

Comparison of Different Resuscitation Fluids (Hydroxocobalamin vs. Whole Blood vs. Lactated Ringers) Over Time In Volume-Controlled And Uncontrolled Hemorrhage Models In Swine (Sus scrofa)

R. Madelaine Paredes Ph.D.*, Maria Castaneda M.S. *, Dylan Rodriguez B.S.*, Kimberly Medellin RN.*, Kaysie Canellis*, Susan Boudreau RN.*, COL (R)

Normalynn Garrett Ph.D, CRNA*, Lt Col Joseph Maddry M.D. *

*USAF 59th MDW/ST

Background

- > Traumatic hemorrhage is the leading cause of preventable death in civilian and military environments
- Blood components are frequently unavailable in the prehospital setting due to increased costs and lack of resources, training and viable portable refrigeration
- Hydroxocobalamin (HOC), a synthetic form of vitamin B12, works as an antidote for cyanide toxicity and increases blood pressure via nitric oxide scavenging

Objectives

- 1. Evaluate whether the administration of HOC following hemorrhagic shock can improve hemodynamic parameters
- 2. Determine whether those effects are comparable to whole blood (WB) and lactated ringers (LR)

Methods

- ➤ Thirty-six swine (*Sus scrofa*) weighing 65kg 85kg used in 40% total blood volume hemorrhage
 - > 18 controlled hemorrhage (CH)
 - > 18 uncontrolled hemorrhage (UH)
- > Randomized treatment: 500mL WB, LR or HOC
- > Animals were monitored for six hours after treatment
- Hemodynamic parameters, blood gas analysis and chemistries were collected throughout the duration of the experiment
- Data reported as ± SEM, statistical analysis performed by ANOVA (p<0.05)</p>

Results

Hemodynamic parameters

Arterial Blood Gas analysis parameters

	Controlled Hemorrhage (CH)			Uncontrolled Hemorrhage (UH)		
Parameter	WB	LR	HOC	WB	LR	HOC
Lactate	4.9±0.4	4.3±0.6	4.2±0.2	2.1±0.1	4.9±0.4	3.9±0.2
K+	5.2±0.2	4.9±0.2	5.1±0.1	4.4±0.1	5.3±0.3	4.7±0.1
O ₂	100±1.4	103±3.2	112±1.4	108±1.1	98±2.2	102±1.4
CO ₂	34±0.8	36±0.6	35±0.3	35±0.4	35±0.4	34±0.2
Ca ²⁺	1.18±0.02	1.23±0.01	1.27±0.01	1.2±0.01	1.2±0.01	1.2±0.01

- ➤ Swine averaged a blood loss of 41%±0.02 for CH vs. 33%±0.07 for UH
- > During both uncontrolled hemorrhage (UH) and controlled hemorrhage (CH), HOC groups maintained a higher systolic blood pressure (SBP), cardiac output (CO), SPO₂ and vascular resistance (SVR) that was comparable to WB and above LR levels.

Conclusions

HOC administration resulted in improved hemodynamic parameters, and similar Ca²⁺ levels compared to LR and were equivalent to WB in both controlled and uncontrolled hemorrhage. HOC may be a viable alternative when WB is not available.

Limitations

- > Animal model
- > n=36

Acknowledgements

- > 59th Medical Wing (MDW)
- Clinical Investigations Research Support (CIRS)