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Abstract

Many current and future spacecraft missions may conduct rendezvous and proximity

operations (RPO) with resident space objects (RSOs). Historically, guidance, navigation,

and control (GNC) methods for spacecraft performing RPO have relied heavily on available

information about or from a target RSO in order to conduct maneuvers in close proximity.

However, an important subset of spacecraft RPO that is yet to be demonstrated on-orbit

involves final approach maneuvers with respect to RSOs where no information (such

as geometry, inertia, relative velocity, etc.) is known about the target a priori, and no

information is actively provided from the target during maneuvering. Such operation with

respect to ‘unknown’ targets represents an important possible mission set for Department

of Defense (DoD) spacecraft. This research presents two GNC frameworks capable of

autonomously controlling complex RPO maneuvers with respect to moving unknown

targets. Both methods are capable of being implemented in real time using low cost, size,

weight, and power (SWAP) hardware and require minimal pre-maneuver inspection of the

target.

The proposed GNC methods are intended to operate a fully actuated ‘chaser’

spacecraft with respect to an unknown ‘target’ in a regime where resolved imagery and

depth maps of the target are available (the ‘final approach’ phase of RPO). For both

methods, the only information required prior to initiating a final approach maneuver is

a single camera image and dense stereo depth map captured from the initial relative pose

between chaser and target, and a stereo camera sensor onboard the chaser is assumed to

be the only sensor available for relative navigation during maneuvering. Computer vision

pipelines for each GNC method are developed and demonstrated.

The first GNC method implements an image-based visual servo (IBVS) control

law augmented with procedures to enable its use with unknown targets. The method
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computes coupled six-degree-of-freedom (6DOF) maneuvers for the chaser with respect to

an operator-defined region of interest (ROI) on the target RSO. In order to utilize the IBVS

control law with unknown targets, two procedures are proposed to generate a required

‘goal’ image, which implicitly defines the desired relative pose between chaser and target.

A noted benefit of the method pertains to the fact that control error is computed in the image

domain rather than Cartesian space, meaning estimation of a full relative pose estimate is

not required.

The second proposed GNC method represents an alternative visual servoing scheme

designed specifically for use with unknown targets, termed Surface Normal Visual Servoing

(SNVS). Surface Normal Visual Servoing (SNVS) computes a novel navigational vector

(the ‘Predominant Surface Normal (PSN)’ vector) associated with an ROI on the target

using stereo depth information. Two variants of SNVS are compared which each use the

estimated target PSN vector in different manners to compute control commands. Several

benefits of SNVS over the first GNC method are noted, including its effectiveness with

target ROIs containing significant nonplanar features, and lack of dependence on computer

vision feature point tracking methods.

Results from a realistic six degree of freedom simulation and using the Air Force

Institute of Technology’s robotic RPO simulator Control and Autonomy Space proximity

Robot (CASpR) demonstrate complex maneuvers with respect to moving unknown targets.

The methods presented in this work represent compelling alternatives to other proposed

methods for RPO with unknown targets, as they do not require estimation of target inertia

or rely on complex simultaneous localization and mapping (SLAM) algorithms to generate

potentially brittle relative pose estimates.
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VISUAL NAVIGATION AND CONTROL FOR SPACECRAFT PROXIMITY

OPERATIONS WITH UNKNOWN TARGETS

I. Introduction

1.1 Motivation

In 2009, satellites Iridium 33 and Cosmos-2251 collided in low Earth orbit, creating

thousands of pieces of debris, much of which will remain in orbit well into the next

century [1]. This collision was a stark reminder of how congested Earth orbit is, and how

catastrophic the consequences will be if we do nothing about this fact. The threat of resident

space object (RSO) collisions like this is one of many issues motivating development of

spacecraft rendezvous technologies. If an uncontrollable RSO is deemed a collision hazard,

having the capability to expeditiously rendezvous with it could avert a crisis [2]. Even more

alluring than collision prevention though, RSOs could be prevented from ever becoming

uncontrollable via on-orbit servicing (OOS) methods that could repair, refuel, or retrofit

them to extend their life [3].

Many types of OOS missions will require autonomous operation, due to the fact

that manned OOS missions are often impractical, and communication delays make

teleoperating maneuvering spacecraft in close proximity infeasible. As a result, the subject

of autonomous OOS has garnered significant attention in recent years. However, much

work is yet to be done to demonstrate reliable methods for many types of potential OOS

scenarios.

1.1.1 Spacecraft Rendezvous and Proximity Operations (RPO).

The term rendezvous and proximity operations (RPO) refers to operation of multiple

spacecraft and/or RSOs in vicinity of one another such that a desired relative position and

1



orientation is achieved/maintained. There are many possible applications of RPO, which

may or may not include docking/berthing between spacecraft. OOS is an application of

RPO that pertains to spacecraft servicing and inspection operations, and is the primary

focus of this research.

In the context of this work, RPO missions for OOS consist of two spacecraft: a chaser

and a target. The chaser is assumed to be a maneuverable spacecraft being controlled

to affect the goal of the OOS mission. The target is an RSO that is the subject of the

maneuver. Missions of this type are typically partitioned into several operations or phases

based on the relative range between spacecraft [4–7]. Delineation and definition of these

operations varies throughout literature, but within the context of this work, the operations

of a typical OOS mission include: phasing, homing, closing, final approach, and (possibly)

docking/berthing. The phasing operation consists of a transfer maneuver by the chaser to

reduce the phase angle from its current location to the target (Figure 1.1 graphically defines

the phase angle). This operation only requires coarse knowledge of the orbit and location

of the target. The next operation, homing (also commonly called far-range rendezvous),

consists of a maneuver by the chaser from the phasing orbit to a point in vicinity of the

target. This operation requires knowledge of the relative position between the chaser and

target, though measurement accuracy can still be fairly coarse.

The next two operations, closing and final approach, consist of maneuvers to achieve

the desired relative position and attitude between the chaser and target. Since this work

examines camera sensors for relative navigation, these phases are characterized by what

information is available about the target from the camera sensor (similar definitions can be

found in [8]). The closing phase is defined herein to include any relative range when the

target appears unresolved in the chaser’s camera image. That is, the target is still far enough

away that no discernible features can be identified. As relatively little information can be
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Figure 1.1: Definition of phase angle [7]

gleaned from camera sensors at this point, visual navigation with respect to the target is

normally conducted with respect to the calculated centroid of the target in this phase.

The final approach phase is defined as the regime whereupon camera sensors onboard

the chaser spacecraft are able to capture resolved imagery of the target—during this phase,

camera sensors on the chaser can identify distinct features on the target and use knowledge

of these features for relative navigation. The relative distances associated with each of these

operations depends on characteristics of the camera sensor (such as focal length, resolution,

focal plane array, etc.) and of the target itself. A rich set of information can be extracted

from resolved imagery of the target, which can then be used to aid relative navigation with

respect to the target in all six degree of freedom (6DOF).

Finally, if the mission requires physical contact between the chaser and target,

an operation can be conducted to reduce the relative range to a distance sufficient for

docking/berthing.

1.1.2 Types of RPO.

RPO missions for OOS are broadly divided into two categories, depending on the

nature of the target RSO being serviced [9]. If the target can share information or otherwise

operate to facilitate RPO with the servicing spacecraft (chaser), then the mission is termed
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‘cooperative.’ If the target cannot actively communicate or maneuver to support RPO, then

it is considered ‘non-cooperative’. Additionally, the non-cooperative category is partitioned

depending on what information is known about the target before the mission begins. If

characteristics of the target are available, such as 3D geometry, moments of inertia, location

of fiducial markers, etc., then the target is considered ‘known.’ Otherwise, if no information

is available regarding the characteristics of the target, it is considered ‘unknown.’

The engineering considerations and requirements associated with each of these

categories varies greatly. For a given RPO scenario, conducting RPO with a non-

cooperative target is generally considered more technically challenging than with a

cooperative target, as spacecraft cannot coordinate with each other to affect a successful

maneuver (such as sharing location or attitude information with each other). Moreover,

conducting RPO with an unknown non-cooperative target presents an even greater

challenge due to lack of knowledge about the target, which complicates relative navigation

as many established methods for sensing and relative pose determination cannot be utilized.

The vast majority of RPO missions to date have been conducted with cooperative

target spacecraft. For these operations, the fact that information is available about and from

each spacecraft means that accurate relative navigation can be achieved via a variety of

methods. As such, many processes and technologies have been proposed and demonstrated

to facilitate close-in proximity operations between cooperative spacecraft. RPO with

known non-cooperative targets are far less common, but have been investigated during

several on orbit experiments (discussed in Section 2.2).

The only space missions pertaining to unknown targets have regarded exploration of

near-Earth asteroids. While several of these missions demonstrated successful rendezvous

with asteroids, the guidance, navigation, and control (GNC) methods implemented were

largely tailored to this mission type, and are not directly transferable to the OOS-style

4



missions considered herein (these missions and their implications are discussed in Section

2.2.6).

To the knowledge of the author, no on orbit missions have demonstrated final approach

phase RPO for OOS with unknown non-cooperative target RSO’s. This type of mission is

certainly plausible—for example if a ‘dead’ target spacecraft is physically damaged such

that no geometric model is available, it would be both non-cooperative and unknown. There

are many open questions about this subset of RPO that have not been answered in available

literature, as discussed in the next subsection and Chapter II. Accordingly, the problem that

this work primarily seeks to address is how final approach phase maneuvers with unknown

non-cooperative targets can be autonomously conducted.

1.1.3 Relative Navigation Sensors for RPO with Unknown Targets.

This section provides a brief discussion of the types of relative navigation sensors

available for final approach phase RPO with unknown targets, as this subject greatly

influences the overall research effort.

For unknown non-cooperative targets, any sensor or navigation scheme which requires

information from the target (such as GPS location, inertial attitude, fiducial markers,

etc.) cannot be used. Consequently, research to date has almost exclusively considered

electro-optical (EO) sensors for this type of mission [9]. Broadly speaking, EO sensors

include devices capable of receiving radiation emitted in infrared, visible, or ultraviolet

wavelengths.

EO sensors can be either active, meaning some wavelength of light is emitted from

the sensor and the reflected returns of that light are collected as measurements, or passive,

whereupon the sensor does not emit anything. Light Detection and Ranging (LIDAR), the

most commonly proposed active sensor, works by casting infrared light on a scene via a

laser source and analyzing the reflected returns. As opposed to a camera, LIDAR produces
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a depth map (point cloud) of a scene, where each pixel conveys a measure of depth from

the LIDAR sensor.

The most commonly cited passive sensor for relative navigation applications in space

is a visible-spectrum camera. Passive infrared (IR) cameras have not been typically

considered for relative navigation due to their comparatively poor image resolution

(primarily as a result of IR’s long wavelength), which makes identifying specific features

difficult, and ultraviolet wavelengths are also typically not considered for any sort of

relative navigation among spacecraft [9].

Compared to LIDAR, visible-spectrum cameras have relatively low size, weight, and

power (SWAP) requirements, and cost less as well. Furthermore, visible-spectrum cameras

have been demonstrated in the space environment and are already present on many current

generation satellites. A main advantage of visible-spectrum cameras is their ability to

capture visual information about a scene, which can be analyzed to identify and track

features of interest over subsequent image frames. However, as discussed in Chapter II,

relative navigation conducted using cameras is reliant on sufficient illumination conditions,

which is not always guaranteed in space. Furthermore, monocular cameras do not readily

provide depth in the same way as LIDAR, though this limitation can be relatively easily

overcome by using a stereo camera, as discussed in Section 2.4.4.

Visible-spectrum cameras (specifically stereo cameras) are chosen for this work over

LIDAR or other relative navigation sensors due to their ability to provide a rich set of

information about a scene, and their demonstrated durability in the space environment.

These images enable a range of computer vision methods to be used to aid relative

navigation and enable one of the main methods examined in this work: visual servo control.

A stereo camera is chosen for its ability to provide estimates of depth to objects in an image

scene. Additionally, the lower SWAP and cost of cameras as compared to LIDAR make
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them more attractive for a range of potential space missions, including small-sat missions,

where space and power are constrained.

While visible-spectrum stereo cameras can provide a wealth of information, utilizing

the information provided by these sensors for relative navigation and control with unknown

targets is not a trivial task. There are available image processing methods from the field

of computer vision that are applicable for target identification and tracking of unknown

targets, however these methods have not been robustly examined for RPO applications

(see Section 2.4 for a discussion of this topic). Additionally, established methods for

6DOF control using visual feedback (commonly refereed to as visual servo control) assume

knowledge of the target (see Section 2.8 for an overview of several of these methods).

Therefore, significant work remains to be done to apply these methods for unknown

targets.

1.2 Research Questions and Tasks

This research effort seeks to advance the state of the art regarding autonomous

navigation and control for the final approach phase of RPO with unknown non-cooperative

targets.

Hypothesis: It is possible to autonomously perform complex 6DOF final approach

maneuvers with respect to unknown non-cooperative target RSO’s using a low SWAP stereo

camera for relative navigation and robust control algorithms that do not require estimation

of a geometric model of the target or its moments of inertia.

1.2.1 Research Questions.

The research questions that address this hypothesis are:

1. Is it possible to develop a visual navigation and control architecture for conducting

the final approach phase of RPO with unknown non-cooperative targets that does

not require a full relative pose estimate or estimating inertia/geometric properties

of the target, and how robust is this architecture to measurement errors associated
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with tracking feature points on the target? The method developed for this question is

termed ‘GNC Method 1’.

2. Is it possible to develop a visual navigation and control architecture for conducting

the final approach phase of RPO with unknown non-cooperative targets that does not

require tracking target feature points or estimating inertia/geometric properties of the

target? The method developed for this question is termed ‘GNC Method 2’.

3. Can methods developed for the previous two questions be implemented in real-time

using feedback from a stereo camera sensor hardware, and are they effective when

used in conjunction with available computer vision algorithms and hardware?

1.2.2 Research Tasks.

The over-arching goal of this work is to develop practical and robust navigation and

control methods for spacecraft conducting final approach phase RPO with unknown targets.

The methods presented herein are designed to use a stereo camera as the primary relative

navigation sensor, which is capable of providing visual and depth information about the

target in its field of view.

The proposed methods will be implemented in simulation and well as physical

experimentation in a hardware-in-the-loop (HITL) enviroment. The simulation will

facilitate initial analysis and improvement of the methods, while HITL experimentation

will demonstrate the methods using actual camera sensor feedback in a realistic setting.

The specific tasks that will be accomplished in order to answer each research question are

outlined below.

Question 1 tasks:

(1.1) Develop a 6DOF simulation for relative spacecraft motion of a chaser and

target, including implementation of navigation/control architecture.
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(1.2) Propose a method(s) for generating the goal image necessary for visual

servo maneuvers that specifies the desired end state of maneuver.

(1.3) Assess in simulation: (a) the architecture’s ability to maneuver with respect

to tumbling/moving targets and (b) the architecture’s robustness to potential

computer vision sources of error.

Question 2 tasks:

(2.1) Develop a method to estimate the predominant surface normal vector of a

target region of interest, for the purpose of determining the desired chaser

attitude for final approach maneuvers.

(2.2) Develop a method of visual servoing that utilizes this predominant surface

normal vector in order to address the issue of maneuvering with respect to

nonplanar regions of interest.

(2.3) Implement this new method in simulation and compare the effectiveness to

architecture developed in answering Question 1.

Question 3 tasks:

(3.1) Develop practical versions of the navigation and control architectures

developed for Questions 1 and 2, capable of being implemented in real-time

using a stereo camera sensor and robust computer vision pipelines.

(3.2) Develop a failsafe mode that automatically initiates 6DOF relative pose-

hold if maneuver termination criteria are met.

(3.3) Using hardware-in-the-loop, assess the ability of these architectures to

maneuver a chaser in 4DOF (three in-plane dimensions and one rotational

dimension) with respect to a moving non-cooperative unknown target.
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1.3 Research Scope

For this work, a two spacecraft OOS-style mission is considered which includes

a maneuverable chaser spacecraft and an unknown non-cooperative target RSO. The

applicability of the research regarding relevant types and phases of RPO is shown in

Figure 1.2. The proposed navigation and control methods primarily apply to maneuvers

for the final approach phase of RPO, where the goal of maneuvering is to achieve a desired

relative pose (position and attitude) between chaser and target. The proposed architecture

can certainly be used with known targets, and could have utility in the docking phase of

RPO as well.

Figure 1.2: Scope of research

Figure 1.3 displays the proposed taxonomy of final approach maneuvers with

unknown targets, including the primary methods this work presents. The figure refers to

two GNC methods: Method 1 pertains to Research Question 1, and Method 2 pertains to

Research Question 2, and describes an overall framework for how both methods can be

combined in order to provide maximum utility for RPO with unknown targets.

1.4 Assumptions and Limitations

Assumptions and limitations relevant to this work are as follows:
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Figure 1.3: Proposed taxonomy of a final approach maneuver with an unknown target using
visual navigation and control methods presented in this work.

1. Stereo camera sensor and real-time imagery: as discussed in Section 1.1.3, a visible-

spectrum stereo camera is chosen to be the primary relative navigation sensor on the

chaser spacecraft. Accordingly, it is assumed that an aligned dense depth map can

be computed for each image captured by the maneuvering camera. Additionally, the

camera sensor is capable of outputting images and depth maps at a rate sufficient for

real-time maneuvering.

2. Initial relative pose: it is assumed that the chaser has completed a closing phase

maneuver via other means and is initially positioned in close proximity to the target.

There may be initial relative motion (translational or rotational) between the chaser

and target (the direction and magnitude of which is initially unknown to the chaser).

It is assumed the chaser has sufficient actuator authority to overcome this relative

motion.
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3. Resolved imagery: per the definition of final approach phase provided in Section

1.1.1, resolved imagery of the target RSO is assumed to be available. The imagery

must be sufficiently resolved over the course of maneuvering such that features on

the target surface can be tracked and a dense stereo depth map of the target region of

interest (ROI) computed. It is assumed that there exists sufficient illumination on the

target over the course of the maneuver to maintain resolved imagery.

4. Unknown target: Other than a single camera image and stereo depth map of the

target captured from the initial relative pose, no other information about the target

(physical geometry, mass, moments of inertia, etc.) is available a priori. The target

ROI is assumed to be rigid in the sense that the physical configuration of the ROI

does not change over the course of a relative maneuver.

5. Chaser actuation: chaser can maneuver in all 6DOF with respect to the target using

continuous thrust/torque profiles. Applied forces and torques are decoupled.

6. Spacecraft dynamics: for the purposes of the simulated scenarios presented herein,

both spacecraft are assumed to be rigid bodies, and orbital motion is Keplerian (no

perturbations applied).

1.5 Expected Contributions

This work seeks to demonstrate that complex final approach RPO maneuvers with

respect to an unknown non-cooperative target can be conducted using visual feedback from

a stereo camera sensor. The expected contributions include:

1. A high-fidelity RPO simulation that models the 6DOF relative astrodynamics of a

chaser and target spacecraft, as well as a stereo camera sensor onboard the chaser

spacecraft. Significant capabilities of this simulation include:

(a) Rendering of stereo camera gray-scale images and depth maps, useful for

maneuver visualization and planning.
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(b) Ability to synthesize stochastic image feature points on an imported target

spacecraft model.

(c) A methodology for modeling the four main sources of error inherent with

feature-based image processing and stereo depth estimation.

2. Development of visual navigation and control architecture based on a dynamic

look-and-move Image-Based Visual Servoing (IBVS) control scheme capable of

commanding complex maneuvers with respect to unknown targets (GNC Method 1).

Demonstration of the architecture’s ability to achieve desired pose with an unknown

target in simulation. Assessment of the architecture’s robustness to navigational error

in simulation.

3. Development of two methods to generate goal images for previously unknown

targets. These methods enable GNC method 1 to be used with unknown targets.

4. Development of a visual servo control law that uses a novel navigation vector, termed

the Predominant Surface Normal (PSN) vector, to command complex maneuvers

with moving unknown targets without requiring tracking of target feature points

during maneuvering (GNC Method 2).

5. Development of computationally efficient method to estimate the PSN vector for a

target ROI, as well as the predominant surface plane associated with this ROI.

6. Demonstration of practical implementations of both methods using feedback from a

stereo camera sensor. Sub-contributions of this implementation will include:

(a) Design, construction, and testing of a robotic RPO simulator, Control and

Autonomy Space proximity Robot (CASpR), that can physically propagate

movement of two independent bodies in 4DOF using linearized spacecraft

equations of relative motion and feedback from a stereo camera sensor.
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(b) Development of a feature-based image-processing pipeline capable of tracking

natural point features identified on the target for use with GNC Method 1.

(c) Demonstration of a failsafe mode, capable of initiating a 6DOF relative pose-

hold with a moving target object if criteria are met to terminate the current

course of maneuver.

1.6 Document Preview

The rest of this document is organized as follows. Chapter II presents an overview

of background material from the fields of astrodynamics, robotics, and computer vision,

as well as a review of relevant literature. Chapter III presents GNC Method 1 and

demonstrates the method in simulation. Chapter IV discusses additions to GNC Method

1 necessary for HITL implementation, and provides experimental results. Chapter V

develops GNC Method 2, and includes simulation results demonstrating the method.

Chapter VI provides experimental results of GNC Method 2 using HITL. Finally

Chapter VII concludes the work by summarizing the proposed methods, contributions, and

providing recommendations for future research.
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II. Background and Literature Review

2.1 Chapter Overview

This chapter provides background information and a review of literature relevant

to this research. Since the subject of this work is spacecraft rendezvous and proximity

operations (RPO) using vision-based sensors, first a number of historical space missions

incorporating vision-based experiments are summarized. The translational and rotational

dynamics that govern relative spacecraft motion are then presented. Next, applicable

topics from the fields of computer vision and visual navigation are detailed. Finally,

control methods for rendezvous final approach are introduced, with a focus on visual servo

control. Recently published works pertaining to these topics are referenced and discussed

throughout. The chapter summary details the research gaps this work intends to fill.

2.2 Historical Autonomous RPO Missions

Several space experiments in recent decades have examined the final approach phase

of autonomous spacecraft rendezvous using vision-based navigation methods. Each of

these missions aimed to demonstrate various guidance, navigation, and control (GNC)

techniques for autonomous spacecraft RPO using cameras as a primary relative navigation

sensor. This section details a selection of experiments relevant to this research, in

chronological order.

2.2.1 Engineering Test Satellite (ETS-VII).

The ETS-VII was a two-satellite formation launched in 1997 and managed by the

National Space Development Agency of Japan (NASDA) [10]. While most of the mission’s

experiments centered around teleoperation of the chaser’s robotic arm, autonomous

rendezvous was demonstrated three times using a suite of relative navigation sensors which

included a monocular camera. The target was highly cooperative though— data was shared
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among satellites to perform differential GPS, and the target possessed retro-reflectors that

allowed the camera to determine relative pose within 2 meters range. Although ETS-VII’s

visual navigation capabilities were limited, it is still noteworthy as it was likey the first

on-orbit experiment to implement autonomous vision-based relative navigation [11].

2.2.2 XSS-10 & XSS-11.

The Air Force Research Laboratory (AFRL) conducted the XSS-10 [12] and XSS-11

[11] missions in 2003 and 2005 respectively. XSS-10 was a 28-kg micro-satellite deployed

from the second stage of a Delta II booster that proceeded autonomously on a preplanned

inspection route around the booster, using a combination of an IMU, GPS, star sensor, and

a monocular camera for relative navigation. While the mission was successful, its visual

navigation scheme was relatively basic by current standards, as it functioned by simply

estimating the centroid of the target, so it therefore could not maneuver with respect to

the 6DOF pose of the target. XSS-11 had a similar operational concept to XSS-10. It

successfully conducted 75 circumnavigations of the rocket body it was deployed from, this

time with the addition of a LIDAR sensor for range and angles measurements.

2.2.3 Demonstration for Autonomous Rendezvous Technology (DART).

DART was a NASA project launched in 2005. The objective of DART was to conduct

a series of maneuvers in close vicinity to the target (down to 5 meters range) using its

Advanced Video Guidance Sensor (AVGS). The target was passive (non-maneuvering)

and non-cooperative, though it contained fiducial markers in the form of retro-reflectors

that assisted the chaser in visually identifying it and estimating relative pose. The mission

ended prematurely after the DART vehicle collided with the target [11].

2.2.4 Orbital Express (OE).

OE, launched in 2007, was a two satellite formation managed by DARPA and NASA

[13]. This mission represented the most advanced autonomous rendezvous endeavour

yet undertaken, with a goal to conduct on-orbit servicing with the target spacecraft.
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With a range of sensors including a narrow-field of view (FOV) camera, a wide-FOV

camera, an infrared camera, a laser range-finder, and the same AVGS employed by DART,

OE conducted a range of demonstration experiments, including autonomous capture and

mating. As with DART, the target was 3-axis stabilized in attitude and contained retro-

reflectors. According to [13], 100% of mission objectives were achieved, thus making it

a successful demonstration of autonomous rendezvous with a non-cooperative and known

target.

2.2.5 Prototype Research Instruments and Space Mission Technology Advance-

ment (PRISMA).

PRISMA was a joint European venture headed by the Swedish National Space

Board launched in 2010 [14, 15]. It was also a two-satellite formation, with a 6-DOF

maneuverable chaser and passively stabilized target. The chaser was equipped with a suite

of sensors including differential GPS, Formation-Flying Radio Frequency (FFRF), and a

vision-based system (VBS) [16]. These sensors were used in various combinations over

several experiments that each demonstrated a different relative GNC mode. Notably, some

experiments were conducted using only the VBS, assuming the target to be non-cooperative

(though the target did possess optical markers in the form of flashing LEDs at known

locations) [17]. The chaser used visually identified markers and the known 3D model

of the target to determine relative pose. This experiment demonstrated approach with a

non-cooperative/known target down to 2 meters range with centimeter level accuracy.

2.2.6 Asteroid Rendezvous Missions.

It is worth noting that a number of missions have attempted rendezvous with asteroids,

which could certainly be classified as RPO with an unknown target. Of these, the most

notable are two missions conducted by the Japan Aerospace Exploration Agency (JAXA):

Hyabusa (launched 2005) and Hyabusa 2 (launched 2014) [18–21]. These missions

each approached, observed, and rendezvoused with a near-Earth asteroid. They used a
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combination of sensors, including Light Detection and Ranging (LIDAR) and visible-

spectrum cameras. For the final descent phase, both missions utilized a ‘target marker,’

which was dropped from the spacecraft beforehand to aid in conducting the maneuver.

These markers contained a number of retro-reflectors that could be easily identified by the

spacecraft, and were critical for the spacecraft to be able to zero out its relative horizontal

velocity prior to touching down.

While these missions technically demonstrated rendezvous with an unknown resident

space object (RSO), it is clear that the methods and requirements for touching down on

an asteroid are generally different than those for an on-orbit servicing (OOS) mission. For

example, the asteroids were large enough to have somewhat of a gravity well, which was

used during these missions to affect the rendezvous (almost in a similar manner to planetary

descent). Additionally, it can be assumed that the landing area of the asteroid was bigger

and required less positioning accuracy than could be expected for an OOS mission. Also,

the method of attaching a fiducial marker to the target ahead of time would be less plausible

for an OOS mission as that operation would itself require a somewhat complex rendezvous

maneuver in order to attach the marker to the target at a slow enough relative velocity to

not damage or disrupt the target.

2.2.7 RPO Missions Summary.

While the fore-mentioned missions demonstrated the ability to autonomously dock

with non-cooperative targets, they all relied on knowledge of the target, usually in the

form of known fiducial markers and/or a geometric model of the target. Unfortunately

the methods used for these experiments do not directly apply for the case of an unknown

target, so the capability to conduct RPO with unknown non-cooperative targets is yet to be

demonstrated.
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2.3 Spacecraft Relative Motion Dynamics

In the final approach phase of RPO, both relative position and attitude between the

chaser and target are of interest, so both translational and rotational dynamics must be

treated. Herein it is assumed that both spacecraft are rigid bodies and that orbital motion is

Keplarian (no perturbations applied). The chaser is capable of applying force and torque in

any direction, and it is assumed that applied forces and torques are decoupled. Section 2.3.1

develops relative translational dynamics for the chaser and target, Section 2.3.2 describes

the attitude dynamics/kinematics for each spacecraft, and Section 2.3.3 details how feature

points on the target spacecraft are propagated.

2.3.1 Translational Dynamics.

Figure 2.1 depicts the relevant coordinate frames; {N} is the Earth-Centered Inertial

(ECI) frame, {L} is the Local-Vertical-Local-Horizontal (LVLH) frame that rotates around

{N} along a reference orbital path, {T } is the target frame, and {C} is the chaser frame.

For the {L} frame, X̂L (the ‘radial’ axis) points radially outward from the center of the

Earth, ẐL (the ‘cross-track’ axis) is parallel to the reference orbit angular momentum vector,

and ŶL (the ‘in-track’ axis) completes the triad. Without loss of generality, {T } and {C}

are assumed to be at their respective spacecraft center of mass (COM) and aligned with

principal moments of inertia. To avoid establishment of additional frames, the origin of the

chaser and camera sensor coordinate frames are assumed to be coincident and aligned.

Typically, the origin of the {L} frame would be chosen such that it is coincident with the

origin of the {T } frame (though not necessarily rotationally aligned). For the RPO scenarios

considered herein with unknown targets, in practice this would be achieved a priori using

an additional/separate Space Situational Awareness (SSA) capability to determine the orbit

and location of the target. However, if the SSA solution is not completely accurate, or if the

target maneuvers, then {L} and {T } frames will not be coincident. Therefore, the {L} origin

is assumed to be a virtual point located on a reference orbit in vicinity of the target frame
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{T }. In this way both the chaser and target are free to maneuver (translate and rotate) with

respect to the {L} frame.

Figure 2.1: Relative motion coordinate frames: ECI {N}, LVLH {L}, chaser/camera {C},
and target {T }

The well known Nonlinear Equations of Relative Motion (NERM) [22] are used to

model the translational states for the ith body (ρi = [x, y, z]T ) with respect to the LVLH

origin [22]

ẍ − 2θ̇ẏ − θ̈y − θ̇2x =
−µ

r3
i

(
rl + x

)
+
µ

r2
l

+ ux, (2.1)

ÿ + 2θ̇ẋ + θ̈x − θ̇2y =
−µ

r3
i

y + uy, (2.2)

z̈ =
−µ

r3
i

z + uz, (2.3)
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where θ is the target orbit argument of latitude, rL = ||rL||, ri = ||ri|| =
[
(rl + x)2 + y2 + z2

]1/2
,

and u = [ux, uy, uz]T is the control force acting on the spacecraft body. θ and rL can be found

using

θ̈ =
−2ṙlθ̇

rl
, (2.4)

r̈l = rlθ̇
2 −

µ

r2
l

. (2.5)

The NERMs are used to model the individual translational motion of both the chaser

and target with respect to the LVLH origin. Differential perturbations such as J2 effects

or solar radiation pressure are not considered. This is reasonable in the context of this

research as the relative effects of perturbations are generally insignificant for the ranges

and time frames of the maneuvers considered.

2.3.1.1 Hill-Clohessy-Wiltshire Equations of Motion.

Under certain assumptions, the NERMs can be approximated by a set of second-

order linear time-invariant differential equations known as the Hill-Clohessy-Wiltshire

(HCW) equations of motion [23]. These linear equations are computationally efficient, and

therefore ideal for onboard systems such as navigation filters or controllers. To derive the

HCW equations, consider the following assumptions and their implications on the NERMs:

(i) Assume no control forces affect relative motion⇒ ux, uy, uz terms in (2.1)-(2.3) are

zero.

(ii) Assume no perturbations affect relative motion ⇒ already assumed in the

formulation of NERMs in (2.1)-(2.3).

(iii) Assume LVLH frame’s orbit is circular⇒ e = 0, θ̈ = 0, θ̇ = constant = n =

√
µ

a3
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Applying these assumptions, (2.1)-(2.3) become:

ẍ − 2nẏ − n2x = −
µ(ri + x)

r3
i

+
µ

r2
l

, (2.6)

ÿ + 2nẋ − n2y = −
µy
r3

i

, (2.7)

z̈ = −
µz
r3

i

. (2.8)

Next, assume that the distance from the LVLH frame to the spacecraft is small relative to

the LVLH frame’s orbital radius, and note that rl = a for a circular orbit. Then ri is

ri =
√

(a + x)2 + y2 + z2

=
√

x2 + 2ax + a2 + y2 + z2

= a

√√√
��
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��
��*

0
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√
1 +

2x
a
.

(2.9)

The term 1/r3
d can be expanded using the binomial theorem and simplified using the

closeness assumption:
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(2.10)
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Finally, (2.6)-(2.8) can be simplified to yield the HCW equations (note µ = n2a3):

ẍ =
−n2a3

a3

(
1 −

3x
a

)
(a − x) +

n2a3

a2 + 2nẏ + n2x

= −n2

a + x − 3x −
�
�
��7

0
3x2

a

 + n2a + 2nẏ + n2x

= 2nẏ + 3n2x (2.11)

ÿ =
−n2a3

a3

1 − �����
0

3x
a

 y − 2nẋ + n2y

= −2nẋ (2.12)

z̈ =
−n2a3

a3

1 − �����
0

3x
a

 z

= −n2z. (2.13)

Equations (2.12)-(2.13) represent the HCW equations of motion. Conveniently, these

equations have a closed-form solution [24]:

x(t) =

[
4x0 +

2
n

ẏ0

]
+

ẋ0

n
sin (nt) −

[
3x0 +

2
n

ẏ0

]
cos (nt), (2.14)

y(t) = −
[
6nx0 + 3ẏ0

]
t +

[
y0 −

2ẋ0

n

]
+

[
6x0 +

4
n

ẏ0

]
sin (nt) +

2
n

ẋ0 cos (nt), (2.15)

z(t) =
ż0

n
sin (nt) + z0 cos (nt), (2.16)

ẋ(t) = ẋ0 cos (nt) +
[
3x0n + 2ẏ0

]
sin (nt), (2.17)

ẏ(t) = −
[
6nx0 + 3ẏ0

]
+

[
6ẋ0n + 4ẏ0

]
cos (nt) − 2ẋ0 sin (nt), (2.18)

ż(t) = ż0 cos (nt) − z0n sin (nt). (2.19)
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Finally, these solutions can be used to form a State Transition Matrix (STM) for use with

navigation filters and controllers:

Φ(t, 0) =



4 − 3 cos (n t) 0 0 sin(n t)
n −

2 (cos(n t)−1)
n 0

6 sin (n t) − 6 n t 1 0 2 (cos(n t)−1)
n

4 sin(nt)
n − 3t 0

0 0 cos(nt) 0 0
sin(nt)

n
3n sin(nt) 0 0 cos (nt) 2 sin (nt) 0

6 n (cos (n t) − 1) 0 0 −2 sin (n t) 4 cos (n t) − 3

0 0 −n sin(nt) 0 0 cos(nt)



.

(2.20)

2.3.2 Attitude Dynamics.

The attitude dynamics of the chaser and target can each be independently modeled

using Euler’s rotational equations of motion. The time derivative of the angular velocity of

the ith body (where i is either the target or chaser) with respect to the inertial frame is [25]

ω̇i/N = J−1
i

[
−ωi/N × Jiωi/N + τi

]
, (2.21)

where Ji is the moment of inertia for the ith body and τi is the control torque acting on the

ith body (other disturbances are not considered). Since attitude with respect to the LVLH

frame is of interest it can be calculated by

ωi/L = ωi/N − ωL/N , (2.22)

whereωL/N is the time rate of change of true anomaly. For a circular orbit, ωL/N is constant.
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Quarternions are chosen to parameterize the attitude of each spacecraft due to their

lack of singularity. The quaternion kinematic equation used to propagate each spacecraft’s

attitude with respect to the LVLH frame can be described as in [26]

q̇i/L =
1
2
Q(qi/L)ωi/L, (2.23)

where

Q(q) =



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


. (2.24)

2.3.3 Calculation of Target Feature Point Vectors.

The visual servo control law detailed in Section 2.8 uses knowledge of a set of

feature points located on the target body. An arbitrary feature point defined in the target

body frame, pT
j , is not necessarily coincident with the target’s COM. Therefore, when

determining the position of this feature point, the equations above cannot be used alone,

as a coupling between position and attitude occurs when a point is not at a body’s COM.

Figure 2.2 shows graphically how the jth feature point is related to the target body frame,

the LVLH frame, and the chaser frame.

During camera image synthesis, in order to compute the pixel location of a feature

point, pT
j must be resolved in the camera frame {C}. To do this, a coordinate transformation

is performed using a matrix of the special Euclidean group of dimension 3 (SE(3)) [27].

For example, the transformation matrix from the LVLH frame to the chaser frame is

TC
L =

 RC
L −RC

Lρ
L
c

01x3 1

 , (2.25)
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where RC
L is a Direction Cosine Matrix (DCM) of special orthogonal group of dimension

3 (SO(3)) from the LVLH frame to the chaser frame, and ρL
c is the position vector of the

chaser frame with respect to the LVLH frame, resolved in the LVLH frame.

Figure 2.2: Target feature point geometry

Given knowledge of the position and attitude of the target frame and the chaser frame

with respect to the LVLH frame, a set of feature points defined in the target body frame

can be resolved in the chaser frame via successive multiplication by two transformation

matrices

 pC
j

1

 = TC
L TL

T

 pT
j

1

 . (2.26)

2.4 Computer Vision

Camera sensors suitable for use with the visual navigation and control methods

proposed in this work are assumed to be capable of providing video output at real-time

frame rates (typically 30 frames per second or greater). Each image frame of the video

sequence contains a wealth of information about the scene the camera is viewing. Several
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methods from the field of computer vision can be used to exploit this information for

navigation and control. This section provides a brief overview of relevant computer vision

topics, starting with how a camera sensor is mathematically modeled.

2.4.1 Camera Modeling.

While there are many ways to model a camera sensor, it is common in the field of

computer vision to use a pinhole camera model [28]. Much like the human eye, a pinhole

camera creates a perspective projection of a 3D scene on a 2D image plane as depicted in

Fig. 2.3. According to convention, the Ẑc axis of the camera frame points along the optical

axis, the X̂c axis points to the right of the camera, and Ŷc completes the triad. For a 3D

point resolved in the camera frame, pC = [X,Y,Z]T , the projection of that point onto the

image plane in pixel coordinates is

pP =


u

v

1

 =


fu γ cu

0 fv cv

0 0 1




X/Z

Y/Z

1

 = K


x

y

1

 , (2.27)

where fu, fv are the horizontal and vertical focal length (expressed in units of pixels):

fx =
f (meters)

pixel width (meters/pixel)
,

fy =
f (meters)

pixel height (meters/pixel)
,

(2.28)

(cu, cv) is the principal point of the image frame, and K is the camera calibration/intrinsic

matrix. γ is the skew coefficient representing the amount of shear distortion for each pixel

of the sensor (typically 0 or nearly 0). The vector [x, y, 1]T represents the point expressed as

a homogeneous vector using normalized image plane coordinates. In practice the camera

intrinsic matrix is determined via a process called camera calibration.
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Figure 2.3: Pinhole camera model

Real camera images can exhibit other types of distortion, such as ‘pincushion’

distortion or ‘barrel’ (fisheye) distortion. These types of distortion are not considered in

this work as they can generally be removed in software for calibrated cameras.

Note that there is an inherent scale ambiguity for a single image. Because each point

coordinate is divided by zc (the distance along the optical axis), information regarding depth

is lost when the point is projected onto the image plane (i.e. there are an infinite number of

3D points that would project to the same pixel coordinates). One aspect of visual navigation

requires dealing with this ambiguity, and will be discussed in Section 2.4.4.

Another important aspect of modeling a camera is understating where the camera is

with respect to some reference frame (the ‘world’ frame denoted as {W} in this section).

The term ‘pose’ is used to describe the translation (location) and rotation (attitude) of a

rigid body (in this case the camera, represented by the coordinate frame {C}). The pose of

a camera in 3D space contains six degree of freedom (6DOF): three for translation, and

three for rotation. The translation of the camera with respect to the world frame, resolved

in the world frame, is represented by a vector, tW
W→C. The rotation of the camera from the
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world frame to the camera frame is represented by a DCM, RC
W . RC

W and tW
W→C are depicted

in Figure 2.4.

Figure 2.4: Camera extrinsic parameters

Together RC
W and tW

W→C are known as a camera’s extrinsic parameters. These

parameters can be encapsulated in a matrix of SE(3), the camera extrinsic matrix

TC
W =

 RC
W −RC

W tW
W→C

01x3 1

 =

 RC
W tC

C→W

01x3 1

 . (2.29)

Together the camera intrinsic and extrinsic matrices can be used to transform a 3D

point expressed in the world frame, pW , into pixel coordinates in the image frame

pP =


u

v

1

 = K TC
W pW . (2.30)

2.4.2 Epipolar Geometry.

If two pin-hole cameras observe the same scene from different angles (as is the

case with a stereo camera or a single camera imaging an unchanging scene from two
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perspectives), several observations can be made about the geometric relationships between

the two images. Together these relationships are known as epipolar geometry. This Section

provides a brief overview of epipolar geometry as it applies to stereo vision. [28] provides a

thorough summary of concepts related to this topic and multiple view geometry in general.

Epipolar geometry describes the projective geometry between two images of a scene.

Figure 2.5 depicts the relevant aspects of this geometry for two cameras CL and CR

observing a point p. The perspective projection of p in CL is pL and pR in CR. The plane

formed by the point p and the optical centers of CL and CR is known as the epipolar plane,

and the points where the line connecting optical centers are projected onto each image

plane are epipoles (eL and eR). The line drawn through a camera image projection of p and

the same camera’s epipole is known as an epipolar line.

Figure 2.5: Epipolar geometry
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It can be seen in Figure 2.5, that the distance to point p to CL cannot be determined by

its projection pL alone, as the points p1, p2, and p3 provide the same projection. Epipolar

geometry can be exploited to calculate the depth to p given the additional view from the

second camera though, along with a known relative pose (translation and rotation) between

the two cameras. A basic method to do this involves finding the proper correspondence

between projections of p in the left and right cameras. The problem of correspondence is

simplified by the fact that the projection of p in the right image lines on the epipolar line

on that image.

For a typical stereo camera, where the two image planes are parallel and vertically

alligned, a calculation of depth to p can be made via triangulation by using the disparity

between the horizontal pixel coordinates of the projections of p in each image, xL and xR

Z =
f B

xl − xr
, (2.31)

where f is the focal length (assumed equal for both cameras) and B is the baseline between

camera optical centers.

2.4.2.1 Essential Matrix.

Epipolar geometry imposes a constraint between projected (normalized) point.

pT
L (t × RpR) = 0 (2.32)

This is known as the epipolar constraint and can alternatively be written using the

essential matrix E = [t]×R (where [t]× is a skew symmetric matrix),

pT
L EpR = 0. (2.33)

This relationship is very useful as it can be used to recover an estimate of

the relative pose between two views up to a scale factor (given known image point
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correspondences), though there are known problems of degeneracy under certain conditions

[29]. Alternatively it can be used with outlier detection algorithms, as discussed in Section

2.4.3.3.

2.4.2.2 Homography Matrix.

The concept of a homography between two images is closely related to that of the

essential matrix, though slightly less generalized. A homography relates the projections of

a planer surface viewed in two different images. The projection of a point pi on plane π in

one image is related to its projection in another image (p∗i ) by

p∗i = Hpi, (2.34)

where H is a 3x3 homography matrix. Various methods exist to estimate the homography

matrix for a planar surface viewed in two images as discussed in [30], and these methods

can be made robust using an outlier rejection method such as RANdom Sample And

Consensus (RANSAC) [31].

Relative pose (up to a scale factor) can be estimated using a calculated homography

and the relationship:

H = R +
t
d

nT (2.35)

where d is the distance from the camera to the plane π and n is a unit vector normal to π for

which the homography is defined. Several methods exist to decompose a homography

matrix into a rotation matrix and translation/normal vectors. However, these methods

provide a set of possible solutions, which require an additional method or information to

determine which solution is correct [32].
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2.4.3 Computer Vision For Relative Navigation.

Relative visual navigation for spacecraft RPO is possible via use of computer vision

image processing techniques. Image processing refers to the “application of a set of

techniques and algorithms to a digital image to analyze, enhance, or optimize image

characteristics” [33]. In this context, image processing methods facilitate identification

and tracking of the target by extracting information from camera sensor measurements that

describes the general shape, size, and/or specific features of a target seen in the image.

The overall methodology for target tracking depends on the goal of the visual

navigation scheme being utilized. This section summaries techniques for two general

approaches to conduct relative navigation using imagery of a target: navigation based on

a single point or region of interest (ROI) associated with the target (Sections 2.4.3.1 and

2.4.3.2), and full 6DOF navigation based on tracking of multiple features located on the

target body (Section 2.4.3.3 and 2.4.3.4).

2.4.3.1 Target Tracking Using Image Segmentation.

For the first approach, navigation is performed using calculated centroid of the target,

and possibly relative size or shape of the outline of the target in the camera image. This

approach is applicable to angles-only navigation and is especially useful if the target only

appears as a small group of pixels in an image frame (i.e. it is unresolved), or if a sufficient

number of features on the target cannot be identified for full 6DOF maneuvering. Here the

goal of image processing is to simply identify the target in the image (i.e. locate its centroid

and possibly relative size/shape in the image).

A basic approach to locate the target in a camera image is to use a process known as

image segmentation. Various techniques are available to accomplish this, but the ultimate

goal is to segment the image into regions containing the target and other regions not

containing the target. This is usually performed via a method of thresholding [34]. The
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output of a thresholding process is a binary image, where each pixel value has a value of

either 0 or 1, indicating the presence of the target or not.

A well-segmented image for RPO navigation should reveal one primary ‘blob’ that

incorporates most or all of the target. Calculation of image moments [34] can then be

used to determine characteristics of this blob useful for navigation and tracking, such as

outline, size, and geometric centroid. Figure 2.6 shows a raw image taken on orbit during

the PRSIMA experiment [14] on the left and a thresholded image on the right. Also shown

are the highlighted outline of the target and the geometric centroid.

Figure 2.6: Example of image segmentation for target identification. Original image on
left, thresholded image on right (original image from PRISMA data set [35])

2.4.3.2 Target Tracking Using Single Object Trackers.

While object tracking via image segmentation has utility for some applications such

as the closing phase of RPO, it is a comparatively rudimentary method that will often break

down as the target and tracking environment become more complex, such as in the case

during the final approach phase when a full 6DOF relative pose is desired. To address

the tracking problem for more challenging conditions, many research efforts have sought
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to develop dedicated tracking algorithms, often called single object trackers, capable of

robustly tracking objects given a single training image of the target object. As [36] states

though, it is very difficult to develop a single algorithm capable of tracking objects under

all conditions, due to the enormity of possible objects and environments. Accordingly,

many proprietary tracking algorithms designed for particular applications exist, as well as

a number of more general-use open-source algorithms. Several of the more common open-

source algorithms are implemented in OpenCV [37], and are considered for this research

effort. A number of surveys have attempted to quantify the effectiveness of these available

algorithms, such as the recent work by Brdjanin and Dzigal [38]. As these authors suggest

however, lack of standardization of evaluation metrics and the immense range of possible

operating conditions make it difficult to comprehensively compare tracking algorithms.

An example of one of the more recent and effective open-source tracking algorithms

is Channel and Spatial Reliability Tracker (CSRT) [39]. Like several previous algorithms

that were widely considered effective, CSRT implements a tracking method based on the

discriminative correlation filter (DCF); see [40] for an introduction to the use of correlation

filters for object tracking. CSRT augments the DCF approach with spatial and channel

reliability methods to overcome shortcomings of previous DCF-based tracking algorithms.

While it is not the most computationally efficient open-source tracking algorithm, CSRT

has been demonstrated to be effective at tracking objects given a single training image

under a wide range of conditions.

2.4.3.3 Image Feature Tracking via Feature Extraction and Matching (FEM).

In order to maneuver the chaser both to a desired position and attitude relative to the

target, additional information beyond the centroid and size of the target in each image frame

is required. Here a different procedure is useful for image processing. The goal of this

procedure is to identify and track unique features located on a target such that they can be

used for visual navigation and control. In practice, features can take several different forms
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such as points, lines, or other geometric shapes. This research considers point features as

they are most readily compatible with the visual servo control laws discussed in Section

2.8.

Figure 2.7 displays the main procedures of a typical point feature-based image-

processing pipeline applicable to this research. These steps include: reading an image

frame from the camera sensor, detecting point features (‘keypoints’) in the image,

determining suitable descriptors for detected features, and finally matching identified

features to a previous ‘goal’ image in order to track them across video frames. The final

step is made robust using additional outlier rejection methods.

Figure 2.7: Basic FEM processing pipeline

Feature detection involves locating the pixel coordinates of a unique point feature in

an image (for example, a corner). Many feature detector algorithms exist, with some of the

more popular algorithms being Scale-Invariant Feature Transform (SIFT) [41], Speeded-

Up Robust Features (SURF) [42], and Oriented FAST and Rotated BRIEF (ORB) [43].

Each feature detection algorithm locates features differently. SIFT, for example,

detects features by first performing scale-space extrema detection where potential points

that are invariant to scale and orientation are identified. Keypoints are then selected based

on their measure of stability calculated using a 3D quadratic function. An example of SIFT

features detected in an on-orbit image from the PRISMA dataset is shown in Figure 2.8.
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Figure 2.8: Example of SIFT features detected for on-orbit image (features indicated by
green markers, original image from PRISMA data set [35])

The next step of a feature-based image processing pipeline is feature description.

The goal of this procedure is to generate a descriptor for each detected feature, such

that this descriptor can be compared against descriptors from other images to determine

if the same feature has been identified in both image frames. As with detectors, there are

many descriptor algorithms (SIFT, SURF, and ORB all implement descriptor algorithms

in addition to detectors). Descriptor algorithms generate a vector for each feature that

characterizes the feature based on other aspects of the image. SIFT does this by first

assigning an orientation(s) to each keypoint based on local image gradient directions. Next,

local image gradients are measured at various scales in sub-regions around the keypoint.

These are rotated according to the keypoint orientation, and combined to form orientation

histograms representing each sub-region. Figure 2.9 show an example transformation of

image gradients from an 8 × 8 set of image gradients into a 2 × 2 descriptor array. In
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practice, SIFT uses a 4 × 4 descriptor array, with each element containing 8 values, for a

total of 4 × 4 × 8 = 128 values in a SIFT descriptor vector.

Figure 2.9: Transformation of image gradients to keypoint descriptors [41]

For the pipeline shown in Figure 2.7, feature tracking is achieved via a procedure

called matching. Matching seeks to find unique correspondences between features across

images, thus allow features to be repeatedly identified for tracking purposes. Once features

are detected and described in two image frames, feature matches across the images can

be found using a brute-force technique or via a dedicated matching algorithm such as

Fast Library for Approximate Nearest Neighbors (FLANN) [44]. Feature matches are

determined by comparing feature descriptors. Brute-force matching accomplishes this by

comparing a descriptor in one image to all descriptors in the other image and calculating

a distance value for each potential match (typically a Euclidean distance or Hamming

distance depending on the type of descriptor). The feature with the lowest distance value

is taken as a match for the feature in the first image. While this method works, it is not

computationally efficient as it searches through every potential match for each feature.

FLANN is another method of feature matching that was designed to be a faster

alternative to brute-force matching. It relies on a collection of algorithms utilizing kd-

trees [45] to compute the approximate nearest neighbor solution for feature matches.
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While the solution of matches provided by FLANN is approximate, it is significantly more

computationally efficient than brute-forcing matching, making it more attractive for real-

time applications such as those in this work.

The matching process is typically far from perfect —a significant portion of matches

are usually incorrect. Lowe’s ratio test, described in [41], is a method that can be used to

remove a large portion of these outliers by comparing the best match for a given feature

to the second best match. If the ratio of the distance values associated with these matches

is greater than a pre-defined threshold (a value of 0.8 is cited in [41]), then the match is

discarded. According to [41], this ratio test “eliminates 90% of the false matches while

discarding less than 5% of the correct matches.”

For many applications, eliminating only 90% of outliers is not enough to ensure

success. Therefore, in order to robustly filter out the vast majority of incorrect matches,

outlier rejection is usually implemented via a method such as RANSAC [31]. RANSAC

is an iterative method designed to fit a model to experimental data sets that contain a high

percentage of outliers. For the application of feature matching, RANSAC can be used to

determine which feature matches are inliers and which are outliers.

To implement RANSAC for rejection of outlier matches, an additional method is

required which is used as the model that RANSAC fits iterative solutions to. One option

here is find the essential matrix relating two images using a method such as Nister’s five-

point method [46]. During each iteration of RANSAC, the essential matrix is re-computed

using five randomly selected matches. All matches are then compared against this solution

of the essential matrix to see how well they fit this model of the epipolar geometry relating

the two images. If a match produces a distance to a corresponding epipolar line that is less

than some pre-defined threshold, then it is considered an inlier. The number of inliers for

a given iteration is recorded, and iteration continues until a max number of iterations is
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reached, or the ratio of inliers to outliers exceeds a predefined threshold. The final set of

inliers is taken from the iteration that contained the most inliers.

Figure 2.10 shows an example of the entire feature-based image processing pipeline

applied to to images from the PRISMA data set. Green lines connect matched features

between the two images. Close inspection shows that features appear properly matched

between images.

Figure 2.10: Example showing matched features across two images (original images from
PRISMA data set [35])

2.4.3.4 Image Feature Tracking via Kanade-Lucas-Tomasi (KLT) Optical

Flow.

Tracking features throughout a video sequence solely with FEM has several

downsides: features may not be detected or matched in every frame, sometimes features

are incorrectly matched (even with an outlier rejection method implemented), and the entire

process is quite computationally expensive. An alternative that overcomes some of these

downsides is to use a tracking method that only searches a local region around each feature

in order to identify its new position in subsequent image frames. Here the sparse optical
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flow method introduced by Kanade, Lucas, and Tomasi is a well-known feature tracking

method.

In their 1981 work, Lucas and Kanade proposed a method for stereo image registration

that takes advantage of the spatial intensity gradient between images to find point matches

[47]. The generalized technique to register a point, x, between two images F and G, related

by a translation, h, and linear transformation (e.g. scale, rotation, shear, etc.), A,

G(x) = F(Ax + h), (2.36)

involves minimizing the error associated with the relationship,

E =
∑

x

(F(Ax + h) − G(x))2. (2.37)

In practice this minimization problem is solved using a window of pixels around the

point being tracked. A first order linearization assumption is made in order to compute

an iterative least-squares solution for the transformation of points from the first to second

frame. In a follow-on work, Tomasi and Kanade improved the method by proposing a

method to choose feature windows [48].

Compared to FEM, tracking feature points via the KLT algorithm is far less

computationally costly and generally produces a smooth trajectory for feature points

throughout a sequence of images (due to the fact that tracked features are necessarily

identified in every frame). However, if a KLT feature track is lost, the method has no

way to reacquire that feature, making the number of features monotonically decrease as

they are tracked though a sequence of images.

2.4.3.5 Target Tracking Using Machine Learning.

Finally, it is worth noting that another method used for identifying objects in a scene

harnesses machine learning techniques [49]. These methods generally work by training
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a classifier a priori that can locate a certain type of object in a scene based on common

characteristics learned during training. For these methods to succeed, they usually require

large training data sets (on the order of hundreds or thousands of images). Because this

research assumes a unknown target however, there will be no data set available for training

a priori. Even if a large data set of other spacecraft imagery is available, the large disparity

among spacecraft designs suggests that a trained classifier might not work on an arbitrary

unknown target. For these reasons, machine learning techniques are not considered for this

research, but may warrant future consideration.

2.4.4 Review of Methods for Estimating Depth.

Achieving an accurate estimate of the pose of a camera with respect to some three-

dimensional reference frame is a fundamental goal of a visual navigation system. To

do this, information regarding range (depth) to objects in the camera’s field of view is

required. However, it can be seen from (2.27) that the depth (value of z) cannot be resolved

from a single image (assuming no information regarding objects in the scene is available):

proportionally changing the components of pC will yield the same value for pP, regardless

of scale. Fortunately, there are many methods to extract depth information; this section

provides a brief review of several options for resolving depth using vision sensors, and an

analysis of their potential utility for space-based applications.

One option to compute a depth map (i.e. a mapping of distance for every pixel in the

image) is using an additional non-optical sensor such as LIDAR. However, the size, weight,

and power (SWAP), cost, and complexity associated with these types of sensors often does

not make sense for space applications. Alternatively, several methods to estimate depth

using optical sensors exist, such as Structure From Motion (SFM) [50], structured light

[51, 52], depth from focus/defocus [53], plenoptic (light field) cameras [54], and depth

from stereo [55].
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SFM algorithms exploit the epipolar geometry of a scene observed from multiple

angles [56]. A known distance is required to compute scale in the scene, which may be the

size of a known object in the image scene (unlikely to be the case with an unknown target)

or knowledge of how far the camera moves between images (odometry). An advantage of

this method is that it can be implemented with a monocular camera. However, while the

amount of movement can be calculated using other sensors such as GPS, depth estimation

is degraded by this distance measurement and the fact that the target may move in the time

between successive image frames being captured.

Structured light refers to the use of a projector to cast a known pattern of light (usually

in the infrared spectrum) on the image scene. Depth can be inferred by observing how

the light pattern bends over objects in the scene. This type of depth estimation is not

ideal as a stand-alone method for the space environment primarily because “strong ambient

illumination severely degrades the performance of structured light based techniques” [57].

[57] proposes that performance of this method in direct sunlight can be improved by

controlling the distribution of the structured light cast onto the scene, but this alone does

not significantly increase its potential. Note that structured light can be combined with

other methods such as stereo to improve overall depth estimation. This combination could

be useful for space applications, especially in situations where direct sunlight is not present

in the image scene.

Depth from focus/defocus methods exploit the limited depth of field that is inherent

in real aperture camera models. Given two images of the same scene taken with different

camera parameters, the depth in the scene can be computed using the relative focus of

portions of each image. A benefit of this method is that is can be performed using a

monocular camera. However, because this method relies on an accurate estimation of

the amount of blur in an image, it is highly susceptible to error due to image noise

and movement, which would likely make its utility in space limited. Additionally, the
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usable range for the method is dependent of the size of the camera aperture, which further

limits its applicability. [53] shows that the mathematical principles to obtain depth from

focus/defocus are not so different from that of depth from stereo, and the method is

therefore subject to many of the same limitations as stereo.

Plenoptic, or light field cameras, use the concept of a four-dimensional light field to

extract depth information. To do this, a micro-lens array placed behind the main camera

lens generates many images of the same scene, from which depth can be inferred in much

the same way as depth from stereo. Processing the depth map of a single camera frame

is very computationally expensive, however, so this method’s potential for real-time use is

currently limited. Furthermore, as the number of microlenses increases, spatial resolution

decreases, which reduces functionality with feature extraction algorithms. Use of plenoptic

cameras for spacecraft RPO was examined in [58], and while the results are noteworthy for

the limited use case considered (less than 3 meters distance inspection using a robotic

arm), the authors note that the accuracy of the method is highly degraded when the camera

or objects in its field of view are moving. Given these limitations, currently available

plenoptic camera technology does not represent a worthwhile option for conducting visual

navigation during spacecraft RPO.

Finally, depth from stereo works by using the epipolar geometry of a scene and the

known baseline distance between cameras to triangulate world points and thus provide full

3D information of a scene. In this way, it is similar to SFM, except the distance between

camera viewpoints is known, and images are recorded at the same time, so target motion

does not affect depth estimation. Stereo cameras represent a compelling class of sensor for

space applications, especially considering many commercial-off-the-shelf (COTS) options

now exist that provide aligned depth maps in real time (greater than 30 frames per second

(FPS) or faster). An example color image and aligned depth map from a low-cost COTS

camera is shown in Figure 2.11.
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Figure 2.11: Example color image and aligned depth map of satellite mock-up using COTS
stereo camera sensor (Intel RealSense d435i). Numbers in color image indicate depth to
corresponding corner of region of interest.

2.4.5 Computer Vision in the Space Environment.

The orbital environment presents a number of challenges for the aforementioned

image processing algorithms due to potentially large changes in many attributes of a given

image scene. These include changes in the relative position (scale) and attitude (rotation)

of the target, as well as changes in illumination that will manifest as varying levels of

brightness and different shadows as images of the same scene are taken at different times.

Therefore, it is important to analyze how the aforementioned image processing techniques

will work in the space environment. Various research efforts have examined computer

vision processes using imagery from actual space missions or space-like mock-ups in an

effort to ascertain the utility of classical image processing algorithms in space. A brief

summary of several of these studies is presented below.

Palmerini et al. [59] present an analysis of vision based techniques for close-in

RPO. A simulation campaign is presented that utilizes an on-orbit image of the Progress

spacecraft. The work primarily examines how SIFT features are identified as the image

is rotated, scaled, and also warped via perspective transformations (the concept of a

perspective warp is discussed in Section 3.3 of this work). Though the results show that
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SIFT features can be impressively re-identified as the image is altered (for example as the

scale of the image changes from 0.5x-2.0x), the overall value of the result is limited as only

a single image was considered (importantly, the effect of changing lighting conditions was

not examined).

Results of an experimental test campaign are presented in [60] which feature a scale

mock-up of a satellite target placed in a space-like environment (dark room with single

light source approximating the Sun). Image processing is composed of first identifying

SIFT features in a reference image of the target (with the target set at a distance of 30 cm

from the camera). Images are then taken of the target at various ranges and angles. Matched

SIFT features in these subsequent images are used to estimate the scale change from the

reference image, which can provide an estimate of distance from the target. Results show

that a sufficient number of SIFT features are able to be continuously tracked, and the error

of the estimated distance is kept to within 1 cm as the distance from the camera to the

target increases to 90 cm. Additional experimental results are presented that demonstrate

a basic visual navigation and control scheme. For navigation, a linear Kalman filter is

used to estimate the relative position of the camera based on distance estimates from

image processing step. A Linear Quadratic Regulator (LQR) is used to control the in-

plane position of the camera. Results demonstrate a successful rendezvous maneuver using

purely visual information for feedback. The authors conclude that an optical instrument

can be considered as a standalone sensor for on-orbit applications, though it is important to

note that this study appears to have not addressed the effect of changing lighting conditions

as spacecraft orbit the Earth.

The German Aerospace Center (DLR) operates the European Proximity Operations

Simulator (EPOS) 2.0 [61]. EPOS represents hardware-in-the-loop simulation facility

designed for test and verification of RPO sensors and processes. The facility features

high-fidelity approximation of the space environment via accurate lighting, background
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and target spacecraft. Recent research using EPOS such as [62] shows that conducting

close-in RPO using primarily vision sensors for relative navigation is certainly viable.

A number of studies have examined spacecraft visual navigation using 3D model

based tracking methods either using actual space imagery [63–65] or space-like laboratory

mock-ups [66]. The results of these studies show that the necessary computer vision

methods can work well in the space environment. However, since these studies largely

rely on different computer vision methods such as edge detection, they do not definitively

demonstrate the efficacy of point feature-based methods.

Although not strictly space-related, it is worth noting that several research efforts

in the field of computer vision have examined removing shadows from images [67–70],

which would be a very useful capability in the space environment. The supposition of

these methods is based on the idea that humans are very good at filtering out the effects

of shadows on objects in a scene, therefore it should be possible for computer vision

algorithms to be good at this as well. The shadow removal methods proposed generally

work by first creating an illumination invariant gray-scale image from an input color

image. This illumination invariant image does not contain the shadows present in the

original image, so it can be used in conjunction with the original image to determine the

location of shadow edges. These known locations can then be used to remove shadows

in the original image via a variety of methods as proposed in [67–70]. While results of

current state of the art shadow removal methods often look impressive to the human eye,

and might be useful for thresholding techniques, they will likely not significantly increase

performance of feature-based image processing methods. The investigation of this topic

for space operations may be worthy of future research, however.

The studies referenced in this section all consider some (usually fixed) amount of

illumination from the Sun on the target. Therefore, they do not fully quantify how the

the inherent illumination changes of an arbitrary spacecraft orbit will affect the ability for
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computer vision processes to identify and track target over the course of an entire orbit

(it is unknown if Earth’s albedo would be sufficient to properly illuminate a target when

the Sun is eclipsed, as this has not been assessed in available literature). However, it is

worth keeping in mind that the severity and frequency of illumination changes depends on

the orbital regime for a given scenario. For example, a camera in a geostationary orbit will

observe fewer changes in lighting over the same time frame as one in low Earth orbit, and an

RPO maneuver conducted over a shorter time frame will experience less change in lighting

than one over a longer time frame. When designing missions using visual sensors on-orbit,

it is important to consider how these factors could affect the success of the mission.

In summary, these studies suggest that traditional image processing techniques

function under space-like conditions in circumstances of sufficient illumination, though

work remains to be done to more definitively show that feature-based navigation and

control methods are effective for space applications.

2.5 Estimation Theory

A key requirement of a navigation system is to obtain an estimate of the relevant states

of a system. In most cases, system states cannot be directly measured, and in all cases,

sensor measurements contain noise. Therefore, estimation algorithms are used to produce

a judicial guess of the actual state of a system.

In the context of state estimation, the full system model for a stochastic system is

typically composed of a process model (2.38) and a measurement model (2.39), both

of which may be nonlinear and are subject to process noise and measurement noise,

respectively. Process noise captures effects of unmodeled dynamics and disturbances, and

measurement noise occurs as a result of sensor imperfections. Here both the process and

measurement noise are assumed to be additive white Gaussian. The full system model is

given by

ẋ(t) = f (x(t),u(t), t) + G(t)w(t), (2.38)
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z(t) = h(x(t), t) + v(t), (2.39)

where x is the state vector, f (x(t),u(t), t) is the process model (a function of the state,

control effort u(t) and time), G(t) is the process noise influence matrix, w(t) is a white

Gaussian noise disturbance, h(x(t), t) is the measurement model, and v(t) is a white

Gaussian noise process.

Most estimation methods either process measurement data as a batch, or recursively.

The latter option, known commonly as filtering, is often used for real-time applications and

generally operates by using the above model to perform two steps: a propagation step and

an update step. The propagation step uses the previous estimate of the state, the applied

control effort (if known), and the process model to propagate the state forward to the current

time. This becomes the a priori state estimate for the current time, which is then used in

the update step along with a sensor measurement and the measurement model to further

refine the state estimate based on new data. A thorough development of stochastic systems

and estimation theory can be found in [71, 72].

2.5.1 The Linear Kalman Filter (LKF).

The Kalman filter and its derivatives represent the canonical family of estimators

for real-time applications. In its basic (linear) form, a Kalman filter is a recursive data

processing algorithm that is optimal in minimizing mean square error (the difference

between the true state and estimated state) [71]. For optimality to hold, however, the

system model (process model and measurement model) must be linear and noise must

be zero-mean white Gaussian with known variance. The general algorithm for a discrete

Linear Kalman Filter (LKF) is shown in Algorithm 1.

The linearity assumption in a basic Kalman filter limits its applicability to nonlinear

estimation. In certain cases however, a nonlinear system can be approximated by a similar

linear system and a Kalman filter can still be used effectively.
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Algorithm 1 Linear Kalman Filter
1: procedure LKF(x̂k−1, Pk−1, zk,uk,Φ,H, B,Qk, Rk) . Calculate one LKF iteration
2: x̂−k = Φ(k, k − 1)x̂+

k−1 + Buk . Propagate state
3: P−k = Φ(k, k − 1)P+

k−1Φ
T (k, k − 1) + Q . Propagate covariance

4: if new measurement available then
5: Kk = P−k HT

[
HP−k HT + R

]−1
. Calculate Kalman gain

6: x̂+
k = x̂−k + Kk

(
zk − Hx̂−k

)
. Update state estimate

7: P+
k = P−k − KkHP−k . Update covariance estimate

8: end if
9: end procedure

x̂ - State estimate
P - Covariance estimate
z - Measurement

Φ - State transition matrix
H - Measurement matrix
B - Control matrix

Q - Process covariance
R - Measurement covariance

2.5.2 The Extended Kalman Filter (EKF).

It is often not the case that both the dynamics model and measurement model are

linear, or can be suitably approximated by linear systems. For these circumstances, the

Extended Kalman Filter (EKF) is available. It does not require the process model or

the measurement model to be linear. Rather, it implements a first-order approximation

(by taking a Jacobian) of these nonlinear functions, using the current state estimate as an

operating point for the linear approximation. It then performs propagation and update steps

in a similar manner as standard Kalman filters, using these linearized approximations of

the process and measurement model. The general algorithm for a discrete EKF is shown in

Algorithm 2.

Importantly, because the EKF operates on approximations of the actual system, it is

not necessarily optimal in the same sense that a standard Kalman filter is. Depending

on how nonlinear a system is or how rapidly its dynamics change, the EKF’s first-order

approximation of the system may not accurately model the system. Furthermore, this

approximation requires taking a Jacobian, which can often be difficult to calculate (either

analytically or numerically).
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Algorithm 2 Extended Kalman Filter
1: procedure EKF(x̂k−1, Pk−1, zk,uk, B,Qk, Rk) . Calculate one EKF iteration

2: Fk =
∂ f (x,uk, t)
∂x(t)

∣∣∣∣∣
x=x̂+

k−1

3: Φ(k, k − 1) = eFk

4: Hk =
∂h(x, t)
∂x(t)

∣∣∣∣∣
x=x̂−k

5: x̂−k = f (x̂+
k−1,uk, k) . Propagate state

6: P−k = Φ(k, k − 1)P+
k−1Φ

T (k, k − 1) + Q . Propagate covariance
7: if new measurement available then
8: Kk = P−k HT

[
HP−k HT + R

]−1
. Calculate Kalman gain

9: x̂+
k = x̂−k + Kk

(
zk − Hx̂−k

)
. Update state estimate

10: P+
k = P−k − KkHP−k . Update covariance estimate

11: end if
12: end procedure

x̂ - State estimate
P - Covariance estimate
z - Measurement

Φ - State transition matrix
H - Measurement matrix
B - Control matrix

Q - Process covariance
R - Measurement covariance

The aforementioned filters are often a critical component of navigation systems. Not

only are they useful for generating estimates of system states that are more accurate

than raw measurements alone, they enable states that cannot be directly measured to be

estimated as well. They are used herein for these reasons, and they are the foundation for

many approaches taken e.g. to determine relative pose between spacecraft (the topic of the

next section).

2.6 Visual Navigation for Unknown Targets - Relative Pose Determination

The ultimate goal of visual navigation schemes designed for use with traditional

control methods is to determine the relative pose between the chaser spacecraft and its

target (as the name implies, using some sort of vision sensor for measurement). This

is a critical problem: as will be seen in Section 2.7, most previously proposed control

methods require an accurate estimate of the full relative pose to function properly. Relative
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pose determination for unknown targets is challenging however, so it has therefore been

the subject of much research (a review of much the available research on this topic as of

2017 can be found in [73]). This section summarizes some common methods for pose

determination of unknown space objects, and reviews several of the most relevant research

efforts for the problem. The aim of this section is to show that relative pose determination

for an unknown RSO is not a robustly solved problem, which will in turn motivate the

examination of control methods that do not require full relative pose estimates (Section

2.8).

Pose determination of unknown targets is a simultaneous localization and mapping

(SLAM) problem, complicated by the fact that the environment being mapped (the target

spacecraft) may not be stationary relative to the camera sensor. Many different SLAM

methods have been developed that could be applied to this type of problem. The

classical method is to use an EKF that incorporates identified features in the state vector

in addition to the dynamical states of interest [74]. Indeed, this is the approach that

many of the reviewed studies below take. However, EKF-SLAM methods suffer from

poor computational efficiency, especially as the number of features being tracked grows

(computation increases quadratically with number of features [75]). Other more modern

variants of SLAM exist that aim to be more efficient/effective than EKF-SLAM, such as

FastSLAM [76, 77] and graph-based SLAM methods [78, 79].

FastSLAM utilizes a Rao-Blackwellized particle filter [80], which operates by

partitioning the state vector into particle states and non-particle states, thereby reducing

the dimensionality of the particle filter to make it more computationally feasible. The non-

particle states (typically the map of features) are estimated via EKF.

The basic idea of graph-based methods is to represent that problem as a graph, where

every node corresponds to a pose during the mapping process, and every edge a constraint

imposed by measurements. The goal of graph-based SLAM is to build a map of nodes that
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minimizes the error introduced by edge constraints (see Figure 2.12 for an example map).

An optimization technique such as the Gauss-Newton algorithm is used to perform this

minimization. A benefit of graph-based SLAM is that this method solves for the entire pose

trajectory using all previous measurements to do so, as opposed to filter-based methods,

which only use the current measurement to refine the estimate of pose.

Figure 2.12: Example pose-graph depicting poses (nodes) and constraints (edges) [79]

Sonneburg et al. develop an EKF-SLAM algorithm for pose estimation of unknown

RSO’s [81]. The work is conducted in simulation and assumes a set of point features

derived from a stereo camera are provided, it therefore does not consider the computer

vision front-end algorithms necessary to generate these features (like many of the works

reviewed in this section). The algorithm follows a traditional EKF-SLAM approach, with

a state vector composed of relative position, velocity, quaternion, angular velocity, and

3D feature locations. Importantly, the filter does not estimate moments of inertia for

the target (in fact, for one of cases in the results section involving a nutating target, the

target’s moment of inertia is assumed to be known). The numerical simulation results are

sparse, and there is no discussion of why measurement noise was modeled as it was, or how

realistic it might be. Furthermore, there is no discussion of how efficiently the algorithm
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would work on board flight hardware. Consequently, it is difficult to assess the utility of this

algorithm in a realistic environment using actual computer vision processing and hardware.

A hybrid SLAM/SFM method is developed in [82] using a monocular camera. For

the SLAM approach, a variant of FastSLAM 2.0 [77] using a Rao-Blackwellised Particle

Filter is implemented. A Bayesian filtering approach is used for the rotational states

and a measurement inversion method is used for the translational states. Because a

monocular camera is assumed as the relative navigation sensor, a SFM algorithm is

required to recover relative pose measurements. There is no discussion of how scale is

recovered using this method. Moments of inertia for the target are not estimated (the

rotational process equations assume constant angular velocity of the target). The authors

conclude that their hybrid approach is better than a purely Bayesian approach based on

simulation and experimental results, however the experimental results from underwater

testing using a remotely operated vehicle moving in a loop around an anchored target

appear to show insufficient levels of accuracy needed for spacecraft RPO maneuvers. Given

the assumptions (lack of proper dynamics model) and limitations (does not compute scale),

this method is likely not mature enough for use on orbit.

In [83], the EKF-SLAM filter developed in [81] is augmented with a RANSAC-based

algorithm to reconstruct the target’s structure. The RANSAC-based method (from [84])

is used to reconstruct surfaces on the target from point clouds generated using a stereo

camera. In this way, a 3D model of the target can be constructed for use with other

navigation tasks (though the work does not discuss what other specific tasks this model

could improve). Experimental results using a feature-based image processing pipeline

(with SURF features) demonstrate the method’s ability to recover a target’s shape from

point clouds, but computational time for one processing cycle is quoted as 1.45 seconds or

greater—insufficient for real-time implementation.
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Tweedle presents a novel SLAM implementation in his dissertation [85] and follow-

on paper [86] designed for use with unknown spinning targets. His method is based on

SLAM approach called incremental smoothing and mapping [87], and is formulated for

rapidly spinning targets. The method was verified using a dataset from a robotic testbed

onboard the International Space Station, and results show the algorithm’s ability to build a

geometric map of the target while simultaneously tracking the relative pose from camera

to target. While Tweddle’s work represents some of the most significant research regarding

relative navigation with unknown targets, there are a number of notable assumptions and

limitations. Namely, the proposed pose estimation algorithm was not run online—data

from the experiment was processed afterwards using an off-board computer. It is noted that

the smoothing approach implemented is computationally intensive, so its ability to run in

real time is still unknown. Additionally, the chaser spacecraft was assumed to be static, and

no external forces or torques on the spacecraft were considered.

An Iterated Extended Kalman Filter (IEKF) SLAM-based pose-estimation filtering

scheme that utilizes a stereo camera is proposed in [88]. This work is notable for its

method of estimating the target’s inertia tensor through the use of a bank of IEKF’s (a

bank of five is considered in the work). Each filter is endowed with a different estimate

of the target’s moment of inertia and a maximum a posteriori method is used to select the

filter with the most likely inertia matrix. Simulation results convey the method’s robustness

to inaccurate knowledge of the target’s inertia, and the authors also claim that the algorithm

is robust to measurement noise from the camera sensor (based on subsequent simulations

with increasing levels of noise). However, it appears that the levels of measurement noise

used (up to 5x10−4 radians) are unrealistically low, as noted in [9], and are not justified.

Experimental results in a laboratory setting using the Israel Institute of Technology’s

Distributed Space Systems Laboratory (air bearing table with independent satellite models)

are also presented. While results of a single test case appear to show the algorithm doing
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a good job of estimating the relative pose as well as target inertia, there is no discussion

of computational efficiency of the method (it is thought to be too high to implement on

flight hardware according to other researchers [9, 89]). Additionally, the authors note that

questions remain about how the method would scale up to orbital distances and actual space

lighting conditions.

The development of an IEKF SLAM-based method in [89] is in many ways an

extension of [88], and the authors go so far as to use similar tuning and noise parameters

to facilitate direct comparison with [88]. The main difference between [89] and [88] is

that the target’s inertia tensor is directly estimated in [89], as opposed to [88] which uses

a bank of filters each with a different inertia hypothesis. To estimate the target inertia (up

to a scale factor), two scalars are appended to the filter state vector, representing ratios of

the target’s principal moments of inertia, as proposed in [85]. The method is examined

in simulation using very similar measurement noise parameters as [88]. This is the main

factor that makes applicability of this work in a realistic setting questionable: the maximum

measurement noise assessed (1x10−4 radians) seems unrealistically low. Although there is

a brief discussion of the choice of this value (one rational being because [88] used it, though

it was not justified in that paper), it remains unclear how noise with units of radians applies

to measurements with units of pixels. Though the results presented show good estimation

of all filter states, it is unknown how well this method would work in practice. The authors

appear to acknowledge this fact by stating “the proposed estimation procedure could not

be the best choice for missions with low cost hardware or without a very good computer

vision architecture” [89].

Capuano et al. propose another variation of an EKF-SLAM filter utilizing a monocular

camera and depth sensor [90]. The same state vector as [89] is used, and nonlinear

relative motion dynamics are used to propagate the state estimate (as opposed to [82]).

Additionally, a method is proposed to initialize new features and delete obsolete features.
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The algorithm is assessed via a numerical simulation, using a Harris corner detector [91]

on synthetic imagery. Results are only shown for estimation error of relative position and

attitude—while attitude estimation is good, position error has a bias of approximately 2.5

meters due to depth estimation error (the paper does not say what the relative range between

spacecraft was). Results for how well other parameters are estimated, such and the target’s

inertia tensor, are not presented. It is unclear how well this method would work in an

experimental setting with flight hardware.

As [9] concludes and the results of these studies indicate, current methods proposed

for relative pose estimation of unknown non-cooperative targets each have their own

shortcomings, limiting their potential for use in actual space missions. The main

implication of this is that at present many proposed control methods which require a full

relative pose estimate are not viable for this type of RPO scenario. This is the basis for

one of the main objectives of this work: to show that final approach maneuvers can be

accomplished without first establishing a full relative pose estimate.

2.7 Control Methods for Final Approach Maneuvers

Many studies have examined control methods for close proximity 6DOF maneuvers.

For example, several efforts have examined using Artificial Potential Field (APF)

controllers for close-in maneuvers due to their ability to mitigate collisions (e.g. [92, 93]).

Other control techniques have been examined as well, such as: LQR (e.g. [94, 95]),

model predictive control (e.g. [96]), sliding mode control (e.g. [97, 98]), and adaptive

backstepping control (e.g. [99]).

The intent of this section is not to review the relative merits or disadvantages of each

proposed control method, but to convey that all the studies reviewed assume that the full

relative pose between the chaser and target is provided. This is commonly stated as in [93]:

“it is assumed that the motion information including relative position, velocity, attitude

and angular velocity can be measured if the target is in the sensing field of the pursuer.”
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While this may be a fair assumption for cooperative RPO or even non-cooperative RPO

with known targets, this is not necessarily a realistic assumption for RPO with unknown

targets, as Section 2.6 showed. As a result of this assumption, these studies do not

adequately demonstrate robustness to navigation errors likely to be present during non-

cooperative/unknown RPO maneuvers. This again motivates the examination of control

techniques that do not require full relative pose information between the chaser and target.

2.8 Visual Servo Control

Visual servo control is a general term that refers to the use of vision information in a

feedback loop to control the motion of a robotic system. Using visual feedback for control

was originally proposed in the 1970’s [100, 101], and many of the core concepts of modern

visual servo control were formalized in the 1990’s [102–105]. Since then, visual servoing

has become common practice in the field of robotics.

A visual servo system can either be configured as eye-in-hand, where the camera

sensor is directly attached to the robotic effector (chaser spacecraft in the context of this

work), or eye-to-hand, where the camera sensor is physically dislocated from the effector

and observes movement of the effector with respect to the target [106]. While an eye-to-

hand configuration is theoretically possible for the RPO scenarios considered in this work,

it would require a third cooperative spacecraft, which would drastically increase mission

requirements and therefore decrease feasibility. As such, visual servoing with eye-to-hand

configuration is not considered in this work, though it may warrent future research.

Traditionally there are considered to be two main approaches to visual servo control:

Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) [27,

104, 107, 108]. This section describes describes the fundamentals of these two approaches,

as well as two popular variations: 2-1/2D Visual Servoing and Partitioned Visual Servoing.

The section concludes with a review of research that has examined visual servoing concepts

for spacecraft RPO.
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2.8.1 Position-Based Visual Servoing (PBVS).

PBVS computes control commands in the task space (i.e. in 6DOF for spacecraft

RPO) [105]. These control commands are produced using the error between estimated

relative pose (T̂C
G) and desired relative pose (TC∗

G ). A basic PBVS architecture is shown in

Figure 2.13—image features are used in conjunction with other knowledge of the target to

estimate the relative pose between the current camera pose and desired goal pose.

Figure 2.13: Position-Based Visual Servoing architecture

Fundamental to the success of a PBVS system is an accurate relative pose estimate,

which requires a well-calibrated camera and known 3D/2D target feature correspondences

[104]. Typically, feature correspondences are computed using a known 3D model of the

target. For this application, since the target is unknown, a pose estimation scheme like

those discussed in Section 2.6 would have to be used. Since obtaining an accurate relative

pose estimation of an unknown target spacecraft is still an area of open research, it seems

apparent that the pose estimation step of any PBVS for use with unknown targets would be

the main limiting factor regarding overall effectiveness.

Additionally, because the control error is computed in Cartesian space, there is no

way to ensure that the target image features will remain in the camera’s field of view

[109]. Furthermore, according to [110], “since the error made on the pose estimation
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cannot be computed analytically as a function of the camera calibration errors, it seems

to be impossible to analyze the stability of the system.”

Due to the limitations discussed in this section, traditional PBVS is not considered in

this work.

2.8.2 Image-Based Visual Servoing (IBVS).

IBVS is fundamentally different than PBVS in that it uses pixel locations of image

features in the image plane to compute control commands. Consequently, it is generally

acknowledged that IBVS is more robust to image noise and errors in camera calibration

[27, 107]. Given a set of n point features observed in the current image frame, s =

[u1, v1, ..., un, vn], that can be matched to features from a goal image, s∗, the controller

seeks to drive the pixel locations of these features from their current locations to desired

locations in the image. The goal image represents the view of the target from the desired

pose. Since the pixel locations of features in the current image frame are a function of the

camera pose in Cartesian space, if they are aligned with their location in the goal image,

the camera has implicitly achieved its goal pose (a contribution of this research effort will

be to propose methods to generate goal images for unknown targets, see Section 3.3). Fig.

3.1 depicts the basic concept of IBVS for an example square-shaped target.

2.8.2.1 The Interaction Matrix.

Central to the IBVS control law is the concept of the image interaction matrix

(alternatively called the image Jacobian). This matrix relates the translational and angular

velocity of a camera with respect to a world frame, V = [vc,ωc]T ∈ R6, to the pixel

velocities of features in the image plane, ˙̄s = [ẋ1, ẏ1, ..., ẋn, ẏn]T (overbar indicates vector

expressed using normalized coordinates)

˙̄s = Lx(s̄,Z)V. (2.40)
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Figure 2.14: Basics of image-based control (adapted from [27])

To derive Lx, consider a single point feature p = [X,Y,Z]T resolved in the camera

frame. Using the transport theorem, the time derivative of p in the camera frame is

ṗ = −vc − ωc × p. (2.41)

The scalar components of this vector equation are

Ẋ = Yωz − Zωy − vx

, Ẏ = Zωx − Xωz − vy (2.42)

, Ż = Xωy − Yωx − vz.

Recall the normalized image plane coordinates x = X/Z, y = Y/Z from (2.27). The

time derivatives of these coordinates are
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ẋ =
ẊZ − XŻ

Z2

, ẏ =
ẎZ − YŻ

Z2

.

(2.43)

Using (2.43), (2.42) can be reformulated as a matrix equation:

 ẋ

ẏ

 =


−1
Z 0 x

Z xy −(1 + x2) y

0 −1
Z

y
Z (1 + y2) −xy −x

︸                                                ︷︷                                                ︸
Lx



vx

vy

vz

ωx

ωy

ωz



. (2.44)

Given that pixel coordinates are provided as measurements, normalized coordinates

s̄ = [x, y]T and ˙̄s = [ẋ, ẏ]T can be generated from pixel coordinates (s = [u, v]T ) using

(2.27)

x =
u − cu

fu
, ẋ =

u̇
fu

, y =
v − cv

fv
, ẏ =

v̇
fv
.

(2.45)

The Lx in (2.44) is a 2 × 6 matrix for a single point feature, making the equation

underdetermined and rank deficient. This can be overcome by vertically concatenating the

interaction matrix for multiple features
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

ẋ1

ẏ1

ẋ2

ẏ2

...

ẋn

ẏn



=



Lx1(p1,Z1)

Lx2(p2,Z2)
...

Lxn(pn,Zn)

︸            ︷︷            ︸
Lx



vx

vy

vz

ωx

ωy

ωz



. (2.46)

If three points are used and they are not coincident or colinear, the combined

interaction matrix will in general be non-singular [27]. In practice, more than 3 points

are normally used due to noise in the image feature locations.

Note that the depth to the feature, Z, is present in the interaction matrix. As a result,

depth must be estimated to use this relationship (see Section 2.4.4 for a review of depth

estimation methods).

Finally, it is also worth noting that interaction matrices can be derived for other types

of image features such as lines, planes, circles, etc. as discussed in [27, 102]. Though

analysis of IBVS using these types of image primitives is beyond the scope of this work,

this subject is certainly worthy of future research, as it may be that these types of features

can be more readily identified than point features in the space environment.

2.8.2.2 IBVS Control Law.

The implementation of IBVS considered herein is of the “dynamic look-and-move”

type described in [104]. This type is depicted in Figure 2.15 characterized by an IBVS

control law that computes setpoint inputs for a separate actuator controller, which are then

used to produce control commands for the system.

To develop the IBVS control law, the error between matched features in the goal image

and the current images is
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Figure 2.15: “dynamic look-and-move” image-based control (adapted from [104])

e(t) = s̄(pj,C) − s̄∗, (2.47)

where the set of image features s is a function of 3D target features, pj and intrinsic/extrinsic

camera parameters, C. Then, using (2.40), it follows that

ė = LeV. (2.48)

Applying a linear controller, ė = −λe, the velocity required to obtain an exponential

decrease of e is

Vcmd = −λL̂+
e e, (2.49)

where L̂e is an approximation of the interaction matrix, and λ is a tunable gain parameter

(which can be implemented as a gain matrix to affect each velocity component differently).

Assuming more than three features are considered, the Moore-Penrose pseudo-inverse

of the interaction matrix approximation, L̂+
e , is used as a least-squares solution for the

overdetermined equation.

Several options have been proposed in literature to generate the approximation of L̂e.

The most straightforward and intuitive option is to set L̂e = L̂x. Using this approximation,

the trajectories of feature points in the image plane are almost straight lines. While this
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may be ideal in the image plane, this approximation generates a Cartesian trajectory that is

often less than ideal.

Another option is to set L̂e = L̂x∗ . That is, the approximate interaction matrix is set to

the estimated interaction matrix for the goal pose. While this method displays asymptotic

convergence when the camera is in the vicinity of the goal pose, feature point trajectories in

the image plane and Cartesian camera trajectory are less than ideal when the initial camera

displacement is large.

Chaumette introduced a degenerate case of IBVS in [109], where the camera makes

non-intuitive and potentially unrealizable motion away from the target. This phenomenon is

commonly known as camera retreat, and it occurs when a rotation of π rad (or nearly π rad)

about the optical axis is required to achieve the goal pose. In this case, a large translation

along the optical axis away from the target is commanded which is clearly suboptimal

and sometimes unachievable (this translation approaches infinity as the required rotation

approaches π radians). Malis proposes a simple method to reduce the amount of camera

retreat that occurs as required optical axis rotation nears π rad in [111]. L̂e is set to the

average of the interaction matrix for the current frame and for the goal frame:

L̂e =
1
2

(L̂x + L̂x∗) (2.50)

In addition to minimizing the effects of camera retreat, this method generally results

in smooth trajectories in both the image plane and 3D space.

2.8.2.3 Stability of IBVS.

The stability of IBVS has been examined in numerous publications [107, 109, 112–

114]. This section provides a brief analysis on the stability of IBVS using Lyapunov’s

direct method.

Consider the Lyapunov function

65



L =
1
2
||e(t)||2. (2.51)

The derivative of this function is (formed by inserting (2.49) into (2.48))

L̇ = eT ė (2.52)

= −λeT Le L̂+
e e, (2.53)

Thus, the system is globally asymptotically stable if

Le L̂+
e > 0. (2.54)

However, in practice, the number of image features used to construct Le will be greater

than the number of degrees of freedom (six), meaning Le L̂+
e will have a nontrivial nullspace,

since the rank of Le is at most six. Consequently, it is possible to reach a configuration

such that e ∈ ker L̂+
e , which would correspond to a local minimum. Therefore, only local

asymptotic stability can be assured.

As [112] states, even though it can be shown that IBVS is locally asymptotically stable

in a neighborhood around e = e∗ = 0, “determining the size of the neighborhood in which

stability and the convergence are ensured is still an open issue, even if this neighborhood is

surprisingly quite large in practice.”

These issues of convergence are discussed in [109], as well as conditions where Le

becomes singular. The latter issue of a singular interaction matrix, introduced in Section

2.8.2.2 (‘camera retreat’), occurs when rotations in vicinity of π radians around the optical

axis of the camera are required. The method discussed in Section 2.8.2.2 nearly eliminates

this issue, though it can become possible with this method that image features will leave

the camera’s FOV.
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2.8.3 Advanced Methods of Visual Servo Control.

In their performance analysis of several visual servoing methods, Gans et al.

summarizes some of the main pros and cons of the classical IBVS method succinctly:

IBVS requires no 3D reconstruction of the environment, but does require an

image taken from the goal position. IBVS performs optimally in the image

space and it is a simple matter to regulate the trajectory of image features,

for instance preventing them from leaving the field of view. However, certain

control tasks can lead to singularities in the image Jacobian, resulting in

system failure. Image-based systems also surrender control of the Cartesian

velocities. Thus, while the task error may be quickly reduced to zero,

complicated and unnecessary motions may be performed. This is particularly

troublesome when operating in a physically limited or hazardous environment.

Finally, while IBVS is robust in the face of signal noise and calibration errors,

it requires an estimate of the feature point depth, which may be unavailable or

difficult to estimate accurately. [115]

These issues have motivated proposals of many variations of the basic IBVS control

law that each seek to overcome noted shortcomings of the classical method (e.g. [110, 116–

119], though many more exist). This section reviews two of the more highly cited

variations: 2-1/2D visual servoing (also refereed to as hybrid visual servoing) [110], and a

partitioned visual servoing approach by Corke and Hutchinson [116]. These variations of

IBVS are both noted for their methods to decouple translational and rotational control in

an effort to improve performance over the basic method.

2.8.3.1 2-1/2D Visual Servoing.

The method of 2-1/2D visual servoing, introduced by Malis et al. in [110], represents

one of the first variations of visual servoing to exploit a decoupling between rotational

and translational motion. The authors propose using a calculated homography (see Section
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2.4.2.2) between the current image frame and the goal image in order to estimate a partial

relative pose between the camera’s current pose and goal pose. This partial pose is then

used to drive rotation of the camera, while translational motion is controlled in the image

space in a similar manner to traditional IBVS.

For this method, the control error to be minimized is defined as

e =

 me − m∗e

θu

 , (2.55)

where θ and u are the rotation angle and axis between the current image frame and goal

image, derived from the partial pose estimation method. me is defined as the extended

image coordinates of a single point on the target (m∗e represents the same point in the goal

image)

me =


x

y

log(Z)

 , (2.56)

where x and y are normalized image coordinates of the point, and Z is the depth to the

point. Here the logarithm is useful so that the third component of e becomes log
( Z
Z∗

)
=

log(ρZ), where the parameter ρZ can be estimated using the homography-based partial pose

estimation method. Note that me is defined by a single feature, so this method is potentially

more susceptible to measurement noise than the least-squares solution of traditional IBVS.

The control law is then defined in a similar manner as in (2.49) for IBVS

Vcmd = −λL̂−1e. (2.57)

L is an upper triangular matrix that is singularity free in the entire task space [110]
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L =

 Lv L(v,ω)

0 Lω

 , (2.58)

where Lω = I3x3,

Lv =
1

Z∗ρZ


−1 0 x

0 −1 y

0 0 −1

 , (2.59)

and

L(v,ω) =


xy −(1 + x2) y

1 + y2 −xy −x

−y x 0

 . (2.60)

It can be shown as in [110] that the only value of depth that must be estimated is the

distance from the target reference plane to the camera in the goal pose. In practice this can

be judiciously estimated a priori. Though as [110] states, its influence on the stability of the

system is minimal, so the estimate need not be very precise. This fact makes 2-1/2D visual

servoing more-suited to use with a monocular camera than traditional IBVS, a potentially

big advantage for space applications.

Other notable pros and cons of 2-1/2D visual servoing as compared to IBVS include:

the Cartesian motion of a camera using this method is in general more ideal, the method

is singularity free, and an estimate of depth is not strictly needed. However, as shown in

[115], the method is more susceptible to measurement noise as it relies on the homography-

based pose estimation method and only uses a single feature for the translational velocity

command. Furthermore, the pose estimation step adds quite a bit of complexity to the

algorithm, including greater computational requirements.
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2.8.3.2 Corke and Hutchinson (C&H) Partitioned Visual Servoing.

Corke and Hutchinson propose a variant of visual servoing in [116], herein referred to

as C&H visual servoing. The essence of this method is to decouple control of z-axis motion

(rotation and translation) of the camera from control of x and y motion. This method was

primarily designed to solve the issue of interaction matrix sigularity (camera retreat) issue

associated with IBVS, though it has some other useful characteristics as well.

To develop this method, the relationship of (2.40) is partitioned to separate the z-axis

components from other degrees of freedom

˙̄s = LxyVxy + LzVz, (2.61)

where Vxy = [vx, vy, ωx, ωy]T ,Vz = [vz, ωz]T , and Lxy and Lz are the {1, 2, 4, 5} and {3, 6}

columns of the traditional IBVS interaction matrix from (2.44), respectively. Applying a

linear controller as was previously done for IBVS, the control for the x and y degrees of

freedom is

Vcmd
xy = −L̂+

xy

(
λe(t) + LzVcmd

z

)
, (2.62)

where e(t) and λ are defined in the same manner as for traditional IBVS.

The commanded translational and rotational velocity of the z axis, Vcmd
z =

[vcmd
z , ωcmd

z ]T , is defined separately. For this, Corke and Hutchinson propose two new image

features that are easily computed and can be used to determine each component of Vcmd
z .

The first feature proposed is used to control the angular velocity of the camera around

the optical axis, ωcmd
z . It is defined as the angle between the u axis of the image plane

and a line segment connecting two target feature points: 0 ≤ θ < 2π. Using this, ωcmd
z is

calculated by
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ωcmd
z = γωz(θ

∗ − θ), (2.63)

where γωz is a scalar gain coefficient.

The second feature is used to control the translational velocity of the camera along

the optical axis, vcmd
z . It is defined as the area of a polygon formed by several target feature

points. This is a useful feature as it is a scalar with magnitude clearly related to the distance

along the optical access from the target, it is easy to compute, and it is rotation invariant.

Corke and Hutchinson define this feature as the square root of the area of this polygon

σ =
√

area. (2.64)

Then vcmd
z can simply be defined by

vcmd
z = γvz(σ

∗ − σ), (2.65)

where γvz is a scalar gain that controls the rate of approach to the target.

2.8.4 Spacecraft Applications of Visual Servoing.

A number of studies have examined visual servo control for space applications.

Several consider IBVS for space-based robotic arm manipulators [120–123]. As these

are concerned with robotic arms, they do not consider dynamics associated with relative

spacecraft motion. Additionally, all assume known feature correspondences on the target

spacecraft, so they therefore do not address the challenges inherent with unknown targets.

A few studies have considered visual servoing for control of the spacecraft bus [66, 124–

127]. The remainder of this section provides a review of each of these studies.

Yanagi and Terui propose an IBVS controller for maneuvering a spacecraft with

respect to an asteroid in [124]. Dynamics of the maneuvering spacecraft are considered

and the asteroid is considered fixed. The study assumes exactly three features points on the
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asteroid are perfectly known and are always visible. Simulation results are presented for

one approach scenario, and show asymptotic decrease in control error as the maneuvering

spacecraft approaches its goal pose. While the results validate the basic IBVS control

scheme, the assumptions and simplifications inherent in the work provide little insight

regarding the practical utility of visual servoing for this application.

Petit et al. develop a model-based visual servo control scheme intended for spacecraft

rendezvous missions in [66]. The authors propose using a 2-1/2D visual servo control

loop in conjunction with a 3D model-based pose estimation scheme. Importantly, because

this method relies heavily on a known geometric model of the target to conduct pose

estimation, the study is not specifically applicable to the case of RPO with unknown targets.

However, the method is demonstrated using a realistic experimental setup. The setup is

composed of an accurate scale mock-up of the Amazonas-2 spacecraft placed in a dark

room with a point-light source acting as the Sun. Additionally, an image of the Earth is

apparent in the background, which must be dealt with by the pose-estimation and tracking

scheme. Experimental results using a camera attached to a 6DOF robot arm demonstrate

the capability of the method to track the relative pose and command a rendezvous maneuver

with respect to the known target. While this work demonstrates the effectiveness of the 2-

1/2D control law, it is not applicable for the case on an unknown target.

An IBVS system for spacecraft docking using a known fiducial marker located on the

target is presented in [125]. A two-step visual servoing control scheme is implemented:

the first step aligns the camera with the estimated centroid of the fiducial marker, and the

second step controls the approach to the target using traditional IBVS. The feature points

used by the IBVS controller are the corners of the bounding box associated with the fiducial

marker. To estimate the location of this bounding box, a tracking scheme based on a particle

filter augmented with the CAMShift algorithm [128] is used. The proposed controller

is implemented in simulation using quadcopter dynamics, and experimentally using an
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off-the-shelf quadcopter platform. While this work is noteworthy in that it demonstrates

experimental results of an IBVS controller using a flying platform, it cannot be concluded

that the scheme would be effective for spacecraft RPO with an unknown target. Specifically,

the CAMShift tracking algorithm would likely fail to produce smooth estimation of the

bounding box for a region of interest when used to track an unknown target in the dynamic

lighting environment of space. Furthermore, because the corners of the bounding box are

always available as feature points, feature point non-identification is not addressed.

A modified IBVS control scheme intended for use with tumbling targets is proposed

in [126]. It is claimed that traditional visual servo control exhibits oscillating feature error

when feature points are located on a rotating target. To combat this, the path of each

feature point is approximated with an ellipse, and a control law is then derived using

feature ellipses instead of the points themselves. Simulation results assuming perfect

feature correspondence show good performance, though dynamics and feature modeling

error are not considered. Section 3.4 will show that modeling image features as ellipses is

not necessary to maneuver with respect to a tumbling target.

Pomares et al. examine a variant of traditional IBVS for control of far and close

range spacecraft RPO in [127, 129]. An IBVS control law is designed that is invariant to

camera focal length, meaning it can be used with a zooming camera. This provides an

expanded range of utility, as a single zoom-able camera sensor can be used for far and

close approach phases of RPO. Actuators (thrusters and reaction wheels) are modeled, and

simulations show that fuel use is commensurate with expected values for actual rendezvous

maneuvers. Simulation results for three scenarios are presented, demonstrating the ability

of the controller to maneuver a chaser during far approach, close approach, and with respect

to a tumbling target. The results of this study show that visual servoing is a promising

control scheme for spacecraft RPO. However, even though the study claims to be applicable

to RPO with unknown targets, there is no discussion of how features are extracted, how
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the goal image is generated, and it does not examine the robustness of the controller to

modeling error (target features are are assumed to perfectly matched and observed in every

frame). Additionally, there is no discussion of how depth to the target is estimated, or how

any of these error sources could affect performance.

2.9 Summary

This chapter provided an overview of relevant background material as well as a review

of related research. First, a number of historical on-orbit missions were discussed, and it

was explained that these missions have not demonstrated solutions to the problem statement

that this work seeks to address. Throughout the chapter, concepts from the fields of

astrodynamics, computer vision, estimation theory, visual navigation, and robotics were

covered in order to provide context and background for the methods developed in this

work. Spacecraft dynamics were summarized, including relative translational dynamics

and rigid body attitude dynamics. Several topics from the field of computer vision were

introduced, including a summary of a feature-based image processing pipeline that will be

used in this work. A review of literature relating to the use of computer vision methods

in space was provided, and it was concluded that while it appears traditional computer

vision techniques will work in space, work is yet to be done to conclusively demonstrate

this. The last research question of this research effort will seek to investigate the potential

effectiveness of feature-based computer vision techniques in the space environment.

The problem of relative pose determination for unknown targets was examined

through a review of research applicable to this topic. It was found that while much

research has considered this problem, no robust solution has been demonstrated in available

literature. As a result, traditional control methods will not be effective for the case of an

unknown target, since they all rely on an accurate relative pose estimate. This fact motivates

the examination of visual servo control methods in this work, which do not require a full

relative pose estimate.
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The field of visual servo control was introduced, including a development of control

laws for several common types of image-based visual servo methods. Some noted pros and

cons of these methods were discussed.

Finally, this chapter reviewed a number of works that have examined visual servoing

for spacecraft applications. While these works generally demonstrate the effectiveness of

IBVS-style control laws for commanding close-in RPO maneuvers, none of them address

the fundamental issues associated with unknown targets. Specifically, issues regarding

generation of a goal image, detection and tracking of natural features on a target spacecraft,

and robustness to measurement errors associated with the visual navigation system have not

been addressed in available literature. As such, the present study seeks to more completely

demonstrate the potential of visual servo control for spacecraft RPO and extend its utility

to include use with unknown targets.
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III. GNC Method 1: Image Based Visual Servoing for Final Approach Maneuvers

with Unknown Targets

3.1 Overview

This chapter examines Research Question 1 (see Section 1.2): a complete visual

navigation and control architecture for conducting final approach maneuvers with unknown

targets is proposed and demonstrated in simulation. Here notional two-spacecraft final

approach maneuvers are considered, as introduced in Section 1.3. The assumptions and

limitations discussed in Section 1.4 apply for all scenarios presented.

Broadly, the proposed architecture utilizes a stereo camera sensor mounted on the

chaser vehicle as its primary relative navigation sensor, combined with a feature-based

image-processing method discussed in Chapter II. An Image-Based Visual Servoing

(IBVS) controller is used to generate velocity commands for the chaser vehicle to achieve

a desired goal pose. Issues unique to maneuvering with respect to unknown targets

are addressed, such as estimating the relative velocity between chaser and target, and

generating a goal image prior to conducting the maneuver. The architecture is analyzed

in simulation, with a focus on assessing its robustness to measurement error resulting from

the computer vision methods used to process video image frames from the camera sensor.

This chapter begins with a detailed description of the architecture, including how

each of its subsystems function. Next, the simulation developed to test the architecture

is introduced, and the methodology for modeling computer vision related sources of

error is discussed. Section 3.4 presents simulation results and analysis for a number of

final approach scenarios that seek to show the efficacy of the method under a range of

realistic conditions. Finally, the chapter concludes with a summary of pros and cons of the

architecture, and motivates Research Question 2 (to be examined in Chapter IV).
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3.2 Method

This section outlines the proposed visual navigation and control architecture for

controlling six degree of freedom (6DOF) maneuvers with respect to unknown targets.

The architecture is designed around a traditional IBVS control law, and is augmented

with other functions to enable implementation with unknown targets. Figure 3.1 shows

the basic structure of the architecture, and divides the whole system into three subsystems:

sensing, navigation, and control. The next subsection discusses necessary preconditions for

conducting maneuvers using this architecture, then the remainder of this section presents

details for each subsystem of the architecture.

Figure 3.1: Proposed Visual Navigation and Control Architecture

3.2.1 Prior to Maneuvering.

With respect to the taxonomy of a final approach maneuver shown in Figure 1.3, this

architecture represents the ‘Method 1’ block. That is, it is capable of controlling maneuvers

assuming a goal image of the target is available, and a sufficient number of features on the

target can be tracked.

As the taxonomy in Figure 1.3 shows, prior to maneuvering it is assumed that an

inspection phase has been conducted and a goal image for the target has been generated

(Section 3.3 will discuss how a goal image can be generated for unknown targets). This
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phase would likely be composed of a number of potential relative maneuvers intended to

ascertain a region of interest (ROI) on the target spacecraft (conducted at a safe range from

the target).

A major advantage of the architecture proposed in this chapter is that a relative pose

estimate is not required, so it is important to emphasize that in the inspection phase it is

not necessary to gather significant information about the target, such as geometric shape,

moments of inertia, relative pose, etc. Rather, the inspection phase is intended to allow

a human operator to determine how they would like to maneuver the chaser spacecraft

with respect to the target. Because the target is unknown, a human-in-the-loop is required

prior to the visual servo maneuver to determine the goal of the maneuver (this is not a

limitation specific to this architecture: it is the opinion of the author that a human operator

will be required in some capacity for any architecture designed for final approach with

unknown targets). In practice, this would be achieved by coarsely maneuvering the chaser

to a location where a ROI on the target is visible. This ROI is then used to generate a goal

image for the autonomous visual servo maneuver, which implicitly defines the goal relative

pose of the chaser to target.

Conducting inspection phase maneuvers is not a primary focus of this research effort,

however it is worth noting that natural motion circumnavigation (NMC) maneuvers could

be used to view the target from a variety of relative poses in order to position the chaser

such that a goal image for the visual servo maneuver could be generated. NMC’s exploit

the relative astrodynamics of two objects in orbit operating in vicinity of one another. It

is possible to design a bounded relative ‘orbit,’ where upon the chaser circumnavigates

the target (here assumed to be at the origin of the Local-Vertical-Local-Horizontal (LVLH)

frame) as the target orbits the Earth. In this way, after the chaser is given an initial velocity

to place it in an NMC, translational motion with respect to the LVLH origin is predictable

and ‘free’ (in terms of fuel use). More information on NMC’s can be found in [22], and
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on design of inspection maneuvers in [130]. Figure 3.2 displays an example 3D trajectory

for a chaser in an NMC as the target conducts one orbit of the Earth. As can be seen, the

relative path traced by the chaser with respect to the LVLH origin is a bounded 2x1 ellipse,

thus enabling a full 360 degree view of the target

Figure 3.2: Example NMC for pre-manuever inspection of target

3.2.2 Sensing Subsystem.

The sensing subsystem is composed of a stereo camera sensor attached to the chaser

spacecraft, and an image processing pipeline to process data from the camera. The stereo

camera sensor is assumed to provide a grayscale image (i.e. a single image from one of

the two cameras in the sensor) and a rectified depth map at frame rates capable for real-

time use. The goal of the sensing subsystem is to identify and track natural feature points

within the target ROI, and provide an image plane measurement (horizontal and vertical

pixel location) and depth for each tracked feature point.
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For this chapter, it is assumed the image processing pipeline operates essentially as

described in Section 2.4.3.3 (see Figure 2.7). This pipeline identifies features in the current

image frame (detects point features and generates descriptors for each feature), then uses a

matching algorithm to compare the feature descriptors of the current image frame to those

generated a priori for the goal image (denoted d∗ in Figure 3.1). A robust outlier detection

method is then used to remove most of the outliers from this set of matched features.

The subset of features identified in the current frame (‘visible’ features, denoted s̃),

i.e. those features that can be matched to features in the goal image, is an output of the

sensing subsystem. These features represent unique points on the target that are tracked

from frame to frame and are used by the navigation and control subsystems.

Importantly, a potentially large portion of features identified in the goal image may not

be matched in the current image frame (for a variety of reasons, see Section A.1.2.2). As

such, s̃ represents a subset of all of the features s that are tracked by the navigation filters.

To address the problem of bookkeeping, the sensing subsystem also provides a mask of

visible features. This mask is a binary vector of length equal to the total number of features

tracked, with each component having a value of 1 if the corresponding feature was matched

in the current frame, else 0.

The final output of the sensing subsystem is a vector containing the estimated depth

to each visible feature, Z̃. Pixel locations of each visible feature are used in conjugation

with the depth map to compute Z̃. In reality there are parts of stereo depth maps that may

not provide a value of depth (e.g. if a portion of the image is not seen by both cameras). In

practice, values of depth for these regions may be interpolated, or features may be deemed

not visible for the current frame if they do not have a valid value of depth.

Section 4.2.3 provides a more in-depth discussion of a practical implementation of the

sensing subsystem for use with actual camera hardware and computer vision methods.
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3.2.3 Navigation Subsystem.

The navigation subsystem has three functions: produce a filtered estimate of feature

pixel locations (ŝ = [û1, v̂1, ... ûN , v̂N]T ), build the interaction matrix (L̂x), and estimate the

relative velocity between chaser and target (V̂).

A bank of linear Kalman filters is used to refine the measurements s̃ and Z̃. At the

start of the maneuver, one Kalman filter is initiated for every feature in the goal image.

The feature dynamics model does not incorporate any coupling between different features’

states (i.e. each feature is considered independent), therefore if a single filter were to be

used, there would be no cross-covariance generated between different features (and hence

no benefit).

A constant velocity model is used to describe the dynamics of feature pixel locations

and depths using the state vector for a single feature xi = [ui, vi, Zi, u̇i, v̇i, Żi]T , the discrete

state transition matrix for this model is

Φ =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, (3.1)

where dt is the filter time step. A Kalman filter update step is initiated for each visible

feature according to the mask provided by the sensing subsystem. As elements of the state

vector are directly measured (zi = [ui, vi,Zi]T ), the measurement matrix is simply

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (3.2)
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To deal with the possibility that the outlier rejection performed in the sensing

subsystem fails to remove a false match, additional outlier rejection is implemented in

each Kalman filter via monitoring of the Mahalanobis distance of each measurement (as

known as chi-squared gating). The ith feature’s Mahalonbis distance for the kth timestep is

defined as

d2
ik = (zik − ẑik)

T S−1
ik (zik − ẑik), (3.3)

where zik is the measurement vector for the ith feature at the kth time step, ẑik is the filter

predicted measurement, and Sik = HPik HT + R is the measurement prediction covariance.

If the Mahalanobis distance for a measurement exceeds a predefined threshold, then the

Kalman filter update step for that measurement is not performed. In practice this threshold

can be chosen using a χ2 distribution and desired confidence level, as in [54]. Furthermore,

the mask of visible features is updated to remove this outlier, which ensures it is not used

in calculation of the interaction matrix and IBVS control command during the current time

step.

The mask of visible features is used to produce trimmed vectors st, ṡt, and Zt, which

contain only inliers for the current time step. An interaction matrix, L̂x, is constructed

using these trimmed vectors, the camera intrinsic parameters, and relationships introduced

in Section 2.8.2.1
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

ẋ1

ẏ1

ẋ2

ẏ2

...

ẋn

ẏn



=



L̂x1(s̄1,Z1)

L̂x2(s̄2,Z2)
...

L̂xn(s̄n,Zn)

︸           ︷︷           ︸
L̂x



vx

vy

vz

ωx

ωy

ωz



, (3.4)

where the interaction matrix for the ith feature is

L̂xi =


−1
Zi

0 xi
Zi

xiyi −(1 + x2
i ) yi

0 −1
Zi

yi
Zi

(1 + y2
i ) −xiyi −xi

 , (3.5)

and normalized image feature coordinates (s̄i = [xi, yi]T ) are computed using the pixel

coordinates and

xi =
ui − cu

fu
, ẋi =

u̇i

fu

yi =
vi − cv

fv
, ẏi =

v̇i

fv

. (3.6)

The estimate of relative velocity between camera and target is calculated using a

pseudo-inverse of the interaction matrix relationship discussed in Chapter II (2.46):

V̂ = L̂+
x
˙̄st. (3.7)

This velocity estimate represents the velocity of the chaser with respect to the target,

expressed in the chaser camera frame. As it is calculated in the least-squares sense,

robustness to image measurement noise improves as the number of features increases.
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3.2.4 Control Subsystem.

The control subsystem is a ‘dynamic look-and-move’ system utilizing traditional

IBVS. It is composed of two components: an IBVS controller to generate relative velocity

command setpoints and a proportional-integral (PI) controller to generate acceleration

commands for the spacecraft actuators. Low-level logic for control of actuators is not

considered in this architecture, as this is something specific to particular spacecraft.

The relative velocity command given by the IBVS control law is

Vcmd = −λL̂+
e eIBVS , (3.8)

where λ is a gain matrix, L̂+
e is the pseudo-inverse of the interaction matrix approximation,

and e is the feature servo error defined by

eIBVS = s̄t − s̄∗t , (3.9)

where s̄t and s̄∗t are the trimmed feature vectors for the current frame and goal image frame,

respectively (expressed in normalized coordinates).

Note that the vector containing the locations of all features in the goal image, s∗, and

the interaction matrix for the goal image, L̂x∗ , can be calculated prior to the maneuver when

the goal image is generated. These parameters are then trimmed every time step using the

mask of visible features in the same manner as described previously.

λ is implemented as a gain matrix instead of a scalar to affect each component of

velocity differently. Specifically, it was found that it is useful to set the gain for translational

velocity commands differently from the gain for angular velocity commands, in order to

shape the trajectory of feature points in the image plane such that they stay in the camera’s

field of view for the duration of the maneuver.

The approximation of the interaction matrix, L̂+
e , is selected in accordance with [111]
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L̂e =
1
2

(L̂x + L̂x∗), (3.10)

where L̂x is provided by the navigation subsystem and L̂x∗ is an estimate for the interaction

matrix associated with the goal pose (calculated a priori). Note that L̂x∗ requires an estimate

of depth when the camera is in the goal pose. In practice, it was found that this estimate

can be very coarse. The approximation is selected in part to minimize the potential for

camera retreat (see Section 2.8.2.2), but also because it was observed in testing that this

approximation provides a more ideal Cartesian trajectory than the other two approximations

discussed in Section 2.8.2.2.

It will be shown in the results section of this chapter that this architecture performs

well even when the target is moving. For a reader familiar with IBVS control as typically

developed in literature, this might seem counter-intuitive, as it is often stated that the basic

control law applies for non-moving targets (as in [107]). Indeed, several works propose

adding an additional term to the control law for moving targets [108, 131]

Vcmd = −λL̂+
e e − L̂+

e
δ̂e
δt
, (3.11)

However, it is assumed in literature that the reference frame the velocity command is

generated with respect to is a stationary frame, not attached to the target. Therefore, if the

target is moving, it is necessary to account for the time variation of e. This makes sense for

typical applications of visual servoing. Considering a robotic arm, for example: sensors

can measure joint velocities, which can be used to estimate the velocity of the camera with

respect to some fixed reference point.

Because the relative velocity in this architecture is estimated with respect to the target

(3.7), the reference frame for velocity commands is always static with respect to the target,

so it is not necessary to account for the time variation of e as in (3.11).
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Finally, a PI controller is implemented to produce acceleration commands for the

chaser vehicle. This controller uses the error term

ePI = Vcmd − V̂, (3.12)

where V̂ is the velocity estimate provided by the navigation subsystem. A derivative term is

not implemented with this controller as it was observed in testing that the error term tends

to be quite noisy when sensor measurement noise is considered, which makes accurate

calculation of the error derivative difficult. The output of the PI controller is a translational

acceleration command and angular acceleration command, which is used by the low-level

actuator logic to determine actuator commands.

3.3 Generating the Goal Image for Unknown Targets

A fundamental requirement of this architecture is that a goal image of the target

be available, which implicitly defines the desired relative pose between the camera and

target. Features in this goal image must be able to be matched to features in the current

image frame in order to calculate the feature error for the IBVS control law. For a

known target, a goal image could be selected from an independently generated database

of images representing possible desired poses. Obtaining a goal image for an unknown

target, however, represents a more challenging task that has not been addressed in available

literature.

Unless the chaser has previously been positioned in the goal pose and was able to

capture an image, there is no way to obtain an exact image representing the desired pose for

a previously unknown target. This section proposes two options to generate an approximate

goal image.
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3.3.1 Option 1: Using a Zoomed-in Image.

The first option requires variable focal length (zooming) camera on the chaser.

Prior to active maneuvering, a zoomed-in image of the target is captured at an instant

when the optical axis of the camera is aligned with a vector orthogonal to goal image

plane. This zoomed-in image then represents the goal image (note that this image can be

rotated/shifted as necessary to properly represent the desired pose). Ostensibly this is a

stringent requirement: the chaser must be partially aligned with the goal pose such that

only a translation along and a rotation around the optical axis is required. This may not

be unreasonable for many RPO scenarios though, as long as the target can be observed

for a period of time prior to initiating the visual servo maneuver. During the observation

time, judiciously designed natural-motion circumnavigation relative orbits could be used

to observe the target from various angles as discussed in Section 3.2.1, including one

sufficiently aligned with the desired goal pose.

In order to determine the amount of zoom required to achieve a desired (goal) depth at

completion of the maneuver, the following relationship can be used (derived from (2.27))

fzoom =
(Zcurrent)( fmaneuver)

Zgoal
, (3.13)

where fzoom is the required focal length for the zoomed image, Zcurrent is the current

depth from the camera to the target, fmaneuver is the focal length of the camera used for

maneuvering, and Zgoal is the desired depth at completion of the maneuver.

To demonstrate this option, two photos were taken of a satellite mock-up using the

same camera at different zoom levels (1x and 2x zoom), shown in Figure 3.3 (a) and (b).

A feature-based image processing pipeline was used to extract and match features between

both images, as shown in Figure 3.3 (c). As can be seen, a large number of matches can be

found between the scenes, even though they were taken using different focal lengths.
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Figure 3.3: Goal image generation using zooming camera. (a) 1x zoom representing current
view of target (b) 2x zoom representing goal image (c) matches between frames using SIFT
detector/descriptor with RANSAC

It is important to note that the generated goal positions of features will not be perfect,

due to the fact that a longer focal length image is used to generate them than is used

for maneuvering. This is in general not a significant problem, as the IBVS control law

computes control commands using a least-squares solution, meaning if enough features are

tracked, the desired pose should still be achieved.

3.3.2 Option 2: Using a Perspective Warp.

The second option utilizes the concept that two images of a planar target taken from

different perspectives are related by an isomorphic transformation called a homography

(see Section 2.4.2.2). Using a homography, an image of a planar surface can be warped

to create an approximate image of what the surface would look like from a different
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perspective. Given four manually selected corners of a planar quadrangle present in

a current image and the desired locations of these four corners in the goal image, a

homography can be calculated that is then used to warp the current frame into a view

approximating the desired perspective. This warped view is used as the goal image of the

target.

To demonstrate the second option, a photo of a satellite mock-up was taken

representing the view from the current pose of a notional chaser. A goal image was

generated using OpenCV [37] functions getPerspectiveTransform(), which estimates the

homography matrix from the current image to the desired image, and warpPerspective(),

which produces a warped image using the estimated homography (shown in Fig. 3.4(b)).

Fig. 3.4(c) shows that a large number of matches can be found between the original and

warped views of the target. Note that the surface of the target is not completely planar,

though relative to the distance the photo was taken from, it is planar enough to produce a

reasonable result.

To implement the second option in practice, the entire current image does not need to

be warped into the goal image, only the feature locations do. The position of the ith feature

in the goal image can be generated using the estimated homography

 s∗i

1

 = Ĥ

 si

1

 . (3.14)

A third option could certainly be to combine these two options, as long as the

limitations of each method are observed. It is important to note that for any method,

the feature locations in the generated goal image will not precisely match their locations

when the camera is actually in the goal pose. Given a sufficient number of features, this

is in general not a problem however, as the IBVS control law seeks to minimize the error

between current feature locations and goal locations using a least-squares solution.
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Figure 3.4: Goal image generation using perspective warp. (a) current view of target (b)
warped view of target representing goal image (c) matches between frames using SIFT
detector/descriptor with RANSAC
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3.4 Results

This section presents simulation results and analysis for a range of final approach

maneuvers using the architecture proposed in this chapter. Several increasingly complex

scenarios are presented in order to examine how the architecture handles various possible

initial conditions. The simulation utilized for these results is discussed in Appendix A.

As the specific parameters of the spacecraft and scenarios are notional, the intent of this

section is not to prove that the system works for a particular case, but instead to show that it

performs well under a variety of conditions. The goal of the maneuver for each scenario is

to approach the selected target ROI such that it takes up most of the camera’s field of view,

with the camera plane parallel to the ROI (for example, see Figure 3.6(b) for a camera view

from goal pose).

The maneuver scenarios presented are broadly split into two subgroups: those where

the target ROI associated with the goal pose is approximately a planar surface, and those

where it is not. The results are divided in this way in order to examine how the surface

structure of a target affects the effectiveness of the architecture. Specifically, because the

option to generate a goal image via perspective warp relies on the assumption that the

region being warped is planar, it is important to examine how warping a nonplanar surface

can affect the quality of the maneuver.

The next subsection describes how measurement error parameters were selected for

the camera sensor, and the following sections present results for targets with planar surfaces

and targets with nonplanar surfaces, respectively.

3.4.1 Camera Sensor Modeling Parameters.

Table 3.1 summarizes the values used for each computer vision error parameter as

well the total number of features tracked. According to [132], a standard deviation of 1

pixel for measurement location error is appropriate for most feature-tracking schemes. In

order to examine worst-case conditions, the standard deviation of pixel location error was
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chosen to be 2 pixels for this study. Experimental results in [133] yield a stereo disparity

error standard deviation of 0.5, though a value of 1.0 is chosen here to examine robustness

to greater depth estimation error. The percent of outliers present in any given image frame

is dependent on a number of factors, but is typically very low if a scheme like RANSAC is

implemented in the image processing pipeline. An outlier percentage (after RANSAC)

of 3% is considered to be greater than would be expected in realty, but is selected to

demonstrate the Kalman filter’s ability to reject measurement outliers. The percentage of

features not identified in any given frame is highly variable depending on scene conditions

and image processing. A value of 50% is thought to be relatively conservative based on

hardware experimentation with the satellite mock-up displayed in Figure 3.4.

Finally, for all scenarios presented except scenario 3P5, 100 target features are

initiated and tracked by the bank of Kalman filters (of which 50% are selected to not be

identified in each frame). This number was chosen based on hardware testing with the

satellite mock-up shown in Figure 3.4, using a variety of feature detectors/descriptors, and

is considered to be fairly conservative. Scenario 3P5 examines how the system performs

for a reduced number of target features, and tracks only 20 target feature points total.

Table 3.1: Computer Vision Modeling Parameters

Error
Mechanism Value Units Description

Location Error 2.0 Pixels
σ of AWG applied to pixel location of
image features

εd 1.0 Pixels Stereo disparity matching error

Outliers 3 %
Percentage of features recast as outliers for
each image frame

Non-IDs 50 %
Percentage of features not identified in
each image frame

Target Features 100* n/a
Total number of target point
features tracked

* - For scenario 3P5 only, 20 target features are tracked
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3.4.2 Maneuvering with Respect to a Planar (P) ROI.

This subsection considers maneuvers with respect to regions of interest on the target

that are approximately planar. Figure 3.5 shows a Computer Aided Design (CAD) view of

the target, with the ROI selected for maneuvering highlighted in red. The range of depth

for protrusions and cavities within the ROI is 2 centimeters, which is considered planar in

this context.

Figure 3.5: CAD model of target used in simulation, with approximately planar ROI
highlighted in red

Table 3.2 contains a summary of the scenarios (3P1-3P5) presented in this subsection.

The first two maneuvers are relatively basic, requiring only a corkscrew motion along the

camera’s optical axis to achieve the goal pose. Scenario 3P1 is presented without sensor

noise applied, then scenario 3P2 applies sensor noise to show how it affects performance.

The next three maneuvers, 3P3-3P5, consider a more complex maneuver (with sensor noise

applied) requiring relative motion in all 6DOF. These scenarios all utilize the second

method for goal image generation (perspective warp) proposed in Section 3.3. They

variously examine a static (with respect to the LVLH frame) target, a moving/rotating

target, and a target with significantly fewer feature points available for tracking.
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Table 3.2: Overview of Maneuver Scenarios with Respect to Planar Target ROI

Scenario Goal Image Generation Goal Image Generation Sensor Noise
Modeling

3P1 Simple maneuver Method 1 (zoom) No
3P2 Simple maneuver Method 1 (zoom) Yes

3P3 Complex maneuver with
static target Method 2 (warp) Yes

3P4 Complex maneuver with
tumbling/drifting target Method 2 (warp) Yes

3P5
Complex maneuver with
static target & reduced
target features*

Method 2 (warp) Yes

*- Only 20 target features are tracked for this scenario (100 for others)

3.4.2.1 Scenario 3P1: Simple Maneuver without Sensor Error Modeling.

The first scenario considered entails a relatively basic maneuver, without any sensor

measurement error applied. The intent of this scenario is to present how the architecture

performs under noise-free conditions.

For the maneuver, the chaser spacecraft is initially positioned on the positive in-track

axis of the LVLH frame 10 meters away from the target, such that a translation directly

along and a 90◦ rotation around the camera’s optical axis is required to achieve the desired

goal pose. The target is static at the LVLH origin with its planar region of interest facing in

the direction of the positive in-track axis. Figure 3.6(a) shows the initial view of the target

prior to maneuvering, and Figure 3.6(b) shows the view of the target from the chaser after

the maneuver is complete.

For scenario 3P1 and 3P2, the goal image for maneuvering is generated using the

first method described in Section 3.3 (i.e. using a zoomed-in view of the target), and

implemented as discussed in Section A.1.3. A zoomed-in image is generated from the

initial pose of the chaser using a 66 millimeter focal length camera image of the target (i.e.

6.6x zoom relative to the maneuvering camera). This focal length is chosen using (3.13)
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and a desired goal depth of 1.5 meters. The image taken by this higher zoom camera is

rotated 90◦ counter-clockwise to account for the desired rotation of the chaser relative to

the target. This image is then used as the goal image for maneuvering. Given that the target

bus is cube with 1 meter long sides and its geometric center is at the LVLH origin, the goal

pose of the chaser equates to a position of [0, 2, 0] meters in the LVLH frame for these

scenarios.

Figure 3.6: Scenario 3P1: camera views from chaser. (a) Initial view. (b) Final view.

Figure 3.7 shows the position of the chaser over the course of the 200 second

maneuver. Maneuvering commences 5 seconds after simulation start to allow the filters

to converge (this is the case for all results in this chapter). As can be seen, the chaser

smoothly and asymptotically approaches the goal position of 2 meters from the LVLH

origin in the in-track direction. The asymptotic approach of the goal pose is also apparent

in the time history of translational and angular velocity (Figure 3.8). This is a very desirable

characteristic of this architecture for space applications: collision avoidance is a primary

concern for rendezvous and proximity operations (RPO), so it behooves a GNC system to

increasingly slow the relative velocity as the relative distance decreases.
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Figure 3.7: Scenario 3P1: position of chaser with respect to LVLH frame.

Figure 3.8: Scenario 3P1: velocity of chaser with respect to LVLH frame.
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The chaser deviates very slightly (less than 0.07 meters) from a straight-line path along

the in-track axis in the first 50 seconds of the maneuver. This deviation occurs in the

negative radial direction, and is a product of the relative astrodynamics underpinning the

maneuver. Indeed, this deviation complies with physical intuition for relative maneuvers in

an LVLH frame: if a chaser located on the positive in-track axis is given a negative in-track

velocity (as is the case in this scenario), its position will increase in the negative radial

direction in addition to the negative in-track direction. The deviation is corrected to within

a centimeter by 180 seconds into the maneuver.

To gain an understanding of how the target feature points behave in the image plane,

Figure 3.9(a) displays the image plane trajectories for 10 target feature points. The

feature trajectories follow a smooth curving trajectory to achieve their goal positions in the

image plane. The IBVS control law gains for translational velocity and angular velocity

components were differentially tuned to produce this desirable performance. The gain

for the angular velocity components was selected to be slightly higher than that of the

translational velocity components in an effort to ensure more of the necessary rotation of

the chaser occurred earlier in the maneuver. This was done to prevent features from leaving

the field of view of the camera, as can occur if the camera rotates when it is closer to the

target. The gains selected for this scenario were used for the remainder of the scenarios

presented in this chapter.

Figure 3.9(b) displays the servo error for all 100 features tracked. Of note, the error for

all features does not exactly reach zero (and would not reach zero given longer run time of

the simulation). This occurs because the features are trying to reach their goal positions as

defined by the goal image, which in this case was taken with a higher focal length camera

image. The perspective projection of the higher focal length places feature points at slightly

different pixel locations as compared to the shorter focal length of the maneuvering camera.

As can be seen, this is not a problem though as the architecture calculates navigation and
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control solutions in the least-squares sense, which has the effect of minimizing error on the

whole for the entire set of features.

Figure 3.9: Scenario 3P1: (a) image plane trajectories of 10 target features. (b) Servo error
for all target features.

3.4.2.2 Scenario 3P2: Simple Maneuver with Sensor Error Modeling.

Scenario 3P2 is identical to scenario 3P1 with the exception that it incorporates the

sensor modeling error discussed at the start of this section. Together with scenario 3P1, the

results of this scenario demonstrate how realistic sensor noise could be expected to change

performance.

Figure 3.10 displays the position of the chaser relative to the target/LVLH origin over

the 200 second maneuver. The trajectory is very similar to that of Scenario 3P1, except

the deviation in the negative radial direction is magnified (peaks at about 0.5 meters).

Additionally, there is a slight deviation in the cross-track axis that occurs early in the

maneuver. Both of these deviations are corrected as the chaser reaches its goal pose. It

is not surprising that larger deviations from the ideal straight-line trajectory occur at farther
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relative distances: feature pixel error has a bigger effect at range and stereo depth estimation

error increases with distance. As they occur farther out and are corrected as relative range

decreases, these slight deviations in position do not affect the outcome of the maneuver.

Figure 3.10: Scenario 3P2: position of chaser with respect to LVLH frame.

The velocity profile of the maneuver (Figure 3.11) is similar to that of scenario 3P1,

with the main difference being the velocities in the radial/cross-track directions and around

the body x and y directions vary more as a result of sensor noise. Notably, the velocity in

the direction of and around the optical axis (in-track direction in this case) is smoother and

very similar to that of scenario 3P1. Figure 3.12 shows the feature trajectories and servo

error in the image domain, and it can be seen that these results are also similar to those of

scenario 3P1.

As with any GNC system, it was found that the system’s ability to reject sensor noise

is influenced by tuning of parameters in the navigation and control subsystems. Since the

results presented in this chapter were produced after tuning of the navigation filters and

control gains, it is important to note that performance could be potentially degraded or

enhanced depending on choice of parameters.
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Figure 3.11: Scenario 3P2: velocity of chaser with respect to LVLH frame.

Regarding tuning for the results shown, control gains (for the IBVS controller and

PI controllers) were selected to command relative velocities that were approximately

commensurate with recommended velocities for established approach strategies (see [7]

for example). Kalman filter process noise parameters were lowered to smooth the state

estimates for features as much as possible without introducing too much lag in the estimate

relative to the true state. Note that while the lower process noise helps smooth the state

estimates, if control gains are increased too much, or if a large disturbance occurs during

maneuvering (if the target maneuvers rapidly for example), it is possible that the system

could enter an oscillation mode where the controller tries to respond to increasingly delayed

navigation estimates.

Another important insight gleaned from the results of this chapter was the system’s

susceptibility to disruption as a result of measurement outliers. If Mahalonobis distance

monitoring is not implemented (or a poor threshold is chosen), it was observed that

non-rejected outliers often have a very detrimental affect on performance of the system,
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even though there should be some inherent robustness as both the navigation and control

solutions are computed in a least-squares sense. As could be expected, having a higher ratio

of inliers to outliers made the system less susceptible to failure due to unrecognized outlier

measurements. Properly tuning the Kalman filter parameters (especially the Mahalonobis

distance parameter for outlier rejection) is important to ensure as few outliers are used in

navigation and control calculations as possible. In practice, it is the opinion of this author

that parameters for the outlier rejection method implemented in the sensing subsystem

(typically RANSAC) should also be tuned to ensure minimal presence of outliers, even at

the expense of inadvertently rejecting some inliers.

Figure 3.12: Scenario 3P2: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.

Overall, the results of this scenario show that, given properly tuned filter parameters

and control gains implemented to produce sufficiently slow relative motion, performance

under realistically noisy conditions is comparable to noise-free conditions.
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3.4.2.3 Scenario 3P3: 6DOF Maneuver with Static Target.

Scenarios 3P3, 3P4, and 3P5 examine various different initial conditions, requiring

the chaser vehicle to conduct maneuvers in all 6DOF. The initial pose for both the chaser

and target is the same for all three scenarios: the target is located at the LVLH origin and

oriented with its planar ROI facing in the positive in-track direction. The chaser is initially

located at [5.0, 8.0, 3.0] meters in the LVLH frame, with an initial orientation as can be

seen in Figure 3.14. Figure 3.13(a) shows the initial view from the chaser’s camera, and

Figure 3.13(b) shows the final view at completion of the maneuver.

Scenarios 3P3, 3P4, and 3P5 all utilize the second method for goal image generation

discussed in Section 3.3 (the perspective warp method), which was implemented as

discussed in Section A.1.3 (for these scenarios the planar ROI depicted in Figure 3.5 was

selected). In implementing this method, the final size of the target ROI was selected to be

the same as for previous scenarios, in order to make the goal pose once again equate to a

position of [0, 2, 0] meters in the LVLH frame (assuming the target remains static).

Figure 3.13: Scenario 3P3: camera views from chaser. (a) Initial view. (b) Final view.

For scenario 3P3, the target remains static at the LVLH origin. Figure 3.14 shows

two views of the 3D trajectory of the chaser (depicted using the camera symbol) with
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respect to the target. These results demonstrate the architecture’s ability to smoothly and

simultaneously change both orientation and position to achieve the goal pose.

Figure 3.14: Scenario 3P3: 3D trajectory of chaser

Figure 3.15(a) shows the image plane trajectories for 10 target features. Note that

the trajectories are well contained within the image plane due to the differential selection

of IBVS control gains (i.e. they do not swing wide due to camera rotation late in the

maneuver). Figure 3.15(b) shows the servo error for all features collapsing to nearly zero

over the course of the maneuver. At the end of the maneuver, the servo error has a mean of

0.87 pixels, and standard deviation of 3.68 pixels. This spread of error is larger than than

that of scenario P2 (which had a servo error standard deviation of 2.31 pixels), as a result

of the perspective warp not accurately determining the true goal position of features. This

variance of the servo error is not a problem in this case as it does not appreciably affect the

final pose of the chaser.
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Figure 3.15: Scenario 3P3: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.

Figure 3.16 shows the navigation estimate of relative velocity overlaid with the true

relative velocity. The navigation estimate, using the interaction matrix relationship with

all visible features for each image frame, is rather noisy, though it generally follows the

true relative velocity. Implementing a low pass filter (LPF) was examined to smooth the

relative velocity estimate. While the LPF did smooth the relative velocity estimate (and also

introduce some lag in the estimate), it did not appreciably improve results for the scenarios

tested.

The Kalman filter error for a single image feature is plotted in Figure 3.17.

Additionally, the raw measurement error is shown in red, with large spikes in error

corresponding to image frames where the feature was cast as an outlier. Small increases in

filter variance occur as the feature is not identified in all frames or rejected as an outlier.

The fact that the filter error and variance remains converged though for the duration of
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Figure 3.16: Scenario 3P3: estimated and actual relative velocity of chaser with respect to
target.

the maneuver implies that the Mahalanobis residual monitoring method works to reject

outliers.

Overall, this scenario demonstrates the ability for the architecture to command a

coupled 6DOF maneuver using the warp method for goal image generation. The low

variance of the servo error at the end of the maneuver indicates that the warp method does

a good job approximating feature point locations as they occur in the actual image taken

from the final pose of the chaser.
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Figure 3.17: Scenario 3P3: Filter error for one target feature (first 100 seconds of
simulation)

3.4.2.4 Scenario 3P4: 6DOF Maneuver with Tumbling and Drifting Target.

This scenario is identical to scenario 3P3 with the exception that the target is given

an initial translational and angular velocity. The target’s initial translational velocity of

[0.010; 0.005; 0.001] meters/second in the LVLH frame is intended to simulate either a

maneuvering target, or imperfect knowledge of the LVLH frame origin. The target is also

given an initial body frame angular velocity of [0.000;−0.003; 0.005] radians/second with

respect to the LVLH frame, as could occur with a damaged or maneuvering target.

Figure 3.18 shows two views of the chaser and target’s 3D trajectories (with the initial

and final pose for each spacecraft plotted). As can be seen, the chaser captures its goal

pose even as the target changes position and orientation throughout the simulation. Once

the goal pose is achieved, it is indefinitely maintained as any variation in visual servo error

continues to be corrected.
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Figure 3.18: Scenario 3P4: 3D trajectory of chaser and target

Figure 3.19 shows feature trajectories and servo error. As with previous scenarios,

feature trajectories are well contained and smooth. The servo error takes longer to collapse

than in scenario P3, and the mean error does not make it as close to 0. Additionally, the

standard deviation of error is larger (14.85 pixels). It is possible to improve the convergence

rate and accuracy of servo error (and hence final pose) using higher control gains, though

this was not done for these results in order to facilitate direct comparison among scenarios.

The estimated and actual relative velocities are shown in Figure 3.20. As with previous

scenarios, the estimate is noisy, though it tracks the actual relative velocity well enough to

affect a successful maneuver. The fact that this method can sufficiently estimate the relative

velocity when both the chaser and target are moving is significant because it only requires

information from the camera sensor, and does not require any specific knowledge of the

target or its current state.
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Figure 3.19: Scenario 3P4: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.

Figure 3.20: Scenario 3P4: estimated and actual relative velocity of chaser with respect to
target.
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This scenario demonstrates the architecture’s ability to maneuver with respect to

a target moving in 6DOF, without requiring any additional knowledge regarding the

movement of the target other than what is available from the camera sensor. Additional

testing with different initial conditions appears to indicate that the ability to maneuver

with respect to faster moving targets is primarily limited by whether the chaser has control

authority available to match the 6DOF velocity of the target. Assuming it does, this method

can be applied for a wide range of target velocity conditions.

3.4.2.5 Scenario 3P5: 6DOF Maneuver with Reduced Target Features.

The final scenario using a planar target ROI examines how reducing the number of

target features tracked affects performance. This is important to consider, as the image

processing pipeline may not be able to extract as many features for bland or otherwise

mostly uniform target ROI’s. Additionally, it is reasonable to expect that fewer features

will be detectable for low illumination conditions. Accordingly, this scenario assumes 20

target features are tracked (as opposed to 100 for previous scenarios). One feature is recast

as an outlier for each image frame (5% of the total features), and 50% are still assumed

to not be identified in each frame. This leaves up to 9 features available for navigation

and control calculations. Other than the difference in features, this scenario is identical to

scenario 3P3.

Figure 3.21 shows two views of the 3D trajectory of the chaser, and Figure 3.22 shows

feature trajectories and servo error. As can be seen, the results are very similar to those of

scenario 3P3. In fact, the difference in quality of the maneuver and how well the goal pose

is achieved compared to scenario 3P3 is almost not discernible.

Figure 3.23 shows the estimated and actual relative velocities. The quality of the

relative velocity estimate is worse than that of scenario 3P3, though not significantly

enough to drastically affect the maneuver, even though 1/5th the number of features are

used for the calculation.
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Figure 3.21: Scenario 3P5: 3D trajectory of chaser and target

Figure 3.22: Scenario 3P5: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.
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Figure 3.23: Scenario 3P5: estimated and actual relative velocity of chaser with respect to
target.

It was observed in additional testing that as the total number of target features

decreases, the affect of non-rejected outliers becomes more drastic (as could be expected).

Consistently good results were achieved with as little as 16 features tracked, though it is

apparent that even fewer features could be acceptable if outlier rejection is assured.

This scenario shows that the architecture is capable of maneuvering with a very small

number of feature points available. As stated, this is a significant capability for bland target

surfaces or low-light conditions.

3.4.3 Maneuvering with Respect to a Nonplanar (NP) ROI.

This subsection considers maneuvers with respect to regions of interest on the target

that are nonplanar. Figure 3.24 shows a CAD view of the target, with the ROI selected for

maneuvering highlighted in red. The range of depth for protrusions and cavities within the

ROI is 67.5 centimeters.
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Figure 3.24: CAD model of target used in simulation, with nonplanar ROI for maneuvering
highlighted in red

Results for three scenarios are presented in the following subsections (an overview is

provided in Table 3.3) . The initial conditions for all three scenarios are the same, though

each scenario uses a different method for either generating the goal image or conducting

the maneuver. The first scenario uses the first method for generating a goal image (zooming

camera), and the next two scenarios use the second method (perspective warp). The third

scenario is similar to the second scenario, except it implements the overall maneuver as

three separate incrementally implemented maneuvers.

112



Table 3.3: Overview of Maneuver Scenarios with Respect to Nonplanar Target ROI

Scenario Maneuver Description Goal Image Generation Sensor Noise
Modeling

3NP1 Complex maneuver with static
target (single maneuver) Method 1 (zoom) Yes

3NP2 Complex maneuver with static
target (single maneuver) Method 2 (warp) Yes

3NP3
Complex maneuver with static
target, incrementally implemented
as two maneuvers

Method 2 (warp) Yes

3.4.3.1 Scenario 3NP1: Maneuver with Respect to Nonplanar ROI Using

Zoom Method for Goal Image Generation.

For this scenario, the chaser is initially placed at [5.0, 5.0, 10.0] meters in the LVLH

frame, oriented facing the target as shown in Figures 3.25(a) and 3.26. The target

remains static at the LVLH origin, with its nonplaner ROI facing in the positive cross-

track direction. The goal of the maneuver is the similar to previous scenarios: approach

the target ROI such that it takes up most of the camera’s field of view (for these scenarios

the goal pose equates to a position of [0, 0, 2] meters in the LVLH frame), with the camera

plane parallel to the ROI as shown in 3.25(b) (i.e. 0◦ tilt with respect to the radial and

in-track axes).

The zoom method is used to generate the goal image. As the target ROI is not

perpendicular to the optical axis of the camera at the start of the maneuver, it is assumed

that it was perpendicular at some point prior to maneuvering (during an inspection NMC,

for example), at which point the goal image was generated using a higher focal length

camera image, as in scenarios 3P1 and 3P2.

Figures 3.26 and 3.27 show the trajectory of the chaser with respect to the target/LVLH

frame. The chaser asymptotically approaches the goal pose, and completes the maneuver

with the image plane parallel to the target ROI, as desired.
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Figure 3.25: Scenario 3NP1: camera views from chaser. (a) Initial view. (b) Final view.

Figure 3.26: Scenario 3NP1: 3D trajectory of chaser and target
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Figure 3.27: Scenario 3NP1: position of chaser with respect to LVLH frame.

Figure 3.28 displays the velocity of the chaser with respect to the LVLH frame. As

with previous results, the velocity decreases smoothly during the later half of the maneuver.

The magnitude of the velocity slows to less than 1 cm/s as the chaser approaches within 25

centimeters of its final pose.

Figure 3.29 displays the image plane trajectories and servo error, showing desirable

results for the motion of the features. The standard deviation of the servo error is 4.88

pixels, larger than that of maneuvers with respect to static planar ROI’s, but still good

enough to have minimal effect on the chaser’s pose at the end of the maneuver.

Overall, it is apparent that the zoom method works well to generate a goal image for

the nonplanar surface examined, as the results for the final relative pose of the maneuver

are very comparable to those previously presented for the planar ROI.
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Figure 3.28: Scenario 3NP1: velocity of chaser with respect to LVLH frame.

Figure 3.29: Scenario 3NP1: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.
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3.4.3.2 Scenario 3NP2: Maneuver with Respect to Nonplanar ROI Using

Perspective Warp Method for Goal Image Generation.

Even after conducting inspection phase maneuvers, it is possible that the chaser

camera could never have been positioned with the ROI sufficiently perpendicular to

the optical axis such that the zoom method for goal image generation could be used.

Accordingly, it is necessary to examine the warp method for goal image generation of

nonplanar ROI’s. This scenario is identical to 3NP1, except it uses the warp method to

generate the goal image.

Figure 3.30 shows the 3D trajectory of the chaser, with an enlarged view of the final

pose of the chaser at the end of the simulation, showing that it does not quite achieve an

orientation where the camera plane is parallel to the target ROI. Figure 3.31 shows the view

from the chaser camera at the end of the simulation. At completion of the maneuver, the

camera axis is tilted −11.3◦ around the radial axis and 14.0◦ about the in-track axis (all other

scenarios with static targets achieved a tilt within 0.2◦ of each axis). The final position of

the chaser is [0.34, 0.31, 1.90] meters in the LVLH frame (as opposed to [0.00, 0.00, 2.04]

meters for scenario 3NP1).

These deviations from the results of previous scenarios are a function of the

perspective warp inaccurately estimating to goal feature locations for the nonplanar target

surface. The feature trajectories and servo error (Figure 3.32) convey this: the target

features fail to reach their goal positions as well as in other maneuvers with static targets.

The standard deviation of the servo error at the end of the maneuver, 12.50 pixels, is much

larger than for previous scenarios.

The results of this scenario convey an important possible degeneracy of the warp

method for goal image generation: as this method assumes a planar surface is being warped,

if the target surface is not planar, the chaser may be less likely to achieve the desired goal
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Figure 3.30: Scenario 3NP2: 3D trajectory of chaser and target

Figure 3.31: Scenario 3NP2: View from the chaser camera at end of simulation
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Figure 3.32: Scenario 3NP2: (a) image plane trajectories of 10 target features. (b) Servo
error for all target features.

pose. One possible solution to this degeneracy is to manually select target features within

the target ROI that appear to lie on the same plane (points on the surface of the case of the

spacecraft bus, for example) prior to generating the goal image using the perspective warp

(and subsequently only use these approximately planar features during maneuvering). This

may not be feasible or practical for a remote operator though, so the next scenario examines

a different option to improve the quality of the final relative pose.

3.4.3.3 Scenario 3NP3: Incremental Maneuvering with Respect to Nonpla-

nar ROI.

This scenario examines one possible solution to the degeneracy presented in scenario

3NP2. Instead of conducting the entire maneuver all at once, it is proposed to break up

the maneuver into multiple sub-maneuvers, each implemented back to back. The thought

here is that after each maneuver, the camera gets incrementally closer to achieving the

desired relative orientation, which makes the perspective warp for the next sub-maneuver’s
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goal image more accurate. This scenario breaks the whole maneuver up into three sub-

maneuvers, though in practice more or less sub-maneuvers could be implemented.

For each sub-maneuver, a goal image is generated with the target ROI made

incrementally larger in the camera field of view. Figure 3.33 depicts the trajectories of the

three sub-maneuvers in shades of blue, and the trajectory from scenario 3NP2 is provided

in red for reference. As can be seen, the chaser is closer to achieving the desired goal pose

after the incremental maneuvers as compared to scenario 3NP2. Table 3.4 summarizes

values for the final position and orientation for this scenario and previous two scenarios

with nonplanar ROI’s. Figure 3.34 shows the view from the chaser’s camera at the end of

the simulation.

Additional testing of this method confirms that it produces appreciable improvements

in the quality of the final relative pose, as compared to conducting one maneuver (using

perspective warp for goal image generation). However, the final relative pose provided by

this method still may not be considered accurate enough, depending on the application.

Consequently, additional methods for conducting complex maneuvers with respect to

nonplanar ROI’s will be examined in Chapter IV.

Table 3.4: Summary of Results for Scenarios with Nonplanar Target ROI
Scenario

3NP1 (zoom) 3NP2 (warp) 3NP3 (warp, 3x incremental)
Position [0.00, 0.00, 2.04] m [0.34, 0.31, 1.90] m [0.11, 0.14, 1.99] m

Tilt about radial axis 0.18◦ −11.3◦ −8.08◦

Tilt about in-track axis 0.14◦ 14.0◦ 3.81◦

Servo Error Standard Deviation 4.88 pixels 12.50 pixels 6.55 pixels
*All values are for end of maneuver
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Figure 3.33: Scenario 3NP3: Comparison of 3D trajectories between scenario 3NP2 and
3NP3

Figure 3.34: Scenario 3NP3: View from the chaser camera at end of maneuvering
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3.4.4 Results Summary.

As stated in the introduction to this section, these results are not intended to represent

any particular spacecraft mission or use case. They do however show the proposed

architecture’s ability to work for a variety of potential final approach RPO maneuvers.

Together these scenarios demonstrate that is possible to perform very complex RPO

maneuvers using only information from a stereo camera sensor.

While the results presented generally depict the ability for the chaser to robustly

capture a goal pose as defined by a generated goal image, it is noted that there is one

possible degeneracy when the warp method is used to generate a goal image for highly

nonplanar target ROI’s. A method was examined to improve the quality of the final

relative pose for this case by using multiple incrementally implemented maneuvers. It was

shown that this does improve the convergence to the desired relative pose, but this method

would impose an additional burden on remote operators in order to implement multiple

maneuvers. Chapter IV of this work will examine a different type of visual servoing in an

effort to improve relative maneuvers with respect to unknown nonplanar target ROI’s.

3.5 Conclusion

This chapter proposed an architecture for autonomously conducting 6DOF final

approach maneuvers with respect to unknown targets. Various aspects of sensing,

navigation, and control were treated.

The architecture uses a low-cost, low-SWAP stereo camera as the primary relative

navigation sensor, coupled with a feature-based computer vision pipeline to process stereo

images. A bank of Kalman filters are used to estimate states for the tracked target features,

which are in turn used to estimate the relative velocity between chaser and target. An

image-based visual servo control law is implemented to generate control commands for

6DOF relative maneuvers.
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Two methods were proposed to generate goal images for visual servo maneuvers with

unknown targets. One method uses a zooming camera, and the other uses a perspective

warp to generate an approximate image from the desired relative goal pose. Both of these

methods were tested in simulation and found to work well with planar ROI’s, including

when the target was tumbling or drifting. Nonplanar target ROI’s were also examined;

while the zoom method worked well for this case, the warp method performed somewhat

poorly in commanding the chaser to the desired relative pose. A method of incremental

maneuvering using the warp method was proposed and was shown to provide better

results as compared to conducting a single maneuver with the warp method. Improving

maneuvering with respect to nonplanar ROI’s will be a primary objective of Chapter IV of

this work.

The proposed navigation and control methods were demonstrated using a 6DOF

simulation. While image processing was not implemented, the stochastic nature of image

feature tracking was modeled via four mechanisms. Results show that the architecture is

robust to levels of camera sensor measurement error that are considered greater than what

could be expected in reality. Furthermore, the results demonstrate the architecture’s ability

to command complex maneuvers with respect to tumbling/drifting targets.

Finally, it is worth reiterating that the proposed architecture not only does not require

any knowledge of the target or its state, it does not require a relative pose estimate

between the chaser and target. This is significant because computationally intensive

and potentially brittle pose estimation algorithms are not required to perform these final

approach maneuvers, even when the target is translating and rotating.
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IV. Hardware-in-the-Loop Implementation of GNC Method 1

4.1 Overview

This chapter details work done to experimentally validate the framework proposed

in Chapter III, with the intent to answer Research Question 3 as it applies to Research

Question 1 (see Section 1.2). The chapter includes a description of the experimental test

setup, modifications/additions made to the Chapter III architecture necessary to implement

this method with hardware-in-the-loop (HITL), experimental results for various test cases

representative of possible final approach maneuvers with unknown targets, and a discussion

of these results including considerations for practical implementation of the method and

recommendations for future work.

4.2 Method

The guidance, navigation, and control (GNC) method implemented in this chapter

is fundamentally the same as that of Chapter III. Instead of examining the architecture

in simulation as in the previous chapter however, this chapter utilizes HITL to assess the

architecture under more realistic conditions than can be realized in simulation alone. As

one of the main limitations of the simulation used in the previous chapter pertained to the

ability to accurately model computer vision algorithms, a stereo camera sensor is used to

provide real video imagery and depth measurements. These measurements are in turn used

to control movement of a 4 degrees of freedom (DOF) robot with respect to a physical

target (also capable of maneuvering in 4DOF). This section describes the experimental

setup used for this chapter as well a several extensions to the method that enable its use

with HITL.
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4.2.1 Experimental Setup.

Physical motion of chaser and target bodies is actualized via the use of the Air

Force Institute of Technology (AFIT) Control and Autonomy Space proximity Robot

(CASpR). CASpR is a gantry style robotic machine capable of enacting 4DOF motion for

two independent bodies (3 translational DOF and 1 rotational DOF). More information

regarding the hardware/software structure of CASpR is available in Appendix B. The

movement of each CASpR body represents relative motion with respect to the Local-

Vertical-Local-Horizontal (LVLH) frame (for this work the origin of this frame is set as

the centroid of the target object).

Figure 4.1 shows a view of CASpR setup for the experiments of this chapter. The

chaser spacecraft is represented by the center assembly of the bottom gantry machine

(specifically, the camera fixed to the top of this assembly), and the target spacecraft is

represented by the object suspended from the center assembly of the top gantry machine.

Figure 4.1: CASpR set up for experiments of this chapter with spacecraft bodies and LVLH
frame highlighted.
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As this work is founded on the use of camera sensors for relative navigation, a stereo

camera is mounted on the chaser body (lower machine center assembly), and is the sole

sensor used to affect relative maneuvering. The camera used for this work is an Intel®

RealSense™ D435 [134, 135], shown in Figure 4.2. The D435 contains a stereo camera

pair for measurement of depth, an additional color image sensor, and an onboard processor

for calculation of depth maps. The camera also contains an active projector that optically

superimposes patterned infrared light on the image scene in order to improve the quality of

generated depth maps [136]. This patterned light aids in stereo rectification for texture-less

surfaces and during low-light conditions. Not all stereo cameras have projectors however,

so the D435’s projector is disabled for all of the results contained within this work.

Figure 4.2: Intel® RealSense™ D435 stereo camera sensor [135].

The GNC code for this chapter was written in Python, in order take advantage of the

extensive functionality of the OpenCV library. Python was chosen over C++ for ease-of-

use. Though C++ generally produces more computationally efficient code, many Python

libraries, including OpenCV, utilize compiled C code internally, making the difference

in computational speed less drastic. A graphical user interface (GUI) was designed to
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facilitate experimentation and observation of relevant metadata in real time. A screen

capture of this GUI is shown in Figure 4.3.

Figure 4.3: Example view of GUI developed to support this research. Camera view shown
on left, aligned and filtered depth map on right. Green points in camera image indicate
healthy target feature points, blue points indicate goal positions of features, and gray lines
connect features to corresponding goal positions.

4.2.1.1 Approximating Truth Data with CASpR.

CASpR utilizes stepper motors to control motion of each body. These motors are

operated in open-loop, and provide no feedback on their actual state to the low-level

machine controllers. As motor position feedback is not available, nor is any other method of

directly recording positional information for each machine (such as a Vicon motion capture

system), information on the true state of each body must be inferred from the commands

sent to each machine’s stepper motors. This is a reasonable approach because stepper

motors are extremely precise (they are commonly implemented open-loop in 3D printers

and CNC machines, achieving sub-millimeter accuracy even after days of continuous

operation). Thus it is assumed that stepper positions commanded by the low-level controller

are equivalent to the actual position of the motors. During each scenario stepper motor

commands are logged and used in post-processing to generate ‘truth’ data.

Several plots in Section 4.3 compare velocity estimated by the GNC system to the

‘derived actual’ velocity. Here, the derived actual velocity is an approximation of the true
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velocity derived from the logged positional data of the stepper motors. To calculate this

quantity, a discrete derivative of the positional data is taken and a second-order digital

butterworth filter is applied to smooth the estimate. This filter is applied forwards and

backwards to ensure zero phase lag.

4.2.1.2 Relative Motion Dynamics with CASpR.

As described in Appendix B, low-level microcontrollers are used to control the

motion of each body. These microcontrollers receive acceleration commands from a

separate ‘flight’ computer running the GNC algorithms developed herein, and in turn

propagate spacecraft relative motion dynamics in order to determine the correct position

and velocity to command each body to. As the microcontrollers only have 8-bit 16

MHz processors, it is necessary to implement linearized relative motion dynamics instead

of the nonlinear equations of motion that were utilized in simulation. For translational

motion, a discretized version of the Hill-Clohessy-Wiltshire (HCW) equations described

in Section 2.3.1.1 are implemented in lieu of the Nonlinear Equations of Relative Motion

(NERM). Discretized equations for the explicit solution of the HCW equations (equations

(2.14)-(2.19)) including additional thruster acceleration terms are implemented on each

microcontroller and are shown here for completeness:
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żk−1
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sin (n∆t) + zk−1 cos (n∆t), (4.3)

ẋk = ẋk−1 cos (n∆t) +
[
3xk−1n + 2ẏk

]
sin (n∆t) + ux∆t, (4.4)

ẏk = −
[
6nxk−1 + 3ẏk−1

]
+

[
6ẋk−1n + 4ẏk

]
cos (n∆t) − 2ẋk−1 sin (n∆t) + uy∆t, (4.5)

żk = żk−1 cos (n∆t) − zk−1n sin (n∆t) + uz∆t, (4.6)

where k is the timestep number, ∆t is the time from the previous timestep to the current

timestep, u = [ux, uy, uz]T is the translational acceleration vector imparted by control

thrusters, resolved in the LVLH frame, and all other variables are as defined in Section

2.3.1.1.

CASpR has one rotational DOF for each body, about the LVLH Z-axis, termed θ.

Discretized equations for this state are developed from (2.21),

θk = θk−1 + θ̇k−1∆t, (4.7)

θ̇k = θ̇k−1 + αc∆t, (4.8)

where αc is the angular acceleration imparted by attitude control actuators.

The control algorithm outputs commands in the body frame. It is therefore necessary

to rotate these commands to the LVLH frame, as described in Appendix B. To add an

additional layer of realism, control actuators are modeled by applying a single pole infinite
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impulse response low-pass filter to the requested acceleration commands, Freq,

Fact
k = αFreq

k + (1 − α)Fact
k−1, (4.9)

where α is a decay parameter, and 0 ≤ α ≤ 1 for unity DC gain. α is related to the time

constant, τ of the filter (the number of samples for the system to decay to 36.8% of its

original value) [137],

α = e−1/τ. (4.10)

For a sample time of 0.1 seconds (the typical loop rate utilized herein), τ = 3 is thought to

conservatively model the delay associated with spacecraft thrusters. Thus, α = 0.7165 is

used for this work.

4.2.2 Control Law Modification for Implementation with CASpR.

The Image-Based Visual Servoing (IBVS) control law introduced in Chapter III was

designed to control 6DOF maneuvers. As such, the interaction matrix, Lx, used for that

implementation (equation (2.44)) relates the 6DOF relative velocity of the camera and

target to optical flow of target feature points. CASpR, however, is limited to 4DOF motion,

so using Lx as previously developed will not yield velocity commands that completely drive

the chaser to its goal pose, since two of the attitude states are uncontrollable. Therefore, it

is necessary to truncate the interaction matrix for use with CASpR’s 4DOF system. This is

done by simply removing the columns of the Lx associated with the uncontrollable DOF (ωx

and ωz in the camera frame). For a single image feature, the interaction matrix relationship
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is then:
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4.2.3 Practical Implementation of the Sensing Subsystem.

As detailed in Section 3.2.2, the role of the sensing subsystem is to produce image and

depth measurements for every target feature point identified in each video frame during

maneuvering. Because the simulation used in the previous chapter did not implement actual

computer vision algorithms (rather, it approximated the stochastic nature of feature tracking

via a number of mechanisms, as discussed in Section A.1.2.2), it did not completely address

in detail how feature tracking could be implemented in reality. This section proposes a

practical image processing pipeline for identifying and tracking target feature points during

maneuvering using a stereo camera. Results presented in this chapter demonstrate that this

proposed method is effective for the laboratory experiments examined in this work.

Identifying and tracking image features over the course of a complex approach

maneuver in an accurate, robust, and computationally efficient manner is a challenging

computer vision task. Two separate feature point identification and tracking methods

were introduced in Section 2.4.3: image Feature Extraction and Matching (FEM) (Section

2.4.3.3) and feature tracking using the Kanade-Lucas-Tomasi (KLT) optical flow algorithm

(Section 2.4.3.4). This work proposes combining these two methods via a bank of Kalman

filters in an effort to ensure both robustness and computational efficiency. Figure 4.4 shows

a flowchart of the pipeline.

The pipeline is composed of several subroutines, indicated by the dashed rectangles.

These are: maneuver initialization, feature tracking via sparse KLT Optical Flow, feature

update/re-initialization via FEM, stereo depth measurement, and Kalman filtering. In the
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Figure 4.4: Image feature processing pipeline

previous chapter, the Kalman filter bank was discussed with the navigation subsystem,

but is included here to show how these subroutines are associated. These subroutines are

discussed in the following subsections.

4.2.3.1 Maneuver Initialization.

Prior to maneuvering, a region of interest (ROI) on the target that will be the

objective of the final approach maneuver is manually selected. Considerations for this

selection process are discussed in Section 3.2.1. This subsection addresses how features

are identified within the target ROI after it has been selected. Here it is assumed that

an image frame from the chaser’s camera sensor captured from the initial relative pose is

available to a human operator prior to the start of maneuvering. The operator specifies a

quadrangle-shaped ROI on the target by manually selecting four ROI corners in this initial

image.
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In order to identify a rich set of target features, multiple image frames are used

to identify features present within the selected ROI. These image frames are captured

one after another and portray the same view of the target (assuming there is no

rapid relative motion between chaser and target). Each frame will have differences

imperceptible to the human eye as a result of measurement noise associated with the camera

sensor. Accordingly, using multiple frames gives the feature detection algorithm several

opportunities to identify new features under slightly different noise conditions.

In order to only locate features within the ROI, an image mask is used to restrict

the feature detection algorithm to only check the portion of the image containing the

ROI. For the initial pass of this process, the mask is a binary image, with white section

corresponding to the ROI. For each subsequent frame of this process, a small area around

each feature identified in previous frames is also masked. This is done to ensure that feature

identifications are not duplicated, and features are spread out over the entire ROI. Figure

4.5 shows an example sequence of image masks used for this procedure.

Figure 4.5: Example sequence of image masks used to identify features in the target ROI

Adjustable parameters for this initialization procedure include: the number of frames

this process is repeated for, the max number of features that can be detected in each

frame, the radius of the area to mask off for each feature in subsequent frames, and all
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of the parameters associated with the chosen feature detector/descriptor. There are several

trade-offs to consider for these parameters. If too many frames are processed, relative

motion could make locations of features detected early in the process inaccurate. If the

feature mask radius is set to be too large, very few features will be identified, and feature

descriptors will be poor. If too many features are allowed to be identified, increased

computational requirements to track these features may overburden the flight processor.

Parameter selections for the results of this work are outlined in Section 4.5.

After features are identified in the target ROI, descriptors for these features are

generated, the depth to each feature is recorded using the aligned depth map, features are

warped to a generate goal image, as described in Section 3.3, and the feature locations/depth

are used to initialize the bank of Kalman filters.

4.2.3.2 Filtering Stereo Depth Maps.

Raw depth maps are prone to contain significant measurement noise as a result of

the stereo matching process, which directly affects the quality of depth measurements for

feature points on the target. Fortunately, there are several methods available to filter depth

maps, thus providing more consistent depth measurements to features over the course of a

maneuver.

In their white paper for Intel® RealSense™ cameras, Grunnet-Jepsen and Tong

discuss a recommended processing pipeline for filtering stereo depth maps [138]. As this

research effort utilizes a RealSense™ camera, the pipeline is implemented as described by

Grunnet-Jepsen and Tong with filtering parameters tuned for this application. However,

the methods of this pipeline should apply equally well for any stereo camera setup. The

pipeline is shown in Figure 4.6 and is summarized below.

The first step in the pipeline is to apply a decimation filter, which reduces the

resolution of the depth map and therefore its complexity. This can be done by simply

taking every nth pixel of the depth map, or Grunnet-Jepsen and Tong describe an intelligent

134



Figure 4.6: Depth map filtering pipeline [138]

method to perform sub-sampling for decimation. The effect of this filter is to significantly

accelerate subsequent processing, and to additionally provide some basic smoothing and

hole-filling of the depth map. How much decimation to apply is dependent both on how

much processing power is available and on how much depth resolution is required.

Before spatial and temporal filters are applied to the depth map, Grunnet-Jepsen

and Tong recommend transforming the map from the depth domain to the disparity

domain. In the depth domain, each pixel encodes the depth to the corresponding point

in space, whereas in the disparity domain, each pixel encodes the pixel disparity between

corresponding points in the left and right image of the camera.

Next, spatial filtering of the depth map is applied using an edge-preserving filter based

on the method proposed by Gastal and Oliveira [139]. This simplified implementation

essentially applies multiple passes of a 1D exponential moving average filter vertically

and horizontally over each pixel of the depth map, except for pixels where the difference

in disparity from the previous pixel is greater than some threshold (i.e. edges containing

instantaneous jumps in depth). The tuning parameters for this filter include the number

of passes to conduct, the decay parameter for the moving average filter, and a distance

threshold used to determine what is an edge.

A temporal filter is then used to additionally smooth the depth map. This filter is

applied in much the same way as the spatial filter, except instead of being applied across

different pixels in the same map, it is applied to the same pixel across depth maps captured
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in sequence. As with the spatial filter, it utilizes an exponential moving average filter with a

single decay parameter, and a distance threshold that determines how edges are preserved.

Finally, after performing a transformation back to the depth domain, a hole-filling filter

can be optionally applied to estimate depth for pixels without depth information. There are

a number of ways to do this, though all methods rely on using information from surrounding

pixels to estimate depth for pixels without depth information. The danger of doing this is

that a very incorrect depth could be applied to the pixel, especially if it is located near an

edge. For this reason, depending on the nature of the target surface, it may be best to not

apply a hole-filling filter, and rather just reject/not update features for pixel locations with

no depth information.

4.2.3.3 Feature Point Tracking using KLT and FEM.

Tracking of feature points is achieved using two separate methods: KLT (see Section

2.4.3.4) and FEM (see Section 2.4.3.3). Information about the state of tracked target feature

points from these two methods is fused via the Kalman filter bank. The methods are

both utilized in order to mitigate the relative disadvantages associated with implementing

each method individually. Since the KLT method is computationally faster than FEM,

it is implemented for every image frame and is therefore the primary feature tracking

mechanism. FEM is implemented periodically (since calling it every image frame could be

too computationally expensive), and it acts to both refine locations of tracked features and

re-initialize lost features.

The KLT method implemented for this pipeline is a modified version of the

original method introduced by Kanade, Lucas, and Tomasi. A sparse iterative pyramidal

implementation of the basic version of KLT is used, as proposed in [140]. This version

of KLT implements a set of image pyramids, and searches the coarsest level for feature

matches first. As a result, it is more computationally efficient and can track features moving

farther between image frames.
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Additionally, forward-backward error checking is implemented as a secondary

mechanism to detect tracking failures, thus making the method more robust. Proposed

in [141], this check works by calculating the optical flow of features from the previous

frame to the current frame, then again calculating the optical flow from the current frame

backwards to the previous frame. If the distance between the feature location in the

previous frame and the KLT backward estimate of the feature location is greater than a

threshold, the track for that feature is deemed to have failed. While this method requires

two calls of KLT per image frame, it significantly reduces the number of erroneous feature

tracks.

KLT is not used exclusively for two reasons. First, in the event a feature track is lost,

it has no way to reinitialize that track. In this way, the number of features tracked by KLT

is monotonically decreasing over the course of the maneuver, unless new feature tracks are

added by a separate method. Identifying new features mid-maneuver is not straight-forward

for this use-case, as the homography warping used to determine the goal locations of each

feature is only defined for the initial pose. Augmenting this pipeline in order to identify

new features is worthy of future research, as discussed in Section 4.4.1.

Secondly, using KLT exclusively, poor feature tracks may become insidious outliers

over the course of a maneuver. Because KLT only searches a local region around a feature,

the track of a feature identified for example on an edge may slide along that edge as the

scene changes, thus insidiously deviating from its true location. Here FEM often does a

better job identifying the true location of a feature as it uses more of the image to match

features.

FEM is implemented periodically in an effort to refine feature locations and reinitialize

lost tracks. FEM is not implemented exclusively because it is computationally expensive

and it typically does not identify every tracked feature in every image frame (leading to

more jagged feature trajectories). Two layers of outlier rejection are used to robustly
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remove incorrect feature matches. The first layer implements Lowe’s ratio test and

RANSAC, as discussed in Section 2.4.3.3. The second layer implements servo error

monitoring and is discussed in the next section. Features matches generated by the FEM

process that pass all outlier rejection steps are used to reset associated KLT feature tracks

and position states of corresponding Kalman filters.

4.2.3.4 Kalman Filter Bank and Feature Health Vector.

The use of a bank of Kalman filters and a health vector to develop state estimates of

target feature points was introduced in Section 3.2.3. This section provides more detail

on the functions of this bank and vector. The primary functions of the bank of filters and

health vector are to:

1. Fuse feature location measurements from the KLT tracker and FEM methods.

2. Reject feature measurement outliers.

3. Smooth feature pixel trajectories.

4. Estimate feature pixel velocities.

5. Keep track of which features are ‘healthy.’

The first function pertains to updating the estimated location of a feature given a

measurement from either the KLT tracker or FEM method. If a KLT feature track exists

for a given feature, then each timestep a Kalman update is performed using the tracked

position of the feature as a measurement. Established models for the measurement noise

associated with KLT are not available, so in lieu of additional experimentation to quantify

these noise models, the covariance matrices for these measurements are considered tuning

parameters.

It may seem tempting to perform a Kalman update when FEM identifies a feature

in the current image frame in the same manner as KLT, but doing so would create the
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possibility that the feature location is updated to an erroneous location in between the

current estimate of the position and the FEM measurement of the position. Instead

of performing a Kalman update, if an FEM measurement is determined not to be an

outlier via the methods discussed previously, the estimated location (position state) in the

Kalman filter is simply reset with this measurement. Velocity states and covariance remain

unchanged, as they will be quickly corrected during the next Kalman update using the KLT

track measurement. If a valid measurement of depth is not available for the feature, the

feature is not reset.

Mahalanobis distance monitoring is implemented as a final layer of outlier rejection

for each feature measurement, as described in Section 3.2.3. Since this rejection method is

only implemented in the update step, it is only applicable to the KLT-based measurements.

Being a state estimator, each Kalman filter also works to smooth the pixel location

measurements and estimate the pixel velocities (recall these velocities are needed to

estimate 6DOF relative velocity between chaser and target). The pixel dynamics model

is simply a double integrator, so the amount of smoothing that is applied is determined

by the filter process and measurement covariance tuning. As the filter acts a causal low-

pass filter, the amount of smoothing that is applied is traded off with the induced delay

in the state estimate. In practice, given the comparatively slow dynamics associated with

spacecraft rendezvous and proximity operations (RPO), a fair amount of smoothing can be

applied since the associated delay is not consequential.

Finally, a health vector is utilized to keep track of which features have been identified

in the current image frame. That is, features that actively have a KLT track associated with

them or have been reinitialized via FEM are considered ‘healthy’ in the sense that they can

be used for navigation and control functions. Thus, a vector of the health values (where

a value of 1 denotes a healthy feature and 0 a feature that is not presently being tracked)

associated with each feature is updated each time step and used to determine which features
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are used for relative velocity and IBVS calculations for that time step. Kalman filters for

features without active KLT tracks are still propagated. Without measurements, however,

state estimates for these features degrade quickly, making them unusable for navigation

and control.

4.2.3.5 Feature Outlier Rejection via Servo Error Monitoring.

This section presents a method to identify outliers using the servo error (Equation

(3.9)) calculated for all tracked features. The method works by comparing servo error for

individual features with the mean servo error for all tracked features. Doing this effectively

compares where a target feature is expected to be at any given time to where it actually

is—if the location of a feature deviates too far from its expected location, it is considered

an outlier and is rejected.

In simulation and experimentation with CASpR, it was observed that outliers in feature

state estimates can have a disastrous effect on the quality of a maneuver. While a single

outlier is not always catastrophic since navigation estimates and control commands are

computed using a least-squares solution, significant or multiple outliers can significantly

degrade this solution. Unfortunately using Lowe’s ratio test and RANSAC alone does not

remove all outliers associated with FEM.

Feature measurement outliers can broadly be divided into two categories: insidious

outliers that occur due to KLT tracks wandering from a feature’s actual location, and

features outliers occurring due to being incorrectly identified in the wrong location during

the FEM process. FEM is meant to help mitigate insidious outliers caused by KLT,

and Lowe’s ratio test coupled with RANSAC is intended to reduce the number of FEM

matching errors. However, even with these methods, outlier measurements can sometimes

be incorporated in feature state estimates.

Figure 4.7 shows servo error plots from two separate maneuvers conducted with

CASpR, with feature outliers circled in red. For the servo error plots on the left, the outliers
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are the result of a FEM matching error, as is apparent by the fact that the error associated

with the feature outliers exhibits a sudden change from one timestep to the next. The servo

error plots on the right depict insidious outliers resulting from KLT tracks erroneously

sliding along an edge on the target surface. The servo error for these features does not

discretely jump, but does grow to be significant over the course of the maneuver.

Figure 4.7: Examples of the effect of outliers on servo error. Servo error plots for two
different runs are shown, with outliers circled. The run on the left contains outliers resulting
from FEM matching error. The run on the right displays insidious outliers resulting from
KLT tracking error.

In both of the cases shown in Figure 4.7, the feature outliers are easily identifiable

as they do not follow the trend of the rest of the servo error. Outliers like these can be

detected online by performing a check on the servo error for each feature prior to using that

feature for navigation and control calculations. If the servo error for an individual feature is

determined to be too far from the mean servo error, then that feature is considered an outlier.

The threshold for rejection is defined as a multiple of the standard deviation of servo error

for all features for the current time step plus the mean servo error. This threshold is defined

separately for the horizontal or vertical direction. If a feature is determined to be an outlier,
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the health vector is updated to reflect this feature as unhealthy, meaning it is not used for

navigation and control, and its KLT track is deleted.

In practice, two separate instances of servo error monitoring are implemented in the

navigation and control loop. The first instance occurs during the FEM subroutine on the

image processing pipeline, as shown in Figure 4.4. This instance of monitoring is effective

for rejecting FEM-associated outlier measurements before they are used to reset feature

locations. The second instance of monitoring is implemented during construction of the

interaction matrix for the current timestep (see Section 3.2.3, Equation (3.4)). Here the

servo error for each tracked feature is compared to the dynamic threshold calculated using

the servo error for all features from the previous timestep. This instance of servo error

monitoring effectively rejects insidious outliers, as the servo error for every tracked feature

is verified every timestep.

The threshold for determining outliers using servo error is a tuneable parameter—if

an assumption is made that servo error is distributed normally, then a convenient way to

determine an appropriate threshold is to use the empirical rule of standard deviations, which

states that about 68% of samples should fall within 1 standard deviation of the mean, 95%

within 2 standard deviations, and so on. For this work, the servo error monitoring threshold

used during the FEM subroutine is set to 2 standard deviations plus the mean servo error,

and the threshold used for servo error monitoring during velocity command calculation is

set to 3 standard deviations plus the mean. These thresholds are shown graphically on the

servo error plots presented in Section 4.3.

As will be shown in Section 4.3, servo error monitoring has been observed to be very

effective at preventing both insidious and FEM outliers from significantly affecting the

outcome of the maneuver.
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4.2.4 Pose-Hold Mode.

A critical function of GNC algorithms for autonomous spacecraft RPO pertains to the

ability to recognize and prevent potentially catastrophic situations. Without a doubt the

most catastrophic situation that can occur during RPO is collision of spacecraft, which will

likely lead to destruction of one or both spacecraft, and possibly generate space debris that

will pose a significant risk to RSOs in nearby orbits. The ability to recognize impending

failure of a final approach maneuver is so important that it is stated in Chapter I as a distinct

task of Research Question 3. This section addresses that task, with a focus on how the GNC

method examined in this chapter is augmented to automatically revert to a failsafe mode if

conditions degrade to a point that a successful maneuver cannot be guaranteed. If criteria

are met to activate this mode, the chaser will cancel its current course of maneuver and

immediately act to maintain its current relative pose to the target. This ‘pose-hold’ mode

can also be used intentionally to maintain a precise relative pose e.g. for station keeping or

formation flying maneuvers.

When used as a failsafe, there are a number of criteria worth considering that can be

used to activate this mode. For example, if the relative velocity along the chaser’s optical

axis exceeds a preset threshold, pose-hold mode could be triggered. Or a method could be

implemented whereupon the mode is initiated if the target ROI gets too close to an edge

of the image plane. One criteria that should always be implemented involves initiating the

mode if the number of healthy target features falls below a minimum threshold. This would

be indicative of impending failure of the final approach maneuver, since both estimation of

relative velocity and generation of control commands rely on least-squares computations

using tracked target features.

The ability of IBVS to operate directly using image features makes implementation of

this mode straight-forward. In fact, the only difference between operation of this mode and

the normal method is in the initialization procedure of the sensing subsystem. Figure 4.8
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shows this procedure; it is a drop-in replacement for the initialization procedure in Figure

4.4.

Figure 4.8: Pose-hold initialization procedure (replaces initialization procedure in Figure
4.4)

Upon entering this mode, a new maneuver is commanded to maintain the current

relative pose. Instead of a remote operator selecting the ROI on the target as previously

described, the entire portion of the target that is visible in the image frame is used as the ROI

for maneuvering. This maximizes the opportunity for target features to be identified. Doing

this is not as simple as using the entire current image however; as if the Earth, Moon, or

stars can be seen in the background of the image, features will be identified on these bodies.

Instead, the background behind the target is subtracted using an aligned stereo depth map.

This is accomplished by generating a feature detection mask using pixels in the camera

image with corresponding depths beyond a distance threshold (for example beyond the

maximum distance that can be estimated by the stereo sensor) to 0. The background mask

and initial image are passed to a feature detector and a set of target features are identified

as before. Beyond this procedure, the framework operates as described previously, with the

exception of how the goal image is generated.
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As this mode assumes the current pose is the desired pose, no warping is necessary to

generate goal positions for each target feature. Rather, the goal positions for each feature

are taken as their initial position when the pose-hold mode was activated.

Finally, it is worth noting that because no relative motion should occur with this mode

activated, it is possible to identify new target features during the course of operation (as

opposed to waiting for the number of features to fall below the failsafe threshold and

restarting a new pose-hold maneuver).

4.3 Results

As with the previous chapter, results for this chapter are presented via a set of

scenarios, with the intent to demonstrate the efficacy of the method under a variety of

conditions representative of possible final approach maneuvers. The simulation results

of Chapter III indicated that performance of the method was affected by how planar the

ROI was. Accordingly, the first three scenarios presented, 4P1-4P3, consider a planar

target, and the last three scenarios, 4NP1-4NP3, consider a target with significant nonplanar

protrusions.

4.3.1 Maneuvering with Respect to a Planar (P) ROI.

Scenarios 4P1-4P3 consider a planar target ROI (shown in Figure 4.9). The target

surface is not based on any particular spacecraft or object. This surface was chosen because

it lends itself to identification of numerous features. Since features can be readily identified

on this surface, the number of features used for maneuvering can be easily controlled by

limiting the maximum number of features that can be identified during the initialization

procedure of the sensing subsystem. This facilitates examination of the affect that the

number of tracked features has on the quality of the final approach maneuver.

4.3.1.1 Scenario 4P1: Simple Maneuver with Static Planar Target.

The first scenario considers a simple maneuver: a nearly on-axis approach requiring

the chaser to move toward the target ROI. The intent of this scenario is to examine
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performance of the method for a comparatively simple maneuver and generate a baseline

of performance for comparison with subsequent scenarios. The chaser is initially located

at [−0.13,−1.70,−0.10]T meters with respect to the LVLH frame (LVLH origin at target

ROI centroid), with its camera boresight pointing at the target ROI centroid (rotated −6.46◦

about the LVLH Z-axis). The target ROI and goal image corners are selected such that large

translation in the LVLH positive Y direction and slight translations in the positive Z and

X directions are required to achieve the desired goal pose. These goal corners implicitly

define a goal pose that should place the chaser camera about 0.5 meters from the target ROI

centroid, rotated such that the camera boresight is orthogonal to the ROI surface (i.e. 0◦

rotation about the LVLH Z-axis). Figure 4.9 displays the initial and final views from the

chaser camera. The red cross in the center of the image denotes the camera’s boresight, and

the other four crosses denote the goal locations of the ROI corners.

Figure 4.9: Scenario 4P1: Initial and final view from chaser’s camera

Figure 4.10 displays the chaser’s trajectory in the LVLH frame, with the target ROI

centroid (red triangle), and ROI’s surface plane normal vector (red arrow) overlaid. The

chaseer smoothly captures the goal pose, ending the maneuver at an LVLH position of

[0.00,−0.49, 0.01]T meters with 0.21◦ rotation about the LVLH Z-axis.

Figure 4.11 shows the servo error for all tracked target features (in normalized image

coordinates), as well as the average servo error for each time step during the maneuver.
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Figure 4.10: Scenario 4P1: Chaser trajectory (LVLH frame)

The servo error collapses smoothly, though error does not reach zero for every feature. The

standard deviation of servo error at the end of the maneuver is 0.0054 normalized pixels

in the horizontal (u) direction and 0.0061 normalized pixels in the vertical (v) direction.

The failure to reach zero servo error is expected and assessed to be due to (1) incorrect

generation of feature goal locations via the warp method, and (2) measurement error

associated with tracking the locations of each feature.

Figure 4.12 displays the number of healthy features tracked via KLT for each timestep

of the maneuver. The number of features initially identified is manually capped at 40

features in order to examine the method under sub-optimal conditions. Of note, the number

of features is not monotonically decreasing, due to the use of FEM (implemented every 20

video frames) to re-identify features after they have been lost. In total, 108 features re-

initializations occur over the course of the maneuver. The plot also shows the raw number

of FEM matches, the number of FEM updates (those matches that make it though all outlier

rejection methods), and the number of FEM rejections/feature tracks deleted as a result of

servo error monitoring.
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Figure 4.11: Scenario 4P1: Servo error

Figure 4.12: Scenario 4P1: Number of features tracked throughout maneuver

Recall that this work assumes that the only relative navigation sensor available is

a stereo camera sensor, meaning this method relies exclusively on information derived

from this sensor (target features) to generate navigation estimates and control commands.
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Specifically, the estimate of relative velocity between chaser and target is derived from

optical flow of target features and is used by both the navigation and control subsystems.

Figure 4.13 shows the relative velocity estimate for each maneuvering degree of freedom

(rotated into the LVLH frame to facilitate comparison), overlaid with the derived actual

velocity (see Section 4.2.1.1 for description of this value). Though the relative velocity

estimate is noisy (as it was in simulation), it tracks the derived actual well enough to affect

a successful maneuver.

Figure 4.13: Scenario 4P1: Chaser velocity with respect to LVLH frame (estimated,
commanded, derived actual)

Overall, this scenario’s results indicate proper functionality of each component of the

architecture. The computer vision methods and sensing subsystem are sufficient in this

case to produce a high quality relative velocity estimate and in turn a satisfactory chaser

trajectory. The results are largely comparable to those produced in simulation, and further

demonstrate the potential of the method for this type of final approach maneuver.
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4.3.1.2 Scenario 4P2: Complex Maneuver with Static Planar Target.

Scenario 4P2 examines a more complex maneuver with the same static planar target

ROI as 4P1, this time with chaser beginning the maneuver with significantly more rotation

relative to the target ROI. Figure 4.14 shows the initial and final views from the chaser’s

camera. The chaser is initially positioned at [−1.23,−1.20,−0.10]T meters with respect

to the target/LVLH frame, pointing at the target ROI centroid (−46.46◦ rotation about the

LVLH Z-axis). For this scenario, the number of target features is capped at 20 in order to

demonstrate the ability of the method to operate using very few target feature tracks.

Figure 4.14: Scenario 4P2: Initial and final view from chaser’s camera

The trajectory of the chaser, shown in Figure 4.15, indicates that the chaser smoothly

converges on the desired goal pose while maneuvering in all 4DOF. The position of the

chaser upon termination of the scenario matches nearly exactly with that of Scenario 4P1:

[0.00, 0.49, 0.01]T meters in the LVLH frame, and 0.28◦ rotation about the LVLH Z-axis.

Servo error plots are shown in Figure 4.16. The initial increase in average servo error

occurs as the camera initially rotates faster than it can translate to compensate. Standard

deviation of servo error at termination of the maneuver is comparable to that of Scenario

4P1: 0.0067 normalized pixels in the horizontal (u) direction and 0.0062 normalized pixels

in the vertical (v) direction.
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Figure 4.15: Scenario 4P2: Chaser trajectory (LVLH frame)

Figure 4.16: Scenario 4P2: Servo error
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The quality of the relative velocity estimate is also similar to that of Scenario 4P1, and

is shown in Figure 4.17. The variance of the velocity estimates decrease over the course

of the maneuver as the camera nears the target, enabling it to better estimate target feature

pixel velocities.

Figure 4.17: Scenario 4P2: Chaser velocity with respect to LVLH frame (estimated,
commanded, derived actual)

Figure 4.18 shows example plots of the Kalman filter states for a tracked feature over

the course of the maneuver and are representative of filter states for all the tracked features.

The small jumps in position most notable in the horizontal (u) position are indicative FEM

position resets.

This scenario corroborates the results of Scenario 4P1 and further shows that the

method is capable of affecting a successful maneuver in all 4DOF available with CASpR.

The success of the maneuver starting from a highly skewed initial pose indicates that

the warp method of goal image generation is able to satisfactorily generate goal image

coordinates for target features of a planar ROI under a variety of conditions.
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Figure 4.18: Scenario 4P2: Kalman filter states for a single tracked feature

4.3.1.3 Scenario 4P3: Complex Maneuver with Rotating Planar Target.

This scenario demonstrates an angled approach with a rotating target. The chaser

is initially positioned at [−0.57,−0.10,−0.10]T meters with respect to the target/LVLH

frame, pointing at the target ROI centroid (30.98◦ rotation about the LVLH Z-axis).The

target is given an angular velocity of 0.52◦/sec about the LVLH Z-axis at the start of the

chaser’s maneuver. The chaser must compensate for the target’s motion as it maneuvers to

achieve the same goal pose as the two previous scenarios. The target motion begins as the

chaser initiates its maneuver, meaning that the Kalman filters have not yet converged on the

moving target features at the start of the maneuver. As with Scenario 4P2, only 20 target

features are allowed to be initially identified for this maneuver.

The trajectory of the chaser and target in the LVLH frame is shown in Figure 4.19.

Colored arrows emanating from the ROI centroid indicate the surface normal vector of

the ROI surface throughout the maneuver. Camera symbols (representative of the chaser’s

pose) with matching colors as ROI surface normal vectors correspond to the same time step.

The scenario ends with the chaser in a relative pose very similar to that of the previous two
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scenarios: [0.53, 0.01,−0.01]T meters with respect to the target body frame, and −0.16◦

rotation about the target body frame/LVLH Z-axis (camera frame Y axis).

Figure 4.19: Scenario 4P3: Chaser trajectory (LVLH frame)

As with Scenarios 4P1 and 4P2, the servo error for all tracked features (shown in

Figure 4.20) exhibits a smooth collapse towards zero during the maneuver. The standard

deviation of error in the horizontal (u) direction (0.0066 normalized pixels) and in the

vertical (v) direction (0.0064 normalized pixels) is nearly identical to that of previous

scenarios, indicating that the feature tracks do not in general drift more for a moving target

than for a static target (with the exception of the outlier discussed below).

The relative velocity of the chaser with respect to the target, resolved in the camera

frame, is shown in Figure 4.21. Like previous scenarios, the estimate largely tracks the

true relative velocity very well. However, at about 168 seconds into the maneuver, one of

the target features located on the edge of the target ROI becomes an insidious outlier as

its feature track catches on to an erroneous feature located behind the target. The feature

154



Figure 4.20: Scenario 4P3: Servo error

slowly drifts horizontally away from its true location, until it is rejected via servo error

monitoring at 182 seconds into the maneuver.

The times this outlier appears and is rejected are indicated on all the plots in this

subsection. As can be seen, the outlier degrades the relative velocity estimate, especially in

the camera frame X direction and about the camera frame Y axis. This degraded velocity

estimate has an effect on the chaser trajectory: the camera essentially stops rotating while

the outlier is present. It is important to note that this outlier is able to noticeably affect the

maneuver because there are only 16 features being tracked at the time it appears. If there

were more healthily features being tracked while this outlier was present, then it would have

less of an effect on the maneuver due to the least-squares nature of the velocity estimate and

command calculations (however it is worth noting many more features would be required

to overcome a single outlier, one or two would not be enough).

Figure 4.22 shows the number of features tracked over the entire maneuver, and clearly

depicts that the insidious outlier is rejected at 182 seconds. The figure also shows that in the
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Figure 4.21: Scenario 4P3: Relative velocity of chaser with respect to target, resolved in
the camera frame (estimated, derived actual)

later half of the maneuver, many features match outliers resulting from the FEM subroutine

are rejected via servo error monitoring.

Overall, the scenario demonstrates the ability of the method to successfully control a

maneuver with a moving planar target using less than 20 target features. Additionally, it

shows the degrading effect of insidious outliers when they constitute a significant portion

of the total number of features tracked. Importantly, it confirms the ability of servo error

monitoring to identify and reject such insidious outliers.

4.3.2 Maneuvering with Respect to a Nonplanar (NP) ROI.

The results presented above for a planar target ROI are promising. However in practice

the target ROI may contain significant nonplanar features, such as antennas, thrusters,

fixtures, etc. The simulation results of Chapter III indicate that using this method with

a nonplanar ROI made the chaser less likely to achieve the desired goal pose implicitly

defined by a goal image generated using the warp method. Specifically, when the target

ROI contains significant nonplanar features, the chaser fails to achieve the goal attitude of
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Figure 4.22: Scenario 4P3: Number of features tracked throughout maneuver with
annotation showing where insidious feature outlier is deleted

being orthogonal to the predominant surface of the ROI. This was determined to be a result

of the way goal positions for the features were generated using a homography warping,

which relies on an assumption that target features lie on a plane.

Figure 4.23 displays the nonplanar target used for Scenarios 4NP1, 4NP2, and 4NP3:

a mock-up resembling the Canadarm grapple fixture commonly used for docking with the

International Space Station. For the actual case of docking with this fixture, the fixture is

considered a known target—therefore established navigation and control methods are able

to be implemented due to the well known nature and location of the fixture with respect

to the space station. This work pertains to unknown targets however, so it is assumed that

nothing is known about the target prior to initiating the final approach maneuver. This

design was chosen for this work because it is could be representative of possible target

ROIs containing nonplanar features, and it is considered a challenging target ROI due to its

significant protrusions.
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Figure 4.23: Canadarm grapple fixture used as target for nonplanar scenarios. Mockup
used for this research effort shown on left, actual image of grapple fixture shown on right
[142].

4.3.2.1 Scenario 4NP1: Simple Maneuver with Nonplanar Target.

Scenario 4NP1 is similar to Scenario 4P1, with the exception that a nonplanar target

ROI is now the subject of the maneuver. Figure 4.24 displays the initial and final chaser

camera images. The chaser’s initial position in the LVLH frame is [−0.10, 1.70,−0.10]T

meters with its camera boresight rotated −4.95◦ about the LVLH Z-axis, pointing at the

target ROI centroid. The intent of the maneuver is to approach the target along the axis

orthogonal to the predominant surface plane of the target ROI. The goal corners are selected

such that the desired pose equates to a relative position approximately 0.6 meters away from

the predominant target surface.

Figure 4.24: Scenario 4NP1: Initial and final view from chaser’s camera
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Figure 4.25 shows the chaser’s trajectory in the LVLH frame. The final position of the

chaser is [−0.02, 0.66,−0.1]T meters with respect to the LVLH/target body frame and 2.48◦

degrees rotation about the LVLH frame Z-axis. Compared to Scenario 4P1, the chaser ends

the maneuver with 2.27◦ more rotation relative to the axis orthogonal to the target, and the

chaser’s final position is within about 0.06 meters of of the desired relative pose implicitly

defined by the generated goal image.

Figure 4.25: Scenario 4NP1: Chaser trajectory (LVLH frame)

The servo error for all tracked features is shown in Figure 4.26. While the error does

collapse over the course of the maneuver, it is clear that the variation in error as the chaser

achieves its goal pose is larger as compared to maneuvers with planar targets. The standard

deviations in the horizontal (u) and vertical (v) directions at the end of the maneuver are

0.0095 and 0.0146 normalized pixels, respectively. These deviations are roughly 1.4 times

larger in the horizontal direction and 2.3 times larger in the vertical direction as compared

to Scenario 4P1. The increased deviation is expected, as the warp method for goal image

generation fails to correctly predict feature goal locations for nonplanar surfaces. However,
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in spite of this large steady state servo error, the chaser is similarly able to achieve the

desired relative pose as compared to Scenario 4P1.

Figure 4.26: Scenario 4NP1: Servo error

Figure 4.27 shows the chaser’s estimated and derived actual with respect to the LVLH

frame. These plots strongly resemble those of Scenario 4P1, once again indicating that the

method is able to sufficiently estimate relative velocity for this type of approach.

Given how similar the results of this scenario are compared to Scenario 4P1, it is

apparent that a nearly straight-on approach maneuver with a nonplanar target can be

conducted with similar efficacy as with a planar target, depending on how precise a

final relative pose is required. Unfortunately a nearly straight-on approach may not be

guaranteed, so Scenario 4NP2 examines a highly skewed approach with respect to the same

target.
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Figure 4.27: Scenario 4NP1: Chaser velocity with respect to LVLH frame (estimated,
commanded, derived actual)

4.3.2.2 Scenario 4NP2: Complex Maneuver with Nonplanar Target.

Scenario 4NP2 resembles Scenario 4P2, with the exception that the target ROI is now

nonplanar. The chaser is initially positioned at [−1.20, 1.20,−0.10]T meters with respect

to the target/LVLH frame, pointing at the target ROI centroid (about −47◦ rotation about

the LVLH Z-axis). Section 3.4.3.3 showed that conducting an approach maneuver with a

nonplanar ROI can be made more effective by splitting the approach into a series of smaller

incremental maneuvers. Accordingly, two trajectories are shown for this scenario—one

where the approach is conducted as a single maneuver, and one where the approach is

conducted as two incremental maneuvers. Unfortunately, the small size of CASpR is

not conducive to examining incremental maneuvering with more than two maneuvers.

However, the results of this section demonstrate that the positive effect of incremental

maneuver is apparent with as little as two maneuvers.

Figure 4.28 shows the initial and final camera images from this scenario, including

final images for both the single maneuver run and for the two incremental maneuver
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run. The chaser clearly does not achieve the desired goal pose of being orthogonal to

the predominant surface of the target ROI upon termination of a single maneuver (bottom

left of Figure 4.28). Two incremental maneuvers yield a relative pose closer to the desired

pose (final image shown in bottom right of Figure 4.28), but still visibly not orthogonal to

the predominant surface of the target ROI.

Figure 4.28: Scenario 4NP2: Initial chaser camera view (top), final view for single
maneuver (bottom left) and final view for two incremental maneuvers (bottom right)

The chaser’s trajectories for the single maneuver and two incremental maneuvers

are shown in Figure 4.29, along with a camera symbol indicating the approximate

desired relative pose. The two incremental maneuvers yield a better final relative

position: [0.56,−0.07, 0.00]T meters versus [0.49,−0.20, 0.00]T meters with respect to the

target/LVLH frame, and a significantly better relative rotation: −10.69◦ versus −27.39◦

rotation about the LVLH Z-axis. However, even for the incremental maneuvers, there is
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over 10◦ more relative rotation at the end of the maneuver compared to the analogous

scenario with a planar target.

Figure 4.29: Scenario 4NP2: Chaser trajectory (LVLH frame)

The standard deviations of the servo error at the end of the maneuver are

also significantly better for incremental maneuver as compared to a signal maneuver:

0.0144/0.0159 normalized pixels in the horizontal/vertical directions for two maneuvers

versus 0.0486/0.0241 normalized pixels for a single maneuver. However, these deviations

are still worse than that of all previous scenarios, indicating that the warp method performs

more poorly for nonplanar targets viewed from an angle.

Chaser velocity plots for the single maneuver are shown in Figure 4.30 (plots for two

incremental maneuvers are similar and are not shown for conciseness). Importantly, these

plots show that the method still does well estimating relative velocity even when the target

is nonplanar.

These results corroborate the simulation results presented in Section 3.4.3.3,

namely that while conducting a single large maneuver with a nonplanar target may

be unsatisfactory, conducting a series of small incremental maneuvers can improve

performance (get the chaser closer to the desired relative pose).

163



Figure 4.30: Scenario 4NP2: Chaser velocity with respect to LVLH frame (estimated,
commanded, derived actual)

4.3.2.3 Scenario 4NP3: Pose-Hold with Moving Nonplanar Target.

The final scenario demonstrates pose-hold mode (introduced in Section 4.2.4) with

a rotating nonplanar target. For this scenario, the chaser is initially positioned at

[0.60, 0.00, 0.00]T meters with respect to the target body frame (which is initially aligned

with the LVLH frame). At the start of the scenario, the target is given an angular rotational

rate of 1.0◦/sec about its body frame Z-axis, and maneuvering proceeds until the target has

rotated 135◦. As the chaser is in pose-hold mode, it attempts to maintain its initial relative

pose with respect to the target for the duration of the maneuver.

Figure 4.31 shows the trajectory of the chaser and target. Chaser camera and target

normal vector symbols with the same color correspond to the same time step. The final

relative position of the chaser with respect to the target body frame is [0.66, 0.02, 0.01]T

meters. The rotation of the chaser with respect to the target body frame Z-axis at the end

of the maneuver is 0.95◦.
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Figure 4.31: Scenario 4NP3: Chaser trajectory (LVLH frame)

The servo error for all tracked features is depicted in Figure 4.32. Since pose-hold

mode is implemented, the servo error for all features starts at 0, as the chaser is assumed

to be in its goal pose. There is initially an decrease in the horizontal (u) direction servo

error, which is expected as the target initiates its horizontal rotation at the beginning of the

maneuver and the chaser cannot instantaneously compensate for this.

The estimated and derived actual relative velocity of the chaser with respect to the

target, resolved in the chaser/camera frame, is displayed in Figure 4.33. As with previous

scenarios, the estimate tracks the derived actual velocity well enough to affect a successful

maneuver.

This scenario demonstrates that pose-hold mode can be used to maintain relative

pose, even with respect to maneuvering, nonplanar targets. This represents an important

capability for close-in servicing, inspection, or formation flying RPO missions.
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Figure 4.32: Scenario 4NP3: Servo error

Figure 4.33: Scenario 4NP3: Chaser velocity with respect to LVLH frame (estimated,
commanded, derived actual)
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4.3.3 Results Summary.

The numerical results for all the scenarios presented in this chapter are included in

Table 4.1 for ease of comparison. Color-coded cells provide a visual indication comparing

the results of each scenario, with green tones indicating better performance and red tones

indicating poor performance.

Table 4.1: Summary of Results for Chapter IV Scenarios

4.4 Recommendations for Future Work

This section provides recommendations for future work that could improve the

navigation and control method proposed in Chapters III and IV. Recommendations are split

into three categories: improvements regarding the feature tracking pipeline, improvements

specific to nonplanar targets, and improvements for practical implementation during on-

orbit RPO.
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4.4.1 Improving the Feature Tracking Pipeline.

Since features identified on the target via computer vision methods represent the

sole measurement available for relative navigation, correctly tracking target features is

paramount to success this of this architecture. In both simulation and experimentation,

tracking more features was observed to improve performance and reliability. Additionally,

the accuracy of the feature state estimates is important, especially when only a few features

are tracked during the maneuver. Thus, continuing research to improve the feature tracking

pipeline is worthwhile. To this end, two possible improvements are proposed in this section:

a method to improve FEM by updating feature descriptors, and a method to add new

features during maneuvering.

In the implementation of the feature tracking pipeline introduced in this chapter, a

descriptor vector for each target feature is computed during the initialization subroutine.

During each subsequent instance of FEM, descriptor vectors for features identified in the

current image frame are compared against the initial set of target feature descriptors in order

to determine feature matches. As the maneuver progresses and the current image scene

becomes more and more different than the initial image scene, the likelihood of matching

descriptors from the current image to the initial image becomes more unlikely (this can be

seen in Figures 4.12 and 4.22). Therefore, it is proposed that each time a target feature is

matched in the current image scene, the descriptor vector for that feature is updated to the

vector computed for the current scene. Doing so should allow target features to be matched

further into the maneuver, however it is unknown how this could affect the ability of the

chaser to achieve the desired relative pose.

As introduced in this chapter, there is no mechanism in the feature tracking pipeline

to add new target features during the maneuver. Features are only identified during the

initialization as the homography used to generate the goal feature locations is only valid

for the initial relative pose. It should be possible estimate a homography from the current
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pose to the goal pose during maneuvering (see Section 2.4.2.2), which could then be used to

generate goal positions for new target features identified in the current image scene using

the warp method described in Section 3.3.2. However, homography estimates computed

online can be susceptible to large variation, so experimentation would be required to

ascertain the effectiveness of this augmentation.

4.4.2 Improving Utility with Nonplanar Targets.

The results of Section 3.4.3.2 and 4.3.2.2 indicate that the chaser can fail to fully

achieve the desired relative pose during for angled approaches with highly nonplanar

targets, therefore future work should consider methods to improve performance for these

types of maneuvers. Two possible improvements include: exclusively utilizing features

that approximately lie on a plane associated with the target ROI, and developing a better

method to generate goal locations of feature points.

The failure to reach the desired goal pose for nonplanar targets is a result of the warp

method’s inability to correctly predict the goal image locations for nonplanar features on the

target surface. It is possible that this degeneracy could be circumvented by only utilizing

target features which lie on a plane associated with the selected ROI on the target. To

implement this however, a predominant surface plane would have to exist in the target ROI,

and a method would need to be developed to ignore detected features that are not on that

surface plane.

Alternatively, future work should explore developing a better method to generate goal

locations for target features on nonplanar targets. Here depth information for each feature

point would surely be useful to transform the initial understanding of target feature points

to desired locations.

4.4.3 Improvements for Practical Implementation.

Future work should also focus on improvements that will increase utility during actual

spacecraft RPO. Two possible focus areas for this work include: augmenting the method
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and/or sensor hardware to enable its use over a wider relative range, and examining how

the method can be optimized to minimize control effort during maneuvering.

The fixed-focal length cameras assumed in this work limit the ability of the method

to control maneuvers requiring a large change in relative range between the chaser and the

target. This is primarily due to the difficultly associated with tracking feature points on

the target as the relative size of the target in the image plane changes significantly over

the course of a maneuver. Several research efforts have examined using zooming cameras

with IBVS in order to increase usable range, including [127, 129, 143]. Alternatively, the

method could be implemented using multiple sets of stereo cameras, each with a different

focal length intended to be used at different ranges as the chaser maneuvers over a large

distance relative to the target.

Minimizing fuel use is paramount during RPO—additional research should examine

modifying the method in order to optimize the chaser’s relative trajectory for fuel use.

Research on this topic for traditional visual servoing methods exists, see for example

[144, 145].

4.5 System Parameters

This section provides a summary of all the tunable parameters associated with this

method, including the values used for the results presented herein, and relevant notes for

each parameter. The intent of this section is to provide designers a starting point for future

implementations of this method. Tables 4.2, 4.3, and 4.4 detail the tunable parameters

associated with the sensing subsystem, navigation subsystem and control subsystem,

respectively.
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Table 4.2: Sensing Subsystem Tunable Parameters
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Table 4.3: Navigation Subsystem Tunable Parameters

Table 4.4: Control Subsystem Tunable Parameters
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4.6 Conclusion

This chapter examined the architecture proposed in Chapter III using HITL experi-

mentation. AFIT’s CASpR was used to simulate relative motion of chaser and target bod-

ies with respect to the LVLH frame. A stereo camera sensor attached to the chaser was

used exclusively for relative navigation and control. Several extensions to the method were

proposed and discussed to enable hardware implementation and improve performance.

The efficacy of the method was demonstrated using actual camera feedback and

computer vision algorithms to track target features. It was shown that performance of

the method with respect to planar target ROIs is similar to that seen in simulation. Notably,

pose-hold mode, introduced in Section 4.2.4, demonstrated the method’s ability to maintain

a relative pose, even with respect to maneuvering nonplanar targets.

Finally, Section 4.4 discussed several topics pertaining to the method, with the intent

to facilitate future implementation and make recommendations for improvement. Future

work should focus on improving the method’s effectiveness with highly nonplanar target

ROIs and continuing to improve the feature tracking pipeline. The results of this chapter

and the previous chapter motivate the next section of this work: development of a novel

visual servoing method known as Surface Normal Visual Servoing (SNVS).
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V. GNC Method 2: Surface Normal Visual Servoing (SNVS) for Final Approach

Maneuvers with Unknown Targets

5.1 Overview

This chapter proposes a novel method of visual servoing, hereafter referenced as

Surface Normal Visual Servoing (SNVS). Two variations of the method are developed

and analyzed. These variations, termed SNVS Variant 1 and SNVS Variant 2, share many

guidance, navigation, and control (GNC) functions, with the exception of how translational

and attitude control commands are generated. Both variations are presented as each has

been found to have utility for different use cases.

Like the augmented Image-Based Visual Servoing (IBVS) method presented in

Chapters III and IV of this work, SNVS is intended to enable rapid initialization of final

approach maneuvers with unknown, noncooperative targets. No information about the

target is required prior to maneuvering other than a single image of the target captured

from the chaser’s initial pose, which is used by an operator to define the intent of the

maneuver. As with the previous IBVS method, the only relative navigation sensor used

during maneuvering is a stereo camera sensor.

SNVS was developed to overcome the noted drawbacks of the IBVS method

previously presented. Compared to that method, SNVS:

1. Is able to precisely capture a desired relative pose when maneuvering with respect to

targets containing significant nonplanar features.

2. Does not require natural feature point tracking.

3. Allows the desired relative pose to be explicitly defined in a straight-forward manner.

4. May be implemented with depth information only, depending on the nature of the

target and intent of a maneuver. Doing this permits use of alternative depth sensors
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such as flash LIDAR, which would enable utilization of the method under a wider

range of environmental conditions (such as low light conditions). See Section 5.6.3

for a discussion of how SNVS could be implemented without a camera sensor.

In addition to these advantages, SNVS has several notable benefits over other potential

methods for maneuvering with respect to unknown targets:

1. Does not require a geometric model of the target to be developed a priori or online,

nor are other properties of the target (such as mass or moments of inertia) required to

be estimated.

2. Only requires a single relative navigation sensor, a stereo camera.

3. Can be easily implemented in real-time using low-cost hardware.

The defining characteristic of SNVS is its use of a unique navigational vector

associated with a region of interest (ROI) on the target, termed the Predominant Surface

Normal (PSN) vector. The PSN vector for the ROI is computed using a novel algorithm

capable of being implemented in real time. This vector, along with a tracked Point of

Interest (POI) on the target, are used in a feedback loop to generate control commands for

the chaser. Note that the SNVS methods presented here do not command relative rotation

about the chaser camera’s optical axis (boresight). See Section 5.2.5 for a discussion

regarding how this degree of freedom can be controlled using a separate controller.

Implicit in the use of the PSN vector is the assumption that the target ROI contains a

predominant surface plane. That is, the ROI cannot be continuously curving. This caveat

does not significantly limit utility of the method for spacecraft rendezvous and proximity

operations (RPO) however, as many spacecraft surfaces are either predominantly planar, or

locally planar ROIs can be selected for maneuvering (see Section 5.6.2 for a discussion of

the method’s effectiveness with curved targets).
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The rest of this section provides a brief description of each SNVS variant. Section 5.2

presents GNC functions common to both variants. Sections 5.3 and 5.4 discuss elements

unique to each variant. Section 5.5 presents simulation results for both variants. Finally,

Section 5.6 discusses several topics relevant to this method, and Section 5.7 provides

concluding remarks.

5.1.1 Description of SNVS Variant 1.

Figure 5.1 shows a block diagram overview of SNVS Variant 1. The sensing and image

processing functions for this method are composed of stereo image processing, target POI

tracking, tracking of the predominant surface plane associated with the target ROI, and

estimating the PSN vector of the target ROI. Kalman filters are used to refine the state

estimates of the PSN vector and the POI. As measurements for these filters come from a

camera sensor, state estimates are resolved in the camera frame. Separate controllers are

implemented to regulate relative translational and relative rotational motion.

Figure 5.1: SNVS Variant 1 block diagram
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For Variant 1, the translational controller utilizes full-state feedback to drive the POI

to a desired state. The attitude controller drives the camera boresight vector to be parallel

with the PSN vector, while simultaneously ensuring that the POI stays in the camera’s field

of view. Notably, because the POI state is resolved in the camera frame, the desired relative

attitude must first be achieved in order to reach a desired relative position with respect to

the target frame of reference.

5.1.2 Description of SNVS Variant 2.

Figure 5.2 shows a block diagram overview of SNVS Variant 2. The sensing, image

processing, and navigation filter functions of this variant are identical to those of Variant 1.

This variant also implements separate translational and attitude controllers.

Figure 5.2: SNVS Variant 2 block diagram

For Variant 2, attitude control regulates the POI to a desired position in the camera

image. Translational control regulates the POI state (resolved in the camera frame) scaled

by the inverse of the desired depth to the target, to the PSN vector state estimate. For this
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variant, the desired attitude need not be achieved prior to the chaser achieving a desired

position with respect to target frame of reference.

5.2 Common Elements of Both SNVS Methods

5.2.1 Prior to Maneuvering.

As with the IBVS method presented previously, prior to employing this method for

RPO with unknown targets, it is first necessary for an operator to define the desired end

state (i.e. the desired relative pose) of the final approach maneuver. To do this, it is assumed

that the operator has access to resolved imagery of the target from the chaser’s initial pose,

such that a portion of the target which will be the subject of the approach maneuver can be

manually selected. For the control method as presented, it is assumed that the desired end

state of the approach maneuver places the chaser at a desired relative distance from a POI

on the target, with that POI centered in the chaser camera’s Field of View (FoV), and the

camera’s optical axis orthogonal to the predominant surface plane associated with an ROI

on the target.

In order to initiate a maneuver, the operator must:

1. Select a POI on the target.

2. Define the desired relative distance to the target POI.

3. Select an area on the target containing a predominant surface plane, such that the

final relative attitude of the chaser with respect to the target will place the camera

optical axis orthogonal to this plane.

5.2.2 Estimating the Predominant Surface Normal (PSN) Vector of an ROI.

SNVS relies on the ability to track a navigational vector derived from information

available about the target ROI. This navigational vector is the PSN vector—a normal vector

orthogonal to the predominant surface plane associated with the selected ROI on the target.
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The PSN vector must be estimated in real-time over the course of the maneuver in order to

generate position and attitude control commands.

The use of surface normal vectors is common in the field of computer vision and

computer graphics. Numerous research efforts have examined methods to compute normal

vectors associated with objects in a visual scene using visual and/or depth information

about the scene (see e.g. [146, 147]). While there are a few basic similarities to the

methods presented herein, these efforts generally pertain to the use of normal vectors for

image segmentation and object identification, not navigation and control.

This section presents two procedures to estimate the PSN vector of an ROI. The

first (‘naı̈ve procedure’), introduces how normal vectors can be computed using depth

information, and the second (‘improved procedure’), modifies the basic procedure to

increase accuracy and computational efficiency.

5.2.2.1 Naı̈ve Procedure.

A basic method to estimate the PSN vector associated with the target ROI involves

first generating a map of surface normal vectors for every pixel within the ROI, in a similar

manner to [146]. Then, histograms for each vector component are generated using every

pixel’s computed surface normal vector in the ROI. These histograms are used to find the

most commonly occurring surface normal vector in the ROI—the PSN vector.

Recall the pinhole camera model, which creates a perspective projection of a 3D point

P = [X,Y,Z]T on a 2D image plane,

p =


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1

 =


fu γ cu
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 , (5.1)

where [u, v]T are the pixel coordinates associated with P, fu, fv are the horizontal and

vertical focal length (expressed in units of pixels), (cu, cv) is the principal point of the image
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frame, γ is the skew coefficient representing the amount of shear distortion for each pixel

of the sensor (typically 0 or nearly 0), and K is the camera calibration/intrinsic matrix. The

vector [x, y, 1]T represents the point expressed as a homogeneous vector using normalized

image plane coordinates.

For this procedure, to compute the surface normal vector corresponding to a pixel

p in an image, the surface gradient vectors associated with this pixel in the vertical and

horizontal directions are computed, then the cross product of these two vectors is calculated

to determine the surface normal vector associated with p. To do this, the 3D points

associated with p and its neighbors are first calculated,

P = Z(u, v)K−1 p, (5.2)

P∆u = Z(u − ∆u, v)K−1

p−


∆u

0

0
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 , (5.3)

P∆v = Z(u, v − ∆v)K−1

p−
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0
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

 , (5.4)

where Z(u, v) is the depth associated with pixel [u, v]T , and ∆u and ∆v are horizontal and

vertical pixel variations, respectively. For a noiseless depth map, ∆u and ∆v can be set to

1 pixel, though when using real (noisy) depth maps, setting these values to 10-20 pixels

yields better results. The gradient vector in each direction is then:

∆U = P∆u − P, (5.5)

∆V = P∆v − P. (5.6)

180



The surface normal vector associated with p is

np =
∆U × ∆V
||∆U × ∆V||

. (5.7)

Note that the sign of the Z component of np indicates whether the normal vector is

pointing into the surface of the ROI or out of it. For the control law as formulated in

this work, positive values for this Z component are required, thus np is negated if its Z

component is initially calculated as negative.

In practice, occluded portions and gradients around sharp edges can be ignored if the

difference in depth between p and its neighbors is large [146]. Depth maps generated from

stereo are typically noisy, so smoothing the depth map is useful, and can be implemented as

described in Section 4.2.3.2 (see also [148, 149]). Figure 5.3 shows an example depicting

surface normal calculation for an entire scene generated using a simulated image and

noiseless depth map. Figure 5.3(c) encodes the surface normal vectors associated with

each pixel on the target spacecraft as a specific RGB value.

Figure 5.3: (a) Camera sensor gray-scale image (b) depth map (c) surface normal map

Once a surface normal map for the target ROI is generated, the PSN vector of this

ROI is taken as the most common normal vector occurring in this set. Histograms are used

to compute the most likely vector; a histogram is generated for each vector component

using the set of surface normal vectors within the ROI. The peak of each histogram is
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then taken as the corresponding component of the PSN vector. Finally, the PSN vector is

re-normalized to ensure unit magnitude.

Figure 5.4 displays an example of this procedure generated using actual stereo

imagery. An ROI containing nonplanar features is selected as shown in Figure 5.4 (a).

The depth map aligned with this scene is shown in Figure 5.4 (b), and Figure 5.4 (c) shows

the surface normal map associated with the ROI. Figure 5.4 (d) displays the PSN vector

component histograms generated using the ROI surface normal map. The bin values of

the peaks of each histogram are taken as the corresponding vector components of the PSN

vector.

Figure 5.4: (a) Color image of target ROI (depicted by green quadrangle), (b) depth map
computed by stereo camera sensor, (c) surface normal map (d) histograms of ROI normal
vector components

In order to visualize the calculated PSN vector and assess its quality, a 3D point cloud

can be generated from the depth map using Equation (5.2). The point cloud for this example

with the estimated PSN vector overlaid are shown Figure 5.5. As can be seen, the method

correctly estimates the PSN vector associated with the ROI.
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Figure 5.5: Three views depicting the estimated predominant surface normal vector of ROI
and desired pointing direction of camera, overlaid on stereo generated point cloud of scene

5.2.2.2 Improved Procedure.

A major limitation of the procedure described in the previous section is that its

computational complexity depends on the size of the target ROI in the image plane. That

is, because the procedure calculates surface normal vectors for every pixel in the ROI, the

size of ROI determines how many computations must occur to calculate the PSN vector.

Furthermore, because the procedure only uses depth data from nearby pixels to determine

the surface gradients, calculated gradient vectors are highly influenced by noise in the depth

map.

Rather than cycling over every pixel in the ROI, the quality and speed of PSN vector

calculation can be improved by calculating the surface normal vector for a fixed number

of randomly sampled points within the ROI. Additionally, instead using local neighbors

in the horizontal and vertical directions to calculate surface gradient vectors as with the

naı̈ve procedure, the improved procedure randomly samples two additional points, which

when combined with the center point form two vectors whose cross product represents the

normal vector for the center point.

To implement the improved procedure, a fixed number of sets of three points are

uniformly sampled from within the ROI. To illustrate this, Figure 5.7 depicts 10 sets of
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sampled points and their corresponding vector pairs for the same example presented in the

previous section. 3D positions of the points of each set (P1, P2, P3) are calculated using

Equation (5.2), and gradient vectors are calculated,

∆vA = P2 − P1, (5.8)

∆vB = P3 − P1. (5.9)

The surface normal vector associated with P1 is then calculated as before (negating

normal vectors whose Z component is negative),

np1 =
∆vA × ∆vB

||∆vA × ∆vB||
. (5.10)

There is a chance that sampled points within a set may equal another point in the set,

causing the computed normal vector to be undefined. This is easily handled by ignoring

normal vectors with undefined values.

The PSN vector is calculated using histograms as described previously. Figure 5.7

shows the histograms generated using the improved procedure for the same example ROI

presented in the previous section. As can be seen, these histograms have much more well-

defined peaks compared to those generated with the naı̈ve procedure. Sharper peaks like

these facilitate more consistent re-identification of the correct PSN vector over multiple

image frames and are indicative of this procedure’s superior ability to identify accurate

PSN vectors.

For the same example using the naı̈ve procedure, normal vectors for all 197,930 pixels

in the ROI were calculated. Using the improved procedure, only 10,000 sets of points were

sampled, meaning for this example the improved procedure required almost twenty times
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Figure 5.6: Example showing ten sets of randomly sampled points and their corresponding
vector pairs used to calculate normal vectors for points with the ROI

less computation. If the code for this procedure is vectorized, it can easily be implemented

in real time, as demonstrated in Chapter VI of this work.

Figure 5.7: Histograms of the ROI normal vector components produced using the improved
procedure
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5.2.3 Target Tracking with Computer Vision.

The computer vision functions necessary to facilitate implementation of SNVS include

tracking the target POI, and tracking the ROI associated with the predominant surface

plane. As discussed in Section 2.4.3.2, there are many options for tracking feature points

and ROIs in an image. This section presents tracking methods considered for this work,

including a novel method for tracking the predominant surface plane associated with an

ROI.

5.2.3.1 Tracking the Target POI.

Prior to maneuvering, a POI is selected on the target surface that will be used to

regulate the relative trajectory of the chaser. This point must be tracked for the duration of

the maneuver. One option here is to use Kanade-Lucas-Tomasi (KLT) with the manually

selected feature point, or some augmented/similar method such as was presented in Section

4.2.3.

Alternatively, a single object tracker algorithm, such as those discussed in Section

2.4.3.2 can be used if a small region around a distinct POI on the target is selected. Using

this method, the POI is assumed to be the located at the geometric centroid of the bounding

box generated by the single object tracker. An experimental test campaign examining point

tracking for several representative target objects showed that a better alternative to KLT is

to track the target POI using a such an algorithm.

5.2.3.2 Tracking the Target ROI’s Predominant Surface Plane.

In addition to tracking a POI on the target, the predominant surface plane associated

with the target ROI must be tracked in order to enable estimation of the PSN vector of the

ROI. As with the POI, one option here is to use a separate instance of a dedicated ROI

tracking algorithm, with the operator judiciously selecting the ROI such that it contains a

predominant plane that will satisfactorily define the desired relative pose.
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Alternatively, this section proposes a novel method of tracking the predominant

surface plane that is faster and potentially more robust than using a dedicated tracking

algorithm. The basic concept of this method is to determine which sampled points lie on

the predominant surface plane, then generate a bounding box that encompasses all of these

points. This bounding box is used during the next timestep as the portion of the image from

which to sample new points for PSN vector computation.

Sampled points are deemed to lie on the predominant surface plane if all of their

vector components are within some threshold (a tunable parameter) of the corresponding

PSN vector component. Figure 5.8 illustrates this concept.

Figure 5.8: Example histograms of sampled points surface normal vectors, depicting how
predominant surface plane points are determined

To create the bounding box surrounding the predominant surface plane points, the

maximum and minimum pixel positions of all plane points in the horizontal and vertical

directions are determined, and a buffer of several pixels is applied to these values (added

to the max positions and subtracted from the minimum positions). This buffer is necessary

to keep the bounding box from shrinking each iteration. The buffer also allows the
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bounding box to grow from the initial region selected by the operator—the box will grow to

encompass the entire predominant surface plane, even if only part of the plane was initially

selected. The value of the buffer is a tunable parameter, with larger values causing the

box to grow more quickly. Figure 5.9 depicts the predominant surface plane bounding

box (magenta dashed rectangle) generated for the example previously discussed. Note that

the bounding box sides are oriented horizontally and vertically—this is in general not a

problem as long as the desired surface plane remains predominant within the bounding

box.

Figure 5.9: Example predominant surface plane points and bounding box (shown in
magenta)

In order to prevent the predominant plane bounding box from growing to encompass

parallel planes not associated with the target surface (i.e. other objects in the environment

behind or in front of the target), range gating is applied to depth image prior to sampling

points for the PSN vector computation. This is accomplished by zeroing out depth pixels

with depths greater than or less than the depth of the target POI plus or minus a predefined

gate range. The gate range is a tunable parameter, and should be set large enough for the
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predominant surface plane to remain visible in the depth image, but small enough to reject

other objects in front of and behind the target.

5.2.4 Navigation Functions of SNVS.

Both SNVS variants rely on estimates of the target POI state and PSN vector state.

In this section, an Extended Kalman Filter (EKF) is presented to filter the POI state, and

a Linear Kalman Filter (LKF) is presented to filter the PSN vector state. Note that state

estimates for both the POI and PSN vector are resolved in the camera frame.

5.2.4.1 Estimating Full State of the Target POI.

A constant velocity (double integrator) model is used to describe the dynamics of the

POI, with the state vector,

x =

 ρpoi

ρ̇poi

 , (5.11)

where ρpoi = [X,Y,Z] is the vector from the camera to the target POI resolved in the camera

frame.

The stereo camera sensor and computer vision tracking algorithm provide a

measurement of the target POI composed of its pixel location, ppoi = [u, v]T , and depth, Z̃,

the EKF measurement vector for the ith image frame is:

zi =


ui

vi

Z̃i

 . (5.12)

Assuming a pinhole camera model and calibrated sensor, the measurement model is a

nonlinear function of the centroid state and the camera intrinsic parameters,
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h(x, K) =


fu

X
Z

+ cu

fv
X
Z

+ cv

Z


, (5.13)

where the camera calibration matrix, K, contains the camera focal length in the horizontal

and vertical directions, fu and fv (in units of pixels), and the image principal point, [cu, cv].

5.2.4.2 Estimating Full State of PSN Vector.

An LKF is used to estimate the full state of the PSN vector, ρpsn. As with the POI, a

constant velocity model is used to describe the dynamics of the PSN vector, with the state

vector,

x =

 ρpsn

ρ̇psn

 . (5.14)

The computed PSN vector is used as the measurement for this filter, so the

measurement matrix is simply:

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (5.15)

As the PSN vector is a unit vector, the PSN vector estimate is normalized prior to

being used for control.

5.2.5 Controlling Rotation About the Camera Optical Axis.

Because the method only utilizes a single vector (the PSN vector) and point on the

target (the POI) for control, relative rotation of the chaser about the camera optical axis

(boresight) is not controllable. Thus, an additional control method must be implemented if

a specific relative rotation about the camera optical axis is required.
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A simple solution here is to correct the camera optical axis rotation during a maneuver

separate from SNVS maneuver. If this maneuver is conducted after the SNVS maneuver, a

pure rotation about the camera optical axis is all that is required to achieve the full 6DOF

desired relative pose. The IBVS controller proposed in Chapter III of this work provides a

straightforward method to command this secondary camera rotation maneuver.

5.3 SNVS Variant 1

This section describes the methods unique to SNVS Variant 1. These are a Linear

Quadratic Gaussian (LQG) controller to command translational motion, and a Quaternion

Feedback controller to command relative attitude.

5.3.1 Translational Control.

Translational control of the chaser is achieved via the use of a LQG controller,

combining a Linear Quadratic Regulator (LQR) with the POI state EKF introduced in

Section 5.2.4.1. The LQR controller drives the POI state estimate to the desired state,

ρdes
poi =

[
0 0 Zdes 0 0 0

]T

, (5.16)

where Zdes is the desired distance from the camera center to the target POI along the camera

optical axis. The LQR is augmented with integral action in a similar manner as in [150]

in order to reduce steady state error in the presence of measurement uncertainty and aid in

convergence to the desired state when the target is moving. To implement integral action,

the process model is augmented with an additional state, xi, which represents the integral

of the output error,

ẋi = y − x∗, (5.17)

where y = Cx̂ is the estimated position of the POI. Thus the full system model for the LQG

controller is
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 ẋ

ẋi

 =

 Ax + Butrans

y − x∗

 . (5.18)

which assumes the following state space model for the system

ẋ =

 03x3 I3x3

03x3 03x3

 x +

 03x3

I3x3

 utrans (5.19)

= Ax + Butrans. (5.20)

The translational control law using this augmented system is then

utrans = −Klqr x − Kixi, (5.21)

where Klqr is the LQR gain and Ki is the integral gain.

The advantage of this LQG configuration, beyond being comparatively straightfor-

ward to implement, is that LQR weighting factor and integral gain components can be in-

dividually tuned to directly affect control convergence of each relative position state. Note

that this controller drives the chaser to a position resolved in the camera frame, meaning

that in the absence of attitude control, the chaser may converge to a position anywhere on

the surface of a spherical region around the target POI (assuming the POI remains visi-

ble). It follows then that the chaser will only achieve the operator-defined desired position

with respect to the target POI when the desired attitude with respect to the ROI has been

achieved.

5.3.2 Attitude Control.

The nonlinear dynamics of rigid body angular motion and the possibility for large

attitude changes during final approach maneuvers limit the usefulness of LQR for attitude
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control in this application. Instead, eigenaxis quaternion feedback control is employed to

command the chaser’s attitude states. Although this type of control is not necessarily time

or fuel optimal, it is notable for its ability to control large angle reorientation maneuvers

[151]. The control law is implemented as in [152],

uatt = −Kq q̄e − Cqω + ω × Jω, (5.22)

where q̄e is the vector portion of the attitude error quaternion, qe, between current and

desired attitude, ω is the angular velocity error vector associated with qe (resolved in the

chaser’s frame), J is the chaser inertia matrix, and Kq and Cq are control gain matrices. The

ω × Jω term is added to counteract the gyroscopic term of Equation (2.21), though in this

application control contribution from this term is typically small. As shown by Wie, this

controller is globally asymptotically stable if the product K−1
q Cq is chosen to be positive

definite [152]. For this work, the control gains are selected as

Kq = α2 J, (5.23)

Cq = 2ζαJ, (5.24)

where ζ is the damping factor, and α is defined as

α =
√
τmaxJmin, (5.25)

where τmax is a tunable parameter that roughly corresponds to the maximum possible torque

output of the controller and Jmin is the chaser’s minimum principal moment of inertia.

5.3.2.1 Calculating the Desired Pointing Vector.

A basic implementation of this SNVS variant was described in a previous work which

utilizes the PSN vector exclusively as the desired pointing vector for the camera boresight,

êdes [153]. However, there is a possible degeneracy with this implementation where the
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target POI leaves the camera FoV if the chaser rotates to achieve the desired pointing vector

faster than it translates to compensate for the rotational motion. As the target POI must stay

in the camera FoV, this section describes a method to generate êdes that ensures the POI

will remain in the camera FoV during maneuvering. The method described here is similar

to a procedure for keeping features in the camera FoV during Partitioned Visual Servoing

described by Corke in [116].

In order to keep the POI in the FoV, two vectors are intelligently combined to generate

êdes. The first vector, êPS N , is the PSN vector, and represents the ultimate desired point

direction of the camera boresight upon completion of the maneuver. The second vector,

êPOI , is the vector from the camera to the target POI, and is used to keep the POI in the

FoV. A linear interpolation is used to combine these two vectors, with the parameter

βservingtospeci f yhowmucheachvectorisprioritized,

êdes =
(1 − β)êPS N + βêPOI

||(1 − β)êPS N + βêPOI ||
. (5.26)

The parameter β should prioritize êPS N if the POI is near the center of the FoV, and

êPOI if the POI is near an edge of the FoV. Thus, β is defined as,

β =



0 : ρ(u, v) > ρmax

1 : ρ(u, v) < ρmin(
ρ(u, v) − ρmax

ρmin − ρmax

)χ
: ρmin < ρ(u, v) < ρmax

, (5.27)

where ρ(u, v) = min{u, v,Nu − u,Nv − V}, Nu is the horizontal size of the image, Nv is

the vertical size of the image, and ρmin, ρmax, χ are tunable parameters used to define

conditions for prioritizing each vector. ρmin and ρmax define the minimum and maximum
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image boundaries from which β transitions from 1 to 0, and χ is a shaping parameter that

defines how fast this transition occurs. Figure 5.10 depicts these parameters graphically.

Figure 5.10: Depiction of parameters associated calculation of β

5.3.2.2 Calculating the Error Quaternion.

Once the desired pointing unit vector êd has been determined, this vector is used to

generate the error quaternion, qe, for the quaternion feedback controller. The boresight

vector of the chaser camera sensor in the chaser body frame is

êb =


0

0

1

 . (5.28)

qe thus represents the error quaternion between êb and êd. To derive an expression for qe,

consider the following trigonometric identities:

sin(θ) =
√

1 − cos2(θ), (5.29)
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sin
(
θ

2

)
= ±

√
1 − cos(θ)

2
, (5.30)

cos
(
θ

2

)
= ±

√
1 + cos(θ)

2
. (5.31)

The vector perpendicular to êb and êd is

ê⊥ =
êb × êd

||êb × êd||
=

êb × êd

sin(θ)
, (5.32)

where θ = cos−1(êb · êd) is the angle between êb and êd. ê⊥ and θ are the Euler axis and

angle to rotate êb to êd. Using Eq. (5.29), ê⊥ can be reformulated

ê⊥ =
êb × êd

sin(cos−1(êb · êd))

=
êb × êd√

1 − cos2(cos−1(êb · êd))

=
êb × êd√

1 − (êb · êd)2
(5.33)

=
êb × êd

√
1 − (êb · êd)

√
1 + (êb · êd)

.

An expression for qe can be defined using the well-known relation between Euler

axis/angles and quaternions. The vector portion of qe is (simplified using Eq. (5.30))

q̄e = ê⊥ sin
(
θ

2

)
=

êb × êd
√

1 − (êb · êd)
√

1 + (êb · êd)
sin

(
cos−1(êb · êd)

2

)
=

êb × êd
√

1 − (êb · êd)
√

1 + (êb · êd)

√
1 − (êb · êd)

2
(5.34)

=
êb × êd

√
2(1 + êb · êd)

.
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The scalar part of qe can be formulated using Eq. (5.31)

qe4 = cos
(
θ

2

)
= cos

(
cos−1(êb · êd)

2

)
(5.35)

=

√
1 + êb · êd

2
.

The full expression for the error quaternion is therefore

qe =



êb × êd
√

2(1 + êb · êd)

√
1 + êb · êd

2


, (5.36)

where the vector part is used by the quaternion feedback controller to command the camera

boresight vector to the desired pointing vector.

5.3.2.3 Estimating the Angular Velocity Term of Quaternion Feedback

Controller.

The second and third terms of the quaternion feedback control law, Equation (5.22),

include an angular velocity term, ω. This is the angular velocity associated with qe, and

must be estimated online. This is accomplished using a discrete derivative of qe and

quaternion kinematics,

ω = 2


q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

 q̇e, (5.37)

where qe = [q1, q2, q3, q4]T .
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5.4 SNVS Variant 2

The overall architecture of SNVS Variant 2 is generally similar to that of Variant

1, with the exception that the translational and attitude controllers operate on different

control errors. This section describes these controllers; all other methods of SNVS Variant

2 function as described previously.

The most significant difference of Variant 2 is that it does not require the chaser to

achieve the desired relative attitude prior to achieving the desired relative position. This

may be relevant for certain applications, hence it is presented here as an alternative to

SNVS Variant 1.

5.4.1 Translational Control.

As with Variant 1, SNVS Variant 2 utilizes an LQG controller augmented with integral

action to command translational motion. The same system matrix is utilized for this

implementation, however the control error is defined differently,

e =
X̂POI

Zdes
− X̂PS N , (5.38)

where X̂POI and X̂PS N are the POI and PSN state estimates respectively, and Zdes is the

desired relative depth (distance along the optical axis) from the camera to the POI. Recall

both X̂POI and X̂PS N are resolved in the camera frame and will change over the course of

the maneuver. The scaling of X̂POI by 1/Zdes is necessary to ensure the chaser ends the

maneuver at the desired distance from the target.

5.4.2 Attitude Control.

Attitude control for SNVS Variant 2 is straightforward: the only task of the attitude

controller is to drive the POI to a desired position in the camera FoV. As with SNVS

Variant 1, this controller regulates pan and tilt of the camera, but not rotation about the

camera optical axis. Proportional-integral-derivative (PID) compensation is sufficient for

this control task, with one controller each implemented for pan and tilt of the camera.
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The control error for these compensators is defined as the difference between the current

pixel location of the POI and the desired location in the horizontal and vertical directions,

respectively.

Unlike SNVS Variant 1, attitude control error must not be regulated to zero in order to

achieve the desired relative position. Like SNVS Variant 1, operation of this controller does

have an affect on the overall translational trajectory and fuel use of the the chaser, however

to a far lesser extent if the attitude controller is well-tuned. In testing it was observed that

oscillation around the PID setpoint can degrade the translational trajectory and increase

fuel use. Thus, it is important to tune the PID gains to minimize oscillation. In addition to

tuning, a deadband can be implemented to further prevent oscillation around the setpoint.

A deadband of five pixels is used for the results of this chapter, whereupon PID control

error is set to zero if the absolute value of the actual error is less than five pixels.

5.5 Results

5.5.1 Simulation.

This section presents results for several scenarios representative of possible RPO

approach maneuvers. The simulation is similar to that used for Chapter III (see Appendix A

for overview), with some modifications to implement ROI/POI tracking. The target ROI is

the same nonplanar ROI used for simulation results in Chapter III (see Figure 3.24). There

is no need to consider a planar ROI as it is clear that if the method can estimate the correct

PSN vector for a nonplanar ROI, then it could estimate a PSN vector for a planar ROI as

well. The simulation terminates when the chaser achieves a position within 0.05 meters of

the goal relative position in all dimensions and a relative velocity of less than 0.005 m/s in

all dimensions.

Results for both SNVS variants are overlaid to facilitate comparison. In addition, for

Scenario 5NP1, results using the IBVS method presented in Chapter III are overlaid to

demonstrate that method in relation to SNVS. In order to enable as direct a comparison as

199



possible, each methods’ control gains are tuned to give an approximately 200 second time

of flight for the first scenario, 5NP1, then these gains are used for subsequent scenarios.

Controller tuning has a significant effect on maneuver outcomes such as chaser trajectory,

time of flight, and control effort, so differences between each variant presented here

should not be considered conclusive for all possible conditions. Rather, comparison of

the variants and with the IBVS method is presented to motivate the concept that each

framework produces different results for given initial conditions, which may be more or

less advantageous depending on the application. Further comparison and tuning should be

conducted in order to determine which method is best-suited for a specific use-case.

5.5.1.1 POI/ROI Tracking and Computing the PSN Vector.

The POI is the geometric center of the target ROI (top face of the target spacecraft).

A perfect measurement of the POI pixel coordinates are provided to the EKF used for POI

tracking at 2 Hz. The PSN vector is computed at 2 Hz as described in Section 5.2.2.2,

using 10,000 randomly selected sets of points from the target ROI and 200 histogram

bins. A perfect depth map is used for this computation with no measurement error applied.

Rather than tracking the predominant surface plane as described in Section 5.2.3.2 (note

the method introduced in Section 5.2.3.2 is demonstrated in Chapter VI), the four corners

of the top face of the target spacecraft are used to construct a rectangular bounding box that

is used as the region from which to sample points for PSN vector computation. The sides

of this bounding box are horizontally/vertically oriented with the image plane, as if a basic

single-object tracker were being used to track the top face of the target. Figure 5.11 shows

an example camera view and depth map from the simulation depicting the POI and ROI

bounding box.

While the method for computing the PSN vector does induce some randomness due to

the way points are sampled, no other stochastic sensor measurements are utilized for these

results. This is intentional to demonstrate the method’s operation under ideal conditions
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Figure 5.11: Example chaser camera image and depth map depicting target POI and ROI
bounding box.

and to facilitate comparison between each variant. Chapter VI of this work demonstrates

each SNVS variant’s operation under more realistic sensor conditions using actual camera

hardware.

5.5.1.2 Quantifying Control Effort.

To add in comparison of the two variants, the results in this chapter quantify total

control effort for each scenario presented. Since translational and attitude control is

decoupled, total control effort for each controller is calculated separately. For translational

control, Hydrazine thrusters with a propellant specific impulse (Isp) of 200 seconds are

assumed. Propellant use is calculated by integrating the mass flow rate of propellant (ṁp)

over the course of the maneuver,

ṁp =
Ft

Ispg0
, (5.39)

where Ft is the total force produced by all thrusters and g0 is standard gravity. Attitude

control effort is quantified by the integral
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T =

∫ t

0

3∑
i=1

∣∣∣∣∣ τ(i)
Jc(i, i)

∣∣∣∣∣ dt, (5.40)

where τ(i) is the ith component of the applied torque vector and Jc(i, i) is the ith principal

moment of inertia. This integral is taken over the course of the maneuver and is useful for

relative comparison of total attitude control effort required by each method.

5.5.2 5NP1: Maneuver with Respect to Static Nonplanar ROI.

The first scenario examined is similar to Scenario 3NP2: an angled approach maneuver

with respect to a target ROI containing significant nonplanar features. The target remains

static at the LVLH origin and the chaser is initially positioned at [10.0, 10.0, 15.0]T meters,

with its camera pointing at the target POI. The chaser’s goal is to maneuver to a position 2

meters from the POI and achieve an attitude orthogonal to the predominant surface plane

of the ROI (this position corresponds to [0.0, 0.0, 2.5]T meters in the Local-Vertical-Local-

Horizontal (LVLH) frame). Results for both SNVS variants are presented alongside results

generated using Chapter III’s IBVS method. To facilitate a more direct comparison between

the IBVS method and SNVS, stochastic sensor measurements and control torque about the

camera optical axis are not applied for the IBVS method, as is the case for the SNVS

results. Figure 5.12 shows the LVLH frame trajectory of the chaser along with the initial

and final camera pose for each method.

Both SNVS variants capture the desired position precisely within about 200 seconds,

each taking a slightly different trajectory to arrive at the desired pose. As expected, the

IBVS method fails to capture the desired relative pose due to the nonplanar nature of

the target ROI and the use of the warp method to generate the goal image (incremental

maneuvering was not implemented for these results). Figure 5.13 shows the relative

velocity components for each method. SNVS Variant 1 generally exhibits the smoothest

and lowest magnitude velocity curves, while Variant 2 exhibits sharper changes in velocity.
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Figure 5.12: Scenario 5NP1: Chaser trajectory (LVLH frame).

Figure 5.13: Scenario 5NP1: Translational and angular velocity of chaser with respect to
target (resolved in camera frame).
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Thrust applied to each positive and negative body frame direction and torque applied

about each body frame axis is shown in Figure 5.14. Variant 2’s thrust profiles exhibit far

more chatter than Variant 1 and the IBVS method. This is a result of the fact that Variant

2’s translational controller tracks the noisy PSN vector state estimate. Importantly, it was

observed during estimator tuning that Variant 2’s filter process covariance for the PSN

vector cannot be slowed (in order to smooth the PSN vector state estimate) to the same

extent as for Variant 1 without causing control instability. Thus, Variant 2’s translational

controller must use a noisier PSN vector state estimate, which leads to more chatter in

its thrust profile. Variant 2 also exhibits sharp transitions in torque (and hence angular

velocity). These rapid changes in torque are caused by attitude control error exceeding the

PID deadband.

Figure 5.14: Scenario 5NP1: Translational thrust and attitude control torque.

Filter estimation error for the PSN vector is depicted in Figure 5.15. The error remains

small—a component error of 5e−3 corresponds to 0.29◦ error from the actual PSN vector.

However, perfect depth maps are utilized in the simulation, so these results are likely better
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than could be expected in reality. Even so, these results demonstrate the ability of the

method to correctly estimate the PSN vector over the entire maneuver.

Figure 5.15: Scenario 5NP1: PSN vector estimation error (resolved in camera frame).

Finally, Table 5.1 summarizes the results for this scenario, including data for

propellant use and total attitude control effort of each method. While the IBVS method

uses the least propellant, it ends the maneuver more than 2 meters away from the desired

relative pose. SNVS Variant 1 and 2 are comparable for maneuver time and final relative

pose, but Variant 1 uses significantly less control effort.
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Table 5.1: Scenario 5NP1 Summary of Results.

5.5.3 5NP2: Maneuver with Respect to Tumbling Nonplanar ROI.

Scenario 5NP2 is identical to that of 5NP1, with the exception that the target is given

an initial angular and translational velocity with respect to the LVLH frame. The target’s

initial angular velocity is [0.000,−0.003, 0.005]T rad/second and translational velocity is

[0.010, 0.005, 0.001]T meters/second.

Figure 5.16: Scenario 5NP2: Chaser trajectory (LVLH frame).

Figure 5.17 depicts the relative translational and angular velocity. All components of

these velocities converge on zero as the Chaser captures the desired relative pose, with the

exception of angular velocity about the camera optical axis (ωz). As stated previously, the
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degrees of freedom (DOF) associated with ωz is not controlled by the SNVS method, and

would need to be controlled separately (using e.g. the IBVS method of Chapter III). Plots

depicting control effort and PSN vector estimation error resemble those of Scenario 5NP1

and are not shown for conciseness.

Figure 5.17: Scenario 5NP2: Translational and angular velocity of chaser with respect to
target (resolved in camera frame).

Table 5.2 presents the time of flight, final pose, and total control effort for each variant.

As with Scenario 5NP1, Variant 1 uses significantly less control to achieve the same final

pose in roughly the same amount if time. Overall the results of this scenario strongly

resemble those of 5NP1, indicating that the navigational and control functions of this

method operate similarly regardless of relative target motion.
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Table 5.2: Scenario 5NP2 Summary of Results.

5.5.4 5NP3: Extreme Off-Approach-Axis Maneuver with Respect to Static

Nonplanar ROI.

The final scenario examined involves an approach maneuver with a static nonplanar

target where the chaser’s initial relative attitude is significantly different than the desired

relative attitude. The intent of this scenario is to examine (1) the effectiveness of the PSN

vector computation method when the target ROI is observed from a steep angle and (2) the

control method’s ability to control a large slew maneuver. The chaser is initially positioned

at [4.0, 4.0, 2.0]T meters in the LVLH frame, with the camera pointing at the target POI.

This pose makes the camera boresight axis approximately 70.5◦ off from the PSN vector at

the start of maneuvering. Figure 5.19 depicts the chaser’s initial view of the target.

Figure 5.19 depicts the chaser trajectory in the LVLH frame for both variants.

Notably, both methods do not initially translate directly towards the POI. Doing so would

exacerbate the steep view angle, which would likely make accurate computation of the PSN

vector more difficult. Instead, for both variants the chaser follows an arcing translational

trajectory, placing itself on an approach path more in line with the PSN vector earlier in

the maneuver. Differential tuning of the translational and attitude controllers can be used

to affect the shape of the trajectory, as will be seen in Section 5.5.5.
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Figure 5.18: Scenario 5NP3: Initial Chaser Camera View.

Figure 5.19: Scenario 5NP3: Chaser trajectory (LVLH frame).
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The velocity of the chaser with respect to the target is shown in Figure 5.20. As with

previous scenarios, the velocity profiles generated by Variant 2 are more erratic and of

higher magnitude.

Figure 5.20: Scenario 5NP3: Translational and angular velocity of chaser with respect to
target (resolved in camera frame).

Figure 5.21 shows the PSN vector component error for the estimated PSN vector

relative to the true PSN vector, resolved in the camera frame. Early in the maneuver the

error is worse than that of Scenario 5NP1, which is not surprising given the steeper view

angle of the target ROI. The worst error of the scenario corresponds to less than 1.0◦ of

angular relative to the actual PSN vector.

Table 5.3 summarizes the results for this scenario, which confirm the trends seen in

the previous results: while the two variants reach the desired pose in similar time, Variant 2

requires more control effort for both translational and attitude maneuvering. Additionally,

for this scenario, Variant 2 yields a longer maneuver time relative to Variant 1.
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Figure 5.21: Scenario 5NP3: PSN vector estimation error (resolved in camera frame).

Table 5.3: Scenario 5NP3 Summary of Results

5.5.5 Sensitivity Analysis: Effect of Control Gains.

This section examines how changing control gains for each variant affects maneuver

parameters including trajectory, time of flight, translational thruster propellant use, and

total attitude control effort. Since the spacecraft and approach scenarios are notional, the

results presented below are not comprehensive, and are therefore not intended to be used to

determine optimal gain parameters. Rather, they are meant to demonstrate that differential

control gain selection may have a non-intuitive effect on relevant maneuver parameters,
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which should motivate future work to consider implementing optimization techniques on

the method in order to maximize utility for particular use-cases.

5.5.5.1 Variant 1 Sensitivity Analysis Results.

The relationship between translational and attitude control for Variant 1 makes the

effect of altering control gains on the chaser’s trajectory not necessarily intuitive. Even

though translational and rotational dynamics are assumed to be decoupled, changes in

angular velocity induce a change in the translational trajectory of the chaser. This is due to

the fact that the translational controller is operating on error resolved in the camera frame,

so changes in attitude affect translational control error. To illustrate this, trajectories for

three scenarios are shown in Figure 5.22. Each scenario represents an approach maneuver

with a static target using identical initial conditions, with the exception that the attitude

controller parameter τmax is scaled 0.5x, 1x, and 5x, respectively. As can be seen, even

though the translational control gains remain constant for all iterations, the translational

trajectory of the camera changes drastically as the gains for the attitude controller are

altered.

Table 5.4 shows the maneuver time, relative total translational control effort, and

relative total attitude control effort for these three scenarios. Not only does increasing

attitude control gains increase total attitude control effort required, but also increases

maneuver time and total translational control effort.

Table 5.4: Effect of Attitude Control Gain on Chaser Trajectory, SNVS Variant 1

τmax

Gain Factor
Maneuver
Time (s)

Integral of
Translational Control

Effort (relative)

Integral of
Attitude Control
Effort (relative)

0.5 134.5 0.805 0.659
1 139 1.000 1.000
5 197.5 1.945 4.629
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Figure 5.22: 3D trajectories of chaser for various attitude control gain factors (SNVS
Variant 1).

The ability to shape the trajectory of the chaser using differential control gain tuning

is advantageous. For example, it is comparatively simple to prioritize rotation to achieve

a relative attitude parallel to the PSN vector over translation towards the desired relative

position by changing a single control gain of the quaternion feedback controller (τmax).

Figure 5.23 displays results for a larger sensitivity analysis of Variant 1. This analysis

alters two gain factors: a scalar multiplier on the LQR performance weighting matrix, and a

scalar multiplier for the attitude controller parameter τmax. There is certainly more analysis

that could be conducted by altering the control gains in different ways, but several useful

observations are still apparent. Reducing the attitude control gain factor reduces both total

attitude control effort and translational control effort (propellant used). The translational

control gain factor has little effect on total attitude control effort. There is a relatively

flat region on the surface corresponding to the time of flight, indicating that there is a
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large range where control gains could be selected to optimize control effort while causing

comparatively little change to the time of flight.

Figure 5.23: SNVS Variant 1 sensitivity analysis results. Top left: chaser trajectories
colored according to time of flight (dark red is maximum, dark blue is minimum). Top
right: time of flight vs. control gains. Bottom left: total attitude control effort vs. control
gains. Bottom right: propellant used vs. control gains.

5.5.5.2 Variant 2 Sensitivity Analysis Results.

Unlike Variant 1, the sensitivity analysis conducted for SNVS Variant 2 only varies

the LQR performance weighting matrix and not any gains associated with attitude control.

Since the task of the attitude controller is to simply keep the target POI in the center of the
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camera FoV, it is thought that once the attitude controller is independently tuned to achieve

a desired control response, it should not need to be altered further.

The analysis for this variant examines how two scalar gain factors applied to the LQR

performance weighting matrix affect maneuver parameters. One gain factor is multiplied

by the LQR performance weighting matrix position states, and the other gain factor is

multiplied by the velocity states. Results for the analysis are shown in Figure 5.24.

Figure 5.24: SNVS Variant 2 sensitivity analysis results. Top left: chaser trajectories
colored according to time of flight (dark red is maximum, dark blue is minimum). Top
right: time of flight vs. control gains. Bottom left: total attitude control effort vs. control
gains. Bottom right: propellant used vs. control gains.

The results show that reducing the velocity state gain factor below 1 reduces time of

flight, but increasing it by an order of magnitude does not significantly affect the time of
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flight. The velocity state gain factor does not significantly affect total attitude control effort,

but it does decrease propellant use as it decreases. Altering the position state gain factor

does not significantly affect time of flight for the range of gains analyzed, but it does more

significantly affect both translational and attitude control effort that the velocity state gain

factor.

5.6 Discussion

5.6.1 Effect of Initial POI Image Location on Translational Trajectory.

An important characteristic of each SNVS variant pertains to how the translational

trajectory of the chaser is affected by the camera’s initial pointing direction with regards

to the target POI, i.e. if the camera boresight is initially centered on the target POI or

not. Figure 5.25 shows example trajectories for both variants with and without the camera

initially centered on the target. Both variants’ trajectories are affected if the POI is initially

non-centered, however Variant 2’s trajectory is far more affected than Variant 1’s.

Figure 5.25: Example of chaser trajectories with and without the chaser camera initially
centered on the target. Inset camera image shows the initial chaser view for maneuvers
with the camera not initially centered.
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Though the trajectories change with the POI initially non-centered, the maneuver

times are relatively unaffected. Total control effort is significantly affected, especially for

Variant 2. These results are summarized in Table 5.5.

Table 5.5: Control Effort Comparison for Maneuvers with and without Camera Initially
Centered on Target

Clearly, having the target POI initially non-centered at the start of translational

maneuvering is not ideal, especially for SNVS Variant 2. For many applications, however,

this quality does not significantly limit overall utility though: a simple solution for this issue

is conduct a slew maneuver to center the camera on the POI prior to initiating translational

maneuvering.

5.6.2 Utility with Curved Targets.

A fundamental characteristic of SNVS is its use of the PSN vector, which assumes that

a predominant surface plane exists on the target. For a target with a fundamentally curved

shape however, such as might be the case during RPO with the side of a rocket booster

body or other cylindrically/spherically shaped target, there may be no predominant surface

plane if the shape is considered as a whole. However, depending on the size of the target

and relative range, it may be possible to select a locally planar region on the target surface

such that a PSN vector exists and could be tracked. For example, given a cylindrical target

shape, a thin slice along the longitudinal axis of the cylinder could be selected as the ROI

for PSN vector calculation. Note that the depth-based predominant plane tracking method
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described in Section 5.2.3.2 may not function as well for this case, so a robust image-based

ROI tracking algorithm would likely be required to track the predominant surface plane.

It is also worth keeping in mind that the tracked predominant surface plane used for

PSN vector computation need not be directly associated with the target POI, as long as

both the predominant surface plane and POI can be maintained in view over the course of

a maneuver. This means one locally flat portion of the target such as a solar panel, access

hatch, patch antenna, etc. could be selected be selected as the predominant surface plane

(assuming the PSN vector associated with this region properly defines the desired camera

pointing direction), and a separate part of the target could be selected as the POI.

5.6.3 Implementation Without Camera Sensors.

If the predominant surface plane is tracked using depth data as discussed in Section

5.2.3.2, then the only relative navigation function requiring a camera image is the POI

tracking algorithm. If the predominant surface plane of the ROI is well defined (for example

if the ROI is the side of a box-type spacecraft), and the POI is taken as the geometric

center of this surface, it is possible to track the POI using the same bounding box as the

predominant surface plane. In this case, no camera image is required, and another type

of depth sensor capable of providing dense depth maps, such as flash Light Detection and

Ranging (LIDAR), could be used in lieu of a stereo camera. This is significant as it could

improve the effectiveness of SNVS in low-light conditions, such as when spacecraft are in

the Earth’s shadow. Future work should examine other methods to track a target POI using

only depth data, as this would further expand the utility of the method for conditions when

sufficient lightning is not available.

5.7 Conclusion

In this chapter, a method of visual servoing for maneuver with respect to unknown

targets was proposed and demonstrated in simulation. Two variants of the method were
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examined, with all functions of each variant being the same except for how control

commands are generated.

A defining characteristic of the proposed SNVS method is its use of the PSN vector

associated with an ROI on the target. Procedures to estimate the PSN vector and track the

predominant plane associated with the target ROI were developed and demonstrated.

Simulation results demonstrated the method for a of number representative final

approach scenarios, including approach with a tumbling target and a extreme off-approach-

axis maneuver requiring significant change in relative attitude of the chaser with respect to

the target. Sensitivity analysis results were presented that showed how changes in control

gains affected maneuver trajectory, time of flight, and control effort required.

SNVS has several advantages over other control methods that could be considered for

RPO with unknown targets, including:

1. No pre-maneuver inspection of the target object is required; SNVS can be

implemented with very little information about the target available at the start of

relative maneuvering. SNVS does not estimate a geometric model of the target or

other parameters such as moments of inertia before or during maneuvering, making

it more computationally efficient and potentially more robust than SLAM-based

methods.

2. The only computer vision function of SNVS that requires the RGB camera image

pertains to tracking a single POI on the target object, for which there are many well-

established algorithms available to perform this task. If a single object tracker is

used to track the POI, SNVS does not utilize natural feature point identification or

tracking methods, which are computationally expensive and prone to tracking failure

as an image scene changes.
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3. A generated goal image is not required as in the method proposed in Chapter III,

which caused that method to perform poorly with targets containing nonplanar

features. SNVS performs well with target objects that contain nonplanar features

as long as a predominant surface plane exists in the selected ROI (i.e. the ROI is not

continuously curvilinear).

4. Can be implemented using low-cost, low-SWAP hardware, using a single eye-in-

hand relative navigation sensor (a stereo camera).

5. Can effectively compensate for unknown relative transitional and angular motion of

the target with respect to the effector.
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VI. Hardware-in-the-Loop Implementation of GNC Method 2

6.1 Overview

This chapter implements Surface Normal Visual Servoing (SNVS) experimentally

using hardware-in-the-loop (HITL) in order to demonstrate the effectiveness of method

using feedback from an actual stereo camera sensor. The intent of this chapter is to answer

Research Question 3 as it applies to Research Question 2 (see Section 1.2). The structure

of this chapter is similar to that of Chapter IV: considerations necessary for experimental

implementation of SNVS are discussed is Section 6.2, results for several experimental

scenarios are presented in Section 6.3, discussion topics are provided in Section 6.4, and

concluding remarks are given in Section 6.5.

6.2 Method

The methods utilized for the results of this chapter are essentially identical to those

of Chapter V. This section covers topics specific to experimental implementation of the

method.

6.2.1 Experimental Setup.

As with the results of Chapter IV, the Air Force Institute of Technology (AFIT) Control

and Autonomy Space proximity Robot (CASpR) is used to affect motion of the chaser and

target for this chapter. The experimental setup utilized for this chapter is similar to that

of Chapter IV (see Section 4.2.1), with the primary difference being that SNVS is used to

control motion of chaser instead of the IBVS method presented previously. The CASpR

GUI is modified to facilitate analysis of the method during operation, and is shown in

Figure 6.1. A 3D point cloud of the image scene can be optionally displayed (example

shown in the lower right of Figure 6.1), and histograms computed for Predominant Surface

Normal (PSN) vector computation can be optionally plotted for each timestep (each one
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overlaid on the plot from the previous timesteps, see lower middle of Figure 6.1 for

example). The point cloud and histograms are useful to verify accuracy and consistency of

the PSN vector estimate.

Figure 6.1: Example view of CASpR GUI utilized with SNVS method. In the upper image,
camera view is shown on left, depth map on right, both with range gating applied. Image in
lower right depicts example view of 3D point cloud of scene with PSN vector (red line) and
POI location (blue cross) overlaid. Plot is the lower middle depicts PSN vector histograms.

The environmental lighting utilized for the results of this chapter also differs from

that of Chapter IV. In Chapter IV, overhead ceiling lights were left on during operation

of CASpR. For this chapter, overhead lights were turned off, and a directional lamp was

used to cast light on the target. Compared to Chapter IV, overall lighting was significantly

reduced and shadows were cast across the target surface. These lighting conditions are
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considered to be more representative of the environmental lighting conditions present

during on-orbit rendezvous and proximity operations (RPO).

The same nonplanar target examined in Chapter IV is used for the scenario results of

this chapter. The POI selected for maneuvering is the tip of the boom, as shown in Figure

6.1. Notably, this POI is offset about 0.3 meters from the predominant surface plane of the

the target ROI (depicted by the green bounding box and dots in Figure 6.1). This fact does

not pose a problem for the method in general, as long as the range gating threshold is set

large enough to not subtract the predominant surface plane from the image scene.

6.2.2 Averaging Region for POI Depth Measurement.

Each timestep the 3D position of the POI is estimated using the centroid of the target

POI bounding box generated by the single object tracker. If the stereo depth calculated for

the pixel associated for the centroid is invalid, then the position measurement of the POI

for that timestep will be invalid. If the pixel associated with the centroid has invalid depth

over several subsequent image frames, performance will be degraded as the POI Kalman

filter performs no measurement updates. Therefore, a small region around the POI pixel

location is used to calculate the depth associated with the POI. The size of this buffer region

is adjustable (for this work a region of 5x5 pixels was observed to be sufficient). The mean

of the depths to all the pixels in this region (ignoring pixels with invalid depth) is then used

as the depth to the POI.

6.3 Results

This section presents results for three approach scenarios that are analogous to the

three simulation scenarios presented in Chapter V. The first scenario involves an angled

approach with a static nonplanar target. The second scenario is similar, except the target

rotates about its vertical axis. The third scenario demonstrates a highly angled approach

requiring significant relative attitude change in order to achieve the desired relative pose.

223



6.3.1 Scenario 6NP1: Maneuver with Respect to Static Nonplanar ROI.

The first scenario requires the chaser to conduct an angled approach with a static

nonplanar target. The chaser is initially positioned [−1.19,−1.33,−0.1]T meters with

respect to the target POI, angled with with the camera pointing at the target (about −50◦

about the LVLH Z axis). The goal of the scenario is to maneuver to a relative position

0.6 meters away from the target POI with the camera optical axis pointing at the POI and

orthogonal to the predominant surface plane of the target. Figure 6.2 depicts the initial and

final views of the target, including both the chaser camera image and depth map (with range

gating applied to remove and objects in the scene greater than 0.4 meters away beyond or

in front of the target POI). Image results shown here and in the following scenarios are for

SNVS Variant 1 (Variant 2 images are nearly identical and are not shown for conciseness).

Figure 6.3 depicts the trajectory of the chaser for both variants (Variant 1 on the left

and Variant 2 on the right). The trajectories are similar, though as was noted in simulation,

Variant 2 initially translates more directly towards the target as compared to Variant 1.

Variant 1 ends the maneuver after 100 seconds at a relative position of [0.00,−0.61, 0.00]

meters (the desired relative position is [0.00,−0.6, 0.00] meters), and Variant 2 ends the

maneuver after 142 seconds at a relative position of [0.00,−0.62, 0.00] meters.

Figure 6.3 also depicts the estimated PSN vector and POI location throughout the

maneuver, with blueish colored vectors corresponding to vectors earlier in the maneuver,

and reddish colored vectors corresponding to later in the maneuver. The error associated

with these estimates is shown in Figures 6.4 and 6.5, respectively. As can be seen, both the

PSN vector estimate and POI position estimate improve over the course of the maneuver.
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Figure 6.2: Scenario 6NP1: Initial (top) and final (bottom) view from chaser’s camera and
depth map (with range gating applied, images shown are for SNVS Variant 1, Variant 2
images are similar)

Figure 6.3: Scenario 6NP1: Chaser trajectory in LVLH frame (SNVS Variant 1 on left,
Variant 2 on right).
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Figure 6.4: Scenario 6NP1: PSN vector component error (resolved in camera frame).

Figure 6.5: Scenario 6NP1: POI vector component error (resolved in camera frame).
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6.3.2 Scenario 6NP2: Maneuver with Respect to Moving Nonplanar ROI.

This scenario involves an approach maneuver with a rotating target. The chaser is

initially positioned [0.5,−1.13,−0.10]T meters with respect to the target POI. The target

rotates at -1.05 degrees per second about an axis running through the predominant surface

plane of the target. Since the target POI is offset from the predominant surface plane, it

translates in an arc about the rotational axis during the maneuver.

Figure 6.6 shows the initial (left) and final (right) camera views for the approach

maneuver, with range gating applied to remove the background and foreground beyond

the target. These images show that the chaser is able to capture the desired pose, even as

the lighting cast on the target object changes significantly over the course of the maneuver.

Here it is worth emphasizing that lighting changes like this would certainly pose a challenge

for a feature-based control method.

Figure 6.7 depicts the chaser and target trajectory, including the chaser pose and target

POI/PSN vector at constant intervals over the 120 second maneuver. The actual location of

the target POI and PSN vector is also shown, and the closeness of these parameters to those

estimated demonstrates the accuracy of the POI and PSN vector estimation methods during

practical application. The PSN vector slightly trails the the actual PSN vector in a direction

opposite the target motion. This is a consequence of phase lag induced by the PSN vector

Kalman vector which has gains tuned to prioritize smoothing the vector estimate over fast

response to measurements.

Figure 6.8 shows the component-wise error of the PSN vector estimate relative to the

actual vector over the course of the maneuver. Magnitude of component error is generally

larger than observed for simulation results of Chapter V, which is as expected since the

simulation utilized a perfect depth map. However, a max component error is roughly 0.06,

which corresponds to about 1.3◦ of angular error. This is considered sufficient to affect a

successful maneuver for this type of scenario.
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Figure 6.6: Scenario 6NP2: Initial (top) and final (bottom) view from chaser’s camera and
depth map (with range gating applied, images shown are for SNVS Variant 1, Variant 2
images are similar).

Figure 6.7: Scenario 6NP2: Chaser trajectory in LVLH frame (SNVS Variant 1 on left,
Variant 2 on right).
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Figure 6.8: Scenario 6NP2: PSN vector component error (resolved in camera frame).

The error between the actual POI location and estimated POI location (resolved in

the camera frame) is shown in Figure 6.9. The error converges to nearly sub-centimeter

accuracy as the chaser reaches its desired pose, indicating the SOT successfully tracks

the POI and the stereo camera provides accurate depth measurements during the entire

maneuver.

Figure 6.9: Scenario 6NP2: POI vector component error (resolved in camera frame).

6.3.3 Scenario 6NP3: Extreme Off-Approach-Axis Maneuver with Respect to

Static Nonplanar ROI.

This scenario examines performance of the method for an approach maneuver

requiring significant rotational motion of the chaser to achieve the desired relative attitude
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with respect to the target. The target remains static throughout the maneuver. The chaser

is initially positioned at [−0.7,−0.1,−0.1]T meters with respect to the target POI with the

camera pointing at the POI, making the camera optical axis 82.4◦ off the target PSN vector

about the Ŷc axis at the start of maneuvering. Notably, the target object is not fully visible

initially: only a portion of the target predominant surface plane can be seen in the initial

camera image, shown in the upper left image of Figure 6.10. The lower images of Figure

6.10 depict the view from the chaser camera and depth map upon successfully capturing

the desired relative pose.

Figure 6.10: Scenario 6NP3: Initial (top) and final (bottom) view from chaser’s camera
and depth map (with range gating applied, images shown are for SNVS Variant 1, Variant
2 images are similar).
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Figure 6.11 shows the trajectory of the chaser with respect to the static target. As with

previous trajectory plots, time histories of the chaser pose, estimated target POI location,

and estimated PSN vector are depicted at a constant interval. The plot shows that the

estimated POI location and PSN vector for the static target remain consistent over the entire

maneuver. Importantly, the chaser takes an arcing trajectory to arrive at the desired relative

pose (as opposed to translating directly towards the desired position). This is intentional:

the control gains were tuned to prioritize convergence to the desired relative attitude vice

position. Doing so prevents the chaser from initially translating towards the target, which

would cause less of the target to be visible and therefore make accurate estimation of the

PSN vector more difficult.

Figure 6.11: Scenario 6NP3: Chaser trajectory in LVLH frame (SNVS Variant 1 on left,
Variant 2 on right).

Error for the PSN vector components is shown in Figure 6.12. The plot shows that

component error for this scenario is generally better than that of Scenari 6NP2 (Figure

6.8), which is expected since the target is static for this scenario.

Figure 6.13 displays the initial and final set of histograms used to compute the PSN

vector estimate. These histograms useful to assess the robustness of the PSN estimate.
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Figure 6.12: Scenario 6NP3: PSN vector component error (resolved in camera frame).

Histograms with unimodal sharp peaks such as those shown in Figure 6.13 indicate a well-

defined PSN vector that will be easily re-identified in subsequent frames.

Figure 6.13: 6NP3: PSN vector component histograms (inital on left, final on right).

Finally, Figure 6.14 shows the position error of the POI estimate over the course of

the maneuver, resolved in the camera frame. The error is initially worse than that of the

previous scenario, likely due to a poor estimate of depth by the stereo camera and the fact

the center protrusion of the target object is being viewed from the side. However, position

error converges to sub-centimeter accuracy by completion of the maneuver. The error in

the X direction converges to roughly 0.01 meters due to the POI being incorrectly slightly

tracked by the single object tracker.
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Figure 6.14: Scenario 6NP3: POI vector component error (resolved in camera frame).

6.4 Discussion

This section examines several discussion topics pertaining to SNVS based on the

results of this and previous chapters.

6.4.1 Examination of ROIs with Two Equally Sized Surface Planes.

Implementation of SNVS is predicated on the ability to estimate a PSN vector

associated with a predominant surface plane of a region of interest (ROI) on the target

surface. If the ROI selected by an operator prior to maneuvering does not contain a single

predominant surface plane, the histograms computed for the PSN vector estimate may

not be unimodal, which can lead to issues determining the desired navigational vector for

maneuvering. This section examines two such cases where the ROI selected by the operator

contains two equally sized planar regions.

For the first case, a box-shaped target is viewed with the optical axis of the camera

pointing directly at an edge, such that two sides of the box form 45◦ angles from the optical

axis. An ROI is selected such that the ROI initially contains equal area of the left and

right visible sides of the box. Figure 6.16 depicts results from the first timestep for this

case. The PSN vector X-component histogram is bimodal with roughly equally sized peaks,

corresponding to each side of the box within the ROI. The peak associated with the left side
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of the box is slightly larger however, so the initial estimate of the PSN vector corresponds

to that side of the box.

Figure 6.15: Initial timestep PSN vector results for box edge ROI. Top left: color camera
image (blue bounding box tracks POI, green bounding box tracks predominant surface
plane); top right: aligned depth map of scene; bottom left/middle: two views of point cloud
of scene with PSN vector estimate (red vector) and POI (blue cross) overlaid; bottom right:
histograms generated to compute PSN vector .

Steady-state PSN vector results for the same case are shown in Figure 6.16. Recall

that the predominant surface plane tracking method uses the PSN vector histograms to

build a bounding box around the group of sampled points whose normal vectors are nearly

aligned with the estimated PSN vector. Since the PSN vector is initially determined to be

the normal vector associated with the left side of the box, the predominant plane tracking

method quickly moves the bounding box to surround only the left side of the box. In doing

so, the PSN vector histograms quickly collapse to be unimodal, as now there is only one

predominant surface plane for the tracked ROI.

The second case examines an ROI initially containing two equally-sized parallel

planes. Figure 6.16 displays the PSN vector results for the initial timestep. Even though the
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Figure 6.16: Steady state PSN vector results for box edge ROI. Top left: color camera
image (blue bounding box tracks POI, green bounding box tracks predominant surface
plane); top right: aligned depth map of scene; bottom left/middle: two views of point cloud
of scene with PSN vector estimate (red vector) and POI (blue cross) overlaid; bottom right:
histograms generated to compute PSN vector (shown in orange, overlaid on top of initial
timestep histograms shown in blue).

two planes individually have the same normal vector the estimated PSN vector is initially

not aligned with the correct normal vector. Once again the X-component histogram is

bimodal, making consistent estimation of a single PSN unreliable.

As with the first case however, in the steady state the predominant surface plane

tracking method moves the bounding box to encompass just one of the planes, and the

PSN histograms collapse to be unimodal. Steady state PSN vector results are shown in

Figure 6.18 and indicate a valid and stable PSN vector estimate for the right plane only.

The results of this section motivate the importance of allowing the PSN vector estimate

to converge prior to initiating maneuvering. Using a combination of a 3D point cloud view

of the scene and computed PSN vector histograms, operators should assess the correctness

and robustness of PSN vector estimates prior to and during maneuvering.
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Figure 6.17: Initial timestep PSN vector results for two parallel planes ROI. Top left: color
camera image (blue bounding box tracks POI, green bounding box tracks predominant
surface plane); top right: aligned depth map of scene; bottom left/middle: two views of
point cloud of scene with PSN vector estimate (red vector) and POI (blue cross) overlaid;
bottom right: histograms generated to compute PSN vector.

Figure 6.18: Steady state PSN vector results for two parallel planes ROI. Top left: color
camera image (blue bounding box tracks POI, green bounding box tracks predominant
surface plane); top right: aligned depth map of scene; bottom left/middle: two views of
point cloud of scene with PSN vector estimate (red vector) and POI (blue cross) overlaid;
bottom right: histograms generated to compute PSN vector (shown in orange, overlaid on
top of initial timestep histograms shown in blue).
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6.4.2 Comparison of SNVS Variants.

Both SNVS variants have been successfully demonstrated in simulation and via

experimentation with HITL. Both were shown to be capable of achieving the desired

relative pose for a variety of maneuvers with similar precision. Several differences were

noted however, which may make each variant more or less preferable depending on the

particular use-case.

Compared to Variant 2, SNVS Variant 1 was observed to have the following qualities:

• Producing more desirable trajectories with SNVS Variant 1 is more straightforward.

Here desirable trajectories are considered to be those where the chaser initially

translates towards an approach path orthogonal to the target surface (for example

see Figure 6.11). This is beneficial in order to keep more of the predominant surface

plane in the Field of View (FoV).

• SNVS Variant 1 was consistently shown to utilize less control effort in simulation

for all test cases examined, though it is possible further analysis may demonstrate

otherwise.

• If the target POI is initially non-centered in the FoV, SNVS Variant 1 yields

trajectories that deviate less from the trajectory generated if the POI were centered,

as discussed in Section 5.6.1.

• If the attitude control gain β is not properly tuned, maneuvers using SNVS Variant 1

may be more likely to have the POI to leave the camera FoV.

6.4.3 Comparison with GNC Method 1 (IBVS for Unknown Targets).

This section provides a general comparison of SNVS and the IBVS method presented

in Chapters III and IV of this work. Compared to the IBVS method, SNVS has the

following relative advantages:
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• SNVS is capable of being implemented with bland target ROIs (i.e. target ROIs for

which few target features could be identified via FEM), as it does not utilize target

features for maneuvering.

• SNVS was observed to perform better under low light conditions (the SNVS results

of Chapter VI were conducted with reduced ambient lighting as compared to the

IBVS results of Chapter IV).

• SNVS is better at achieving the desired relative pose for nonplanar target ROIs, as

long as a predominant surface plane exists within the ROI.

• SNVS allows explicit definition of desired relative pose, as opposed to IBVS, were

the desired relative pose is implicitly defined by the goal image.

• SNVS has fewer tuning/adjustable parameters, especially with regards to computer

vision functions.

• SNVS Variant 1 provides the simplest means to shape the approach trajectory such

that the chaser achieves an approach direction orthogonal to the target surface as

early in the maneuver as possible.

• Depending on the nature of the target, SNVS can be implemented using depth

information only (see Section 5.6.3).

Compared to the IBVS method, SNVS has the following relative disadvantages:

• SNVS does not control relative rotation about the optical axis of the camera.

• SNVS requires higher quality depth information for accurate computation of the PSN

vector.

• SNVS does not work well with continuously curvilinear ROI’s. While IBVS

performs poorly when large nonplanar protrusions exist, it will likely perform better
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than SNVS for an ROI with a slight continuous curve, as might be the case if the

target was the body of a booster, for example.

6.4.4 System Parameters.

This section provides a summary of all the adjustable parameters associated with both

variants of SNVS, including the values used for the results presented herein, and relevant

notes for each parameter. The intent of this section is to provide designers a starting point

for future implementations of this method. Tables 6.1, 6.2, and 6.3 detail the parameters

associated with the image processing, SNVS Variant 1, and SNVS Variant 2, respectively.
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Table 6.1: Image Processing Parameters
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Table 6.2: SNVS Variant 1 Parameters

Table 6.3: SNVS Variant 2 Parameters
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6.5 Conclusion

This chapter demonstrated both variants of the SNVS method proposed in Chapter V

using HITL. AFIT CASpR was used to affect motion of the chaser and target, and a D435

stereo camera was used by the chaser to preform relative navigation. Experimentation

showed that the method is capable of being implemented in real-time using a desktop

computer. Additionally, results indicated that the method can correctly and reliably

estimate the PSN vector using real video depth maps of nonplanar targets.

Three approach scenarios were presented which demonstrated complex maneuvers

with with a nonplanar target object. Notably, the results show that the PSN vector

estimation and target POI tracking methods work well under poor lighting conditions,

thus indicating the potential of the method for on-orbit RPO. Overall, the HITL results

presented in this chapter demonstrate the effectiveness of the SNVS method. Results

confirm the benefits of the method discussed in Chapter V, and specifically indicate that

the method is much more capable than the IBVS method presented in Chapters III and IV

for maneuvering with nonplanar targets and under poor lighting conditions.
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VII. Conclusion and Recommendations

This work addressed how the final approach phase of spacecraft rendezvous and

proximity operations (RPO) with unknown targets can be conducted using low-cost, low

size, weight, and power (SWAP) hardware. Two navigation and control methods for

commanding autonomous relative maneuvers during this type of RPO were developed

and demonstrated in simulation and using hardware-in-the-loop (HITL). Both methods

rely on a stereo camera sensor for relative navigation and enable rapid execution of

complex relative maneuvers, requiring only a single training image of a target region of

interest (ROI) in order to initiate maneuvering. Unlike other control methods that could be

considered for this problem, neither method requires estimation of a geometric model of

the target or its moments of inertia.

While the intended use-case for each of the proposed methods is similar, it was

observed that each method has advantages under different circumstances (see Section

6.4.3), thus using both of them together as part of a larger guidance, navigation, and

control (GNC) architecture is recommended. A basic taxonomy for how both methods

can be combined is shown in Figure 1.3.

This chapter concludes the work by summarizing the contributions generated in

pursuit of answering each of research questions outlined in Chapter 1, as well as making

recommendations regarding future research.

7.1 Contributions

The primary contributions of this work include two methods to autonomously control

the final approach phase of RPO with unknown targets. Development of each of these

methods corresponds to Research Questions 1 and 2. Research Question 3 addresses

further development necessary to implement each method using HITL. This section
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outlines the specific contributions associated with each research question. As well as

the contributions listed below, an additional conference paper outlining a general GNC

approach for spacecraft RPO was published in conjunction with this work [154].

7.1.1 Research Question 1 Contributions.

Contributions related to the first research question include:

• Development of a navigation and control framework to command autonomous RPO

maneuvers with unknown targets. The method implements an Image-Based Visual

Servoing (IBVS) control law, augmented with procedures necessary to utilize IBVS

with unknown targets.

• A method to estimate the six degree of freedom (6DOF) relative velocity between

a chaser spacecraft and its target. The method utilizes tracked feature points on the

target surface and a bank of Kalman filters to estimate the velocity of each feature

in the image domain. The 6DOF relative velocity is estimated via a least squares

optimization using the interaction matrix relationship between the image space and

Cartesian space.

• Two methods to generate goal images necessary for implementation of IBVS with

unknown targets. The first method utilizes a zoomed-in image of the target to

approximate the location of target feature points in a goal pose. The second method

warps the current location of target feature points in order to estimate the location of

the feature points when the chaser is in the desired relative pose.

• Development of a simulation for use with development and analysis of visual

navigation and control methods pertaining to spacecraft RPO. The simulation models

6DOF relative motion between two spacecraft using the Nonlinear Equations of

Relative Motion (NERM) and synthesizes a camera view and depth map from the

perspective of the chaser spacecraft.
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• A method for modeling the four main sources of error associated with feature-based

image processing and stereo depth estimation.

• Demonstration of the proposed method in simulation with static and moving

nonplanar targets, including analysis of the effectiveness of the goal image generation

methods for planar and nonplanar target surfaces, and robustness to measurement

noise associated with target feature point tracking.

• A conference paper [155] was published pertaining to this research question, as well

as a journal paper accepted for publication documenting the results of this research

question [156].

7.1.2 Research Question 2 Contributions.

Contributions related to the second research question include:

• Development of a novel type of visual servoing intended to control robotic maneuvers

with unknown targets, termed Surface Normal Visual Servoing (SNVS). Two

closely related variants were proposed, with the primary difference pertaining to how

control error is defined. SNVS has several notable advantages over GNC Method 1,

including increased effectiveness with nonplanar targets, better performance under

low-light conditions, and lack of the requirement to track feature points on the target

surface.

• A computationally efficient method to compute a novel navigational vector, termed

the Predominant Surface Normal (PSN) vector, using dense depth measurements

from a stereo camera. The PSN vector describes a vector orthogonal to the

predominant surface plane of a target ROI and is used by SNVS to defined the desired

pointing direction of the chaser’s camera upon completion of maneuvering.

• A computationally efficient computer vision method to track predominant surface

plane associated with a target ROI.
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• Implementation of a quaternion feedback attitude control law that simultaneously

regulates the camera to the desired pointing direction while keeping the target POI in

the camera Field of View (FoV). Development of this controller includes formulation

an expression for the error quaternion, and a method to estimate the required relative

angular velocity term of the control law that does not require additional sensors.

• Demonstration of the method in 6DOF simulation with static and moving nonplanar

targets, including analysis of the method for several representative approach

scenarios, and sensitivity analysis of how changing control gains and initial

conditions affect various aspects of maneuvering.

• A conference paper [153] was published pertaining to this research question, as well

as a journal article submitted for publication documenting the results of this research

question [157].

7.1.3 Research Question 3 Contributions.

Research Question 3 pertains to extending the methods developed for the previous

research questions to enable implementation with HITL. Accordingly, contributions are

listed as they apply to Research Question 1 and 2. In addition to the contributions outlined

below, another contribution pertains to the development of the Air Force Institute of

Technology (AFIT) Control and Autonomy Space proximity Robot (CASpR). CASpR was

designed and constructed specifically to support this research, and it is expected to have

continuing utility for follow-on research and future research regarding spacecraft RPO.

CASpR realizes 4DOF relative motion of two independent spacecraft bodies using actual

hardware sensors and processors.

As applied to Research Question 1, contributions include:

• A computer vision feature tracking pipeline used to identify and track image features

within the target ROI.
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• A method for robustly rejecting target feature measurement outliers by monitoring

the IBVS servo error and rejecting features whose servo error does not follow the

overall trend of servo error for all features.

• A mode of operation whereupon the chaser attempts to rigidly maintain its current

6DOF relative pose with respect to the target if certain criteria are met to activate

the mode. This mode represents an important capability of the overall method as

it enables safe operating conditions to be autonomously maintained if a maneuver

degrades to a point that an abort of the current operation is required.

As applied to Research Question 2, contributions include:

• Demonstration of both SNVS variants using CASpR. Both variants were imple-

mented in real time using actual stereo camera feedback and a desktop computer.

Results were presented demonstrating effectiveness under challenging operation con-

ditions including low ambient light and maneuvers with respect to a moving target

ROI containing significant nonplanar protrusions.

• Validation of PSN vector estimation procedure and demonstration of the predominant

plane tracking method under the realistic conditions described above. Analysis of the

effectiveness and accuracy of these methods using actual stereo depth information.

• The aforementioned journal article submission [157] also conveys contributions

pertaining to the research question.

7.2 Recommendations for Future Work

With the successful demonstration of the proposed methods in simulation and using

a commercial stereo camera sensor under laboratory conditions, future work should focus

on implementing practical versions of these methods using flight-capable hardware and

conditions as realistic to the on-orbit environment as possible. The limitations associated
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with using CASpR and a commercial sensor meant that the methods could only be

experimentally demonstrated at comparatively short ranges. Future work should examine

use of stereo cameras with longer baselines operating at longer ranges. An analysis of

how the accuracy of stereo measurements changes with range and how this would affect

the proposed methods is warranted. Furthermore, with space being a resource-constrained

environment for maneuvering spacecraft, optimization techniques should be applied to both

methods in order to understand and improve fuel use for potential RPO applications. Other

areas of future work specific to each method are outlined below.

7.2.1 GNC Method 1 Future Work.

Recommendations for future work regarding GNC Method 1 (IBVS for unknown

targets) are discussed in detail in Section 4.4, and are summarized here:

• Examine improving the Feature Extraction and Matching (FEM) subroutine of the

image-processing pipeline by developing a method to dynamically update target

feature descriptor vectors during maneuvering.

• Improve the ability to maneuver over long distances and time-frames by developing a

method to identify new target features during maneuvering (i.e. after the initialization

procedure), which would require a procedure to estimate the goal position for newly

identified features. Doing so would prevent degradation of maneuvering as more

target features would be tracked later into an approach maneuver.

• Develop an improved method to estimate the goal locations of features for nonplanar

target ROIs.

• Consider implementation of the method with a zooming stereo camera. This would

require modifying the control law to be invariant to focal length, and would allow

the method to be implemented during longer range maneuvers since the camera focal

length could be changed to keep the target ROI a desired size in the image plane.
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7.2.2 GNC Method 2 Future Work.

Recommendations for future work regarding GNC Method 2 (SNVS) include:

• Augment the method in order to enable use without a visible spectrum camera image

(i.e. using dense depth maps only, as could be provided by flash LIDAR sensors). In

order to achieve this, a method to track a POI using only depth information would

need to be developed. This improvement would increase utility of the method during

circumstances where little to no ambient light is available.

• Examine methods to increase utility with curvilinear target ROIs. As proposed,

SNVS relies on the target ROI containing a predominant surface plane in order to

estimate the PSN vector that is used for maneuvering. If some assumptions are made

about the curvature of a selected ROI on the target, it may be possible to estimate a

navigational vector analogous to the PSN vector for this use-case. Doing so would

make the method more broadly applicable for a variety of potential target shapes and

types.
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Appendix A: Visual Navigation and Servoing Simulation (VNSS)

This appendix details the 6DOF simulation program written to support this research,

called the Visual Navigation and Servoing Simulation (VNSS).

A.1 Simulation Overview

A simulation was developed in MATLAB Simulink in order to test the architecture in a

simulated setting. The simulation propagates relative 6DOF motion of the chaser and target

with respect to the LVLH frame. In addition, a stereo camera on the chaser spacecraft is

modeled, including rendering of grayscale camera images and depth maps at user selectable

rates.

A.1.1 Dynamics/Plant Model.

The Nonlinear Equations of Relative Motion (NERM) (described in Section 2.3.1)

are used to model the translational dynamics of each spacecraft. As both the chaser and

target are free to translate with respect to a vritual Local-Vertical-Local-Horizontal (LVLH)

origin, the NERM’s are propagated independently for each spacecraft. The Earth-Centered

Inertial (ECI) orbit of the LVLH frame is defined by a set of classical orbital elements prior

to simulation. For the results presented in this work, the orbit of the LVLH frame is circular

(eccentricity of 0) in low Earth orbit (altitude of 450 km).

The rotational dynamics of each spacecraft are propagated independently using Euler’s

rotational equations of motion (see Section 2.3.2). These equations propagate the angular

velocity of a spacecraft with respect to the ECI frame (‘N’ frame), then the angular velocity

of the ith spacecraft body with respect to the LVLH frame (‘L’ frame) is determined by:

ωiL = ωiN − ωLN (A.1)
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To simulate the target body, a 3D model (a stereolithography file) is imported as a set

of vertices and faces. The vertices of this model are propagated in simulation using the

method described in Section 2.3.3.

A.1.2 Camera Modeling.

The camera sensor is modeled as a pinhole camera as presented in Section 2.4.1. Like

other parameters of the spacecraft, the camera intrinsic parameters are user-adjustable to

facilitate investigation of realistic systems. Unless otherwise noted, the results presented

in this chapter assume the chaser’s camera is calibrated (i.e. the actual camera parameters

are precisely known), with parameter values as shown in Table A.1. As shown in the table,

the frequency of image and depth measurements is set to 10 frames per second (FPS). This

value represents the rate at which image/depth measurements are available to the GNC

system after image processing is accomplished. As such, it is dependent on a number

of factors beyond the camera itself, such as: the speed of the computer using for image

processing, which feature extraction and matching algorithms are used, and the number of

features tracked. A value of 10 FPS is expected to be be achievable by currently available

flight hardware and image processing algorithms.

Table A.1: Camera Intrinsic Parameters Used in Simulation

Camera
Parameter Value Units

Resolution 1280 × 960 pixels×pixels
Focal Length 10 mm

Pixel Size 10 × 10 µm × µm
Principal Point [640, 480] pixels

Skew Coefficient 0 pixels/µm
Stereo Baseline 200 mm

Measurement Update Rate 10 frames/sec

A basic rasterization pipeline [158] is implemented in order to render a grayscale

image and a depth map from the camera sensor. Figure A.1 shows an example grayscale
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image from the camera (highlights in red manually added for annotation). Figure A.2 shows

an example depth map taken at the same instant.

Figure A.1: Example chaser camera view displaying synthetic image features cast onto the
target (indicated by green markers)

A.1.2.1 Target Feature Point Generation.

Implementing the full feature-based image processing pipeline used by this architec-

ture would require photo-realistic rendering of image scenes for the feature extraction and

matching algorithms to function. Even with high fidelity synthetic images though, there

is no guarantee that these algorithms would produce results commensurate with analogous

real-life scenarios. Therefore, in lieu of implementing these algorithms, image features are

synthetically generated in the simulation and are propagated using the relative motion dy-

namics/pinhole camera model previously described. In order to increase realism and assess

the robustness of the proposed controller, the most common sources of error pertaining to

these computer vision algorithm are modeled.
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Figure A.2: Example depth map generated by chaser camera sensor (no measurement noise
applied)

Feature points are synthetically generated by randomly selecting points on surface

of the target body within a region of interest (ROI) specified by the user. Figure A.1

depicts the ROI and synthetic image features cast on the target (shown as green markers).

Image measurements of these feature points are generated for each image frame with error

modeling applied as described in the next subsection.

A.1.2.2 Modeling Computer Vision Sources of Error.

Since feature extraction and matching algorithms are not implemented in simulation,

the error that would occur with real image processing algorithms is approximated by

several stochastic mechanisms. Accurately modeling these computer vision error sources

is important in order to make an assessment of the robustness of the architecture under

realistic or worse-than-realistic conditions.

Though the process of feature identification, matching, and outlier rejection is robust

when implemented with RANSAC, it does not perfectly locate matched features in every
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image frame. Some sources of error associated with image feature matching are discussed

in [159]. For the purposes of this study, image processing error is modeled by four

mechanisms:

1. Image feature pixel location (measurement) error

2. Image feature nonidentification

3. Image feature misidentification (outliers)

4. Image feature depth measurement error

Image feature pixel error refers to the fact that derived feature pixel locations are not

perfectly consistent from frame to frame. This is a result of the feature detector locating a

given feature at a slightly different pixel location in each frame, even if the corresponding

3D point has not moved in relation to the camera. Feature location error is commonly

modeled as zero-mean additive white Gaussian noise applied to the pixel location of a

feature [132, 160].

Image feature nonidentification refers to the failure of the feature detection algorithm

to identify and match a previously known feature in a given frame. This can occur for many

reasons, such as a feature being occluded or outside of the field of view of the camera. If

scene conditions (such as lighting, contrast, scale, rotation, etc.) change sufficiently, a

feature from the target frame may not be able to be matched to a proper correspondence

in the current frame. The incidence of feature nonidentification is dependent on many

factors unique to a particular situation. Feature nonidentification is modeled in simulation

by randomly selecting a subset of target image features to not be identified/matched in the

current frame. This subset of features is therefore not available as a measurement for GNC

calculations during the corresponding time step.

Image feature misidentification occurs when a feature is identified and matched to an

incorrect location in the image (i.e. it is an outlier). While methods like RANSAC are very
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good at rejecting outliers, they do not catch all mismatches. It is modeled in the same way

as misidentification: a random subset of features are chosen to be outliers for each frame,

and their pixel coordinates are randomly changed to a different location in the image.

Finally, image feature depth error occurs as a result of stereo triangulation methods

incorrectly estimating the depth to a specific feature. The depth error associated with stereo

can be modeled as in [133]:

εz =
z2

b f
εd (A.2)

where z is the actual depth from the camera to a feature, b is the baseline (distance between

cameras), f is the camera focal length (in pixels, assumed to be equal for each camera),

and εd is the matching error in pixels. In simulation, εz is the standard deviation of white

Gaussian noise added to the true value of depth.

A.1.3 Goal Image Generation.

Either of the options for generating goal images discussed in Section 3.3 can be used

to generate a goal image for the maneuver in simulation. If the first option is selected, a

zoomed-in image of the target is generated with its ROI perpendicular to the optical axis.

This image can be rotated or shifted to properly define the goal pose.

It the second option is selected (i.e. the goal image is generated using a perspective

warp as proposed in Section 3.3.2), the user selects a quadrangle ROI on the target prior to

maneuvering, as depicted in Figure A.1. The user also the selects the desired locations of

the corners of this ROI in the goal image. The simulation estimates the homography matrix

to perform a perspective warp from the current image view to the desired view. Target

feature locations in the goal image are then calculated using (3.14), and maneuvering can

commence.
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Appendix B: Control and Autonomy Space proximity Robot (CASpR)

This appendix provides a brief overview of the Air Force Institute of Technology

(AFIT) Control and Autonomy Space proximity Robot (CASpR).

B.1 Basic Description

CASpR is dual gantry style robotic machine for testing RPO-related research

algorithms using representative hardware components. The initial operating capability of

CASpR enables 4 degrees of freedom (DOF) motion of two spacecraft bodies in the Local-

Vertical-Local-Horizontal (LVLH) reference frame. The overall design intent of CASpR

is to be a modular, extensible, low-cost testbed capable of supporting a variety of research

pertaining to autonomous spacecraft RPO. A photo of CASpR is shown in Figure B.1.

A number of robotic RPO testbeds exist in the realm of research and academia (a brief

survey of several of these testbeds can be found in [161], including a detailed description

of the Naval Postgraduate School’s POSEIDYN Testbed). All of these testbeds utilize air-

bearing surfaces, on which robotic spacecraft simulators float. Due to cost, time, and space

limitations, a different approach was taken to develop CASpR. CASpR uses two gantry

style machines, similar to that used for 3D printing or CNC, to independently actuate two

spacecraft bodies. In fact, the basic design of CASpR was inspired by an open-source CNC

machine design, the Mostly Printed CNC (MPCNC) [162].

Relevant coordinate frames for CASpR are shown in Figure B.2. For this work, these

frames include: an LVLH frame, chaser and target body frames, and a camera frame.

Translational control commands are converted from the spacecraft body frame {B} to the

LVLH frame {L} via a rotation,

uL = RL
BuB, (B.1)
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Figure B.1: Picture of CASpR

where RL
B is a Direction Cosine Matrix (DCM) rotating about the Z axis:

RL
B =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (B.2)

If a camera is used in the control loop, as in this work, convention is for the camera’s

optical axis to be aligned with the camera frame Z axis, as described in Section 2.4.1.

Therefore, an additional rotation is necessary to transform from the camera frame {C} to

the body frame,

uB = RB
CuC, (B.3)
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where RL
B is the DCM:

RL
B =


0 0 1

1 0 0

0 −1 0

 . (B.4)

Because the {B} frame and {L} Z axes are aligned and there is only one rotational

degree of freedom, no rotation is necessary for the angular acceleration command, αc.

Figure B.2: CASpR coordinate frames

B.2 CASpR Architecture

An overview of the CASpR hardware architecture is shown in Figure B.3. A sensor,

such as the D435 stereo camera used for this work, provides measurements to a flight

computer, which runs guidance, navigation, and control (GNC) software and generates

acceleration commands. The flight computer sends these commands to a Low Level

Controller (LLC) for each gantry machine. The primary purpose of the LCCs is to generate

hardware control commands for each machine’s stepper motors. The LLCs also send back
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information on the position of each machine which is utilized in analysis of experimental

runs.

Each LLC is composed of an Arduino Mega 2560 microcontroller and a RAMPS 1.4

shield. The microcontroller propagates linearized relative motion dynamics as discussed

in Section 4.2.1.2. The position and velocity calculated by integrating these dynamics are

converted into stepper motor commands.

Figure B.3: Hardware architecture of CASpR

Each of CASpR’s gantry machines operate using NEMA 17 stepper motors. These

motors are used for several reasons: they have good low-speed torque, excellent precision,

and high resolution (3,200 steps per revolution or more, depending on driver used).

Code to operate CASpR is written in Python in order to utilize the extensive computer

vision functionality of the OpenCV library [37]. A Python class was written to operate

CASpR. Two modes of operation are available: ‘manual mode’ which allows an operator to

manually position each machine, and ‘GNC mode’ which utilizes acceleration commands

generated by flight software to control each gantry machine.
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Discriminative Correlation Filter Tracker with Channel and Spatial Reliability.
International Journal of Computer Vision, 126(7):671–688, 2018.

[40] Shuai Liu, Dongye Liu, Gautam Srivastava, Dawid Połap, and Marcin Woźniak.
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