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1.0 SUMMARY 
 

 The DARPA Data-Driven Discovery of Models (D3M) program facilitated the 
development of Automatic Machine Learning model systems and corresponding User 
Interfaces to train and invoke these models.  Our team focused on User Interface 
development and team membership consisted of both Statistics and Software Design 
experts.  Our involvement in the D3M program included developing a user interface, 
which we entitled ModSquad, participating in joint standards design meetings, 
presenting at the project workshops on a variety of topics, investigating the TERRA-
REF datasets and challenge problems, resulting in an interactive data exploration and 
model fitting interactive interface for several TERRA-REF datasets, and finally 
culminating with an analysis of state-of-the-art atmospheric research data.  We feel that 
we accomplished the tasks assigned to our team to the benefit the overall program and 
provided a high return on investment for DARPA and the D3M program leadership.   

 

2.0 INTRODUCTION 
 

The Data-Driven Discovery program was initiated to refine the state-of-the-art in 
automatic machine learning model development.  Prior to this program, the majority of 
machine learning models were developed by data scientists who had to accept data 
from a domain scientist, clean-up or transform the data by hand or using custom 
programming scripts, and then fit one or more statistical models to the data.  This fit 
process was generally done using custom programming in the R, python, or Java 
languages. The primary goal of the D3M program was to develop software systems 
capable of automating the procedures described (preparing data, fitting models, 
measuring the accuracy of model fits).  The program goals were divided into several 
different Technical Areas, which were given numbers and abbreviations, such as TA1, 
TA2, TA3.  Subdividing a problem into several technical areas and assigning teams to 
each task area is a common technique used in DARPA-led programs.  For this program, 
Technical Area One (TA1) referred to the development and packaging of specific 
algorithms using a common interface, so they could be called from an automated 
system.  Example TA1 algorithms include outlier detection, data normalization, data 
type determination, and statistical models.  Technical Area Two (TA2) comprises 
development of the integrated machine learning platforms that receive data and fit 
models, using the algorithmic components from TA1.  Finally, Technical Area Three 
(TA3) refers to the User Interface development, which allows a human user to interact 
with the overall system.   
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After the project summary information, this report is divided into sections.  
Section 3 covers the design methods for our ModSquad user interface and the TERRA-
REF datasets, Section 4 describes the results of using ModSquad for live data 
modeling, the results of our analysis of TERRA-REF data, and finally covers our use of 
D3M technology to analyze a state-of-the-art research dataset in Statistical Climate 
Science -- research on Atmospheric Rivers performed at Purdue.  

 

2.1 TEAM RESEARCH GOALS  
  

Our original goals were to innovate through the development of novel data 
science interactive interfaces based on our team’s strong prior experience developing 
interfaces and running data analyses on a wide variety of problems (remote sensing, 
time sequence volume analysis, geospatial dataset exploration, and others.).  We 
accomplished a lot, but weren’t able to strongly address these research goals during the 
course of our participation in D3M largely because of the emphasis by DARPA on early 
software integration and our limited budget.  We feel the standardized TA2/TA3 
protocols are helpful in the final architecture but required integrating with a constantly 
changing execution environment early in the program. The rigorous testing that was 
applied early in the program before stable standards were in place required a lot of 
engineering integration hours.    

That said, we understood and appreciated the need for standardization of the 
software process and environment to yield an integrated final product.  The D3M project 
appears on target to produce an integrated primitive library and a set of user interface 
and model development applications that will hopefully become a popular addition to the 
open source data analysis tools currently available.   In hindsight, we do feel that if the 
strict integration standards had been enforced a bit later in the program, some 
Performer teams would have been able to insert more research goals into their program 
deliverables and further increase the novelty of the overall final D3M product.  We 
recommend that DARPA consider this suggestion in the execution of later software 
development programs. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 
 In this section, we cover the methods, developments, and procedures the Purdue 
team performed during the course of this effort.  All members of our team, but 
particularly Dr. Cleveland and Dr. Hafen, have experience partnering with domain 
scientists from different communities, listening to their scientific goals, and performing 
supportive data science activities to enable progress towards the stated scientific goals.  
Because of this prior expertise, our Purdue team developed a user interface that was 
focused on engaging with a domain-scientist who understood her or his problem, 
without requiring much understanding of statistics or being even familiar with the 
machine learning community vocabulary.   We implemented the first steps of a visual 
diagnostics process that Dr. Cleveland uses when first meeting a new dataset and 
trying to understand what is in the dataset. Most datasets contain multiple independent 
variables and one or more dependent variables.   To increase the engagement of users, 
our interface implements a multi-step process and shows the user constantly where 
they are in the process through a navigation bar always displayed along the top of our 
system interface.  The navigation bar is visible along the top of Figure 1, showing that 
they have completed the Welcome step and are currently in the “Variables” step.  

 

3.1 EXPLORING FEATURES ONE AT A TIME.  
 

It makes sense to first show the user what variables are present in their dataset 
and allow the user to then explore each variable by itself. The goal of this first step is to 
let the user become familiar with the values each individual variable takes on throughout 
the dataset.  A subject matter expert, who knows what values should be present, may 
be able to identify outliers or data collection errors in this initial step.  This part of our 
User Interface is illustrated in Figure 1.  Along the left column, each dataset variable is 
listed along with its datatype.  We used color coding to visually indicate the data type — 
providing a visual cue to speed understanding. The user simply selects one of the 
variables and is then presented with either a histogram and an all-values plot (if the 
variable is continuous) or a bar chart of the value counts (if the variable is categorical).  
Figure 2 shows the display after a continuous variable has been selected. In this 
example, it is the number of “At bats” for a dataset of baseball players.  
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Figure 1 Variable Exploration Interface 

 
  The “all values” plot is not among the most used plots among young and 
upcoming data science and visualization scientists.  However, it provides unique insight 
to both a domain scientist, who understands what the variables values should look like 
and to a novice who is trying to understand a dataset for the first time.  In plotting all the 
data ordered by increasing value, the user is quickly shown if there are gaps in the 
values taken on by a variable in question, and if there are outliers (substantially different 
values from what the variable usually assumes).   Someone unfamiliar with a dataset 
can begin forming an effective conceptual understanding of each variable using this plot 
as an initial exploration tool. 
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Figure 2 ModSquad Single Variable Exploration 

 
 It was mentioned previously that categorical variables are summarized in the 
exploration interface by generating a bar graph showing the number of times the 
variable under observation takes on each of its different values.  An example of this, 
again using the baseball dataset, is shown in Figure 3.  Here the “position” variable has 
been selected (see the highlighted grey region which is positioned when the user 
selects a variable).  The separate values (‘outfield’, ‘catcher’, etc.) form the categorical 
(x) axis of the bar chart.  This method allows the user to understand the distribution of 
values taken on by any categorical variable.  
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Figure 3 Exploration of a Categorical Variable 

 
3.2 EXPLORING THE INTERACTIONS OF FEATURES TWO AT A TIME 
 

After a user is comfortable with exploring the values each variable takes on, our 
team feels is best to next continue building the user’s understanding and look at how 
the values of variables compare with each other in a “pairwise” fashion.  Variables are, 
therefore, taken two at a time and placed on the same axis, so the user can explore 
how each pair of variables are related.   Our interface uses either a scatterplot, a box 
plot, or a heat map, depending on the types of the variables being plotted together.  We 
will show examples of each type below.  

 If the variables plotted together are continuous, then a scatterplot is utilized.  For 
each instance in the dataset, the values of the two variables under study are used as 
indices on a Cartesian plot.  An example taken from our interface is shown as Figure 4.  
The value of a bivariate scatterplot is to provide the user an easy visual understanding if 
the values of the two observed variables are positively correlated.  In this context, 
positive correlation means that an increased value of one variable tends to indicate 
there will be a proportional increase in the second variable.   In the inverse case, 
negatively correlated variables will tend to vary inversely with each other.   The X axis of 
Figure 4 shows the number of hits a player had up to this point in their career. The 
vertical axis lists the number of those hits which were triples. In this case there is a 
positive correlation because there can be observed to be an upward trend of the points 
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as the eye moves from the left to the right on the plot.  A red line is drawn by hand to 
show the average of values taken by the variables in the dataset.   The upward slope of 
the red line indicates that these variables are positively correlated.  

 

 
Figure 4 Scatterplot of Two Variables 

 

3.3 EXPLORING A SET OF VARIABLES 
 

If all pairs of two variables from a dataset were taken simultaneously, this would 
result in an NxN matrix of plots (given that N is the number of variables in the dataset.)  
This rendering is often done in the form of a scatterplot matrix, where each individual 
scatterplot shows the bivariate relationship between two variables.   An example 
scatterplot of three leaf characteristics of sorghum during a growth season, from the 
TERRA-REF dataset, is shown in Figure 5.   The scatterplot matrix is a popular way for 
an experienced data scientist to look at how a set of variables are inter-related.  
However, when a large number of plots are displayed together, this can become 
overwhelming for even experienced data scientists.  In the Statistics literature, it is 
known that the scatterplot matrix visualization technique is best used to visualize 
relationships across variables in smaller datasets.   
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Figure 5 Scatterplot Matrix 

 
 Since our User Interface was designed to expose non-data scientists to dataset 
exploration, we chose to offer only bivariate exploration using a set of single 
scatterplots.  Our interface asks the user to select a target variable from the dataset 
which will be plotted along the Y axes of each of a set of N-1 plots, representing the 
interaction between the selected variable and all the others in the dataset.    The 
interface then generates all the plots and allows the user to scroll through them, 
observing which variables (if any) appear to be correlated or inversely-correlated with 
the selected target variable.  If the target variable is a categorical variable, then our 
interface shows the bivariate relationship using a box plot instead.  An example box plot 
from our interface is shown in Figure 6.  The categorical value the target variables takes 
on are listed along the Y-axis.   The most common values of the X-axis variable are 
contained within the size of the box and the size of the box tells the user about the 
distribution of values the variable plotted along the X-axis will take for each target 
variable value. This box plot example shows that designated hitters have a generally 
higher number of home runs when compared to the other playing positions.  In the 
terminology of the D3M program and much of the current data science literature, the 
target variable means the variable whose value we want to learn from and then predict 
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using machine learning methods. In the statistics literature, this is generally called the 
dependent variable, assuming that its value “depends” on the value of the other 
variables, called the independent variables.   

 

 
Figure 6 A Box Plot for Categorical Data 

 
 Finally, we have the case where both the target variable and the independent 
variable being compared are categorical in nature.  For this case, our interface uses a 
heatmap, and an example is shown in Figure 7.  A heatmap is a two-dimensional matrix 
where each element corresponds to a particular value for each of the variables in the 
bivariate relationship being explored.  The colors assigned to each location correspond 
to the number of times this value combination appears in the dataset.  In the example 
here, the heatmap shows that the largest subset of the dataset consists of outfielders 
who are not inducted in the Hall of Fame.  
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Figure 7 A heatmap showing how players were inducted into the Hall of Fame 

 
  

3.4 FITTING A MODEL IN THE INTERFACE 
 

Since the purpose of the D3M user interface is to allow a user to train and 
evaluate a model without much prior experience, the next screen of our interface allows 
the user to fit a model to the dataset and chosen target variable they have just explored 
through bivariate exploratory visualization.  Our next screen allowed the user to pick a 
modeling engine to try and predict the dependent or target variable, given the values of 
the dependent variable. Our system was designed to be connected to more than one 
autoML solution engine, a feature that some other teams adopted later.  The user was 
also allowed to specify an amount of time allowed for candidate solutions to be fit and 
presented. When several candidate solutions to the problem have been discovered by 
the modeling engine, a table of those results along with preliminary fitness scores is 
displayed on the interface. The user may investigate whichever of the candidate 
solutions she or he feels appropriate by selecting them and moving to the next step.   
Figure 8 shows the case where the user chose the Modeling Engine developed by MIT 
Feature Labs, selected 1 minute for candidate solutions to be proposed, and then 
selected the top two scoring solutions for comparison.    
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Figure 8 Candidate Solution Interface 

 

 When model fit results are presented to the user for review, the type of 
visualization provided is dependent on whether the target variable was 
numerical/continuous or categorical in nature.  For categorical variables, a heatmap is 
used with the predicted values listed along the Y-axes and the actual values listed along 
the X-axis. In this case, we are looking for a diagonal across the matrix showing 
correlation between the actual and the predicted values.  Off-diagonal squares indicate 
instances where the prediction did not match the ground truth. An example for 
predictions from a regional disturbance dataset are shown in Figure 9.  For purposes of 
explanation, we have superimposed a dotted line over the diagonal where the model 
has predicted the correct result based on its analysis of the independent variables.  
Each value the target variable takes on (a ground truth value) is represented as a 
column in this visualization. We opted to tally all of the predicted values for each actual 
ground truth and apply a separate color mapping (from black up to yellow) to each 
column.  The brighter color indicates a higher percentage of the predicted values fall in 
this location.  So the brighter the squares are at the diagonal, the better the model is 
fitting the ground truth.  The yellow square on the diagonal in the “Riots/Protests” 
category indicates the model predicted almost all of these instances correctly.  
However, there are other values for the target variable where the model was less 
successful.   White areas of the heat map correspond to values the model never 
predicted. 
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Figure 9 Model Results for a Categorical Target Variable 

 When the target variable being predicted is continuous, our TA3 system 
generates residual plots to illustrate the resulting model fit.  Errors between the model 
prediction and the actual value are called residuals.   The residual plot is a scatterplot 
where the points are plotted in locations according to the error between the model 
predictions and the actual target variable values.  An example residual plot result from 
the baseball dataset is shown in Figure 10.  In this case, the model is predicting if the 
player is inducted in the Hall of Fame and the possible value the target variable takes is 
[0, 1, or 2].  The residuals will have values in the interval [-2,2] depending on the model 
prediction and the actual Hall of Fame value.  This plot shows the residuals when the 
number of games played by the individual is plotted along the X-axis.    

 

 



Approved for Public Release; Distribution Unlimited. 
13 

 
Figure 10 Model Results for a Continuous Target Variable 

 To help the user relate the model accuracy to the way the user explored the 
dataset, our user interface presents the model results as a series of bivariate charts — 
one for each independent variable.  Each plot shows the model’s target variable 
prediction, given the values a particular independent variable takes on. The user can 
look for correlation or inverse correlation between the target predictions and the other 
independent variables.   

 Our interface allows the user to iterate between different candidate solutions, 
exploring the residual plots and ultimately deciding which model they want to select and 
export for later use.  When the user completes the decision, an Export button is 
available on the interface (see Figure 8) to enable them to select this model.  The user’s 
decision is communicated to the AutoML system to cause the AutoML save out enough 
information to re-run this trained model later.  

 

3.6 USER INTERFACE IMPLEMENTATION DETAILS 
  
 Our User Interface system was implemented using a client/server architecture. 
Our backend server uses the Python computer language and was built as an extension 
to the open-source Girder platform released by Kitware, Inc.  Girder provides a 
capability similar to dropbox, in that it allows the uploading, storage, and controlled 
access to any type of digital media asset, data table, image or a file, or JSON object.  
Our project created a github.com repository to hold our software development 
prototypes created under this program.  The source code for our Girder extension is 
available on this repository.   The python server is the portion of our system which 
connects directly to the standardized interface implemented by the D3M program (using 
the GRPC protocol) that connects between User Interface systems and the AutoML 
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modeling engines.  As the D3M program released updates to the protocol, we built the 
python wrappers and included these files in our source tree. 

 
Figure 11 The Architecture of the Purdue TA3 (the user interface task) 

 The Purdue user interface client was developed in the JavaScript language and 
uses Facebook’s React component framework. As described earlier in this report, our 
interface consists of several pages which lead the user first through the understanding 
of their dataset and then through the training and evaluation of a model.  We selected 
React because of both the visually pleasing appearance of websites using it with the 
Material Design guidelines but also because React’s extension Redux made it easier to 
debug state transition issues as we integrated with a number of different AutoML 
systems.  The diagram shows that different AutoML systems could be running on the 
other side of the GRPC protocol.  During the course of the D3M program, we tested our 
user interface against the MIT Feature Lab, the USC, and Texas A&M AutoML systems.   
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3.7 EARLY IMAGE MANAGEMENT INTERFACE 
 

 At the D3M program’s request, we spent a small amount of engineering effort to 
develop an imagery-specific version of our User Interface and conducted a demo for the 
government team.  This was before other TA3 systems had developed capabilities in 
the imaging area.  Our team worked with USC and MIT/LL to formulate the standard 
formats for the object detection problems, which was the first imaging problem 
implemented for the D3M program.   The datasets consisted of a series of images that 
contained or did not contain an object of interest.  The ground truth for the datasets was 
provided as a set of bounding boxes covering the extents of the target objects in image 
coordinates.    

 For our interface, we adopted Trelliscope, developed by Dr. Ryan Hafen, one of 
our team members.  Trelliscope supports browsing through the images and displays the 
ground truth or model prediction bounding boxes over the images, so the user can 
review the dataset.  A screenshot of this interface is provided in Figure 12 running on a 
people-detection dataset.  Trelliscope allows the user to browse several instances from 
a dataset and iteratively sort and visualize the instances according to filters applied to 
their attributes.  Ultimately, our funding level in the program did not allow us to continue 
this development, but we were able to assist the government team in defining the 
problem and worked with the other TA3 teams to explain the problem and potential 
interfaces that could be used.  We still feel that this use of Trelliscope offers unique 
capabilities not available in the imaging interfaces from other TA3 performers on the 
D3M program.  This is a capability that might be useful to build on at a later time. 
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Figure 12 TA3 Prototype for Imaging Problems 
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3.8 TERRA-REF DATA EXPLORATION 
 
During the second year of the D3M program, DARPA directed our team to study the 
TERRA-REF datasets. This was a result of the collaboration between DARPA and 
ARPA-E (the research wing of the Department of Energy) to better understand the 
growth and development of agriculture. A tremendous amount of data was collected by 
the DOE sponsored TERRA-REF program over the past ten years but relatively little 
post-collection analysis had been performed on this data at the time we were assigned 
by DARPA leadership.   

 MIT-LL had previously developed auto machine learning problems suitable for 
other D3M training performers to use, but these problems were not that helpful to the 
domain scientists (biologists observing how to maximize crop yield).  Since our team 
includes leading statisticians with substantial previous experience and data analysis 
across many disciplines, our team was asked to hand-explore this data first in order to 
better understand what is available in the datasets and to assist in the creation of 
additional machine learning problems.   

 The University of Illinois at Champlain was a subawardee on the original TERRA-
REF program and was responsible for archiving and analyzing the data coming from the 
instrumented growing fields.  A picture of the robot used to take measurements during 
agricultural growth is provided in Figure 13.  This robot, located in Mericopa, AZ is a 
one-of-a-kind system able to record imagery, height, and thermal profiles for agriculture 
under observation.  

 

 
Figure 13 Mericopa Data Collection Robot 
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The TERRA-REF program had hand delivered some datasets to the D3M team, but 
these datasets did not seem very complete to our group, after inspection. We elected to 
go to the online repositories and directly extract data recorded by the robot and 
compiled by the TERRA-REF team.  The University of Illinois created an online 
repository called BetyDB, the TERRA REF Phenotype Database.  The archive is an 
SQL compatible database system containing multiple years of recorded phenotype 
attribute measurements. After direction from the D3M program leadership, we chose to 
focus on two growing seasons: Season Four and Season Six.  These seasons both 
focused on the growth of various cultivars of sorghum, a large grass used for biofuel 
production. One of the scientific goals was how to optimize the growth of this grass in 
order to produce the largest yield of biofuel at the end of a growing season. 
Furthermore, how soon into a season could we tell whether the watering and treatment 
protocol being used would be successful?  Armed with this information, we began an 
initial exploration of the TERRA data led by Dr. Ryan Hafen. In the following 
paragraphs, we will discuss each of the datasets that we analyzed, with particular focus 
on Season Four.  Season Six yielded similar results to Season Four and is not 
discussed in detail in this report because of its similarity. 

 We didn't receive detailed explanations about the scientific goals of each of the 
TERRA-REF seasons, but we believe that Season Four is associated with tracking the 
growth of sorghum when faced with environmental factors such as water deprivation. 
There was both an automated data collection process (by the moving robot) and a 
manual data collection effort performed during this season. Please refer to Figure 14 
below to review a plot of which variables were recorded and when during the season.  
114 different features were measured at some time or other during the season (which 
lasted from late April through late August). The majority of these features (drawn in 
pink) were measured by hand only during August.   
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Figure 14 TERRA-REF Season Four 

 

 An initial review of the figure shows that, even though this dataset was produced 
by a very careful scientific effort, this dataset is still not a square table with all future 
values filled in for every measurement time.  Data sampling was not consistent across 
the time domain.  Figure 15 shows that sampling was not consistent in the spatial 
domain either.  We estimate approximately eleven different patterns of spatial sampling.  
The sparsest being where hand measurements were done during August on only a few 
cultivars.  The dense patterns were from the robot recorded once per day during the 
season.  Most of the common distributions are shown below for different recorded 
features.  Each panel corresponds to a single measured feature and the black dots 
represent where in the Maricopa field the measurement was taken.  
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Figure 15 Spatial Distribution of Season Four Measurements 

  

 Some of the complexity of the TERRA-REF problem comes from the fact that it 
combines several different types of statistical learning problems. This data includes time 
sequence data since the sorghum plants are growing and being periodically measured 
in height during the season. However, this data also includes feature engineering (which 
data is important for the scientific goal) and a regression problem: how to predict the 
final produced biomass for each cultivar as early as possible.   
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4.0 RESULTS AND DISCUSSION 
 
The first of the following sections cover the results we achieved through the 
development and testing of ModSquad, our domain-scientist focused user interface.  
After this, we discuss results achieved during our study of the TERRA-REF datasets. 
 

4.1 MODSQUAD SYSTEM RESULTS  
 
Our team supported the ModSquad user interface to AutoML engines for the first two 
years of the D3M program.  After this, our budget allocated from DARPA did not support 
continuing the development effort.  During the time we were supporting our user 
interface, our team was proud of achieving the following results.  
 

• Rated Easiest Interface – During the first user studies led by Parenthetic, our 
user interface was rated as the easiest to understand and use by the Parenthetic 
team and by the testing users.  Furthermore, this result was achieved under a 
compressed time schedule.  

• Tied for 2nd in User Scores – During the first graded User Interface testing 
(Summer 2018), our system tied for second place results with several other 
teams who had undertaken substantially larger, more expensive software 
development efforts.   Our UI system design was simple and effective, requiring 
only a small “learning curve”, which was the stated goal from DARPA for the user 
interface task. During the same testing event, we were the only team that 
received a user vote indicating users felt they understood the dataset better after 
using our interface. Again, this addressed one of the D3M’s major program goals.  

• Enhanced Relationship with D3M Government partner (TERRA) – During the last 
year of our participation in D3M, we focused on the datasets of the TERRA 
program, an element of the Agricultural Research Portfolio for ARPA-E.  Our 
team presented at an ARPA-E yearly program review briefing on behalf of D3M 
and developed a dedicated interface for the TERRA domain scientists, which 
was favorably reviewed by the domain scientists.  This occurred after other D3M 
Performers’ demonstrations had initially failed to engage and excite the same 
domain scientists.   After reviewing results from our team’s data analysis efforts, 
TERRA scientists now have a positive impression of the D3M program 
technology and were planning to continue a level of inter-program collaboration 
with D3M technology.  
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• First Team to Ingest Raw Datasets – During the early years of the D3M program, 
the government provided a library of pre-organized, pre-described problems to 
“jump start” the user interface and model generation systems.  This helped 
simplify earlier engineering, but reduced the usability of D3M in deployed 
environments, because the TA2/3 systems could only process pre-prepared 
datasets running within a specific execution environment.  Our ModSquad User 
Interface demonstrated live ingest and model fitting of raw datasets in April 2019, 
in advance of a directive from the D3M leadership that all systems should pivot to 
raw data ingest.   

 

4.2 SELECTED MODSQUAD DEMONSTRATION VIDEOS AVAILABLE 
 
 Throughout the course of the program, our team authored several demonstration 
videos which are uploaded to YouTube.  Several selected videos are referenced here. A 
URL to reach each video is listed here along with a short description of the video 
content:   

• ModSquad Interface Walkthrough: 
https://www.youtube.com/watch?v=zvL1UzGj6Qw.  In this video, the screens of 
the interface described previously in this report are demonstrated and explained 
for a first time user. The demonstration dataset is the popularity dataset (about 
children’s interests in school, their popularity, and careers).  This dataset is from 
the D3M dataset archive.  

• Raw Data Ingest and Augmentation Demo: 
https://www.youtube.com/watch?v=mp-dKP98XOk&t.  This demonstration shows 
ModSquad being used as a step in an actual analytical process.  Raw data is 
curated from another data product, the data is uploaded to ModSquad and 
analyzed.   Finally, the data is augmented through the ModSquad interface to 
demonstrate improvement in the model training scores. This demonstration is 
described in more detail in a later section of this report.   

 

4.3 TERRA-REF ANALYSIS RESULTS 
 

As we were just starting to understand the data, we fit several different model 
types to the canopy-height measurement (the height of the top covering leaf canopy) 
across the entire field.  Substantial variation was observed across the cultivars and field 
locations, which can’t be sufficiently learned from only using the location, leaf 
measurements, the cultivar, and the measurement date to determine predictions.  All 

https://www.youtube.com/watch?v=zvL1UzGj6Qw
https://www.youtube.com/watch?v=mp-dKP98XOk&t
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models tended to follow the average performance across the set of all cultivars, but this 
doesn’t generalize to either “high achiever” cultivars or low achieving (smaller) cultivars.  
Figure 16 plots the results of a decision-tree model, a Gradient Boosting model, and a 
multi-layer perceptron neural network (MLP), when compared to a “high achiever” 
cultivar.  The vertical axis corresponds to the actual plan canopy height in centimeters.  

 

Figure 16 Early Model Fits to Cultivar Height 

 So it was determined that a single model predicting the height of any cultivar 
instance located anywhere in the field was not an acceptable solution, given the model 
performance in the source data available.  We tried instead to train two additional sets 
of models: (1) a set of models with one model per cultivar, and (2) a set of models with 
a complete model for each location in the field.  The error in canopy height 
measurements was substantially reduced for the cases where a set of models were 
trained and the correct model is used, depending on the field location.   These early 
results were presented by our team member, Dr. Lisle from KnowledgeVis, to the 
ARPA-E leadership during the TERRA portfolio review in San Antonio, TX on November 
12, 2019.  

 Histogram plots of the prediction error sizes are shown for the single model and 
the per-location case for the Gradient Boosting model in Figure 17.   At first look, it 
appears each distribution approximates a Gaussian (bell) curve with a tail to the right.  
However, the error rates for the multiple model case (presented at right) are over 1000x 
more accurate.   The single model predicted correct height to within 5.2% of the 
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observed values.  However, the multiple model fit was within 0.003%.  A reason the 
canopy height is of particular interest, is that canopy height seems to be the closest 
proxy to the overall size of the plant and therefore the amount of the resulting biomass 
at the end of the season.   

 
Figure 17 Accuracies for Single and Multiple Models 

But how good is canopy height actually as an indicator of final biomass? To 
make this determination, we measured all the canopy height values on June 1st and 
again on July 1st to see how these values correlated with the measured final biomass at 
the end of the growing season.  Figure 18 shows all observations plotted along with the 
distributions of their values plotted as histograms along the axes.  A slightly positive 
correlation was observed between canopy height and final biomass, and this correlation 
had the same strength for both dates.  

 

 
Figure 18 Correlation Between Canopy Height and Biomass 

We also explored if each plant’s relative position in the growing field had any 
noticeable correlation with being final biomass or final canopy height.  We found no 
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correlation with biomass, but we did find a correlation indicating that plants along the 
Southern end of the field tended to be taller at the end of the season than the 
corresponding instances at the Northern end of the field.   This correlation is shown in 
Figure 19 for both June 1st and July 1st dates.  These charts are drawn with the range 
(the row) of the field going from the bottom row, which is the Northernmost, up to the 
highest row, which is the Southernmost.   

 

 
Figure 19 Correlation Between Canopy Height and Field Position 

 Since there were many different measurements taken during the season, we 
employed a feature engineering approach to evaluate each of the measured features 
and decide which were most predictive of the final biomass.   To evaluate how the 
influence of different variables changes throughout the growing season, we performed a 
predictive feature analysis for June 1st and again at July 1st. By this, we mean that we 
took a snapshot of measured data from June 1st and used it to predict the final 
biomass.  We repeated this exercise for available measurements on July 1st.   In Table 
1, we list the most important features (and their correlation weights) used in developing 
the prediction model that takes data from June 1 and predicts final biomass for all 
cultivars.  Table 2 provides the same for the prediction model based on July 1 values.   
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Table 1 Feature Importance for June 1 Predictive Model 

Feature Importance 
planter_seed_drop 0.305125 
canopy_height 0.297484 
stand_count 0.236735 
canopy_cover 0.053942 
seedling_emergence_rate 0.032933 
emergence_count 0.030095 
canopy_height_diff 0.020092 
stalk_diameter_minor_axis 0.010246 
leaf_width 0.004026 
stalk_diameter_major_axis 0.003005 
plant_basal_tiller_number 0.002756 
leaf_length 0.002569 
stem_elongated_internodes_number_slope 0.000992 

 

 Reviewing features that are present in each table, we call attention to the 
emergence of the correlated features as the season progresses.  We will call these 
features the primary plant size indicators and we include canopy cover, stalk 
dimensions, and canopy height as the important features.  Table 1 consists of these 
primary size indicators along with a number of other measurements which may exhibit 
spurious correlations just because it is early in the season. At the start of the season, 
any number of measurements may appear to be trending together early in the growth 
cycle.   We did not have the opportunity to further investigate other features that 
appeared to be important to the early model only.  During June, between our two 
feature-based predictive model dates, stalk diameters (major and minor) and the 
canopy measurements (coverage and height) become the best predictors of final 
biomass at the end of the season. We do call attention that the correlation between 
canopy height and biomass is reduced between the start of June and the start of July.  
We surmise this is due to the increased diversity resulting from different phenotypes as 
each has had further time to develop.   In general, our results reinforce what was 
already surmised: the canopy height measured is the overall best in-season predictor of 
the final biomass of a particular cultivar instance at the end of the growing season.  The 
overall results of the feature-based models were reasonably accurate, predicting end of 
the year biomass within 8% (for the June model) and within 5% (July model) after a few 
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outliers were removed.  The results for the single July 1 model (at about 5% accuracy) 
are comparable to the results obtained with the single random forest model trained on 
the season of data.   In this case, by-hand feature engineering achieved a comparable 
accuracy using less data compared to automated model fitting, but the hand-engineered 
solution required effort by an expert data scientist (our team-member Dr. Ryan Hafen 
from Hafen Consulting). 

 

Table 2 July 1st Dataset Feature Correlation Values 

Feature correlation to final biomass 
canopy_height                              0.155752 
stalk_diameter_minor_axis                  0.121776 
stalk_diameter_major_axis                  0.120870 
canopy_cover                               0.112504 
stem_elongated_internodes_number_slope     0.074044 
leaf_angle_beta_slope                      0.070265 

 

 To explore variations across cultivars in detail, we inserted the Season 4 data 
into the interactive visualization system Trelliscope, developed by Dr. Hafen.  
Trelliscope allows a user to apply sorting and filtering operations dynamically to handle 
large datasets yet be able to zoom into any part of the dataset and compare the detailed 
interactions of the independent and dependent variables. Figure 20 shows Trelliscope 
operating on TERRA-REF Season Four data.  The black lines in the top charts are the 
actual recorded measurements for two different cultivars while the colored lines (light 
blue, orange, red, and teal) show the predictions of the different models for those 
cultivars. In addition, the performance of each model is shown using a bar chart in the 
smaller charts on the lower part of the interface.  For these charts, each prediction is 
shown along with the median and the quartile lines (this is the usual definition of a bar 
chart) to show how clustered (or how diverse) were the predictions from each of the 
models throughout the growing year for this cultivar.   As mentioned previously, the per-
cultivar and per-location models were substantially more accurate.  This is observed 
because the vertical axis of the left charts is four orders of magnitude finer in order to 
adjust to the low error measurements of these models compared with the models in the 
right bar charts (single decision tree and single XGBoost model), which exhibited higher 
error rates.  Trelliscope further lets a user subset the portions of a dataset according to 
dependent variables (such as the location in the field).  
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Figure 20 TERRA-REF Season Four in Trelliscope 

 One of the questions the biologists in the TERRA-REF program wanted to know 
was how much of the observed variation in the phenotypes of the cultivars could be 
attributed to changes in their genetic code.  One way to determine this utilizes a special 
type of hierarchical clustering called a phylogenetic tree. The phylogenetic tree places 
each observed instance in the hierarchy clustered with its most closely related 
instances.  A precise DNA sequencing of the Sorghum cultivars was completed by the 
TERRA-REF program, but processing this into an actual phylogenetic tree requires a lot 
of computation and detailed biological knowledge outside of our team’s expertise area, 
so we didn’t undertake this full conversion.  To illustrate the value of this type of 
analysis, Dr. Lisle constructed an interim phylogenetic tree based only a subset of the 
cultivar’s genetic differences.  This isn’t a biologically-exact phylogenetic tree, but is an 
approximation of the true tree.   Given the interim tree we constructed and the daily 
automatic readings from the Sorghum instances, we placed the data together in an 
interactive rendering showing how attribute values varied across the Sorghum cultivars.  
This visualization, shown in Figure 21, show some observable clusters of instances that 
appear to have similar phenotypic measurements, indicating the genetic makeup of the 
instance is related to its presenting phenotype (agreeing with the biologists’ hypothesis).  
Note the example regions highlighted by light red boxes where phylogenetically 
clustered instances have similar measured features. 

 



Approved for Public Release; Distribution Unlimited. 
29 

 
Figure 21 Sorghum Instances Arranged in a Phylogenetic Tree 

 
 
4.4 HOSTING INTERACTIVE TERRA-REF MODELS AND VISUALIZATIONS ON THE 
WEB 
 
 When the above results were presented to the biologists, the response was very 
positive about how visualization illuminated relationships they supposed but hadn’t 
previously been able to observe.  They further requested that an interactive interface be 
built for exploring the TERRA-REF datasets, which was consistent with a request from 
the D3M program to develop a TERRA-specific version of our user interface.   

 A screenshot of the resulting system, which consists of several “mini-
applications” that each explore a different aspect of the TERRA dataset, is provided in 
Figure 22.  This system was publicly hosted on the Amazon cloud during the Spring and 
Summer of 2020 to collect further feedback from the domain science community.  A 
video walkthrough of our team’s demo system is published on YouTube here 
(https://youtu.be/o6H7rpJ_Wwk).  The biologists responded that they would like to have 
systems like this available to review data as it comes in during future seasons of 
research for the Maricopa field. This could be an opportunity for later installation of this 
and other D3M developed technologies. 

 

https://youtu.be/o6H7rpJ_Wwk
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Figure 22 Applets Shown in the Purdue/D3M TERRA-REF Interface 

Season Six - As previously mentioned, Season Six growth and result data is somewhat 
similar to Season Four.  The interactive demonstration application supports visualization 
and model fitting on both Season Four and Season Six data, but the results of Season 
Six are not included separately in this report because of their similarity to Season Four.   

 
 
4.5 LESSONS LEARNED AND BROUGHT BACK TO THE D3M PROGRAM 
 

Our team gave a briefing during June 2020 to the D3M Performer teams during a 
special virtual project meeting. The presentation described the interfaces we developed 
for the TERRA analysis demonstration and mentioned several issues that we noticed 
during our processing of the TERRA-REF datasets, such as temporal data gaps.  Even 
though this was a well-curated dataset, it still took our team a noticeable time to process 
and prepare the data for analysis and visualization.  We feel this is a motivation for 
AutoML systems like D3M and others to embrace some or all of the “ETL” process 
(extract, transform, and load) for dataset preparation as practical.  These “lessons 
learned” are applicable for teams to apply to their AutoML interfaces and system 
developments.  The presentation we gave is included in this report as Appendix A.  

 

Summary of the TERRA-REF Engagement - The Purdue D3M team appreciated the 
opportunity to engage with the TERRA-REF dataset, the scientific team behind the data 
collection effort, and their archived data for several growing seasons of the Maricopa, 



Approved for Public Release; Distribution Unlimited. 
31 

Arizona agricultural research field.  We feel that the analyses and visualization products 
we developed and shared were helpful to the domain scientists and also provided 
examples to inspire the further development of D3M and other AutoML systems.  The 
value of our analysis and products was confirmed to us by multiple members of the 
TERRA-REF scientific team. 

 
 
4.6 TRAINING MODELS ON RAW DATA WITH MODSQUAD 
 

During early 2019, our TA3 was the first in the D3M program to embrace raw, 
real-world data.  Up to that point in the program, all other D3M Performers had focused 
on processing pre-curated datasets, where the problem description had been already 
explicitly created and the data had been preprocessed to fit a standard specification.  It 
was right for D3M to do this in the beginning to reduce the burden of data ETL on its 
AutoML solutions.  However, we felt as we began to transition to an operational system, 
D3M pipelines should be able to process raw datasets.   

 As a representative test case, we chose to analyze taxi and instagram data for 
New York City.  During the DARPA XDATA project, our team member, Kitware, Inc. 
created an ingest and exploration interface for geospatial datasets.  During early 2019, 
we developed an integration connector between the geospatial exploration system and 
ModSquad, our user interface, and we demonstrated model fitting and data 
augmentation on raw datasets as they were created through the exploration interface.  
We believe our effort was the first demonstration of using D3M technology to build 
models from actual data feeds. The geospatial interface is shown in Figure 23 
displaying taxi and instagram data interactively.  The analyst can use the interface to 
explore the raw data and subset temporally and geospatially — ultimately creating a 
data subset for further analysis through fitting a D3M-generated model to the data. 
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Figure 23 The ModSquad Geospatial Interface 

 D3M curated a library of state-of-the-art algorithms for datatype identification, 
outlier detection, value imputation, and other operations helpful during data ETL (extract 
transform and load) operations.  These primitives are used by the AutoML systems 
during the process of model fitting.  However, there is a danger that an AutoML system 
could apply these primitives in a way that is semantically incorrect according to the 
context in which the incoming data was generated. To address this problem, ModSquad 
empowers the user to run selected primitives interactively since the subject matter 
expert can be expected to understand the appropriate context for data cleaning, 
aggregation, or other semantically-sensitive operations.   

 In our example analysis, the user was predicting taxi pickups around the NYC 
(New York City) Kennedy Airport and the number of instagram messages authored in 
the immediate vicinity around the airport was used as a data augmentation technique to 
improve the model fit results.  In the left panel of Figure 24, a user is visually browsing 
taxi pickup data that they used ModSquad to aggregate into hourly totals. On the right 
panel of the figure is the output plot showing the error between the actual taxi pickup 
totals and the totals predicted by the AutoML model trained on the pickup data.  This 
analysis then continued by augmenting the hourly taxi pickup totals with hourly-
aggregated Instagram messages and demonstrated that the additional column of 
relevant data improved model fit results.   
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Figure 24 Input and Resulting ModSquad Model Residual Plot 

 As far as we are aware, this exercise demonstrated ModSquad was the first TA3 
team to ingest real-world ground truth data, enable a domain expert to augment the 
original data using a semantically-related dataset and then use a TA2 AutoML system to 
train models on the original and augmented dataset. We view this as an important 
demonstration of how D3M technology can be used to solve real-world problems. A 
video of this demonstration is available on YouTube at 
https://www.youtube.com/watch?v=mp-dKP98XOk&t=696s. 

 

4.7 D3M IN ATMOSPHERIC RIVERS RESEARCH 
 
 As part of our evaluation of the potential impact and applicability of D3M 
technology to real-world problems, our team decided to exercise tuning AutoML models 
to state-of-the-art statistical research datasets. Since one of the goals of D3M was to 
directly help domain scientists remain focused on their problem without having to spend 
a lot of time learning mathematical modeling, our team analyzed climate data and 
explored using D3M technology to directly fit the data from this scientific domain.   

 Atmospheric rivers (AR) are long narrow filaments of enhanced water vapor 
transport in the lower troposphere and they are known to accompany extreme rain and 
winds. They are important weather systems for US water resources on the West Coast 
and in the Midwest. The Purdue Statistics department lead research on atmospheric 
rivers by performing large-scale data analysis on a Hadoop cluster over climate data 
from the US West Coast and US Midwest regions.  

 For the research focus, our team asked which impacts, in which region, and in 
what time scale and period were Atmospheric River activities of concern. We then used 
an approach, combining climate significant-event or extreme-event criteria, image 
processing, and statistical analysis to create eighty-one (81)  West Coast AR indices 
and the same number of Midwest indices from January 1980 to June 2017 for 
answering the questions using detailed visualization.  We found that an optimal AR 
index for precipitation depends on the defined precipitation impacts, regional physical 

https://www.youtube.com/watch?v=mp-dKP98XOk&t=696s
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mechanisms of precipitation, season, and duration. One of the AR measurements, 
Integrated water vapor (IWV) can represent the broad-stroke presence and 
accumulation of precipitation in regions studied. Longer duration thresholds also led to 
higher accumulated precipitation. Combined moisture with wind fields using another AR 
metric, integrated water vapor transport (IVT), is necessary to get extreme West Coast 
AR orographic precipitation. IWV well represents moderate to extreme Midwest AR 
precipitation events for all seasons. The combination of IVT and IWV is useful to get 
snapshots of extreme precipitation events. The complete analysis was recently 
published as a journal paper in the issue 10.1029/2020JD033667 of the ”Journal of 
Geophysical Research: Atmospheres”.  

 

 
Figure 25 IVT and IWV Plots for the Subset Area 

 To evaluate the use of D3M technology on this application area, we 
experimented with a subset of the compiled AR and precipitation data since the D3M 
program was focused on AutoML methods instead of processing very large datasets.  
We chose a section of West Cost 2017 AR data and first generated some exploratory 
visualizations using ModSquad interface technology.  We were searching to assess 
what can be learned about Atmospheric River metrics through quick visual examination 
at first.  We examined the covariation of IVT against IWV to see if there was any easily 
viewable correlation evident with measured precipitation in this geospatial and temporal 
subset.  The left panel of Figure 25 plots IVT against IWV with the color saturation of the 
dots tied to the precipitation levels. A general correlation of the AR metrics is observed 
without being able to make any observations on precipitation levels.   The right panel 
shows the same scatterplot data with the addition of the plot trend line and a rendering 
of the distributions of IVT and IWV.  It is noted that for a particular region and time 
viewed, the measured AR activity had distributions scaled toward lower values but with 
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a long tail, indicating the presence of a few events of higher atmospheric moisture 
content. 

 To fit a simple model to this dataset subset, an XGBoost classifier was used to 
predict the occurrence of precipitation using only IVT and IWV as independent 
variables.  The classifier was trained on 75000 point from the subset.  60000 points 
were randomly selected for training with the remaining 15000 points held back for model 
evaluation.  The confusion matrix from the classifier (shown in Figure 26) indicates an 
overall 58% correctness when using only Atmospheric River metrics for predicting 
precipitation in the selected West Coast region.  This demonstrates that “somewhat 
helpful” models can be trained for precipitation prediction using only a subset of the AR 
metrics alone.  However, these results also demonstrate that the interaction between 
Atmospheric Rivers and observed participation is more complex than just a simple 
classification can detect and understand.  This reinforces the results described in our 
full paper. 

 

 
Figure 26 Accuracy of ML Model 
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5.0 CONCLUSIONS 
 

 The Data-Driven Discovery of Models Program focused on the development of 
AutoML software, methods, and interfaces to make data science easier for domain 
scientists to perform.  Throughout the course of the program, our team, which includes 
well-known practicing data scientists, offered our experience of how to meet new 
datasets, what visualizations are the most helpful for domain scientists, and we 
implemented some of these practices in our ModSquad TA3 interface.   

 Throughout the course of this program, our team engaged as much as our 
budget allocation allowed and our team contributed at several key moments during the 
arc of the research performed on the D3M project.  Contributions included early user 
testing, pioneering the move to kubernetes for automated system testing, analyzing, 
and augmenting real-world data through our ModSquad interface, engaging with outside 
scientists in the TERRA-REF program to understand and illustrate their data, and finally 
applying data science techniques to a brand-new statistics research area in the field of 
the characterization of Atmospheric Rivers.  Our team is proud of the accomplishments 
we achieved.  We are also grateful for the opportunity offered by DARPA to join with 
other expert Performers throughout the span of this research program.  
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APPENDIX A - LESSONS LEARNED PRESENTATION (TERRA-REF DATA 
ANALYSIS) 
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LIST OF ACRONYMS 

AR – Atmospheric Rivers; long, narrow filaments of enhanced water vapor carried in the 
upper atmosphere 

ARPA-E – The Advanced Research Projects Agency of the Department of Energy, an 
Agency in the United States Government 

AutoML – Automatic Machine Learning; This refers to any computational system 
designed that tries to select and fit mathematical, statistical, or deep learning models to 
incoming data with little or no intervention required from the user 

BetyDB – Biofuel Ecophysiological Traits and Yields DataBase; BetyDB is an online 
resource through which early results from the TERRA-REF program were made publicly 
available for download.  This is where our team acquired the TERRA-REF Season 4 
and Season 6 data for processing. 

DARPA – the Defense Advanced Research Projects Agency, a unit of the Department 
of Defense, an Agency of the United States Government.  DARPA funded the D3M 
program among other research programs 

D3M – The Data-Driven Discovery of Models program funded and lead by DARPA 

ETL – Extract, Transform, and Load; this refers to the overall process of cleaning and 
adapting raw collected data before it is ready to be used to train mathematical models.  

GRPC – Google Remote Procedure Call; a technology for creating well-defined 
interfaces between computer systems and exchanging messages between those 
systems.  GRPC technology is used in the D3M program to communicate between a 
user interface and an AutoML system 

IWV – integrated water vapor; this represents the presence of an accumulation of 
precipitation in an atmospheric region; it is a measurement of Atmospheric Rivers (AR) 
in the atmosphere 
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IVT – Integrated Vapor Transport; Mathematically different than IWV, but similar in 
definition, IVT is a metric used to characterize the amount of moisture carried and its 
relationship to wind velocity in Atmospheric Rivers  

 

ML – Machine Learning; the technology focused on computational solutions for solving 
classification, regression, time-series, image analysis and other problems.  Machine 
Learning is a body of scientific research focused on developing these methods for use 
in any application area 

 

MLP – Multi-Layer Perceptron; An MLP is the simplest, canonical example of an 
artificial neuron that is a building block of neural networks commonly used in deep 
learning applications.  Deep learning is a subspecialty within ML dealing exclusively with 
neural networks of different architectures.  

 

JSON – The JavaScript Object Notation; JSON is a human-readable format for 
representing arbitrary hierarchical data.  JSON is used extensively for exchanging 
datasets between systems across the internet.   Many database systems now offer 
storage and indexing of data stored in JSON format.  

 

MIT/LL – Massachusetts Institute of Technology / Lincoln Labs; a technology-focused 
unit of MIT consisting of staff available to be applied to externally funded research 
programs 

 

SQL – the Structured Query Language; SQL is a syntax for posing data retrieval 
questions to relational database systems.  MySQL and Postgres are examples of 
database systems that support SQL queries to retrieve data stored in a managed 
database 

 

TA – Technical Area; this terminology is used in DARPA programs to delineate part of 
the problem being solved in the program.  Each Task Area is a focus area of one or 
more teams working on the DARPA program 

 

TA1 – Technical Area One; in the D3M program, this referred to the development and 
packaging of specific algorithms using a common interface, so they could be called from 
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an automated system.  Example TA1 algorithms include outlier detection, data 
normalization, data type determination, and statistical models. 

 

TA2 – Technical Area Two (TA2) comprises development of the integrated machine 
learning platforms that receive data and fit models, using the algorithmic components 
from Task Area One.   

 

TA3 - Technical Area Three (TA3) refers to the User Interface development, which 
allows a human user to interact with the overall system.   

 

TERRA - Transportation Energy Resources from Renewable Agriculture; This is a 
portfolio (a group of related research programs) funded by ARPA-E to explore how to 
increase agricultural production to combat possible food shortages in the future 

 

TERRA-REF – the TERRAphenoytping REFerence platform; This is a program funded 
by the ARPA-E TERRA Portfolio;  the TERRA-REF program developed and deployed 
technology to carefully record information about the growth process of several types of 
agriculture to enhance the production of Biofuels and other agricultural products 

 

USC – University of Southern California 

 

XGBoost – the eXtreme Gradient Boosting model – a statistical model that extends 
decision tree technology and acts as an effective algorithmic ML method.  XGBoost 
instances can trained from input data and then used to predict outputs that mimic the 
training data it has previously seen 
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