

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 1
www.sei.cmu.edu/podcasts

7 Steps to Engineer Security into Ongoing and Future Container

Adoption Efforts
Featuring Rich Laughlin and Tom Scanlon as Interviewed by Suzanne Miller

--

Welcome to the SEI Podcast Series, a production of the Carnegie Mellon University Software

Engineering Institute. The SEI is a federally funded research and development center sponsored

by the U.S. Department of Defense. A transcript of today’s podcast is posted on the SEI website

at sei.cmu.edu/podcasts.

Suzanne Miller: Good afternoon, my name is Suzanne Miller. I am a principal researcher here

at the SEI. I am going to be interviewing two of my colleagues, Rich Laughlin and Tom Scanlon,

today about a topic that doesn’t sound exactly technical, but it’s become technical, which is

containers, and we are not talking about Tupperware here.

But before we get started with that, I do want to note that as part of practicing social distancing

here at Carnegie Mellon University, we are all operating from our own homes. So, if there are

any technical glitches, we apologize for that, but we are trying to do our part for COVID-19

social distancing. We hope that you all can appreciate that. So, we hope that you and all of your

families are also well.

We are going to go ahead and get started with Richard and Tom. They are both working on

security aspects of containers. They published a blog recently, called 7 Quick Steps to Using

Containers Securely. So, I wanted to ask both of you before we get started, tell us a little bit

about yourselves. Why don’t we start with Rich. How did you come to be doing this work with

non-Tupperware containers?

Rich Laughlin: I work under the Security Automation Directorate of CERT. I started playing

with containers a couple years ago now. At the time, it was entirely as part of just exploring new

tech, interesting tech, and then started to become more and more part of my daily routine, my

daily job. It’s not been quite a year, but maybe about 8 months ago, I started working on some

content to talk about container security and collaborated with Tom on some work for a customer,

and eventually it became this blog post. It’s been a fun experience.

http://www.sei.cmu.edu/podcasts
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://resources.sei.cmu.edu/library/author.cfm?authorID=4599
https://insights.sei.cmu.edu/author/richard-laughlin/
https://resources.sei.cmu.edu/library/author.cfm?authorID=42183
https://insights.sei.cmu.edu/sei_blog/2020/04/7-quick-steps-to-using-containers-securely.html
https://insights.sei.cmu.edu/sei_blog/2020/04/7-quick-steps-to-using-containers-securely.html
https://insights.sei.cmu.edu/sei_blog/2020/04/7-quick-steps-to-using-containers-securely.html

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 2
www.sei.cmu.edu/podcasts

Suzanne: Let’s go to Tom.

Tom Scanlon: Thanks, Suz. I am a senior researcher here at the SEI. I have been involved with

containers in a couple of facets. The first is we are helping a lot of programs transition from

traditional waterfall approaches to software development to Agile and DevSecOps, and

application containers are a huge enabler for DevSecOps. [There are] a lot of reasons we will

talk about throughout this talk, but they are modular or portable and allow for rapid

development. So, working on them tactically, through those efforts. In addition, I work a lot of

programs on sort of end-to-end software assurance from acquisition through sustainment, and

where can we put specifically security into there. That is really where I first got concerned about

containers because in those talks with folks that are doing program management and purchasing

and things like that, they sort of sense that containers were a new good thing, which was nice,

but they also sort of thought, containers automatically meant you were increasing security. I have

had to educate some folks that containers are a new technology. It has pros and cons like any

other technology. It certainly brings with it some security advantages, but just because a program

or an effort is using containers doesn’t mean they are more secure than someone that is not.

Folks were starting to use containers as the answer on compliance check sheets and things like

that. Well, we’re using containers, so we are secure, and so that was part of my motivation to get

into this.

Suzanne: Rich, how did you and Tom end up working together?

Rich: Tom and I work on the same team. He found out that I was writing some content up for

container security and he said, Hey, I am also working on a paper related to containers. Let’s

collaborate, and see if your content can help complete this paper. That is how we sort of started

working together on the topic of containers, specifically with security in mind.

Suzanne: For those that don’t understand about containers, what is different about doing

software using a container versus doing software without using a container? So, whoever wants

to take that one.

Tom: I’ll start. What is exciting about containers for me, just from a software development

perspective, is because the containers include the software dependencies and the resources you

need to run on different hardware, the container allows software to be deployed in different

hardware environments with the same container. I remember the days when we did desktop

applications and we had to run around each desktop and install the software, configure it, and

then hope it ran. Containers are the complete opposite end of that spectrum. If you are running an

application and container in one environment, and you switch hosts or switch environments, or

move from desktop to cloud—provided that the new environment has a container engine running

that supports the container you have—you can easily move the containers around, allowing that

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 3
www.sei.cmu.edu/podcasts

portability. That also allows you to leverage different stacks of hardware you might have laying

around. So, instead of old hardware becoming obsolete, as long as it has enough resources on it, I

can put a container engine on it and still use that old hardware.

Suzanne: One of the things that in DevOps we talk about is environment parity. So, what you

are saying is that containers are one of the strategies for achieving environment parity, which is

having the same environment available for doing testing, for doing reconfiguration, for

deploying to multiple sites. Is that correct?

Tom: It is correct. In essence, it’s actually sort of making environment parity not relevant is

what it’s doing, because you don’t exactly have environment parity, it just doesn’t matter

because the way the containers are defined.

Suzanne: So, the container is the boundary of the environment that you care about?

Tom: Correct.

Suzanne: OK. Alright. What are the security concerns that come along with this? You’ve got

seven steps to getting to ongoing security, so what is it about security that you have to pay

attention to? Rich, you want to talk about that for a minute?

Rich: Sure. Like any technology there is some amount of inherent risk, so if you compare

containers to virtual machines, virtual machines are some inherent risk that someone might try

to break out of a virtual machine. Similarly, there are some inherent risks for containers that

someone finds a kernel vulnerability and breaks out of a container. But, I think, if you were to

look at the entirety of your risk, most of your risk comes from configuration problems, using

containers in the wrong way. The inherent risk there is a problem, but it is really an issue for

kernel experts and people who are working on the kernel to try to make sure that can’t happen.

For the regular user of containers, the main thing is going to be supply chain. I could say supply

chain until I am blue in the face because it’s sort of the main thing you get. When you are

building containers, you are building them from something and that something is where a lot of

your risks come from. The other part of that is like Tom was saying, is that a lot of people will

use containers and think, Alright. OK, I’m good. I can just stop there. I don’t have to ever think

about security again. But all of the traditional kind of security concerns, decent logging and

auditing, managing resource limits so things don’t take over all of the system resources and bring

the whole thing down, that sort of thing. All those things are still relevant.

Suzanne: What are the first couple of steps in your seven-step process for getting secure

containers?

http://www.sei.cmu.edu/podcasts
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 4
www.sei.cmu.edu/podcasts

Tom: They are not really ranked. They are just steps. I am actually going to start with a small

one that we mentioned last in our blog, which is persistent logging, because I think that is a

gotcha that gets folks that are new with containers. Containers have an ephemeral nature about

them. That is one of their advantages. But, if you are doing all your logging within a container,

then the container goes away, either because you take it down or it crashes somehow, you have

lost all the logging that you’ve done that you need now to debug or chase down a problem, be it

security or just an operational problem. Pushing those logs to a central repository or somewhere

out of the container is advantageous to give them some persistence. I really wanted to highlight

that one first because that is useful operationally in security.

A second one, which we do mention first in our publication, is just using the resources that are

out there. NIST has a nice Application Security Container Guide to get started with. There are

some tools that Rich is very familiar with, he has utilized from Docker itself. Docker has some

security documentation on their website, and then they have some tools, the OpenSCAP tool,

which lets you do some security testing. There are tools and resources out there. So, a good

starting point is just get familiar with what’s out there. None of these things I mentioned cost

money, so you can get in there, play around. There are certainly some really robust commercial

tools coming on the market, but I suggest you play around with the open source stuff first, so you

know what you are doing when you get into the commercial tools.

Suzanne: Excellent. Rich, a couple of others that are your favorites?

Rich: I think my favorite really is the fact that when you are dealing with containers, you really

need a process for rebuilding container images on a regular basis. One of the things that makes

containers very different from virtual machines or traditional kinds of deployments, is that you

are building an immutable image that serves as the basis for that container. You ship that image

around and you run it in various environments. The best practice for dealing with containers is to

never do something in a container that you intend to stay around for a long time. Or, you don’t

want to do persistent stuff in that environment. They are meant to be ephemeral. You bring them

up. They run for a while. You shut them down. You replace them.

One of things we talk about in the blog is that what you really need is an automated process for

making sure that you are pulling in security updates from upstream. So, you have some base

image that you are working with, you need to make sure you are rebuilding from that image on a

regular basis because you are not going to get security updates any other way. You could

imagine someone might say Oh, well I’ll just have someone, every Friday they will sit down and

rebuild the image, but we get busy, someone gets sick, stuff doesn’t happen, and then you end up

with security vulnerabilities in production, right? When you are working with containers in

production, it really implies a certain level of sophistication. So, you kind of have to have a

DevSecOps pipeline to rebuild those images.

http://www.sei.cmu.edu/podcasts
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://www.open-scap.org/

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 5
www.sei.cmu.edu/podcasts

Suzanne: What I am hearing is that you want to make that part of your automation processes,

not rely on the human in the loop to actually run that security update, but make sure you are

redoing the image as part of your normal automation of that pipeline. Is that correct?

Rich: Exactly. I think it also brings some new benefits as well, right? So, one of the downsides

to having a mutable environment like a virtual machine in our traditional deployment, is that

when you do those system updates, they could break your application. Then you have an outage

of some kind, right? Having that kind of DevSecOps pipeline gives you the opportunity to build

the thing, do some testing before you deploy it, and then deploy it to get those security updates

out there but also having done some testing so that you know that it still works.

Suzanne: What are a couple of other things? We have got four. So, what are the others that

people need to pay attention to? Tom, you want to give us another one?

Tom: We talk about configuring the resource limits. So, the way containers work is they will

specify what type of resources they need available to them to operate. That can lead folks to

maybe err on the high side and allocate more resources than they really need, just so they don’t

quote-unquote, run out. But, then, you are enabling a denial-of-service attack if an adversary

were to get in. So, you really want to set the resource limits appropriately on your containers.

That is another just basic consideration.

Suzanne: I hadn’t really thought about the fact that if you leave too much space, that you are

actually opening yourself up for attack. That is a valuable thing to remind people about. What

else have you got, Rich?

Rich: I already touched on it a little bit earlier, supply chain, so securing the image supply chain.

So, you are building your container from a base image. You need to know where that image

comes from: Who is building it? Who are they? Why can you trust them to not put malware in

there or something like that?

Docker actually has on the Docker Hub, they have some images that they build and provide and

they sign them. You have to do some extra steps on the Docker daemon to actually have it

enforce that it is using signed images only. You want to really make sure that you are using

images that come from a source you trust. And, ideally, you would be checking the signature on

those images to make sure they are coming from actually who you trust and not someone else.

Suzanne: Some of the things you are saying are things that I am accustomed to hearing when we

talk about security applications. A couple of them are unique to containers, the idea of being

aware of persistent logging versus ephemeral logging, things like that. So, Here I am. I am new

to this. I heard Tom say, Get out there on the open source community, but what are some of the

places that you recommend that people learn about this as a way of doing more secure software

http://www.sei.cmu.edu/podcasts
https://hub.docker.com/
https://docs.docker.com/engine/security/trust/content_trust/

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 6
www.sei.cmu.edu/podcasts

building in settings where you need this ability to move from one setting to another, hardware

wise, et cetera?

Rich: Some resources that are out there that can help, I think the first one is to pick a container

orchestrator. One of the more popular ones is Kubernetes, but there is also Docker Swarm, and

set them up in a way that is ideal based on their documentation. Then, leverage some of their

features to help you automate away a lot of these problems that you might have. Kubernetes has

the ability to set resource limits on resources, so when it spins up pods, it will automatically tear

them down if they go over their resource limits. Then, they also cover some of the other

availability problems as well. So, the idea that you can have a container run three copies of the

same container within Kubernetes or Docker Swarm, and if one of them goes down for whatever

reason, it gets whacked because it uses too many resources, there are more copies still running,

still available.

Suzanne: Any recommendations specifically from you, Tom?

Tom: I think I will circle back to what I said originally. Just get the tools that are available, play

with them, you learn a lot by doing in the space. As you get in there and you start building

containers, seeing how their image repositories are set up and how the build environments are set

up, you’ll become smarter with it, and you’ll be able to utilize the security tools better because

you’ll know what you are looking for.

Suzanne: OK, that’s fair enough. What’s next for you guys? This is a collaboration that you

have started on this one topic. Are you going to continue collaborating? Do you have some other

ideas of things that you want to be adding into the work with containers, or are you going to go

off in a whole different direction?

Tom: We are probably going to go into some perpendicular directions here. I am interested more

in how this fits into the overall software development process. Some of the things I am

concerned about are when you get that DevSecOps environment running well, and you are using

containers, you are releasing containers a lot more frequently. So, the security scanning tools that

you typically use, you are going to have to run them more often because each time there’s a new

build you are going to have to rescan because the results from the last build are no longer valid.

That also means you have to do something with the results of those scans faster because there’s

going to be a new scan coming sooner. So, what kind of strategies do you have to triage those

things and mitigate findings, and to use automation so as containers are coming out, you’re

checking for security on them, and you doing something about the results of your findings.

Those are the areas where I am interested in—sort of how does using containers and using

containers securely fit into an overall DevSecOps program.

http://www.sei.cmu.edu/podcasts
https://en.wikipedia.org/wiki/Kubernetes
https://docs.docker.com/engine/swarm/key-concepts/

SEI Podcast Series

7 Steps to Engineer Security into Ongoing and Future Container Adoption Efforts page 7
www.sei.cmu.edu/podcasts

Suzanne: Excellent. What about you, Rich? Where are you going next?

Rich: I’ve actually been working on some security automation for Kubernetes for a little while

now, it’s something that I’m hoping to release soon. I’m going to write some blog posts about it

and do some work in that regard to just talk about it. Basically, the premise of that is that

upstream, Kubernetes provides some tooling for standing up Kubernetes clusters, but that tooling

does not take security as seriously as I would prefer. They err on the side of usability because

Kubernetes has a lot of components, and it is a lot to learn when you are first setting it up. So,

they try to make it super easy for someone to get started, which has value, but then you decide

OK, I’m done playing with it, now I want to put it in production, and the tool you are familiar

with is not going to give you the level of security that you probably need in production. So, I

have been working on a set of tooling to just serve as kind of a reference for, Here are the things

that your tooling should be doing, and places where people can tweak certain settings if they

want to get a balance between usability and security and really understand what exactly they’re

putting in production.

Suzanne: Lots of Kubernetes users are going to appreciate that.

Rich: I hope so.

Suzanne: I want to thank both of you for joining us remotely today, and I look forward to seeing

some of the work that you both have coming up in the future. For those of you that have not read

it yet, their blog is available at insights.sei.cmu.edu. The easiest way to find it is to search on one

of the authors. Scanlon is easy to spell, so I’d suggest that one. Any resources that were

mentioned here, the tools that Rich mentioned, and some of the other things, open source kinds

of things that Tom was talking about—we will have inclusions in the podcast transcript so that

you will be able to access those.

As always, you can get this podcast all the places that you get podcasts. We welcome you to do

that. I want to thank all of our listeners for joining us during this COVID-19 special podcast. I

look forward to talking to you all in the future. Thank you for viewing.

Thanks for joining us. This episode is available where you download podcasts, including

SoundCloud, Stitcher, TuneIn Radio, Google Podcasts, and Apple Podcasts. It is also available

on the SEI website at sei.cmu.edu/podcasts and the SEI’s YouTube channel. This copyrighted

work is made available through the Software Engineering Institute, a federally funded research

and development center sponsored by the U.S. Department of Defense. For more information

about the SEI and this work, please visit www.sei.cmu.edu. As always, if you have any questions,

please don’t hesitate to email us at info@sei.cmu.edu. Thank you.

http://www.sei.cmu.edu/podcasts
https://insights.sei.cmu.edu/sei_blog/2020/08/migrating-applications-to-kubernetes.html
https://insights.sei.cmu.edu/sei_blog/2020/04/7-quick-steps-to-using-containers-securely.html
https://insights.sei.cmu.edu/
https://soundcloud.com/cmu-sei-podcasts
https://www.stitcher.com/podcast/carnegie-mellon-software-engineering-institute/software-engineering-institute-sei-podcast-series
https://tunein.com/podcasts/Technology-Podcasts/Software-Engineering-Institute-(SEI)-Podcast-Serie-p1137152/
https://podcasts.google.com/?feed=aHR0cHM6Ly93d3cuc2VpLmNtdS5lZHUvcG9kY2FzdHMvZmlsZXNfcG9kY2FzdHMvaXR1bmVzRmVlZC54bWw%3D&
https://podcasts.apple.com/us/podcast/software-engineering-institute-sei-podcast-series/id566573552?mt=2
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://www.youtube.com/playlist?list=PLSNlEg26NNpzVT_Ozbo_xbs4a-lmtRUea
https://www.sei.cmu.edu/
mailto:info@sei.cmu.edu

