
 
 
 
 

 ARL-MR-1041 ● SEP 2021 
  
 
 
 

 
 
 
A First Look at Using System Identification 
Programs for AirCraft (SIDPAC) to Reduce Data 
from Ballistic Shots 
 
by Bradley T Burchett 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 

 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-MR-1041 ● SEP 2021 

 

 
 
A First Look at Using System Identification 
Programs for AirCraft (SIDPAC) to Reduce Data 
from Ballistic Shots 
 
Bradley T Burchett 
Weapons and Materials Research Directorate, DEVCOM Army Research 
Laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited.

 



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  

September 2021  
2. REPORT TYPE 

Memorandum Report 
3. DATES COVERED (From - To) 

05 August–05 September 2021 
4. TITLE AND SUBTITLE 

A First Look at Using System Identification Programs for AirCraft (SIDPAC) 
to Reduce Data from Ballistic Shots 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Bradley T Burchett 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

DEVCOM Army Research Laboratory 
ATTN: FCDD-RLW-WD 
Aberdeen Proving Ground, MD 21005 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-MR-1041 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release: distribution unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID ID: Bradley T Burchett, 0000-0002-1934-0537 

14. ABSTRACT 

NASA’s System Identification Programs for AirCraft (SIDPAC) is used to reduce data generated by a coupled Computational 
Fluid Dynamics/Rigid Body Dynamics (CFD/RBD) simulation. First, the CFD force predictions are used in a direct regression 
to determine force and moment coefficients for a conventional aircraft-type aerodynamic model of the Laboratory Technology 
Vehicle. Second, RBD motion predictions of Cartesian position and Euler angle orientation are used as reference for a motion-
reconstruction study using the SIDPAC output error (oe.m) routine. Finally, we explore motion reconstruction with sparse 
measurements mimicking what would be captured in an actual spark-range test.  
15. SUBJECT TERMS 

spark range, projectile aerodynamics, trajectory reconstruction, system identification, System Identification Programs for 
AirCraft, SIDPAC 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
  OF  
  ABSTRACT 

UU 

18. NUMBER 
  OF  
  PAGES 

31 

19a. NAME OF RESPONSIBLE PERSON 

Bradley T Burchett 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(812) 201-0390 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables iv 

1. Introduction 1 

2. Direct Regression from CFD Force Predictions 2 

3. Motion Reconstruction Using Output Error (oe.m) 7 

3.1 Motion Reconstruction from Full Simulated Data 8 

3.2 Motion Reconstruction with Simulated Spark-Range Data, Assuming 
Known Initial Conditions 13 

3.3 Motion Reconstruction with Simulated Spark-Range Data, Seeding 
Initial Conditions from Linear Fit 17 

4. Conclusion 21 

5. References 22 

List of Symbols, Abbreviations, and Acronyms 23 

Distribution List 25



 

iv 

List of Figures 

Fig. 1 SIDPAC swr.m menu after completion of the Axial Force Regression 4 

Fig. 2 SIDPAC swr.m figure window, Body Axial Force regression V0 = 535 
m/s, final fit error = 0.18%.................................................................... 5 

Fig. 3 Body Z Force regression V0 = 535 m/s, final fit error = 1.43% ........... 5 

Fig. 4 Body Y Force regression V0 = 535 m/s, final fit error = 1.47% ........... 6 

Fig. 5 Body Axial Moment regression V0 = 535 m/s, final fit error = 4.36% 6 

Fig. 6 Body Pitch Moment regression, V0 = 535 m/s, final fit error = 17.02%
............................................................................................................... 7 

Fig. 7 Body Yaw Moment regression, V0 = 535 m/s, final fit error = 15.65%
............................................................................................................... 7 

Fig. 8 Nonlinear model motion matching result, V0 = 270 m/s.................... 10 

Fig. 9 Nonlinear model motion matching result, V0 = 535 m/s.................... 11 

Fig. 10 Nonlinear model motion matching result, simulated spark range, 
V0=270 m/s, known initial conditions ................................................ 15 

Fig. 11 Nonlinear model motion matching result, simulated spark range, V0 = 
535 m/s, known initial conditions ....................................................... 16 

Fig. 12 Nonlinear model motion matching result with initial conditions 
estimated by fitting the linear model, V0 = 270 m/s........................... 19 

Fig. 13 Nonlinear model motion matching result with initial conditions 
estimated by fitting the linear model, V0 = 535 m/s........................... 20 

 

List of Tables 

Table 1 Motion-reconstruction rms prediction errors ...................................... 12 

Table 2 SIDPAC aerodynamic coefficient estimates from CFD++ predictions, 
V0 = 535 m/s ....................................................................................... 13 

Table 3 SIDPAC aerodynamic coefficient estimates from CFD++ predictions, 
V0 = 270 m/s ....................................................................................... 13 



 

1 

1. Introduction 

System identification is a process that uses measured inputs and outputs to a 
dynamic system to devise a model of the system behavior. Typically, the system is 
assumed to be dynamic meaning that system behavior depends somewhat on the 
history of the system’s internal state. Physically, dynamic behavior can typically be 
explained by the exchange of potential and kinetic energy in the system: the 
oscillation of a mass-spring damper system is a good example of this. When the 
analyst has no insight as to the underlying physics of the system, a black box model 
is formed whose structure in no way reflects the actual internal workings of the 
system. If the analyst knows something about the underlying physics, then a gray 
box model may be formed where a mathematic formalism such as sets of ordinary 
differential equations are used to describe system behavior. If such a model is 
adequate to capture system behavior without modification of the model structure, 
it may be termed a white box model. The process of matching a white-box model 
to data may be described as “parameter identification” since the model, apart from 
physical constants, was fully determined through physics.  

Aircraft system identification is typically a case of gray-box modeling. Certain 
causes and correlations are well documented in the literature such that a great deal 
of the model structure may be inferred from aerodynamics and rigid body dynamics 
(RBD). Also, several standard models of the forces and moments acting on aircraft 
are well established, so many vehicles can be adequately modeled using known 
models.  

Morelli and Klein have provided a comprehensive history of system identification 
of aircraft at the NASA Langley Research Center (LaRC)1 so there is no need to 
review such history here. Morelli and Klein also authored a leading textbook2 in 
the field, and the System Identification Programs for AirCraft (SIDPAC) software.3  

Parameter identification for projectiles has been done through wind tunnel and free 
flight tests. More recently, aerodynamic prediction has become much more precise 
using computational fluid dynamics (CFD) tools. There are several tools already 
available to reduce data from spark-range free flight tests. However, as new and 
controlled configurations are developed, these tools need to be updated. In this 
work, we show that SIDPAC allows the user to tailor algorithms to new 
configurations and models with minimal effort. 

In this report, we provide a first look at using SIDPAC in place of other tools for 
regression and motion reconstruction of short-range ballistic shots similar to spark-
range experiments. Two sets of data generated using a coupled CFD/RBD 
simulation will be used to illustrate the process and performance of two methods 
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built into SIDPAC. First, direct regressions are performed using the “swr.m” 
stepwise regression tool. Motion reconstruction is attempted using several models 
of varying fidelity to illustrate the software utility and flexibility. Finally, we 
demonstrate motion reconstruction using a very sparse data set as may be 
encountered in actual spark-range testing.  

2. Direct Regression from CFD Force Predictions 

Two sets of data were generated by coupling the Metacomp CFD++4 solver with 
the BOOM rigid body ballistics tool.5 Twenty quantities were stored at a rate of  
10 kHz, including point number, time, 12 states, 3 forces, and 3 moments in the 
body frame.  

Unlike actual flight tests where the forces and moments cannot be directly 
measured, CFD gives us these quantities. Thus, we are able to apply regression 
directly to the forces and moments, choosing inputs to match an expected 
aerodynamic model. We choose a model that is linear in the unknown constants 
such as  

 
𝑦𝑦 = 𝛽𝛽0𝑥𝑥0+𝛽𝛽2𝑥𝑥1 + 𝛽𝛽3𝑥𝑥3 + ⋯+ 𝛽𝛽𝑚𝑚 ∙ 1 (1) 

where 𝛽𝛽0, … ,𝛽𝛽𝑚𝑚−1 are unknown constants, 𝑥𝑥0, … , 𝑥𝑥𝑚𝑚are the regressors, and where 
𝑥𝑥𝑚𝑚 = 1 and the final term 𝛽𝛽𝑚𝑚 is a bias that SIDPAC automatically assigns to the 
end of the parameter vector. Given the model of Eq. 1 and data vector 𝐲𝐲 of length 
> m, and matrix of regressors X, the least squares estimate for the coefficient vector 
𝛃𝛃 = [𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑚𝑚] can be found by6  

 
𝛃𝛃 = (𝐗𝐗𝑇𝑇𝐗𝐗)−1(𝐗𝐗𝑇𝑇𝐲𝐲) (2) 

When using SIDPAC, Eq. 2 is transparent to the user. SIDPAC solves Eq. 2 using 
the Moore–Penrose singular value decomposition-based inverse and has built-in 
remediation for ill-conditioning.  

We propose the following simple aerodynamic models, and examine the 
performance of individual terms in the results following. For body x force: 

 
𝐹𝐹𝑥𝑥 = −𝑞𝑞�𝑆𝑆(𝐶𝐶𝑥𝑥2𝑠𝑠𝛼𝛼�2 + 𝐶𝐶𝑥𝑥4𝑠𝑠𝛼𝛼�4 + 𝐶𝐶𝑥𝑥0) (3) 

For body y force8: 
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𝐹𝐹𝑦𝑦 = 𝑞𝑞�𝑆𝑆�−𝐶𝐶𝑁𝑁𝛼𝛼𝑠𝑠𝛽𝛽 − 𝐶𝐶𝑁𝑁3𝑠𝑠𝛽𝛽
3 + 𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼𝑠𝑠𝛼𝛼�2𝑠𝑠𝛼𝛼 sin𝑁𝑁𝜙𝜙𝐴𝐴 + 𝐶𝐶𝑌𝑌𝛼𝛼𝑠𝑠𝛼𝛼� (4) 

For body z force: 

 𝐹𝐹𝑧𝑧 = −𝑞𝑞�𝑆𝑆�𝐶𝐶𝑁𝑁𝛼𝛼𝑠𝑠𝛼𝛼 + 𝐶𝐶𝑁𝑁3𝑠𝑠𝛼𝛼3 + 𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼𝑠𝑠𝛼𝛼�2𝑠𝑠𝛽𝛽 sin𝑁𝑁𝜙𝜙𝐴𝐴 + 𝐶𝐶𝑌𝑌𝛼𝛼𝑠𝑠𝛽𝛽� (5) 

For body x moment: 

 𝑀𝑀𝑥𝑥 = 𝑞𝑞�𝑆𝑆𝑆𝑆 �𝐶𝐶𝑙𝑙𝛼𝛼𝑠𝑠𝛼𝛼� + 𝐶𝐶𝑙𝑙𝛼𝛼2𝑠𝑠𝛼𝛼�2 + 𝐶𝐶𝑙𝑙𝑙𝑙𝛿𝛿 +
𝑝𝑝𝑆𝑆
2𝑉𝑉∞

𝐶𝐶𝑙𝑙𝑙𝑙� (6) 

For body y moment: 

 𝑀𝑀𝑦𝑦 = 𝑞𝑞�𝑆𝑆𝑆𝑆 �𝐶𝐶𝑚𝑚𝛼𝛼𝑠𝑠𝛼𝛼 + 𝐶𝐶𝑚𝑚3𝑠𝑠𝛼𝛼3 + 𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼𝑠𝑠𝛼𝛼�2𝑠𝑠𝛽𝛽 sin𝑁𝑁𝜙𝜙𝐴𝐴 + 𝐶𝐶𝑛𝑛𝛼𝛼𝑠𝑠𝛽𝛽

+
𝑞𝑞𝑆𝑆
2𝑉𝑉∞

𝐶𝐶𝑚𝑚𝑚𝑚� 

(7) 

For body z moment: 

 𝑀𝑀𝑧𝑧 = 𝑞𝑞�𝑆𝑆𝑆𝑆 �−𝐶𝐶𝑚𝑚𝛼𝛼𝑠𝑠𝛽𝛽 − 𝐶𝐶𝑚𝑚3𝑠𝑠𝛽𝛽
3 + 𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼𝑠𝑠𝛼𝛼�2𝑠𝑠𝛼𝛼 sin𝑁𝑁𝜙𝜙𝐴𝐴 + 𝐶𝐶𝑛𝑛𝛼𝛼𝑠𝑠𝛼𝛼

+
𝑟𝑟𝑆𝑆
2𝑉𝑉∞

𝐶𝐶𝑚𝑚𝑚𝑚� 

(8) 

Where, assuming small sideslip, 𝑠𝑠𝛼𝛼 = 𝑤𝑤
𝑉𝑉∞

, also 

𝜙𝜙𝐴𝐴 = tan−1
𝑣𝑣
𝑤𝑤

, 𝑠𝑠𝛽𝛽 =
𝑣𝑣
𝑉𝑉∞

, 𝑠𝑠𝛼𝛼� = �𝑠𝑠𝛼𝛼2 + 𝑠𝑠𝛽𝛽2 =
√𝑣𝑣2 + 𝑤𝑤2

𝑉𝑉∞
 

SIDPAC’s swr.m function provides a menu-driven user interface, and dynamically 
updated figure.2,7 The user calls the function from the MATLAB command line as  

[y,p] = swr(X,C,1); 

Where X is a matrix of regressors, C is the target data, and y is the prediction 
using the vector p of parameters. The user needs to assemble the input data prior 
to this call, such as: 

X = [alfabar.^2, alfabar.^4]; 
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The swr function automatically assumes a bias term, so no columns are added to 
the regressor matrix X for bias. Upon calling swr, the function prompts the user 
with the menu shown in Fig. 1.  

Fig. 1 SIDPAC swr.m menu after completion of the Axial Force Regression 

The user can toggle which regressors are included by pressing 1 or 2 in this 
example. The bias term is included by default, and is listed as “constant term”. 
Starting from all regressors toggled off, the user should toggle them on from 
greatest to least “Squared Part. Corr. Out”. After adding a regressor, check that the 
“F ratio In” is above the “F cut-off value”. It not, remove it permanently from the 
solution.7 

Note that the menu gives a current fit error in percent and an R squared value. The 
tool also creates a plot that is dynamically updated with each user change to the 
regressor matrix. The result for Axial force for the supersonic shot is shown in 
Fig. 2. The plot in Fig. 2 corresponds one-to-one with the text output shown in 
Fig. 1. We present the remaining five plots next and reserve the remaining 
estimated coefficients for Table 1. 

Figure 3 shows the final quality of fit for Z force prediction using the model shown 
in Eq. 5. The R squared value for this case is 99.98%, indicating very strong 
correlation between the data and model.  Figure 4 shows the final quality of fit for 
Y force prediction using the model of Eq. 4.  The R squared value for this case is 
99.98% as well.   

Figure 5 shows the final fit quality for axial moment prediction using the model 
shown in Eq. 6.  The R squared value for this fit is 99.48%.  The general downward 
trend in axial moment is mainly due to the damping term (𝐶𝐶𝑙𝑙𝑙𝑙). Figure 6 displays 
the quality of fit for pitch moment using the model shown in Eq. 7. Figure 7 shows 
the final fit for yaw moment using the model shown in Eq. 7. Pitch and yaw 
moments are strongly correlated to angle of attack/sideslip cubed. 

                    Squared  
       Parameters                      F ratio      Part. Corr.  
 No.    Estimate        Change           In            Out     
 ---    --------        ------           --            ---    
  1   -3.6447e+00    -1.6648e+00     7.3343e+03      0.00000  
  2    3.9920e+02     3.9920e+02     1.6221e+03      0.00000  
   constant term  = -4.3884e-01     F cut-off value =  20.00  
   dependent variable rms value =   4.4474e-01  
   fit error  =  8.159100e-04  or   0.18 percent 
   R squared  =  88.87 %        PRESS =  3.3228e-03 
                                  PSE =  6.6890e-07 
 
   NUMBER OF REGRESSOR TO MOVE (0 to quit) 
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Fig. 2 SIDPAC swr.m figure window, Body Axial Force regression V0 = 535 m/s, final fit 
error = 0.18% 

 

Fig. 3 Body Z Force regression V0 = 535 m/s, final fit error = 1.43% 
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Fig. 4 Body Y Force regression V0 = 535 m/s, final fit error = 1.47% 

 

Fig. 5 Body Axial Moment regression V0 = 535 m/s, final fit error = 4.36% 
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Fig. 6 Body Pitch Moment regression, V0 = 535 m/s, final fit error = 17.02% 

 

Fig. 7 Body Yaw Moment regression, V0 = 535 m/s, final fit error = 15.65% 

3. Motion Reconstruction Using Output Error (oe.m) 

SIDPAC provides a time-domain output error search method through the function 
oe.m. The function is called by 

[y,p] = oe('mname',p0,u,t,x0,c,z); 

Where “mname” is the function name of a user-defined model. Such models can be 
linear or nonlinear. The parameter vector p is assumed to be time invariant. The 
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user must also supply an initial guess of the parameter vector, p0; an array of the 
input history, u; the time vector, t; the initial state, x0; any constants to be passed 
to the model, c; and the target output array, z. After iteration, the function will return 
the predicted output array, y, and the best fit parameters, p.  

We tried several models in seeking a match to the data sets. These include a 
projectile linear theory model, a nonlinear, body-fixed, 6 degrees-of-freedom 
(DOF) model, and a Simulink implementation of a 6DOF model. The algorithm 
uses finite differencing to approximate the gradient vector in parameter search 
space. Such finite differencing means that the search run time is directly 
proportional to the number of adjustable parameters. This caused the Simulink 
implementation to run extremely slowly. Also, we ran into memory issues with 
iterating the Simulink model if it contained more than 12 adjustable parameters. 
The model itself was set up to accommodate up to 33.  

Note that this method assumes the initial vehicle state is known—an invalid 
assumption for gun-launched tests such as spark ranges. For the virtual CFD/RBD 
data, we do in fact know the initial state and will take advantage of that fact. For a 
practical spark-range algorithm, it is necessary to estimate the initial state as well 
as the parameters. The oe.m has built-in checks for divergence. If the gradient-
based method diverges, it automatically reverts to a simplex method. Note that 
simplex methods require a number of function evaluations one greater than the 
dimension of the search space; however, they do not require gradient information. 
Since the finite differencing approach uses centered differencing, it actually 
requires a number of function evaluations equal to twice the dimension of the search 
space plus one.  

These features cause the algorithm to run quite slowly; however, from a user 
standpoint there is no need to code analytic gradients. Also, the user can invoke 
many MATLAB features including the ode suite such that nonlinear models are 
integrated using robust, variable time-step methods. This tends to speed up the 
algorithm in comparison to fixed-step, user-defined Runge–Kutta methods. Also, 
the oe.m algorithm is called in a single line of MATLAB and needs one (linear) or 
two (nonlinear) user-defined functions for the model. Thus, the user needs to write 
about 200 lines of code to use this method, as opposed to about 2000 to code up a 
full gradient search from scratch. 

3.1 Motion Reconstruction from Full Simulated Data 

We attempted to reconstruct the motion using two levels of data density and two 
sets of data. The low-speed example used a 0.99-s time horizon with a sampling 
rate of 10 kHz for a total of 9900 samples. The high-speed example had a time 
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horizon of 0.499 for a total of 4989 samples. Using the entire history in each case 
would have been computationally prohibitive, so for the dense data we 
downsampled each of these to 1 kHz for total data lengths of 990 and 499, 
respectively.  

A body-fixed nonlinear 6DOF model was also used to fit both the high and low 
speed shots downsampled to 1 kHz. That model is shown in Eqs. 9–20.  

 �̇�𝑥 = 𝑉𝑉 𝑐𝑐𝜃𝜃 𝑐𝑐𝜓𝜓 +𝑣𝑣(𝑠𝑠𝑌𝑌𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝑌𝑌𝑠𝑠𝜓𝜓) + 𝑤𝑤(𝑐𝑐𝑌𝑌𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝑌𝑌𝑠𝑠𝜓𝜓) (9) 

 �̇�𝑦 = 𝑉𝑉 𝑐𝑐𝜃𝜃 𝑠𝑠𝜓𝜓 +𝑣𝑣(𝑠𝑠𝑌𝑌𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 − 𝑐𝑐𝑌𝑌𝑐𝑐𝜓𝜓) + 𝑤𝑤(𝑐𝑐𝑌𝑌𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 − 𝑠𝑠𝑌𝑌𝑐𝑐𝜓𝜓) (10) 

 �̇�𝑧 = −𝑉𝑉𝑠𝑠𝜃𝜃 + 𝑣𝑣𝑠𝑠𝑌𝑌𝑐𝑐𝜃𝜃 + 𝑤𝑤𝑐𝑐𝑌𝑌𝑐𝑐𝜃𝜃 (11) 

 �̇�𝜙 = 𝑝𝑝 + 𝑞𝑞𝑠𝑠𝑌𝑌𝑡𝑡𝜃𝜃 + 𝑟𝑟𝑐𝑐𝑌𝑌𝑡𝑡𝜃𝜃 (12) 

 �̇�𝜃 = 𝑞𝑞𝑐𝑐𝑌𝑌 − 𝑟𝑟𝑠𝑠𝑌𝑌 (13) 

 �̇�𝜓 =
𝑞𝑞𝑠𝑠𝑌𝑌
𝑐𝑐𝜃𝜃

+
𝑟𝑟𝑐𝑐𝑌𝑌
𝑐𝑐𝜃𝜃

 (14) 

 �̇�𝑢  =
𝐹𝐹𝑥𝑥
𝑚𝑚

+𝑟𝑟𝑣𝑣 − 𝑞𝑞𝑤𝑤 − 𝑔𝑔𝑠𝑠𝜃𝜃 (15) 

 
�̇�𝑣  =

𝐹𝐹𝑦𝑦
𝑚𝑚
−𝑟𝑟𝑢𝑢 + 𝑝𝑝𝑤𝑤 − 𝑐𝑐𝜃𝜃𝑠𝑠𝑌𝑌𝑔𝑔 (16) 

 �̇�𝑤  =
𝐹𝐹𝑧𝑧
𝑚𝑚

+𝑞𝑞𝑢𝑢 − 𝑝𝑝𝑣𝑣 − 𝑐𝑐𝜃𝜃𝑐𝑐𝑌𝑌𝑔𝑔 (17) 

 �̇�𝑝 =
𝑀𝑀𝑥𝑥

𝐼𝐼𝑥𝑥𝑥𝑥
 (18) 

 
�̇�𝑞 =

𝑀𝑀𝑦𝑦

𝐼𝐼𝑦𝑦𝑦𝑦
+ 𝑟𝑟𝑝𝑝 �1 −

𝐼𝐼𝑋𝑋𝑋𝑋
𝐼𝐼𝑌𝑌𝑌𝑌

� (19) 

 �̇�𝑟 =
𝑀𝑀𝑧𝑧

𝐼𝐼𝑌𝑌𝑌𝑌
+ 𝑝𝑝𝑞𝑞 �

𝐼𝐼𝑋𝑋𝑋𝑋
𝐼𝐼𝑌𝑌𝑌𝑌

− 1� (20) 

Where the force and moment terms are defined in Eqs. 3–8. 

After 499 iterations, the algorithm was able to reconstruct the motion to the degree 
of accuracy shown in Figs. 8 and 9 and Table 1.  
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a) Crossrange 

 
b) Altitude 

 
c) Downrange 

 
d) Roll 

 
e) Pitch 

 
f) Yaw 

Fig. 8 Nonlinear model motion matching result, V0 = 270 m/s 
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a) Crossrange 

 
b) Altitude 

 
c) Downrange 

 
d) Roll 

 
e) Pitch 

 
f) Yaw 

Fig. 9 Nonlinear model motion matching result, V0 = 535 m/s 
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Table 1 Motion-reconstruction rms prediction errors 

 Root-mean-square error 
Case. X [m] Y [m] Z [m] 𝝓𝝓 [deg] 𝜽𝜽 [deg] 𝝍𝝍 [deg] 
Nonlin 
270m/s 

0.00018 0.013567 0.00603 0.04632 0.14567 0.19028 

Nonlin 
535m/s 

0.00009 0.00679 0.00142 0.02624 0.1361 0.1802 

SR 
270m/s 

0.00150 0.00393 0.00580 0.03751 0.12968 0.14672 

SR 
535m/s 

0.00026 0.00476 0.00500 0.01883 0.13630 0.08906 

ICs 
270m/s 

0.00131 0.00211 0.00511 0.08788 0.13242 0.041112 

ICs 
535m/s 

0.00025 0.00370 0.00487 0.02594 0.03215 0.06382 

 
Table 1 shows the root-mean-square (rms) prediction errors for all of the motion 
reconstruction cases. The rms errors for the nonlinear (Nonlin) cases rival those of 
established spark-range methods. The standard deviation of measurement noise for 
the Transonic Experimental Facility (TEF) at the US Army Combat Capabilities 
Development Command Army Research Laboratory is considered to be 𝜎𝜎 = 3.3 
mm for position and 0.15° for angles. The nonlinear prediction errors are close to 
those benchmarks. However, note that the results shown here benefit from several 
unfair advantages including 1) a very dense data set on the order of hundreds of 
points rather than 20, 2) known initial conditions, and 3) no measurement noise. 
The rows labeled “SR” are the results when simulating spark range data, which is 
very sparse compared to the full set. These results are discussed in the next section. 
Those labeled “ICs” are from the algorithm described in Section 3.3. 

The estimated aerodynamic coefficients for each method are summarized in 
Tables 2 and 3. The first two columns compare the aero coefficient estimates for 
direct regression and output error using the full data set for the high-speed shot. The 
third (SR) shows estimates using only measurements at 25 virtual spark stations, 
but assuming known initial conditions. The fourth column (ICs) shows the 
estimates for an algorithm that assumes unknown initial conditions and 
measurements at only 25 virtual spark stations. Table 3 compares the estimates for 
the low-speed shot. Nearly all of the coefficients are the same order of magnitude—
and typically quite close in magnitude with the exception of 𝐶𝐶𝑚𝑚𝑚𝑚—close enough to 
offer an extra degree of confidence in the nonlinear motion model. Roll-dependent 
side force, 𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼, and side moment, 𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼, tend to be weakly correlated to the 
measurements and vary greatly from method to method. These terms were dropped 
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from the final analysis (ICs) to reduce the DOF since the final search also included 
12 unknown initial conditions.  

Table 2 SIDPAC aerodynamic coefficient estimates from CFD++ predictions, V0 = 535 m/s  

 Method 
Coeff: Regression Output 

error (full) 
Output 

error (SR) 
Output 

error (ICs) 
𝐶𝐶𝑁𝑁𝛼𝛼 8.4741 7.8253 9.8386 8.4408 
𝐶𝐶𝑚𝑚𝛼𝛼 1.0137 1.1646 0.97858 0.8308 
𝐶𝐶𝑚𝑚𝑚𝑚  16.6679 –52.211 –37.454 –122.1 
𝐶𝐶𝑌𝑌𝛼𝛼 –0.1748 12.622 –10.56 –15.995 
𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼  12.9062 19.573 6.5524 . . . 
𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼 –36.7073 106.92 1083.8 . . . 
𝐶𝐶𝑛𝑛𝛼𝛼 0.6019 0.56018 0.55045 0.6695 
𝐶𝐶𝑋𝑋0 0.43872 0.44372 0.44283 0.43884 
𝐶𝐶𝑙𝑙𝑙𝑙 –4.8514 –4.7849 –4.6291 –4.3154 
𝐶𝐶𝑙𝑙0 0.10691 0.1090 0.10789 0.10494 
𝐶𝐶𝑁𝑁3 474.8230 539.07 334.59 476.71 
𝐶𝐶𝑚𝑚3 –1132.1 –1129.1 –1230.9 –1023.4 

 

Table 3 SIDPAC aerodynamic coefficient estimates from CFD++ predictions, V0 = 270 m/s  

 Method 
Coeff: Regression Output 

error (Full) 
Output 

error (SR) 
Output 

error (ICs) 
𝐶𝐶𝑁𝑁𝛼𝛼 8.1801 7.1599 5.0795 6.3028 
𝐶𝐶𝑚𝑚𝛼𝛼 1.0367 1.3373 1.3438 1.3204 
𝐶𝐶𝑚𝑚𝑚𝑚  –64.2074 –183.63 –186.34 –249.1 
𝐶𝐶𝑌𝑌𝛼𝛼 –0.1741 12.66 –4.2303 –11.073 
𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼  17.291 17.622 –188.72 . . . 
𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼 –31.5301 –28.3 –226.21 . . . 
𝐶𝐶𝑛𝑛𝛼𝛼 0.6118 0.59537 0.5604 0.74143 
𝐶𝐶𝑋𝑋0 0.28164 0.28385 0.27884 0.27745 
𝐶𝐶𝑙𝑙𝑙𝑙 –5.6366 –5.4186 –5.2896 –5.2991 
𝐶𝐶𝑙𝑙0 0.11901 0.11861 0.11782 0.1173 
𝐶𝐶𝑁𝑁3 316.1749 320.26 1067.5 721.87 
𝐶𝐶𝑚𝑚3 –613.2058 –644.94 –645.48 –652.98 

3.2 Motion Reconstruction with Simulated Spark-Range Data, 
Assuming Known Initial Conditions 

Having demonstrated the 6DOF model and obtained sets of aerodynamic 
coefficients that match the 1-kHz sampled motion data within accepted tolerances, 
we want to further exercise the model and algorithm by removing all but 25 sets of 



 

14 

measurements that correspond to the spark-range stations in the TEF. In order to 
contrive this data set, we merely interpolate the full set of data at downrange 
distances that correspond to the spark-range stations. Note that we must also 
interpolate the time vector to get the times at which the projectile crosses each 
downrange point that defines a station. Then, we apply the output error algorithm 
by having the nonlinear model return predictions only at the times specified in the 
interpolated time vector.  

We seed the algorithm with estimates from direct regression as shown in Tables 2 
and 3. Table 1 shows the final prediction errors for both shots. The errors are very 
similar in magnitude to those found using the full data set. Tables 2 and 3 show the 
aero coefficients under the heading Output Error (SR) in comparison with the two 
previous methods. 

Figures 10 and 11 show the quality of match between simulated spark-range data 
and predictions.  

In order to test the robustness of the algorithm, we seeded the search with 
parameters perturbed up to 50% from the regression estimates. As long as the initial 
conditions were known, the algorithm had little trouble finding a set of parameters 
that would fit the data within acceptable limits.  
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a) Crossrange  

b) Altitude 

 
c) Downrange 

 
d) Roll 
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f) Yaw 

Fig. 10 Nonlinear model motion matching result, simulated spark range, V0=270 m/s, 
known initial conditions 
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a) Crossrange  

b) Altitude 

 
c) Downrange 

 
d) Roll 

 
e) Pitch 

3

 
f) Yaw 

Fig. 11 Nonlinear model motion matching result, simulated spark range, V0 = 535 m/s, 
known initial conditions 
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3.3 Motion Reconstruction with Simulated Spark-Range Data, 
Seeding Initial Conditions from Linear Fit 

In order to relax the assumption that initial conditions are known, the user must 
modify the user-defined model such that the unknown initial conditions are part of 
the parameter vector. SIDPAC can find the additional unknowns if the initial guess 
is close enough to the actual values. Thus, to seed the nonlinear search, we first 
apply this method to a linear search, as is done in established spark range reduction 
methods. The linear model is given in Eqs. 21–30. 

 �̇�𝑦 = 𝑉𝑉𝜓𝜓 + 𝑣𝑣 (21) 

 �̇�𝑧 = 𝑉𝑉θ + 𝑤𝑤 (22) 

 �̇�𝜃 = 𝑞𝑞 (23) 

 �̇�𝜓 = 𝑟𝑟 (24) 

 �̇�𝑣  = −𝐴𝐴𝑣𝑣−𝑟𝑟𝑉𝑉 (25) 

 �̇�𝑤 = −𝐴𝐴𝑤𝑤+𝑞𝑞𝑉𝑉 + 𝑔𝑔 (26) 

 �̇�𝑞 =
𝐶𝐶
𝑆𝑆
𝑤𝑤 + 𝐸𝐸𝑞𝑞+𝐹𝐹𝑟𝑟 (27) 

 �̇�𝑟 = −
𝐶𝐶
𝑆𝑆
𝑣𝑣 + 𝐹𝐹𝑞𝑞 + 𝐸𝐸𝑟𝑟 (28) 

 �̇�𝑉  = −
𝑞𝑞�𝑆𝑆
𝑚𝑚
𝐶𝐶𝑥𝑥0 (29) 

 
�̇�𝑝  =

𝑞𝑞�𝑆𝑆𝑆𝑆2

2𝐼𝐼𝑋𝑋𝑋𝑋𝑉𝑉
𝐶𝐶𝑙𝑙𝑙𝑙𝑝𝑝 +

𝑞𝑞�𝑆𝑆𝑆𝑆
𝐼𝐼𝑋𝑋𝑋𝑋

𝐶𝐶𝐿𝐿𝑙𝑙𝛿𝛿 (30) 

where the convenience variables are 

 𝐴𝐴 =
𝑞𝑞�𝑆𝑆
𝑚𝑚𝑉𝑉

𝐶𝐶𝑁𝑁𝛼𝛼  

 𝐶𝐶 =
𝑞𝑞�𝑆𝑆𝑆𝑆
𝐼𝐼𝑌𝑌𝑌𝑌𝑉𝑉

𝐶𝐶𝑚𝑚𝛼𝛼  

 
𝐸𝐸 =

𝑞𝑞�𝑆𝑆𝑆𝑆2

2𝐼𝐼𝑌𝑌𝑌𝑌𝑉𝑉
𝐶𝐶𝑚𝑚𝑚𝑚 

 

 𝐹𝐹 =
𝐼𝐼𝑋𝑋𝑋𝑋
𝐼𝐼𝑌𝑌𝑌𝑌

𝑝𝑝  

By seeding the linear model with the values measured at the first spark-range station 
for {𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝜙𝜙, 𝜃𝜃,𝜓𝜓}, assuming that the muzzle velocity and initial roll rate can be 
accurately estimated from simple models, and using a uniform random distribution 
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for the epicyclic velocities such that {𝑣𝑣,𝑤𝑤, 𝑞𝑞, 𝑟𝑟} ∈ [−0.5, 0.5], the linear algorithm 
is able to converge to initial condition guesses that are satisfactory to seed the 
nonlinear search. The last two rows of Table 1 show the statistics for this method. 
As long as the linear case converges adequately, this method provides a final 
prediction error smaller than the other methods. The added flexibility of adjustable 
initial conditions allows the algorithm to outperform ones where the initial 
conditions are fixed. Figures 12 and 13 show the quality of match for the four 
quantities measured in the spark range. In both cases, the model predictions are 
indistinguishable from the measurements.  

Tables 2 and 3 show the coefficients for this method in the column Output Error 
(ICs) in comparison with the previous ones. Since the roll-dependent terms 𝐶𝐶𝑌𝑌𝑌𝑌𝛼𝛼 
and 𝐶𝐶𝑛𝑛𝑌𝑌𝛼𝛼 had inconsistent values across the previous methods, they were dropped 
from this analysis. This reduced the number of DOF in the search and allowed for 
reliable convergence. The remaining coefficients were consistent with previous 
estimates.  
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a) Crossrange 

 
b) Altitude 

 
c) Downrange 

 
d) Roll 
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f) Yaw 

Fig. 12 Nonlinear model motion matching result with initial conditions estimated by fitting 
the linear model, V0 = 270 m/s 
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a) Crossrange 

 
b) Altitude 

 
c) Downrange 

 
d) Roll 

 
e) Pitch 

 
f) Yaw 

Fig. 13 Nonlinear model motion matching result with initial conditions estimated by fitting 
the linear model, V0 = 535 m/s 

  

0 0.1 0.2 0.3 0.4

Time (s)

0

0.5

1

1.5

2

C
ro

ss
ra

ng
e 

(m
)

CFD++

Nonlinear Model

0 0.1 0.2 0.3 0.4

Time (s)

0.9

1

1.1

1.2

1.3

1.4

1.5

Al
tit

ud
e 

(m
)

CFD++

Nonlinear Model

0 0.1 0.2 0.3 0.4

Time (s)

0

5

10

15

20

25

D
ow

nr
an

ge
 (m

/1
0)

CFD++

Nonlinear Model

0 0.1 0.2 0.3 0.4

Time (s)

0

1

2

3

4

R
ol

l (
ra

d/
10

)

CFD++

Nonlinear Model

0 0.1 0.2 0.3 0.4

Time (s)

-4

-3

-2

-1

0

1

2

Pi
tc

h 
(d

eg
)

CFD++

Nonlinear Model

0 0.1 0.2 0.3 0.4

Time (s)

-4

-2

0

2

4

Ya
w

 (d
eg

)

CFD++

Nonlinear Model



 

21 

4. Conclusion 

This report has explored the application of NASA’s SIDPAC toolbox to the 
reduction of data from CFD++ simulation and spark-range experiments. Spark-
range experiments have long been regarded as the most accurate way to estimate 
aerodynamic coefficients for projectiles. Determining these coefficients differs 
from the typical application of SIDPAC because the data were much sparser, there 
is no control input, and initial conditions are unknown.  

However, by including the unknown initial conditions in the parameter set, and 
fitting the linear model first, a successful algorithm has been contrived. Note that 
the user only needed to write a total of about 400 lines of MATLAB code, not 
including plotting, to get this result. A full user-defined algorithm that includes 
numerical integration, finite difference sensitivities, and multiple models would 
typically require 2000 or more lines of code.  

The stepwise regression tool in SIDPAC was very capable of backing out 
aerodynamic coefficients from CFD simulations that provide the forces, moments, 
and 12 states of a 6DOF motion model. In this report, we have studied free response 
only (controls fixed). Additional work should be devoted to determine whether the 
tool would also serve well for controlled cases.   
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List of Symbols, Abbreviations, and Acronyms 

ARL Army Research Laboratory 

AOA angle of attack 

CFD computational fluid dynamics 

CG center of gravity 

DEVCOM US Army Combat Capabilities Development Command 

DOF degrees of freedom 

LaRC Langley Research Center 

NASA National Aeronautics and Space Administration 

RBD rigid body dynamics 

SIDPAC System Identification Programs for AirCraft 

TEF Transonic Experimental Facility 

{x,y,z} projectile cg position in gun tube frame [m] 

{𝑉𝑉𝑥𝑥,𝑉𝑉𝑦𝑦,𝑉𝑉𝑧𝑧} projectile cg velocity in gun tube frame [m/s] 

{𝜙𝜙, 𝜃𝜃,𝜓𝜓} projectile roll, pitch and yaw in gun tube frame [rad] 

{u,v,w} projectile linear velocity in the body or no-roll frame [m/s] 

{p,q,r}  projectile angular rates in the body or no-roll frame [rad/s] 

{X,Y,Z} total force vector in projectile body frame [N] 

{l,m,n} total moment vector in projectile body frame [N-m] 

m projectile mass [kg] 

I inertia matrix [kg-m2] or identity matrix 

𝑉𝑉 total velocity √𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 [m/s] 

𝜌𝜌 atmospheric density [kg/m3] 

S area of projectile cross section [m2] 

D projectile diameter [m] 

𝐶𝐶𝑥𝑥0 zero angle of attack axial force coefficient 

𝐶𝐶𝑁𝑁𝛼𝛼 normal force due to angle of attack coefficient 

𝐶𝐶𝑚𝑚𝛼𝛼 pitch moment due to AOA coefficient 

𝐶𝐶𝑙𝑙𝑙𝑙𝛿𝛿 static roll moment coefficient 
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𝐶𝐶𝑚𝑚𝑚𝑚 pitch damping coefficient 

𝐶𝐶𝑙𝑙𝑙𝑙 roll damping coefficient 

𝐶𝐶𝑌𝑌𝛼𝛼 side force coefficient 

𝐶𝐶𝑛𝑛𝛼𝛼 side moment coefficient 

𝐶𝐶𝑁𝑁3 normal force due to AOA cubed coefficient 

𝐶𝐶𝑚𝑚3 pitch moment due to AOA cubed coefficient 

Subscript 

l roll moment 

m pitch moment 

n yaw moment 

X body axial (+X) force 

y  body side (y) force   

N body normal (-Z) force 

0 zero AOA term 

𝛼𝛼 linear in AOA term 

3 cubic in AOA term 

p roll damping term 

q pitch damping term 

𝑝𝑝𝛼𝛼 Magnus term 

Superscript 

T matrix transpose 
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