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Incorporating Sentinel-1 SAR imagery with 
the MODIS MCD64A1 burned area product to 
improve burn date estimates and reduce burn 
date uncertainty in wildland fire mapping

ABSTRACT
Wildland fires result in a unique signal detectable by multispectral
remote sensing and synthetic aperture radar (SAR). However, in
many regions, such as Southeast Asia, persistent cloud cover and
aerosols temporarily obstruct multispectral satellite observations
of burned area, including the MODIS MCD64A1 Burned Area
Product (BAP). Multiple days between cloud free pre- and post-
burn MODIS observations result in burn date uncertainty. We
incorporate cloud-penetrating, C-band SAR-with the MODIS
MCD64A1 BAP in Southeast Asia, to exploit the strengths of each
dataset to better estimate the burn date and reduce the potential
burn date uncertainty range. We incorporate built-in quality con-
trol using MCD64A1 to reduce erroneous pixel updating. We test
the method over part of Laos and Thailand during April 2016 and
found average uncertainty reduction of 4.5 d, improving 15% of
MCD64A1 pixels. A new BAP could improve monitoring temporal
trends of wildland fires, air quality studies and monitoring
post-fire vegetation dynamics.

Introduction

Wildland fires are an important ecological process affecting ecosystems at multiple spatial
scales (Roberts 2000; Saha 2002; Vadrevu and Justice 2011). Fires can lead to the destruc-
tion of vegetation cover with impacts on plant composition, hydrological processes and
soil erosion (Vogl 1974). Moreover, wildland fires can release not only a large amount of
greenhouse gasses such as carbon dioxide (CO2), and carbon monoxide (CO), but more
importantly they release pollutants critical to air quality and public health, such as coarse
(PM10) and fine-particulate matter (PM2.5), black carbon (BC) and other absorbing aero-
sols (Crutzen and Andreae 1990; Andreae and Merlet 2001; Akagi et al. 2011). The
impacts of biomass burning events can be far reaching with long-range transport demon-
strated in multiple regions of the world (Ramanathan and Carmichael 2008; Badarinath
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et al. 2009; Ikeda and Tanimoto 2015; Sonkaew and Macatangay 2015; Kusumaningtyas
and Aldrian 2016; Saikawa et al. 2017). The effects of wildland fires can persist for weeks
to months impacting atmospheric chemistry, weather and biogeochemical cycles, in add-
ition to human health (Yan et al. 2006; Badarinath et al. 2009; Vadrevu et al. 2012;
Cristofanelli et al., 2014). For example, clearing of tropical savannas and forests has been
found to lead to a warmer and drier climate, further accelerating fire occurrence in a
positive feedback loop (Hoffmann et al. 2002).

One of the prevalent satellite-based global burned area products available today is the
MODIS MCD64A1 burned area product, which is based on daily surface reflectance
imagery from the sun-synchronous, polar-orbiting MODIS Aqua and Terra multispectral
satellite constellation with several daily observations (Giglio et al. 2009). A recent study
found that nearly half of burned area pixels are detected within one day of a coincident
MODIS active fire, and 75% within 4 d for the MCD45 algorithm (Boschetti et al. 2010).
Although the newer MCD64A1 collection 6 algorithm found about 68% of burned areas
occur within 2 d of an active fire (Giglio et al. 2018). Unfortunately, much of the remain-
ing data have a wider disparity. It is not unforeseen for the date uncertainty of a burned
area pixel to exceed 20 d due to cloud cover and aerosols, among other factors impacting
clear surface reflectance observations needed to detect a burned area (Giglio et al. 2013).
Similar to the active fire products, the optical-based burned area algorithm is also suscep-
tible to cloud cover and aerosol effects, as pixels contaminated by cloud cannot be used
to determine if a burn has occurred on a particular day (Schroeder et al. 2008; Giglio
et al. 2009). Therefore, imagery from another day must be used in its place. This aerosol
and cloud cover leads to uncertainty in the date of burning. For a variety of applications,
it is important to have the most accurately estimated date of burning, and a reduced date
uncertainty range. For example, many biomass burning emissions and air quality studies
rely on the burned area products as input into atmospheric models (van der Werf et al.
2006; Randerson et al. 2012; Kukavskaya et al. 2013; Marlier et al. 2013; Gaveau et al.
2014; Karambelas et al. 2018). Inputs into atmospheric chemistry and transport models
include wind speed and direction, planetary boundary layer heights, temperature and pre-
cipitation (Atwood et al. 2013). All of these mentioned factors can fluctuate significantly
over the course of a very short time period. Thus, refining the date of burning and the
associated burn date uncertainty, as undertaken in this research, could lead to improve-
ments and significant changes to results in regional air quality assessments important for
estimating impacts on transport or human health, among other ecological or environmen-
tal applications. Moreover, accurate burn dates are also important for assessing changes in
fire regimes over time, as well as for establishing a baseline in assessing post-fire regrowth
rates (Lentile et al. 2006; Palandjian et al. 2009).

Of the different regions in the world, Southeast Asia is one of the most heavily
impacted by biomass burning aerosols and cloud cover, which can delay multispectral sat-
ellite-based burned area detection (Justice et al. 2002; Roy and Boschetti 2009; Wilson
and Jetz 2016). Moreover, along with boreal areas, the Southeast Asia region experiences
some of the highest burn date uncertainty (often 20þ days) in the world (Boschetti et al.
2010; Giglio et al. 2013; Li et al. 2018), making this region an important focus for devel-
oping methods to reduce the burn date uncertainty. Southeast Asia is also subject to large
amounts of toxic air pollution emissions resulting from agriculture, forest biomass burn-
ing and other anthropogenic sources (Streets et al. 2003; Ohara et al. 2007; Vadrevu et al.
2015; Lasko et al. 2018; Oanh et al. 2018).

C-band synthetic aperture radar (SAR) with its cloud-penetrating ability has the poten-
tial to improve upon burned area date uncertainty. While not addressing burn date
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improvement specifically, previous studies have mapped burned areas using SAR data in
different landscapes and using various sensors including ERS-1, ERS-2, ALOS PALSAR,
Sentinel-1, Radarsat-2 and TerraSAR-X often based on a decrease in backscattered energy
after the fire event (Kasischke et al. 1994; Liew et al. 1999; Siegart and Hoffmann 2000;
Bourgeau-Chavez et al. 2002; Gimeno et al. 2004; Goodenough et al. 2012; Polychronaki
et al. 2013; Jenkins et al. 2014; Engelbrecht et al. 2017; Lohberger et al. 2018). Moreover,
some studies have also integrated both SAR and multispectral imagery for burned area
estimation (Siegert and Hoffmann 2000; Stroppiana et al. 2015a, 2015b; Ahmed et al.
2016; Verhegghen et al. 2016; Peve et al. 2018). SAR has also been implemented for burn
severity mapping, with C and L-band SAR found to be most sensitive to post-fire forest
regrowth monitoring (Bourgeau-Chavez et al. 1994; Tanase et al. 2010; Tanase et al.
2011). However, the C-band SAR backscatter can also be influenced by soil moisture and
forest stand age (Kalogirou et al. 2014), but the decrease in backscatter from precipitation
is generally low at about 1 dB (El Hajj et al. 2016). Research has also suggested that within
shrubland and open forest landscapes, C-band SAR has relatively strong performance for
burned area mapping (Menges et al. 2004). A decrease in cross-polarized SAR backscatter
has been documented after a fire damages or degrades the vegetation; the resulting signal
is dependent on the SAR wavelength with C-band generally most sensitive to smaller
woody branches and leaves and also potentially influenced by local topography, some of
which can be accounted for in the calibration process (Stroppiana et al. 2015a, 2015b;
Imperatore et al. 2017). Mapping of burned areas using only SAR can be difficult or lim-
ited in some landscapes as the burned area signal could be confused with other processes
associated with a major change in backscatter, such as a forest clearing or flooding.
Moreover, the burned area signal persistence time can be a limiting factor when monitor-
ing with satellites with low temporal resolution (Melchiorre and Boschetti 2018).
However, multispectral optical imagery with shortwave infrared and other bands have
been proven to globally detect burned area accurately due to mapping the unique spectral
signature of burn scars in most landscapes (Roy et al. 2008; Giglio et al. 2009; Roy and
Boschetti 2009; Padilla et al. 2014), but with limitations in croplands (Giglio et al. 2013;
Hall et al. 2016; Zhang et al. 2016; Lasko et al. 2017; Zhang et al. 2018; Liu et al. 2019).
The median burned area signal persistence time exceeds 29 d, however, for some areas it
is much lower, which could lead to undetected burns or higher uncertainty (Melchiorre
and Boschetti 2018). Therefore, combining the strengths of SAR (e.g. ability to detect
vegetation change under cloud cover) and the strengths of multispectral imagery (e.g.
ability to discriminate vegetation change from burned area) could prove to be an effective
strategy for improvement to burned area mapping algorithms and applications, as men-
tioned in previous studies (San-Miguel-Ayanz et al. 2009; Chuvieco et al. 2019).

In this study, to demonstrate the need for improvements to existing burn date esti-
mates and associated uncertainty range, we assess the current status of MODIS burned
area date uncertainty range for selected countries in the Southeast Asia region on a coun-
try-level scale. Within a mosaic landscape of Northern Laos and Thailand consisting of
mostly evergreen forest and shrubland, we prototype the potential for SAR imagery to
improve upon the date of burning, and associated date range of uncertainty. We use a
timeseries of Sentinel-1 C-band SAR masked based on MODIS burned area 500m burn
pixels in order to improve upon burn date and associated burn date uncertainty range
based on a robust, straightforward algorithm calculating a simple difference between dates
and applying a maximum filter within each MODIS burn pixel (Figure 1). The resulting
combined SAR and optical algorithm exploits the benefits of multispectral remote sensing
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(i.e. unique spectral signature of burns, validated dataset) with C-band SAR (weather-pen-
etrating ability, sensitivity to vegetation structure).

Data and study area

Sentinel-1 C-band SAR

The Sentinel-1 satellite from the European Space Agency (ESA) provides C-band SAR
imagery (5.4GHz) near-globally with at least a 12-d revisit time (6 d for areas with
Sentinel-1B data). The Sentinel-1 imagery is acquired as dual-polarized, interferometric
wide swath (IW) with Vertical transmit – vertical receive (VV), and vertical transmit –
horizontal receive (VH) polarizations. The ground-range detected data are originally at a
nominal spatial resolution of 5m � 20m prior to pre-processing. We acquired level-1
ground-range detected imagery in descending mode from the Alaska Satellite Facility
(https://vertex.daac.asf.alaska.edu/#), which holds a complete mirror of ESA’s Sci-hub.
The imagery was processed using the latest available version of the free and open source
Sentinel-1 SNAP toolbox (Zuhlke et al. 2015). The data were processed following guide-
lines including applying restituted orbit files for accurate orbit and geolocation informa-
tion and thermal noise reduction. The data are then calibrated into gamma nought
backscatter which accounts for possible incidence angle variation effects on backscatter
(Small et al. 2009), then it is terrain-corrected and geolocated using the latest SRTM
DEM at 30m resolution resampled with cubic convolution. A refined lee speckle filter is
applied in order to reduce effects from constructive and destructive interference and
noise. Lastly, the data are converted into log scale with final units in decibels (dB). Given
our processing techniques and the relatively small study area with consistent orbit acquisi-
tion, incidence angle effects were expected to be minimal. We acquired 5 SAR images
(Table 1) from the ASF over Northern Laos and Northern Thailand with dates ranging

Figure 1. Overview flowchart of the combined SAR-optical burn date improvement and burn date uncertainty range
reduction. It uses Sentinel-1 VH imagery difference images in conjunction with the MCD64A1 burn pixels and associ-
ated ancillary data, a maximum filter, and then a date improvement and uncertainty reduction algorithm shown on
the right side.
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from 20 March 2016 to 7 May 2016 acquired every 12 d with the same orbit, acquisition
mode and sensor incidence angle. A decrease in C-band SAR VH backscatter is generally
associated with vegetation fire events due to destruction of vegetation (Kurum 2015;
Verhegghen et al. 2016; Imperatore et al. 2017).

MODIS burned area (MCD64A1)

The MODIS burned area product (collection 6) generally identifies fire-affected land areas
by detecting a change from vegetated surface into char, ash or soil (Roy 1999). The
MCD64A1 burned area product uses daily MODIS (Aqua and Terra) surface reflectance
imagery trained with the MODIS active fire product. The nominal 500m resolution product
is based on a dynamic threshold of the surface reflectance data created from a burn-sensitive
spectral band index derived from MODIS 1240 and 2130 nm bands and incorporating tem-
poral variability and guided by the MODIS active fire hotspot locations (Roy et al. 2008;
Giglio et al. 2009, 2013; Humber et al. 2018). The burned area product is provided in hier-
archical data format (HDF) and includes layers used in this study: (1) ‘Burn date’ the
approximate day of burning (1–366), ‘burn date uncertainty’ estimated uncertainty in the
date of burn measured in days. The burn date uncertainty is often associated with lack of a
clear signal in the MODIS surface reflectance imagery (e.g. from clouds, but also other phe-
nomena). A minimum of 1 day uncertainty is applied for all burn pixels, as described in the
latest MODIS collection 6 user’s guide (Giglio et al. 2016). The MODIS burned area product
and MODIS active fire product have been extensively validated in several regions of the
world and are regularly subject to algorithm refinements (Boschetti et al. 2008; Roy et al.
2008; Schroeder et al. 2008; Roy and Boschetti 2009). We acquired the freely available
monthly HDF product for the previous 10 years (January 2008 – December 2017) from the
University of Maryland FTP (http://modis-fire.umd.edu/pages/BurnedArea.
php?target¼Download). For ease of data visualization purposes, we display all resulting fig-
ures in geographic coordinates.

MODIS active fire product

The latest collection 6 MODIS active fire product was downloaded from University of
Maryland. The product is derived from the Aqua and Terra satellites which are sun-syn-
chronous, polar-orbiting satellites with local overpass of approximately 10:30am/pm and
1:30am/pm and daily revisit time. The MODIS Advanced Processing System (MODAPS)
processes the resulting data using the enhanced contextual fire detection algorithm proc-
essed into the collection six active fire product (Giglio et al. 2003, 2016). We acquired the
active fire product for 2016 for visualization and comparison purposes with the SAR and
burned area products.

Table 1. Sentinel-1 VH SAR imagery acquired over Northern Laos and Thailand to demonstrate the algorithm for
the local peak burning month of April.

Date Path/frame Type Acquisition Incidence angle

2016-03-20 62, 528 IW, GRD Descending 38.1�
2016-04-01 62, 528 IW, GRD Descending 38.1�
2016-04-13 62, 528 IW, GRD Descending 38.1�
2016-04-25 62, 528 IW, GRD Descending 38.1�
2016-05-07 62, 528 IW, GRD Descending 38.1�
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Study area

We first analyze the MCD64A1 product date uncertainty within a large portion of the
Southeast Asia countries including: Laos, Vietnam, Cambodia, Indonesia, Philippines,
Thailand, Myanmar and Malaysia. Of the different countries, the continental countries of
Myanmar, Laos and Thailand experience some of the most vegetation fire activity from a
variety of land cover types including deciduous and evergreen forest, croplands, shrub-
lands during February–April (Vadrevu et al. 2014, 2015). Whereas, peak fire season in the
southern portion of the study area is during August–October, such as Indonesia and
Malaysia due to the monsoonal differences. The Southeast Asia region experiences some
of the highest cloud coverage in the world with implications on applications such as crop-
land phenology mapping (Whitcraft et al. 2015; Wilson and Jetz 2016). The region is also
undergoing some of the most rapid land cover and land use changes combined with
strong population growth, often subjecting the populace to harmful air pollution

Figure 2. April BA uncertainty with VH multitemporal SAR composite and burned area overlaid. Signal from burned
pixels is evident.
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emissions from biomass burning and other anthropogenic sources (Ohara et al. 2007;
Vadrevu et al. 2017). After assessing the MCD64A1 burned area product, we focus on
one SAR scene (path 62, frame 528) within Northern Laos and the border of Thailand.
During April of 2016, a major fire event was observed in the MCD64A1 burned area and
selected for further analysis. This area is covered by a mosaic of land cover with mostly
evergreen forest and shrublands, mixed in with some agricultural lands. Adjacent areas to
the east closer to Luang Prabang have also been subjected to extensive slash and burn
practices (Inoue 2018). The study area is visualized more in depth in the methods section.

Methods and algorithm development

In this article, we prototype a combined SAR-multispectral algorithm using multitemporal
Sentinel-1 SAR imagery in conjunction with the multispectral-based MODIS burned area
dataset (MCD64A1) to better estimate the MCD64A1 date of burning and also reduce the
uncertainty (in days) in the date of burning for pixels afflicted by lack of clear observa-
tions or other mitigating surface conditions. C-band SAR with its cloud-penetrating abil-
ity is effective at detecting vegetation disturbance events associated with fires, phenology,
vegetation structural changes and moisture content variability useful for a variety of appli-
cations (Palmann et al. 2008; Imperatore et al. 2017; Lievens et al. 2017; Torbick et al.
2017; Reiche et al. 2018; Whelen and Siqueira 2018) and has also been used for burned
area mapping as mentioned in the introduction. We use the MODIS burned area product
at its nominal 500m resolution to mask the extent of the SAR data to the burned area

Figure 3. Example SAR-assisted burn date implementation for a MODIS Burned area Pixel during April. It demon-
strates that at the lower date level the SAR data (Max Backscatter decrease detected at VH difference image for 13
April and 25 April) provides the lowest possible burn date, while at the upper date level the MCD64A1 uncertainty
upper limit at 23rd April is the limiting factor. The new burn date is the average date between the upper and lower
date limits. Therefore, using an effective combination of SAR and optical-based data can improve estimated burn date
and reduce date uncertainty.
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pixels. Thus, only SAR pixels within detected burned areas are used in order to limit
potential for erroneous burned area detections.

Burn date uncertainty

First we process the MCD64A1 data to highlight spatial patterns of burn date uncertainty
across much of Southeast Asia during the peak fire season. We derive monthly averages
over the previous 10 years (2008–2017) for: burn date uncertainty, standard deviation,
and maximum uncertainty, as well as the burned area in hectares, all based on a zonal
statistics algorithm.

SAR-multispectral burn date and uncertainty improvement algorithm

Subsequently, we prototype the combined SAR-multispectral burn date algorithm within 1
SAR scene over an area of moderately high MCD64A1 burn date uncertainty in Northern
Laos and Thailand during a wildland fire event in April 2016 (Figure 2). The flowchart of
the algorithm is shown in Figure 1 and an example calculation for a pixel is shown in
Figure 3. We start with a collection of processed VH-polarized IW SAR imagery, found
to be generally more sensitive to burned area and vegetation disturbance (e.g. biomass
change) than VV-polarization (Huuva et al. 2017; Imperatore et al. 2017). The acquired
SAR imagery ranges from late-March through early-May as shown in Table 1. The earlier
and later dates of SAR imagery were selected as described in Equation 1(a,b) to corres-
pond with the April 2016 MODIS burned area. Each SAR image was resampled from
native resolution into nominal 100m pixels for the purpose of noise reduction, and so
that only relatively larger vegetation disturbance events corresponding to the larger
MODIS BA pixel are detected. Simple difference images were then generated from the
SAR gamma nought backscatter imagery between each sequentially dated image (e.g. 1
April–20 March, 13 April–1 April, etc.). Then within each MCD64A1 burned area pixel, a
maximum filter is applied to the SAR difference images to obtain the pixel with the big-
gest decrease in backscatter between the two SAR acquisition dates. Therefore, within
each BA pixel, the SAR difference image with the greatest decrease in backscatter is used
to refine the burn date range (Equation 2), as supported by previous studies which found
C-band VH backscatter decreases significantly after a fire (Kurum 2015; Verhegghen et al.
2016; Mathieu et al. 2018) and as discussed in the introduction section. The two SAR
dates (earlier than MCD64A1 and later than MCD64A1) from the difference image are
extracted and used in conjunction with the MCD64A1 burn date and burn date uncer-
tainty range as described in the subsequent section.

The next step is to estimate the range of dates when burning could have occurred for
each pixel (green section of Figure 1; Figure 3). We use both the earlier and later dates
from the maximum SAR difference image (e.g. 13 April and 25 April), as well as the
MCD64A1 date of burning and uncertainty range in days. The earlier limit of the range
of dates for possible burning is determined from whichever is later in date between the
first date of the selected SAR difference image, or the earlier bounding date from
the MCD64A1 burn date uncertainty range as shown in Figure 1 and Figure 3, and
Equation 3. The latest possible burn date is the earlier of the second date of the SAR dif-
ference image and the later of the MCD64A1 burn date uncertainty range (same as
Equation 3 but with addition instead of subtraction). Thus, the new SAR-multispectral
burn date is the average DoY between the later and earlier bounding dates, and the new
uncertainty is the range between these dates as shown in Figure 1. For clarity, we show
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the procedure for this in an example burned area pixel in Figure 3. We emphasize that in
this combined algorithm, either the MCD64A1 burn date uncertainty range or the SAR
imagery acquisition dates are used for refining the date of burning and associated date
uncertainty. The novelty of this combined SAR-multispectral algorithm is that pixels with
fewer than 12 d of burn date uncertainty (Sentinel-1A’s overpass frequency) can be
improved, providing temporal utility even without Sentinel-1B observations. However,
increased precision could be obtained with the full Sentinel-1A/1B constellation.

SARFirstImagerySelected ¼ MinModBADOY � MODBAUncert

2
þ 1

� �
(1)

SARLastImageSelected ¼ MaxModBADOY þ MODBAUncert

2
þ 1

� �
(2)

SARburndate ¼BAPixelMaxFilterð0401ResampledSARVH

� 0320ResampledSARVH; 0425ResampledSARVH

� 0413ResampledSARVH; 0507ResampledSARVH � 0425ResampledSARVHÞ
(3)

LowerPossibleBurnDate ¼ MCD64A1BurnDate � Truncate 0:5 MCD64A1Uncertaintyð Þ þ 1ð Þ

Quality control and algorithm refinement

To improve upon the accuracy of the algorithm and to reduce possible errors from non-
fire disturbance events which SAR is sensitive to such as a forest clearing or flooding, we
use logical statements and ancillary data to prevent erroneously updating MCD64A1
burned area pixels. We include candidate MCD64A1 burned area pixels for updating by
the SAR-optical algorithm only if the date uncertainty exceeds 1 day, and the MCD64A1
burn date does not equal the SAR-optical burn date (Figure 1), as this would not offer
any added benefit from using the SAR. In addition, the following logical statement is also
used (Equation 4):

BA Pixel Excluded from Update ¼¼ IF MODISBADate>UpperSARBADate

� �
AND MODBADATE�UpperSARBADATEð Þ > ðMODBAUncertainty

2
þ 1ÞÞ

OR IF ð MODISBADate<LowerSARBADate

� �
AND MODBADATE�LowerSARBADATEð Þ

> ðMODBAUncertainty

2
þ 1ÞÞ

In this logical statement, a MODIS burned area pixel is left unchanged unless the date
of maximum SAR backscatter decrease is within the range of known uncertainty from the
MCD64A1 product – otherwise the estimated date may be incorrect due to potential con-
fusion with non-fire disturbance events which are also known to impact SAR backscatter.
It is assumed that if the SAR maximum decrease of backscatter occurs in this range, that
it is attributed to the fire event due to coinciding with MCD64A1. Because the algorithm
only updates the burn date and associated date uncertainty if at least one of the SAR
acquisitions falls within the MODIS uncertainty range, we are able to exclude erroneous
pixels (e.g. non-fire disturbance events) from updating in the MCD64A1 product as a
form of quality control (Figure 1). We then compare our SAR-multispectral dates with
the original burned area data and the MODIS active fire product for a preliminary
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measure of accuracy of the algorithm. We also demonstrate how the SAR-multispectral
algorithm would perform if we did not use the aforementioned quality control.

Results

MCD64A1 date uncertainty

We visualize the spatial pattern of monthly averaged MCD64A1 burn date uncertainty
during the peak fire months of January – April and September – October determined
from the trends in burned area (Figure 4). Clusters of high uncertainty are seen across
parts of Indonesia in September – October, as well as Laos, Cambodia and Southern
Vietnam during February – April with particularly high uncertainty observed over the
agricultural region of the Mekong River Delta in Vietnam corresponding to the rice straw
burning season (Van et al. 2014; Lasko and Vadrevu 2018). A country-level analysis based
on zonal statistics is shown in Figure 5. The monthly averaged (2008–2017) average
uncertainty (in days), standard deviation of uncertainty, and maximum of uncertainty, as
well as burned area in hectares are all consistently high in Indonesia, Vietnam, Thailand
and Laos. Indonesia experiences average maximum uncertainty exceeding 25 d during July
– October which is coinciding with the peak burning months of August – October. Laos
experiences the highest burned area during April and thus, we selected that month for
further analysis with the SAR-optical algorithm.

SAR-optical burn date and reduction in uncertainty
Figure 6 illustrates the simple difference images over a portion of the study area over
Northern Laos and Thailand for (1) 25 April – 13 April, and (2) 7 May – 25 April. The
April burned areas and MODIS active fires are overlaid and illustrate that large decreases
in backscatter are evident throughout the pixels of the first image when much of the
burning occurred (as indicated in the MODIS products). Whereas, during the subsequent

Figure 4. MCD64A1 burn date uncertainty in days for the 500m BA product. For visualization purposes, product
rescaled to approximately 5 km. Very high uncertainty can be seen in the Mekong Delta, Borneo and Sumatra, as well
as Northern Laos. Uncertainty is shown for peak burning months.
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date a very slight increase backscatter is observed. In Figure 7, based on the histogram
plot we show the maximum backscatter decrease within MCD64A1 pixels is most com-
monly in the range of 3–4 dB VH gamma nought backscatter – in line with results from
previous studies mapping SAR burned areas (Jenkins et al. 2014; Imperatore et al. 2017),
and also higher than the estimated 1 dB VH backscatter decrease on forested areas due to
precipitation (El Hajj et al. 2016). Some pixels decrease as much as 10 or 11 dB, likely

Figure 6. MODIS collection six active fires and burned areas for April 2016 overlaid on a difference image of 100m
Sentinel-1 VH gamma-nought dB backscatter (25 April – 13 April). This example area was mostly subject to burning
between this date range. The high decrease in backscatter between the two dates is evident in most of the burn pix-
els. It also appears that some BA’s may have been missed (area circled). Imagery after the fires, shows an increase in
backscatter following fire recovery and management practices.

Figure 5. Country-level burn date uncertainty statistics for all Southeast Asia averaged per month (2008–2017) with
(a) average uncertainty (days), (b) average standard deviation of uncertainty (days), (c) average maximum uncertainty
(days) and (d) average burned area (in hectares) shown only for the study area countries.
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attributed to severely burned areas. The average backscatter decrease is 3.9 dB with a
standard deviation of 1.4 dB. We highlight an example of the SAR VH backscatter and
SAR image selection process within an example MCD64A1 pixel in Figure 8.

We apply the SAR-assisted burn date improvement and burn date uncertainty reduc-
tion algorithm as described in the methods section. We illustrate the resulting spatial pat-
terns in Figure 9. In the first panel of the figure, the number of days of burn date
improvement are shown, whereas the second panel illustrates the reduction in date uncer-
tainty. Much of this improvement tends to be clustered on the Laos side of the SAR scene
in this particular case. The far right panel highlights the MCD64A1 pixels which were not
updated based on our quality control proceedure which removed pixels based on a num-
ber of criteria described in the methods section. We show the value distribution binned
on 1-d intervals for number of days of improvement in burn date and number of days of

Figure 7. Distribution plot binned into 1 dB intervals showing the maximum decrease in VH backscatter within each
MCD64A1 pixel.

Figure 8. Illustrates the processed Sentinel-1 VH imagery on the left column over a selected MCD64A1 burn pixel for
the month of April at native resolution. The right column shows the difference image (i.e. 1 April minus 20 March) for
the 100m resampled data. The maximum decrease in backscatter occurred between 1 April and 13 April, suggesting
the burn date falls within this range. For quality control, the date of burn is further refined based on MODIS DoY
burn and associated DoY uncertainty (in days).
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reduction in date uncertainty (Figure 10). On average, the burn date decreased by 1.5 d
with the most common change being a decrease of 4 d. Relatively fewer SAR-optical burn
dates indicated a later burn date as compared to the MCD64A1 burn date. The average
reduction in burn date uncertainty was much larger at about 4.5 d with some pixels
reduced by as much as 19 d. Most commonly, the uncertainty reduction was modest at
about 2 d.

Robust and remote accuracy assessment is difficult because fire scars are most likely
obscured by cloud cover or aerosols. In-situ data are needed to indicate the exact date of
burn. However, as a basic measure of performance we found that approximately 56% of
MODIS burned area pixels would be updated with SAR-optical burn dates that fall within
the MODIS burn date’s associated uncertainty. However, because of our algorithm quality
control which prevents updating of erroneous cells, this issue is assuaged, and about 15%
of MCD64A1 pixels in the SAR scene are updated with improved burn dates and burn
date uncertainty (out of all pixels with uncertainty > 1 day). We also visualize the distri-
bution of burn dates (DoYs) for the original MCD64A1, the SAR-optical burned area,
and the MODIS active fire product binned into approximately 3-d intervals (Figure 11).

Figure 9. Spatial variation of MCD64A1 pixels which were updated by the SAR-optical algorithm for (a) improved
burn dates, and (b) reduction in burn date uncertainty. Pixels were only updated if they matched the criteria
described in the quality assurance algorithm.

Figure 10. Pixel counts shown for the SAR-optical burned area product with: (a) change in burn date from the ori-
ginal MCD64A1, and (b) reduction in burn date uncertainty as compared to the original MCD64A1. The dotted line is
drawn at the mean value.
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The results show that around DoY 91 and 102 the SAR-optical algorithm indicated more
pixels burned than captured in the MCD64A1 data. Whereas, around DoY 107 the biggest
difference was observed between the two algorithms with MCD64A1 detecting about 100
more burn pixels.

Discussion

This algorithm integrates the strengths of SAR (e.g. weather-penetrating capability and
vegetation structure sensitivity) with the strengths of multispectral remote sensing (e.g.
spectral resolution). One major novelty of this research is that the extensively-validated
MODIS MCD64A1 burned area product, exclusively, is used to detect burned areas. Then
SAR, with its well-proven ability to detect vegetation destruction, is exploited to better
estimate the date of burning in pixels with burn date uncertainty – often attributed to
cloud cover or aerosols obstructing MODIS observations. This study relies upon several
underlying assumptions. We assume the maximum decrease in backscatter is associated
with a fire event, thereby assuming the decrease to be attributed to a vegetation disturb-
ance event is a burn (instead of noise or precipitation) – which is supported by the litera-
ture in land covers other than wetlands or croplands (Tanase et al. 2010; Karila et al.
2014; Kurum 2015; Verhegghen et al. 2016), especially considering the pixel is already
marked as burned by the MCD64A1 algorithm. Further, if the maximum backscatter
decrease occurs outside the range of MODIS burn date uncertainty, then it is excluded
from the update – thereby mitigating this issue. Moreover, this algorithm would need
tuning in order to perform well in some temporally-dynamic landscapes, especially crop-
lands, with their naturally wide dynamic ranges of backscatter over short periods of time
(Torbick et al. 2017) which could be confused with a burn event unless a more refined
algorithm is developed. While this algorithm does not directly account for impact of

Figure 11. Histogram plot binned into approximately 3-d intervals showing the distribution of the day of year (DoY)
of burning shown for the MODIS active fire points, original MCD64A1 pixels, and combined SARoptical burned
area pixels.

14



moisture on backscatter, rainfall events (aside from flooding) have been found over forests
to impact SAR VH backscatter at similar incidence angles by about 1 dB (El Hajj et al.
2016), which is generally lower than a fire event which alter vegetation structure (Mathieu
et al. 2018). Though this was not an issue in this research, there is also a need to develop
the algorithm so that it could account for variation in acquisition mode (descending vs
ascending), and different polarizations so that more consistent imagery through time can
be obtained. Inclusion of co-polarized bands (VV) may also reduce burned area commis-
sion errors (Belenguer-Plomer et al. 2018). Lastly, we acknowledge that a robust accuracy
assessment would be beneficial, but might demand an extensive ground survey. In this
article we demonstrate a method using C-band SAR combined with optical-based MODIS
burned area and built-in quality control for reducing the burn date uncertainty in a
cloudy region of Southeast Asia.

The improvement in burn date and reduction in associated uncertainty resulting from
this study could prove useful for a variety of applications including those related to multi-
sensor biomass burning inventories, associated air quality impact studies, temporally-
consistent emissions comparisons, fire early-warning systems, post-impact fire assess-
ments, timing of drought impacts on fire, changes to fire regime patterns over time, and
others (Prasad et al. 2002; Palandjian et al. 2009; Singh et al. 2009; Kanabkaew and Oanh
2011; Reid et al. 2013; Hayasaka et al. 2014; Gibe and Cayetano 2017; Shi and Matsunaga
2017; van der Werf et al. 2017; Z�u~niga-V�asquez et al. 2017; Hayasaka and Sepriando
2018; Itahashi et al. 2018; Koplitz et al. 2018; Nguyen et al. 2018). Some of these example
studies rely upon dynamic atmospheric conditions which change from day-to-day such as
wind speed and direction. Thus, improvement in date of burning and reduction in associ-
ated uncertainty range in days are important factors in studies using multispectral burned
area products. Moreover, improvements are critical for studies analyzing fire regimes
(trends, start/end of season, etc.). We demonstrated the combined SAR-multispectral algo-
rithm using the MODIS MCD64A1 burned area product, however, C-band SAR could be
incorporated into other existing multispectral burned area products (Roy et al. 2008;
Tansey et al. 2008; Alonso-Canas and Chuvieco 2015; Hall et al. 2016; Huang et al. 2016;
Hawbaker et al. 2017). There is potential to incorporate SAR with the higher spatial reso-
lution Suomi NPP VIIRS burned area product once it is fully developed and freely avail-
able (Oliva and Schroeder 2015; Urbanski et al. 2018).

Conclusion

We develop a combined SAR and multispectral algorithm to better estimate dates of
burning and reduce associated burn date uncertainty in the MODIS MCD64A1 burned
area product, and test it within a region of moderately-high burn date uncertainty in
Northern Laos and Thailand during April 2016. This algorithm uses temporal information
(burn date, burn date uncertainty range) from MCD64A1 combined with resampled
Sentinel-1 VH cross-polarized imagery pairs based upon a combination of image differ-
encing between sequential dates, and a maximum filter for backscatter decrease within
each MCD64A1 burn pixel, combined with inherent quality control to minimize incor-
rectly estimated SAR-optical burn dates. Within MCD64A1 fire pixels we found an aver-
age VH backscatter decrease of 3.9dB (r¼ 1.4dB) between pre- and post-fire images,
which is significantly higher than observed backscatter decreases due to precipitation.
Overall, we found 15% of MCD64A1 burn pixels containing uncertainty were updated
with improved dates and reduced date uncertainties. We found an average reduction in
date uncertainty by about 4.5 d and average change in estimated burn date of ˗ 1.5 d.
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Incorporating C-band SAR imagery to better estimate dates of burning is promising for 
burned area mapping applications and will benefit fire regime monitoring, biomass burn-ing 
and associated air quality studies, and other applications which require better esti-mates of 
burn dates at regional to global scales. In the future, we plan to further refine the algorithm 
and incorporate co-polarized bands, robustly assess the performance and accuracy, and 
implement it across multiple land cover types at larger scales.
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