information (Fig. 3). However, behavior exhibited 
through the demonstrations was not reliable, leading to questions as to whether this 
lack of reliability was due to uncertainty or terrain type, or due to a more 
fundamental lack of transferability of learning between different environments or 
different regions within the same environment.  

 

Fig. 3 A robot learns via demonstrations to prefer road to grass while respecting side 
information directing it to avoid certain areas 

The research thrust in (b) consists of reformulating the problem from Wen et al. 
(2017) as the problem of finding an optimal policy for a partially observable 
Markov decision process (POMDP), a framework that allows for uncertainty of 
observations or knowledge. This research resulted in Djeumou et al. (2021), in 
which the POMDP framework is successfully applied to environments simpler than 
the DEVCOM ARL autonomy stack Camp Lejeune environment, for example, the 
maze environment depicted in Fig. 4. This environment is, obviously, substantially 
smaller than Camp Lejeune, but serves as an accepted benchmark for POMDP 
because in the maze the agent can only sense its neighboring walls. Thus the agent 
does not maintain a global map of the environment and has limited memory of what 
it has sensed within its environment. The idea is that an agent that can plan under 
such uncertainty could better cope with changing labels in a partially mapped 
environment, since complete environmental knowledge is not required for 
formulating a policy. Research efforts to extend the results of Djeumou et al. (2021) 
to the autonomy stack Camp Lejeune environment are ongoing in year 2.  
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Fig. 4 A maze environment; an agent in it can only sense neighboring walls 

With respect to research thrust (c), research was conducted in Memarian et al. 
(2020) into using a convolutional neural network (CNN) to learn reward features, 
while a discrete automata structure was learned as a representation for task 
structure. Such a framework allows an agent to simultaneously learn features upon 
which rewards are based and task structures. This research was tested in a 14 × 14 
cell grid world, which was smaller and simpler than the Camp Lejeune 
environment. The combination of CNN and automata did outperform alternative 
IRL methods, but required between 2000‒10000 iterations (examples) to jointly 
learn features and task structure. This is a number prohibitively large for 
implementation in the DEVCOM ARL autonomy stack. Such an investment in 
training might be worthwhile if training in one environment was readily 
transferable to other environments, but at present, this transferability is uncertain. 
Consequently, we have stopped research into using deep neural networks as 
representations for reward features and redirected efforts toward understanding 
how learning transfers between environments, which we will pursue in year 2.  

In summary, in year 1, we applied research conducted within a grid world 
environment to the larger and more complicated Camp Lejeune environment 
through the DEVCOM ARL autonomy stack. We researched the possibility of 
using CNNs to learn reward features, but found the number of iterations needed for 
training to be prohibitively large for the autonomy stack environment. Faced with 
the challenge of uncertain perception, we discovered an alternative formulation that 
incorporates uncertainty and demonstrated its value within a simple environment. 

3. Planned Year 2 Research 

In year 2, our goal is to understand how well IRL with side information transfers 
between environments and whether it can reliably function as part of the DEVCOM 
ARL autonomy stack within the Camp Lejeune environment. Toward that end, we 
will integrate the POMDP oriented research of Djeumou et al. (2021) into the 
DEVCOM ARL autonomy stack and see how the POMDP formulation of the 
problem improves reliability of performance. We will also explore transfer between 
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simpler grid world type environments, within which we can modify the structure 
more readily than we can modify the Camp Lejeune environment. Finally, we will 
examine transfer of learning when training and testing are done within different 
regions of the Camp Lejeune environment, and, if behaviors do transfer within the 
Camp Lejeune environment, we will examine transfer between different Unity 
environments.  

4. Summary and Conclusions 

In year 1, we applied research conducted within a grid world environment to the 
larger and more complicated Camp Lejeune environment through the DEVCOM 
ARL autonomy stack, we discovered an alternative formulation that incorporates 
uncertainty and demonstrated its value within a simple environment, and we 
researched the possibility of using CNNs to learn reward features. We concluded 
that the number of iterations needed for training CNN to learn reward features was 
prohibitively large for the autonomy stack environment. We also concluded that 
transfer of learning was a challenging problem with our current methods, and that 
in year 2 we need to better understand learning transfer between environments and 
find modifications of the current method to address this challenge.   
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