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1 HIVE PHASE 2 REPORT: EXECUTIVE SUMMARY

This report is also located online at the following URL:
https://gunrock.github.io/docs/#/hive_phase2/hive_phase2_summary. Links currently work
better in the PDF version than the HTML version.

Herein UC Davis produces the following deliverables that it promised to deliver in Phase 2:
e Implementation of DARPA HIVE vO0 apps as single-node, multi-GPU applications using
the Gunrock framework
e Performance characterization of these applications across multiple GPUs
e Analysis of the limits of scalability for these applications

In our writeup, we first describe how to reproduce our results (HTML) and then describe the
scalability behavior of our ForAll operator (HTML) .

We begin with a table that summarizes the scalability behavior for each application, then a
longer description of each application:

Application Scalability behavior

Scan Statistics Bottlenecked by single-GPU and communication
GraphSAGE Bottlenecked by network bandwidth between GPUs
Application Classification Bottlenecked by network bandwidth between GPUs
Geolocation Bottlenecked by network bandwidth between GPUs

Community Detection (Louvain) Application is nonfunctional

Local Graph Clustering (LGC)  Bottlenecked by single-GPU and communication

Graph Projections Limited by load imbalance

GraphSearch Bottlenecked by network bandwidth between GPUs
Seeded Graph Matching (SGM)  We observe great scaling

Sparse Fused Lasso Maxflow kernel is serial

Vertex Nomination We observe weak scaling

1.1  App: Scan Statistics (HTML)

We rely on Gunrock’s multi-GPU ForALL operator to implement Scan Statistics. We see no
scaling and in general performance degrades as we sweep from one to sixteen GPUs. The
application is likely bottlenecked by the single GPU intersection operator that requires a two-hop
neighborhood lookup and accessing an array distributed across multiple GPUs.

1.2 App: GraphSAGE (HTML)

We rely on Gunrock’s multi-GPU ForALL operator to implement GraphSAGE. We see no
scaling as we sweep from one to sixteen GPUs due to communication over GPU interconnects.
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1.3 App: Application Classification (HTML)

We re-forumlate the application_classification workload to improve memory locality and admit
a natural multi-GPU implementation. We then parallelized the core computational region of
application_classification across GPUs. For the kernels in that region that do not require
communication between GPUs, we attain near-perfect scaling. Runtime of the entire application
remains bottlenecked by network bandwidth between GPUs. However, mitigating this bottleneck
should be possible further optimization of the memory layout.

1.4  App: Geolocation (HTML)

We rely on Gunrock’s multi-GPU ForALL operator to implement Geolocation as the entire
behavior can be described within a single-loop like structure. The core computation focuses on
calculating a spatial median, and for multi-GPU ForAll, that work is split such that each GPU
gets an equal number of vertices to process. We see a minor speed-up on a DGX-A100 going
from 1 to 3 GPUs on a twitter dataset, but in general, due to the communication over the GPU-
GPU interconnects for all the neighbors of each vertex, there’s a general pattern of slowdown
going from 1 GPU to multiple GPUs, and no scaling is observed.

1.5 App: Community Detection (Louvain) (HTML)
The application has a segmentation fault and is currently nonfunctional.
1.6  App: Local Graph Clustering (LGC) (HTML)

We rely on Gunrock’s multi-GPU ForALL operator to implement Local Graph Clustering and
observe no scaling as we increase from one to sixteen GPUs. The application is likely
bottlenecked by single-GPU filter and advance operators and communication across NVLink
necessary to access arrays distributed across GPUs.

1.7  App: Graph Projections (HTML)

We implemented a multi-GPU version of sparse-sparse matrix multiplication, based on chunking
the rows of the left hand matrix. This yields a communication-free implementation with good
scaling properties. However, our current implementation remains partially limited by load
imbalance across GPUs.

1.8 App: GraphSearch (HTML)

We rely on a Gunrock’s multi-GPU ForALL operator to implement GraphSearch as the entire
behavior can be described within a single-loop like structure. The core computation focuses on
determining which neighbor to visit next based on uniform, greedy, or stochastic functions. Each
GPU is given an equal number of vertices to process. No scaling is observed, and in general we
see a pattern of decreased performance as we move from 1 to 16 GPUs due to random neighbor
access across GPU interconnects.
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1.9 App: Seeded Graph Matching (SGM) (HTML)

Multi-GPU SGM experiences considerable speed-ups over single GPU implementation with a
near linear scaling if the dataset being processed is large enough to fill up the GPU. We notice
that ~1 million nonzeros sparse-matrix is a decent enough size for us to show decent scaling as
we increase the number of GPUs. The misalignment for this implementation is also synthetically
generated (just like it was for Phase 1, the bottleneck is still the |V|x| V| allocation size).

1.10 App: Sparse Fused Lasso (HTML)

Sparse Fused Lasso (or Sparse Graph Trend Filtering) relies on a Maxflow algorithm. As
highlighted in the Phase 1 report, a sequential implementation of Maxflow outperforms a single-
GPU implementation, and the actual significant core operation of SFL is a serial normalization
step that cannot be parallelized to a single GPU, let alone multiple GPUs. Therefore, we refer
readers to the phase 1 report for this workload. Parallelizing across multiple GPUs is not
beneficial.

1.11 App: Vertex Nomination (HTML)

We implemented vertex nomination as a standalone CUDA program, and achieve good weak
scaling performance by eliminating communication during the advance phase of the algorithm
and using a frontier representation that allows an easy-to-compute reduction across devices.
We also produce web versions of our scalability plots and scalability tables of results.
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2 RUNNING THE APPLICATIONS

Given the number of applications, options, datasets, and GPU configurations, we have tried to
simplify application testing as much as possible. To facilitate test sweeps across 1 to 16 GPUs,
multiple application options, and datasets, every application has two associated scripts: hive-
mgpu-run.sh and hive-application-test.sh.

In general hive-mgpu-run.sh deals with parameter sweeps and schedules hive-application-
test.sh as multi-GPU SLURM jobs. The hive-application-test.sh script generally deals with
datasets and associated paths, and configures itself with the parameters necessary to run the
application.

2.1.1 Default Run Configuration

The simplest way to run an application is to execute:

J/hive-mgpu-run.sh

The associated hive-application-test.sh will execute with datasets in the following user
directories on NVIDIA’s nslb cluster:
/home/u00u7u37rw7AjJoA4e357/data/gunrock/gunrock_dataset
/home/u00u7ud7rw7AjJoA4e3S57/data/gunrock/hive_datasets

2.1.2 Alternate Run Configurations

Additional command line parameters and / or script modifications are necessary to run on
additional datasets or with alternate application parameters.

2.1.2.1 hive-mgpu-run.sh

This script configures SLURM with NUM_GPUS to sweep across on a chosen
PARTITION NAME. Running the script with no parameters (as shown above) is equivalent to:
Jhive-mgpu-run.sh 16 dgx2

This runs hive-application-test.sh across 1 to 16 GPUs on the machine partition named dgx2.

For some applications, this script might have additional parameter variables that are worth
exploring and modifying. Please see the individual HIVE application chapters for more details.

2.1.2.2 hive-application-test.sh

The primary reason to modify this script is to provide additional dataset information. In general
these scripts will include some or all of the following arrays:
DATA_PREFIX path to directory containing desired dataset
*  NAME a simple string naming the dataset, generally sans a file extension (e.g.,
NAME|[0]="twitter" for twitter.mtx)
*  GRAPH aggregated options for the chosen dataset to pass to the application (i.e.,
combine DATA PREFIX and NAME with additional information expected by the
application)
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Please note that you must update the associated for loop index if you add or remove items to the
arrays mentioned.

2.1.3 Future Script Simplification

In the future we would like to refactor hive-mgpu-run.sh to simply configure the necessary
SLURM command (e.g., resources and hardware partition) and pass the command to the hive-
application-test.sh script. The application script can then deal with sweeping across its relevant
parameters and datasets.
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3 GUNROCK’S FORALL OPERATOR

Gunrock’s ForAll operator is a compute operator type, meaning, it takes in an input array and
applies user-defined function on every element of the input in parallel. This input for the ForAll
operator can in a sense be any element of an array, vertices or edges of a frontier, or all the
vertices or edges of the entire graph. In HIVE’s phase I, due to the intuitive nature and simple
implementation of the the parallel ForAll operator, we found that the operator was very useful
in implementing single-GPU versions of several of the HIVE application workloads such as
Geolocation, Graph Search, Random Walk, GraphSAGE, computation elements of Local Graph
Clustering, Louvain, and Graph Trend Filtering.

The following pseudocode shows a simple-sequential implementation of the ForAll operator:

template <typename ArrayT, typename ApplyLambda>

void ForAll(ArrayT* array, ApplyLambda apply, std::size_t size) {
for(std::size_t i = 0; i < size; ++1i)

, apply(array, i);

3.1 Summary of Multi-GPU ForAll

In this write-up, we show how Gunrock’s ForAll operator can be extended to support multiple
GPU execution. We also explain what kind of scaling is expected with the new multi-GPU
ForAll versus the kind of scaling we observe in real-world problems (such as the HIVE
applications). We elaborate on what the performance bottlenecks are for our current
implementation and what can we do better in the future with specialized-scalable operators
targetting interesting patterns present in these applications.

3.2 ForAll Implementation
3.2.1 Approach to Single-GPU

CUDA-based implementation of a parallel ForAll operator is a simple extension to the
sequential version described above, where instead of looping over the array in a sequential loop,
we launch ceil_div(size, BLOCK_SIZE) blocks, with 128 or 256 threads per block, and each
element of the array gets processed by each thread of the parallel CUDA grid launch. This
effectively makes a simple loop-operator, a parallel operator with the ability to apply any
arbitrary user-defined operator on every element of the array. Given a single-GPU parallel
ForAll operator, the users working on the graph algorithms can then write their custom user-
defined operators to implement the apps. One example of an application implemented entirely
using ForAll is Geolocation (described in detail here). The following snippet is the CUDA-
kernel call for Gunrock’s ForAll operator.
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template <typename ArrayT, typename ApplyLambda>
__global__ void ForAll_Kernel(ArrayT array, ApplyLambda apply, std::size_t
size) {
const std::size_t STRIDE = blockDim.x * gridDim.x;
auto thread_idx = blockDim.x * blockIdx.x + threadIdx.x;
while (thread_idx < size) {
apply(array, thread_idx);
i += STRIDE;
}
}

3.2.2 Approach to Multi-GPU

Extending Gunrock’s ForAll operator from single-GPU to multiple GPUs can be achieved by
using CUDA’s multi-stream model. A stream in CUDA programming model introduces
asynchrony such that independent tasks (or kernels) can run concurrently. If, no stream is
specified, CUDA assumes the kernels are all running under a special default stream called the
NULL stream. NULL stream’s behavior is such that each task on the NULL stream synchronizes
before running the next task, effectively making it sequential. However, it is important for
multiple GPU streams to all execute in parallel, therefore, we create a stream for each GPU and a
“master” stream, which every stream synchronizes to at the very end to signal that the task has
been completed.

The following simplified snippet shows how one can create, launch and synchronize a stream per
GPU for the ForAll operator:

std::vector<cudaStream_t> streams(num_gpus);

for(int i = 0; 1 < num_gpus; ++i) {
cudaSetDevice(i);
cudaStreamCreate(&streams[i]);

}

for(int i = 0; 1 < num_gpus; ++1i) {
cudaSetDevice(i);
ForAll<<<GRID_DIM, BLOCK_DIM, 9, streams[i]>>>(...);

}

for(int i = 9; 1 < num_gpus; ++i) {
cudaSetDevice(i);
cudastreamSynchronize(streams[i]);

}
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The above is a great initial formulation to achieve asynchronous device-side launch of our
ForAll kernel, but we can do better! Even though the device-side execution is now
asynchronous with the multi-streams abstraction, on the CPU-side, we are still launching kernels
sequentially. We can remedy that by using muiltiple CPU threads to asynchronously launch our
kernels on multiple streams from the CPU using OpenMP or C++ threads:

#pragma omp parallel for
for(int i = 0; 1 < num_gpus; ++i) {
cudaSetDevice(i);
ForAll<<<GRID_DIM, BLOCK_DIM, 9, streams[i]>>>(...);

}

Now, to be able to actually work on individual data elements per GPU, we simply offset the
input array by gpu_id * (size / num_gpus), such that each GPU gets a unique section of the
work to process.

3.3 Scalability Analysis
3.3.1 Expected vs. Observed Scaling

Multiple GPUs ForAll operator was initially intended as a transform operator, where given an
array we apply a user-defined transformation on every element of the array. If the user-defined
operations are restricted to the array/elements being processed and are simple, the observed
scaling is linear. Each GPU gets an embarassingly parallel chunk of work to do independent of
every other GPU on the system, therefore, expected scaling to be perfect-linear.

However, what we observe in practice is that the user-defined functions can be complex
computations used to implement some of the HIVE workloads. An example pattern that the user
may want can be described as following:

1. “Array” being processed in the ForAll is an active vertex set of the graph,

2. Therefore, giving access to each vertex in a frontier within the user-defined operation,

3. And in the operation itself, the user may do any random access to other arrays in the
algorithm’s problem.

These random accesses are observed in many applications, for example, in Geolocation you may
want to get the latitude and longitude for each vertex in the graph, and get the latitude and
longitude of each of the neighbors of that given vertex to find a spatial-distance. In an ideal case,
the neighbor’s vertices data is local to each GPU, but in practice, that neighbor could live in any
of the GPUs in a system, which causes the GPU processing the neighbor, to incur remote
memory transaction causing our expected perfectly linear scaling to fail.

3.3.2 Performance Limitations

For our multi-GPU work, we deploy three different memory schemes for allocating/managing
the data that gets split equally among all the GPUs in the systems, these schemes are:

1. Unified Memory Addressing Space (cudaEnablePeerAccess())
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2. Unified Memory Management (cudaMallocManaged())
3. CUDA Virtual Memory Management (cuMemAddressReserve())

With the help of prefetching the managed memory (2), all three APIs can perform nearly the
same and achieve the goal of allowing all the data within Gunrock to be accessed by all of the
GPUs in the system. One additional optimization we deploy is replicating the input graph to all
GPUs if the graph is small enough to fit in a single-GPU memory space. As hinted earlier, the
performance bottleneck is not within these memory schemes, as they simply split the data and
allow it to be accessed from a unified address space, it is within the memory accesses that the
user defines within the compute lambda. When lots of remote memory accesses occur from a
single-GPU, it can saturate the memory bus causing operations to halt until these transactions are
completed. This makes it so that the problems take longer to solve in a multiple GPU system
versus a single GPU, because many of the computations are waiting on memory to arrive from
remote GPUs. The problem can be reduced by using faster interconnects, such as the new
NVLink in the Ampere A100s, but due to Ampere A100s having more compute units as well, the
interconnects’ bandwidth is still not enough to saturate the device.

We found that although there are some accesses that are entirely random, many of the user-
defined lambdas can be split into multiple parts and common patterns can be further extracted
into operators. Once we switch to this specialized-operator model, we can scale our problems
better (as further explained in the following section).

3.3.3 Optimizations and Future Work

One lesson learned from implementing a multiple GPU ForAll operator is that there is a need to
identify common patterns within the ForAll user-defined implementations to be made into
operators that can potentially scale. Continuing the previously mentioned Geolocation example,
we can look into implementing Geolocation with NeighborReduction, where Reduction is not
a simple reduce, but more complex user-defined operations (such as spatial-median). Another
reason why moving onto specialized graph operators instead of a general ForAll will be better is
that we can then map communication patterns within these operators to be able to transfer
information at a per-iteration basis between different GPUs using gather, scatter, broadcast (can
be achieved using NCCL primitives.) We show one such example with Vertex Nomination,
implemented using NCCL, an NVIDIA communication library for multiple GPUs.
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4 SCAN STATISTICS

From the Phase 1 report for Scan Statistics:

Scan statistics, as described in Priebe et al., is the generic method that computes a statistic for
the neighborhood of each node in the graph, and looks for anomalies in those statistics. In this
workflow, we implement a specific version of scan statistics where we compute the number of
edges in the subgraph induced by the one-hop neighborhood of each node u in the graph. It turns
out that this statistic is equal to the number of triangles that node u participates in plus the degree
of u. Thus, we are able to implement scan statistics by making relatively minor modifications to
our existing Gunrock triangle counting (TC) application.

4.1 Scalability Summary
Bottlenecked by single-GPU and communication
4.2 Summary of Results

We rely on Gunrock’s multi-GPU ForALL operator to implement Scan Statistics. We see no
scaling and in general performance degrades as we sweep from one to sixteen GPUs. The
application is likely bottlenecked by the single GPU intersection operator that requires a two-hop
neighborhood lookup and accessing an array distributed across multiple GPUs.

4.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize Scan Statistics by utilizing a multi-GPU ForAl1l operator that splits the
scan_stats array evenly across all available GPUs. Additional information on multi-GPU
ForAll can be found in Gunrock’s ForAll Operator section of the report. Furthermore, this
application depends on triangle counting and an intersection operator that have not been
parallelized (i.e., across multiple GPUs). It is not clear that simply parallelizing these functions
would lead to scalability due to the communication patterns they exhibit.

4.3.1 Differences in Implementation from PHASE 1
No change from Phase 1.

4.4 How to Run this Application on NVIDIA’s DGX-2
4.4.1 Prerequisites

git clone https://github.com/gunrock/gunrock -b multigpu
mkdir build

cd build/

cmake ..

make -jl16 ss

Verify git SHA: commit d70a73c5167c5b59481d8ab07c98b376e77466¢cC
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4.4.2 Partitioning the Input Dataset

Partitioning is handled automatically as Scan Statistics relies on Gunrock’s multi-GPU ForALL
operator and its scan_stats array is split evenly across all available GPUs (see ForAll for
details).

4.4.3 Running the Application (Default Configurations)

From the build directory

cd ../examples/ss/

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
option as specified in hive-ss-test.sh. See Running the Applications for more details.

4.4.3.1 Datasets

Default Locations:
/home/uQ0u7u37rw7AjJoA4e357/data/gunrock/hive_datasets/mario-2TB
Names:

pokec

4.4.4 Running the Application (alternate configurations)

4.4.4.1 hive-mgpu-run.sh

Modify OUTPUT _DIR to store generated output and json files in an alternate location.
4.4.4.2 hive-ss-test.sh

Modify APP_OPTIONS to specify alternate --undirected and --num-runs values. Please see
the Phase 1 single-GPU implementation details here for additional parameter information.

Please review the provided script and see “Running the Applications” chapter for details on
running with additional datasets.

4.4.5 Output

No change from Phase 1.

4.5 Performance and Analysis
No change from Phase 1.

4.5.1 Implementation limitations

No change from Phase 1.
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4.5.2 Performance Limitations

Single-GPU: No change from Phase 1.

Multiple-GPUs: Performance bottleneck is likely the single-GPU implementation of triangle
counting and intersection and the need to randomly access an array distributed across multiple
GPUs. Though once parallelized across multiple GPUs, the random access patterns of these
functions (e.g., two-hop neighborhoods) would bottleneck communication over NVLink.

4.6 Scalability Behavior

We observe no scaling with the current Scan Statistics implementation. Please see the chapter on
Gunrock’s ForAll Operator for a discussion on future directions around more specialized
operators to be designed with communication patterns in mind.

4.7 Scalability Plots

Scalability plots
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5 GRAPHSAGE

The Phase 1 writeup contains a detailed description of the application.
From the Phase 1 writeup:

GraphSAGE is a way to fit graphs into a neural network: instead of getting the embedding of a
vertex from all its neighbors’ features as in conventional implementations, GraphSAGE selects
some 1-hop neighbors, some 2-hop neighbors connected to those 1-hop neighbors, and computes
the embedding based on the features of the 1-hop and 2-hop neighbors. The embedding can be
considered as a vector containing hash values describing the interesting properties of a vertex.

5.1 Scalability Summary
Bottlenecked by network bandwidth between GPUs
5.2 Summary of Results

We rely on Gunrock’s multi-GPU ForALL operator to implement GraphSAGE. We see no
scaling as we sweep from one to sixteen GPUs due to communication over GPU interconnects.

5.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize across GPUs by utilizing a multi-GPU For-Al1l operator and evenly distribute
relevant arrays across multiple GPUs. Please see Gunrock’s ForAll Operator for more details.

5.3.1 Differences in Implementation from Phase 1
no change from phase 1.
5.4 How to Run this application on NVIDIA’s DGX-2 Prerequisites

git clone https://github.com/gunrock/gunrock -b multigpu
mkdir build

cd build/

cmake ..

make -jl16 sage

Verify git SHA: commit d70a73c5167c5b59481d8ab07c98b376e77466cc

5.4.1 Partitioning the Input Dataset

Partitioning is handled automatically as GraphSage relies on Gunrock’s multi-GPU ForALL
operator and its frontier vertices are split evenly across all available GPUs. Please refer to the
chapter on Gunrock’s ForAll Operator for additional information.
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5.4.2 Running the Application (Default Configurations)

From the build directory

cd ../examples/sage/

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
option as specified in hive-sage-test.sh.

Running the Applications chapter for details on running with additional datasets for additional
parameter information, review the provided script, and see Running the Applications chapter
for details on running with additional datasets.

5.4.2.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAde357/data/gunrock/hive_datasets/mario-2TB
/home/u@Ou7u37rw7AjloAd4e357/data/gunrock/gunrock_dataset/mario-2TB/large
Names:

pokec

dir_gs_twitter

europe_osm

5.4.3 Running the Application (Alternate Configurations)

5.4.3.1 hive-mgpu-run.sh

Modify OUTPUT_DIR to store generated output and json files in an alternate location.
5.4.3.2 hive-sage-test.sh

Modify APP_OPTIONS to specify alternate --undirected and --batch-size options. Please see
the Phase 1 single-GPU implementation details here for additional parameter information,
review the provided script, and see Running the Applications chapter for details on running
with additional datasets.

5.4.4 Output

No change from Phase 1.

5.5 Performance and Analysis
No change from Phase 1.

5.5.1 Implementation Limitations

No change from Phase 1.
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5.5.2 Performance Limitations

Single-GPU: No change from Phase 1.
Multiple-GPUs: Performance bottleneck is the remote memory accesses from one GPU to
another GPU’s memory through NVLink.

5.6 Scalability Behavior

We observe no scaling with the current GraphSAGE implementation. Please see the chapter on
Gunrock’s ForAll Operator for a discussion on future directions around more specialized
operators to be designed with communication patterns in mind.

5.7 Scalability Plots
Scalability plots
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6 APPLICATION CLASSIFICATION
The Phase 1 writeup contains a detailed description of the application.

From the Phase 1 writeup:

The application classification (AC) workflow is an implementation of probabalistic
graph matching via belief propagation. The workflow takes two node- and edge-
attributed graphs as input — a data graph G = (U_G, E_G) and a pattern graph P =
(U_P, E_P). The goal is to find a subgraph S of G such that the dissimilarity between
the node/edge features of P and S is minimized. The matching is optimized via loopy
belief propagation, which consists of iteratively passing messages between nodes then
updating beliefs about the optimal match.

6.1 Scalability Summary
Bottlenecked by network bandwidth between GPUs
6.2 Summary of Results

We re-forumlate the application_classification workload to improve memory locality and admit
a natural multi-GPU implementation. We then parallelized the core computational region of
application_classification across GPUs. For the kernels in that region that do not require
communication between GPUs, we attain near-perfect scaling. Runtime of the entire application
remains bottlenecked by network bandwidth between GPUs. However, mitigating this bottleneck
should be possible further optimization of the memory layout.

6.3 Summary of Implementation

The Phase 1 single-GPU implementation is here.

application_classification consists of two regions: - Region 1: initialization of distance and
feature matrices - Region 2: iterative loop consisting of of message passing operations and
matrix normalization operations

Region 2 accounts for the majority of runtime. For example, in our single-GPU implementation
running on the rmat18 application_classification benchmark dataset, Region 1 takes 37ms
(20% of runtime) and Region 2 takes 157ms (80% of runtime). As such, we focused on
parallelizing Region 2 across GPUs. A multi-GPU implementation of Region 1 would also be
possible, but with diminishing returns.

Upon examination of the Phase 1 application_classification implementation, we determined
that most of the matrices could be transposed to attain better memory locality. In the original
implementation, there were a number of column-wise operations (max reduce on columns;
softmax normalization of columns). Transposing these matrices converts these into row-wise
operations, and yields a substantial speedup. For example, on the rmat18 benchmark dataset,
this reformulation yields a 6.44x speedup on a single GPU.
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“Transposing” the problem also makes it more suitable for multi-GPU parallelism, via row-wise
chunking of the data matrices. Chunks are manually scattered across GPUs using cudaMemcpy.
Most of the kernels in Region 2 require no communication between GPUs, which leads to good
scaling. The small amount of communication that is required is done by enabling peer access,
with remote memory loads / stores happening over NVLink.

Because it is not a canonical graph workload, application_classification is written outside of
Gunrock using the thrust and cub libraries (as in HIVE Phase 1).

6.4 How to Run this Application on NVIDIA’s DGX-2
6.4.1 Prerequisites

The setup process assumes Anaconda is already installed.

git clone \
https://github.com/porumbes/application_classification \
-b dev/mgpu_manual_reduce

cd application_classification

# prep binary input data
./hive-gen-data.sh

# build
make -j16
Verify git SHA: commit 7e20dd05126c174c51b7155cb1f2f9e3084080b3

6.4.2 Partitioning the Input Dataset
Partitioning is done automatically by the application.
6.4.3 Running the Application (Default Configurations)

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
options as specified in hive-ac-test.sh. See Running the Applications for additional
information.

6.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAde357/data/gunrock/hive_datasets/mario-
2TB/application_classification/

with subdirectory: ac_JohnsHopkins_random
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Names:

rmatl8

georgiyPattern

JohnsHopkins

6.4.4 Running the Application (Alternate Configurations)

6.4.4.1 hive-mgpu-run.sh

Modify OUTPUT_DIR to store generated output and json files in an alternate location.
6.4.4.2 hive-gen-data.sh

Unlike most of the other applications, Application Classification makes use of an additional
script, hive-gen-data.sh, to generate necessary input. Please review the chapter on Running the
Applications for information on running with additional datasets.

6.4.4.3 hive-ac-test.sh

Please see the Phase 1 single-GPU implementation details here for additional parameter
information and review the provided script.

Given the setup in hive-gen-data.sh, modify the key-value store, DATA PATTERN with the
generated rmat18_data.bin as the key and the generated georgiyPattern_pattern.bin as the

value. For example:
DATA PATTERN]['"rmat18"]|="georgiyPattern"

6.4.5 Output

No change from Phase 1.

6.5 Performance and Analysis
No change from Phase 1.

6.5.1 Implementation Limitations

Performance limitations regarding the size of the data matrices are mitigated by the multi-GPU
approach — with this implementation, the maximum size of a problem instance should
theoretically scale linearly with the number of GPUs. Practically, the current implementation still
does Region 1 on a single GPU, which would create a bottleneck in terms of available memory.

Other performance limitations remain the same as in Phase 1.
6.5.2 Performance Limitations

From the perspective of a single GPU, there is no change from Phase 1.
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From the perspective of the multi-GPU system, we are primarily bottlenecked by bandwidth
across the NVLink network, which impacts both the runtime of the row scatter operation and the
Region 2 kernels that require communication. This could be (partially) mitigated by additional
optimizations — more details below.

6.6 Scalability Behavior

Scaling of the whole workload’s runtime is not ideal, primarily because: a) because Region 1 is
not parallelized across GPUs b) because scattering the rows of the matrices across GPUs takes
time.

Region 1 would be relatively straightforward to distribute across GPUs. The runtime of the

scatter could also be reduced via asynchronous memory copies (possibly launched from multiple
CPU threads).

The scalability of Region 2 is limited by the couple of kernels that require communication
between GPUs, which take ~5x longer to run w/ 4 GPUs than on a single GPU. Currently, we’re
bottlenecked by the bandwidth into GPUO — scattering an additional datastructure across GPUs
would reduce this load by a factor of num_gpus, and provide further speedup. However, this is
slightly more complex than the current method, and has not yet been implemented.

6.7 Scalability Plots

Scalability plots
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7 GEOLOCATION

From Phase 1 report:

Infers user locations using the location (latitude, longitude) of friends through spatial
label propagation. Given a graph G, geolocation examines each vertex v‘s neighbors
and computes the spatial median of the neighbors’ location list. The output is a list of
predicted locations for all vertices with unknown locations.

7.1 Scalability Summary
Bottlenecked by network bandwidth between GPUs
7.2  Summary of Results

We rely on Gunrock’s multi-GPU ForALL operator to implement Geolocation as the entire
behavior can be described within a single-loop like structure. The core computation focuses on
calculating a spatial median, and for multi-GPU ForAll, that work is split such that each GPU
gets an equal number of vertices to process. We see a minor speed-up on a DGX-A100 going
from 1 to 3 GPUs on a twitter dataset, but in general, due to the communication over the GPU-
GPU interconnects for all the neighbors of each vertex, there’s a general pattern of slowdown
going from 1 GPU to multiple GPUs, and no scaling is observed.

7.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize across GPUs by using multi-GPU ForAll operator that splits the latitude and
longitude arrays of Geolocation algorithm equally over multiple devices. For more detail on how
ForAll was written to be multi-GPU can be found in Gunrock’s ForAll Operator section of the
report. One optimization that we experimented with was using BlockLoads and shared memory
(fast memory), to collectively load and process latitudes and longitudes in fast memory.

7.3.1 Differences in Implementation from Phase 1

No change from Phase 1.

7.4 How to Run this Application on NVIDIA’s DGX-2

7.4.1 Prerequisites

git clone https://github.com/gunrock/gunrock -b mgpu-geo
mkdir build

cd build/

cmake ..

make -jl16 geo
Verify git SHA: commit b6e928b118f7ce792f82291cee5aa5d32547aaa3
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7.4.2 Partitioning the Input Dataset

Partitioning is handled automatically. Geolocation relies on Gunrock’s multi-GPU ForALL
operator and its frontier vertices are split evenly across all available GPUs (see Gunrock’s
ForAll Operator for more details).

7.4.3 Running the Application (Default Configurations)

From the build directory

cd ../examples/geo/

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
option as specified in hive-geo-test.sh. Please see Running the Applications for more
information.

7.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAde357/data/gunrock/hive_datasets/mario-
2TB/geolocation/twitter/graph
/home/u@Ou7u37rw7AjloAde357/data/gunrock/hive_datasets/mario-
2TB/geolocation/instagram/graph

Names:

twitter

instagram

7.4.4 Running the Application (Alternate configurations)

7.4.4.1 hive-mgpu-run.sh

modify geo_iter and spatial_iter to change the values of --geo-iter and --spatial-
iter, respectively, passed to hive-geo-test.sh. please see the phase 1 single-gpu
implementation details here for additional parameter information.

modify output_dir to store generated output and json files in an alternate location.
7.4.4.2 hive-geo-test.sh

please review the provided script and see the running the applications chapter for details on
running with additional datasets.

7.4.5 Output

no change from phase 1.

7.4.6 Performance and Analysis
no change from phase 1.
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7.4.7 Implementation Limitations
No change from Phase 1.
7.4.8 Performance limitations

Single-GPU: No change from Phase 1.

Multiple-GPUs: Performance bottleneck is the remote memory accesses from one GPU to
another GPU’s memory through NVLink. What we observed was if we simply extend ForAll
from single to multiple GPUs, the remote memory accesses to neighbor’s latitude and longitude
arrays cause NVLink’s network bandwidth to be the bottleneck for the entire application.

7.5 Scalability Behavior

Scaling is not ideal because we perform too many remote memory accesses causing the GPU to
be constantly waiting to compute, therefore wasting the potential that GPU’s throughput offers
us. We require an efficient way to broadcast the latitudes and longitudes of a vertex to all other
GPUs’ local memory in between each iteration, which can help mitigate this issue and may result
in better scaling characteristics. One possible way to achieve this in future work is by not using a
ForAll and instead more specialized operators, designed with access patterns of these
applications in mind (see Gunrock’s ForAll Operator for more information).

7.6  Scalability Plots

Scalability plots
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8§ COMMUNITY DETECTION (LOUVAIN)

The Phase 1 writeup contains a detailed description of the application.

From the Phase 1 writeup:
Community detection in graphs means grouping vertices together, so that those vertices that
are closer (have more connections) to each other are placed in the same cluster. A commonly
used algorithm for community detection is Louvain (https://arxiv.org/pdf/0803.0476.pdf).

8.1 Scalability Summary

Application is nonfunctional

8.2 Summary of Results

The application has a segmentation fault and is currently nonfunctional.
8.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize across GPUs by utilizing Gunrock’s multi-GPU ForAll operator described here.
8.3.1 Differences in Implementation from Phase 1

No change from Phase 1.

8.4 How to Run This Application on NVIDIA’s DGX-2

8.4.1 Prerequisites

git clone https://github.com/gunrock/gunrock -b multigpu

mkdir build

cd build/

cmake ..

make -j16 louvain
Verify git SHA: commit d70a73c5167c5b59481d8ab07c98b376e77466¢cc

8.4.2 Partitioning the Input Dataset

Partitioning is handled automatically as Community Detection relies on Gunrock’s multi-GPU
ForALL operator and its data is split evenly across all available GPUs

8.4.3 Running the Application

Once functional, the application will follow the two script approach described in Running the
Applications (i.e., using hive-mgpu-run.sh and hive-louvain-test.sh scripts).
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8.4.3.1 Datasets

Final datasets will be listed when the application is functional.
8.4.4 Output

No change from Phase 1.

8.5 Performance and Analysis
No change from Phase 1.

8.5.1 Implementation Limitations
Currently nonfunctional.

8.5.2 Performance Limitations
Currently nonfunctional.

8.6 Scalability Behavior

Currently unavailable, but unlikely to scale given its ForAll based implementation. See
Gunrock’s ForAll Operator for additional information.
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9 LOCAL GRAPH CLUSTERING (LGC)

The Phase 1 writeup contains a detailed description of the application.

From the Phase 1 writeup:
From Andersen et al.:
A local graph partitioning algorithm finds a cut near a specified starting vertex, with a running
time that depends largely on the size of the small side of the cut, rather than the size of the
input graph.

A common algorithm for local graph clustering is called PageRank-Nibble (PRNibble), which
solves the L1 regularized PageRank problem. We implement a coordinate descent variant of
this algorithm found in Fountoulakis et al., which uses the fast iterative shrinkage-
thresholding algorithm (FISTA).

9.1 Scalability Summary
Bottlenecked by single-GPU and communication
9.2 Summary of Results

We rely on Gunrock’s multi-GPU ForALL operator to implement Local Graph Clustering and
observe no scaling as we increase from one to sixteen GPUs. The application is likely
bottlenecked by single-GPU filter and advance operators and communication across NVLink
necessary to access arrays distributed across GPUs.

9.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize Local Graph Clustering by utilizing a multi-GPU ForAll operator that splits
necessary arrays evenly across multiple GPUs. Additional information on multi-GPU ForAll
can be found in Gunrock’s ForAll Operator section of the report. In addition, this application
depends on single-GPU implementations of Gunrock’s advance and filter operations.

9.3.1 Differences in Implementation from Phase 1

No change from Phase 1.

9.4 How to Run this Application on NVIDIA’s DGX-2

9.4.1 Prerequisites

git clone https://github.com/gunrock/gunrock -b multigpu
mkdir build

cd build/

cmake ..
make -jl16 pr_nibble
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Verify git SHA: commit 3e7d4f29f0222e9fd1f4e768269b704d6ebcdO2c
9.4.2 Partitioning the Input Dataset

Partitioning is handled automatically as Local Graph Clustering relies on Gunrock’s multi-GPU
ForALL operator and its frontier vertices are split evenly across all available GPUs. Please refer
to the chapter on Gunrock’s ForAll Operator for additional information.

9.4.3 Running the Application (Default Configurations)

From the build directory

cd ../examples/pr_nibble/

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
option as specified in hive-pr_nibble-test.sh. See Running the Applications for additional
information.

9.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAd4e357/data/gunrock/gunrock_dataset/mario-2TB/large
Names:

hollywood-2009

europe_osm

9.4.4 Running the Application (Alternate Configurations)

9.4.4.1 hive-mgpu-run.sh

Modify OUTPUT_DIR to store generated output and json files in an alternate location.
9.4.4.2 hive-geo-test.sh

Modify APP_OPTIONS to specify alternate - -src and --max-iter values. Please see the Phase 1
single-GPU implementation details here for additional parameter information.

Please review the provided script and see Running the Applications for details on running with
additional datasets.

9.4.5 Output
No change from Phase 1.
9.5 Performance and Analysis

No change from Phase 1.

29
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.


https://gunrock.github.io/docs/#/hive/hive_pr_nibble

9.5.1 Implementation Limitations
No change from Phase 1.
9.5.2 Performance Limitations

Single-GPU: No change from Phase 1.
Multiple-GPUs: The performance bottleneck is likely due to single-GPU implementations of
advance and filter operations randomly accessing numerous arrays distributed across multiple

GPUs.
9.6 Scalability Behavior

We observe no scaling with Local Graph Clustering as currently implemented. Please see the
chapter on Gunrock’s ForAll Operator for a discussion on future directions around more
specialized operators to be designed with communication patterns in mind.

9.7 Scalability Plots

Scalability plots
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10 GRAPH PROJECTIONS

The Phase 1 writeup contains a detailed description of the application.

From the Phase 1 writeup:

Given a (directed) graph G, graph projection outputs a graph H such that H contains
edge (u, v) iff G contains edges (w, u) and (w, v) for some node w. That is, graph
projection creates a new graph where nodes are connected iff they are neighbors of the
same node in the original graph. Typically, the edge weights of H are computed via
some (simple) function of the corresponding edge weights of G.

Graph projection is most commonly used when the input graph G is bipartitite with
node sets U1 and U2 and directed edges (u, V). In this case, the operation yields a
unipartite projection onto one of the node sets. However, graph projection can also be
applied to arbitrary (unipartite) graphs.

Note that mathematically this reduces to a sparse-sparse matrix multiplication of G’s adjacency
matrix.

10.1 Scalability Summary
Limited by load imbalance
10.2 Summary of Results

We implemented a multi-GPU version of sparse-sparse matrix multiplication, based on chunking
the rows of the left hand matrix. This yields a communication-free implementation with good
scaling properties. However, our current implementation remains partially limited by load
imbalance across GPUs.

10.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

In Phase 1, we had two implementations: one using GraphBLAS and one using Gunrock. The
GraphBLAS implementation is more obviously distributed across GPUs, so we build off of that
implementation.

graph_projections for a symmetric graph is mathematically H = A @ A, where A is the
adjacency matrix of graph G. One way to easily parallelize this operation across GPUs is by
partitioning on the rows of the left hand matrix:

H = row_stack([A[start_row:end_row] @ A for start_row, end_row in
partition(n_rows)])

We parallelize across GPUs by copying the adjacency matrix of G to each GPU. Then, for each
GPU, we determine the chunk of rows of the left hand matrix that will be computed on, and each
GPU computes A[start_row:end_row] @ A for its respective chunk. No communication
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between GPUs is required, except for the initial scatter.The adjacency matrix A is assumed to be
randomly permuted and the number of rows in a chunk is constant. This leads to a coarse-grained
load balancing — each chunk has roughly the same number of nonzero entries. However, some
rows in a power law graph may have orders of magnitude more non-zero entries than others,
which does lead to some load imbalance in this application.

10.3.1 Differences in Implementation from Phase 1

The multi-GPU implementation consists of wrapper code around the Phase 1 implementation
that distributes A across all of the GPUs, launches independent computation on each GPU, and
collects the results.

10.4 How to Run This Application on NVIDIA’s DGX-2

10.4.1 Prerequisites

git clone https://github.com/owensgroup/graphblas_proj -b dev/mgpu2
cd graphblas_proj

make -j16
Verify git SHA: commit c55074593fac49de@88ca9afa9d2e82422bccdad

10.4.2 Partitioning the Input Dataset

Data partitioning occurs at runtime whereby matrix A is distributed across all available GPUs.
Please see the summary above for more information.

10.4.3 Running the Application (Default Configurations)

./hive-mgpu-run.sh
This will launch jobs that sweep across 1 to 16 GPU configurations per dataset as specified in
hive-proj-test.sh. See Running the Applications for additional information.

10.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAde357/data/gunrock/hive_datasets/mario-
2TB/proj_movielens

Names:

ml_1000000

ml_5000000

ml_full

10.4.4 Running the Application (Alternate Configurations)
10.4.4.1 hive-mgpu-run.sh

Modify OUTPUT_DIR to store generated output and json files in an alternate location.
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10.4.4.2 hive-proj-test.sh

Please review the provided script and see Running the Applications for details on running with
additional datasets. In addition matrix market .mtx must first be converted to binary as follows:
# convert data to binary

python data/mtx2bin.py --inpath data/ml_full.mtx

10.4.5 Output

No change from Phase 1.

10.5 Performance and Analysis
No change from Phase 1.

10.5.1 Implementation Limitations

Implementation limitations are largely the same as in Phase 1.

The input graph still must fit onto a single GPU, as this parallelization strategy requires the
adjacency matrix A to be replicated across all GPUs.

However, in the multi-GPU implementation, only 1 / num_gpus of the output adjacency matrix
H must fit on a GPU. This is important, because H tends to be a dense matrix, which causes us to
run out of GPU memory for even medium-sized graphs G. Thus, the multi-GPU implementation
does allow us to run graph_projections on larger graphs, approximately linearly with the
number of GPUs used.

10.5.2 Performance Limitations

No change from Phase 1 — in the multi-GPU setting, each GPU is doing almost exactly the same
operations as the single-GPU setting, albeit on a subset of the left hand matrix rows.

10.6 Scalability Behavior

Scaling is predominantly limited by the presence of load imbalance due to the constant size
chunking of rows. To attain perfect scaling, we would want to use a dynamically allocated chunk
of the left hand matrix such that the number of nonzero elements is approximately equal, rather
than such that the number of rows is approximately equal. This is a somewhat non-trivial
optimization — we’d need either some heuristic for creating chunks of rows with approximately
the same number of nonzero elements or we’d need to add support for accumulating values
across GPUs. However, we do expect that one of these approaches would lead to further
improvements in scaling.

The time it takes to copy the input adjacency matrix A to each GPU also contributes to some
imperfect scaling, though the cost of this operation tends to be small compared to the cost of the
actal computation.
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10.7 Scalability Plots

Scalability plots
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11 GRAPHSEARCH

The Phase 1 report for GraphSearch can be found here.
The graph search (GS) workflow is a walk-based method that searches a graph for
nodes that score highly on some arbitrary indicator of interest.

The use case given by the HIVE government partner was sampling a graph: given
some seed nodes, and some model that can score a node as “interesting”, find lots of
“interesting” nodes as quickly as possible. Their algorithm attempts to solve this
problem by implementing several different strategies for walking the graph.

11.1 Scalability Summary
Bottlenecked by network bandwidth between GPUs
11.2 Summary of Results

We rely on a Gunrock’s multi-GPU ForALL operator to implement GraphSearch as the entire
behavior can be described within a single-loop like structure. The core computation focuses on
determining which neighbor to visit next based on uniform, greedy, or stochastic functions. Each
GPU is given an equal number of vertices to process. No scaling is observed, and in general we
see a pattern of decreased performance as we move from 1 to 16 GPUs due to random neighbor
access across GPU interconnects.

11.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.

We parallelize across GPUs by using a multi-GPU ForAll operator that splits arrays equally
across GPUs. For more detail on how ForAll was written to be multi-GPU can be found in
Gunrock’s ForAll Operator section of the report.

11.3.1 Differences in implementation from Phase 1

No change from Phase 1.

11.4 How to Run This Application on NVIDIA’s DGX-2
11.4.1 Prerequisites

git clone https://github.com/gunrock/gunrock -b multigpu
mkdir build

cd build/

cmake ..

make -j16 rw

Verify git SHA: commit d70a73c5167c5b59481d8ab07c98b376e77466cc
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11.4.2 Partitioning the Input Dataset

How did you do this? Command line if appropriate.
include a transcript

11.4.3 Running the Application (Default Configurations)

From the build directory

cd ../examples/rw/

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
option as specified across three different test scripts:

. hive-rw-undirected-uniform.sh
. hive-rw-directed-uniform.sh
. hive-rw-directed-greedy.sh
Please see Running the Applications for additional information.

11.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAd4e357/data/gunrock/hive_datasets/mario-2TB/graphsearch
Names:

dir_gs_twitter

gs_twitter.values

11.4.4 Running the Application (Alternate Configurations)

11.4.4.1 hive-mgpu-run.sh

Modify OUTPUT_DIR to store generated output and json files in an alternate location.
11.4.4.2 Additional hive-rw-*.sh scripts

This application relies on Gunrock’s random walk rw primitive. Modify WALK_MODE to control
the application’s --walk-mode parameter and specify --undirected as true or false. Please
see the Phase 1 single-GPU implementation details here for additional parameter information.

11.4.5 Output

No change from Phase 1.

11.5 Performance and Analysis
No change from Phase 1.

11.5.1 Implementation Limitations

No change from Phase 1.
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11.5.2 Performance Limitations

Single-GPU: No change from Phase 1.
Multiple-GPUs: Performance bottleneck is the remote memory accesses from one GPU to
another GPU’s memory through NVLink.

11.6 Scalability Behavior

GraphSearch scales poorly due to low compute (not enough computation per memory access)
and high communication costs due to random access patterns (across multiple GPUs)
characteristic to the underlying “random walk” algorithm used.

11.7 Scalability Plots

Scalability plots

1.4+

variant
directed-greedy
1.2 directed-uniform
undirected-uniform
datazet
= 100 dir_gs_twitter
o
[ L]
-
5 D&
o
o
=%
=
T 06
[t
=3
(%]
E 04_
0.2 |
0.0

+ b ch & W b e & & T A o + W @
- = o= = = v

Number of GPUs

Figure 13: rw: Speedup over 1 GPU vs. Number of GPUs

37
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



1.4+

variant
directed-greedy

= 1.2 dataset
E dir gz twitter
-
=
o 1.0-
=
=%
=
a 0.3_|
a
oA
=)
a 0.5_|
2
=]
=
04
)
=
=

|
202

0.0

+mm+mmw&m¢imm*m¢
Number of GPUs

Figure 14: rw_directed-greedy: Speedup over 1 GPU vs. Number of GPUs

107w variant

directed-uniform
0.9

dataset
0.5 dir gs twitter

peedup over 1 GPU

=
w
1

=
'

=
L

=
ha

rw_directed-uniform S
1

=
-

=
o

= i oeh = W @ M e v & T oh O Wb
- - o = e o

-

Number of GPUs

Figure 15: rw_directed-uniform: Speedup over 1 GPU vs. Number of GPUs

38
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



1.0~ variant

undirected-uniform
0.9

dataset
0a_ dir_gs_twitter
0.7 -

0.6

peedup over 1 GPU

0.5_

0.4_

0.3 _

rw_undirected-uniform S

+— b eh = o b L b & s o A = b
- o= = = e

—

Number of GPUs

Figure 16: rw_undirected-uniform: Speedup over 1 GPU vs. Number of GPUs

39
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



12 SEEDED GRAPH MATCHING (SGM)

The Phase 1 report for SGM can be found here.

From Fishkind et al.:
Given two graphs, the graph matching problem is to align the two vertex sets so as to
minimize the number of adjacency disagreements between the two graphs. The seeded
graph matching problem is the graph matching problem when we are first given a
partial alignment that we are tasked with completing.

That is, given two graphs A and B, we seek to find the permutation matrix P that maximizes the
number of adjacency agreements between Aand P * B * P.T, where * represents matrix
multiplication. The algorithm Fishkind et al. propose first relaxes the hard 0-1 constraints on P to
the set of doubly stochastic matrices (each row and column sums to 1), then uses the Frank-
Wolfe algorithm to minimize the objective function sum((A - P * B * P.T) ** 2), Finally,
the relaxed solution is projected back onto the set of permutation matrices to yield a feasible
solution.

12.1 Scalability Summary
We observe great scaling
12.2 Summary of Results

Multi-GPU SGM experiences considerable speed-ups over single GPU implementation with a
near linear scaling if the dataset being processed is large enough to fill up the GPU. We notice
that ~1 million nonzeros sparse-matrix is a decent enough size for us to show decent scaling as
we increase the number of GPUs. The misalignment for this implementation is also synthetically
generated (just like it was for Phase 1, the bottleneck is still the |V|x|V]| allocation size).

12.3 Summary of Gunrock Implementation

The Phase 1 single-GPU implementation is here.
We parallelize across GPUs by scaling the per-iteration linear assignment problem. In our multi-
GPU implementation we ignore the preprocessing step of sparse general matrix multiplication of
given input matrices and the trace of matrix products at the very end. For the assignment
problem, we use the auction algorithm (also described in the Phase 1 report), where each CUDA
block gets a row of the cost matrix and does parallel reductions across the entries of the row
using all available threads (with the help of NVIDIA’s CUB library). This allows us to map our
rows to each block and explore parallelism within a single row of the matrix in a single-GPU,
and split the number of rows across multiple GPUs. Our auction algorithm is implemented using
a 2-step process (2-kernels with one fill operation to reset the maximum bids):
1. Bidding: Each bidder chooses an object which brings him/her the best value (benefit-
price).
2. Assign: Each object chooses a bidder which has the highest bid, and assigns itself to
him/her as well as increases the object’s price.
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Our experiments conclude that this “bidding” step was the bottleneck for our auction algorithm,
and is the only kernel needed to be parallelized across multiple GPUs. For our assignment
kernel, it was more effective to use one block to do the final assignment and use one volatile
variable to compute the convergence metric.

12.3.1 Differences in Implementation from Phase 1

We now assign each row of the matrix to an entire block instead of a CUDA thread, and process
the row in parallel instead of sequentially.

12.4 How to Run this Application on NVIDIA’s DGX-2
12.4.1 Prerequisites

git clone https://github.com/owensgroup/SGM -b mgpu

cd SGM/test/

make

Verify git SHA: commit d41a43d5653455cladc59841499ce84a63ecd2db

12.4.2 Partitioning the Input Dataset

Data partitioning occurs at runtime whereby matrix rows are split across multiple GPUs. Please
see the summary above for more information.

12.4.3 Running the Application (Default Configurations)

From the test directory

./hive-mgpu-run.sh

This will launch jobs that sweep across 1 to 16 GPU configurations per dataset as specified in
hive-sgm-test.sh. (see hive_run_apps_phase2.md for more info).

Please note: due to an intermittent bug (occassional infinite loop) in the implementation, the
scheduled SLURM job is set to timeout after three minutes (all used datasets should complete in
under one minute).

12.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAd4e357/data/gunrock/hive_datasets/mario-2TB/seeded-
graph-matching/connectome

Names:

DS00833

DS@1216

DS91876

DS03231

DS06481

DS16784
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12.4.4 Running the Application (Alternate Configurations)
12.4.4.1 hive-mgpu-run.sh

Due to the bug mentioned above, a user may wish to increase or decrease the SLURM job
cancellation time. Modify the - -time options shown here:

SLURM_CMD="srun --cpus-per-gpu 2 -G $i -p $PARTITION_NAME -N 1 --time=3:00 "
Modify OUTPUT_DIR to store generated output and json files in an alternate location.

12.4.4.2 hive-sgm-test.sh

A tolerance value can be specified by setting a value in APP_OPTIONS
Please review the provided script and see Running the Applications for information on running
with additional datasets.

12.4.5 Output

No change from Phase 1.

12.5 Performance and Analysis
No change from Phase 1.

12.5.1 Implementation Limitations
No change from Phase 1.

12.5.2 Performance Limitations

Single-GPU: No change from Phase 1.

Multiple-GPUs: Our multi-GPU implementation does not consider the Sp)GEMM preprocessing
step. As SpGEMM is one of the core computations for many other algorithms, one future
opportunity will be to scale a load-balanced SpGEMM to a multi-GPU system using merge-
based decomposition. CUDA’s new virtual memory APIs also allow us to map and unmap
physical memory chunks to a contiguous virtual memory array, which can be used to perform
and store SpGEMM in its sparse-format without relying on an intermediate dense representation
and a conversion to sparse output.

12.6 Scalability Behavior

We observe great scaling for our bidding kernel as we increase the number of GPUs. If the input
matrix is large enough, the rows can be easily split across multiple GPUs, and each GPU
processes its equal share of rows, where within a GPU, each CUDA block processes one
complete row.
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12.7 Scalability Plots

Scalability plots
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13 SPARSE FUSED LASSO

The Phase 1 report for SFL is found here.

Given a graph where each vertex on the graph has a weight, sparse fused lasso (SFL),
also named sparse graph trend filter (GTF), tries to learn a new weight for each vertex
that is (1) sparse (most vertices have weight 0), (2) close to the original weight in the 12
norm, and (3) close to its neighbors’ weight(s) in the 11 norm. This algorithm is usually
used in main trend filtering (denoising). For example, an image (grid graph) with noisy
pixels can be filtered with this algorithm to get a new image without the noisy pixels,
which are “smoothed out” by its neighbors. https://arxiv.org/abs/1410.7690

13.1 Scalability Summary
Maxflow kernel is serial
13.2 Summary of Results

Sparse Fused Lasso (or Sparse Graph Trend Filtering) relies on a Maxflow algorithm. As
highlighted in the Phase 1 report, a sequential implementation of Maxflow outperforms a single-
GPU implementation, and the actual significant core operation of SFL is a serial normalization
step that cannot be parallelized to a single GPU, let alone multiple GPUs. Therefore, we refer
readers to the phase 1 report for this workload. Parallelizing across multiple GPUs is not
beneficial.
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14 VERTEX NOMINATION

The Phase 1 writeup contains a detailed description of the application. The most important point
to note is that vertex_nomination is a “multiple-source shortest paths” algorithm. The
algorithm description and implementation are identical to canonical single-source shorest paths
(SSSP), with the minor modification that the search starts from multiple vertices instead of one.

14.1 Scalability Summary
We observe weak scaling
14.2 Summary of Results

We implemented vertex_nomination as a standalone CUDA program, and achieve good weak
scaling performance by eliminating communication during the advance phase of the algorithm
and using a frontier representation that allows an easy-to-compute reduction across devices.

14.3 Summary of Gunrock Implementation and Differences from Phase 1

The Phase 1 single-GPU implementation is here.

In Phase 1, vertex_nomination was implemented for a single GPU using the Gunrock
framework. However, The Phase 2 multi-GPU implementation required some functionality that
is not currently available in Gunrock, so we implemented it as a standalone CUDA program
(using the thrust and NCCL libraries).

Specifically, the multi-GPU vertex_nomination uses a fixed-size (boolean or integer) array to
represent the input and output frontiers, while Gunrock predominantly uses a dynamically-sized
list of vertex IDs. The fixed-size representation admits a more natural multi-GPU
implementation, and avoids a complex merge / deduplication step in favor of a cheap or reduce
step.

As described in the Phase 1 report, the core kernel in vertex_nomination is the following
advance:
def _advance_op(src, dst, distances):

src_distance = distances[src]

edge_weight edge_weights[(src, dst)]

new_distance src_distance + edge_weight

old_distance distances[dst]

distances[dst] = min(old_distance, new_distance)

return new_distance < old_distance

which runs in a loop like the following pseudocode:

thread_parallel for src in input_frontier:
thread_parallel for dst in src.neighbors():
if _advance_op(src, dst, distances):
output_frontier.add(dst)
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In the multi-GPU implementation, the loop instead looks like the following pseudocode:

device_parallel for device in devices:
thread_parallel for src in local_input_frontiers[device].get_chunk(device):
thread_parallel for dst in src.neighbors():
if _advance_op(src, dst, local _distances[device]):
local_output_frontiers[device][dst] = True

local_input_frontiers = all_reduce(local_output_frontiers, op="or"
device_parallel for device in devices:
local_output_frontiers[device][:] = False

local_distances = all _reduce(local_distances, op="min")
In the per-GPU advance phase, each device has

* alocal replica of the complete input graph

*  achunk of nodes it is responsible for computing on

*  alocal copy of the input_frontier that is read from

* alocal copy of the output_frontier that is written to

* alocal copy of the distance array that is read / written

This data layout means that no communication between devices is required during the advance
phase.

During the reduce phase,

»  the local output frontiers are reduced with the or operator (remember they are boolean
masks)

» the local distances arrays are reduced with the min operator

After this phase, the copies of the input frontiers and the computed distances are the same on
each device. In our implementation, these reduces uses the ncc1A11Reduce function from
NVIDIA’s nccl library.

14.4 How to Run this Application on NVIDIA’s DGX-2
14.4.1 Prerequisites

The setup process assumes Anaconda is already installed.

git clone git clone https://github.com/porumbes/mgpu_sssp -b main
cd mgpu_sssp

bash install.sh # downloads and compiles NVIDIA's nccl library
make

Verify git SHA: commit 4f93307e7a0aa7f71e8ab024771e950e40247a4e
14.4.2 Partitioning the Input Dataset

The input graph is replicated across all devices.
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Each device is reponsible for running the advance operation on a subset of nodes in the graph
(eg, GPU:0 operates on node range [0, n_nodes / n_gpus], GPU:1 on [n_nodes / n_gpus +
1, 2 * n_nodes / n_gpus], etc). Assuming a random node labeling, this correspond to a
random partition of nodes across devices.

14.4.3 Running the Application (Default Configurations)

./hive-mgpu-run.sh
This will launch jobs that sweep across 1 to 16 GPU configurations per dataset and application
options as specified in hive-vn-test.sh (see hive_run_apps_phase2.md for more info).

14.4.3.1 Datasets

Default Locations:
/home/u@Ou7u37rw7AjloAd4e357/data/gunrock/gunrock_dataset/mario-2TB/large
Names:
chesapeake
rmatl8

rmat20

rmat22

rmat24

enron
hollywood-2009
indochina-2004

14.4.4 Running the Application (Alternate Configurations)
14.4.4.1 hive-mgpu-run.sh

Modify NUM_SEEDS to specify the number of seed locations to be used by hive-vn-test.sh.
Modify OUTPUT_DIR to store generated output and json files in an alternate location.

14.4.4.2 hive-vn-test.sh

Please see the Phase 1 single-GPU implementation details here for additional parameter
information, review the provided script, and see Running the Applications chapter for details
on running with additional datasets.

14.4.5 Output
No change from Phase 1.
14.5 Performance and Analysis

No change from Phase 1.
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14.5.1 Implementation Limitations

Implementation limitations are largely the same as in the Phase 1 Gunrock-based
implementation.

Note that in the current implementation, the entire input graph is replicated across all devices.
That means that this implementation cannot run on datasets that are large than the memory of a
single GPU.

14.5.2 Performance Limitations

The advance phase does not include any communication between devices, so the performance
limitations are the same as in Phase 1.

The reduce phase requires copying and reducing local_output_frontiers and local_distances
across GPUs, and is memory bandwidth bound.

14.6 Scalability Behavior

Scaling is not perfectly ideal because of the time taken by the reduce phase, which is additional
work in the multi-GPU setting that is not present in the single-GPU case. As the number of
GPUs increases, the cost of this communication increases relative to the per-GPU cost of
computation, which limits weak scaling of our implementation.

Scaling is primarily limited by the current restriction that the entire input graph must fit in a
single GPU’s memory. From a programming perspective, it would be straightforward to partition
the input graph across GPUs; however, this would lead to remote memory accesses in the
advance phase and impact performance substantially.
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14.7 Scalability Plots

Scalability plots
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Figure 18: vn: Speedup over 1 GPU vs. Number of GPUs
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15 TABLES OF PERFORMANCE RESULTS

Table 1. Tabular Data for SS
primitive dataset num-gpus avg-process-time  speedup

SS pokec 1 89.0786 1

SS pokec 2 95.0498 0.937178
SS pokec 3 89.979 0.989993
SS pokec 4 98.9693 0.900062
SS pokec 5 91.8863 0.969443
SS pokec 6 94.2538 0.945092
SS pokec 7 90.5149 0.984132
SS pokec 8 95.51 0.932662
SS pokec 9 94.2913 0.944717
SS pokec 10 98.4475 0.904833
SS pokec 11 91.6058 0.972412
SS pokec 12 99.5731 0.894605
SS pokec 13 95.3088 0.934631
SS pokec 14 101.498 0.877637
SS pokec 15 95.4893 0.932864
SS pokec 16 101.367 0.878776

Table 2. Tabular Data for Sage

primitive dataset num-gpus avg-process-time  speedup
Sage dir gs twitter 1 3836.83 1
Sage dir_gs twitter 2 3855.94 0.995042
Sage dir gs twitter 3 3839.15 0.999395
Sage dir_gs twitter 4 3848.06  0.99708
Sage dir gs twitter 5 3859.28 0.994182
Sage dir_gs twitter 6 3857.84 0.994554
Sage dir gs twitter 7 3836.05 1.0002
Sage dir_gs twitter 8 3826.94  1.00258
Sage dir gs twitter 9 3873.4 0.990559
Sage dir_gs twitter 10 3867.13 0.992163
Sage dir gs twitter 11 3826.04  1.00282
Sage dir_gs twitter 12 3828.73  1.00212
Sage dir gs twitter 13 3834.75  1.00054
Sage dir gs twitter 14 3860.03 0.993988
Sage dir_gs twitter 15 3835.66  1.00031
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Sage dir gs twitter 16 3826.97 1.00258
Sage europe_osm 1 26701.5 1
Sage europe_osm 2 26293.9 1.0155
Sage europe_osm 3 26311.5 1.01482
Sage europe_osm 4 26490.1  1.00798
Sage europe_osm 5 265342 1.00631
Sage europe_osm 6 265254 1.00664
Sage europe_osm 7 26611.8  1.00337
Sage europe_osm 8 26362.8 1.01285
Sage europe_osm 9 26350.5 1.01332
Sage europe_osm 10 26486.8  1.00811
Sage europe_osm 11 26464.3  1.00896
Sage europe_osm 12 26365.3 1.01275
Sage europe_osm 13 26385.3  1.01199
Sage europe_osm 14 26352.5 1.01324
Sage europe_osm 15 26331.8 1.01404
Sage europe_osm 16 263427 1.01362
Sage pokec 1 022.788 1
Sage pokec 2 913.131 1.01058
Sage pokec 3 912.807 1.01093
Sage pokec 4 916.144  1.00725
Sage pokec 5 922.868 0.999913
Sage pokec 6 884.999 1.0427
Sage pokec 7 894.332  1.03182
Sage pokec 8 879.899  1.04874
Sage pokec 9 880.266  1.04831
Sage pokec 10 881.411 1.04694
Sage pokec 11 927.09 0.995359
Sage pokec 12 916.011 1.0074
Sage pokec 13 927.485 0.994936
Sage pokec 14 926.408 0.996093
Sage pokec 15 909.469 1.01464
Sage pokec 16 927.374 0.995055
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Table 3. Tabular Data for ac_JohnsHopkins-JohnsHopkins

primitive dataset

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

ac

JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins
JohnsHopkins

JohnsHopkins

variant

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins

JohnsHopkins-
JohnsHopkins
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num-

gpus
1

10

11

12

13

14

15

16

avg-process-

time

56.249

39.965

32.89

30.078

27.249

27.002

24.983

25.85

24.776

24.261

24.091

25.329

27.731

24.089

24.602

28.751

speedup
1

1.40746
1.71022

1.8701
2.06426
2.08314
2.25149
2.17598

2.2703
2.31849
2.33486
2.22074
2.02838
2.33505
2.28636

1.95642



Table 4. Tabular Data for ac_rmat18-georgiy Pattern

primitive dataset variant num-gpus avg-process-time speedup
ac rmatl8 rmatl8-georgiyPattern 1 159.124 1
ac rmatl8 rmatl8-georgiyPattern 2 114.038 1.39536
ac rmatl8 rmatl8-georgiyPattern 3 99.739  1.5954
ac rmatl8 rmatl8-georgiyPattern 4 95.815 1.66074
ac rmatl8 rmatl8-georgiyPattern 5 92.112 1.72751
ac rmatl8 rmatl8-georgiyPattern 6 88.729 1.79337
ac rmatl8 rmatl8-georgiyPattern 7 82.535 1.92796
ac rmatl8 rmatl8-georgiyPattern 8 85.006 1.87191
ac rmatl8 rmatl8-georgiyPattern 9 87.712 1.81416
ac rmatl8 rmatl8-georgiyPattern 10 90.967 1.74925
ac rmatl8 rmatl8-georgiyPattern 11 80.588 1.97454
ac rmatl8 rmatl8-georgiyPattern 12 82.836 1.92095
ac rmatl8 rmatl8-georgiyPattern 13 84.485 1.88346
ac rmatl8 rmatl8-georgiyPattern 14 86.28 1.84427
ac rmatl8 rmatl8-georgiyPattern 15 88.604  1.7959
ac rmatl8 rmatl8-georgiyPattern 16 90.913 1.75029
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primitive

geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation

Table S. Tabular Data for Geolocation_geo-100_spatial-1000

dataset
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter

twitter

variant

geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
geo-100_spatial-1000
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num-gpus

O 00 13 N D B~ W N =

e e e e
AN L AW = O

O 00 1 N W K~ W N =

e e e e e
AN L A W N~ O

avg-process-time
365.553
913.354
5465.63
7779.85
1553.92
9279.76
5977.18
517791
2073.7
9613.43
9236.87
9813.92
7871.26
2473.71
10716.2
5316.04
825.405
1991.51
7929.66
2965.83
18663.4
3571.15
3778.44
3967.11
4348.86
37281.6
18382.1
5153.53
5075.25
55533
5557.06
25369.9

speedup

1

0.400231
0.0668821
0.0469871
0.235245
0.0393925
0.061158
0.0705986
0.176281
0.0380252
0.0395754
0.0372484
0.0464414
0.147775
0.0341122
0.0687641
1

0.414461
0.104091
0.278305
0.0442258
0.231131
0.218451
0.208062
0.189798
0.0221397
0.0449027
0.160163
0.162633
0.148633
0.148533
0.0325348
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primitive

geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation

Table 6. Tabular data for geolocation_geo-100_spatial-10000

dataset
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter

twitter

variant

geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
geo-100_spatial-10000
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num-gpus

O 00 13 N D B~ W N =

e e e
AN L AW = O

O 00 1 N W K~ W N =

e e e e e N
AN L A W N~ O

avg-process-time

speedup

142295 1
69469.4 2.04832
57560 247213
121071 1.1753
87918.5 1.61849
286668 0.496378
546899 0.260186
70707.8 2.01244
205886 0.691137
508681 0.279734
214711 0.662729
138831 1.02495
189341 0.751532
354348 0.40157
406091 0.350403
307838 0.462242
3052.13 1
7042.78 0.43337
173864  0.0175547
10163.9 0.300291
240802  0.0126749
127611  0.0239175
206707  0.0147655
162298  0.0188057
78975.6  0.0386465
154822  0.0197138
359897 0.00848056
58212 0.0524312
187845  0.0162481
48034.6  0.0635402
216210  0.0141165

356902 0.00855171
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primitive

geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
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Table 7. Tabular Data for Geolocation_geo-10_spatial-1000

dataset
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter

twitter

variant

geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000
geo-10_spatial-1000

num-gpus
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O 00 13 N W B~ W N =

e e e e
AN L AW = O

O 00 3 N W B~ W N =

e e e e e
AN L A W NN~ O

avg-process-time
109.508
275.592
366.617
505.492
620.655
3502.39
776.309
6200.84
6442.11
9923.67
1308.17
7834.48
9601.38
2753.98
5054.8
5243.03
309.224
656.088
910.158
1222.04
1434.19
1460.74
1773.42
14617.6
2169.88
2454.57
2702.54
2707.44
21745.1
11884.9
3457.58
3736.6

speedup

1
0.397356
0.298699
0.216637
0.176439
0.0312667
0.141062
0.0176602
0.0169988
0.011035
0.0837109
0.0139777
0.0114054
0.0397636
0.0216642
0.0208864
1
0.471315
0.339748
0.253039
0.215609
0.211691
0.174366
0.0211542
0.142508
0.125979
0.11442
0.114213
0.0142204
0.0260182
0.0894337
0.0827554



primitive

geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation
geolocation

Table 8. Tabular Data for Geolocation_geo-10_spatial-10000

dataset
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
instagram
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter
twitter

twitter

variant

geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
geo-10_spatial-10000
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num-gpus

O 00 13 N D B~ W N =

e e e e
AN L AW = O

O 00 3 N W B~ W N =

e e e e e
AN L A W N~ O

avg-process-time
108109
42378.2
1662.53
108227
74429 .4
137900
65735.9
90253.5
346777
86573.6
144650
466175
335880
394338
73649.9
113847
460029
74893.2
6388.86
46411.6
67375.5
435663
264635
164129
291643
322431
54207.2
113762
332051
284508
119153
201496

speedup
1
2.55104
65.0265
0.998907
1.4525
0.783967
1.64459
1.19783
0.311753
1.24875
0.747381
0.231906
0.321867
0.274152
1.46787
0.949599
1
6.14246
72.0049
9.91194
6.82784
1.05593
1.73835
2.80284
1.57737
1.42675
8.48649
4.04378
1.38542
1.61693
3.86084
2.28306



primitive
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble
pr_nibble

Table 9. Tabular Data for pr_nibble
num-gpus

dataset
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
europe_osm
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
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O 00 13 N D K~ W N =

e e e e
AN L AW N = O

O 00 13 &N W K~ W N =

e e e e e
AN L AW N~ O

avg-process-time
1.06192
13.71
13.1001
14.9431
14.07
14.9491
13.272
14.168
15.3902
15.671
15.2452
20.067
15.8651
16.1729
15.8811
17.041
1.60599
2.70987
12.5859
12.955
13.1569
13.103
12.677
5.22709
13.6061
5.13005
14.6151
16.036
15.0352
17.1752
15.101
14.662

speedup

1
0.0774555
0.0810614
0.0710639
0.0754736
0.0710355
0.0800115
0.0749516
0.0689997
0.0677631
0.0696558
0.0529186
0.0669342
0.0656603
0.0668668
0.0623155
1
0.592645
0.127602
0.123967
0.122064
0.122566
0.126686
0.307243
0.118035
0.313055
0.109886
0.100149
0.106816
0.0935062
0.10635
0.109534
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Table 10. Tabular Data for Project

primitive dataset num-gpus avg-process-time  speedup
proj ml_1000000 1 118.109 1
proj ml_1000000 2 109.162  1.08196
proj ml_1000000 3 100.278  1.17781
proj ml_1000000 4 93.5086  1.26308
proj ml_1000000 5 98.6481  1.19728
proj ml_1000000 6 168.59 0.700569
proj ml_1000000 7 158.302 0.746099
proj ml_1000000 8 182.951 0.645579
proj ml_1000000 9 176.637 0.668655
proj ml_1000000 10 141.592 0.834154
proj ml_1000000 11 128.888 0.916372
proj ml_1000000 12 188.994 0.624938
proj ml_1000000 13 200.228 0.589874
proj ml_1000000 14 179.094 0.659483
proj ml_1000000 15 334.797 0.352779
proj ml_1000000 16 244981 0.482116
proj ml_5000000 1 679.568 1
proj ml_5000000 2 541.636  1.25466
proj ml_5000000 3 507.644  1.33867
proj ml_5000000 4 481.724 1.4107
proj ml_5000000 5 450.971 1.5069
proj ml_5000000 6 470.028 1.4458
proj ml_5000000 7 519.952  1.30698
proj ml_5000000 8 454.093  1.49654
proj ml_5000000 9 532.999  1.27499
proj ml_5000000 10 477.406  1.42346
proj ml_5000000 11 450.121  1.50975
proj ml_5000000 12 472,946  1.43688
proj ml_5000000 13 478.281  1.42086
proj ml_5000000 14 451.592  1.50483
proj ml_5000000 15 489.375  1.38865
proj ml_5000000 16 509.011  1.33508
proj ml_full 1 2318.65 1
proj ml_full 2 2965.21  0.78195
proj ml_full 3 2193.6  1.05701
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proj ml_full 4 2095.3 1.1066
proj ml_full 5 2059.51  1.12582
proj ml_full 6 2018.83  1.14851
proj ml_full 7 194438  1.19248
proj ml_full 8 1913.56  1.21169
proj ml_full 9 1859.59  1.24686
proj ml_full 10 1800.46  1.28781
proj ml_full 11 1807.37  1.28288
proj ml_full 12 1801.11  1.28734
proj ml_full 13 1790.01  1.29532
proj ml_full 14 1780.89  1.30196
proj ml_full 15 1829.09  1.26765
proj ml_full 16 1794.11  1.29237
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Table 11. Tabular Data for rw_directed-greedy
primitive dataset

dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter
dir gs twitter
dir_gs twitter

dir gs twitter

variant

directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy
directed-greedy

63

1

O 0 3 N W B~ W DN

e e e
AN A WD~ O

num-gpus avg-process-time

39.4513
41.3393
33.4494
37.0721
29.9544
33.4877
31.2809
33.5908

32.8
31.3871
30.2808
39.1222
38.2514
42.3774
41.7984
37.2768

speedup
1
0.954329
1.17943
1.06418
1.31704
1.17808
1.26119
1.17447
1.20278
1.25693
1.30285
1.00841
1.03137
0.93095
0.943847
1.05833
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Table 12. Tabular Data for rw_directed-uniform

primitive dataset

'w

™w

™w

™w

dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter

dir_gs twitter

variant

directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform
directed-uniform

directed-uniform

num-gpus

64

O 00 13 N W K~ W N =

e e e e
AN L AW = O

avg-process-time
18.5425
68.5254
78.0548
87.2627
86.3617
105.554
106.176
115.794
129.298
122.168
124.95
154.088
153.653
149.857
163.669
167.475

speedup
1
0.270593
0.237558
0.212491
0.214708
0.175669
0.174639
0.160134
0.143409
0.151778
0.148399
0.120337
0.120678
0.123734
0.113293
0.110718
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Table 13. Tabular Data for rw_undirected-uniform
primitive dataset

dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter
dir_gs twitter

dir_gs twitter

variant

undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform
undirected-uniform

undirected-uniform

65

num-gpus

O 00 13 &N W B W N =

L T o S S
AN L A W N = O

avg-process-time
484.335
784.393
731.489
678.455
653.389
630.627
606.658
702.976
637.977
749.448
639.487
698.939
750.53
636.293
761.795
831.94

speedup
1
0.617464
0.662121
0.713878
0.741265
0.768021
0.798365
0.688977
0.759172
0.646255
0.75738
0.692957
0.645323
0.761181
0.635781
0.582175

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



Table 14. Tabular Data for sgm
primitive dataset num-gpus avg-process-time speedup

sgm DS00833 1 17.8509 1
sgm DS00833 4 7.08077 2.52104
sgm DS00833 5 9.91024 1.80126
sgm DS00833 6 9.10208 1.96119
sgm DS00833 7 5.92381 3.01341
sgm DS00833 8 5.13466 3.47655
sgm DS00833 9 8.7584 2.03814
sgm DS00833 10 8.63677 2.06685
sgm DS00833 11 281.119 0.0634994
sgm DS00833 12 6.04387 2.95355
sgm DS00833 13 6.41021 2.78476
sgm DS00833 14 7.39926 2.41252
sgm DS00833 15 7.05302 2.53095
sgm DS00833 16 6.30525 2.83111
sgm DS01216 1 30.6063 1
sgm DS01216 4 11.1936 2.73426
sgm DS01216 5 10.4081 2.94064
sgm DS01216 6 8.55526 3.57749
sgm DS01216 7 12.2431 2.49988
sgm DS01216 8 9.62896 3.17857
sgm DS01216 9 9.91882 3.08568
sgm DS01216 10 7.86448 3.89172
sgm DS01216 11 5.11059 5.9888
sgm DS01216 12 6.26483 4.88542
sgm DS01216 13 10.438 2.93222
sgm DS01216 14 10.2681 2.98072
sgm DS01216 15 17.1682 1.78273
sgm DS01216 16 7.00909 4.36666
sgm DS01876 1 63.8648 1
sgm DS01876 4 19.3141 3.30664
sgm DS01876 5 16.0728 3.97347
sgm DS01876 6 15.455 4.13232
sgm DS01876 7 17.3419 3.68269
sgm DS01876 8 13.0148 4.90707
sgm DS01876 9 11.4081 5.59819
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sgm DS01876 10 16.1354 3.95806

sgm DS01876 11 15.2498 4.18792
sgm DS01876 12 13.1866 4.84318
sgm DS01876 13 13.192 4.84118
sgm DS01876 14 12.5347 5.09505
sgm DS01876 15 10.8288 5.89767
sgm DS01876 16 10.2508 6.23024
sgm DS03231 1 188.603 1
sgm DS03231 5 37.6289 5.01217
sgm DS03231 6 33.7132 5.59434
sgm DS03231 9 21.5498 8.75194
sgm DS03231 10 21.8756 8.62161
sgm DS03231 11 21.4444 8.79498
sgm DS03231 12 25.7042 7.33743
sgm DS03231 13 19.7032 9.5722
sgm DS03231 14 18.6575 10.1087
sgm DS03231 15 16.3844 11.5111
sgm DS03231 16 17.3342 10.8804
sgm DS06481 1 1078.58 1
sgm DS06481 5 134.765 8.00344
sgm DS06481 6 107.924 9.99389
sgm DS06481 9 71.1115 15.1675
sgm DS06481 10 71.899 15.0014
sgm DS06481 11 56.5601 19.0697
sgm DS06481 12 61.5752 17.5165
sgm DS06481 16 50.6436 21.2975
sgm DS16784 1 4889.5 1
sgm DS16784 2 12452.4  0.392657
sgm DS16784 4 2901.11 1.68539
sgm DS16784 8 855.194 5.71742
sgm DS16784 10 595.373 8.2125
sgm DS16784 11 486.601 10.0483
sgm DS16784 12 441.323 11.0792
sgm DS16784 13 414.08 11.8081
sgm DS16784 14 358.727 13.6302
sgm DS16784 15 324.382 15.0733
sgm DS16784 16 326.032 14.997
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Table 15. Tabular Data for vh_num_seeds-10

primitive dataset

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vin

vn

vin

vn

vin

vn

vin

vn

enron
enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
indochina-2004
indochina-2004
indochina-2004

variant

num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10

num_seeds-10
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num-gpus

O 00 13 N W B~ W N =

L T o S S
AN L A W N = O

O 00 I N W B~ W N =

[ T e S e e N
—_— N O A W N = O

avg-process-time

0.182
0.523
0.464
1.112
0.761
1.039
1.39
1.689
0.837
0.986
1.151
1.876
2.109
2.305
2.509
2.938
12.241
8.974
7.629
7.48
7.531
7.2
9.245
7.757
8.141
9.407
8.991
21.411
10.928
11.387
11.042
11.441
59.344
50.935
45.277

speedup

1
0.347992
0.392241
0.163669
0.239159
0.175168
0.130935
0.107756
0.217443
0.184584
0.158123
0.0970149
0.0862968
0.0789588
0.0725389
0.0619469
1

1.36405
1.60454
1.6365
1.62541
1.70014
1.32407
1.57806
1.50362
1.30127
1.36147
0.571715
1.12015
1.075
1.10859
1.06992

1

1.16509
1.31069
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vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vin

vn

vin

vn

vin

vn

vin

vn

indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
rmat18
rmatl18
rmat18
rmatl8
rmat18
rmatl18
rmat18
rmatl18
rmat18
rmatl18
rmat18
rmatl18
rmat18
rmatl18
rmat18
rmatl18
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20

num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10

num_seeds-10
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44.234
50.41
45.299
51.977
66.553
47.16
50.722
52.984
49.287
54.144
52.486
53.795
63.273
1.289
1.548
1.668
1.797
1.862
1.819
2.051
2.17
2.018
241
2.534
2.739
2.963
3.08
3.475
3.13
4.047
3.572
3.191
3.358
3.098
3.152
3.273
3.213

1.34159
1.17723
1.31005
1.14174
0.89168
1.25835
1.16999
1.12004
1.20405
1.09604
1.13066
1.10315
0.937904
1
0.832687
0.772782
0.717307
0.692266
0.708631
0.628474
0.594009
0.638751
0.534855
0.508682
0.47061
0.435032
0.418506
0.370935
0.411821
1

1.13298
1.26825
1.20518
1.30633
1.28395
1.23648
1.25957
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vn
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vn

vn

vn

vn

vn

vn

vn

vn

vn

vn

vin

vn

vin

vn

vin

vn

vin

vn

rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat22
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
rmat24
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num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10
num_seeds-10

num_seeds-10
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L T S S
AN LD A W N = O O
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AN L A W N = O
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3.29
3.578
3.463
3.992
4.122
4.416
4.175
4.684

17.277
12.951
10.74
9.054
8.464
7.718
7.7
8.281

7.05
7.083
7.394
7.576
8.166
8.919
9.576
9.432

136.888
76.379
59.317

48.33
42.359
37.052
37.085
32.071
29.714
29.338
37.358
29.001
28.306

1.23009
1.13108
1.16864
1.01378
0.981805
0.91644
0.969341
0.864005
1
1.33403
1.60866
1.90822
2.04123
2.23853
2.24377
2.08634
2.45064
2.43922
2.33662
2.28049
2.11572
1.9371
1.8042
1.83174
1
1.79222
2.30774
2.83236
3.23162
3.69448
3.6912
4.26828
4.60685
4.66589
3.66422
4.72011
4.83601



vn

vn

vn

rmat24 num_seeds-10 14 28.242 4.84697

rmat24 num_seeds-10 15 26.05 5.25482

rmat24 num_seeds-10 16 32.828 4.16986
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Table 16 Tabular Data for vh_num_seeds-100

primitive dataset
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vin

vn

enron
enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron

enron
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
hollywood-2009
indochina-2004
indochina-2004
indochina-2004

variant

num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100

num-gpus
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avg-process-time

0.378
1.006
1.008
1.561
1.894
1.982
2.119
3.154
2.028
2.152
2.457
3.271
3.722
3.916
3.868
4.686
11.579
9.049
7.02
7.839
6.879
7.229
7.229
8.416
7.631
8.813
9.23
9.78
10.073
10.115
9.625
10.815
56.788
54.691
44.627

speedup
1
0.375746
0.375
0.242152
0.199578
0.190716
0.178386
0.119848
0.186391
0.175651
0.153846
0.115561
0.101558
0.0965271
0.0977249
0.0806658
1
1.27959
1.64943
1.4771
1.68324
1.60174
1.60174
1.37583
1.51736
1.31385
1.2545
1.18395
1.14951
1.14474
1.20301
1.07064
1
1.03834
1.2725
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indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
indochina-2004
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmatl8
rmatl18
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20
rmat20

num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
num_seeds-100
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num_seeds-100
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num_seeds-100
num_seeds-100
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44.226
52.462
46.112
47.633
46.315
48.347
51.368
52.947
49.687
50.333
52.319
54.403
56.253
1.281
1.591
1.806
1.75
1.751
1.816
2.692
2.388
2.05
2.487
2.305
2.824
2.6
3.217
2.932
3.212
4.138
3.373
3.158
3.322
2.815
3.065
4.402
3.348

1.28404
1.08246
1.23152
1.1922
1.22613
1.17459
1.10551
1.07254
1.14291
1.12825
1.08542
1.04384
1.00951

1
0.805154
0.709302
0.732
0.731582
0.705396
0.475854
0.536432
0.624878
0.515078
0.555748
0.453612
0.492692
0.398197
0.436903
0.398817
1

1.2268
1.31032
1.24564
1.46998
1.35008
0.940027
1.23596
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Table 17. Tabular Data for vo_num_seeds-1000
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACRONYM

AC
CUDA
DARPA
DIR
GPU

GS

GTF
HIVE
HTML
LGC
OUTPUT
SFL
SGM
SLURM
SpGEMM
SSSP
TC

ucC

DESCRIPTION

Application Classification, a HIVE app

Compute Unified Device Architecture, NVIDIA’s GPU Programming Environment
Defense Advanced Research Projects Agency

Directory

Graphics Processing Unit

GraphSAGE, a HIVE App

Graph Trend Filtering, a HIVE App

Hierarchical Identify Verity Exploit, a DARPA Program

HyperText Markup Language

Local Graph Clustering, a HIVE App

The Output Directory, a Destination for Writing Output

Sparse Fused Lasso, a HIVE App

Seeded Graph Matching, a HIVE App

Simple Linux Utility for Resource Management, a Job Scheduler for Running Work
Sparse General Matrix Multiply (multiplying two sparse matrices together)

Single Source Shortest Path, a Graph Computation

Triangle Counting, a Graph Computation

University of California
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