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Abstract

Whether or not a piece of software is malicious is entirely dependent upon the context in

which the software is run. Current malware detection strategies have shown high classification

accuracy, but they lack contextual considerations. The objective of this thesis is to address the

development of a context-aware malware detection system. A definition of context and how

it pertains to malware detection is discussed. Based on this definition, two proof-of-concept

context-aware models utilizing Latent Dirichlet Allocation are developed to address different

aspects of context. These models provide insight into the challenges of including context in

malware detection models, and future work to improve the contextual aspects of the models

is discussed.

i
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Chapter 1

Introduction

1.1 Motivation

Cyber security is an ever increasing need, especially as society relies increasingly upon online

services. In recent times, several notable cyber attacks have demonstrated the need to further

our knowledge of cyber threats. In the SolarWinds security breach, an adversary was able to

spread malicious software to an estimated 100 companies and several agencies of the U.S.

federal government [1]. It is estimated that this attack could cost the U.S. government alone

hundreds of millions of dollars [2]. In a separate cyber attack, a major U.S. oil pipeline

was compromised, leading to a temporary shutdown of the pipeline [3]. With such severe

consequences, it is vital to increase our ability to detect and mitigate cyber threats.

Whether a given piece of software is malicious or not is entirely dependent on the context

in which the software is running. A given sequence of opcodes or system calls is not necessarily

malicious by nature because malice is relative to the desired outcome of running the software.

If a specific opcode or system call was malicious, it would simply not be built into the system

in the first place.

Take, for example, an autonomous drone with an onboard camera; turning the camera

on and off is not inherently malicious, otherwise the camera would be hard-wired on. There

1
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can be some times when turning the camera off is a desired, benign action, such as saving

power on the drone or preserving privacy in sensitive locations. That being said, a malicious

software can cripple the functionality of a drone by switching off the camera at undesired

times. The determining factor on whether or not turning the camera off is malicious is the

context in which the software chose to turn it off.

1.2 Outline

Chapter 2 outlines the prerequisite background topics, including malware analysis and the

machine learning techniques used in this work. Next, a brief literature review of relevant

efforts in malware detection and context-aware software analysis is given.

Chapter 3 details our methodology in developing a context-aware malware detection

model. We discuss the central point of how we should define context, as well as the rationale

for several proof-of-concept context-aware model iterations.

Chapter 4 presents the results of the models explained in Chapter 3, including a discussion

of how well context is addressed.

Finally, Chapter 5 discusses the main takeaways from our work, including a summary of

areas of improvement for future work.

2
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Chapter 2

Background

2.1 Prerequisite Topics

First, we will explain some prerequisite knowledge which will be necessary for full under-

standing of this research.

2.1.1 Overview of Malware Analysis

Malware analysis exists in two categories: static analysis and dynamic analysis [4]. Static

analysis refers to any technique in which a file is examined without running the code, whereas

dynamic analysis involves actually running the code and observing its behavior.

Static analysis of binary files is difficult because they are designed to be read by computers

and not humans. To solve this issue, it is common to use a disassembly tool, such as IDA

Pro [5] or Ghidra [6]. Disassembly is the process of taking an executable file and extracting

the assembly code and any annotations which are present. The disassembly can then be

analyzed for patterns, such as specific sequences of opcodes (known as signatures), or further

feature extraction can be done. Other interesting features in static analysis include looking

for system calls, hard-coded data such as strings, and control-flow features. Static analysis is

generally safe because no malicious software must be run. However, it may be difficult to

3
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statically examine code if it has been obfuscated.

Dynamic analysis involves running software samples and observing the resulting behavior.

This analysis is typically done in a sandboxed environment, such as a virtual machine, to

contain any malicious behaviors. In dynamic analysis, interesting features to collect include

the dynamic assembly sequence, system call sequence, and system changes such as file

modifications or registry edits. Dynamic analysis is advantageous because even if code is

obfuscated, malicious actions can be observed which may not have been apparent through

static analysis. However, some malicious code can detect that it is in a sandbox and mask its

malicious behavior to avoid detection.

2.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative statistical model used in natural language

processing (NLP) to model data, such as a corpus of documents [7]. LDA is used to learn

topics from the corpus which can be used to describe the documents, such that each document

is a mixture of those topics and each topic is a distribution over the vocabulary of the corpus.

In other words, LDA aims to learn which words in the vocabulary are related to each other

and group related words into topics, then it assigns each document a weighting of each

topic. Please note that in the literature, the number of topics is often called k. This naming

interferes with k from k-NN. To resolve this issue, we will refer to the number of topics

simply as “number of topics” and the k-NN parameter as k.

Before training an LDA model, the corpus must be translated into a bag-of-words (BoW)

model. A BoW model counts the frequency of words in a document. For example, given

a document “cat dog mouse cat cat dog”, the BoW representation is {“cat′′ : 3, “dog′′ :

2, “mouse′′ : 1}. BoW models are common in NLP and machine learning because they

turn documents into vectors of equal length which can be easily compared. While BoW is

sometimes used directly for classification, we will be using it as preprocessing for LDA.

An extension of LDA is hierarchical LDA (hLDA) [8]. Similarly to LDA, the goal of

4
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hLDA is to learn latent topics from a corpus of documents. However, in hLDA, the topics are

organized in hierarchically. At the top of the hierarchy is the most general topic, then as the

topics go deeper in the hierarchy, they become more specific. The hierarchical organization is

beneficial because topics are naturally arranged hierarchically and can be broken into more

specific topics. However, LDA is much simpler to use because the data result is simply a

vector.

To evaluate the quality of an LDA model, there are two primary methods: intrinsic

and extrinsic evaluation [9]. Intrinsic evaluation of a set of topics generally uses measures

such as perplexity or topic coherence. These measures are advantageous because they are

unsupervised measures, and therefore do not depend on labeled data. On the other hand,

extrinsic evaluations based on classification tasks can be more convenient of the end goal is

to use the LDA model for classification.

2.1.3 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is a machine learning algorithm which can be used for classifica-

tion [10]. The algorithm is simple to use, as typically the only parameter is k. In k-NN, first

a labeled training set is presented to the model, which the model stores for later comparison.

The model is then used to assign classes to new data points. The class of the new data

point is determined by a vote of the nearest k neighbors (typically determined by Euclidean

distance, but any distance can work). A common modification to k-NN is weighting the vote

of each neighbor by the inverse of its distance so closer neighbors are more influential in the

vote. The k-NN classifier is a useful tool because it requires no training iterations and has

few parameters to tune (typically just k).

2.2 Malware Classification with LDA

LDA has been applied to the field of malware classification [11]–[13].

5

12 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



Sundarkumar et al. [11] collected application programming interface (API) calls from a

set of programs and then trained an LDA model on those API calls. The LDA features were

then classified using various machine learning classifiers with a maximum accuracy of 98.61%.

Greer [12] utilized LDA and hLDA to model both static and dynamic opcode sequences of

sorting and searching programs. The LDA and hLDA results were both shown to differentiate

between sorting and searching program classes. The analysis of the topic similarity was

done by hand and not computationally, though these results did show promise in LDA to

distinguish between program behavior based on low-level features.

Djaneye-Bounjou et al. [13] extended Greer’s work by applying LDA to static opcode

sequences to classify malware. They classified the Microsoft Malware Classification Chal-

lenge (BIG 2015) malware dataset [14] using a k-Nearest Neighbors classifier on the topic

distributions with an accuracy of 97.2%.

2.3 Context in Software Analysis

Fernandez et al. [15] proposed a model for context-based access control policy focusing on

mobile devices. The idea was to limit access to certain sensitive resources based on the

context of the system. Context is comprised of elements, such as the physical context (I.e.,

location data), and the logical context, which includes a device profile, a user profile, and

a task profile. The premise of using physical specifications to help define the context was

of interest to us, but the overall model was fairly user-centric, making it incompatible with

autonomous vehicles (one of the motivations for this research).

Shebaro et al. [16] also worked on context-based access control policies for mobile devices,

but this study was more application focused. Their access control policy was similar to that

of [15], but the context was mostly based on location. The study features an experiment

where certain features of the mobile device were restricted at certain locations. This type

of access control can work for situations with a small, pre-defined setting, such as an office

6

13 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



building. However, it requires manual definition of acceptable context zones, which is less

desirable for scalability.

Shrestha et al. [17] developed a different approach to implementing context in a mobile

platform. Instead of basing context on the location, they define their context based on

physical gestures done by the user. These gestures are intended to ensure that the user was

the one who triggered certain sensitive actions to prevent automated attacks by malware.

Because the context is defined solely based on user interaction, it does not satisfy our needs.

Narayanan et al. [18] also aimed their study at mobile devices, focusing on context-aware

malware detection for Android phones. They utilize program representation graphs, such as

system call graphs, to represent applications running on the devices. By examining the entry

point to sensitive functions, such as accessing position data, the context is defined according

to whether the user was aware or unaware of the action. Again, while this definition of

context works well for mobile devices, it does not generalize to autonomous systems.

The existing contextual methods we have explored have provided some insight into how

to define context. However, they are all targeting mobile devices, such as smart phones,

typically requiring on some user interaction to define the context. There is still a need to

pursue the topic of context-aware malware detection.

7

14 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



Chapter 3

Methodology

3.1 Threat Model

A vital part of addressing any cyber security threat is defining the threat model. Without

a specific threat model, the problem space is difficult to define. In our threat scenario, a

malicious actor causes some software from a 3rd party vendor to perform some malicious

action. We require a context-aware malware analysis model to detect such malicious software

before it is run on an autonomous drone. A diagram of our threat model is shown in

Figure 3.1.

Figure 3.1: Threat model diagram.

8
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3.2 Context Definition

One of the biggest challenges in this work has been defining context. In Chapter 2.3, existing

literature regarding context in software analysis is discussed. However, these works do not

define context in a way which aligns with the goals of this work. In order to properly address

context, we want to address the following questions:

1. What is the physical context of the system (e.g., location and altitude)?

2. How does the actual behavior compare to the expected behavior?

3. Why is the software making certain decisions?

The physical context is an important component of context, especially for mobile systems,

such as autonomous drones. For instance, if a drone performs a specific action, it may be

difficult to tell if that action is benign or malicious without considering factors such as its

position, altitude, or external weather conditions to name a few. Recall the autonomous

drone example from Chapter 1.1; turning the camera off in some areas may be beneficial for

preserving sensitive data, while turning the camera off in other areas can be malicious if the

purpose is to obstruct the gathering of intelligence. The simple act of turning the camera off

is not inherently malicious, but the physical conditions which caused the camera to turn off

can indicate whether the act was malicious or benign.

Understanding the expected behavior of a program is foundational for developing context

because it defines what actions are expected. For example, it makes sense for a text editor

to read and write files on the system because that is part of the expected behavior, and

modifying files fits the context. It would probably be unexpected for a text editor to start

recording from a webcam because that behavior does not fit the context of a text editor. In

contrast, a program designed for video calls would be expected to access the web cam because

that fits the context of a video call software. The act of accessing the webcam cannot be

labeled as malicious or benign without knowledge of what the program should be doing.

9
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Perhaps the most fundamental question in determining the context of a program is why

it makes certain decisions. This question is much broader and difficult to address precisely

than the previous two. When a human expert examines a piece of software to determine

whether or not it is malware, they are looking not only at what behaviors are present, but

looking at what conditions will cause such behaviors to occur. The human expert can then

rely on domain knowledge and previous experience to determine if the actions are malicious

or benign.

3.3 Cross Validation

Due to the random nature of fitting the LDA model, we observed high variation in the

accuracy of classifiers which use the LDA data as part of their feature spaces. To tune

the parameters of the models, it is important to know whether differences in classification

accuracy are due to randomness in the fitting process or if the parameters are actually better.

To get a better evaluation of the classifiers, we applied k-fold cross validation [10]. The k-fold

cross validation process is described by Algorithm 1.

Algorithm 1: k-Fold Cross Validation

Data: Dataset D

Randomly shuffle D ;

Split D evenly into fold0, fold1, . . . foldk−1 ;

for i← 0 to k − 1 do

Initialize a new model ;

Fit model on D \ foldi ;

Evaluate model accuracy on foldi ;

end

Compute mean and standard deviation accuracy ;

An alternative cross validation strategy is holdout validation. In this strategy, only a

single model is fitted with set testing and training partitions, which takes less time than

10
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cycling through all of the folds. However, k-fold cross validation is advantageous over holdout

validation in our case because multiple models are trained, allowing us to observe the mean

classification accuracy and standard deviation. By testing the models on multiple distinct

testing sets, we are able to make stronger claims about the performance of our models.

3.4 Datasets

3.4.1 Das Malwerk Dataset

For evaluating our first context-aware model, we wanted a simple dataset for preliminary

testing. We also had an initial requirement to use live files to collect dynamic features. This

requirement was later dropped from the model, but the dataset was chosen under constraint

of needing live files. To meet these requirements, we collected malicious files from Das

Malwerk [19] and benign files from a default installation of Windows 7. This dataset was

chosen because of its small size and the fact that it contains live executable files, meaning it

met our requirements. This dataset contains 576 malicious files and 646 benign files.

To get the dataset into a usable state, there were several preprocessing steps. First, the

static assembly commands were obtained using objdump [20]. Given an input file IN FILE

and a target output file OUT FILE, objdump can generate the disassembly using the -d flag

as follows (on Linux systems):

objdump -d ${IN_FILE} > ${OUT_FILE}

Next, the static assembly commands must be filtered down to documents consisting of

sequences of opcodes. To achieve this, several command line utilities are piped together as

a series of string stream filters. The first is cat [21], which concatenates files and dumps

the output to standard output of the terminal. Next, sed [22] filters the incoming stream

based on regular expressions and puts the filtered stream in standard output. Lastly, the

cut [23] utility is used to isolate the column of the remaining output which contains the

opcodes. The process of taking an input file IN FILE (the output from objdump), filtering

11
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out the opcode sequence, and outputting it to the output file OUT FILE is as follows (again,

on Linux systems):

cat ${IN_FILE} | sed ’/[^\t]*\t[^\t]*\t/!d’ | cut -f 3 | sed ’s/ .*$//’ \

| sed ’/\(bad\)/d’ > ${OUT_FILE}

The resulting sequences of opcodes are used as documents for the models discussed in

this study.

3.4.2 Microsoft BIG 2015 Dataset

After preliminary experimentation, we found several drawbacks with the Das Malwerk dataset

we wanted to fix for further testing. The biggest drawback is that the Das Malwerk dataset

consists of only two classes, and each class contained a very broad mix of types of software.

The benign class had all of the executable files found on a default Windows 7 installation,

which includes web browsers, text editors, media players, and many others. Furthermore,

the malicious class includes a mixture of unsorted malware programs, and sorting them into

more specific groups would have been a manual process prone to error. With such drastically

different functionality, it does not make sense to assign a single acceptable context to each

class. The scenario was just too simple.

To improve our methodology, we needed a better dataset. The new dataset must have

multiple classes which are separated by specific program type, and not just into malicious

and benign classes. We no longer had the constraint of needing live files because the dynamic

analysis components had been set aside, which gave us more dataset options. To meet these

requirements, the second dataset we used was from the Microsoft Malware Classification

Challenge (BIG 2015) malware dataset [14]. This dataset has become a benchmark for

malware detection algorithms, and it has been widely studied. The details of the class

distribution of the BIG 2015 dataset are shown in Table 3.1.

One of the interesting challenges about this dataset is that the number of samples varies

by orders of magnitude between some classes. We do not explicitly address this issue and
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Table 3.1: Details of the BIG 2015 dataset class distributions.

Class Name Class ID Number of Samples

Ramnit [24] 1 1541
Lollipop [25] 2 2478
Kelihos ver3 [26] 3 2942
Vundo [27] 4 475
Simda [28] 5 42
Tracur [29] 6 751
Kelihos ver1 [26] 7 398
Obfuscator.ACY [30] 8 1228
Gatak [31] 9 1013

leave it to future work, though several existing studies have addressed the issue [32]–[34].

Preprocessing for the BIG 2015 dataset was much simpler than for the Das Malwerk

dataset because BIG 2015 was distributed in disassembly form. Therefore, it only required

filtering it down to a sequence of opcodes. The opcodes were filtered out using regular

expressions similarly to the Das Malwerk dataset.

3.5 Context-Free Model

Before developing the context-aware models, we demonstrated that LDA modeling is able

to extract useful features from the dataset. To do this, we tested a context-free malware

classification model using LDA features in a k-NN classifier. The context-free model was also

used to explore parameters of the LDA and k-NN models, namely the number of topics in

LDA and k in k-NN. Assuming we have each dataset such that each document is a sequence

of opcodes (done via preprocessing, described in Chapter 3.4), the process for creating the

context-free model is as follows:

1. Transform all documents into BoW documents.

2. Fit LDA model on the training partition.

3. Transform all BoW documents into topic distributions.
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4. Fit k-NN classifier on the topic distributions of the training partition.

5. Evaluate k-NN classifier on the topic distributions of the test partition.

To thoroughly evaluate this model, we use 5-fold cross validation as described in Chap-

ter 3.3. We limited the number of folds to five for model training time. In the LDA models,

we explored the effect of the number of topics, testing values from 5 to 95 at multiples of 5.

For k-NN, we tested values for k taking the odd numbers from 1 to 49.

To help understand the features generated by LDA, a 10 topic LDA model was fit on

the BIG 2015 dataset, and the learned topics are visualized as word clouds in Figure 3.2.

Each topic is a probability distribution over the vocabulary of the corpus, and the probability

of each word is shown by the size of the word in the word cloud. The larger words should

be interpreted as more significant to the topic, while the smaller words are less significant.

Note how some topics, such as Figure 3.2a, seem to have only a few words. These topics still

span the entire vocabulary, but the probability distribution is heavily skewed toward a few of

the words, and the rest of the words are so insignificant to the topic that they are not large

enough to be visible in the word cloud.

3.6 Context Bit Model

In developing our first context-aware model, we started with a high-level idea of how the data

and features should be used. Our original idea was to take several different sets of features

from different data collection strategies and combine them with contextual information in an

ensemble classifier. First, the static disassembly of a file would be collected and filtered to a

sequence of static opcodes and fed through an LDA model. Next, a dynamic assembly trace

would be collected from each file and similarly filtered to a sequence of dynamic opcodes

and fed through an LDA model. The final feature is a set of high level behavioral features.

The contextual information in this model is based on the physical context of the system,

which is derived from environmental information from sensor data. This data would then
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(a) Topic 0. (b) Topic 1. (c) Topic 2. (d) Topic 3. (e) Topic 4.

(f) Topic 5. (g) Topic 6. (h) Topic 7. (i) Topic 8. (j) Topic 9.

Figure 3.2: Word cloud representations of each topic for a 10 topic LDA model fit on the
Microsoft BIG 2015 dataset. The size of each opcode indicates its weighting in the topic.

be interpreted by an environmental context model and fed into the ensemble classifier. A

diagram of this context-aware model is shown in Figure 3.3.

While the ensemble system could provide more diverse features for classification, there

were limitations. The biggest limitation was the speed at which the dynamic features could be

collected. Because the dynamic features were not necessary to explore context, the ensemble

classifier was removed, as with the behavioral analysis and the dynamic assembly trace. The

simplified context-aware model is shown in Figure 3.4.

Generating the sensor data and developing an environmental contextual model would be

difficult to generalize for our proof-of-concept model. For this reason, we black-boxed the

sensor data and context model and simplified it to be a single bit to represent “good context”

(0) and “bad context” (1). A context bit was randomly generated for each data point, where

it was combined with the LDA feature to form the feature vector. For example, if the LDA

model has 15 topics, the feature vector would be 16-dimensional; the first 15 elements are be
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Figure 3.3: Ensemble context-aware model with context represented as a context bit.

Figure 3.4: Simplified context-aware model with context represented as a context bit.

the 15 topic weights, and the final element is the context bit.

The data was relabeled after applying the context bit. For this process, we must take

a different perspective on what the labels mean. In the context-free model, each file was

assigned either malicious or benign with no contextual information. However, when we

consider the context of the system, whether or not a file is malicious is dependent on the

context the file is running in. Instead, the files should be thought of as whether or not

they are operating in their expected context. If a benign file is operating in a good context

(context bit is 0), that should be labeled as operating within proper context. Likewise, if a

malicious file is operating in a bad context (context bit is 1), it should also be labeled as

operating within proper context. A file is labeled as not violating its expected context if

the nature of the file does not match the context, meaning a benign file in a bad context

or a malicious file in a good context. Files operating within proper context were labeled 0,

16

23 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



and files operating outside of proper context were labeled 1. These new features were then

classified using a k-NN classifier. Because this model relies on only having two classes, we

used the Das Malwerk dataset described in Chapter 3.4.1.

3.7 Expected Behavior Model

While the context-aware model in Chapter 3.6 addresses physical context, we also wanted

to attempt to address other areas of context. For this model, we compared the expected

behavior of a file compared to its actual behavior. Expected behavior of a program can be

difficult to quantify. For this case, we are considering the class label to indicate which type

of software we are expecting. To ensure that all of the files within a specific class are actually

similar in functionality, we used the BIG 2015 dataset to test this model.

Like the model in Chapter 3.6, this model processes the sequence of static opcodes through

an LDA model to get the topic distributions. The difference here is in how the context data

is acquired. Because the class label indicates the expected behavior of the program, if we had

a program which was mislabeled, that would represent a context violation because the label

does not match the actual software. Referring back to the threat model, if the 3rd party

software vendor gives us a piece of software and says it’s a video call program, we would

expect it to operate within similar context to other video call programs we have seen in the

past. If the vendor gives us a program and says it is a video call program, but it turns out to

be a file sharing program, we should detect that the program is not matching the behavior we

would expect for a video call program and realize that it is not operating within the expected

context.

To simulate receiving a software which is not the type we are expecting, we took the BIG

2015 dataset and changed half of the class types to the incorrect type. For programs which

had the original type, we labeled those as operating within proper context. If the name was

changed to an incorrect type, we labeled those programs as violating their expected context.
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The feature vectors for this dataset were formed similarly to the features of the context

bit model. Instead of adding the LDA features and the context bit together, we added the

LDA features and the class type (with half of them changed to the wrong type). Because

the magnitude of the class type is arbitrary, we represented the class identifier as a one-hot

encoded vector. The one-hot encoded vector ensures that all class identifiers are represented

with the same magnitude. If the LDA model has 15 topics, the feature vectors would be

24-dimensional; the first 15 elements are the LDA topic weights, and the last 9 elements are

from the one-hot encoded vector for the class identifier.
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Chapter 4

Results

4.1 Context-Free Model

The context-free model was trained on both the Das Malwerk and the BIG 2015 datasets.

The purpose of the context-free model was to test that the LDA models were producing

useful features for comparing the different classes.

The context-free classifier for the Das Malwerk dataset for various numbers of LDA topics

is shown in Figure 4.1. While we tested from 5 topics to 95 topics in multiples of 5, we only

plot a handful of different numbers of topics against each other for visual clarity. We have

also excluded the error bars for the same reason.

In Figure 4.1, there is a clear trend of maximal accuracy at k = 1. To compare all of the

LDA models at their maximal performance, we plotted their performance with k fixed at

1, shown in Figure 4.2. The 5 topic LDA model is excluded because its performance was

significantly lower than the others, making the differences between the other models harder to

notice. The maximal performance occurs with 85 LDA topics at k = 1, with a classification

accuracy of 95.99%.

The context-free model for the BIG 2015 dataset for various numbers of LDA topics is

shown in Figure 4.3. However, this time the trend appears where the maximal value for
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Figure 4.1: Context-free k-NN accuracy vs k for Das Malwerk. For visual clarity, not all
numbers of topics are shown and error bars are not included.

Figure 4.2: Context-free model k-NN accuracy vs number of topics for Das Malwerk fixed at
k = 1. For visual clarity, the 5 topic model is excluded.
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each LDA model occurs at k = 5, with the exception of the 15 topic model where k = 1

is a bit higher. We plotted all of the LDA models with k fixed at 5 to compare their best

performances, shown in Figure 4.4. In this case, the best performing model is with 90 LDA

topics at k = 5, with a classification accuracy of 97.03%.

4.2 Context Bit Model

The context bit model (trained on Das Malwerk) for various numbers of LDA topics is shown

in Figure 4.5. As with the context-free model for Das Malwerk, the context bit model exhibits

a trend where the maximum classification performance occurs at k = 1. To better compare

the performance of all of the LDA models (except for 5 topics), we plotted their performance

with k fixed at 1, shown in Figure 4.6. The maximal performance occurs with 45 LDA topics

at k = 1, with a classification accuracy of 94.92%.

4.3 Expected Behavior Model

The expected behavior context model (trained on BIG 2015) for various numbers of LDA

topics is shown in Figure 4.7. As with the context-free model for BIG 2015, all of the models

have their best accuracies at k = 5. A plot showing all of the LDA models with k fixed

at 5 is shown in Figure 4.8. The best performance occurs with 75 topics at k = 5, with a

classification accuracy of 97.72%.

4.4 Discussion

The context-free model shows good performance on both the Das Malwerk and the BIG 2015

dataset, showing performance on par with other works utilizing LDA for malware detection.

Therefore, we have shown that LDA features are useful for distinguishing the different classes

from each other. The error bars are large and overlapping for many of the LDA models due to
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Figure 4.3: Context-free model k-NN accuracy vs k for BIG 2015. For visual clarity, not all
numbers of topics are shown and error bars are not included.

Figure 4.4: Context-free model k-NN accuracy vs number of topics for BIG 2015 fixed at
k = 5. For visual clarity, the 5 topic model is excluded.
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Figure 4.5: Context model bit k-NN accuracy vs k. For visual clarity, not all numbers of
topics are shown and error bars are not included.

Figure 4.6: Context bit model k-NN accuracy vs number of topics fixed at k = 1. For visual
clarity, the 5 topic model is excluded.
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Figure 4.7: Expected behavior model k-NN accuracy vs k. For visual clarity, not all numbers
of topics are shown and error bars are not included.

Figure 4.8: Expected behavior model k-NN accuracy vs number of topics fixed at k = 5. For
visual clarity, the 5 topic model is excluded.

24

31 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



the randomness involved in fitting the LDA models. While the performance generally stayed

above 90%, such large error bars make it difficult to be confident that the best parameters we

found are actually the best and not just a fluke. Regardless, the performance is good enough

to justify the use of LDA features for the context-aware models.

An interesting pattern was that the Das Malwerk dataset always had the best classification

accuracy with k = 1, while the BIG 2015 dataset always had its best classification accuracy

with k = 5. This trend was present in virtually all numbers of topics for both the context-free

and context-aware models.

The context bit model shows good performance for the task we designed. The performance

was a bit lower than the context-free system, which was expected because this implementation

is essentially equivalent to injecting noise into the system. The issue is that the task was

oversimplified. For this model, the physical context is reduced to a single binary value. In

reality, the physical context will be a much more complicated issue. The takeaway from this

model is that the focus should be on the portion which we black-boxed for this study, which

is the model which interprets the physical data into a context. Additionally, the physical

context alone does not form a complete context, and it requires inclusion of other aspects of

context.

The expected behavior context model performs its intended task very well. One area

which might impact the performance is the way the labels are generated. If the class identifier

is changed, the program is marked as a context violation, regardless of what class it was

switched to. However, if two classes are similar to each other, it is possible that their LDA

topic distributions are expected to be similar. This issue was considered, but the performance

is high enough to demonstrate the desired concept.
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Chapter 5

Conclusion

In this research, we have explored the definition of context in malware detection and two

proof-of-concept context-aware models. These models use LDA to extract structural features

from the code, combining those features with contextual features to detect context violations.

The first model utilizes the system’s physical context, while the second compares the expected

and actual behavior of the programs. These models are successfully able to detect their

respective context violations.

The primary takeaway from this work is that it is difficult to define precisely what context

is in malware analysis. In fact, a significant endeavor on this research was just determining

how to frame context for software. We framed the idea of context as a series of questions

which we should answer, but they do not translate directly into a computational model. The

proof-of-concept models we presented showed strong performance at their designated tasks,

but they do not make up a complete picture of context, leaving room for a multitude of

future research directions.
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5.1 Future Work

5.1.1 Dynamic Analysis

In this work, we only utilized static analysis techniques. For future work, it would be

advantageous to include dynamic analysis features and use them in conjunction with the

static analysis. Combining the two types of features could improve the robustness of the

models. Our initial model included dynamic assembly trace features and high-level behavioral

features, but these features were not included in the final model due to time limitations in

collecting the data. While the static LDA features were shown to be effective at classifying

the datasets, taking both dynamic assembly sequences and high-level behavioral features

would contribute a more complete picture of the programs. Additionally, high-level behavioral

features are more interpretable than the LDA topics because they convey tangible actions

as opposed to the structure of the underlying code. The static opcode analysis could be

bypassed if the attacker has knowledge of the detection strategy, but high-level features must

occur in some form to actually perform a given action.

Another limitation of the static analysis is that it does not convey any temporal relation-

ships between events. In reality, actions will happen in a time sequence over the duration

of program execution. Having time-series data of high-level behaviors with correlating

environmental information will help to develop a more complex contextual model.

5.1.2 Biological Inspiration

A huge area to improve on this work is looking at biological inspiration for the formation

of context. So far, we have relied on statistical methods to implement the context-aware

models. While we were able to accomplish small pieces of the context problem this way, it is

becoming apparent that statistical methods alone will not be able to completely solve the

problem of context. Instead, it would be interesting to look for some biological into how

the brain creates context. When a reverse engineer looks at a program, they are able to use
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context they have developed from past experience as well as knowledge of the overall system

to determine whether an action is malicious or benign. The end-goal would be to develop a

model which can mimic the way a human expert can assess the context of a program. To

aid with the biological inspiration, neurologically inspired computational models should be

investigated.

5.1.3 Physical Context Model

One of the most obvious areas for improvement is in the physical context model, as this work

leaves that system as a black box. Testing should be done to try different kinds of models

to see how to most effectively utilize the data. In our system, we had the physical context

model separated from the rest of the model, but it may be a better idea to use a model which

can directly learn which actions are allowed in which context. Exploring neural networks or

another model which actually “learns” would be an ideal starting point.

5.1.4 Combining Context Models

At this point, the physical context and expected behavior context is evaluated in two separate

models. However, it is necessary to consider both of these elements to determine if a given

program is well-behaved given the context. There are several options, each with varying

levels of implementation difficulty and robustness. The simplest solution would be to keep

the models separate and just say that a program must pass either individual context check.

However, this solution may not be robust enough, as it considers the context separately and

not wholistically.

5.1.5 Parameter Tuning

In this work, some basic parameter exploration was done on the LDA and k-NN algorithms.

However, the randomness of LDA fitting caused large error bars for the k-NN classification
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accuracy which have significant overlap. It is possible that further refinement of the LDA

parameters aside from just the number of topics is required to get more consistent results

over this type of data. Future work should be done to try to refine the parameter tuning.
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