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1 SUMMARY 

The development of chemical vapor deposition technology for advanced sensor technology, in 
part, involves the improvement of the thickness and composition uniformity of the deposited 
materials.  The applied science aspects of the endeavor necessitated a deep dive into the basic 
theory involving fluid flow over a heated plate.  The exploration led to the discovery of a number 
of new theoretical and experimental results in the field of Boundary Layer theory.  The following 
Chapters provide a short summary of the work along with the appropriate references. 
 
In the Boundary Layer Concept Chapter, the traditional boundary layer concept is reviewed and 
found to be flawed since it mixes internal and external boundary layer concepts.  It is also found 
to be totally deficient in describing exterior flows like that for flows over a wing.  A new 
"bounded" and "unbounded" boundary layer concept is offered as a remedy. 
 
In the New Blasius Chapter, the often-used ploy of setting up a wind tunnel into a known Blasius 
flow condition is found to be flawed.  In contrast, exterior laminar flow on a thin flat plate is 
found to be naturally described as Blasius flow. 
 
In the y-Momentum Equation Chapter, the Falkner-Skan solution obtained from the 
x‑momentum equation is used to calculate the normal to the wall y-pressure gradient using the 
y‑momentum equation.   
 
In the Boundary Layer Thickness and Shape Chapter, a new integral moment method for 
describing the thickness and shape of the boundary layer is outlined.  The method can be applied 
to the velocity profile, thermal profile, pressure profile, and pressure gradient profiles.    
    
In the Boundary Layer Similarity Chapter, a mathematical proof is offered as to the identity of 
the length and velocity scaling parameters for similarity to be present in any 2-D fluid boundary 
layer. 
 
In the Turbulent Boundary Layer (TBL) Similarity Chapter, the research work on similarity 
scaling for the turbulent boundary layer for the last 70 years is reviewed and found to be flawed. 
As a remedy, the similarity scaling parameters that were identified in the Boundary Layer 
Similarity section are tested and found to give reasonable results for certain experimental wind 
tunnel results.  
 
In the Origin of the Logarithmic Law of the Wall Chapter, a new turbulent boundary layer 
conceptualization is introduced that explains the origin of the Logarithmic Law of the Wall. 
 
In the Prandtl Plus Scaling Chapter, the universality of the Log Law and Prandtl Plus Scaling's is 
examined and found to be flawed.  Instead, a better inner region scaling parameter set is 
proposed to replace the Prandtl Plus set. 
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2 A NEW BOUNDARY LAYER CONCEPTUAL MODEL 

The traditional boundary layer concept is found to incorrectly describe exterior boundary layer 
flow such as flow over a wing.  The traditional approach fails to account for the boundary layer-
wall induced excess mass and momentum resulting from the finite thickness of a flow 
impediment.  There is no way to theoretically describe aerodynamic lift, for example, if you 
cannot correctly account for the excess mass and momentum diverted by the wing.  A new 
"unbounded" boundary layer concept is offered as a remedy with the newer version discussed 
below having evolved slightly from its first implementation.  The new conceptual model, 
combined with the moment-based boundary layer thickness approach, provides a theoretical path 
to aerodynamic lift.   

2.1 The Traditional Boundary Layer Concept 

Ludwig Prandtl's1 boundary layer concept for steady 2-D laminar flow along a wall is often 
depicted as shown in Figure 1 (see, for example, Figure 7.6 in Hermann Schlichting's2 seminal 
book on boundary layer theory).  The fluids interaction with the plate induces a no-slip boundary 
condition (zero velocity at the wall).  The flow velocity in the x-direction, u(x,y), at a point x on 
the plate, monotonically increases from zero until it asymptotes to the velocity at the boundary 
layer edge which in this case is u0.  The boundary layer thickness δ(x), depicted as the dashed 
line, is the point where the velocity just reaches the asymptotic velocity u0.  Velocity profiles 
similar to those depicted in Figure 1 are routinely measured in wind tunnels around the world.  
 
While the velocity profiles similar to that depicted in Figure 1 are often observed in wind 
tunnels, it is also a reasonable approximate depiction for exterior boundary layer air flow along 
a thin flat plate.  Figure 1 is only an approximate depiction for exterior flow since, although 
not widely appreciated, an exterior flow boundary layer on a flat plate goes through a peak 
near the boundary layer edge before asymptoting to u0.3-5  For the thin flat plate case, 
the velocity peak near the boundary layer edge is small.  The similarity of the thin flat plate 
exterior flow and the thin flat plate interior flow has resulted in the majority of the flow literature 
depicting both interior and exterior boundary layers using Figure 1.  Unfortunately, this has also  
led to the fluid flow community treating interior and exterior boundary layers as equivalent 
(think wind tunnel experiments and flow on a wing in flight).  This is reflected in the fact that it 
is impossible to find a discussion in the literature about the differences between interior and 
exterior boundary layers.  For example, a Google search (on March 2020) of "boundary layer 
flow" yields 723,00 hits while a Google search of "interior boundary layer flow" yields zero hits 
and "exterior boundary layer flow" yields six hits.  The problem with this equivalence 
thinking is that Figure 1 does not come close in describing exterior boundary layer flows 
like flow along a wing in flight.  The velocity peak on a wing near the boundary layer edge can 
easily be 15% higher than u0.   
 
Figure 1 has a number of flaws beginning with the fact that conservation of mass and momentum 
means that the asymptotic velocity can never be u0.  Furthermore, the fact that the velocity in 
Figure 1 asymptotes without going through a maximum indicates that this is a wind tunnel type 
flow along a thin flat plate.  This traditional depiction does not include the presence of the upper 
wall or some indication of the presence of a pressure gradient due to the walls.  By not 
acknowledging the upper wall, the majority of the flow community interprets Figure 1 as an 
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exterior flow.  Thus, Figure 1 is flawed in that it incorrectly mixes aspects of both interior flows 
(asymptotes to u0, no maximum) and exterior flows (no upper boundary).  
 

 
Figure 1:  The Traditional Boundary Layer Model for 2-D Flow along a Thin Flat Plate 

2.2 The New Bounded and Unbounded Boundary Layer Concepts 

The problem with using Figure 1 for exterior flows is that this traditional boundary layer concept 
offers no theoretical path to describe flow phenomena like airfoil lift.  It is simply not possible to 
correctly account for the excess mass and momentum that accumulates as the fluid flows over a 
finite thickness object.  To correct these conceptual modeling problems, Weyburne introduced 
the “bounded” and “unbounded” boundary layer concepts in a series of Air Force Tech 
Reports3-5 as a way to distinguish between traditional wind tunnel datasets and exterior boundary 
layers with a velocity peak in the near wall region.   
 
The original bounded and unbounded concepts have subsequently evolved due to some recent 
simulation results.  In the original model, the main difference between the bounded and 
unbounded concepts was that the unbounded case requires the boundary layer to go through a 
maximum before returning to the bulk fluid velocity u0.  However, Weyburne has done some 
wind tunnel simulations (discussed in more detail in Section 2.5) on a finite thickness plate and 
showed that even in a wind tunnel, the velocity profile can go through a maximum before 
returning to some constant velocity (which must be greater than u0 to account for the mass and 
momentum changes induced by the presence of the boundary layers).  Thus, the original bounded 
and unbounded division along interior versus exterior flow lines have been revised as we will see 
below.   
 
Just as important as the new conceptual models is the adaption of the Integral Moment Method 
for describing the thickness and shape of these new boundary layer descriptions, including the 
peak region.  It is the combination of the new model and the new thickness description that 
provides the theoretical path to aerodynamic lift.  In what follows, the new models are reviewed 
and the differences are discussed. 
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2.2.1 The Bounded Boundary Layer Concept 

The bounded boundary layer concept is an attempt to reframe and correct some of the 
deficiencies encountered in the traditional boundary layer concept used to describe wind tunnel 
experiments.  The first step is to replace the traditional figure shown in Figure. 1 by Figure 2.  
The H/2 dashed line is added to denote this is an interior flow.  All bounded boundary layers are 
interior flows.  However, the key feature of the “bounded” boundary layer flow is not that it is 
an interior flow but that it appears to asymptote to the boundary layer edge velocity ue(x) 
without indicating whether ue(x) is constant all the way to the top wall.  This may seem like 
a logically inconsistent statement since the value of ue(x) is assumed to be constant for a given 
x-value.  This is true for a thin flat plate inserted on the centerline of a channel type wind tunnel.  
The ue(x) edge velocity extends from the boundary layer edge all the way to the top wall’s 
boundary layer.  However, a finite thickness plate diverts even more mass and momentum than 
just the boundary layer alone.  This excess generates a sizable velocity peak just above what is 
considered the traditional boundary layer.  This peak is broad since inertia-pressure 
interactions are the main restorative forces.  The broad peak will appear to be a plateau if 
measured in the traditional way.  The traditional measurement method involves measuring to 
maybe 2 or 3 times the boundary layer thickness values above the plate surface.  However, the 
peak is only observable, depending on conditions, if the velocity profile is measured out to 
approximately five times thicker than is traditionally measured for velocity profiles.  This 
point is discussed in more detail in Section 2.5.  To acknowledge the fact this could be a 
boundary layer past a finite thickness object-plate, we have inserted a space between the velocity 
profile depiction and the H/2 dividing line.  This is different than the original depiction in the 
earlier AF Tech Reports.3-5 

 
The other major difference between Figure 1 and 2 is that the asymptotic velocity value is 
changed to ue(x) to acknowledge the fact that the boundary layer edge velocity can take on 
different values depending on the induced pressure gradients in the pipe/channel/wind tunnel.  
Most traditional wind tunnels all have a common feature in their implementation that allows the 
pressure gradient in the flow direction to be manipulated, for example, by adjusting the upper 
surface height, H, along the flow direction.  In most wind tunnels, flows can be manipulated to 
have a zero-pressure gradient (ZPG), a favorable pressure gradient (FPG), or an adverse pressure 
gradient (APG) in the flow direction.  For flow in a parallel walled channel wind tunnel, the 
walls induce a boundary layer pressure that becomes smaller as the flow moves along the wall.  
This is the FPG condition.  To induce a ZPG Blasius6-like condition (depicted in Figure 2 with 
ue(x) a constant), a pressure gradient inducing mechanism, for example, slightly tilting the upper 
wall, needs to be adjusted to make the induced pressure gradient produced by the walls a 
constant along the flow direction.   
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Figure 2:  The Depiction of “bounded” Boundary Layer Flow in a H-gap Channel 

2.2.2 The Unbounded Boundary Layer Concept 

Whereas the bounded boundary layer applies to traditionally observe interior flows, the 
"unbounded" boundary layer, as the name implies, applies to exterior flows and some wide gap 
interior flows.  The unbounded boundary layer concept is depicted for steady 2-D laminar flow 
along a flat plate in Figure 3.  For the unbounded boundary layer case on a flat plate at zero-
incidence angle, the important differentiating property is that velocity profile goes through a 
maximum near the viscous boundary layer edge and then asymptotes to the free stream velocity 
u0.  This is the type of boundary layer encountered for exterior flow like that for airflow over a 
wing in flight.   
 
The slow rate at which the peak asymptotes to the free stream velocity means that the calculated 
boundary layer thickness values are much larger than the bounded boundary layer case.  A 
significant implication of this peaking behavior is that the 99% thickness, δ99(x), becomes 
almost useless as a thickness parameter for the bounded boundary layer velocity profile 
since it no longer corresponds to any boundary layer location of consequence.  It is only 
useful for a “thin flat plate” at zero incidence angle to the flow direction since the peak for 
this case will be small.  For thick plates-walls, non-zero incidence angles, or most other 
solid surfaces, the excess flow due to the form drag of the solid object results in a near-wall 
peak in the velocity profile making δ99(x) not useful as a boundary layer location of 
consequence.   
 

https://en.wikipedia.org/wiki/Drag_(physics)
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Figure 3:  The Depiction of “unbounded” Boundary Layer 2-D Flow along a Plate 

 
In the interest of providing a theoretical path to mass and momentum accountability, the 
unbounded boundary layer is divided into two regions: the first is the viscous region which 
closely mimics the traditional viscous boundary layer, and the second region which is termed the 
inertial region since viscous forces are mostly absent.  The transition location between the two 
regions could be defined using the viscous thickness, δv(x), given by the moment method.7,8 
Weyburne3 has shown that the viscous boundary layer thickness is located close to δmax(x), the 
location of the velocity maximum umax, at least for laminar flow over a wing.  This boundary 
layer characterization method is both easy to conceptualize and is experimentally accessible.  
What makes this interesting is that for external laminar flow along a flat plate, this near wall 
region has been shown5 to be well represented by the Blasius6 theoretical model. 
 
In the inertial region of the unbounded boundary layer, the velocity slowly returns to the free 
stream velocity from the peak value.  The thickness of this inertial region is calculated using the 
moment method and is designated as δi(x).3  Based on the limited laminar flow data that 
Weyburne3 examined, the thickness of the inertial boundary layer region is hundreds to 
thousands of times larger than the viscous boundary layer region.  This is an important 
differentiating property between flow past a thin flat plate and flow past an aerodynamically 
thick object: the “velocity” boundary layer is much thicker than the thin flat plate boundary layer 
due to the excess momentum which must be dissipated in the inertial region.      

2.3 The Bounded and Unbounded Pressure Fields 

The presence of the velocity maximum speaks to the pressure field of the boundary layer.  
Unfortunately, the flow community’s reliance on the flawed boundary layer concept depicted in 
Figure 1 has resulted in a general distorted and incorrect picture of the pressure fields involved in 
boundary layer flow.  For example, there are many examples in the literature and textbooks that 
incorrectly assert that the y-pressure gradient is zero in the boundary layer region.16  The 
y-pressure gradient may be small, but it is definitely nonzero since the velocity normal to the 
wall must be nonzero.  Furthermore, given the flow community’s association of Figure 1 with 
the Blasius theoretical flow situation (see Schlichting2 Chapter VII, for example), one might also 
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conclude that the x-pressure gradient in the flow direction is also zero.  Hence, in the traditional 
interpretation of Figure 1, there are no pressure effects at all.  This type of thinking has led to the 
generally accepted belief that the boundary layer flow situation in a wind tunnel is equivalent to 
external boundary layer flow.  Whereas the scaled u(x,y) velocity field in the flow direction can 
be made to look similar for the two cases, the pressure fields and the normal velocity fields are 
NOT equivalent.   
 
First, consider the pressure field.  In a wind tunnel, it is almost impossible to map the pressure 
spatially through the boundary layer region.  Hence, the measured pressure fields in wind tunnels 
consist of simple 2-D wall pressure maps.  Fortunately, flow simulation via computational fluid 
dynamics for laminar flow can provide the missing insights.  To this end, Weyburne3-5 did a 
series of 2-D laminar flow simulations in a channel.  The simulations were done on a 8-meter 
long plate in a 2-D channel.  The no-wall inlet region varied from 0.6-meter to 20-meter to fully 
resolve the inlet pressure field.  Initially the channel gap was set at 1-meter to mimic a standard 
wind tunnel with a thin flat plate along the center line.  In subsequent simulations the gap was 
increased until the flow behaved as an exterior flow using the shape of the normal v(x,y) velocity 
profile as a test.  Astonishingly, asymptotic behavior of v(x,y) did not occur3-5 until the gap was 
increased to 200-meters for laminar air flows with an exit Reynolds number of Rex=5x105 (the 
critical laminar-turbulent transition Reynolds number)!  This channel gap spacing is 2,000 times 
thicker than the viscous boundary layer thickness, δv, at mid-plate.   
 
The pressure fields for the 1-meter and 200-meter gap 2-D channel air flow are shown in Figure 
4 and Figure 5.  It should be emphasized that the simulated channel flows are what is obtained 
for a “thin flat plate” type of boundary layer and that the peaks for even the 200-meter exterior 
like situation are small (~0.1%).  These peaks would not be resolvable in a real wind tunnel.  
Never the less, the simulations provide valuable insights into the pressure fields.  The inlet 
airflow in both cases is u0 = 0.9375 m/s resulting in an exit Reynolds number of 5x105.   
 

 
Figure 4:  The Simulated Pressure Field in a 1-meter High by 8-meter Long 2-D Channel 

with a 0.6 Meter No-wall Inlet Region 
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Figure 5:  The Simulated Pressure Field for the Lower Channel Wall of an Exterior-like 

200-meter High by 8-meter Long 2-D Channel with a 20-meter No-wall Inlet Region 
 
The first difference to notice in the two figures is the pressure difference scales.  The bounded 
flows pressure differences are more than an order of magnitude larger than the unbounded flow.  
For example, at the mid-plate (x/L=4) boundary layer edge (y ≅ 0.05-meter), the bounded 
(1-meter gap) pressure is 48 times larger compared to the exterior-like unbounded (200-meter 
gap) mid-plate flow situation.  This reflects the fact that it is much more difficult to induce flow 
in a thin channel then a thick channel with a fixed exit pressure requirement.  
 
The next point to notice in the two figures is the pressure change just above the wall surface that 
is observable in the interior flow case whereas the exterior-like flow case shows almost no 
change along the channel wall.  To emphasize this, the pressure difference and the x-pressure 
gradients near the viscous boundary layer edge (y=0.05-meter) along the plates for the two cases 
are shown in Figure 6.  In contrast to the wind tunnel like-result (1-meter gap), the unbounded 
exterior-like laminar flow (200-meter gap) along a zero-incidence angle flat plate appears to be 
naturally in a ZPG condition (except at the front and end of the plate).  More details are provided 
in the New Blasius Chapter.       
 



9 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 6:  The Pressure at the Boundary Layer Edge for the 2-D Channels (a) and (b) x-

pressure Gradient for the 2-D Channels 
 
The pressure field affecting the external boundary layer (away the front edge) is very different 
than the interior flow case.  The pressure gradient away the front edge for the external flow case 
appears to be primarily caused by the presence of the fast-moving free stream flow encountering 
the slow-moving boundary layer flow.  What is usually not acknowledged is that this pressure 
effect must be omnidirectional.  What this means is the pressure effect should not only manifest 
as the generation of a normal velocity but also generate an “excess” velocity (a velocity peak) in 
the flow direction.  In fact, this is exactly what one sees when simulations of external laminar 
flows are examined.  For the 200-meter external flow like case, Weyburne5 showed that the 
excess maximum velocity, umax-u0, although small compared u0, is within a factor of 2-3 of the 
normal velocity values in the boundary layer.  The pressure gradients are the driving force for the 
velocities in the boundary layer.  Thus, the fact that the y-velocity and the excess x-velocity 
are of the same order of magnitude indicates that the x and y pressure gradients in the 
boundary layer region are of the same order of magnitude and that the pressure 
disturbance effect caused by the boundary layer is nearly omnidirectional.  
 
The difference between the internal and external boundary layer pressure fields also explains the 
behavior of the differences in the velocity at the boundary layer edge.  For the 1-meter high 2-D 
channel, the measured average mid-gap and the average boundary layer edge x-pressure 
gradient values are essentially the same value.  For the 200-meter gap case, the average x-
pressure gradient value along the plate at mid-gap is about 50 times smaller than the 
average x-pressure gradient value at the boundary layer edge.  Hence, for the bounded 
boundary layer, the u(x,y) velocity peak is NOT observable whereas the unbounded boundary 
layer shows a small but detectable peak.  The wall induced pressures in the wind tunnel 
overwhelm the boundary layer induced pressures.   
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In a wind tunnel, the parallel wall condition results in an FPG gradient condition as shown in 
Figure 6a.  It is common in wind tunnels to try to generate the Blasius6 ZPG flow condition as a 
"known" flow situation for certain stability or transition experiments.  To do this, a pressure 
gradient inducing mechanism, for example, a slightly tilted upper wall, needs to be used to 
cancel out the naturally induced pressure gradient produced by the presence of the walls.  The 
wind tunnel operational results using a tilted upper wall are confirmed in the 1-meter gap wedge 
channel simulation.5  The simulation results indicate that a simple top wall tilt can cancel out the 
some of the naturally induced pressure gradient changes along the wall but not eliminate it.  It 
merely shifts the interior pressure gradient curve in Figure 6b vertically towards a zero-pressure 
gradient condition.  By finding the optimal tilt, the simulation scaled u(x,y) velocity profiles 
along the plate can be made to look identical along the plate using the Blasius scaling 
parameters.  However, the normal velocity profiles and the normal pressure gradients 
generated under these conditions do not show similar behavior using the Blasius scaling 
parameters.  Hence, overall, trying to set up a Blasius flow condition in a wind tunnel based on 
observation of only the u(x,y) velocity profile does not guarantee a "known" flow condition for 
stability or transition experiments as has been assumed in the past.  

2.4 The Bounded and Unbounded Velocity Fields 

The pressure fields are not the only differences encountered in bounded and unbounded 
boundary layer flows.  In Figure 7, the u(x,y) velocity profile for laminar flow in a 8-meter 2-D 
channel is plotted as a function of channel gap.  It is not widely appreciated that the large gap 
2-D channel flow behaves as shown in Figure 2 rather than the more widely known parabolic 
flow introduced in many textbooks.  Parabolic flow in a channel only occurs when the gap is on 
the order of the viscous thickness δv(x) or smaller.  The boundary layer thickness at mid-plate at 
an air velocity of 0.9375 m/s is about δv ~ 0.04-meters for an external boundary layer (H = 200-
meter case).  The transition from parabolic flow to large gap 2-D channel flow is apparent.  The 
profiles with channel gaps larger than 10-meters all look similar.5 

 
For the flat plate unbounded air flow case (H=200 meter), the peak velocity umax is only 0.1% 
higher than u0.  However, for a tilted plate or a wing in flight, the effect can be much larger.  For 
example, a 0.5 Mach airflow over a NACA 0012 wing section is shown in Figure 8.  This figure 
was extracted from a simulation by Swanson and Langer9 in which a 4096 by 2048 mesh full  
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Figure 7:  The u(x,y) Velocity Profiles in a 2-D Channel as a function of Channel Gap 

 

 
Figure 8: The Scaled u(x,y) Velocity Profile on a NACA0012 Airfoil at x/c = 0.3 According 

to Swanson and Langer9 
 
Navier-Stokes compressible simulation was done around a NACA 0012 airfoil.  Included in this 
figure are the δ99, δi, and the δmax locations.  The δi/δ99 ratio value is 311, and the umax value is 9% 
higher than the u0 value.  The large difference between the δ99 and the (3-sigma) δi value 
demonstrates the inadequacy of the traditional boundary layer thickness description.  
Furthermore, the large velocity peak demonstrates the inadequacy of Fig. 2.1 as a 
boundary layer depiction for exterior flows.    
 
The 2-D laminar flow simulations revealed that the differences between the Blasius6 scaled 
u(x,y) velocity profiles along the wall in a 1-meter ZPG-like flow (tilted wall) and a 200-meter 
air gap channel are small.  As one moves along the wall, the u(x,y) velocity profiles plotted using 
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Blasius scaling show similarity behavior (see New Blasius Chapter) in both cases.  It is in the 
v(x,y) velocity profiles and the y-pressure gradient profiles where one observes the 
noticeable changes.  To highlight this, in Figure 9, the normal velocity v(x,y) is plotted as a 
function of channel gap.  Using the y-scale shown, it is hard to see that all of the profiles start a 
value of v(x,y=0) = 0, and then peak at about y=0.05-meter (~δmax ).  The pictured y-scale is 
chosen to emphasize the tail regions return to zero behavior at midgap.  Note that it is not until 
the H=200-meter case that the v(x,y) velocity smoothly asymptotes to zero, just as one would 
expect for an external flow.  The y-pressure gradient shows the same type of behavior, only 
showing asymptotic behavior to zero for the 200-meter case.  Figure 9 emphasizes the 
differences in the shape of the profiles as a function of channel gap.  There are also differences 
as one moves along the plate.  This point is discussed in more detail in the New Blasius Chapter, 
but in summary, the 200-meter unbounded v(x,y) velocity profiles show Blasius type similarity 
whereas the 1-meter gap bounded v(x,y) velocity profiles do not as one moves along the wall. 
 

 

Figure 9:  The Normal Velocity v(x,y) in a 2-D Channel as a Function of Channel Gap 

2.5 The Bounded And Unbounded Designations   

The ultimate aim of this whole endeavor is to develop at boundary layer conceptual model joined 
together with a boundary layer thickness and shape method that allows for the complete mass 
and momentum accounting due to boundary layer flow.  The traditional boundary layer 
description, and even the new “bounded” boundary layer description, does not accomplish this 
goal.  It is not possible to account for the complete mass and momentum changes due to the 
presence of the wall with these descriptions.  The new bounded boundary layer description is 
included because it gives us a way to at least describe wind tunnel experiments where complete 
accountability would be very difficult.  On the other hand, the new unbounded boundary layer 
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description merged with the moment thickness method7,8 for describing thickness and shape 
does offer a path for the complete accounting of mass and momentum, at least for exterior flows.     
 
The bounded boundary layer description is intended to describe traditional wind tunnel boundary 
layers as traditionally measured.  The unbounded boundary layer is intended to describe exterior 
boundary layers.  In the original designation, Weyburne3 used the presence of a peak as a way of 
differentiating bounded and unbounded.  However, one must be careful when applying that 
designation to describe traditional wind tunnel boundary layers as traditionally measured.  
In a typical wind tunnel experiment, the data points are taken in the asymptotic region of the 
boundary layer to maybe 2 or 3 times the viscous boundary layer thickness value.  This measured 
velocity plateau is just referred to ue(x).  The problem is that a ue(x) plateau could be part of a 
velocity peak, a peak so broad that it is completely missed.   
 
To illustrate this point, a 2-D simulation was performed on a finite thickness plate in a 2-D 
channel (Weyburne, unpublished results).  The new simulation is based on the OpenFoam's T3A 
turbulence transition tutorial-verification simulation.  To ensure the boundary layer was properly 
rendered, the number of mesh points was increased by a factor of 16 and the top boundary was 
turned into a wall boundary to mimic a wind tunnel.  The simulation is able to reproduce Rolls-
Royce10 T3A wind tunnel wall shear stress results (not shown).  It also is able to reproduce the 
velocity profiles.  
 

  
Figure 10: The Simulated Velocity Profiles for the T3A10 Case at Different Plate Locations 

(a) and (b) Complete Simulation Velocity Profiles showing Velocity Peaks for the T3A10 
Case 

 
The simulated velocity profiles are shown in Fig. 2.10.  The velocity profiles in Figure 10a are 
intentional cut off to match the actual maximum T3A experimental10 y-values.  For comparison, 
in Figure 10b we show the complete velocity profile.  The velocity profile scaling was switched 
to u0 in order to show the full effects of the plate and walls on the profiles.  The finite thickness 
T3A rounded nose plate resulted in a velocity peak about 2% higher than u0.  In contrast, neither 
the Rolls-Royce experimental data (not shown) nor the simulation result terminated at the same 
y-extent (Figure 10a) show peaking behavior.  The 3-sigma3 boundary layer thickness, δi, for 
the peaks is ~0.2H.  This is about 10 times thicker than δ99, for example.  The largest Rolls-
Royce experimental data point location is about 3 times δ99.  The take away from this result is 

https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-t3a.html
https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-t3a.html
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that even wind tunnel experiments involving aerodynamically thick objects will show peaking 
behavior of the velocity profile in a wind tunnel if the velocity profile was measured all the way 
from the plate to the upper wall.     
 
A second point that complicates the designations is that there is not a sharp dividing point 
between interior and exterior boundary layers.  The channel simulations indicate that everything 
from an interior to and exterior-like boundary layer condition can be generated by simply 
changing the channel gap.  The choice of when a flow situation should be designated interior 
or exterior comes down to a choice of an appropriate criterion.  One possibility is to pick an 
outer region velocity gradient dv(x,y)/dy (normal velocity gradient) lower limit value (see Figure 
9) to indicate when asymptotic unbounded boundary layer behavior has been achieved. 
 
Given the complicated nature of the different boundary layer scenarios, the designations bounded 
and unbounded will take on the following designations:  1) the bounded boundary layer and its 
associated depiction (Figure 2) will be used to refer to interior flow wind-tunnel type boundary 
layers taken at the typical wind tunnel experimental extent.  The boundary layer thickness for a 
bounded boundary layer needs clarification.  If the boundary layer thickness is defined as the 
point above the wall where the flow no longer feels the effect of the opposing walls, then almost 
all interior bounded boundary layer thicknesses would be the channel width H.  However, the 
flow community has adopted the viscous boundary layer thickness, or the turbulent broadened 
viscous boundary layer thickness, as the definition instead which we will also adopt to prevent 
confusion.  2) The unbounded boundary layer and its associated depiction (Figure 3) will be 
used to describe boundary layers on exterior walls.  These boundary layer descriptions are not 
intended to encompass all possible boundary layer situations, just the most important and widely 
encountered versions.   

2.6 Turbulent Boundary Layer Concept 

The turbulent boundary layer adds another level of complexity to the boundary layer concept.  
The conceptualization of the turbulent boundary layer is addressed in another chapter (the TBL 
Concept Chapter) but not in the same context as used above.  Turbulent flow does not have a 
closed form solution approach so the CFD approach used above to calculate the velocity and 
pressure plot fields cannot be easily applied to this case.  One approximate approach is to use an 
approximate eddy viscosity model that can be verified against experimental results.  This is the 
approach used in Figure 10.  More work needs to be done to understand how turbulence effects 
mass and momentum accountability on exterior flows.  

2.7 Application of the New Boundary Layer Concept to Aerodynamic Lift 

In spite of over a hundred years of effort, there has never been an accepted theory of 
aerodynamic lift.  The reason may be due to the fact that, until now, there has been way to 
accurately describe the boundary layer situation for flow along a wing.  Early practitioners 
incorrectly adopted the wind tunnel boundary layer concept as how they believed flow over 
a wing behaved.  This equivalence of wind tunnel and external boundary layer flow is deeply 
embedded in the fluid flow literature.  However, for the last 50-60 years, computer flow 
simulations have been available which, when actually examined at even a coarse level, easily 
demonstrate that the traditional boundary layer concept depicted in Figure 1 does not work for 
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this case.  The wind tunnel model with a non-peaking velocity profile simply cannot describe the 
added mass and momentum that occurs when the flow encounters a finite thickness obstruction 
in an external flow environment.  The new conceptual model combined with the new moment-
based boundary layer thickness and shape method7,8 (see Chapter 5) allows one to describe the 
peaking behavior as well as the slow inertial return of the peak to the free stream velocity.   
    
To demonstrate the usefulness of this process for aerodynamic applications, we revisit the 0.5 M, 
α=0, NACA0012 simulation9 by Swanson and Langer.  One of the goals of the simulation was to 
show that low Reynolds number (Rec = 5000) laminar airflow over an airfoil could have a 
numerically stable solution.  Examination of the boundary layer peak behavior reveals that the 
average peak height, umax(x), over the majority of the wing surface is 13% above the free stream 
velocity (see Figure 2.8 for example).  Weyburne3 showed that this mostly laminar flow 
simulation demonstrated an important trait: the velocity peak location, denoted as δmax(x), is 
located close to the viscous boundary layer thickness edge, denoted as δv(x).  Figure 11 shows  
 

 
Figure 11:  The u(x,y) Velocity Peak Location and the Viscous Thickness for 0.5 M Airflow 

Impinging a NACA0012 Wing Surface Simulation from Swanson and Langer9 
The Leading Edge is at x/c = 0 and the Trailing Edge is at x/c = 1. 

 
the location of the peak compared to moment based viscous thickness.3  The δv value is 
calculated using the second derivative moment method.7,8  Note that this particular simulation9 
has a trailing edge recirculation just above the wing surface starting at about x/c=0.8 which may 
explain the behavior in Figure 11 for large x/c values.  The first important point to note is that 
this figure shows a strong correlation between this jet-like peak location and the edge of the 
viscous near wall thickness.  Normally the moment-based thickness is described as the mean 
location plus 2-sigma (~99%), the 3-sigma, etc. depending on the application.  The results in 
Figure 11 indicate that the velocity peak occurs just above where the viscous forces vanish.  The 
second important takeaway from this figure is that the highest speed flow over the wing follows 
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the wing contour, plus the viscous thickness, along the entire wing surface.  This Coandă-like 
effect brings into question the wide spread dismissal of this effect as an explanation for 
aerodynamic lift.  The key to this new revelation is the combination of the new conceptual model 
with the moment-based thickness and shape approach which, for the first time, allows the 
viscous forces to be tracked.  This combination allows for a much more qualitative as well as 
quantitative description for flow along a wing.   
 
Aerodynamic lift is often identified as the component of force that is perpendicular to the 
flow direction.  Obviously, an important aspect of the force is due to the pressure 
differences above and below the airfoil.  In Figure 12, we plot a series of pressure profiles 
perpendicular to the flow direction along the NACA0012 wing taken from Swanson and 
Langer.  The minimum pressure is on the order of 5% lower than atmospheric pressure at 
these conditions and occurs at the wings surface.  The low-pressure bubble extends about 
five cord lengths above the wing. Not surprisingly, this is the same extent as the u(x,y) 
velocity bubble.  The important take away from this figure is that the minimum pressure 
occurs very close to the velocity peak.  The pumping action of high-speed fluid flow along a 
wall is similar in nature to the fluid pumping action of a flat rotating disk.  What is 
somewhat surprising in this figure is that even near the leading edge, the pressure above 
the wing is negative.  It is only in front of the leading edge (not shown) that the pressure is 
larger than atmospheric.  
 

 
Figure 12:  The Pressure Profiles along a NACA0012 Wing in a Direction Perpendicular to 

the Airflow 
Data from a simulation by Swanson and Langer. 

The insights provided by Figures 11 and 12 provide a possible path to a purely theoretical 
approach to aerodynamic lift.  It may be possible to combine these insights with the semi-
empirical panel approach of Drela and Giles11 (XFOIL).  However, more work needs to be done, 
particularly on the role of turbulence.  Attempts to extend the δmax - δv  correlation to wings with 
turbulent flow is challenging since turbulent flow does not have a closed form solution.  One 

https://en.wikipedia.org/wiki/Lift_(force)
https://en.wikipedia.org/wiki/Lift_(force)
https://en.wikipedia.org/wiki/Von_K%C3%A1rm%C3%A1n_swirling_flow
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approximate approach is to use an approximate eddy viscosity model that can be verified against 
experimental results.  To that end, Weyburne (unpublished preliminary results with the 
1793x513  NASA mesh) used the OpenFoam Turbulent flow over NACA0012 airfoil (2D) 
tutorial-verification simulation to investigate the correlation between δmax and δv .  To the extent 
that the Spalart-Allmaras turbulence model represents the viscous region accurately, it is 
apparent (results not shown) that δmax is much larger than δv, on the order of 1000 times bigger.   
 
To try to understand the difference between the laminar and turbulent behavior, Weyburne 
(unpublished) modified the OpenFoam's T3A turbulence transition tutorial-verification 
simulation used to generate Figure 10.  The Rolls-Royce10 T3A wind tunnel simulation height 
was increased by a factor of 16 to 16-meters to simulate an exterior flow and the number of 
mesh points was increased by a factor of 16 times.  The simulation was run with the Langtry-
Menter k-omega Shear Stress Transport model and then with the turbulence model turned 
off.  The results are shown in Figure 13.  The results in Figure 13a indicate the simulation is able 
to reproduce the wall shear experimental results.  This means the RAS model is able to correctly 
model the near wall region.  Examining the Figure 13b results, one notices that the laminar T3A 
simulation results show a good correlation between δmax and δv whereas the turbulent simulation 
results do not.  These results support the Swanson and Langer9 laminar results that indicate the 
jet-like excess flow is closely following the viscous boundary layer edge, at least for laminar 
flow.  The turbulent velocity maximum is maybe 2-3 thicker than the laminar case but still 
relatively close to the plate surface.  Future work needs to be done to understand these results 
compared to the OpenFoam’s turbulent NACA0012 result.  
 

 
Figure 13:  The Skin Friction for the T3A Experimental and Simulation Results (a) and (b) 

the Boundary Layer Thickness for the T3A Simulation in Units of c 

2.8 Application to Transitional Boundary Layers 

Although our goal is to develop a conceptual model combined with a boundary thickness method 
for describing airfoil lift, the combination has already led to an important insight into transitional 
boundary layers.  Very little is known about the physics of transitional boundary layer flow.  To 

https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-naca0012-airfoil-2d.html
https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-naca0012-airfoil-2d.html
https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-t3a.html
https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-t3a.html
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the extent that the k-omega Shear Stress Transport turbulence model represents the viscous 
region accurately, the results shown in Figure 13 provide a valuable insight into transitional 
boundary layers.  The skin friction results in Figure 13a indicate the velocity profiles start as 
laminar then transition to turbulent boundary layers further along the wall.  For laminar flow 
along a flat plate, the boundary layer thickness increases as the square root of the distance.  This 
behavior for the “laminar δv ” in Figure 13b is well fitted (not shown) to a simple square root 
function.  Now consider the “turbulent δv ” results depicted in Figure 13b.  The purely laminar 
portion consists of the first 1 or 2 simulation points.  The next 4 or 5 simulation points constitute 
the transitional points and the remaining data points the turbulent boundary layer simulation 
results.  Notice that, for the transitional boundary layer results, the viscous boundary layer 
thickness is still increasing as the square root of the distance along the plate (Figure 13b).  
Where the transitional curve breaks is the point where this square root behavior can no longer be 
supported.  The turbulent motion penetrates into this near wall region and relaxes the energy 
strain of the fluid trying to maintain this square root behavior.  It is this viscous thickness 
behavior that characterizes transitional boundary layer behavior.  The following fully turbulent 
boundary layers simulation points have viscous boundary layer regions that basically remain 
constant with Reynolds number.  This is one of the defining characteristics of fully turbulent 
boundary layer behavior.  Hence, the new conceptual model combined with the moment-method 
for boundary layer thickness has provided an important insight into transition boundary layer 
theory.   
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3 THE NEW BLASIUS MODEL 

Wind tunnel operation often involves initial setup in the Blasius6 flow regime as a means of 
operational verification.  Furthermore, certain stability and transition experiments purposely use 
the Blasius flow as a "known" flow condition.  However, this assumption of a known flow 
condition is flawed; the normal velocity and the normal pressure gradient often do not 
correspond to the Blasius flow condition.  In contrast, exterior laminar flow along a flat plate is 
shown to be naturally described as Blasius flow.  

3.1 The Blasius Model Failure 

Ludwig Prandtl’s1 boundary layer concept for steady 2-D laminar flow along a wall is often 
depicted as starting with a zero velocity at the wall (no-slip boundary condition) which then 
monotonically increases above the plate until it asymptotes to the velocity at the boundary layer 
edge (Figure 1).  Paul Richard Heinrich Blasius,6 one of Prandtl’s students, developed the 
theoretical model corresponding to the flow for the case where the boundary layer edge velocity 
is just the free stream velocity u0.  This close association with the traditional conceptual model 
for boundary layer flow has ensured a prominent place for the Blasius theoretical model.  The 
Blasius model appears in almost every fluid flow textbook as an introduction to boundary layer 
flow as well as an introduction to similarity theoretical solutions to boundary layer flows.  The 
universal acceptance of this model appears to be partly driven by the association between the 
conceptual depiction and the theoretical model, partly by the simplicity of the model, and partly 
by the fact that wind tunnel measurements seem to confirm its existence.  The universal 
acceptance of the model, fueled by the wind tunnel experiments, has resulted in the Blasius 
theoretical model being routinely used as a way to verify proper wind tunnel 
configuration/operation (e.g. Jovanović, et al.12) as well as a way to verify computer flow 
simulation computational engines (e.g. Ghia, et. al.13).   
 
The near universal acceptance of the theory is based, in part, on wind tunnel experiments 
beginning with Nikuradse’s14 experimental wind tunnel results featured in Schlichting’s2 seminal 
book on boundary layer theory (see Schlichting’s Figure 9).  This result would appear to be a 
powerful confirmation of the Blasius theory in particular and the boundary layer concept in 
general.  However, this apparent experimental confirmation needs to be re-evaluated.  Recently 
Weyburne3-5 set up a series of computer simulation experiments that, in part, tried to verify the 
existence of Blasius type flow in a 2-D channel with typical wind tunnel dimensions (1-meter 
high by 8-meter long).  It was found that parallel channel wall flow did not produce Blasius type 
flow for 2-D channel airflow at room temperature.  This result appears to correspond to actual 
wind tunnel experiments and is not unexpected since the pressure gradient in the flow direction 
will not be zero under these conditions.  Nikuradse14 results, according to Schlichting,2 employed 
some type of pressure gradient cancellation technique.  One standard wind tunnel technique to 
induce a zero-pressure gradient along the tunnel plate and thereby generate Blasius profiles is to 
slightly tilt one of the tunnel plates to counter the built-in pressure gradient formed by the wind 
tunnel walls (see, for example, Jovanović, et. al.12).  And, in fact, the computer simulation of a 
wedge shaped channel did show that it is possible to produce u(x,y) velocity profiles that 
behaved similarly when scaled with the Blasius scaling parameters.4,5  However, the same 
simulations indicated that the normal velocity profiles and the normal pressure gradient profiles 
do not show similarity using the Blasius scaling parameters.  Overall, it was concluded that the 

https://sites.google.com/s/1W7RyIjpbsC6Qh2A635LYppMfOrsrWRcq/p/10f08L0j5-HMsk1eoWaAnus6WyGS9Ty6j/edit
https://sites.google.com/s/1W7RyIjpbsC6Qh2A635LYppMfOrsrWRcq/p/10f08L0j5-HMsk1eoWaAnus6WyGS9Ty6j/edit
https://sites.google.com/s/1W7RyIjpbsC6Qh2A635LYppMfOrsrWRcq/p/10f08L0j5-HMsk1eoWaAnus6WyGS9Ty6j/edit
https://sites.google.com/s/1W7RyIjpbsC6Qh2A635LYppMfOrsrWRcq/p/10f08L0j5-HMsk1eoWaAnus6WyGS9Ty6j/edit
https://sites.google.com/s/1W7RyIjpbsC6Qh2A635LYppMfOrsrWRcq/p/10f08L0j5-HMsk1eoWaAnus6WyGS9Ty6j/edit
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small angle wedge flow used to induce a zero-pressure gradient (ZPG) value at the boundary 
layer edge is not well represented by the Blasius theoretical model.  Note that in typical wind 
tunnel experiments, neither the normal velocity profiles nor the normal pressure gradient profiles 
are usually measured.  Hence, this experimental discrepancy has never been noticed.  In any 
case, the simulation results indicate that the assumption that the Blasius theoretical model 
describes steady 2-D laminar flow along a tilted flat plate in a wind tunnel is not correct.  
 
It is not only experimental verification problems that cast doubt on the Blasius theoretical 
model.  A closer look at the Blasius model reveals a number of disturbing theoretical 
discrepancies that one would not expect for fluid flow along a flat plate.  The most serious 
problem with the Blasius solution is that the calculated normal to the wall velocity and the 
normal to the wall pressure gradient (see y-momentum Chapter) are both finite at an infinite 
distance from the wall.  This is obviously non-physical.  At some point above the wall, the 
normal velocity and the normal y-pressure gradient must go to zero.  The problem has been 
commonly ignored although there have been a number of not very satisfying attempts to explain 
this away (see, for example, Lewins15).  More recently, Weyburne5 pointed out another problem 
with the Blasius model.  In the Blasius model, the pressure gradient in the flow direction is 
assumed to be zero in the boundary layer region.  This assumption cannot be correct.  There can 
be no flow without a driving force but just as problematic is that the pressure forces in the 
boundary layer region that induce the normal velocity flow must also affect the pressure gradient 
in the flow direction since pressure affects cannot be unidirectional.  The consequences of this 
additional non-zero pressure gradient in the flow direction in the boundary layer is that there 
should be a velocity overshoot, a peak, near the boundary layer edge, at least for external 
flows.  This behavior is not observed for the Blasius model as it is normally applied to boundary 
layer flows.   

3.2 The New Blasius Theoretical Model   

Our recent computer simulation experiments indicate that the Blasius6 theoretical model no 
longer enjoys the wind tunnel experimental verification support that it has had in the 
past.  Coupled with the theoretical problems just mentioned, it would appear the Blasius model 
has serious theoretical and experimental problems. 
 
However, there is a way forward.  Recently, Weyburne5 reapplied the Blasius theoretical model 
in a context that removes all of the just mentioned problems.  The key is not the theoretical 
model but the conceptual model for the boundary layer.  In an earlier set of AF Tech Reports,3,4 
the “unbounded” and “bounded” boundary layer concepts were introduced that correspond to 
boundary layers formed in exterior and interior flow situations.  For the unbounded boundary 
layer case for flow on a thin flat plate at zero incidence angle, the velocity profile goes through a 
small maximum near the viscous boundary layer edge and then slowly declines to the free stream 
velocity.  This is the type of boundary layer encountered for exterior flow like that for airflow 
over a wing in flight.  Although it is nearly impossible to measure boundary layer velocity 
profiles under flight conditions, it is possible to do computer simulations of exterior flow along a 
wall.  Weyburne5 simulated airflow along an 8-meter long channel with the gap initially set at 
1-meter to mimic a standard wind tunnel and then increased until the flow behaved as an exterior 
flow. Astonishingly, exterior-like flow did not occur until the gap was increased to over 100-
meters for laminar flows with a Reynolds number Rex=5x105 (the critical laminar-turbulent 
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transition Reynolds number)!  The simulations indicated that this large gap, zero-incident angle 
unbounded boundary layer case is naturally in a ZPG flow condition (see Figure 6b).  This 
makes the Blasius theoretical model a good candidate for the unbounded boundary layer along a 
thin flat plate.  
 
The association between the unbounded boundary layer and the Blasius theoretical model also 
has distinct theoretical advantages.  For theoretical convenience, the unbounded boundary layer 
can be divided into two regions; the first is the viscous region which closely mimics the 
traditional viscous boundary layer, and the second region which is termed the inertial region 
since viscous forces are mostly absent.  In a previous report,3 it was found that there was good 
correspondence between the viscous boundary layer thickness, δv, and the location of the 
velocity maximum δmax.  Thus, in the new conceptual model, the viscous region is taken to be 
located between the wall and δmax or δv.  This is the key to applying the Blasius theoretical 
model.  Now there is a physical and logical justification for applying the viscous Blasius model 
to the just the near wall region.  This division into two regions eliminates the normal to the wall 
velocity and the normal to the wall pressure gradient infinite extent problem.  The new division 
also solves the velocity boundary layer edge peak problem.  The net result is that the new Blasius 
theoretical model has a solid theoretical basis. 
 
However, it is the experimental results that really clinch it for the new Blasius model.  In Figures 
14-16, examples of the velocity profiles and y-pressure gradient profiles for the bounded and 
unbounded and boundary layers at seven locations along the bottom plate are shown.  These 
figures shows the u(x,y) and v(x,y) velocity profiles and the y-pressure gradient profile for the 
1-meter gap tilted channel-wedge flow and for the 200-meter gap channel flow at various 
locations along the plate.  The 1-meter normal velocity and normal pressure gradients displayed 
in Figures 15a and 16a do not show similar behavior.  On the other hand, the 200-meter 
velocities and normal pressure gradients show good collapse to the Blasius theoretical result 
except for the 6 and 7 meter y-pressure gradient result.  These latter results are probably due to 
the flow exit affects (the exit was set to zero pressure).  Combining these results with the dP/dx 
result from Figure 6b, it is clear that the experimental results for the unbounded boundary layer 
(200-meter) show good correspondence to the Blasius theoretical model.  
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Figure 14:  The Scaled u(x,y) Velocity Profiles for the 1-meter 2-D Wedge (a) and (b) The 

Scaled u(x,y) Velocity Profiles for the 200-meter 2-D Channel 
 

 
Figure 15:  The Scaled v(x,y) Velocity Profiles for the 1-meter 2-D Wedge (a) and The 

Scaled v(x,y) Velocity Profiles for the 200-meter 2-D Channel 



23 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 
Figure 16:  The Scaled y-pressure Gradient Profiles for the 1-meter 2-D Wedge (a) and (b) 

The Scaled y-pressure Gradient Profiles for the 200-meter 2-D Channel 
 
It should be pointed out that the 1-meter case result shown above is different from the Air Force 
Tech Report5 result.  Both are 1-meter cases that have the outlet set to 1.026-meter but in the 
figures above, the bottom plate is kept flat and the top plate was adjusted.  In the Air Force Tech 
Report, both the top and bottom plates were adjusted equally to give a 1.026-meter output.  In the 
Air Force Tech Report result, the normal velocities and the normal pressure gradients also 
showed the same type of result showed above in Figures 14-16; the wind-tunnel-like flow does 
not correspond to Blasius similarity flow.  While the Blasius flow conclusions are the same for 
the two cases, a significant difference is that the normal velocities shown above are positive 
whereas for the equal wedge angle case, the normal velocities are negative.  This difference 
reinforces the observation that it is possible that these normal velocity variations could have 
effects on certain stability and transition experiments.  
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4. THE NORMAL TO THE WALL MOMENTUM EQUATION 
 

In this Chapter, the theoretical description of forced laminar flow over a flat plate is revisited.  In 
many texts, an order of magnitude argument is used to claim that the momentum equation 
normal to the wall reduces to just the normal pressure gradient term equal to zero.  This is not a 
correct statement of conservation of momentum.  The normal velocity must be nonzero for 
boundary layer flow.  Hence, the normal pressure gradient cannot be zero.  In what follows, a 
stream function analysis developed by Weyburne16 is used to discern the true nature of the 
normal to the wall momentum conservation equation.  The Falkner-Skan solution obtained from 
the x‑momentum equation (parallel to the wall) is used to calculate the normal to the wall 
y-pressure gradient using the y‑momentum equation.  The y-pressure gradient for the Blasius,6 as 
well as a more general Falkner-Skan solution,17 can be obtained in this way.     
 
For certain isothermal steady laminar flows over a flat plate, the velocity in the flow direction, 
u(x,y), and the normal velocity, v(x,y), close to the wall can be calculated using just the 
x-momentum equation and the mass conservation equation.  This is the route taken by Blasius6 
and Falkner and Skan.17  With the velocity solution in hand, the thinking has been that there is 
little need for the y-momentum equation.  This has led many to actually try to dismiss the 
y‑momentum equation entirely.  It is very common to find texts indicating that the y‑momentum 
equation reduces to just the y-pressure gradient term equal to zero (see, for example, White18 or 
Cengel and Cimbala19).  That is, many claim that the y-momentum equation reduces to 
 

0 .∂
=

∂
P
y

 

 
However, this equation is not a correct statement of momentum conservation.  The boundary 
layers y-momentum may be small compared to the x‑momentum but it definitely exists since the 
normal velocity v(x,y) must be nonzero.  Momentum must still be conserved.  To state that the 
y‑momentum for the boundary layer situation reduces to the above equation is simply wrong.    
 
What has been lost in this widespread dismissal of the y-momentum equation is an understanding 
of the nature of the pressure gradient in the y-direction.  When fast-moving inlet flow encounters 
slow moving boundary layer flow, a pressure imbalance is created in the boundary layer region.  
The slow-moving flow close to the wall induces a normal flow (y‑direction) away from the wall 
due to the pressure gradient formed by this slow flow - fast flow imbalance.  Weyburne16 pointed 
out that the y-momentum equation provides the means to determine the pressure gradient in the 
y‑direction once the x-momentum equation has been solved.   
 
A simple way to explore the nature of the y-pressure gradient is to use a Falkner-Skan stream 
function analysis which describes laminar flow along a wall due to a pressure gradient in the 
flow direction.  The Falkner-Skan formulation is often identified with flow along a wedge since 
the inertial flow just above the boundary layer edge looks similar to the pure inertial flow past a 
displacement thickness broadened wedge.  What is not widely appreciated is that the same 
Prandtl x-momentum equation used by Falkner-Skan is also used to describe laminar flow along 
a flat plate that has a pressure gradient in the flow direction.  The fast-moving free stream flow 
running into the slow-moving flow close to the wall induces a pressure imbalance along the wall 

(1) 
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which takes the form of x and y pressure gradients.   Flow along the inside wall of a parallel wall 
channel is often incorrectly associated with Blasius ZPG flow when, in fact, the pressure gradient 
under this condition is significantly non-zero (see Fig. 2.6b).  The non-zero pressure gradient 
type of flow was first studied theoretically using the method developed by V. M. Falkner and 
Sylvia Skan in 1930.17  Falkner-Skan developed similarity solutions to the Prandtl momentum 
equations for this boundary layer flow situation.  The Falkner-Skan17 analysis is outlined in most 
textbooks and in numerous online sites.  However, those discussions are fragmented and 
incomplete.  As such, in what follows, the relevant equations are outlined.   
 
The Falkner-Skan analysis is best understood using a stream function approach.  Underlying the 
Falkner-Skan stream function approach is a critical assumption to the whole theoretical 
development and that is that the velocities u(x,y) and v(x,y) can be decomposed into a product of 
a length and velocity x-dependent functional times and a scaled y‑functional.  Assume that a 
stream function ψ(x,y) exists (see Panton,20 p.543) such that  
 

( , ) ( ) ,
( ) ( )s s

x y f
x u x

ψ η
δ

=  

 
where f(η) is a dimensionless function that only depends on the scaled y-position (η= y/δs(x) ), 
where δs(x) is the length scaling parameter, and where us(x) is the velocity scaling parameter.  
The stream function must satisfy the conditions 
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Falkner-Skan17 found solutions to the x-momentum equation by assuming the scaling parameters 
are simple power functions of x.  Recently, Weyburne21 proved if similarity is present in a set of 
velocity profiles, then the length scaling parameter δs(x) must the displacement thickness δ1(x) 
and the velocity scaling parameter us(x) must be the boundary layer edge velocity ue(x).  This 
holds for all 2-D boundary layer flow (see Similarity Chapter).  Thus, assume that δs(x) and us(x), 
or in this case, δ1(x) and ue(x), are well approximated as 
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where 0x , a, b, m, and n are constants.   
 
Combining Eqs. 4.2 and 4.3 means that the Prandtl x-momentum equation can be put into 
nondimensional form as 
 

( )21 0 ,f ff fα β′′′ ′′ ′+ + − =  

 
where α and β are simple functions of δs(x) and us(x), or in this case δ1(x) and ue(x).  This is the 
Falkner-Skan x-momentum equation.  It is easily verified that α and β terms become constants 
when m+2n-1=0 which means α and β reduce to 

(2) 

(3) 

(4) 

 (5) 
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The normal approach is to solve Eq. 4.5 with 
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which means x-component of the momentum balance (Eq. 4.5) becomes 
 

( )2
1 1 1 1

1 1 0 .
2

mf f f m f+′′′ ′′ ′+ + − =  

 
Programs to solve this version of the Falkner-Skan equation are widely available.  Once this 
equation has been solved for f1 as a function of η1, then one can recover the true η, f, f’, and f ′′  
by noting 
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and where f ′′′ is recovered using Eq. 4.5.  With f(η) and its derivatives as a function of η for a 
given α and β, it is a simple matter to back out u(x,y) and v(x,y). 
 
Weyburne16 pointed out that with the velocities in hand, one can use these calculated velocities 
in the Prandtl y-momentum equation to obtain the y-pressure gradient.  The Prandtl y-momentum 
equation for laminar flow is 
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Substituting in the Falkner-Skan stream function result from Eq. 4.2 into Eq. 4.10, the full 
Falkner-Skan version of the reduced y-momentum equation is given by  
 

2
20

2 2 2
1

2 2

( ) 1 1(3 1) (1 ) ( 1)
2 2 4

1 1( 1) ( 1)( 1) .
4 4

e

x x dP m f m f m ff
u dy ab ab

m f m m ff

ν ν η
δ ρ

η η

− ′′ ′′′ ′= − − + − − + +

′ ′′+ − − + −

 

 
The Blasius y-pressure gradient version of Eq. 4,11 (corresponding to m=0 and ue(x) equal to the 
inlet velocity u0) is given by 
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The Blasius y-pressure gradient asymptotes at large η-values to a value of 0.4302 (one half of the 
normal velocity asymptote value).  As η goes to zero, the scaled y-pressure gradient goes to 
0.16603 (one half of the wall shear stress numerical value). 
  
With f and its derivatives in hand, the reduced velocities and reduced pressure gradient are 
calculated and plotted in Figure 17. The velocities are the well-known Blasius values.  For the 
first time, the behavior of the Blasius y-pressure gradient in the boundary layer is also revealed. 

 

Figure 17: The Scaled Velocities and y-pressure Gradient for Blasius Flow  
 
For the case where m is non-zero, Weyburne16 presented example plots for various m-valued 
Falkner-Skan solutions.    

(12) 
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4 BOUNDARY LAYER THICKNESS AND SHAPE 

In the following, an integral moment method22,7,8 is outlined for describing the thickness and 
shape of the velocity, temperature, and pressure profiles formed by fluid flow along a wall.  The 
velocity and thermal profile moments are outlined below.  The most important results of this new 
integral moment approach are: 
  

• A mathematically well-defined measure of the boundary layer thickness that utilizes the 
entire profile, not just a few tail region data points.  
 

• Four new parameters that help describe the thickness and shape of the boundary layer.  
These four parameters are the mean location, the boundary layer width, the velocity 
profile skewness, and the velocity profile excess.  The skewness and excess are true 
shape parameters as opposed to the made-up parameters like H12. 

 
• Applying the moment method to the first and second derivatives of the velocity profile 

generates additional parameters that, for example, determines the location, shape, and 
thickness of the viscous forces in a turbulent boundary layer. 
 

• It is possible to prove that many of these velocity thickness parameters are also similarity 
scaling parameters.  That is, if similarity is present in a set of velocity profiles, then these 
thickness parameters must also be similarity length scaling parameters. 

 
To begin, the velocity profile moment method22,7,8 is outlined.  What is new herein is that the 
moment method is specifically adopted to the “bounded” and “unbounded” boundary layer 
concept discussed in the first Section.  Following the velocity profile section, the thermal profile 
moment method is outlined.  The pressure and pressure gradient profiles are not covered in this 
review but can be deduced from the velocity and thermal profile methods.   

4.1 Describing the Velocity Boundary Layer formed by Fluid Flow along a Wall 

Steady 2-D fluid flowing along an interior wall with velocity u(x,y) is depicted in Figure 2.  
Prandtl1 observed that the velocity at the wall will be zero due to friction but then increases to an 
asymptotic velocity over a relatively small distance above the wall.  This "boundary layer" 
causes drag and has significant implications on moving fluids along walls.  Characterizing the 
thickness and shape of the velocity profile formed due to this boundary layer flow is therefore 
important from both a practical as well as scientific stand point.  For 2-D flow, the velocity 
profile at a point x is defined as the velocity above the wall, u(x,y), for all y.  The thickness of the 
velocity profile is considered to be the point where the velocity just reaches the boundary layer 
edge velocity given by ue(x).   

4.1.1 The Traditional Method 

The traditional method for describing the thickness and shape of the velocity profile along a wall 
are rather crude and problematic.  The integral based displacement thickness and the momentum 
thickness are certainly easily calculated but neither one describes the outer edge boundary layer 
thickness.  As a consequence, the 99% boundary layer thickness parameter, δ99, has become the 
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de facto standard measure.  However, this parameter has problems.  Since the actual 
mathematical form of the transition to the free stream for laminar and turbulent flow is unknown, 
then it is not possible to fit for δ99.  To determine δ99 from experimental data one has to 
interpolate using a few noisy data points.  Then there is the problem for external flows.  As we 
saw in Figure 8, δ99 is totally inadequate to describe the unbounded external boundary 
layer thickness.  However, the most serious problem may be theoretical.  There is very little 
chance that a theoretical derivation will prove δ99 is a similarity scaling thickness parameter.  
The traditional method to describe the shape of the boundary layer also has limitations.  The 
usual method is to calculate the shape parameter H12, which is the ratio of the displacement 
thickness to the momentum thickness.  This is not a shape parameter in any normal physical or 
mathematical sense but it was the only parameter available to early practitioners that was able to 
discriminate between laminar and turbulent boundary layers.   

4.1.2 The Moment Method for Bounded Interior Flows  

There is a better way to describe the thickness and shape of the fluid boundary layer.  A 
relatively new method22,7,8 for describing the thickness and shape of the 2-D boundary layer 
utilizes the integral moment method commonly used to describe a random variable's probability 
distribution.  The moment method for boundary layer flows was developed from the observation 
that the plot of the second derivative of the Blasius6 boundary layer for 2-D laminar flow over a 
flat plate looks very much like a Gaussian distribution curve.22  In Figure 18a, the Blasius second 
derivative profile is plotted and compared to a Gaussian curve.  There are no adjustable  
parameters; the Gaussian curve uses the mean location and boundary layer width values (defined 
below) from the Blasius curve.  Also shown is Figure 18b which is the velocity profile22 obtained 
by twice integrating the Gaussian function compared to the Blasius velocity profile.      
 
 

 
Figure 18:  The Blasius Second Derivative Profile compared to a Gaussian Curve (a) and 

(b) the Blasius Velocity Profile compared to the Twice Integrated Gaussian Curve 
 

https://en.wikipedia.org/wiki/Moment_(mathematics)
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It was this Gaussian-like appearance that prompted the idea of adapting the mathematics to 
describe probability distribution function technology to boundary layers.  Weyburne started with 
the second derivative description but soon applied it to the velocity profile and first derivative 
profile.7,8  It is straightforward to cast the properly scaled velocity profile and its first two 
derivatives into probability-distribution-like integral kernels with the zeroth central moment set 
normalized to one.  It will also work for the temperature profiles and the pressure profiles. 
 
As a demonstration, the moment method is applied to a 2-D channel with height H.  Fluid 
flowing along the inside walls has velocity u(x,y), where x is the flow direction, and y is the 
normal to the plate.  Assume the height H is much thicker than the maximum viscous boundary 
layer thickness.  The velocity profile's probability-distribution-like central moments for 2-D 
interior flows are defined in terms of moments of 1-u(x,y)/ue(x).  Thus, the velocity boundary 
layer nth moment ζn(x) is defined as 
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such that the displacement thickness δ1(x) insures ζ0(x) is normalized to one.  The mean location 
of the velocity profile, m(x), is formally defined as the first y-moment about zero and is given by 
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where the displacement thickness, δ1(x), is defined as  
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As discussed in the papers, there are some advantages to also calculating the integral moments of 
the derivatives of the velocity profile.  The first derivative nth central moment, κn(x), is defined 
as 
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so that κ0(x) normalizes to one.  The mean location of the derivative of the stream-wise velocity 
profile is formally defined as the first y-moment about zero and, in this case, is just the 
displacement thickness, δ1(x). 
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The viscous second derivative velocity boundary layers nth central moment, λn(x) is defined as 
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where the mean location is the first moment about zero, μ1(x), and is obtained from the 
requirement that the zeroth moment, λ0(x), have a value of unity.  Thus, the mean location of the 
boundary layer μ1(x) is given by 
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where υ is the viscosity.  This means μ1(x) is inversely proportional to the wall shear stress, τw.  
 
With the moments and the mean locations defined, the boundary layer thickness and shape can 
be described in terms of the boundary layer mean locations, widths (variance), skewnesses, and 
excesses (excess kurtosis).  Experimentally, it is found8 that the turbulent boundary layer 
thickness defined as δs = δ1+3σs (where σs = (κ2)1/2) tracks the 99% thickness very well. 
 
Taking a cue from the boundary layer momentum balance equations, the second derivative 
boundary layer moments, λn, track the thickness and shape of that portion of the boundary layer 
where the viscous forces are significant.  Weyburne7,8 showed that the viscous thickness, given 
by δv(x) = μ1(x) +2σv (where σv = (λ2)1/2) approximately tracks the 99% thickness for laminar 
flow.  For turbulent flows, the moment method makes it possible to track and quantify the inner 
viscous region using λn moments whereas the outer region of the turbulent boundary layer can be 
tracked using ζn and κn moments.   
 
Calculation of the derivative moments without the need to differentiate the u(x,y) profile is 
simplified by using integration by parts to reduce the moments to simply integrals based on the 
displacement thickness kernel.  Thus, if  
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then the first derivative skewness, for example, can be calculated as 
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This parameter was shown7,8 to track the boundary layer shape changes that accompany the 
laminar to turbulent boundary layer transition. 
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https://en.wikipedia.org/wiki/Skewness
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4.1.3 The Moment Method for Unbounded Flows 

For exterior flows, there are a number of ways to modify the above equations to make new 
moment expressions correctly describe the thickness and shape of the exterior boundary layer. 
One version (see Weyburne3-5) is to divide the boundary layer into two regions around the 
maximum velocity umax.  For the region between the wall and the umax location, the above 
equations can be used but with umax replacing ue(x) and δmax replacing H/2.  For the part of the 
boundary layer between the umax location and deep into the free stream, the inertial moments 
described in the Air Force Tech Report3 are preferred.   
 
Numerical errors encountered in calculating the moments, especially the higher order moments, 
is a serious concern.  In all cases, the numerical calculation recommendations mentioned in 
the earlier papers7,8 should be followed to avoid these errors.  

4.1.4 The Moment Method Problem Area 

There are instances where the moment method has problems for certain types of velocity 
profiles.  For example, when an interior flow has an adverse pressure gradient in the flow 
direction, the second derivative of the velocity can take on negative values in the near wall 
region.  Negative values are not allowed in standard probability framework so the application of 
the moment methodology will result in biased measures for this case.  Weyburne3 pointed out a 
fix is to simply exclude the negative values and define a new set of moments for a truncated 
second derivative profile starting at the second derivative maximum.  This fix will then properly 
identify the thickness location where the second derivative profile becomes negligible above the 
wall. 

4.1.5 The Moment Thickness Parameters as Similarity Scaling Parameters 

One of the advantages of the new thickness parameters is that certain of these parameters are also 
similarity length scaling parameters if velocity profile similarity is present along the wall.  For 
2-D wall-bounded flows, velocity profile similarity is defined as the case where two velocity 
profiles taken at different stations along the flow differ only by simple scaling parameters in y 
and u(x,y).  Weyburne23 has presented theoretical proof that some of the above moment 
parameters, including δ1, μ1, and σs are similarity length scaling parameters.  That is, if similarity 
is discovered in a set of 2-D velocity profiles, then δ1, μ1, and σs must be similarity length 
(height) scaling parameters.  
 
It is also worth noting that the new second derivative mean thickness μ1(x) will actually perform 
similarly to the Prandtl Plus scaling's for similarity scaling of the inner wall region of 
experimental data sets.  If a set of velocity profiles is plotted on a graph using μ1(x) and ue(x) as 
the thickness and velocity scaling parameters and then compared to plots using the Prandtl Plus 
scaling parameters, the plots will look identical if the Rotta constraint holds (uτ(x)/ ue(x) = 
constant).  The key to this is realizing that multiplying both the Prandtl scaling variables by 
the factor ue/uτ results in the μ1(x) and ue(x) scaling parameters (see Eq. 18).  Hence, the relative 
relationships between the plotted curves for the two parameter sets will appear identical if the 
Rotta constraint holds. 
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4.2 Describing the Thermal Boundary Layer formed by Fluid Flow along a Wall 

Weyburne22 showed that the second derivative of the scaled temperature profile also shows 
Gaussian-like behavior.  Hence, the same moment method technology for describing the 
thickness and shape of the velocity profiles can also be used to describe the thermal boundary 
layer profile.24  This "thermal boundary layer" can have a significant impact on the efficiency of 
heating/cooling equipment, among other things.  Characterizing the thickness and shape of the 
thermal boundary layer is therefore important from both a practical as well as scientific stand 
point.   
 
To demonstrate the new method, consider a semi-infinite 2-D channel with height H.  Fluid 
flowing along the inside walls has velocity u(x,y), where x is the flow direction, and y is the 
normal to the plate.  Assume the height H is much thicker than the maximum velocity or 
temperature boundary layer thickness.  Assume the fluid has a temperature T(x,y), the 
temperature at the wall is Tw , and the free stream fluid temperature is T0.  Applying the integral 
moment method, the thermal boundary layer can be described in terms of the central moments, 
ξn(x), given by  
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where the thermal displacement thickness β0(x) is the normalizing constant.  The first moment 
about zero, which is called the mean location, is defined as 
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such that the thermal displacement thickness, β0(x), is defined as 
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As discussed in the papers, there are some advantages to also calculating the integral moments of 
the derivatives of the thermal profile.  Let 
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then the thermal first derivative central moments, εn(x),  are defined as  
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where the thermal displacement thickness β0(x) (Eq. 23) is the mean location.   
 
The thermal second derivative central moments, χn(x),  are defined as  
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where, μT(x) is both the normalizing constant and also happens to be the second derivatives mean 
location.  The mean location, μT(x), is formally defined as the first y-moment about zero but is 
actually defined by requiring χ0(x) to be normalized to one.  Thus, 
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With the moments and the thermal mean location defined, the thermal boundary layer thickness 
and shape can be described in terms of the thermal boundary layer width (variance), σT, the 
thermal skewness, and thermal excess (excess kurtosis).  For the Pohlhausen25 solution for 
laminar flow on a heated flat plate, it is found that thermal boundary layer thickness defined as 
δT = mT(x) + 4σT where  σT =(ξ2)1/2, tracks the 99% thickness very well.24   
 
For laminar flow, the three different moment cases all give similar values for the thermal 
boundary layer thickness.  For turbulent flow, the thermal boundary layer can be divided into a 
region near the wall where thermal diffusion is important and an outer region where thermal 
diffusion effects are mostly absent.  Taking a cue from the boundary layer energy balance 
equation, the second derivative boundary layer moments, χn, track the thickness and shape 
of that portion of the thermal boundary layer where thermal diffusivity, α, significant.  Hence 
the moment method makes it possible to track and quantify the region where thermal diffusivity 
is important using χn moments whereas the overall thermal boundary layer is tracked using εn 
and ξn moments.  Calculation of the derivative moments without the need to take derivatives is 
simplified by using integration by parts to reduce the moments to simply integrals based on the 
thermal displacement thickness kernel auxiliary integrals.24  
 
The above development applies to bounded interior flows.  The equivalent development for 
unbounded exterior flows has not been formally presented.  There does not appear to be a reason 
the same trick of dividing the boundary layer into two regions should not work.  This would 
involve an inner region where thermal diffusivity, α, is significant and an outer region where 
thermal diffusivity is not significant.   
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5 BOUNDARY LAYER SIMILARITY 

One of the fundamental notions in fluid mechanics is to analyze experimental observables using 
dimensional analysis with the intent of finding scaling parameters that render the scaled 
observable from different stations along the flow to appear to be similar.  Similarity of the 
velocity profile formed by fluid flow along a wall is one of those fundamental notions.  For 2-D 
wall-bounded flows, velocity profile similarity is defined as the case where two velocity profiles 
taken at different stations along the flow differ only by simple scaling parameters in y and u(x,y), 
where y is the normal direction to the wall, x is the flow direction, and u(x,y) is the velocity 
parallel to the wall in the flow direction.  One of the keys to any similarity solution is identifying 
the correct scaling parameters.  In the following, a proof developed by Weyburne21 is outlined 
that, for similarity to be present in any 2-D fluid boundary layer, the length scaling 
parameter must be the displacement thickness δ1(x) and the velocity must be the velocity at 
the boundary layer edge ue(x).   

5.1 Similarity of the Boundary Layers Velocity Profile 

Although fluid flow can be described theoretically using the well-known Navier–Stokes 
governing equations, there are few analytical solutions to this set of partial differential equations.  
Furthermore, the computer-based solutions for most flow situations are very time consuming 
even with very fast computers.  Fortunately, under certain flow conditions, the flow downstream 
can look geometrically similar to the upstream flow, differing only by simple scaling parameters.  
When this happens, the set of partial differential flow governing equations can be simplified to 
an easily solved set of ordinary differential equation.  The "similarity" solution for boundary 
layer flows represent one of these known solution sets.  These similarity solutions provide 
valuable insights into the physics governing the fluid flow in the boundary layer.  
 
Traditionally, the theoretical study of similarity of boundary layer flows involved the 
mathematical aspects of solutions to the Navier-Stokes equation.  Recently, Weyburne21 
described a way to actually determine the identity of the similarity parameters for boundary layer 
flows.  The approach is based on a simple concept; the area under a set of scaled velocity profile 
curves that show similarity behavior must be equal.  This led to a new integral-based derivation 
that proved that if similarity is present in a set of velocity profiles, then the similarity velocity 
scaling parameter must be the velocity at the boundary layer edge ue(x) and the similarity length 
scaling parameter must be the traditional displacement thickness, δ1(x).  This proof works for 
the bounded boundary layer case where the flow asymptotes to ue(x).  For the unbounded 
boundary layer case, Weyburne5 extended the argument to the exterior flow, unbounded 
boundary layer case where the velocity peaks before asymptoting to the free stream velocity u0. 

5.1.1 Similarity of the Bounded Boundary Layer 

T demonstrate the proof, we consider the "bounded" boundary case for interior flows.  Assume a 
steady boundary layer flow develops along an interior 2-D channel wall with velocity u(x,y), 
where y is the normal direction to the wall, x is the flow and wall direction.  The velocity profile 
is defined as the velocity above the wall u(x,y) for all y at a fixed x position.  The velocity profile 
is assumed to smoothly asymptote to the boundary layer edge velocity ue(x).  The channel width 
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H is assumed to be much thicker than the maximum boundary layer thickness found in the 
channel but not so thick that unbounded boundary layer conditions are present.   
 
Assume a set of scaled profiles is found that show similarity when scaled with the as yet 
unidentified velocity scaling parameter us(x) and the unidentified thickness scaling 
parameter δs(x).  According to Schlichting,2 boundary layer similarity is then defined as the 
case where the scaled velocity profile at a station x1 is similar to the scaled profile at x2 if  
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The velocity u(x,y) is written in this way to specify that the scaled velocity profile thickness 
comparisons are made at the equivalent y/δs(x) values and not at the equivalent y-values. 
 
Rather than starting with velocity profile similarity, consider the derivative of the velocity profile 
since this result will be needed for the next step.  Similarity necessarily requires that if the 
scaled profiles are similar, then the scaled derivatives of the velocity profiles must also be 
similar.  This, in turn, means that the scaled derivative profiles plotted versus the similarity 
scaled y-value must all have equal areas under the scaled derivative curves.  In mathematical 
terms, the area under the scaled first derivative profile curve is expressed by  
 

{ }/

0

( , / )
( ) ,

sh
s s

s

s

d u x y uya x d
yd

δ δ
δ

δ

 
=  

    
 

∫

 
 
where a(x) will be, in general, a non-zero numerical constant as long as y=h is deep into the free 
stream above the wall but less than H/2.  For clarity, h(x), us(x), and δs(x) have been shortened to 
h, us, and δs.  Assuming the boundary conditions u(x,0)=0 and u(x,h)=ue(x), and, using a 
simple variable switch, Eq. 29 can be shown to reduce to  
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Similarity requires that a(x1)=a(x2).  Similarity also requires that h(x1)/δs(x1) = h(x2)/δs(x2) but 
this is easily satisfied as long as h(x1) and h(x2) are chosen appropriately and are located deep 
into the free stream.  Since us(x) is a similarity parameter, this result necessarily requires that if 
similarity is present in a set of velocity profiles in the near wall region, then ue(x) must also be a 
similarity velocity scaling parameter.   
 
This same result is also obtained from the definition equation for similarity, Eq. 28, by taking the 
limit y going deep into the free stream.  In addition, previous theoretical studies by Rotta,26 
Towsend,27 Castillo and George,28 and Kitsois, et. al.29 have all identified ue(x) as a similarity 
scaling parameter.  Yet, there is extensive literature that has dealt with the search for other velocity 
scaling parameters for 2-D turbulent boundary layer flows.  They propose other velocity scaling 
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parameters as being somehow superior to ue(x) without ever explaining why all of these different 
theoretical approaches that have identified ue(x) as a similarity scaling parameter are faulty.  The 
problem with this flawed thinking is detailed in the Chapter 7.  In any case, unless one changes 
the definition of similarity or the velocity boundary conditions, the velocity at the boundary 
layer edge ue(x) must be the velocity similarity scaling parameter.   
 
Next, consider the area under the velocity profile curves.  Starting with the formal definition of 
similarity given by Eq. 31 then it is self-evident that for the profiles to be similar, the area under 
these scaled velocity profiles plotted versus the scaled y-coordinate must be equal.  The area 
under the scaled profiles, in mathematical terms, is given by  
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where b(x) will, in general, be a nonzero numerical constant, and where the velocity is written in 
terms of the defect profile ue(x)-u(x,y).  Using the result from Eq. 30, it is easily verified that 
similarity requires that b(x1)=b(x2).  By employing a simple variable switch, Eq. 31 can be 
shown to reduce to   
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by recognizing that the displacement thickness, δ1(x), is defined as 
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Since similarity requires that b(x1)=b(x2), then, combining with the Eq. 30 result, this result 
necessarily means that if similarity is present in a set of velocity profiles, then the 
displacement thickness δ1(x) must be a similarity length scaling parameter.  This result 
applies to all bounded 2-D fluid flows along a flat plate.    
 
The net result is that if similarity is present in a set of 2-D bounded velocity profiles, then the 
length scale must be the displacement thickness δ1(x) and the velocity scale must be ue(x).  The 
results are mathematically rigorous; they are only dependent on the definition of similarity, 
the definition of the displacement thickness, and the boundary conditions.  Interestingly, 
δ1(x) is not the only integral moment parameter that works.  Weyburne23 pointed out that other 
moment method thickness parameters, such as μ1(x) (see Eqs. 17 and 18), are also similarity 
scaling parameters. 

5.1.2 Similarity of the Unbounded Boundary Layer   

Weyburne5 extended the same type of argument to the 2-D laminar flow unbounded boundary 
layer case.  For the unbounded boundary layer case, the boundary layer is divided into two 
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regions, the viscous-like inner region and the inertial-like outer region.  The dividing location 
can be conveniently chosen to be δmax, the location of the maximum velocity umax.  It was 
demonstrated that the viscous region showed similarity when scaled with the "maximum 
displacement thickness", 1 ( )m xδ , given by 
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is the length scale and the velocity scaling parameter is umax (see Weyburne5 for the details).  It 
should also be mentioned that Weyburne3 speculated that the inertial boundary layer region for 
unbounded laminar flows might display similar behavior.  However, it was subsequently found 
that this was not true for unbounded laminar flow along a flat plate.5    

5.2 Similarity of the Thermal Boundary Layer Profile 

The similarity of the thermal boundary layer formed by fluid flowing a long a heated or cooled 
wall can be handled in a similar fashion as the velocity profile similarity (see Weyburne30).  The 
Navier–Stokes governing equations can be extended to include the energy balance equations. 
The solution to this expanded set of partial differential equations for a particular flow situation is, 
in general, very time consuming even with very fast computers.  Under certain flow conditions, 
the thermal profile and the velocity profile downstream can look geometrically similar to the 
upstream flow, differing only by simple scaling parameters.  When this happens, the set of partial 
differential flow governing equations can be simplified to an easily solved set of ordinary 
differential equation.  The similarity solution for heated/cooled boundary layer flows represent 
one of these known solution sets.   
 
To demonstrate the proof, we consider a boundary layer flow along the heated/cooled inside wall 
of a 2-D channel with gap H.  The channel half width, H/2, is assumed to be much thicker than 
the maximum velocity and thermal boundary layer thickness found in the channel.  Let the 
velocity be u(x,y) and temperature T(x,y), where y is the normal direction to the wall and x is the 
flow direction.  Assume the flow conditions discussed in Section 6.1 hold and that the channel 
wall is isothermal with a temperature, Tw, and the free stream is isothermal with a temperature, 
T0.  The temperature profile is defined as the temperature T(x,y) taken at all y values starting 
from the wall moving outwards at a fixed x value.  Temperature profile similarity is defined as 
the case where two temperature profile curves from different stations along the wall in the flow 
direction differ only by a scaling parameter in y and a scaling parameter of the temperature 
profile T(x,y).   
  
Assume a set of temperature profiles are found that display temperature profile similarity when 
scaled with the height scaling parameter δq(x) and the temperature scaling parameter Ts.  The 
scaled temperature profile at a station x1 is said to be similar to the scaled profile at x2 if  
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The temperature T(x,y) is written in this way to specify that the scaled temperature comparisons 
are made at the equivalent y/δq(x) values and not at the equivalent y-values.  An important 
observation about the isothermal wall is that in the limit of y→0 and y→H/2, the temperature 
ratios in Eq. 35 both reduce to Tw /Ts(x)  and T0 /Ts(x) which means that Ts(x) must be a 
constant.  This means that for similarity, only the length scaling parameter δq(x) may vary with 
the flow direction.     
 
To discover the identity of Ts and δq(x), the same technique that was used for the velocity profile 
similarity method discussed above is applied.  As with the velocity case, start by considering the 
first derivative of the temperature profile since this will be needed in the next step.  If similarity 
is present in a set of temperature profiles then it is self-evident that the properly scaled first 
derivative profile curves (derivative with respect to the scaled y-coordinate) must also be 
similar.  It is also self-evident that the area under the scaled first derivative profiles plotted 
against the scaled y-coordinate must be equal.  In mathematical terms, the area under the scaled 
first derivative profile curve is given by 
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where h is deep into the free stream above the wall but less than H/2.  Using the boundary 
conditions and a simple variable switch, Eq. 36 can be shown to reduce to  
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Similarity requires that p(x1) = p(x2).  Hence, the similarity scaling parameter Ts must be 
proportional to the temperature difference T0 -Tw .  
 
Now consider the identity of δq(x).  Starting with the formal definition of similarity given by Eq. 
35 then it is self-evident that for the profiles to be similar, the area under these scaled 
temperature profiles plotted versus the scaled y-coordinate must be equal.  The area under the 
scaled temperature profile is not easily manipulated.  However, Eq. 35 can be used to advantage. 
If a constant is added or subtracted from both sides of Eq. 35 and then integrated, the 
equivalence condition still holds.  Subtracting T0 /(T0 -Tw) value from both sides of Eq. 35 and 
integrating, the area, in mathematical terms, is given by 
 

( ) ( )/
0

00

, /
,

sh
s

s w

T T x yyr x d
T T

δ δ
δ

− 
=   − 

∫  

 
where r(x) is, in general, a nonzero numerical constant.  Using a simple variable switch and 
simple algebra, Eq. 38 can be shown to reduce to  
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where the thermal displacement thickness 𝛿𝛿1𝑇𝑇(x) is defined as 
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Similarity requires that r(x1)=r(x2).  The importance of Eq. 39 in regards to similar profiles is 
that it means that if similarity is present in a set of thermal profiles for any 2-D boundary layer 
along a wall, then the thickness scaling parameter δq(x) must be the thermal displacement 
thickness 𝜹𝜹𝟏𝟏𝑻𝑻(x).  From Eq. 37, we showed that the similarity temperature scaling parameter 
Ts must be proportional to the temperature difference T0 -Tw.  The results are 
mathematically rigorous; they are only dependent on the definition of similarity, the 
definition of the thermal displacement thickness, and the boundary conditions.  
 
Perhaps the best way to demonstrate this new result is to apply the new similarity scaling 
parameters to a data set from the literature.  In Figure 19a the results for the Pohlhausen25-based 
approach to calculating the thermal profiles for laminar flow over a heated plate for a range of 
Prandtl numbers is presented.  This figure is a re-creation of Fig. 12.9 from Schlichting2 using a 
simple FORTRAN program to generate the solutions.  In Figure 19b, the same data is plotted 
using the new thermal displacement thickness scaling parameter.  In this case, all nine curves 
are collapsed onto one another indicating thermal profile similarity is present.  This is a 
remarkable result that provides solid support for the integral area similarity theory.  In this 
figure, the reduced plotting parameters are 
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where ν is the kinematic viscosity. 
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Figure 19:  A Reproduction of Pohlhausen25 Temperature Profiles from Figure 12.9 in 
Schlichting2 (a) and (b)The Collapsing of Profiles from Figure 20a using the Thermal 

Displacement Thickness 
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6 TURBULENT BOUNDARY LAYER DEFECT PROFILE SIMILARITY: 
A CASE OF BAD SCIENCE 

In this Chapter, the research work on similarity scaling for the Turbulent Boundary Layer (TBL) 
for the last 70 years is reviewed and found to be flawed.  The work has led to the incorrect 
identification of the similarity scaling parameters and the mistaken belief that turbulent boundary 
layer similarity is common.  As a remedy, the similarity scaling parameters that were identified 
by Weyburne21 are tested and found to give reasonable results for certain experimental wind 
tunnel results.  The same flawed approach is also found in the Thermal TBL literature which is 
briefly discussed at the end of the Chapter.  
 
The idea of velocity profile similarity and thermal profile similarity are well known for laminar 
flow along a wall.  For turbulent flow along a wall, it is generally acknowledged (Marusic, et. 
al.31) that whole profile similarity, with the exception of sink flow, has not been observed in 
turbulent boundary layer flows.  The turbulent boundary layer has a viscous inner region and an 
inertial outer region so instead of looking for similarity over the whole profile, researchers 
started looking for similarity in just the inner or outer regions.  The fact that the Navier-Stokes 
governing equations for turbulent flow do not have a closed form solution means that the 
mathematical approach to similarity used by Blasius6 and Falkner-Skan17 for laminar flow will 
not work for turbulent flows.  The flow community had some early theoretical guidance 
beginning with the work of Rotta26 and Towsend27 that indicated that the velocity at the 
boundary layer edge, ue(x), should be a similarity velocity scaling parameter.  However, this 
insight was largely ignored in the pursuit of “better” alternatives.  It turns out that this pursuit 
for better similarity parameters has been based on a false premise that negates much of the 
TBL similarity scaling work of the last 70 years.  In the following Chapter, the problem with 
the turbulent boundary layer similarity literature is outlined and discussed followed by a brief 
outline of a similar problem identified in the temperature profile similarity literature.  
 
To understand the nature of this TBL similarity problem, it is necessary to go back to the work of 
Fredrick Clauser32 in the 1950’s.  Clauser set out to explore 2-D TBL similarity of the velocity 
profile.  He demonstrated that if he plotted a series to TBL data sets from various groups as 
velocity profiles, there was no similarity present.  However, when he plotted the same data as 
defect profiles defined as ue(x)-u(x,y), where u(x,y) is the velocity in the flow direction 
(x-direction) and ue(x) is the corresponding velocity at the boundary layer edge, then the visual 
inspection of the plotted data sets showed good overlap suggesting that similarity was 
present.  Following closely after Clauser’s work, Rotta26 and Towsend27 developed the defect 
profile-based theory of TBL similarity.  Subsequent searches for similarity scaling parameters 
for the 2-D TBL have adapted the use of the defect profile as a means of “discovering” similar 
behavior.  What followed has been 70 years of research culminating in work by Castillo and 
George28 and others, that indicate that TBL similarity is widespread and occurs for most TBL 
data sets if one uses the velocity scaling parameter uZS(x) =  ue(x)δ1(x)/δ99(x) developed by 
Zagarola and Smits.33  Prior to the work of Castillo and George, TBL similarity of the outer 
region was considered rare.  
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All of the extensive literature concerning experimental investigations into wall-bounded TBL 
similarity has been based on the defect profile.  To even suggest using the experimentally 
measured velocity profile to study similarity, as is done for laminar flows, is considered wrong 
and, according to some, shows a lack of understanding of turbulent boundary layer theory.  
However, a review of turbulent boundary layer literature reveals there has never been a 
theoretical justification for this defect profile preference.  Therefore, the preference for the defect 
profile originates solely from the success of experimental comparisons; there is no theoretical 
preference.  Stepping back and looking at the situation from a theoretical perspective, there 
should be no preference.  As we will show below, theory indicates that velocity profile and 
defect profile similarity must occur simultaneously.  This is evident when one considers that the 
occurrence of similarity is intimately tied to the physics of the flow.  It is not possible to change 
the physics of the flow by simply re-plotting the data set after subtracting off the endpoint. 
Simple mathematical manipulation of the data does not change the physics. 
 
And yet, that is exactly what appears to be happening in this case.  Weyburne34,35 recently 
reexamined some of these TBL data sets that others claim to show defect profile similarity and 
found that the defect profiles did indeed appear to show similar behavior.  However, when the 
same data is re-plotted as standard velocity profiles, visual inspection of the plotted data sets no 
longer show similarity just as Clauser observed for the data sets he investigated.  To understand 
why the appearance of similarity in one case and not the other is a problem, one can point to the 
argument that the simple mathematical manipulation of the data set cannot change the 
physics.  However, the flow community has managed to ignore this simple fact for 70 years and 
this argument is unlikely to change anyone's thoughts today.   
 
Therefore, to fully understand why the appearance of similarity in one case and not the other is a 
problem, it is useful to first review the definition of velocity profile similarity.  Recall that 
similarity of the velocity profile for 2-D wall-bounded flows is defined as the case where two 
velocity profiles taken from different stations along the flow differ only by simple scaling 
parameters in y and u(x,y).  Assume a set of velocity profiles is discovered that show 
similarity in the outer region when scaled with the length scaling parameter δs(x) and the 
velocity scaling parameter us(x).  For the outer region of the TBL, the scaled velocity profile at 
a station x1 along the wall will be similar to the scaled profile at x2 when   
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The velocity u(x,y) is written in this way to specify that the scaled velocity comparisons are made 
at the equivalent scaled y/δs(x) values and not at the equivalent y-values.  The Eq. 42 definition is 
slightly modified from Schlichting's2 usual definition of similarity by changing "for all y" to "for 
all y in the outer region" (the exact definition of the outer region extent is not important in the 
arguments below).  
  
Defect profile similarity is defined in a similar fashion.  Using the above notations, defect profile 
similarity would therefore be given by when   
 

(42) 
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 By inspection of Eqs. 42 and 43, it is apparent that defect profile similarity and velocity profile 
similarity must occur simultaneously if   
 

1 2

1 2

( ) ( ) .
( ) ( )

e e

s s

u x u x
u x u x

=

  
Eq. 44 is an important equation.  Not only is it a requirement for simultaneous defect and 
velocity profile similarity, but this equivalence requirement also shows up as a criterion for 
defect profile similarity originally developed by Rotta26 and Towsend.27  More recently, 
Castillo and George,28 and Kitsios, et al.29 also derived the same criterion.  Castillo and 
George’s derivation was specifically developed to consider outer region similarity.  It is the same 
criterion one obtains for velocity profile similarity (Eq. 42, y→H/2).  Although very different 
approaches, all of these theoretical formulations end up with ue(x) as a similarity scaling 
parameter requirement.  
 
In spite of this unassailable theoretical support for ue(x) as a similarity scaling parameter, the 
literature to date has ignored this theoretical result without explanation and instead looked 
for other similarity scaling parameters.  Using various experimental data sets, a number of 
groups explored different scaling velocities that “appear” to show better similarity behavior than 
ue(x) as a similarity scaling parameter.  For example, based on experimental defect profile 
comparisons, Castillo and George seemingly reject their own theoretical derivations for ue(x) to 
advocate for Zagarola and Smits' uZS(x) scaling instead.  Others, including Panton36 and 
Buschmann and Gad-el-Hak,37 attempted to use experimental profile comparisons to show that 
uZS(x) is superior to ue(x) as a similarity scaling parameter. 
 
Hence, theory says one thing and experimental evidence seemingly says something else.  Which 
is correct?  In this case, it is the theory that is correct.  To understand why this is the case, one 
must understand how experimental similarity is usually evaluated.  What is normally done is to 
simply plot all of the scaled profiles onto one graph.  If the scaled profiles all overlap using the 
“chi-by-eye” test, then the profiles are assumed to be similar.  Consider, for example, Figure 20a  
where some of Österlund’s38 scaled wind tunnel experimental data is plotted at various wall 
positions.  Both Panton and Buschmann and Gad-el-Hak also used some of the Österlund’s data 
to assert that uZS(x) is the better similarity parameter.  Examining Figure 20a by eye, one would 
have to agree that uZS(x) is very effective at producing similar-like behavior for the defect 
profile case.  All five profiles plot on top of one another.  However, now consider Figure 20b in 
which the same exact data and scaling parameters are used but the data is plotted as velocity 
profiles.  By any measure, the five velocity profiles in Figure 20b do NOT display similar 
behavior.   
 

(44) 
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Figure 20:  Five Österlund38 Defect Profiles Plotted using the Zagarola and Smits33 Scaling 
Parameters (a) and (b) Five Österlund38 Velocity Profiles Plotted using the Zagarola and 

Smits33 Scaling Parameters 
 
So, what is going on in Figure 20a and b?  How can one plot show similarity but not the other? 
Consider Figure 20b.  It is obvious that all five tail regions DO NOT overlap.  Let us play the 
devil's advocate.  How can the tail regions in Figure 20b be made to appear to be identical 
without changing the uZS(x) scaling parameter?  One way to hide the difference is by 
subtracting the data's end point from each of the experimental profiles (Figure 20a).  If this 
is done, then the data sets tail region will automatically be zero for every profile thereby 
ensuring the tail region looks similar for all the defect profiles.  Therefore, if you want to 
inadvertently dupe people into believing that similarity exists, then plot the data as defect 
profiles.  But of course, the tail regions of the scaled velocity profiles, Figure 20b are not 
similar.  By definition, similarity requires the tail regions scaled velocities must be equal which 
Figure 20b indicates they are clearly not.  Similarity must occur in both defect profiles and 
velocity profiles simultaneously.  You cannot subtract off the endpoint and change the 
physics of the flow.  This data set does NOT display velocity profile similarity when scaled with 
uZS(x) in spite of the fact that Figure 20a appears to display defect profile similarity.  Therefore, 
this data set is not similar when scaled with the Zagarola and Smits scaling parameters.    
 
There is one additional factor35 particular to the uZS(x) scaling parameter that tends to ensure the 
defect profiles at every scaled y-location look similar and not just in the tail region.  Plots of 
y/δ99(x) versus u(x,y)/uZS(x) where uZS(x) =  ue(x)δ1(x)/δ99(x) means all of the curves are 
normalized by the displacement thickness which is the area under the defect profile.  Hence, the 
area under the plots like Figure 20a all have areas equal to one.  For profiles that are taken from 
locations downstream of each other, plotting scaled profile data with equal areas tends to make 
the profiles appear to overlap whether they are similar or not.  Therefore, the combination of 
eliminating the tail region disparity combined with the equal area factor means that most data 
sets will “appear” to be similar when the Zagarola and Smits scaling is used.   
  
When Clauser32 discovered that defect profiles showed similarity but the velocity profiles did 
not, the theoretical work of Rotta,26 Townsend,27 Castillo and George,28 and Kitsios, et al.29 was 
not yet in place.  Their theoretical results indicate that if similarity is present, then 
ue(x) must be a similarity scaling parameter for defect profile similarity (Eq. 44).  This 
means that defect profile similarity and velocity profile similarity must occur simultaneously 
(Eqs. 42 and 43).  In every data set that Weyburne34,35 examined that other groups have claimed 
to show defect profile similarity, velocity profile similarity was absent.  Attempting to convince 
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the flow community that there is a problem has proven to be difficult.  The visual indication of 
plots like Figure 20a have convinced even the group that developed a defect profile similarity 
theory (Castillo and George28) that uZS(x) is a superior scaling parameter.  This group and others 
failed to understand the implication of the theoretical derivations.  The bottom line is that much 
of the research on turbulent boundary layer similarity for the last 70 years is seriously flawed and 
requires a thorough review.  Perhaps the most important conclusion of the search for TBL 
similarity is that contrary to Castillo and George, Turbulent Boundary Layer similarity is NOT 
widespread but rare.  Unfortunately, this means that developing a generalized approximate TBL 
velocity profile based on similarity scaling is unlikely to work.   
 
The TBL similarity problem is extensive.  The Zagarola and Smits papers,33 for example, have 
been referenced over 800 times.  The visual proof offered by defect profile plots is so strong that 
the flow community has never attempted to explain how the theories of Rotta,26 Townsend,27 
Castillo and George,28 and Kitsios, et al.29  are flawed in requiring ue(x) be a similarity scaling 
parameter instead of uZS(x).  Common sense indicates that the flow physics of profile similarity 
should not be changed by simply replotting the DC shifted data.  Yet, the flow community’s 
acceptance to Clauser’s defect profile preference over velocity profile similarity has been 
universal.  (To Clauser’s32 credit, the defect profile theories of Rotta,26 Townsend,27 Castillo and 
George,28 and Kitsios, et al.29 were not yet in place when he did his experimental work). 

6.1 Alternative Outer Region TBL Similarity Scaling Parameters 

In the same set of papers34,35 showing how the Zagarola and Smits scaling parameters do not 
work, Weyburne also showed how the whole profile similarity parameters δ1(x) and ue(x) appear 
to give reasonable results for a certain limited set of TBL data sets.  Four examples were 
demonstrated.   One example is the five Österlund38 TBL profiles used in Figure 20.  In Figure 
21, the data is replotted using the δ1(x) and ue(x) scaling parameters.  The overlap is not perfect 
but certainly better than the Zagarola and Smits scaling parameter set result shown in Figure 20b.  
In a second set of papers, Weyburne39,40 did a simple comparison test using the δ1(x) and ue(x) 
scaling parameters along with the Prandtl Plus scaling’s and the Zagarola and Smits scaling’s 
plots to search for similarity in the outer region of experimental TBL velocity profile data sets.  
The later paper40 also offers a numerical method for determining whether similarity is present in 
a set of velocity profiles as opposed to the present “chi-by-eye” examination of graphed data 
sets.  The results indicate that strict whole profile similarity is not evident in any of the datasets 
that were searched.  However, ten datasets were found that displayed “similar-like” behavior 
when scaled with δ1(x) and ue(x) scaling parameters.39,40 
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Figure 21: The same Österlund38 TBL Data from Figure 20 but plotted with the Whole 

Profile Similarity Parameters found by Weyburne21 

6.2 The Thermal Profile TBL Similarity Scaling Fiasco 

It turns out that the same type of similarity fiasco that has been playing out for the velocity 
profile has also been repeated for the thermal TBL profile case.42  Wang and Castillo43 have 
developed empirical parameters based on the thermal displacement thickness for scaling the 
temperature profile of the turbulent boundary layer flowing over a heated wall.  They presented 
experimental data plots that showed similarity type behavior when scaled with their new scaling 
parameters.  However, what was actually plotted, and what actually showed similarity type 
behavior, was not the temperature profile but the defect profile formed by subtracting the 
temperature in the boundary layer from the temperature in the free stream.  Recently, 
Weyburne42 showed that if the same data and same scaling is replotted as just the scaled 
temperature profile, similarity is no longer prevalent.  This failure to show both defect profile 
similarity and temperature profile similarity is indicative of the same type of failed similarity 
discussed above for the velocity profile similarity case.  The arguments leading to this 
conclusion are identical in nature to those discussed above.  Rather than repeating the arguments, 
refer to the Wang and Castillo Rebuttal42 paper instead.  The bottom line is that the thermal 
similarity claims of Wang and Castillo43 are flawed and should be retracted.     



48 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

7 THE LOGARITHMIC LAW OF THE WALL EXPLAINED BY A NEW 
TBL CONCEPTUAL MODEL 

In this Chapter, a new conceptual model for the turbulent boundary layer is reviewed.  The new 
model offers a realistic insight into the origin of the Log Law region.  The advantage of this new 
model is that it directly connects experimental observations to the appearance of the Log Law 
region making it easy to conceptualize.  
 
The "Logarithmic Law of the Wall" pertains to the behavior of the time averaged velocity profile 
for turbulent boundary layer flow along a wall.  The Law of the Wall states that the average 
velocity for turbulent flow at a certain point above the wall is proportional to the logarithm of the 
distance from that point to the wall.  The name "Law of the Wall" comes from the fact that much 
of the flow community (see, for example, George41 and Marusic, et. al.44) believes this 
logarithmic behavior is universal for all turbulent flows along interior and exterior walls.  The 
original Log Law derivation was derived independently by Ludwig Prandtl45 and Theodore von 
Kármán46 among others.  A good review of the historical as well as fairly recent developments is 
provided by Buschmann and Gad-el-Hak.37  In what follows, the first step is to review the 
traditional conceptual model for the turbulent boundary layer. 

7.1 The Traditional Turbulent Boundary Layer Model 

The traditional physical model of the structure of the smooth-wall turbulent boundary layer is 
usually discussed in terms of the properties of the mean velocity profile.  The turbulent boundary 
layer mean profile is normally divided into four sublayers: 1) a viscous linear sublayer closest to 
the wall, 2) a buffer layer, 3) a logarithmic layer, and finally, 4) the wake outer layer.  The 
Logarithmic Law of the Wall refers to the logarithmic layer.  It is supposed that each of these 
regions’ boundaries occurs at a fixed distance from the wall which is measured in terms of the 
Prandtl Plus thickness values.  For example, the location of the boundary between the linear and 
buffer sublayers is thought to occur at about y+ = 5 Prandtl Plus length units. 
 
This sublayer structure is a finer division than the viscous inner and inertial outer regions often 
used when discussing the scaling behavior of the turbulent boundary layer.  Although there has 
been no discussion in the literature, presumably, the inner region consists of the first three 
sublayers and the wake region is the inertial outer region.  
 
The traditional physical model of the TBL has a number of problems.  For example, it is known 
that the low Reynolds number turbulent flows do not have a Logarithmic Law region.  Then 
there is the on-going debate as to what is the proper start and end extent of the Logarithmic Law 
region (see Marusic, et. al.44 and Örlü47).  The large scatter in the assignment of the start and stop 
locations from the literature brings into question the universal picture.  Perhaps the most pressing 
problem is that the physics of the boundary layer is being obscured by this four-sublayer 
model.  For example, reading the literature, one is led to believe that the velocity profile in the 
so-called linear sublayer behaves linearly.  However, if the profiles really behaved linearly in this 
region, the viscous momentum forces would be zero (the second derivative of the velocity would 
be zero).  In fact, the opposite is true, the viscous momentum forces actually peak in this sub-
region. The physics of the Log Law sublayer is similarly opaque.  There is no simple physical 
explanation for the appearance of this sublayer in the traditional model. 
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7.2 The New Turbulent Boundary Layer Conceptual Model 

Rather than the fixed location sublayer model presently employed, Weyburne48,49 proposed a new 
model of the turbulent boundary layer that returns to the two-layer viscous inner region and the 
inertial outer region.  The thickness and location of the regions are not fixed but are defined by 
the moment-based7,8 thickness and shape parameters.  These moment-based thickness parameters 
are experimentally accessible.  The new model also incorporates the experimentally accessible 
instantaneous wall shear stress.  In principle, the instantaneous wall shear stress can be 
experimentally measured at any location along the wall.  Experimental observations indicate that 
the wall shear stress for TBLs undergo rapid changes (many times a second time scale) due to 
the chaotic turbulence in the outer region of the boundary layer (see, for example, Obi, et. 
al.50).  This outer region turbulence penetrates far enough into the inner region to cause this rapid 
variation in the wall shear stress.   
 
The first key insight provided by the new TBL model is that this rapid time-varying change in 
the wall shear stress induces rapid, quantifiable changes in the thickness and shape of the 
viscous region in the turbulent boundary layer.  The relationship between the wall shear stress 
and the viscous layer of the wall-bounded turbulent boundary layer is detailed in a paper by 
Weyburne8 and summarized in the Boundary Layer Thickness Chapter.  To understand how the 
instantaneous viscous region thickness and shape is related to the instantaneous wall shear stress, 
one has to look at the momentum balance equations.  The x-momentum balance equation tells us 
the viscous forces will be significant where the second derivative of the velocity u(x,y) is 
significant.  For laminar flow, for example, the second derivative of the Blasius6 velocity is 
plotted in Figure 22.  

 
Figure 22:  The Second Derivative of the Blasius Velocity Profile showing the Mean 

Location μ1 and the Boundary Layer Width σv 
 
The instantaneous turbulent boundary layer profiles are not experimentally available but 
presumably look similar.  The Gaussian-like shape in Figure 22 is what led to the adoption of the 
standard probability moment method for describing the boundary layer thickness and 
shape.22  The second derivative integral moments provide a way to describe the thickness and 
shape of the region where viscosity is important.  Included on this plot is the location of the 
viscous mean location, μ1, and the viscous boundary layer width, σv.  The important part to 
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understand is that it is easily verified that the second derivative instantaneous mean location and 
instantaneous width are both directly (inversely) proportional to the instantaneous wall shear 
stress value.  Following standard probability practice, the mean, or in this case the mean location 
μ1(x,t), at time t can be shown to reduce to 
( 
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where υ is the viscosity, τw is the wall shear stress, and ue(x) is the velocity at the boundary layer 
edge.  The boundary layer width σv can also be shown to be proportional to the instantaneous  
wall shear stress along with the instantaneous displacement thickness.8  What this means is that if 
the instantaneous wall shear stress and displacement thickness is measured at some point on the 
wall, then the location and width of the viscous force for the TBL at that precise time and 
location can be calculated.  Actual TBL experiments indicate that the wall shear stress at any 
point on the wall is undergoing wide excursions over time (see, for example, Obi, et. al.50).  This, 
in turn, means that the second derivative profile width is undergoing compression and 
expansion as the mean location moves toward the wall or away from the wall in lock step 
with the wall shear stress changes.  This is a key link between experimental observations and 
what is physically happening in the near wall region of the boundary layer.   
 
Imagine now that the instantaneous second derivative profile is time averaged.  It is the time 
averaged profile that is usually discussed in the literature.  The second key insight of the new 
model was the observation that the time-averaged tail of the viscous region is decaying very 
slowly and extends all the way to the Log Law region.  Conventional thinking is that the 
viscous sublayer only extends from the wall to about y+≅30 into the fluid whereas the Log Law 
layer starts much further from the wall.  However, plots of the velocity profile side-by-side with 
plots of the second derivative of the velocity, make it clear that the Log Law region is not a 
separate sublayer but is in fact an integral part of the tail region of the viscous second derivative 
profile.  To show this, high quality experimental turbulent boundary layer velocity profile data 
sets that showed Log-Law-type behavior can be numerically differentiated twice and compared 
to the second derivative of the Log Law velocity profile (see Weyburne48,49).  An example is 
shown in Figure 23a for data from Österlund.38  In Figure 23b the associated velocity profiles are 
shown.  Note that the logarithmic overlap regions are the same in both cases.  The key point is 
that the logarithmic region of the TBL is not some overlap region or a sublayer as traditionally 
advocated, but it is instead the tail part of the viscous region obtained by time-averaging the 
instantaneous velocity profile.  Hence, the new model puts us back to the two regions, inner 
(viscous) and outer (inertial) region model.  It now becomes clear why the first three layers of the 
traditional TBL model all have the same scaling parameters (Prandtl Plus) and that is because the 
three closest sublayers are not separate layers but instead are all part of the inner viscous 
region.     

(45) 
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Figure 23:  The Österlund38 SW981129 Second Derivative Profiles plotted in Plus Units (a) 

and (b) The Österlund38 SW981129 Velocity Profiles plotted in Plus Units 
 
Examination of Figure 23a reveals that the Log Law region is 2 or 3 orders of magnitude 
lower than the viscous peak.  This is why conventional thinking holds that the viscous sublayer 
only extends from the wall to about y+≅30.  So, how can this many orders of magnitude 
variation still be considered the viscous region?  The reason is related to the time-averaging 
process.  There is a whole spectrum of instantaneous μ1 and σv values, including values that put 
the instantaneous second derivative curve deep into the Log Law region.  However, the 
probability of having these low wall shear stress values over time is low.  The net result is 
that the time-averaged viscous region falls off as 1/y in the Log Law region since there are fewer 
instantaneous velocity profiles whose wall shear stress values push the second derivative curve 
into this region.  Hence, when the time-average is done, this region appears to be much 
diminished when in fact it is due to the time-averaging process.  

7.3 The Origin of the Log Law Layer 

What is exciting about the new model is that it opens up a whole new way to experimentally 
attack the origin of the Log Law layer of wall-bounded turbulent boundary layers.  The major 
unknown in the new model is the shape of the instantaneous velocity profile, and in turn, the 
shape of the instantaneous second derivative profile.  Together with the wall shear stress 
measurement, it might be possible to develop an instantaneous velocity profile theoretical model 
that takes into consideration the time-varying wall shear stress.  The time-based probability 
distribution function of the wall shear stress values is experimentally accessible, which combined 
with an instantaneous velocity profile model, should make it possible to construct the time 
averaged velocity profile for the TBL.  It might be possible to show the time averaging process 
results in logarithmic behavior in the tail region of the viscous inner region.  
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Along these lines, in the earlier effort Weyburne48 tried to construct a time-averaged second 
derivative profile using laminar-like instantaneous profiles with a range of wall shear stress 
values.  He speculated that the tail of the turbulent instantaneous second derivative profile might 
have the same Gaussian like-tail as what occurs for laminar flow.  From a physical perspective, 
there is a good reason to assume that the second derivative profile of turbulent flow should decay 
in the same Gaussian-like decay behavior of laminar flow into the fluid. The timescales for the 
turbulent motion are many orders of magnitude longer than the time scales normally associated 
with the molecular diffusion time scales of the viscous forces.  Hence the main factor affecting 
the shape of the viscous region of the velocity profile (besides fluid properties) will be the 
instantaneous wall shear stress value and the free stream velocity.  In the end, Weyburne found 
that the Gaussian-like decay behavior did not produce the slow decay behavior seen in the 
average TBL velocity profile.  What is needed to continue along this path is direct numerical 
simulations studies of the TBL.  It should be possible to determine the instantaneous velocity 
profile and then bin the profiles by wall shear stress value to obtain an averaged bin profile.  By 
convolving with bin averaged profile with the wall shear stress PDF, it might be possible to 
construct the time averaged profile and from this show that the Log Law region results from the 
binning averaging process.  

7.4 The New TBL Concept and Experimental Measurements 

In the traditional inner region boundary layer model, the sublayers are supposed to have fixed 
boundaries at specific distances from the wall in terms of the Prandtl Plus thickness values.  The 
model supposes that these assignments are universal for all wall-bounded turbulent boundary 
layers.  However, this idea of fixed boundaries at fixed locations is pure conjecture, and an 
untestable conjecture due to the fact that it is not possible to actually measure the location and 
extent of these sublayers.  The controversy over proper start and end extent of Logarithmic Law 
region (see Marusic, et al.44 and Örlü47) illustrates the fact that there has never been a way to 
precisely define or physically measure the boundary sub-layer extents.  The bottom line is that 
the whole sub-region model has no basis in theory, it is all based on suppositional 
observations of scaled experimental velocity profile curves.   
 
If we are to move away from a universal fixed boundary picture of the turbulent boundary layer 
then what is needed is a way to actually physically describe and measure these regions based on 
experimentally accessible information.  The new turbulent boundary layer description 
discussed in the Boundary Layer Thickness and Shape Chapter accomplishes this goal.  The 
time-averaged second derivative based viscous mean location, μ1, and the time-averaged viscous 
boundary layer width, σv, are both experimentally accessible from velocity profile measurements 
and/or wall shear stress measurements.  Thus, in the new TBL conceptual model, the location 
and shape of the time averaged viscous sublayer are measured directly.  If the accumulated 
experimental evidence indicates that the location is fixed and universal, then so be it. 
 
There are a number of advantages of the new inner region length scaling parameters as compared 
to the Prandtl Plus parameter that are discussed in more detail in the next section.   
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8 A PRANDTL PLUS SCALING PARAMETER ALTERNATIVE 

In this Chapter, we re-examine the inner region scaling for turbulent boundary layers developed 
by Prandtl.45  There has been universal consensus that the “Prandtl Plus” scaling applies to the 
inner region of both interior and exterior turbulent boundary layer flows.  However, recent 
research by Weyburne51,52 uncovered a serious theoretical flaw that necessitates a re-examination 
of the Prandtl Plus scaling.  This research is first reviewed and then the case for a scaling 
parameter set based on the moment method to replace53 the Prandtl Plus scaling parameters is 
outlined.  Although it is claimed as a replacement, it is actually a case where the new parameters 
incorporate the essence of the Prandtl Plus parameters into the integral moment method 
(Chapter 5) for describing the thickness and shape of the velocity profile.  The main advantage of 
doing this is that it eliminates the theoretical problem encountered with the Prandtl Plus 
parameters while behaving identically on experimental data.  

8.1 Are the Prandtl Plus Scaling's Universal?  

The idea of velocity profile similarity is well known for laminar flow along a wall.  For turbulent 
flow along a wall, it is generally acknowledged (Marusic, et. al.31) that whole profile similarity 
does not exist (exception: sink flow).  That is, "... not even the mean velocity can be described 
from the wall to the free stream by a function of a single similarity variable."  So, instead of 
looking for similarity over the whole profile, researchers started looking for similarity in just the 
inner or outer regions.  The scaling in the outer region of the turbulent boundary layer region was 
discussed in the TBL Chapter.  For the inner region, there has been no disagreement, until 
recently, about the proper similarity scaling for the region of the turbulent boundary layer near 
the wall where viscosity is important.  There has been universal consensus that the parameters 
proposed by Prandtl,45 the so-called Prandtl Plus parameters, are the proper scales.   
 
The belief that the Prandtl Plus scaling is the proper scaling for all exterior and interior turbulent 
boundary layers is tied to the Logarithmic Law of the Wall.  It is actually the Logarithmic Law 
of the Wall that is considered universal (see discussion in George43 and Marusic, et. al.44) and it 
so happens that the Logarithmic Law of the Wall subsumes the Prandtl Plus scaling.  Given that 
this is considered a law of nature, one would expect that the Logarithmic Law of the Wall 
would have been extensively verified both theoretically and experimentally.  However, this 
is not the case.  Consider the experimental verification.  Marusic, et. al.31  has indicated that the 
Logarithmic Law of the Wall verification is not possible at the present time due to the limitations 
of the experimental accuracy of the wall shear stress.  The wall shear stress has proven to be very 
difficult to measure experimentally.  For that reason, most experimental determinations of the 
wall shear stress come in the form of the friction velocity determined by the Clauser32 Chart 
method.  The Clauser Chart method assumes the Logarithmic Law of the Wall holds so plots of 
inner region of turbulent boundary layer velocity profiles using this method will always show 
similar-like behavior.  This had led many in the flow community to falsely believe the 
Logarithmic Law of the Wall actually has been verified.  This is reinforced by a study by 
Marusic, et. al.44 that offered a number of recent experimental results on boundary layers, pipe 
flow, and the atmospheric surface layer that support the existence of a universal logarithmic 
region.  While the data sets in the study may offer support for universality, it is obviously not 
proof since independent measurements of the wall shear stress were not performed in all cases.  
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Hence, in spite of the connotation as a law of nature, the Logarithmic Law of the Wall and the 
Prandtl Plus scaling’s have NOT been verified experimentally.  
 
Without experimental verification, then one would expect that the Logarithmic Law of the Wall 
and the Prandtl Plus scaling’s would have been verified theoretically.  Although there have been 
many theoretical derivations of the Logarithmic Law of the Wall, the derivations are not the 
same as theoretical proof that that the Prandtl Plus parameters must be similarity parameters for 
all wall-bounded turbulent boundary layer flow.  In fact, there is no theoretical proof that the 
Prandtl Plus scaling’s must be similarity scaling parameters for the inner region of the TBL (the 
proof offered by Jones, et. al.54 is flawed, see Appendix Weyburne23).  To the contrary, George43 
recently made a constant shear stress theoretical argument against the universality the 
Logarithmic Law of the Wall for boundary layer flows along a wall versus pipe/channel flows.  
This was followed by a different potent theoretical argument offered by Weyburne51,52 against 
the universality of the Logarithmic Law of the Wall AND the Prandtl Plus scaling's.  Using an α 
and β based Falkner-Skan momentum equation approach applied to the inner region of turbulent 
boundary layer, Weyburne51 showed that Prandtl Plus scaling’s ONLY show similar behavior for 
the turbulent sink flow case and do NOT work for the general Falkner-Skan flow case.   
 
Weyburne’s argument is based on the turbulent boundary layer version of the Falkner-Skan17 
momentum equation.  In his Falkner-Skan similarity approach, a stream function is constructed 
by taking the product of the x-dependent length and velocity scaling parameters times a scaled 
y-dependent functional (see Panton,20 p. 543).  For the turbulent boundary layer version, the 
velocities are cast into the average velocities and the deviation from the average value using the 
Reynolds decomposition approach.  The resulting mass and momentum conservation equations 
for the average velocities reduce to an equation that looks like the laminar flow expressions but 
having additional terms involving the deviation from the average stress terms.  The stream 
function approach is an equivalent but more elegant way of nondimensionalizing the momentum 
equations compared to the defect velocity profile approach of Rotta,26 Townsend,27 and Castillo 
and George28 since it automatically incorporates the mass conservation equation.  For similarity 
to be present at various stations along the wall, all of the x-dependent terms of the 
nondimensionalized momentum equations must change proportionally as one moves along the 
wall or, equivalently, the ratios of the x-dependent terms must be constant.  The Falkner-Skan 
flow α and β  terms are examples of the constant ratio terms.  The turbulent boundary layer 
version of the Falkner-Skan β term is  
   

2δβ
ν

= ,ss du
dx

 

 
where ν is the kinematic viscosity, δs(x) is the similarity length scaling parameter, and us(x) is the 
similarity velocity scaling parameter.  This term is identical to the Falkner-Skan laminar flow β 
term.  With the α and β terms in hand, Weyburne51 made the observation that if the Prandtl Plus 
scaling was truly universal, then Prandtl Plus scaling parameters should work for the inner region 
of the Falkner-Skan turbulent flow case.  That is, if assume Prandtl Plus scaling parameters are 
correct scaling parameters for the inner region, then   
   
 

(46) 
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where uτ is the friction velocity.  The turbulent boundary layer β term, Eq. 47 then becomes 
   

2 .du
dxu

τ

τ

νβ =  

 
The solution to this differential equation for a constant β is that uτ must behave as 1/x where x is 
distance along the wall in the flow direction.  This behavior, together with the calculated α= 0 
result (not shown, see Weyburne51), are characteristic of sink flow, flow in a 
converging/diverging channel.  The Prandtl Plus scaling’s, therefore, are NOT solutions for 
general turbulent Falkner-Skan flows along a wall.   
     
The result is incontrovertible: either the stream function approach to similarity is flawed OR the 
Prandtl Plus scaling’s are NOT similarity scaling parameters for general Falkner-Skan flows 
along a wall.  Although there has been no existence proof offered for the stream function 
approach to similarity or the equivalent defect profile approach, there has been no literature 
indicating that these approaches are flawed or have problems.    

8.2 Is There a Better Alternative to the Prandtl Plus Scaling's?  

8.2.1 The Falkner-Skan Alternative to the Prandtl Plus Scaling's 

In the same paper51 that the Falkner-Skan problem with the Prandtl Plus scaling was discussed, a 
new inner region similarity scaling parameter set was introduced by essentially reverse 
engineering the Prandtl Plus parameter failure.  Both the new parameter set and the Prandtl 
“Plus” scaling parameters are based on the one wall parameter that is experimentally accessible; 
the wall shear stress.  The wall shear stress is directly proportional to the derivative of the 
velocity, du(x,y)/dy, evaluated at the wall.  Prandtl45 converted this velocity derivative into a 
length scale and a velocity scale by combining it with the kinematic viscosity.  The Prandtl 
method of creating a length scale from the wall shear stress is not the only way to do it.  The 
development of the new reverse engineered parameters begins with realization that while the 
Prandtl Plus parameters have a big theoretical problem, experimentally, the wall shear 
stress determined by the Clauser chart method has been shown to be is reasonably 
consistent (but unverified) with other direct experimental measurements.  This appears to be 
true even for general turbulent boundary layer Falkner-Skan type flows.  So, how do we resolve 
the theoretical failure but the experimental success? 
   
Weyburne51 approached this problem by first reverse engineering the theoretical failure.  The 
idea is to define a new velocity scaling parameter u0(x), and a new length scaling parameter 
δ0(x), based on an expression found by Weyburne.53  The first step starts with the ratio of the 
scaling parameters.   It can be proven that for similarity to occur in a set of velocity profiles 
for 2-D boundary layer flow, the ratio of the similarity velocity scaling parameter to the 
similarity length scaling parameter must be proportional to the friction velocity squared 
divided by the kinematic viscosity (see Weyburne,23 Eq.10).  That is, the ratio is given by     

(47) 

(48) 
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where c is a proportionality constant.  There are two facts to notice here.  First, the Prandtl Plus 
scaling's also satisfy this condition.  Secondly, this definition by itself does not fully define the 
new parameters.  To do that, Weyburne revisited the Prandtl Plus failure.  The failure came in the 
form of not satisfying the Falkner-Skan α and β terms.  So, in addition to Eq. 49, u0(x) and δ0(x), 
are required to make the Falkner-Skan α and β terms be constants.  Substituting Eq.49  into 
Eq. 46, we require that u0(x) be given by 
 

4
2 2 0

0 ,du uc u
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τβ
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where β, ν, and c are constants.  The new scaling parameters given by Eqs. 9.4 and 9.5 therefore 
satisfy the part of the flow governing equations approach to similarity which the Prandtl Plus 
scaling’s do not, i.e. they should work for general Falkner-Skan flows.  For flows obeying 
Falkner-Skan power law length and velocity scales, it is easily demonstrated that the x-behavior 
for uτ(x) recovered from Eq. 50 is the same as the original Falkner-Skan laminar flow result. 

8.2.2 The Integral Moment Parameters as Alternatives to the Prandtl Plus Scaling's  

Eqs. 49 and 50 address the expected x-behavior of the new velocity scaling parameter, u0(x), and 
the new length scaling parameter, δ0(x), in terms of the x-behavior of the wall shear stress.  They 
do not address the identity of these parameters.  In a follow-on paper, Weyburne53 went about 
identifying these new inner region scaling parameters.  It turns out the new length scaling 
parameter is one of the integral moment method parameters that defines the thickness and shape 
of any 2-D wall bounded boundary layer region.  Using the second derivative based moment 
method, Weyburne53 showed that the identity of the length scaling parameter is the second 
derivative mean location μ1(x) and the velocity at the boundary layer edge ue(x) is the velocity 
scaling parameter for the inner region of the turbulent boundary layer, including the Log Law 
region.  
    
The second derivative mean location parameter μ1(x) is formally defined as the first y-moment 
about zero of the second derivative central moments (see Chapter 5, Eqs. 17 and 18).  It is easily 
verified7,8 that μ1(x) is given by 
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where υ is the viscosity.  This means that the new length scaling parameter is inversely 
proportional to the wall shear stress.  Comparing Eq. 49 to Eq. 51, it is evident that the identity 
of u0(x) and δ0(x) are μ1(x) and ue(x).   

(49) 

(50) 

(51) 



57 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Comparing the Prandtl parameter set and the New set, it is evident that the new parameter set 
μ1(x) and ue(x) satisfies the Falkner-Skan similarity condition for general Falkner-Skan flows 
whereas the Prandtl Plus parameter set does not.  Consider the Prandtl Plus Falkner-Skan 
problem with the Falkner-Skan Eq. 48 β term.  For the New parameter set, the equivalent 
Falkner-Skan β term is  
   

22
1

4 .e e edu u du
dx dxuτ

µβ ν
ν

= =  

 
Assuming the resulting β is a constant, then Eq. 52 represents a similarity requirement for the 
x-behavior of ue(x) and uτ(x).  However, the primary significance of this equation is that it has no 
direct restriction on the behavior of uτ(x), unlike the Prandtl Plus parameter Eq. 48 which does.     
 
There are other advantages of the New parameter set compared to the Prandtl Plus set.  Consider 
the length scaling parameters.  On the one hand for the Prandtl Plus scaling's, we have ν/uτ.  The 
best that can be said about this parameter is that it has the right units.  On the other hand, for the 
new set, the length parameter μ1(x) is intimately tied to the physics of the viscous region of any 
2-D boundary layer flow.  It is directly derived as an integral of the momentum balance equation.  
The viscous region of a boundary layer is defined by the region of the velocity profile where the 
second derivative of the velocity is important (see Chapter 5).  Using the integral moment 
method7,8  to define the shape and thickness of this region involves taking integrals evaluated at 
the wall.  The integral of the second derivative evaluated at the wall results50 in the wall shear 
stress related mean location μ1(x) (Eq.51).  Thus, the new length scale can be traced directly 
to the physics of the viscous region.  It is also part of a whole system of related length and 
shape parameters that describe the velocity profile formed by 2-D fluid flow along a wall.   
      
A related advantage of the New parameter set has to do with the extent of applicability.  For the 
Prandtl Plus parameters, the extent of applicability is tied to the extent of applicability for the 
Logarithmic Law of the Wall.  This was touched on in Chapter 8 but the fluid flow community 
has had the problem that it is not clear over what region of the velocity profile the Plus 
parameters are applicale.44,47  For the New parameter set, the range of applicability is from the 
wall to some viscous boundary layer thickness (Chapter 5) value determined from μ1(x) and 
σv(x).  With the second derivative moments, it is easily determined over which part of the 
velocity profile that the viscous forces are important.     
 
The advantages of the New parameter set do not end there.  A further advantage of the New 
parameter set is that it is possible to prove that if similarity is present in a set of velocity profiles, 
then the length scaling parameter μ1(x) is a similarity scaling parameter for any 2-D boundary 
layer flow.23  Thus, for turbulent sink flows and laminar flows, if similarity is present in a set of 
velocity profiles, then μ1(x) and ue(x) must be similarity scaling parameters.  On the other hand, 
the Prandtl Plus scaling’s have never been proven to be similarity scaling parameters for any set 
of velocity profiles (the proof offered by Jones, et.  al.,54 is flawed, see the Appendix of 
Weyburne23).   
 

(52) 
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It should be emphasized that strict similarity can only be expected for data sets displaying whole 
profile similarity.  Whole profile similarity of the turbulent boundary layer, with exception of 
sink flows, has never been observed.  Hence, as is the case with the Prandtl Plus parameters, data 
sets scaled with the new similarity parameters are, at best, only approximately similar (see 
Weyburne52).  However, both parameter sets are intended to scale the near wall region where 
viscosity is important.  In fact, the viscosity is important in all near-wall boundary layer 
situations including laminar boundary layers.  For laminar flow, the viscous forces are 
important through the entire boundary layer region.  Any near wall scaling parameters should 
therefore also work for this case.  As a test, experimental CFD simulations5 for exterior-like 
laminar flow on a thin flat plate are presented in Fig. 9.1a and 9.1b (see Chapter 3).  The results 
are striking.  All seven profiles for the new set show complete overlap.  It is hard to see but there 
really are seven curves in Fig. 9.1a.  Recall Weyburne23 theoretically proved that if similarity is 
present in a set of velocity profiles, then μ1(x) and ue(x) must be similarity scaling parameters 
that work.  Fig. 9.1a is the experimental proof.  Advocates for the Prandtl Plus parameter set 
must explain this huge difference for laminar flow boundary layers.  It is now apparent why the 
Blasius scaling parameters are used for laminar flow and the Prandtl Plus scaling for turbulent 
flows.  The Prandtl parameters just do not work very well for laminar flows.  This puts Plus 
parameter advocates in a very difficult situation.  They need to explain why the Prandtl Plus do 
not work very well but the New parameter set is bang on.  As opposed to the Prandtl set, for the 
New set, it is possible to show that the ratio between the Blasius thickness parameter and 
μ1(x) must be a constant.8  The bottom line is that the New set works for laminar flow and the 
Plus parameters do not.  
 

 
Figure 24:  Seven CFD Laminar Flow Profiles scaled using the New Scaling Parameters (a) 

and (b) Seven CFD Laminar Flow Profiles scaled using the Prandtl Plus Scaling 
Parameters 

 
The New set is superior for laminar flow boundary layers, but what about the experimental 
scaling performance for the turbulent boundary layer?  What is normally done to discover similar 
behavior in experimental data is to plot all of the scaled velocity profiles on one graph and use 
“chi-by-eye” to decide whether similarity is present.  Weyburne51,53 has compared a number of 
experimental datasets and demonstrated that both sets appear to work similarly.  In fact, if the 
Rotta26 constraint, uτ(x) / ue(x) = constant, holds then the results will appear identical.  The key to 
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this is realizing that multiplying both the μ1(x) and ue(x) based x and y axes scaling parameters 
(see Eq. 51) by the factor ue/uτ results in the Prandtl Plus scaling variables!  Hence, the relative 
relationships between the plotted curves for the two parameter sets will appear identical as long 
as the Rotta constraint holds.  The actual x-y scales will be different but the plotted curves 
relative to each other will be identical.     
 
The fact that the experimental results between the two parameter sets are very similar 
emphasizes that they have one important factor in common; the length to velocity scaling 
parameter are both directly proportional to the wall shear stress.  The Prandtl method of creating 
a length and velocity scale from the wall shear stress is one way to do it and the New set is 
another.  Stepping back and taking the long view, it appears that the Prandtl Plus theoretical 
problems can be traced to this attempt to convert one experimental parameter into two scaling 
parameters.  In experimental practice, the Prandtl Plus parameters seem to work just as well for 
general Falkner-Skan flows as sink flow even though theory says they should not.  Hence, the 
Falkner-Skan theoretical problem discussed above with the Prandtl Plus parameters is not 
substantiated by experimental results.  This means the one-experimental-to-two-scaling-
parameter approach of Prandtl imposes a theoretical limit to the applicability of the 
parameters that does not appear to be substantiated by experimental results.  On the other hand, 
the New parameter scaling set proposed by Weyburne53 does not suffer from this theoretical 
short coming.  

8.2.3 A New Logarithmic Law of the Wall  

When all is said and done, the main importance of trying to cast the Logarithmic Law of the 
Wall as a law of nature is to provide justification for extracting the wall shear stress from 
experimental turbulent boundary layers velocity profiles.  It is very difficult to measure the wall 
shear stress experimentally.  It is also difficult to measure the velocity profile very close to the 
wall.  The logarithmic region extends further out from the wall due to the slow decay of the 
averaged second derivative velocity profile which makes it possible to extract the wall shear 
stress if the Log Law holds true.  However, it is worth taking a close look at the various 
derivations of the Log Law.  The derivations only indicate that the interaction of the inner region 
and outer regions means the velocity profile at the junction between these regions must be 
logarithmic or maybe a power law.  Note that NONE of the derivations specifically requires that 
the scaling parameters must be the Prandtl Plus parameters.  As such, the question then becomes 
is it possible to develop a similar logarithmic function using the New parameter set?  A new 
logarithmic function to approximate the velocity profile would look like 
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where a and b are constants.   
 
So how good is the New Log Law?  In Table 1 a and b are some fitting results to DNS 
experimental data55 at different Reθ.  The fits were done over the same profile range that 
advocates of the Log Law reccomend.44  The results indicate neither Log Law correctly predicted 
the friction velocity.  More importantly, examination of the residual plots (not shown) indicate 

(53) 
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neither Logarithmic function is correctly predicting the velocity profile.  However, it does seem 
that New Log Law’s adjusted R squared values indicate the new fits are significantly better. 
 
Table 1.  Results to Fits to Six CFD Turbulent Flow Profiles using the New Log Law (a) (b) 

Results to Fits to Six CFD Turbulent Flow Profiles using the Old Log Law 

 
 
A few other comparisons to experimental data have been made, and truthfully, this New Log 
Law is probably not better than the old Log Law.  However, the point is that the neither of these 
so-called Log Laws are directly supported by theory that ties in the scaling parameter identity.  
No amount of experimental fitting will suffice until a convincing theory is developed.  Calling 
something a law of nature should require a much higher level of verification than has been 
employed to date.  It is better to treat these logarithmic functions as at best good approximations 
at this point in time.  
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

ACRONYM  DESCRIPTION  
2-D Two-Dimensional  
APG Adverse Pressure Gradient  
CFD Computational Fluid Dynamics  
FPG Favorable Pressure Gradient  
RT Room Temperature  
TBL 
ZPG 

Turbulent Boundary Layer 
Zero-Pressure Gradient 
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