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Executive Summary 

Problem and Objective 
The Submarine Learning Center employs a synchronous distance-learning 

environment based on virtual-world technology. This learning technology makes it 
possible to provide expert instruction to sailors located around the world, allowing them to 
interact in an engaging, virtual learning environment. In this system, students are 
represented as avatars interacting with each other and virtual objects in a compelling 3D 
simulation. Although virtual-world technology provides audio and text communication 
between students and instructors, it does not provide nonverbal student feedback to the 
instructor indicating the student’s emotional state. Such emotive cues provide the instructor 
valuable information to adjust and adapt the pace and content of instruction to the students’ 
affective and cognitive states. 

The emerging technology of automated affect recognition provides an innovative 
approach to providing nonverbal instructional feedback. Over the last 20 years, there have 
been significant advances in the capability of detecting student affect states as they learn. 
However, to take full advantage of this technology, an instructional system must not only 
detect the affective states of students but also respond appropriately to those states. Thus, 
the development of an affect-sensitive learning system must address three separate 
problems. The first is how to dynamically collect cognitive and affective information from 
the learner to assess affective state. The second is how to understand and model the 
implications that those affective states have on instruction. Given that understanding, the 
third is to choose an appropriate instructional intervention for individual students and 
contexts. Once the intervention is deployed, student affect is reassessed and the cycle 
restarts. All three problems or goals for developing affect-sensitive instruction are depicted 
in the figure as an iterative loop. 

The objective of this report is to examine and assess the maturity of the science and 
technology behind the three problems faced in developing affect-sensitive instruction: 
assess state, understand state, and determine intervention. 
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Three Problems of Affect-Sensitive Instruction Represented as an Iterative Loop 

Understand Affect State 
Seven prominent theories of emotion were examined in an attempt to understand the 

function and purpose of emotions and to enumerate affective states that are relevant to the 
Submarine Learning Center learning environment: (1) Ekman’s Basic Emotion Theory; (2) 
Russell’s Circumplex Model of Affect; (3) Watson, Clark, and Tellegen’s Positive and 
Negative Affect Schedule (PANAS); (4) Ortony, Clore, and Collins (OCC) Model of 
Emotions; (5) Pekrun’s Concept of Academic Emotions; (6) Graesser and D’Mello’s 
Learning Centered Emotions; and (7) Keltner’s Consensual Taxonomy. For each of these 
theories, we provided a brief synopsis its theoretical constructs and taxonomy of affective 
states. 

Emotion research is an active area of investigation, and researchers disagree on some 
issues. Nevertheless, researchers concur on some basic capabilities of emotions and the 
functions that they serve. In particular, four points of agreement have implications for 
emotion-recognition technology: 

• Emotions arise through an unconscious appraisal process. Unless a person is 
consciously trying to deceive others, the emotion that he or she displays is the 
emotion that he or she is experiencing. 

• Emotional experiences are brief and transitory. This implies that assessment or 
measurement of affect must occur in real time or be explicitly time linked. 

• There are distinct and detectable cues for determining the emotions that 
someone is experiencing. Any particular emotion is brought about by a distinct 
set of antecedent conditions or events and has unique behavioral and 
physiological expressions. 

• Humans are good at recognizing and interpreting the emotional cues 
experienced from other people. Researchers view this ability as an important 
basic skill in forming social relations. 
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We found little agreement among the theories in their enumeration of affective states. 
In the end, we identified 43 affective states that could be considered as candidate emotions 
for feedback from students. Not all these emotions could or should be monitored for any 
educational application. Whether an emotion should be monitored depends on (1) the 
accuracy of the technology that is used to detect the affective state, and (2)  the effect that 
the affective state has on learning processes and outcomes. 

Assess Affect State 
We examined the state of affective computing and its application to synchronous 

distance learning for the Submarine Learning Center. Affective computing is generally 
defined as computing involving or arising from human emotion. We highlighted the major 
problem areas in affective computing and central research findings in the field. Our 
analyses were based on published research literature and interviews with 12 subject-matter 
experts who actively work in the field of affective computing. 

We started with an examination of the three goals defined in the affect computing 
loop (see the figure). One of our interviewees, James Lester, offered his assessment of the 
technological maturity of the three problems, maintaining that the first goal (assess or 
recognize affect state) is the most mature, the third goal (determine learning intervention) 
is fairly mature, and the second goal (understand affect state) being the least mature.  

We then examined whether emotion recognition should be based on a single mode of 
expression (unimodal) or more than one mode (multimodal). The multimodal approach is 
generally desired. The data suggest that any multichannel model that includes facial 
features with contextual cues (e.g., dialogue) is the best emotion-detection strategy. Note, 
however, there was almost unanimous agreement among our experts that if one were to 
select a single signal to use to detect affect, eye-tracking is the most effective method. 

The next section considered the distinction between sensor-free and sensor-based 
approaches to affect detection. Sensor-free affect-detection research efforts focus on 
developing affect-detection techniques that recognize affect using non-sensor-based 
sources, such as log files of user interactions with a computer-based learning environment. 
Sensor-based affect detection relies on physical sensors (e.g., eye-tracker, facial-feature 
detector, EEG wearables, heart rate monitor, skin response, body-posture detector) to 
capture behavioral manifestations of emotion through physiological response, facial 
expression being the most popular in research. 

Then we discussed the methodological consideration of establishing ground-truth 
measures of affect to build automatic emotion-detection platforms. There are three 
established methods for establishing ground truth of affect during learning: observation 
methods (e.g., the Baker-Rodrigo Observation Monitoring Protocol or BROMP), self-
report methods, and log-file annotation (less popular). The BROMP method is perhaps the 
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most accepted approach to determining the ground truth of the affective states of students 
while learning. 

Finally, we discussed the extent to which commercial learning-management systems 
(LMSs) could support automatic affect recognition in a synchronous distance-learning 
environment. There are at least two examples where affect-detection systems based on 
student responses have been incorporated into LMSs. These systems suggest integrating 
rating processes of student interaction with the LMS (e.g., completing assignments on time) 
as a way to understand their affect with learning material.  

Determine-Learning Intervention 
With regard to affect-sensitive learning systems, researchers have used two general 

approaches to learning intervention. The first is proactive, in that learning systems are 
designed to induce positive emotional states or impede negative states before instruction 
begins. In comparison, reactive systems are those that detect and respond to affective states 
as they arise. Reactive systems have been further divided into those employing task-loop 
adaptivity, which focuses on selecting learning tasks or problems that are appropriate to 
the individual learner’s states or traits and those employing step-loop adaptivity, which 
pertains to changes within a task or learning activity based on the learner’s momentary 
state. 

Proactive systems are particularly appropriate to the collaborative environment in 
synchronous distance learning because they focus on the similarities, rather than the 
differences, between students. For example, if student affect data identify course elements 
that are particularly confusing or frustrating to most or many students, the course would 
then be redesigned to remove those sources of confusion. 

Reactive systems are more difficult to apply to synchronous distance learning because 
they call for learning adjustments at the individual student level. It is conceivable, however, 
that aspects of reactive systems could be incorporated into synchronous distance learning. 
For instance, suppose that an instructor has reason to believe that students are likely to be 
confused at a certain point in the lesson. The instructor could pose multiple-choice 
questions designed to probe those points of confusion, and the student responses could be 
displayed on an instructor dashboard. If there are only a few items that students answered 
incorrectly, the instructor could explain why those particular answers were incorrect, 
thereby removing the source of confusion. 

Conclusions and Recommendations 
We presented five conclusions concerning the theories and technologies of emotion 

recognition and affect-sensitive instruction: 
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1. Successful implementation requires solving three separate problems—assessing 
the affective state, understanding the affective state, and determining the 
learning intervention. 

2. Emotion recognition is based on well-established science though some 
theoretical issues remain contentious. 

3. The evidence is inconclusive about whether affect-sensitive instruction improves 
learning outcomes. 

4. Student disengagement is not necessarily counterproductive. 

5. Emotional traits, as well as states, are also relevant to learning.  

We offered six specific recommendations for applying emotional-recognition 
technologies to the synchronous distance-learning environment used, or planned to be used, 
at the Submarine Learning Center: 

1. Use multiple modes of affect detection. 

2. Focus on most relevant and detectible emotions. 

3. Use student audio and video feeds to detect emotions. 

4. Use proactive approaches to design courses that induce positive emotions, 
impede negative emotions, or both. 

5. Incorporate instructional features to enhance engagement. 

6. Machine-learning models show promise, but have caveats. 
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1. Introduction

A. Problem
The Navy Education and Training Command (NETC) is responsible for the training,

education, and professional development of the Navy’s 400,000 active duty and reserve 
sailors from accession and continuing throughout their careers. NETC is a global leader in 
rapid development and delivery of effective, leading-edge training for naval forces.  

In its mission to prepare undersea warriors, NETC’s Submarine Learning Center 
(SLC) has a synchronous distance-learning system that employs virtual-world technology. 
This learning technology makes it possible to provide expert instruction to sailors located 
around the world, allowing them to interact in an engaging virtual learning environment. 
In this system, students are represented as avatars through which they can interact with 
each other and with virtual objects in a compelling 3D simulation. Although virtual-world 
technology provides audio and text communication between students and instructors, 
current systems do not provide nonverbal student feedback indicating the student’s 
emotional state to the instructor. Nonverbal feedback, such as facial expressions and body 
posture, can provide valuable cues about student engagement and comprehension. Such 
emotive cues are valuable information the instructor can use to adjust and adapt the pace 
and content of instruction to the students’ affective and cognitive states. 

B. Report Objective and Organization
The emerging technology of automated affect recognition provides an innovative

approach to providing nonverbal instructional feedback. Over the last 20 years, there have 
been significant advances in the capability of detecting students’ affect states as they learn. 
The objective of this report is to examine and assess the maturity of the science and 
technology of affect recognition as it relates to synchronous distance learning. This chapter 
provides a general overview of affect-recognition technology. Subsequent chapters 
examine how this technology could be applied to synchronous distance learning. The final 
chapter presents conclusions relevant to the SLC distance-learning environment and 
specific recommendations for implementing emotion-recognition technology in that 
environment.  
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C. Background 

1. Affective Computing 
New developments in human-computer interaction technology seek to close the 

communication gap between the human and the machine. A key component needed to meet 
these requirements is the ability of computer systems to assess user affect (emotions, 
moods, feelings). The knowledge of a user’s affect can provide useful feedback regarding 
the degree to which a user’s goals are being met, enabling dynamic and intelligent 
adaptation. This area of research, called affective computing, grew largely from Picard’s 
(1997) highly influential book on the topic, which triggered a wave of research focusing 
on creating technologies that can monitor and appropriately respond to affective states of 
a user. Affective Computing is generally defined as computing involving or arising from 
human emotion (Calvo & D’Mello, 2010; D’Mello, Kappas, & Gratch, 2018; Picard 1997). 

Picard’s (1997) work on affective computing shaped the research space in this area 
for several years on key issues (at that time) in affective computing. In Picard’s terms, 
affective computing is computing that relates to, arises from, or influences emotions. And 
in her work, she defines important issues related to affective computing, suggests models 
for affect recognition, and presents ideas for new applications of affective computing to 
computer-assisted learning, perceptual information retrieval, arts and entertainment, and 
human health and interaction. Picard discusses how, and shows that, affect plays a key role 
in understanding phenomena such as attention, memory, and aesthetics, and she goes on to 
support the idea that if computers are to interact naturally and intelligently with humans 
then computers need the ability to at least recognize affect. 

Following Picard (1997), there has been considerable research on incorporating user 
affective states into the decision cycle of a computer interface (e.g., D’Mello & Graesser, 
2010b). The inclusion of emotions into the decision cycle of computer interfaces is 
motivated by the complex interplay between cognition and affect, where cognitive 
activities such as causal reasoning, planning processes, and goal appraisal operate 
continually throughout the experience of affect (Baker et al., 2010; D’Mello & Graesser, 
2010b; Russell, 2003). A computer interface that is sensitive to this complex interplay 
between cognition and affect is expected to be more usable, useful, naturalistic, social, and 
fun (D’Mello & Graesser, 2010b). For example, an affective-sensitive learning 
environment that detects and responds to students’ frustration in the classroom is expected 
to increase motivation and improve learning gains compared with a system that ignores 
student affect (Calvo & D’Mello, 2010). 

Affective computing, an interdisciplinary field of research owing much of its roots to 
decades of emotion research in psychology and cognitive science, is of interest to a number 
of fields, including machine learning, linguistics, computer vision, psychology, signal 
processing, education, and neuroscience. Affective computing relies on a computer’s 
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ability to reliably detect a user’s affective state. This is a challenging problem because 
affect and emotions are psychological constructs with noisy and fuzzy boundaries, and they 
encompass neurobiological changes, physiological responses, bodily expression, and 
cognitive and metacognitive states (D’Mello, Kappas, & Gratch, 2018; Calvo & D’Mello, 
2010). Adding to the affective computing challenge is the varying nature of affect from 
person to person and from context to context (e.g., D’Mello & Graesser, 2010b).  

Researchers have made considerable advancements in affective computing as it 
relates to student engagement and learning goals. Traditional measures of student 
engagement in the classroom include self-report questionnaires, online observations, 
teacher ratings, and video recording (D’Mello, Dieterle, & Duckworth, 2017). More recent 
computational measures of engagement include affect-aware systems that measure fine-
grained components of engagement in an automated fashion using two methods: (1) 
biometric sensors (e.g., eye tracking) and (2) semantically meaningful interactions (i.e., 
analysis of the way people use language) with the software being used (Baker & 
Ocumpaugh, 2015). The ultimate goal is to model the assumed link between internal 
affective state, engagement, and human behavior by means of machine-readable biometric 
signals or human-computer interactions (D’Mello, Kappas, & Gratch 2018; Calvo et al. 
2015; Baker & Ocumpaugh, 2015). 

2. Key Problem Areas in Affect Recognition 
Technologies can support learning in a wide variety of contexts and sociocultural 

environments, and they are most useful when designed to meet specific needs and contexts 
of the learning community of interest (NASEM, 2018). Specifically, technology provides 
users affordances, or opportunities that a technology makes possible, related to learning 
and instruction. For example, distance learning has different features like text boxes, 
interactive dialogue boxes, and spoken messages, affording the user important learning 
opportunities (NASEM, 2018). There are eight identified key affordances of learning 
technologies: interactivity, adaptivity, feedback, choice, nonlinear access, linked 
representations, open-ended learner input, and communication with other people. Table 1 
lists these affordances with their definitions.  

 
Table 1. Key Affordances of Learning Technologies 

Affordance Description 
Interactivity The technology systematically responds to actions of the learner. 
Adaptivity The technology continually adapts information that is contingent on the 

behavior, knowledge, and characteristics of the learner. 
Feedback The technology gives feedback to the learner on the quality of the 

learner’s performance, sometimes including how the quality could be 
improved. 
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Affordance Description 
Choice The technology gives options for what to learn and how to learn. 
Nonlinear Access The technology allows the learner to select or receive learning activities 

that deviates from a set order. 
Linked 
Representations 

The technology provides quick connections between representations for 
a topic that emphasize different conceptual viewpoints, pedagogical 
strategies, and media, such as between spoken messages, texts, 
diagrams, videos, and interactive simulations. 

Open-ended learner 
input 

The technology allows learners to express themselves through natural 
language and other forms of open-ended communication that 
encourage active learning. 

Communication with 
other people 

The learner communicates with one or more other “persons” who may 
range from peers to subject-matter experts. 

Source: NASEM (2018). 

 
Not all the affordances listed in Table 1, such as the affordance of choice or nonlinear 

access, are applicable to the problem set at hand (i.e., SLC’s unique problem set). But there 
are some specific affordances that align not only with type of learning conducted in an 
environment like that of the SLC, but also with the main goals of affective computing as it 
relates to learning. To accommodate the type of learning environment at the SLC, learning 
technologies that are engaged need to support deep learning (i.e., understanding complex 
concepts and systems and integrating information from a variety of inputs (NASEM, 2018); 
open-ended learner input and linked representations support this kind of learning. The 
quote below from the National Academies (2018) describes a deep-learning situation where 
different technology affordances are central to learning: 

The value of technology for representing a situation from multiple linked 
perspectives is evident in the example of helping learners understand a 
system, such as an electronic circuit. An intelligent technology can allow a 
learner quick access to perspectives, including a picture of the circuit as it 
appears in a device, a functional diagram of the components and 
connections, descriptions of the properties of each component, formulas 
that specify quantitative laws, explanations of device behavior, and the 
simulated behavior of the circuit as a whole when one component in the 
circuit is modified (p. 168). 

There are three main objectives of affective computing and learning that are aligned 
with the key affordances of learning technologies (DeFalco et al., 2018; Woolf et al., 2009; 
D’Mello, Picard, & Graesser, 2007; Keith Brawner, personal communication; Jeanine 
DeFalco, personal communication; James Lester, personal communication). As depicted 
in Figure 1, the objectives comprise what is called the affective loop: 

1. Affect recognition (interactivity; recognizing students’ affective state). 
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2. Affect understanding (interactivity, adaptivity; recognize and adapt to different 
states appropriately with learning material). 

3. Affect-instruction synchrony (feedback; quality and type of instruction affecting 
learning goals). 

 

 
Figure 1. Affect Computing Loop 

Table 2 highlights this loop with case studies of students’ affective state and the 
subsequent tutor intervention based on this state. 

 
Table 2. Case Studies of Affective States and Tutor Interventions 

Cognitive Clues Recognize Affect Detect Need for Learning Intervention 

Student makes an 
error 

Student appears curious 
and focused 

No intervention needed; student 
engaged in learning 

 Student is frowning, 
fidgeting, looking around 

Alternative actions are needed; student 
is confused 

Student has not made 
progress 

Evidence of stress, 
fidgeting, high arousal 

Alternative actions are needed; student 
is under stress 

 Evidence of boredom and 
confusion 

Interventions using off-task activities are 
needed; student is not engaged 

 Student is not frustrated No intervention needed; student is 
curious and engaged in learning 

Student is solving 
problems correctly 

Student is not frustrated 
and is engaged 

No intervention needed; student is in 
control, concentrated, and focused 

 Student is bored—
problems are too easy 

Escalate challenge for a bored student 

Source: Woolf et al. (2009, 135). 

 



6 

In essence, the three problems posed by the affective-computing loop for learning are 
to (1) dynamically collect cognitive and affective information from the user to assess 
affective state (affect recognition, interactivity), (2) detect a need for learning interventions 
(affect understanding, i.e., align detected affective state with need for learning 
intervention), and (3) determine which interventions are the most successful for individual 
students and contexts. The following chapters assess the current state of science and 
technology to address these three problem areas.  
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2. Assess Affect

This chapter describes the first goal identified in the affective loop—dynamically 
collect information to determine the user’s affective state. Over the years there have been 
many approaches to computationally assessing affective state, and in this chapter, we 
attempt to outline the field and various ways one could approach assessing affective state. 
We begin with a description of unimodal and multimodal approaches to affect detection. 
This is followed by a discussion of how affect is detected using sensor-based and sensor-
free approaches. Next, we explain the need to establish ground truth. Finally, we discuss 
how learning-management systems engage with this problem in learning environments. In 
addition, this chapter highlights the major problem areas in affective computing and the 
central research findings in the field, primarily focusing on assessing affective states. 
Although the findings in this chapter are based primarily on published documents in the 
open research literature, some of the findings were derived from interviews of 12 subject-
matter experts (SMEs) who actively work in the field of affective computing. Appendix A 
provides details of those interviews. 

A. Affective Computing Loop Methodology
This subsection briefly highlights some methodological approaches to assessing

affective states. Note that the three main objectives of affective computing as it relates to 
learning are difficult to achieve, and each piece of the loop is actively being explored in 
current research (see Chapter 1 for overview of loop). Specifically, this subsection 
discusses two methodological approaches. The first is by Woolf et al. (2009), who uses 
human coders, sensors, and machine-learning approaches to detect affective state (step 1 
of the loop). The second methodological approach is AutoTutor by D’Mello et al. (2010), 
who uses spoken dialogue to address each aspect of the loop, but here, we will focus on 
assessing affective state.   

Woolf et al. (2009) explore three options of data collection that are generally adopted 
by a wide variety of researchers in affective computing to detect affect: human coders, 
sensors, and machine-learning approaches. Data collection via human coders is the most 
time-intensive approach, but it can be more nuanced than other data-collection techniques. 
It is the approach adopted first by Woolf et al. (2009) in an observation experiment with 
34 students that used the intelligent-tutoring software Wayang Outpost (described later in 
this chapter; Arroyo et al., 2009) over a 3-week period for mathematics. Human observers 
(i.e., coders) coded one student at a time in a classroom, each observation period lasting 
15–20 seconds per student. To gain an understanding and assessment of a students’ 
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affective state, coders looked for expressed affect and recorded facial expressions, physical 
expression, and verbal behavior, and whether the student was on or off task. Since 
distinguishing different affective states is difficult, coders tried to identify valence 
(positive/negative emotional energy) and arousal (physical activity). Results from coders 
noted 58% of students being in a preferred state of high valence and low arousal (i.e., 
concentrated). The second way they explored collecting affective state information was by 
using hardware sensors—specifically, a facial-expression system, posture-analysis seat, 
pressure mouse, and wireless skin-conductance sensor, combined in an in-house-developed 
platform. These sensors were tested on 100 students, and subsequent data analyses were 
able to predict 60% of the variance of a student’s emotional state. Using all sensor data, 
the accuracy varied for different emotions; frustration was the most accurate (89%). 
Finally, the researchers also explored machine-learning techniques (e.g., Bayesian 
networks) to recognize and assess affect. Depending on the data set, context, and technique, 
these techniques can account for student affect with up to 75% accuracy. The three 
approaches (human coding, sensors, and machine learning) all highlight different 
methodological approaches to assessing affective state. 

The second highlighted methodological approach to assessing affective state and also 
closing the affective loop is Affective AutoTutor (D’Mello et al., 2012; they try to 
implement each component of the loop by using interactive dialogue). The original 
AutoTutor (which lacks affect detection) is an intelligent tutoring system that interacts with 
a learner via text conversation and is sensitive to a student’s affective state. The current 
AutoTutor is a fully automated tutor for Newtonian physics, computer literacy, and critical 
thinking (Graesser et al., 2004; Graesser et al., 2005). AutoTutor is dialogue based, 
meaning that users need to articulate three- to seven-sentence expressions in response to 
challenging questions regarding the above topics. AutoTutor encourages dialogue by 
taking turns with the user and providing feedback (e.g., “good job“; “not quite”), giving 
hints, correcting misconceptions, and answering questions.  

Affective AutoTutor enhances the original intelligent tutor by being able to recognize 
and actively monitor the presence of boredom, confusion, and frustration. It attempts to 
alter these states with responses that are empathetic, encouraging, and motivational, and 
ultimately intervene and suggest alternative directions in learning. The effectiveness of 
recognizing these more negative emotions and attempting to course-correct a student was 
studied by D’Mello and Graesser (2010b), who showed that for lower domain knowledge 
learners, the Affective AutoTutor was more helpful than for a high-domain knowledge 
learner (i.e., certain students need learning interventions based on their affective state, but 
others do not); however, across learning sessions, the Affective AutoTutor showed learning 
gains higher than using the non-affective tutor. This is evidence that recognizing (and 
attending to) affective states (i.e., closing the affective loop) during learning is important 
for positive changes in perception toward learning material. 
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Other researchers have tried tackling these issues using a single sensor, such as eye 
tracking; using a combination of sensors, such as eye tracking and facial recognition; or 
using no sensors, focusing instead on dialogue or interaction logs with a system. The 
following subsections continue to explore affect-recognition approaches, beginning first 
by addressing the difference between unimodal and multimodal affect recognition, and 
then addressing sensor-based and sensor-free affect recognition. Chapters 3 and 4 address 
the other two steps of the loop. 

B. Unimodal and Multimodal Detection 
Affective states are typically accompanied by a degree of physiological arousal 

detectable from facial expressions, acoustic-prosodic cues (i.e., stress and intonation 
patterns in spoken dialogue), body movements, gesture, contextual cues, text and 
discourse, and measures of peripheral and central physiology (e.g., eye-tracking, heart rate, 
galvanic skin response) (D’Mello, 2013). Much of the first decade or so of computational 
affect-recognition focused on a single modality to detect affect, such as facial expressions 
or intonation patterns of speech. This approach is termed “unimodal affect” (D’Mello & 
Graesser, 2010b; Poria et al. 2017). Unimodal affect recognition has three significant 
problems identified in the literature. First, it’s unclear if all emotions, for example boredom 
or engagement, can be expressed and reliably detected via facial expressions or patterns of 
speech (D’Mello & Graesser, 2010b; Craig et al., 2008). Second, users can control and 
deceive via facial expressions and speech (D’Mello & Graesser, 2010b; Jonathan Gratch, 
personal communication, November 2010). Last, naturalistic emotional expression is 
rarely unimodal. From this tradition, researchers began fusing, or combining, different 
affect-appropriate signals in an effort to understand which combinations are strongest at 
classifying (i.e., assessing) affective state. This approach is termed “multimodal affect.” 
The next two subsections look at unimodal affect recognition and multimodal affect 
recognition in turn.  

1. Unimodal Affect Recognition 
Unimodal approaches to assessing affective state have also been used by a number of 

researchers. Studies have shown that dialogue data and facial-recognition data showed 
evidence for being strong enough signals to capture an affective state alone. Facial 
expressions are the most common signal to explore for unimodal recognition and will be 
primarily discussed in this subsection. 

Research enterprises have focused on solely using facial expressions for automated 
feedback in teaching. As the field of machine learning continues to advance and 
computational power continues to increase, techniques like pattern recognition are strong 
approaches to detecting affect signals in single-source data, like facial expressions. For 
example, Whitehill, Bartlett, and Movellan (2008) explored affect feedback based on 
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automatic recognition of a student’s facial expression in an effort to measure perceived 
material difficulty and to determine preferred speed of lesson material presentation. In their  
pilot study, eight participants viewed various video lectures (e.g., an introductory physics 
lecture, a university lecture on philosophy) at adjustable speeds while their facial 
expressions were automatically recorded. Participants also rated lectures based on their 
difficulty and took six quizzes. The machine-learning-based, automatic facial-expression-
recognition system analyzed facial expression using FACS (Ekman & Friesen, 1978; see 
Chapter 3), identifying the eyes, mouth, and nose. Results show a high degree of inter-
subject variability with regards to which facial muscles (action units or AUs) correlated 
with difficultly and viewing speed, the only consistent correlation across participants was 
eye blink where difficult sections of the lectures had lower blink rates (difficulty or 
cognitive load is typically associated with lower rates of blinking). Due to the high inter-
subject variability in which facial movements correlated with difficult and viewing speed, 
Whitehill, Bartlett, and Movellan (2008) suggest that machine learning models should be 
subject specific models trained on an individual’s specific facial expression in order to be 
useful in predicting perceived difficulty (also echoed across many interviews IDA 
conducted with experiments in this field, specifically, Shri Narayan and Brandon Booth). 

Which signal is best for unimodal analysis? Historically, the psychological literature 
regarding facial signals as strong indicators of affect has two camps: proponents of basic 
emotions (e.g., Ekman and Friesen, 1978) who support that facial features of basic 
emotions are innate, universal, and cross-cultural and opponents who suggest that 
emotional expression are always modulated by context and might be understood better via 
valance-arousal models. Critically, though, D’Mello and Graesser (2010b) showed that 
emotions can be expressed with or without facial cues and that the use of facial cues as a 
signal for affect is depending on the type of judgment being conducted (i.e., signal × 
judgment type interaction); for fixed judgments (i.e., static), dialogue is the best signal of 
affect whereas for spontaneous judgments (i.e., fluid), facial movements are the best. 
Whereas Whitehill, Bartlett, and Movellan (2008) showed promise in just using facial 
expressions, but ultimately advocated for subject-specific models in order to more 
accurately predict affect. 

Based on IDA’s interviews conducted with SMEs in the field of affective computing, 
there was almost unanimous agreement that if one were to select a signal to use to detect 
affect, eye-tracking is the most effective method. Eye movements and pupil dilation (i.e., 
pupillometry) are considered strong indicators of cognitive processes and show visual 
attention and mind wandering. This has been confirmed in a number of studies across 
several fields. Specifically, via pupil dilation one could assess cognitive load of a student, 
but more simply, seeing where a student is looking on a screen is indicative of attention 
(e.g., they’re looking at and interacting with targeted information vs. eyes wandering 
around the screen not looking at material). While eye movements are generally a good 
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measure of attention, it should be noted that people interact and attend to information 
differently. For example, someone might look off screen when they’re thinking about and 
integrating information during learning, this eye-wandering might indicate someone isn’t 
paying attention to work when in fact it’s the opposite (Jonathan Gratch, Mohammad 
Soleyami, personal communication). A proxy for eye movements as indicative of attention 
is mouse-tracking. Mouse-tracking is a technique used to monitor where students are 
moving their mouse and clicking on material. While this doesn’t capture affective state, it 
does capture attention and engagement with material, arguably more important than 
affective state depending on the student population (Ben Nye, Jonathan Gratch, 
Mohammad Soleyami, personal communication). Finally, as indicated in D’Mello and 
Graesser (2010b), dialogue (text) is also a powerful signal. 

2. Multimodal Affect Recognition 
Taking a multimodal approach to affect detection requires the integration of multiple 

affect-appropriate signals into one multisensory emotion classification system (i.e., 
implementing machine learning techniques). The main hypotheses surrounding 
multichannel affect detectors concern super-additivity, additivity, redundancy, and 
inhibitory effects (D’Mello & Graesser, 2010b). Super-additivity means that classification 
performance (e.g., classifying a user as confused or frustrated) from multiple channels (e.g. 
eye tracking and facial features) will be superior to just an additive combination of 
individual affect signals. Additivity is where the performance of multiple channels is 
equivalent to an additive combination of individual channels. Redundancy means there are 
negliable gains to combing multiple affect signals together (i.e., multimodal recognition 
shows no improvement to unimodal detection). Finally, the last hypothesis concerning 
multimodal affect recognition concerns inhibitory effects, which is where combing 
multiple channels results in substantially lower classification rates (i.e., multimodal 
recognition performs worse to unimodal detection). These hypotheses regarding 
multimodal recognition are addressed below in D’Mello and Graesser (2010b). 

D’Mello and Graesser (2010b) tested a multimodal classification detector of 
boredom, engagement/flow, confusion, frustration and delight (i.e., learning centered 
emotions) by using AutoTutor. Data was collected from 28 participants randomly assigned 
to topics in computer literacy (hardware, internet, or operating systems), three streams of 
information were recorded during the participant’s interaction with AutoTutor: the 
participant’s face, posture patterns, and audio and video of the participant’s entire tutoring 
session. In order to appropriately code the affective states of participants, two trained 
judges independently coded the learners’ facial features using the Facial Action Coding 
System (FACS). As discussed in Chapter 3, FACS was developed by Ekman and Friesen 
(1978). Judgments were made in two ways: (1) fixed (asynchronous, static, freeze-framed) 
judgments based on video streams of the participant’s face captured at 20 s intervals and 
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(2) spontaneous judgments where judges can pause the video whenever they chose to judge 
the affective state of the participant. 

Looking at multimodal streams of data, the trained judges in D’Mello and Graesser 
(2010b) found that the most common judgment type for the fixed 20 s judgments was 
neutral (i.e., no emotion), followed by confusion, engagement/flow, and boredom. The best 
multichannel model using fixed judgements includes two streams of data—facial 
expression and dialogue. Spontaneous judgments had a different distribution; the most 
prominent affective state was confusion, followed by frustration, delight, and boredom. 
Confusion is prominently detected for both types of judgment, fixed and spontaneous. The 
best multichannel model for spontaneous judgments was similar to fixed judgements in that 
facial features and dialogue were the best multimodal stream of data. One difference is that 
posture can also aid in assessing affective state when using spontaneous judgments in the 
creation of the classification model.   

Looking at each stream of data independently (i.e., unimodal analysis), D’Mello and 
Grasser (2010b) found differing results, depending on the type of judgment done to collect 
the data, that is, fixed or spontaneous. For fixed affect judgments, facial features did not 
provide sufficient cues to discriminate subtle emotional expressions. In fact, the dialogue 
data (i.e., log file data with AutoTutor) had the highest agreement between coders in fixed 
judgments. For spontaneous judgments, the best single indicator of affect state was facial 
features (exactly opposite that of fixed judgments). Therefore, there is a signal × judgment-
type interaction for determining the best single signal for affect recognition. 

To summarize, it seems that any multichannel model that includes facial features with 
contextual cues (e.g., dialogue) is the best emotion-detection strategy, similar to previous 
findings on multimodal affect recognition (e.g., Arroyo et al., 2009). To answer the 
question about how significant fusing different data streams for affect recognition is, it 
seems that a multimodal channel is super-additive (i.e., each feature by itself is not capable 
of detecting affect alone, whereas together the fused signal is more accurate).1  

As the field continues to advance and machine-learning techniques are implemented 
at the person-level, unimodal approaches to affect recognition are not out of the question. 
In fact, unimodal systems act as primary building blocks for well-performing multimodal 
frameworks, therefore, research in this area will continue to flourish and form the 
foundation for more sophisticated affect-recognition models (Poria et al., 2017). However, 

                                                 
1  There are more significant details of the study showing signal differences between fixed and 

spontaneous data being used in a classifier. The scope of these details is outside the focus of the current 
work, but note that while a multimodal approach to assessing affect shows advantages over unimodal 
approaches (depending on the combination of signals), unimodal approaches also show promising 
detection abilities. 



13 

incorporating other sources of information (log information, student performance, 
dialogue) only provides a better picture of student engagement in the classroom. 

C. Sensor-Free and Sensor-Based Affect Detection 
The previous section looked at which data streams are the most useful in assessing 

affective state. Another, not mutually exclusive approach, divides affect recognition into 
sensor-free detection and sensor-based detection. Sensor-free affect-detection research 
efforts focus on developing affect-detection techniques that recognize affect from user log 
files of user interaction with a computer-based learning environment. Sensor-based affect 
detection relies on physical sensors (e.g., eye-tracker, facial-feature detector, EEG 
wearables, heart-rate monitor, skin response, body-posture detector) to capture behavioral 
manifestations of emotion via physiological response, facial expression being the most 
popular in research (Calvo & D’Mello, 2010). For any affect channel, there are advantages 
and disadvantages in using the specific affect channel as an appropriate signal (listed in 
Calvo and D’Mello, 2010): 

1. Validity of the signal as a natural way to identify an affective state. 

2. Reliability of the signals in real-world environments. 

3. Time resolution of the signal in real-world environments. 

4. Cost and intrusiveness for the user. 

This section discusses important research for sensor-free and sensor-based approaches. 

1. Sensor-Free Affect Detection 
This subsection focuses on describing major research paradigms on unobtrusive 

measures of measuring affect. In many domains of affect recognition, researchers have 
relied on physical sensors (e.g., wearables, heart-rate monitor); however, not every 
educational setting is capable of using physical sensors (e.g., because of financial 
restrictions, classified environments). As a result, there is continued effort and interest in 
developing affect detectors that rely on interaction data between the student and computer 
(Baker & Ocumpaugh, 2015). This approach aims to detect learner behaviors associated 
with engagement and affect by inferring patterns of student behavior based on interaction 
with education software only (DeFalco et al., 2018; Baker & Ocumpaugh, 2015). The 
selection of intelligent tutoring systems below is taken from Baker and Ocumpaugh (2015), 
who provide a succinct, yet comprehensive review of sensor-free systems and how 
collected data are used in machine-learning algorithms. To highlight the flavor of systems 
developed for sensor-free affect detection, only a small subset of those reported in Baker 
and Ocumpaugh (2015) are presented here. For example, Crystal Island, an important 
system, is presented in Chapter 4. 
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a. Why-2Atlas 
Why-2Atlas is a text-based qualitative physics tutor that teaches students physics by 

having them write paragraph-long explanations of simple mechanical phenomena. The 
tutor uses deep syntactic analysis and abductive reasoning, eventually converting the 
student’s paragraph to a physics proof. The proof allows the tutor to uncover 
misconceptions as well as to detect missing correct parts of the explanation (Baker & 
Ocumpaugh, 2015; Ai et al., 2006). The idea is that dialogue systems use emotion detection 
to discover problematic points in learning in written and spoken dialogue (lexical and 
prosodic features). Ai et al. (2006) used ITSPOKE (a spoken-dialogue tutor built on top of 
the Why2-Atlas text-based tutoring system) to incorporate automatically obtained 
system/user performance features into machine-learning experiments to detect student 
emotion based on tutoring sessions with 20 students. As mentioned above, a student is 
prompted to write a paragraph on a conceptual physics question. Then, after analyzing the 
essay, the ITSPOKE talks through misconceptions with the student. Finally, the student 
revises the essay and resubmits it, ending the tutoring session. The machine-learning 
algorithm used lexical and prosodic features in addition to gender, student ID, problem ID, 
turn sequence, and other performance measures to predict emotion conveyed in each 
student turn. The model using all of these features show a classification improvement of 
8.08% over the baseline (i.e., without using any features like lexical prosody) with an 
accuracy of 59.41% in determining how certain students are of their answers. 

b. AutoTutor 
AutoTutor has been discussed many times already (i.e., Nye, Graesser, & Hu, 2014), 

but due to its central role in the development of affect-recognition intelligent tutors, it 
deserves its own subsection of review. AutoTutor is a family of intelligent-tutoring systems 
that share the same theoretical principles and features of AutoTutor’s design (e.g., natural-
language processing algorithms, conversational agents). Some of systems in this “family” 
include AutoTutor, Affective AutoTutor (D’Mello & Graesser, 2012), and Gaze Tutor 
(D’Mello et al., 2012). AutoTutor systems have also recently been granted a U.S. patent 
(Graesser & D’Mello, 2019). 

AutoTutor is a natural-language-based tutoring system developed at The Tutoring 
Research Group at the University of Memphis. The intelligent tutor uses an animated 
talking head to help students learn skills in computer literacy, physics, and critical thinking 
by holding conversations with students. The disciplines that AutoTutor focuses on force 
students to use deep-learning skills, since mastering difficult technical material requires 
students to confront difficult concepts, anomalous events, and obstacles (D’Mello, Picard, 
& Graesser, 2007; Nye, Graesser, & Hu, 2014). The dialogue-based tutoring system 
consists of various subtopics within each main topic area; the animated tutor has a certain 
set of expectations that a student needs to fulfill (e.g., number of dialogue moves, 
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corrections of misconceptions, other conversational cues and exchanges) to move to the 
next subtopic question. AutoTutor maintains a log file capturing the student’s response, 
assessments of the conceptual quality of the response, the feedback provided, and the 
tutor’s next move. AutoTutor provides feedback on what a student types (positive, 
negative, neutral), pumps the student for more information (e.g., “What else?”), prompts 
the student to fill in missing words, gives hints, fills in missing information with assertions, 
identifies and corrects misconceptions, answers questions, and summarizes topics. A full 
answer to a question normally takes between 30 and 200 turns. AutoTutor compares 
student responses with a curriculum script on the topic and uses Latent Semantic Analysis 
(a statistical technique that measures conceptual similarity between texts) to judge whether 
the response is expected or misconstrued. The AutoTutor discourse moves are summarized 
with examples in Table 3 (taken from Nye, Graesser, & Hu, 2014). 

 
Table 3. Examples of AutoTutor Discourse Moves 

Move Type Description Example(s) 
Main 
Question 

A question that starts off the 
dialogue, focused on a particular 
topic or goal 

“If the man drops his keys just as the 
elevator falls, how do the objects move 
relative to each other? Explain why.” 

Pump Asking the student to provide more 
information. 

“Anything else?” 

Hint Leading question or statement that 
attempts to direct the user to answer 
the main question 

“What do you think about the 
gravitational force on this object?” 

Prompt Leading the student to express a 
missing word from an important idea 
for the main question. 

“The force on the objects from gravity 
acts in which direction? 

Short 
feedback 

Signaling about the quality of the 
student’s last statement. 

“Great!” (Positive), “Okay.” (Neutral), 
“Not quite.” (Negative) 

Correction Correcting a misconception or 
incorrect statement by the learner. 

“No, the force of gravity on both objects 
is equal.” (After student claims one is 
greater) 

Assertion Presenting an important idea within 
the problem or the answer to the 
problem. 

“The force of gravity on both objects is 
equal.” 

Answer Response to a learner’s question 
about the definition of a concept. 

“A vector is a quantity with both a 
magnitude and a direction.” (In response 
to “What is a vector?”) 

Summary Presents the full answer to the main 
question or problem. 

“The magnitude of the force of gravity on 
each object is equal, and all force 
vectors point down…” 

 
Over the years, more than a dozen experiments using AutoTutor have been conducted, 

comparing AutoTutor tutoring treatments with different types of approaches to computer-



16 

based training (e.g., students not using a tutoring system). Results consistently show that 
AutoTutor improves student learning and shows significant learning gains compared to a 
pretest—on average about a .08 standard deviation learning gain above controls who read 
static materials (Nye, Graesser, & Hu, 2014). 

c. Prime Climb 
Prime Climb (Conati & Maclaren, 2009) is a game-based learning system for 

mathematics with an affective agent for sixth- and seventh-grade students. Unlike 
AutoTutor and Why-2Atlas, Prime Climb does not require text dialogue, but instead a 
numerical based response from a student. Students were rewarded or penalized based on 
success of response (e.g., if a student responds incorrectly, it will cause the student to fall 
down the mountain). Conati and Maclaren (2009) rely on the Ortony, Clore, and Collins 
(OCC) theory to develop the affective model employed in Prime Climb. In Conati and 
Maclaren’s (2009) research, more than 60 sixth and seventh graders used Prime Climb for 
approximately 10 minutes to learn about factorization; students were encouraged to 
indicate their emotional state on a slider-interface. The Prime Climb agent would intervene 
to help students during the game. Results show that the agent was moderately able to 
predict joy from distress (32% change), but when the data were re-validated, these results 
disappeared. The results highlight not only that it is difficult to create an accurate affective 
computing loop but also that it is crucial that data be tailored to the learning goals at hand. 

d. Wayang Outpost 
Arroyo et al. (2009) used Wayang Outpost, a multimedia adaptive-tutoring system 

for geometry and other mathematics topics typical on the SAT, to explore the use of sensors 
in intelligent tutors to detect students’ affective states and also provide emotional support 
for students. Wayang Outpost is a web-based tutoring system that helps students learn to 
solve math problems typical of those on achievement tests. Since it is a web-based 
program, students log into the site and begin a session with receiving a problem. Each math 
problem is presented as a flash movie with decisions and hints made by the intelligent tutor. 
Data were collected for two different studies using four sensors (mouse, posture chair, 
video camera, skin-conductance bracelet), and questionnaire data were collected by 
probing students’ affective states while they used Wayang Outpost. While the study uses 
sensors (sensor-based), some of the emotion results focused on questionnaire data (sensor-
free). The ultimate objectives were to see if students’ affective states influence their 
learning, motivation, and attitudes toward math, and to trace students’ emotional states in 
a real-world classroom. The two experiments independently looked at high school students 
(n = 38) and undergraduates (n = 29) who used Wayang Outpost for 4–5 days and took 
math tests and a survey about their perception of math before and after using the software. 
During use, the system iterated through different topics and problems, adapting to student 
performance; the system also prompted students every 5 minutes or after every question 
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about how they felt. Post-test results show that students improved about 10% in math 
performance. Further, their self-reports of emotion showed that the emotion depended on 
the event that occurred in the previous problem and not on incoming beliefs of ability or 
motivation. 

2. Sensor-Based Affect Detection Using Biometric Sensors 
Picard’s (1997) influential work supports the idea that if computers are to interact 

naturally and intelligently with humans they need the ability to at least recognize affect; 
specifically, wearable computers that can perceive physiological information can gather 
powerful data for advancing results in cognitive and emotion theory. Research on affective 
computing has used a wide range of data streams to detect affect, many researchers 
focusing on physical sensors because physical sensors are able to capture physiological 
manifestations of affect (DeFalco et al., 2018). This sensor-based affect detection has been 
developed using physical sensors to detect affect via facial expressions (Arroyo et al., 2009; 
Bosch et al., 2015), voice (Lee et al., 2015; Lee & Narayanan, 2005), posture (D’Mello & 
Graesser, 2010b), and galvanic skin response (Arroyo et al, 2009).  

Facial expressions are the most popular signal for detecting emotions, but not 
necessarily the best. One needs trained coders to identify facial actions associated with 
affective states (a costly and time-consuming pursuit), and many automatic systems rely 
on acted facial expressions (i.e., not naturalistic). Other popular signals for affect include 
voice (speech features). The literature supports the idea that affective information is 
encoded in speech patterns—sadness, anger, and fear are best recognized through voice 
(Calvo & D’Mello, 2010). Speech data are also often collected in real-life settings (e.g., 
tutoring sessions or call center logs), these are a richer, more accurate data source for affect 
models.  

Arroyo et al. (2009), which is discussed in the context of Wayang Outpost in the 
previous section, employed a number of different sensors. The researchers focused on two 
data-collection techniques, one being sensor-free, wherein students were queried about 
their affective state. The other data-collection technique was sensor based, where four 
sensors (mouse, posture chair, video camera, skin-conductance bracelet) were used to 
determine the extent of the benefit of using sensor data to detect students’ emotions. The 
results from the studies showed that emotion can be predicted from what happened in the 
previous problem. In addition, the regression models built by analyzing the contribution of 
each individual sensor show that the camera sensor accounts for 52% of the variance and 
helped predict confidence, excitement, and being interested. The seat sensor significantly 
sensed frustration—similar to what D’Mello & Graesser (2010a) found (see below) and 
accounted for 68% of the variance (i.e., posture was very helpful in predicting student 
affect as defined in this study). 
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Turning to another sensor, D’Mello and Graesser (2010a) investigated postural 
patterns associated with naturally occurring episodes of boredom, flow/engagement, 
confusion, frustration, and delight during a tutoring session with AutoTutor. Posture is an 
interesting signal for affect detection that is often overlooked. Human bodies are large, and 
movements are usually unconscious and unintentional and therefore are less susceptible to 
control than facial expressions or prosodic features. D’Mello and Graesser focused on data 
mining, using data collected from 28 students using AutoTutor to answer how the body 
conveys affect through posture articulations. Recall that in D’Mello and Graesser (2010b), 
student affect was measured via retrospective judgment from learners themselves (self-
report), peers, and judges (i.e., affect judged after the fact) in two ways, fixed at 20 s 
intervals, and spontaneous at any time point between the 20 s intervals.  

Here, Body Pressure Measurement Systems, an automated system developed by 
Tekscan, was used to capture the pressure exerted by the learner on the seat. For the 
purposes of looking at body posture as a signal for affect, D’Mello and Graesser (2010a) 
relied on the affective-arousal framework in which heightened pressure in a seat relates to 
positioning one’s body toward the source of stimulation (i.e., high attentiveness), whereas 
an increase in pressure on the back of a seat suggests someone is detaching from the 
stimulus (i.e., low attentiveness). The different pressure-related features of body 
movements were computed by examining the pressure map during an emotional judgment, 
and these pressure features were associated with an emotional category based on the human 
judges’ affect ratings. Logistic-regression analyses were used to systematically explore 
relationships between posture features and affective states, specifically, to distinguish 
between each affective state (boredom, confusion, delight, flow, frustration) and neutral.  

Results indicate posture features explained about 11% of the variance in 
discriminating affective states from neutral on average. Based on logistic-regression results 
on the change in seat pressure for each affective state, boredom shows significant body 
disengagement indicated by an increase in pressure in the back of the seat compared with 
a neutral affective state. In addition, boredom also shows an increased rate of change in 
seat pressure movement, indicating fidgeting. Delight and flow showed increased 
attentiveness by learners leaning forward in a seat, and confusion and frustration states also 
had learners leaning forward, but more upright in posture. In summary, D’Mello and 
Graesser (2010a) discovered relationships between body position and learners’ affective 
state. Boredom is associated with leaning back; delight and flow are associated with 
leaning forward; confusion and frustration are also associated with leaning forward, but in 
a more alert, upright position. 

Adding to body posture, Bosch et al. (2015) used cameras to capture facial 
expressions to assess affect. For the most part, affect-sensitive intelligent tutoring systems 
have been largely developed in controlled experimental settings, devoid of distractions (see 
also Arroyo et al., 2009). Bosch et al. (2015) investigated affect detection, not in an 
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experimental setting, but in a classroom computer lab, using facial expression and body 
posture. Videos of 137 students’ faces, affect labels, and labels of on-task, off-task behavior 
were collected while students interacted with Physics Playground, a game-based physics-
education environment, using computers equipped with a webcam. Physics Playground is 
a two-dimensional game that requires the player to relate physics principles to different 
challenges (e.g., guiding a green ball to a red balloon). The affect states of interest were 
learning-centered emotions—boredom, confusion, delight, engaged concentration, and 
frustration—monitored by trained observers who used the Baker-Rodrigo Observation 
Protocol (BROMP) labeling method to record students’ affect (Ocumpaugh, Baker, & 
Rodrigo 2015). These labels, which served as ground truth of affect, were used to train the 
automatic affect detectors along with facial expression data, which was collected using 
FACET, a commercial computer vision software for facial feature extraction based FACS. 
Bosch et al. (2015) built classification models to detect overall five-way discrimination 
between bored, confused, delighted, engaged, and frustrated, in addition to a separate 
detector for each affective state. Ultimately, the authors showed that machine-learning 
models can be developed and validated to learn student affect based on facial expression 
recorded from a camera signal in a noisy school environment. Specifically, the best models 
for each classification showed that the overall five-way discrimination between all 
affective states performed above chance, and each individual detector for each affective 
state (e.g., frustration vs. delight) all performed above chance. 

One significant drawback to using physical sensors is that these kinds of instruments 
are usually applied in controlled environments and not in real time. Some researchers have 
also noted that biometric instruments can negatively influence users’ affective state if they 
feel they are being monitored or become frustrated with the biometric sensor and not the 
learning material at hand. 

From our expert interviews, the best biometric sensors to use are eye-tracking devices, 
mouse tracking (a proxy for eye tracking), and some sort of speech/text recognition. While 
multi-modal channels can be stronger (as discussed previously), if one needs to select a 
single sensor (due to environment, learning situation, or budget constraints), these three are 
the strongest alone. 

D. Establishing Ground Truth 
When developing automatic affect-detection programs, programmers must consider 

the methodological issue of how to establish ground-truth measures of affect to build such 
detection platforms. Our review of the affective research studies in this report shows that 
the quality of results obtained by such studies (i.e., obtained by affect-sensitive models) is 
inextricably linked to the quality and contextual nature of the data that are collected to build 
such models (Baker & Ocumpaugh, 2015). The data that are used to build affect-sensitive 
systems must accurately reflect the underlying construct and also be related to the 



20 

predictive goals of the model. For example, collecting ground-truth data on students’ 
affective states while watching television and then using these data to build a predictive 
model for students’ affective state in the classroom will lead to undesirable results because 
the ground-truth data do not match the use case. Further, most of the subject-matter experts 
the IDA team interviewed noted that data collected for one learning task are not 
generalizable to other learning contexts; that is, learning and learning environments are 
context specific with different goals and incentives for performance. 

There are three existing methods for establishing ground truth of affect during 
learning: observation methods (e.g., BROMP), self-report methods, and log-file annotation 
(less popular). Observation methods, like BROMP or FACS, can be conducted live or using 
video (e.g., D’Mello & Graesser 2010b), but there are differences between the approaches. 
For example, observing video data to determine ground-truth affect is usually more 
definitive, but has lower interrater reliability. 

BROMP, an observation-based ground truth method, is an objective coding paradigm 
where trained field observers repeatedly observe students in a predetermined order (to 
avoid biases toward interesting activities); field observers observe one student at a time for 
up to 20 seconds and record the first affect the student displays. The observers are trained 
to look holistically for a range of behaviors, including physical and verbal demonstrations 
of affect (Baker & Ocumpaugh (2015); Ocumpaugh, Baker, & Rodrigo, 2015). In-person 
observations might have limitations depending on the learning environment, and in 
particular, Baker and Ocumpaugh (2015) note that conducting this kind of coding is most 
effective if the field observers are drawn from approximately the same cultural background 
as the students. BROMP has been employed in a large number of studies with success for 
establishing ground truth for affective state (e.g., DeFalco et al., 2018). 

The second method for establishing ground truth is to obtain data via self-reports 
either in the form of an emote-aloud procedure or a questionnaire (Baker & Ocumpaugh, 
2015). An emote-aloud procedure is where a person (e.g., participant, student) verbalizes 
his or her affective states during learning after being instructed on what each affective state 
represents (e.g., emote “anger” is to have a strong feeling of displeasure). For example, in 
Craig et al. (2008), an emote-aloud procedure was used to discover the facial action units 
that were present during learning-centered affective states (i.e., anger, boredom, confusion, 
contempt, curiosity, disgust, eureka, and frustration). In this study, seven undergraduates 
used AutoTutor and provided verbalized affective states whenever they experienced one. 
The results show that the emote-aloud methodology helped pinpoint at what point during 
learning affective states occurred. 

Questionnaires are an emote-aloud procedure that can be used to gain ground-truth 
affective state data. Arroyo et al. (2009) used this method. When using the tutoring system, 
students were queried every 5 minutes and after they finished a problem: “How 
[interested/excited/confident/frustrated] do you feel right now?” Conati and Maclaren 
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(2009) also collected student affective states during interaction with Prime Climb, using a 
slider-based interface to prompt students about their affective and motivational states. 

There are several shortcomings of the emote-aloud methods. Irregularly interrupting 
students can change the student’s affect in a way unrelated to the learning content. It can 
also place extra cognitive demands on the student. Finally, if the students are to verbalize 
emotion, doing so can be disruptive in a classroom setting with many students (Baker & 
Ocumpaugh, 2015). 

E. Learning Management Systems and Synchronous Learning 
The discussion so far has focused on automated synchronous tutoring systems, where 

the tutor is usually some sort of talking head or avatar character, The reason for this focus 
is that the research done in affective computing and learning has not only focused primarily 
on automated systems but also served as the foundation for other forms of education and 
distance-learning research, for example, research on Learning Management Systems 
(LMSs), which draws on work from Picard (1997) and the D’Mello and Graesser 
enterprise. LMS research grapples with similar issues to automated affective tutors—
motivation, engagement, and student affect (e.g., Farman Ali Khan et al., 2009; Rodrigues, 
Fdez-Riverola, & Novais, 2011). 

An LMS is an online learning platform for learners and instructors. An LMS typically 
includes discussion forums, class content like homework or lecture notes, and creation of 
learning content. LMSs, such as Moodle (Modular object-oriented dynamic environment) 
and Blackboard, are very successful in electronic and distance education, but do not fully 
support or accommodate adaptivity for synchronous learning. While LMSs have been 
around since the mid 90s, it is only relatively recent that certain LMSs have adopted the 
capability of collaboration and synchronous teaching. For example, Blackboard Inc. 
acquired Elluminate, Inc. in 2010 forming Blackboard Collaborate, which provides a real-
time, synchronous virtual classroom. In today’s climate, video-chat systems like Zoom and 
Google’s G-suite also provide synchronous virtual classrooms, but they lack the classroom 
content organization of an LMS. 

Some researchers have attempted to apply the concepts and approaches for detecting 
affect employed in automatic affect recognition to LMSs. Khan et al. (2009) presented an 
approach that investigates patterns of behavior in LMSs that correspond to students’ 
different affective states to provide students with more individualized support with LMSs. 
Interestingly, due to the nature of LMS systems (i.e., students navigate the system, use it 
for syllabi, discussion forums etc.), the learning-centered emotions commonly detected in 
affect computing are not applicable. Instead, Khan et al. (2009) looked at only four 
affective states, confidence, effort, independence, and confusion, which really represent 
characteristics of how students relate to commonly used features of LMSs. Since LMSs are 
meant to be used differently than intelligent tutoring systems, relevant affective states need 
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to be appropriately defined for LMS use. In this regard, affective states and behavior are 
primarily defined by the ways in which a student interacts with an LMS. For example, 
academic confidence is measured by factors of studying (e.g., visiting content, making 
outlines), understanding (e.g., attempting exercises), verbalizing information (e.g., 
discussion groups), clarifying (e.g., visiting assignments), and attendance (e.g., counting 
discussion posts, replying to others). Effort in terms of LMSs is defined as attempting a 
high number of self-assessment tests and exercises with a high number of correct answers, 
visiting a high number of postings related to content, and submitting assignments before 
they are due. Independence is defined as having intentional behavior with learning 
material, for example, planning, organizing, monitoring, and evaluating one’s 
performance. Finally, confusion in an LMS is defined by students performing a low number 
of self-assessment tests and exercises, leaving high numbers of questions unanswered, 
spending more time on content, and interacting with discussions forums only to inquire 
about how work is to be completed (Khan et al. 2009). 

Rodrigues, Fdez-Riverola, and Novais (2011) have also attempted to design an affect-
sensitive LMS approach using Moodle. One of the most popular LMSs used worldwide, 
Moodle is primarily module driven in that each aspect of the LMS is interactive (e.g., 
forums, chats, quizzes) and can be personalized to specific learning environments. Moodle 
is open source, meaning that users can design different plug-ins that integrate with Moodle. 
Rodrigues, Fdez-Riverola, and Novais (2011) proposed a framework for Moodle where an 
external module is linked to Moodle, enabling the detection of student’s affective states 
and learning styles based on the affective-loop cycle discussed previously. This affective 
module that includes two sub-modules, an explicit affective-state detector and an implicit 
affective-state detector. The explicit affective-state detector gathers information by directly 
posing questions to the student about their affective state. The implicit affective-state 
detector monitors the interactions between the student and LMS to infer the student’s affect 
using facial analyses, mouse and keyboard analysis, and log files in an LMS. Similar to 
Khan et al. (2009), Rodrigues, Fdez-Riverola, and Novais (2011) suggest integrating 
student interaction with the LMS as a way to understand student affect with learning 
material; however, they advance the affective abilities of an LMS by including sensor-
based measures like keyboard use and mouse use (e.g., keystrokes or clicks per minute). 
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3. Understand Affect State

This chapter examines emotional theories and taxonomies in an attempt to understand 
the function and purpose of emotions and to enumerate affective states that are relevant to 
the Submarine Learning Center (SLC) learning environment. In this chapter, we attempt to 
answer the question: What affective states are relevant to instruction delivered by 
synchronous distributed-learning systems? Most researchers use “affective states” as a 
general term covering a variety of affect-related constructs, including emotions, feelings, 
preferences, and attitudes. In this report, we refer specifically to emotions, which are 
defined as brief states that can be distinguished by distinct physiological, subjective, and 
behavioral signals.  

A. Review of Models
To determine relevant affective states, we reviewed scientific models of emotion that

have important implications for emotional expression, for artificial intelligence, and for 
learning. Based on these criteria, we selected seven prominent theories of emotion to help 
understand and model the function and purpose of emotions. These theories are presented 
in the chronological order of their development:  

• Ekman’s Basic Emotion Theory.

• Russell’s Circumplex Model of Affect.

• Watson, Clark, and Tellegen’s Positive and Negative Affect Schedule (PANAS).

• Ortony, Clore, and Collins (OCC) Model of Emotions.

• Pekrun’s Concept of Academic Emotions.

• Graesser and D’Mello’s Learning Centered Emotions.

• Keltner’s Consensual Taxonomy.

Each of these theories provides a taxonomy that defines and organizes discrete
emotive states. We compare these taxonomies in an attempt to determine the emotional 
states that are relevant to learning and education. The following sections provide a synopsis 
of each model and its theoretical constructs and taxonomy of affective states. Also 
discussed is relevance of the theory to the synchronous distance-learning system employed 
at the Navy’s SLC. 
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1. Basic Emotion Theory
In his 1989 review, Ekman noted that research from the late 1960s and early 1970s

demonstrated that humans in literate and preliterate cultures are able to correctly identify 
emotional states from pictures of human facial expressions. Based on such findings, Ekman 
and Friesen (1978) hypothesized that the ability to detect emotional states from facial 
patterns of others is a skill that is universal across human cultures. These ideas evolved 
into Basic Emotion Theory (BET), which has become the theoretical foundation and 
research paradigm for the science of emotion and remains today as “central narrative” in 
this now-established discipline (Keltner, Sauter, Tracy, & Cowen, 2019). 

a. Synopsis of the Theory
According to Eckman (1992), emotions have evolved across human cultures and even

animal species. The primary function of emotions is mobilizing the organism to deal 
quickly with fundamental life tasks, but primarily interpersonal encounters. From this 
viewpoint, Ekman derived nine characteristics, described in Table 4, that identify and 
differentiate the basic emotions. The first characteristic (distinctive universal signals) refers 
to all types of physical expressions, such as vocal expressions, but Eckman (1992) 
maintained that the “strongest evidence for distinguishing one emotion from another comes 
from research on facial expressions” (p. 175). In addition, the third (distinctive physiology) 
and fourth (distinctive antecedent events) characteristics distinguish one emotion from 
another. The remaining characteristics serve to distinguish basic emotions from other 
related affective states, such as moods (e.g., euphoria or irritation), emotional traits (e.g., 
hostile or melancholic), emotional attitudes (e.g., love or hatred), and emotional disorders 
(e.g., depression or anxiety). 

Based on these characteristics, Ekman (1992) concluded that there was good 
empirical evidence for six basic emotions (1) anger, (2) fear, (3) sadness, (4) 
enjoyment/happiness, (5) disgust, and (6) surprise. These emotions have been commonly 
recognized by emotion researchers as the “Big Six.” In addition, Ekman contended there 
is “some” evidence for five additional basic emotions, although the evidence is not as 
strong as that for the Big Six: (1) contempt, (2) shame, (3) guilt, (4) embarrassment, and 
(5) awe.

Table 4. Common Characteristics of Basic Emotions 

Characteristic Description 
1. Distinctive universal signals The emotion is associated with a visual signal to other

animals. This is often a distinct facial expression but is not 
limited to this type of signal.   

2.  Presence in other primates There are comparable expressions of the emotion in 
nonhuman primates and other animals. 
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Characteristic Description 
3. Distinctive physiology There is a distinct physiological pattern associated with the 

emotion. 
4.  Distinctive universals in

antecedent events
There is a common set of conditions or events that evoke the 
emotion. 

5. Coherence in emotional
response

There is a systematic relationship between the expression of 
the emotion and the physiological changes that occur during 
the emotional experience. 

6.  Quick onset The emotion begins so quickly that it happens before a person 
knows it has started. 

7.  Brief duration To prevent the deleterious effects of sustained arousal, the 
emotion does not endure for a long period. 

8.  Automatic appraisal There is an automatic appraisal mechanism that selectively 
attends to certain antecedent conditions and associates it with 
an emotional response. 

9. Unbidden occurrence The response to emotional conditions is involuntary. 

b. Relevance to Synchronous Distance Learning
Not only did BET provide the scientific basis for emotion research, it provided the

first practical technology for detecting the emotional states of humans. Elaborating on 
methods originally developed by Swedish anatomist Carl-Herman Hjortsjö (1970), Ekman 
and Friesen (1978) developed the Facial Action Coding System (FACS). FACS is a method 
for classifying facial expressions by 46 movements, called action units (AUs), that are 
associated with specific facial muscles. FACS was originally designed to be implemented 
by human coders as a method to comprehensively code facial expression in an objective 
fashion—that is, the coding scheme was developed independently of any contextual goal, 
making the codes applicable to a wide variety of situations. Nevertheless, computer-
automated versions have been developed for tracking for faces on video. For instance, 
Hamm, Kohler, Gur, and Verma (2011) developed a sophisticated automated system for 
analyzing facial expression in neuropsychiatric disorders. This system tracks faces on 
video, extracting geometric and texture features, and profiling facial movements. Less 
complex automated systems using consumer-type webcams have been developed to detect 
and interpret facial expressions in real time and in naturalistic settings (e.g., EyeSee, 2019). 

Just as the technology to automatically detect facial expression was starting to mature, 
research began to emerge that undermines some of the basic assumptions of these 
technologies. Based on an extensive review of the literature, Barrett, Adolphs, Marsella, 
Martinez, and Pollak (2019) recently concluded that there was insufficient evidence to 
support the commonly held assumption that the emotional state of humans can be inferred 
from their facial expressions. They suggest that the emerging facial-recognition technology 
be functionally described as systems that detect facial movements, not emotional 
expressions. Barrett and colleagues maintain that systems designed to determine emotional 
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states from facial movements alone, without considering the context, “are at best 
incomplete and at worst entirely lack validity, no matter how sophisticated the 
computational algorithms” (p. 48).  

Today, researchers generally agree that there is not necessarily a one-to-one 
correspondence between the occurrence of an emotion and a particular facial expression—
or any other prototypical physiological or behavioral expression. But there is a large body 
of evidence that suggests emotions are expressed as multimodal patterns of behavior (e.g., 
Keltner, Sauter, Tracy, & Cowen, 2019). Thus, facial expressions continue to have value 
as an indicator of emotion when used in combination with other physiological and 
behavioral indicators, as well as information on the situational context. 

2. Russell’s Circumplex Model of Affect 
In some ways, Russell’s (1980) Circumplex Model of Affect is in marked contrast to 

Ekman’s Basic Emotions Model. In BET, basic emotions are conceived as a relatively 
small set of discrete and independent emotions, each having separate neural pathways and 
behavioral manifestations. In comparison, the Circumplex model assumes that humans 
experience emotions as ambiguous and overlapping experiences without borders, much 
like the perception of colors on the visual spectrum (Posner, Russell, & Peterson, 2005). 
Moreover, emotions are not viewed as independent in Russell’s model. Humans rarely 
describe experiencing a specific positive emotion without also reporting other positive 
emotions; similarly, negative emotions are likely to co-occur within individuals (Watson 
& Clark, 1992). 

a. Synopsis of the Theory 
Based on findings from studies of both verbal and nonverbal expressions, Russell 

(1980, p. 1162) argued that affective states are related to one another in a highly systematic 
manner, and that those relationships can be represented “as a circle in a two-dimensional 
bipolar space.” The horizontal dimension in this representation is valence (unpleasant – 
pleasant), and the vertical dimension is arousal (deactivation – activation). According to 
the model, any affective state can be understood to be a linear combination of varying 
degrees of valence and arousal. As shown in Figure 2, emotions arranged in a circle around 
the neutral intersection of the two dimensions. Further, emotions directly across the circle 
express the opposite feelings. For example, contented is associated with a large positive 
valence value but a small negative arousal value. The polar opposite emotion upset has a 
large negative valence but a low positive arousal value. 
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Note: Figure adapted from Barrett and Russell (1998). The x-axis represents the valence dimension and the 

y-axis depicts the arousal dimension. 

Figure 2. The Circumplex Model of Affect 
 

There have been numerous variants of Russell’s model. The version shown in Figure 
2 shows 16 affective states that are considered core emotions, as described by Russell and 
Barrett (1999). They defined core emotions as “the most elementary consciously accessible 
affective feelings…that need not be directed at [a specific object]” (Russell & Barrett, 
1999, p. 806). A core emotion is contrasted with a prototypical emotional episode, which 
is a “complex set of interrelated subevents concerned with a specific object.” Thus, the 
emotions identified in the circumplex model are generic in that they do not apply to specific 
objects or episodes. 

The core emotions can be described by the quadrants within which they are located 
in the circumplex. Starting with the upper right quadrant and proceeding clockwise are 
emotions defined as pleasant and activated (alert, excited, elated, happy), pleasant and 
deactivated (contented, serene, relaxed, calm), unpleasant and activated (fatigued, bored, 
depressed, sad), and unpleasant and deactivated (upset, stressed, nervous, tense). 

b. Relevance to Synchronous Distance Learning 
The Circumplex model is important to distance learning in that it provides a method 

for “computing” an affective state from values of the valence and arousal dimensions. 
These values may be obtained from signals emanating from two separate 
neurophysiological systems (Gerber et al., 2008; Posner, Russell, & Peterson, 2005; 
Russell & Barrett, 1999). As shown in Table 5, the mesolimbic dopamine system is seen 
as responsible for processing reward and pleasure (valence), whereas the reticular 
formation regulates arousal. These separate neurophysiological systems produce different 
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patterns of peripheral physiological responses that are potentially measurable. For instance, 
the Noldus FaceReader (n.d.) applies the Circumplex model to automatically recognize 
affective states from analysis of facial expressions. 

 
Table 5. Neurophysiological and Peripheral Response Systems Associated with Valence 

and Arousal Dimensions of Affect 

Affect 
Dimension Neurophysiological System Peripheral Physiological 

Responses 
Valence • Mesolimbic dopamine system 

(MDS) 
• MDS begins in ventral tegmental 

area with dopaminergic projections 
to the nucleus accumbens (NA) 

• NA has reciprocal connections to 
the 

– Amygdala 
– Hippocampus 
– Caudate nucleus 
– Prefrontal cortex 

• Facial expressions 
• Corrugator muscle activation 
• Zygomatic muscle activation 

Arousal • Reticular formation (RF) 
• RF regulates arousal through 

connections to the limbic system 
and thalamus 

• Stimuli relayed from thalamus to 
amygdala 

• Increased skin conductance 
• Heart-rate acceleration 
• fMRI (functional magnetic 

resonance imagery) signal 
intensity in visual cortex 

• Increased EEG cerebral 
activation 

Note: Information adapted from Posner, Russell, and Peterson (2005). 

3. Watson, Clark, and Tellegen’s Positive and Negative Affect Schedule 
David Watson, Lee Anna Clark, and Auke Tellegen (1988) developed the Positive 

and Negative Affect Schedule (PANAS) as a brief self-report measure of affective state. 
The test has been used to diagnose anxiety and depressive disorders in clinical populations 
(e.g., Watson, Clark, & Carey, 1988), but it has also been employed to assess the affective 
states of the general population. 

a. Synopsis of the Theory 
The theory behind PANAS was originally based on results from reanalyses of studies 

on self-reported mood (Watson & Tellegen, 1985). These researchers reanalyzed the data 
by factor analysis using varimax rotation,2 reporting that two orthogonal factors 

                                                 
2  Varimax rotation is a method used in factor analysis to simplify the solution by reducing results to a 

small number of orthogonal factors.  
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consistently emerged, which they labeled Positive Affect and Negative Affect and defined 
as follows: 

…Positive Affect (PA) reflects the extent to which a person feels 
enthusiastic, active, and alert. High PA is a state of high energy, full 
concentration, and pleasurable engagement, whereas low PA is 
characterized by sadness and lethargy. In contrast, Negative Affect (NA) is 
a general dimension of subjective distress and unpleasurable engagement 
that subsumes a variety of aversive mood states, including anger, contempt, 
disgust, guilt, fear, and nervousness, with low NA being a state of calmness 
and serenity. (Watson et al. (1988, p. 1063)) 

Items for the PANAS were drawn from a factor analysis of 60 adjectives that were 
intended to provide broad coverage of the domain of affect (Zevon & Tellegen, 1982). 
Watson et al. (1988) administered the items to both college student and non-student 
populations, asking respondents to rate on a 5-point scale how they felt today (i.e., their 
current state), during the past few days, or during the past few weeks.3 Results from the 
factor analysis, regardless of population or time frame, showed strong evidence of two 
factors corresponding to positive and negative affect. To identify conceptually pure items 
for the PANAS, adjectives were selected that had strong loadings on their primary factor 
(.50 or above) but near-zero loadings on the secondary factor.   

The PANAS model has been compared to the Circumplex model because both are 
organized around two dimensions. A cursory analysis suggests that the two dimensions in 
the PANAS model (positive and negative affect) are qualitatively different than the two 
dimensions in the Circumplex model (valence and arousal). However, these terminology 
differences may not reflect a fundamental discrepancy between models. That the PANAS 
model can be recast into the circumplex structure and vice versa (e.g., Barrett & Russell, 
1998; Watson & Tellegen, 1985) demonstrates the congruence of the models. 

 
Table 6 lists the original version of the PANAS, comprising 20 items (10 positive and 

10 negative). The table also indicates 10 items selected for short versions of the PANAS 
developed for older respondents (Kercher, 1992) and for international populations 
(Thompson, 2007).  

The PANAS model has been compared to the Circumplex model because both are 
organized around two dimensions. A cursory analysis suggests that the two dimensions in 
the PANAS model (positive and negative affect) are qualitatively different than the two 
dimensions in the Circumplex model (valence and arousal). However, these terminology 
differences may not reflect a fundamental discrepancy between models. That the PANAS 
                                                 
3  Short forms of PANAS have specified longer time frames: “in the past year” (Kercher, 1992) or how 

respondents feel “in general” (Thompson, 2007), both of which could be regarded more as trait 
measures of affect. 



30 

model can be recast into the circumplex structure and vice versa (e.g., Barrett & Russell, 
1998; Watson & Tellegen, 1985) demonstrates the congruence of the models. 

 
Table 6. Positive Affect and Negative Affect Items on Original PANAS  

(Watson, Clark, & Tellegen, 1988) 

Positive Affect Negative Affect 
Attentiveb Distresseda 
Interested Upseta,b 

Alerta,b Hostileb 
Enthusiastica Irritable 

Exciteda Scareda 
Inspireda,b Afraida,b 

Proud Guilty 
Determineda,b Ashamedb 

Strong Nervousa,b 
Activeb Jittery 

aIncluded in Kercher (1992) short form. 
bIncluded in Thompson (2007) short form. 

b. Relevance to Synchronous Distance Learning 
Research on the PANAS demonstrates that the positive and negative affective states 

of learners can be reliably determined by simple and short self-report checklists. Note that 
some versions of PANAS are focused on more enduring affective traits of respondents, 
rather than their current affective states. For instance, the short forms of PANAS specified 
longer time frames for the assessment: “in the past year” (Kercher, 1992) or how 
respondents feel “in general” (Thompson, 2007). Watson et al. (1988) compared 
assessments using various time frames: (1) “right now”; (2) “today”; (3) “during the past 
few days”; (4) “during the past weeks”; (5) “during the past few weeks”; (6) “during the 
past year”; and (7) “in general, that is, on average.” Mean scores for both PA and NA 
increased as the time frame lengthened. This was expected because, as the time frame 
increases, it was more likely that a respondent experienced a significant amount of emotion. 
Also, the assessments showed greater test-retest reliability (i.e., stability) for longer time 
frames than for shorter ones. Nevertheless, the PANAS scale exhibited substantial stability 
even for the assessment in the current moment. 

4. Ortony, Clore, and Collins (OCC) Model of Emotions 
Anthony Ortony, Gerald Clore, and Allan Collins (1988) conceived their OCC model 

as “an account of emotion that could, in principle, be used in an Artificial Intelligence (AI) 
system that would, for example, be able to reason about emotion” (p. 2). This AI-based 
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model of emotion is viewed as particularly compatible with affect-sensitive advanced 
learning technologies. 

a. Synopsis of the Theory 
According to the OCC model, emotions are the result of cognitive appraisals of 

psychologically significant situations. As outlined in Table 7, these appraisals are 
characterized on two dimensions. First, appraisals are attributed to either events, agents, or 
objects. Second, appraisals are focused on different aspects of the situation, are appraised 
on particular valence dimensions, and based on specific criteria. As shown in Figure 3, the 
OCC model further differentiates between emotions arising from attributions of the 
desirability of one’s own outcomes (e.g., hope/fear) versus another’s outcomes (e.g., 
gloating/pity). Similarly, emotions differ with respect to the appraisals of the 
praiseworthiness of one’s own actions (e.g., pride/shame) versus the actions of others (e.g., 
admiration/reproach). However, attributes of objects are appraised only on appeal (e.g., 
love/hate). The resulting model identifies 11 pairs, or 22 individual emotions. 

 
Table 7. Elements of OCC Model 

Attribution 
Groups 

Appraisal 
Focus of Interest Valence Dimension Criteria 

Events Consequences of 
events 

Desirability: 
Pleased/Displeased 

Goals: events promote or 
thwart one’s goals 

Agents Actions of agents Praiseworthiness: 
Approving/Disapproving 

Standards: agents act in 
accord with social, moral, 
and behavioral standards 

Objects Aspects of 
objects 

Appeal: Liking/Disliking Attitudes: objects are 
compatible with one’s tastes 
and attitudes 
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Note: Reproduced from Ortony, Clore, and Collins (1988, 19). 

Figure 3. Structure of Emotions in OCC Model 

b. Relevance to Synchronous Distance Learning 
The OCC model has often been used to synthesize and generate emotional reactions 

in intelligent agents (e.g., Bartneck, Lyons, & Saerbeck, 2008; Steunebrink, Dastani, & 
Meyer, 2009). It has even been incorporated into an emotional appraisal engine 
(GAMYGDALA) for generating emotions of nonplayer characters in games (Broekens, 
Hudlicka, & Bidarra, 2016).  

There have been fewer applications of the OCC model to recognize emotions. This is 
partly due to the theory’s assumption that “emotions are more readily distinguished by the 
situations they signify than by patterns of bodily responses” (Clore & Ortony, 2013, p. 
335). Thus, the model has no provisions for interpreting physical responses, including 
facial expressions. However, the model implies that emotive states could be derived from 
an analysis of psychologically significant situations. At least two studies using the OCC 
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model have demonstrated that contextual information can be derived from text or speech 
to recognize the emotional content of the discourse (Shaikh, Prendinger, & Ishizuka, 2009; 
Udochukwu & He, 2015).  

5. Pekrun’s Concept of Academic Emotions 
The previously described theories pertain to emotions experienced in human life in 

general. Reinhard Pekrun, a professor at the University of Munich, has sought to focus his 
efforts on the emotions that specifically apply to academic learning in the classroom.  

a. Synopsis of the Theory 
As summarized in Table 8, Pekrun (2014) distinguishes among four broad types of 

academic emotions that affect classroom instruction: achievement, epistemic, topic, and 
social emotions. Topic emotions relate to the content of learning whereas social emotions 
pertain to the social context of the learning environment. Of these four types of academic 
emotions, the theory behind achievement and epistemic emotions are the most well 
developed and relevant to technology-based instruction. The following discussion 
therefore focuses on those two types.  

 
Table 8. Four Types of Academic Emotions 

Type Description Examples 
Achievement emotions Emotions related to the success 

or failure of learning 
activities/outcomes that are 
judged according to competence-
related standards of quality. 

Hope and pride related to success. 
Anxiety and shame related to 
failure. 

Epistemic emotions Emotions elicited by cognitive 
problems or solutions 
experienced during learning. 

Surprise, curiosity, confusion, 
frustration, anxiety, and delight. 

Topic emotions Emotions associated with content 
of learning, but not directly 
related to learning and problem-
solving. 

Empathy for protagonists, disgust 
for medical procedures, and joy for 
music. 

Social emotions Emotions related to feelings 
toward classroom teachers and 
peers, having potential effects on 
teacher-student interaction and 
in-group learning. 

Social anxiety. Love and sympathy 
in relationships with classmates 
and teachers. Compassion, 
admiration, envy, anger, contempt, 
or empathy related to success or 
failure of others.  
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1) Achievement Emotions 
Pekrun defines achievement emotions as those that relate to achievement activities 

and outcomes that are judged on competency-based standards of quality (Pekrun & 
Linnenbrink-Garcia, 2012). In his control-value theory of achievement emotions, Pekrun 
(2006) distinguished between emotions related to achievement activities (e.g., hope and 
anxiety) and achievement outcomes (e.g., enjoyment and anger). Pekrun further divided 
outcome emotions into prospective, anticipatory emotions (e.g., hope for success, anxiety 
of failure) and retrospective emotions for outcomes in the past (e.g., pride or shame).  

In the Pekrun model, an achievement emotion is determined from two types of 
cognitive appraisals. The first is an appraisal of the subjective value of an outcome or 
activity. Value relates to the perceived importance of task success or failure or to the 
valence or appeal of an activity. The second is an appraisal of the perceived control that a 
person has over the outcome or activity. Control refers to the extent to which the learner’s 
actions or the learner’s situation will lead to a positive outcome. Subjective control and 
value combine to determine a unique emotion. For instance, if learners value success on an 
academic task over which they have a high degree of control, then they will experience 
anticipatory joy. On the other hand, if learners have a low degree of perceived control over 
valued tasks, they will experience hopelessness regardless of whether the perceived value 
is positive or negative. The combinations are not always linear; for instance, for a low-
valued activity, learners will be bored if they perceive that they have either a high or a low 
degree of control over outcomes. Similarly, if learners perceive that they have little control 
over outcomes, they will experience frustration if they value task success or the avoidance 
of task failure. As shown in Table 9, this scheme identifies 14 unique achievement 
motivations, two of which (hopelessness and anger) are listed twice. Hopelessness results 
from positive or negative future outcomes over which the learner has little or no control. 
Furthermore, anger results from a negative prior outcome that was controlled by some 
other entity or a negative activity over which the learner has a high level of control. 
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Table 9. Achievement Emotions According to Pekrun’s (2006) Control-Value Theory 

Object Focus 
Appraisals 

Emotion 
Value Control 

Outcome/prospective Positive (success) High Anticipatory joy 
Medium Hope 
Low Hopelessness 

Negative (failure) High Anticipatory relief 
Medium Anxiety 
Low Hopelessness 

Outcome/retrospective Positive (success) Irrelevant Joy 
Self Pride 
Other Gratitude 

Negative (failure) Irrelevant Sadness 
Self Shame 
Other Anger 

Activity Positive High Enjoyment 

Negative High Anger 

Positive/Negative Low Frustration 

None High/Low Boredom 

Notes: Adapted from Pekrun (2006). Note that two emotional states (hopelessness and anger) are evoked 
by two separate sets of goals and appraisals. Also, note that the control column refers to either level or 
source of control. 

 
A unique aspect of achievement emotions, as depicted by Pekrun and associates, is 

that they are reciprocally related to academic outcomes (Pekrun, Lichtenfeld, Marsh, 
Murayama, & Goetz, 2017). In agreement with most theories of affect and performance, 
they propose that achievement emotions affect academic outcomes through the allocation 
of cognitive resources and attention toward positively appraised tasks and away from 
negatively appraised ones. However, they also hypothesize that outcomes affect emotions. 
The reverse relationship is mediated through the effect of outcomes on students’ perceived 
competence and level of control. In short, positive outcomes lead to heightened perceived 
competence and control, which in turn result in positive emotions. Likewise, negative 
outcomes result in reduced competence and control, leading to negative emotions.  

Findings from a recent multiyear longitudinal investigation of German adolescents’ 
mathematics achievement support the reciprocal relationship between achievement 
emotions and academic outcomes (Pekrun, Lichtenfeld, Marsh, Murayama, & Goetz, 
2017). Emotions were assessed using the Achievement Emotions Questionnaire-
Mathematics (AEQ-M), which measured the students’ emotional trait-like dispositions on 
seven scales: (1) enjoyment, (2) pride, (3) anger, (4) anxiety, (5) shame, (6) boredom, and 
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(7) hopelessness. Results indicated that the emotions predicted academic outcomes (end-
of-year math grades and standardized test scores), and that those end-of-year outcomes 
predict the emotions in the next year. 

2) Epistemic Emotions 
Pekrun, Vogl, Muis, and Sinatra (2017) define epistemic emotions as those that relate 

to learning and knowledge generation. In that regard, they are much like learning-centered 
emotions (see Section 3.A.6 below). They differ from achievement emotions in terms of 
their object focus. Whereas achievement emotions (e.g., pride and shame) are centered on 
academic success or failure, epistemic emotions (e.g., curiosity and confusion) are focused 
on knowledge generation. However, the researchers also point out that some emotions can 
be experienced as either epistemic or achievement, depending on the object focus: 

For example, during cognitive activities, some emotions can be experienced 
as epistemic emotions or as achievement emotions…A student’s frustration 
at not deriving a correct solution to a mathematics problem would be 
considered an epistemic emotion if the focus is on the cognitive incongruity 
resulting from the unsolved problem. However, if the focus is on personal 
failure and the inability to solve the problem, then the student’s frustration 
would be considered an achievement emotion. (Pekrun, Vogl, et al., p. 
1269) 

Pekrun, Vogl, et al. (2017) developed a paper-and-pencil instrument for assessing 
epistemic emotions during these learning activities: reading and comprehending 
conflicting multiple texts on the causes and consequences of climate change. This 
instrument, labeled the Epistemically-Related Emotion Scales (EES), was designed to 
measure seven epistemic emotions: (1) surprise, (2) curiosity, (3) enjoyment, (4) confusion, 
(5) anxiety, (6) frustration, and (7) boredom. EES items are single emotional adjectives 
(e.g., monotonous, excited, astonished) that relate to one of the seven epistemic emotions. 
The full version of EES presents 3 different items for each emotion, or 21 items in all. A 
short seven-item version of EES was also developed that consists of only one item per 
epistemic emotion. 

b. Relevance to Synchronous Distance Learning 
Pekrun’s model is important in that it provides a comprehensive list of emotions that 

are relevant to academic contexts. Note that as currently conceived, the model is focused 
on traditional live classroom education, which limits its relevance to advanced technology 
(i.e., computer-based or web-based) instruction.  
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6. Graesser and D’Mello’s Learning-Centered Emotions 
In contrast to Pekrun’s treatment of broad set of emotions relating to varied academic 

situations, Graesser and D’Mello have focused on a smaller set of affective states that arise 
during short individual learning sessions implemented on advanced learning technologies.  

a. Synopsis of the Theory 
The learning-centered emotions model is derived from a detailed theory of complex 

learning (e.g., Graesser & D’Mello, 2012). Complex learning happens when people attempt 
to understand difficult material or solve a challenging problem. Complex learning is 
contrasted with shallow learning processes, which are involved in memorizing definitions 
or other facts. Successful complex learning, or deep learning, results from the learner’s 
experiences of problems and solutions in coping with difficult content. Difficult materials 
are usually multifaceted, involving dynamic learning processes required at different points 
in the learning timeline. Accompanying these dynamic learning processes are characteristic 
emotions or affective states, such as confusion and frustration with learning problems and 
delight in discovering solutions. 

Central to Graesser and D’Mello’s (2012) theory of deep learning is the concept of 
cognitive disequilibrium. Cognitive disequilibrium occurs when the learner faces a 
discrepancy between the current task situation and the learner’s knowledge or skill state. 
This discrepancy launches a trajectory of affective and cognitive states and processes to 
reduce the disequilibrium by either acquiring knowledge or skill relevant to the task 
situation or disengaging from the task. Figure 4 illustrates possible sequences of cognitive 
and emotive processes that may occur during complex learning. Note that confusion 
brought on by disequilibrium can lead to either frustration if the discrepancy is not resolved 
or engagement/flow if the discrepancy is resolved. The movement from confusion to 
engagement is considered to be a key mechanism for deep learning. 

There are six primary learning-centered emotions that Grasser and D’Mello (2012) 
identified from a number of empirical studies employing different learners, topics, and 
technologies: confusion, frustration, boredom, flow/engagement, delight, and surprise. The 
first four occur more frequently and last for longer periods of time, whereas the last two 
are relatively infrequent and brief. These primary emotions occur across a broad range of 
learning tasks and situations. In contrast, two learning-centered emotions, anxiety and 
curiosity, are experienced in specific situations: anxiety when learners are faced with high-
stake assessments, and curiosity when the learners are allowed freedom of response or 
when the task is intrinsically motivating. Table 10 summarizes these characteristics. 
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Note: Figure from Grasser and D’Mello (2012, 190) 

Figure 4. Trajectory of Cognitive and Emotive Processes Triggered by Cognitive 
Disequilibrium 

 
Table 10. Characteristics of Learning-Centered Emotions 

Learning-Centered 
Emotion Frequency Duration Situation 

Confusion Often Long General 
Frustration Often Long General 
Boredom Often Long General 
Flow/engagement Often Long General 
Delight Rarely Brief General 
Surprise Rarely Brief General 
Anxiety Situation-specific Situation-specific Learners face high-stakes 

assessment 
Curiosity Situation-specific Situation-specific Learners allowed freedom of 

response 

 
A selective meta-analysis of 24 studies conducted by D’Mello (2013) focused on 

emotions experienced by students using advanced learning technologies in relatively short 
(30 to 90 minute) sessions. The findings confirmed that flow/engagement, boredom, and 
confusion were experienced relatively frequently. Also, curiosity and frustration were 
reliably observed but with lower frequency, as was the basic emotion of happiness. 
Notably, the other five basic emotions—anger, fear, sadness, disgust, and surprise—were 
not frequently observed during advanced learning technology sessions. Also, the learning-
centered emotions of delight, surprise, and anxiety were infrequently observed in this 
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study. As noted above, however, the theory predicts that these emotions should occur only 
briefly or under a specific set of circumstances. 

b. Relevance to Synchronous Distance Learning 
The learning-centered emotions are relevant because they are explicitly focused on 

those states experienced during interactions with advanced learning technologies. 
However, the context of those interactions is restrictive, pertaining to relatively short-term 
individual learning experiences with little or no human trainer intervention. In contrast, the 
synchronous collective/cooperative learning context in the SLC learning environment 
involves both student-student and student-trainer interactions. We would therefore expect 
a larger range of affective states to be implicated, particularly the social emotions as 
described by Pekrun. 

7. Keltner’s Consensual Taxonomy 
Dacher Keltner views his theory of emotion as an evolution of Ekman’s notion of 

basic emotions (Keltner, Sauter, Tracy, & Cowen, 2019). But instead of there being a 
relatively small set of basic emotions, Keltner’s theory holds that humans can reliably 
detect more than 20 emotional states.  

a. Synopsis of the Theory 
In a recent series of articles, Keltner, Alan Cowen, and their associates at the Berkeley 

Social Interaction Laboratory have demonstrated that humans are able to detect a much 
larger set of basic emotions than previously thought (Cowen, Elfenbein, Laukka, & 
Keltner, 2019; Cowen & Keltner, 2017, 2018, 2019; Cowen, Sauter, Tracy, & Keltner, 
2019). Proponents of Basic Emotion Theory (BET) thought that humans are capable of 
recognizing fewer than 10 basic emotions, but evidence is mounting that they can reliably 
detect more (perhaps much more) than 20 emotional states.  

In agreement with BET and appraisal theories of emotion, Keltner and colleagues 
view emotions as discrete affective states: “Emotions are internal states that arise following 
appraisals (evaluations) of interpersonal or intrapersonal events that are relevant to an 
individual’s concerns…and promote certain patterns of response” (Cowen et al., 2019, pp. 
72–73). In opposition to BET, however, these emotions are not independent, but highly 
interrelated, and not in a two-dimensional space as described in the Circumplex Model or 
in PANAS, but in a multidimensional hyperspace. The hyperspace model is derived using 
new big-data techniques. This model did not evolve from a fixed list of emotions based on 
scientists’ assumptions or from standard measures based on forced-choice recognition 
tasks under controlled conditions. Rather, Keltner’s theory is based on empirical patterns 
under more realistic, free-response conditions. The result is a high-dimensional semantic 
space that provides a comprehensive representation of the varieties of emotional 
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expression. Some of the original work mapped subject responses to evocative videos 
(Cowen & Keltner, 2017; see Note: Figure taken from Cowen and Keltner (2017): The 
figure represents “a chromatic map of average emotional responses to 2,185 videos within 
a 27-dimensional categorical space of [self-]reported emotional experience…The resulting 
map reveals gradients among distinct varieties of reported emotional experiences, such as 
the gradients from anxiety to fear to horror to disgust” (figure 2, page E7904). 

Figure 5 ). Similar findings have since been obtained using different emotion-evoking 
stimuli, such as emotional concept words, non-semantic vocal bursts, and videos of 
facial/bodily expressions (Cowen, Sauter, Tracy, & Keltner, 2019). 

 

 
Note: Figure taken from Cowen and Keltner (2017): The figure represents “a chromatic map of average 

emotional responses to 2,185 videos within a 27-dimensional categorical space of [self-]reported 
emotional experience…The resulting map reveals gradients among distinct varieties of reported 
emotional experiences, such as the gradients from anxiety to fear to horror to disgust” (figure 2, page 
E7904). 

Figure 5. Videos Mapped Along 27 Categorical Judgment Dimensions of  
Reported Emotional Experience 
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Noting the recent explosion of interest and debates in emotion research, Keltner 
(2019) recently proposed a “consensual” taxonomy of emotions to describe the basic points 
of agreement (circa 2019). Like Ekman’s (1992) model of basic emotions, Keltner’s 
consensual model holds that emotions are brief but discrete states, focused on different 
objects (including the self), defined by a central appraisal tendency, and possessing unique 
signals and underlying physiology. Unlike Ekman, Keltner maintained that there are more 
than six basic emotions, stating that there is “tacit inclination” among emotion researchers 
to recognize 20–25 different emotional states. As summarized in Table 11, his suggested 
list includes Ekman’s original Big Six emotions, 4 emotions related to self-consciousness, 
and 13 emotions that describe an array of positive affective states. Keltner noted that the 
positive emotions are underresearched and should receive systematic attention. Keltner 
cautioned that the whole list was not definitive; rather, he described it as a working 
taxonomy that would evolve as evidence accumulates. 

 
Table 11. Keltner’s (2019) Consensual Taxonomy 

Category Emotion 
Big Six emotions Anger 

Disgust 
Fear 

Happiness 
Sadness 
Surprise 

Self-conscious emotions Embarrassment 
Shame 

Guilt 
Pride 

Positive emotions Amusement 
Awe 

Contentment 
Desire 

Ecstasy 
Gratitude 
Interest 

Joy 
Love 
Pride 
Relief 

Sympathy 
Triumph 

 
Note that in Table 11, pride is listed as both a self-conscious and a positive emotion. 

No explanation was provided, but we speculate that he was implying that there may be 
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different conceptual definitions of the emotion. As a self-conscious emotion, pride is 
explicitly directed toward oneself, whereas the positive emotion of pride may be either 
directed inwardly toward the self or outwardly toward other objects or people. 

b. Relevance to Relevance to Synchronous Distance Learning 
Current research suggest that the set of affective states that are relevant to advanced 

learning technologies is small. For instance, D’Mello (2013) found evidence for six 
emotions (engagement/flow, boredom, confusion, curiosity, happiness, and frustration) 
occuring with measurable frequency during individual sessions with advanced learning 
technologies. However, researchers are beginning to recognize that an individual 
interaction with an intelligent tutoring system is an emotionally impoverished situation, 
and this small set of emotions may not apply to the more complex group-learning situations 
in the SLC synchronous learning system. The SLC system may elicit more self-conscious 
and positive emotions as referenced in the consensual taxonomy. But as it currently stands, 
the consensual taxonomy is merely a listing of emotional states that can be reliably 
detected; the list has not been related to specific technologies or learning situations. 

B. Synthesis of Models 
Our review of models begins with Ekman’s Basic Emotion Theory, perhaps best 

articulated in Ekman (1992). Keltner, Sauter, Tracy, and Cowen (2019) maintain that BET, 
nearly 30 years after this formulation, remains the “central narrative” in emotion research, 
and it provides a point of comparison in the development of competing theoretical 
viewpoints. Thus, we use BET as the point of reference for discussing the differences and 
similarities among the various models of emotion. 

1. Points of Disagreement 
Although BET is central to the science of emotion recognition, many researchers 

criticize the theory from a number of perspectives. The following are examples of 
criticisms that researchers have aimed at BET. 

a. Emotions Are Not Discrete States 
Some theorists do not regard emotions as discrete states, but rather as determined by 

a combination of continuous variables, such as valence and arousal (e.g., Russell, 1980; 
Russell & Barrett, 1999). 

b. There Are Multiple Modes of Emotional Expression, Not Just Facial 
Movements 

Researchers have also criticized the focus of BET on facial movements as the primary 
behavioral expression of emotions. Research indicates that humans are able to reliably 
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recognize emotions based on diverse cues, such as complex movements of face, head, 
body, and hands; subtle shifts in gaze, brief touches, postural movements, and a variety of 
non-semantic vocal cues (Cowen, Sauter, Tracy, & Keltner, 2019).  

c. There Are More than Six Basic Emotions 
Researchers generally agree that there are more than six basic emotions as specified 

in BET. Keltner (2019) recently asserted that there is now good evidence that 20–25 states 
have emotion-like properties.  

d. Emotions Arise from a Cognitive Appraisal Process 
Any theory of emotion recognition needs to incorporate cognitive appraisal processes 

as explicitly stated in the OCC (Ortony, Clore, & Collins, 1988) and Pekrun’s (2006) 
control-value theories of emotion. Appraisal processes were not considered in the original 
statement of BET (Ekman & Friesen, 1971), but were incorporated into the later theoretical 
update (Ekman, 1992). 

e. The Context of the Expression is Important 
In emotion recognition, the context of expression is as important, or more important, 

than the expression itself. This is expressed most strongly by Clore and Ortony (2013, p. 
335): “emotions are more readily distinguished by the situations they signify than by 
patterns of bodily responses.” 

2. Points of Agreement 
Despite the diversity of theoretical constructs in the science of emotion, researchers 

generally agree on some fundamental characteristics and processes of affective states. The 
following points of agreement were chosen because they had relevance to the technology 
of emotion recognition. 

a. Emotional States Arise Through an Unconscious Appraisal Process 
Emotions and the expression of those emotions arise spontaneously without much 

initial awareness by the person experiencing the emotion. That people have limited 
conscious control of this process implies that they have difficulty hiding their emotions. 
For most people, the experience of emotion is an automatic response over which they have 
little control. Unless a person is consciously trying to deceive others, the emotion that the 
person displays is the emotion that the person is experiencing. 

b. Emotions Are Relatively Brief and Transitory States  
Emotions are transitory experiences lasting only seconds, not minutes. The emotional 

experience at time t may not be the same as the experience at time t + 30 s. This implies 
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that assessment or measurement of affect must occur in real time or be explicitly time 
linked.  

c. Observable Expressions of Emotion Are Reliable Indications of Internal 
Emotional States 

Any particular emotion is brought about by a distinct set of antecedent conditions or 
events and has unique behavioral and physiological expressions. That is, certain situations 
(e.g., someone cuts in front of you in a long checkout line in a grocery store) are likely to 
arouse certain emotions in you (anger). Further, you may express that anger behaviorally 
(loud verbal comments directed at the offender) or physiologically (release of adrenaline 
causing your face to redden). The implication is that there are reliable external signals that 
you are experiencing a certain emotion. 

d. Humans Are Good at Recognizing Emotional States Experienced by Others 
To extend the previous example, if I viewed you at a distance yelling at someone in 

line in front of you, I would guess that you were angry—even if I weren’t close enough to 
hear what you were saying. But if I had also viewed the antecedent events (line-cutting), I 
would be even more certain that you were experiencing anger. Humans are quite good at 
correctly recognizing the emotional expression of others, and even better when they can 
also perceive the situation in which the expression occurs. Researchers view this ability as 
an important basic skill in forming social relations. 

C. Synthesis of Taxonomies 
The taxonomies are more difficult to synthesize. A tally of the 7 models indicates that 

there are 75 qualitatively different affective states that were identified by at least one of the 
7 models reviewed. Table 12 crosswalks the states to each of the seven models. This 
analysis reveals surprisingly little agreement among the models; notably, over half of 
emotions (43, or 57.3%) are endorsed by only one of the seven models. The table also sorts 
the 75 emotions by the number of models that endorse each, from the most endorsed to the 
least endorsed emotions. As described below, the results are sorted in five tiers of emotions, 
from the most to the least level of consensus. 
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Table 12. Emotions Sorted into Five Tiers of Endorsement 

Affective State BET CMA  PANAS OCC AE LCE CT 

 Endorsed by Five Models 
Happiness/enjoyment + +    + +a + 

 Endorsed by Four Models 
Anger +    + +  + 
Pride    + + +  + 
Sadness + +    +  + 
Shame +b    + +  + 
Surprise +     + + + 

 Endorsed by Three Models 
Boredom  +    + +  
Fear +    +   + 
Gratitude     + +  + 
Guilt +b   +    + 
Joy     + +  + 
Love     + +  + 

 Endorsed by Two Models 
Admiration     + +   
Alert  +  +     
Anxiety      + +  
Awe +b       + 
Confusion      + +  
Contempt +b     +   
Contentment  +      + 
Curiosity      + +  
Delight      + +  
Disgust +       + 
Distress    + +    
Embarrassment +b       + 
Excited  +  +     
Frustration      + +  
Hope     + +   
Interest    +    + 
Nervous  +  +     
Relief     +   + 
Sympathy      +  + 
Upset  +  +     
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Affective State BET CMA  PANAS OCC AE LCE CT 

 Endorsed by One Model 
Active    +     
Afraid    +     
Amusement        + 
Anticipatory joy      +   
Anticipatory relief      +   
Ashamed    +     
Attentive    +     
Calm  +       
Compassion      +   
Depressed  +       
Desire        + 
Determined    +     
Disappointment     +    
Ecstasy        + 
Elated  +       
Empathy      +   
Engagement/Flow       +  
Enthusiastic    +     
Envy      +   
Fatigued  +       
Fears-confirmed     +    
Gloating     +    
Gratification     +    
Happy-for     +    
Hate     +    
Hopelessness      +   
Hostile    +     
Inspired    +     
Irritable    +     
Jittery    +     
Pity     +    
Relaxed  +       
Remorse     +    
Reproach     +    
Resentment     +    
Satisfaction     +    
Scared    +     
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Affective State BET CMA  PANAS OCC AE LCE CT 

Serene  +       
Social anxiety      +   
Stressed  +       
Strong    +     
Tense  +       
Triumph        + 

Notes: BET = Basic Emotion Theory, CMA = Circumplex Model of Affect, PANAS = Positive and Negative 
Affect Schedule, OCC = Ortony, Clore, and Collins Model, AE = Academic Emotions, LCE = Learning 
Centered Emotions, CT = Consensual Taxonomy. 

 Despite their being endorsed by only a single theory, Tier 5 emotions in bold italics deserve further 
consideration due to their relevance to learning. 

a Not in theoretical taxonomy, but D’Mello’s meta-analysis (2013) shows evidence for happiness during 
sessions using advanced learning technologies. 

b    Outside of Big Six, but Ekman (1992) considered there to be “some evidence” that awe, contempt, 
embarrassment, guilt, and shame are basic emotions. 

1. Endorsed by Five Models 
At the very top of the list is enjoyment/happiness, which is endorsed by five of the 

seven models. This emotion was identified as one of the basic and universal emotions by 
Ekman (1992) and by Keltner’s consensual taxonomy (2019), as a core emotion in the 
Circumplex model (Barrett and Russell 1998), and as an achievement emotion in Pekrun’s 
(2006) model of academic emotions. Happiness is not technically in Graesser and 
D’Mello’s (2012) model of learning-centered emotions, but D’Mello’s (2013) meta-
analysis shows evidence that the emotion is prevalent during interactions with advanced 
learning technologies. 

2. Endorsed by Four Models 
The next tier are the emotions endorsed by four taxonomies. This tier comprises five 

emotions, three of which (anger, sadness, and surprise) are significant in that they are Big 
Six emotions. The fourth affective state in this tier, shame, was also named by Ekman 
(1992) as a possible basic emotion, although it is not in the Big Six. The fifth element in 
this tier, pride, is viewed as self-directed positive emotion in the PANAS, OCC, and 
Pekrun’s academic emotions models. Keltner’s (2019) consensual model implied that pride 
could also be viewed as being outwardly directed at another person or object, as well as 
being an inwardly directed positive emotion. 

3. Endorsed by Three Models 
The third tier comprises emotions endorsed by three models. This level includes six 

emotional states: boredom, fear, gratitude, guilt, joy, and love. Fear and guilt are 
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recognized as negative emotions. Fear is a Big Six affective state recognized in both 
Ekman’s basic emotions theory and Keltner’s consensual taxonomy and a negative 
affective state in the PANAS model. Guilt is recognized as a possible basic emotion in 
Ekman’s model, an assessment of negative consequences for self in the OCC model, and a 
negative self-conscious emotion in Keltner’s taxonomy. Gratitude, joy, and love are all 
positive emotions in the OCC model, Pekrun’s academic emotions, and Keltner’s 
consensual taxonomy.  

Unlike the other five emotions in this tier, boredom is described differently in the 
models. Boredom is characterized as an unpleasant, deactivated core emotion in the 
Circumplex model. It is also viewed as a primary learning-centered emotion that frequently 
occurs in learning situations, and it is both an achievement and epistemic emotion in 
Pekrun’s model. 

4. Endorsed by Two Models 
Tier 4 consists of 20 affective states, each endorsed by 2 models. As described below, 

emotions in this tier can be divided into four subgroups. 

a. Learning-Centered and Academic Emotions 
Anxiety, confusion, curiosity, delight, and frustration are all recognized as both 

learning-centered emotions (Graesser & D’Mello, 2012) and academic emotions (Pekrun, 
2014).  

b. Core Emotions 
Alert, contentment, excited, nervous, and upset are classified as core emotions in the 

Circumplex model described by Barrett and Russell (1998). Alert and excited are pleasant 
and activated emotions in that scheme, whereas contentment is pleasant and deactivated. 
Nervous and upset are negative and activated core emotions. Except for contentment, the 
emotions in this category are also endorsed by the PANAS model (Watson, Clark, & 
Tellegen, 1988). The second endorsement for contentment is Keltner’s (2019) consensual 
model, which describes it as a positive emotion. 

c. Basic Emotions 
Awe, contempt, disgust, and embarrassment are given as basic emotions in Ekman’s 

(1992) taxonomy and Keltner’s (2019) consensual list of emotions. 

d. Positive and Negative Affective States 
Emotions in this category are positive or negative affective states identified on the 

PANAS (Watson, Clark, & Tellegen, 1988). Five of the six emotions in this category 
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(admiration, hope, interest, relief, and sympathy) are identified as positive states by 
PANAS and either OCC (Ortony, Clore, & Collins, 1988), academic emotions (Pekrun, 
2014), or Keltner’s (2019) consensual taxonomy. Distress is viewed as a negative affective 
state in the PANAS and OCC models.  

5. Endorsed by One Model 
The fifth tier, comprising affective states endorsed by only a single model, is by far 

the largest. These 43 emotions in this tier can be cast into four subgroups. 

a. Continued Consideration 
Despite being cited only by a single taxonomy, 11 emotions should continue to be 

under consideration because they have clear implications for learning and instruction. They 
can be sorted into four subsets: 

• Positive Emotions: Keltner (2019) cites a number of positive emotions that have 
received increasing research interest stimulated by Fredrickson’s (2004) 
broaden-and-build theory. Nine of those positive emotions have been noted in 
higher tiers (awe, contentment, gratitude, interest, joy, love, pride, relief, and 
sympathy), but four have not (amusement, desire, ecstasy, and triumph). 

• Social emotions: These affective states may come into play in the cooperative-
learning approach implemented in the virtual classroom paradigm. In that 
regard, Pekrun (2014) identifies four social emotions that relate to the success 
and failure of others: compassion, empathy, envy, and social anxiety. 

• Negative Polar Opposites: Two negative emotions are the polar opposites of 
important positive affective states. One is hate, which is the antipode of love in 
the OCC model (Ortony, Clore, & Collins, 1988). The other is hopelessness, 
which is portrayed as the antithesis of hope in Pekrun’s (2014) academic model. 

• Engagement/Flow: Only one taxonomy, the learning-centered model (Graesser 
& D’Mello, 2012), endorses engagement/flow as a discrete and distinguishable 
emotion. This is partly because engagement is viewed differently from other 
emotions—it is usually seen as less of a diagnostic clue of an ongoing learning 
process (i.e., an independent variable) and more of a desired end state of the 
process (a dependent variable). Regardless, engagement is an important 
emotional state to consider in relation to learning and memory processes. 

b. Moods 
Some of the affective states in this tier are more accurately described as moods rather 

than emotions. Moods are pervasive and sustained affective states having no unique 
nonverbal expression. Emotions, in contrast, are short-lived feelings that can be recognized 
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by overt nonverbal expressions. The following affective states in Tier 4 are regarded as 
moods: active, attentive, depressed, determined, enthusiastic, fatigued, hostile, inspired, 
irritable, jittery, relaxed, stressed, strong, and tense. 

c. Idiosyncratic Affects 
These emotions in this subgrouping are overly specific, applying to a specific theory. 

Anticipatory joy and anticipatory relief are prospective emotions defined by Pekrun’s 
(2006) control value theory of achievement motivation. The remaining emotions in this 
subgroup are all derived from the OCC model of emotions (Ortony, Clore, & Collins, 
1988): disappointment, fears-confirmed, gloating, gratification, happy-for, pity, remorse, 
reproach, resentment, and satisfaction. 

d. Similar Concepts 
Six emotions in Tier 5 appear to be synonyms or closely related to emotions in higher 

tiers: afraid and scared (cf. fear in Tier 3), calm and serene (cf. contentment in Tier 4), 
ashamed (cf. shame in Tier 2), and elated (cf. enjoyment/happiness in Tier 1). 

6. Summary 
Our analysis of the taxonomies of the seven prominent theories of emotion failed to 

identify a small set of commonly accepted affective states. Instead, we identified a 
relatively large set of emotive states that differed in their endorsements from the theories. 
In the end, we identified 43 affective states that could be considered as candidate emotions 
for instructional feedback, including 32 that were endorsed by two or more models and 11 
endorsed by only a single model yet were deemed relevant to learning. Not all these 
emotions could or should be monitored for any educational application. Whether an 
emotion should actually be monitored depends on (1) the accuracy of the technology that 
is used to detect the affective state and (2) the effect that the affective state has on learning 
processes and outcomes. 
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4. Determine Learning Intervention

Even if an instructor or learning system were able to reliably detect the affective state 
of students, the question remains about what sort of instructional intervention should be 
performed. Should the intervention induce another certain affective state, enhance or 
diminish the current state, or is an intervention even necessary? These questions are the 
focus of this chapter. 

D’Mello and Graesser (2015) proposed that affect-sensitive learning systems are 
designed to intervene either proactively or reactively. Proactive systems are those that are 
designed before the fact to induce positive emotional states or impede negative states. In 
comparison, reactive systems are those that detect and respond to affective states as they 
arise.  

Aleven, McLaughlin, Glenn, and Koedinger (2016) described a similar distinction in 
terms of three general approaches to adapting instruction to learner affect and motivation.4 
These three adaptation strategies differ in the focus of the adaptations and in terms of their 
time scale. The slowest is design-loop adaptivity, which refers to adjustments to course 
design that are made before course implementation or between course iterations. Design-
loop adaptivity is essentially equivalent to D’Mello and Graesser’s concept of proactive 
systems. Aleven et al. divided reactive systems into two subtypes. The slower type of 
reactive system applies task-loop adaptivity, which focuses on selection of learning tasks 
or problems that are appropriate to the individual learner’s states or traits. The faster 
version employs step-loop adaptivity, which pertains to changes within a task or learning 
activity based on the learner’s momentary state.  

The following sections describe three types of interventions to adapt instruction to the 
affective states of learners: (1) proactive design-loop adaptation; (2) reactive, task-loop 
adaptation; and (3) reactive, step-loop adaptation. For each type, we present examples from 
the literature and summarize evidence of their effectiveness. Although this review is not 
exhaustive, it is representative of the methods used and results from these three approaches. 

4  Aleven et al. (2016) also examined adaptation to other learner characteristics, including knowledge 
level, learning paths, learning strategies, and learning styles; however, this chapter focuses on learner 
affect and motivation. 



52 

A. Proactive Design-Loop Adaptation 
Aleven et al. (2016) pointed out that the proactive or design-loop approach differs 

from the reactive methods in how training adapts to variability in student affect. In the 
reactive approach, instruction is adjusted to individual differences in affective states, both 
between different learners and within the same learner over time. In contrast, proactive 
systems adapt to learner similarities in affect. The intent of the proactive approach is to 
design (or redesign) instruction to maximize positive affective states and minimize 
negative states that are experienced by many or most students. 

1. Examples 
In this section, we describe three examples of the proactive design-loop approach. In 

the first two examples (Crystal Island and Virtual Schoolhouse), the systems incorporate 
game-like features that are explicitly designed to induce emotional states that promote 
engagement and positive learning outcomes. In the third example (ConfusionTutor), the 
system is designed to induce confusion, which is commonly regarded as a negative 
emotional state. Ironically, however, this negative state produces positive learning 
outcomes.  

a. Crystal Island 
The Crystal Island educational game was designed by James Lester and his colleagues 

at the Center for Educational Informatics at North Carolina State University. Crystal Island 
is a narrative-centered learning environment built on Valve Software’s Source engine, the 
3D game platform for Half-Life 2 (Sabourin & Lester, 2014). The game, which is a science 
mystery set on a volcanic island, is designed around the North Carolina eighth-grade 
microbiology curriculum. The program incorporates a narrative instructional approach that 
is designed to promote student engagement and deep learning. The developers 
hypothesized that “by enabling learners to be co-constructors of narratives, narrative-
centered learning environments can promote the deep, connection-building meaning-
making activities that define constructivist learning” (Mott, Callaway, Zettlemoyer, Lee, 
& Lester, 1999, p. 79).  

There is evidence that the emotion-eliciting strategy designed into Crystal Island is 
effective in promoting learning. For instance, Rowe, Shores, Mott, and Lester (2011) 
studied middle school students interacting with the game and found significant gains in 
pre- to post-experiment knowledge and problem-solving tests. They also found larger gains 
in learning outcomes for students scoring higher in engagement as measured by several 
metrics. Also, Sabourin and Lester (2014) investigated the relationship between affect, 
engagement, and learning outcomes. They found positive emotions were associated with 
increased learning, increased interest, and more on-task behavior (i.e., less disengagement). 
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b. Virtual Schoolhouse 
The Virtual Schoolhouse (VSH) is based on virtual-world technology and currently 

is serving as the synchronous distance-learning environment for the SLC. In their initial 
assessment of the system, Aten and DiRenzo (2014) maintained that the game-like features 
and interactive capabilities of the VSH potentially lead to “increased engagement 
compared with other distance education tools, and better learning outcomes resulting from 
collaborative training activities” (p. 1). On the other hand, the researchers also recognized 
that there are unnatural aspects of virtual-world environments, particularly the lack of face-
to-face (FTF) contact that requires students to adapt their behaviors. The adaptations can 
be cognitively demanding and therefore result in reduced student engagement and 
enjoyment. To test these competing notions, Aten and DiRenzo trained sailors on a 
technical subject either in the VSH virtual-world environment or a traditional FTF 
classroom setting. 

The training content was drawn from a segment of the AN/SQQ-89 Ops Course. The 
AN/SQQ-89 is a naval anti-submarine warfare (ASW) system for surface warships. Both 
initial entry and fleet returnee sailors are assigned to this introductory course, where they 
acquire basic knowledge of the system in the classroom and learn to operate the system in 
a laboratory environment. Three sequential cohorts of IE and fleet returnee sailors were 
individually assigned to either VSH or FTF conditions. The overall results indicated that 
although students assigned to the VSH condition scored marginally better than the FTF 
students on the classroom knowledge test and laboratory practical exam, VSH students 
rated the course less engaging and less satisfying than their FTF counterparts.5 But further 
analysis revealed that Cohort 1 comprised only initial entry sailors, whereas Cohorts 2 and 
3 were mixes of initial entries and fleet returnees. Also, Cohort 1 performance scores were 
lower than the two subsequent cohorts. Finally, initial entries rated the VSH less favorably 
than did fleet returnees. When Cohort 1 was dropped from the analysis, the relationship 
between the two conditions reversed: VSH scored higher than FTF in both engagement and 
satisfaction (Aten & DiRenzo, 2014). 

In this test of VSH, student experience and instructor experience were confounded, 
which leads to two likely explanations of the findings, both of which may be true. First, 
VSH was more engaging and effective for fleet returnees than initial entries because 
returnees had a better understanding of the tactical context and purpose of the AN/SQQ-
89 system through their fleet experience. Second, the VSH was more engaging and 
effective for Cohorts 2 and 3 than for Cohort 1 because instructors had become better at 
using the VSH. Aten and DiRenzo (2014) did not stipulate whether instructors practiced 
using the system before Cohort 1. 

                                                 
5  Aten and DiRenzo (2014) provide no results from statistical tests, so it is not clear whether reported 

differences were or were not statistically significant. 
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c. ConfusionTutor 
The design-loop approach to adaptivity was also implemented in ConfusionTutor. As 

its name implies, this intelligent tutoring system was deliberately designed to induce 
confusion (D’Mello, Lehman, Pekrun, & Graesser, 2014). Confusion can lead to deep 
learning if there is discrepancy (disequilibrium) between the learner’s current competency 
level and the skill or knowledge state required to solve the problem. To benefit from 
confusion, however, the learner has to recognize this discrepancy and have the 
informational means to correct it.  

To test the notion that confusion can stimulate deep learning, D’Mello et al. (2014) 
developed learning sessions on concepts in critical reasoning and scientific inquiry (e.g., 
construct validity, experimenter bias) and tested the system using college students. 
Confusion was induced by introducing false or contradictory information by one or both 
of the agents. Learning outcomes were measured by knowledge tests administered before 
and after learning sessions. Results on the post-test were compared between items from 
experimental trials where either or both agents provided false or contradictory information 
and items from control trials where both agents provided true information. Results showed 
that students were not confused by every trial providing false or contradictory information, 
as measured by self-reports or by forced-choice questions occuring after the contradictory 
information. However, for the cases where the students were demonstrably confused, they 
performed better on post-test items from trials that provided false or contradictory 
information than trials based on the control cases that provided true information from both 
agents. 

2. Application to Synchronous Distance Learning 
The examples indicate that the proactive or design-loop approach can be effective for 

adapting instruction to student emotional states. Furthermore, the study by Aten and 
DiRenzo (2014) shows how the proactive approach can be successfully applied to the 
current SLC synchronous distance-learning system with two qualifications: (1) having 
some prior knowledge or experiential understanding of the training subject can enhance 
virtual instruction, and (2) instructors become increasingly effective over repeated 
iterations of a synchronous distance training program. 

As advised by Aleven et al. (2016), the application of the design-loop approach 
requires data on the emotive states of learners that is time-linked to events that occur during 
synchronous training sessions. If the learning environment does not automatically monitor 
those states, there are two obvious ways to obtain those data. First, students could be polled 
periodically to provide self-reports on their momentary affective state. Although self-
reports are often used to detect emotions in research, third-party human judgments using 
systematic methods, such as BROMP, are considered more valid and reliable. BROMP 
provides a standardized method for collecting data on emotional states, which can be linked 
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to specific learning events (Ocumpaugh, Baker, & Rodrigo, 2015). However, BROMP 
should be modified for collecting data within a distance-learning environment. 

As mentioned earlier, Aleven et al. (2016) pointed out that the analysis of emotion 
data collected in a proactive or design-loop system should focus on the similarities, not the 
differences between students. For example, if student affect data identify course elements 
that are particularly confusing or frustrating to most or many students, the course would 
then be redesigned to remove those sources of confusion. Similarly, if elements associated 
with positive emotions (e.g., enjoyment, engagement) are identified, the course could be 
designed to enhance those elements or recreate similar elements at different points in the 
course. Emotions should continue to be monitored in the redesigned course and used to 
adjust subsequent training in future iterations. 

B. Reactive Task-Loop Adaptation 
In a task-loop version of the reactive approach, the instructor or learning system 

detects and responds to individual learner states or traits by selecting a particular learning 
activity, problem, or task that is appropriate to that learner. For instance, the Cognitive 
Tutor is designed to make inferences about individual student knowledge state from the 
student’s responses to the tutor, and it assigns problems intended to advance the student’s 
knowledge level (Corbett, McLaughlin, & Scarpinatto, 2000). Aleven et al. (2016) 
commented that the task-loop approach to adaptivity has become a standard in 
commercially available intelligent tutoring systems. 

1. Examples 
The following are two examples of reactive task-loop adaptivity based on student 

emotive states. The intent of the first is to promote positive emotional states; the intent of 
the second is to discourage counterproductive behavior provoked by negative emotions. 

a. Personal Interests 
Aleven et al. (2016) cited a series of studies showing that presenting problems 

personalized to individual student’s interests has a positive impact on academic outcomes. 
Presumably, adapting instruction to a student’s interests promotes positive emotions, such 
as engagement and enjoyment. An example of these studies is the research by Walkington 
(2013), who developed experimental Cognitive Tutor Algebra (CTA) session problem 
scenarios that match students’ out-of-school interests in areas such as sports, music, and 
movies as determined by an interest survey. Ninth-grade students were randomly assigned 
either to a condition where the story scenarios for problems were personalized to students’ 
individual interest (experimental) or to a condition that presented the same problems but in 
the standard CTA course impersonalized scenarios (control). Results showed the students 
in the experimental personalized condition solved the same problems faster and more 
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accurately than students in the control condition. The advantage to personalized problems 
was most pronounced for one particular skill—writing symbolic equations from the story 
scenarios. Even when the personalization was withdrawn after the intervention, the 
experimental students retained the speed and accuracy advantage in this skill, suggesting 
that personalization had a robust effect on student learning that persisted over time and 
transferred to new learning tasks. 

b. Gaming the System 
Baker et al. (2006) developed a component for the Cognitive Tutor that is designed 

to discourage gaming the system. This particular Cognitive Tutor lesson was developed for 
middle school mathematics education. The anti-gaming component of the tutor was 
enacted by an animated agent named “Scooter the Tutor.” This agent, which was developed 
using graphics from the Microsoft Personal Assistant, reacted when the component 
detected that the student was gaming the system. Gaming was formally defined as 
“attempting to succeed in an educational environment by exploiting properties of the 
system rather than by learning the material and trying to use that knowledge to answer 
correctly” (p. 392). Previous machine-learning analyses had determined features of student 
performance that were predictive of gaming the system as determined by human coders: 
“(1) Several quick actions in a row; (2) A high percentage of errors on skills that involve 
popup menus (i.e., multiple choice); [and] (3) quick actions on problem steps that need a 
numerical answer” (Baker, Corbett, Koedinger, & Roll, 2005, p. 223). Scooter reacted to 
these gaming features in two ways: (1) he showed displeasure to discourage further 
gaming, and (2) if students got the right answer by gaming, he gave them additional 
exercises intended to provide another chance to cover the material that the student bypassed 
by gaming. 

Baker et al. (2006) tested their approach on a math lesson on scatterplots. Middle 
school students were randomly assigned to either a lesson that employed Scooter 
(experimental) or to an equivalent lesson that did not employ Scooter (control). All students 
were tested before and after the implementation. Comparisons of experimental and control 
groups showed that the implementation of Scooter resulted in only a marginal reduction in 
gaming and no improvement in learning. But it was noted that gaming was observed in 
only a small percentage of the students. Students in the experimental group were then 
divided into those receiving either more or fewer additional problems, an indication of the 
level of gaming in that group. It was found that students assigned more additional problems 
(presumably those who were gaming the system) started at a lower level of performance 
on the pretest than those assigned fewer problems. However, the students having more 
additional problems exhibited larger pre-post gains than did the students assigned fewer 
problems, effectively equaling the students who were not gaming on the post-test.  
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2. Application to Synchronous Distance Learning 
Results from the two example studies suggest that the task-loop approach—that is, 

adjusting learning tasks and problems to emotional states—can have a positive effect on 
learning outcomes. The problem is that task-loop adaptivity calls for learning adjustments 
at the individual level and thus has limited applicability to the collective training situation 
in a synchronous training environment. However, it could be possible to make small 
adjustments if the instructor has the means to determine the emotional states of individual 
students in real time. For example, let’s suppose that an instructor has reason to believe 
that students are likely to be confused at a certain point in the lesson. To determine whether 
or not they are confused, the instructor could poll students and ask for self-reports. But 
research on the ConfusionTutor suggests that a more reliable and valid approach would be 
to ask questions that probe potential points of confusion or inattention (D’Mello, Lehman, 
Pekrun, & Graesser, 2014). Ideally, these probes would be prepared ahead of time and 
require only short answers that could be summarized and displayed immediately on an 
instructor dashboard without attribution to particular students. In the case where a 
significant proportion of students answer incorrectly, the instructor could choose to repeat 
the relevant section or elaborate on the topic. If only a few students answered incorrectly, 
the instructor could explain why those particular answers were incorrect, thereby removing 
the source of confusion, and move on. If those few students consistently respond 
incorrectly, the instructor may prescribe individualized instruction outside the collective 
synchronous learning environment. If the errors were more widespread, however, the 
instructor could opt to redesign that part of the course, which would constitute a more 
proactive or design-loop approach. 

This somewhat contrived example illustrates how aspects of task-loop adaptivity 
could be applied to synchronous distance learning. However, there are at least two major 
obstacles to making that happen: First, there is the technical challenge of providing real-
time information on the affective states of individual students (see Chapter 3). Furthermore, 
this information must be provided in a form that can be understood and acted on by the 
instructor. Second, instructors must decide whether and how to react to these states. In 
other words, they must be prepared to make changes to their lesson plans on the fly. We 
doubt that there are many instructors who would be willing or able to spontaneously adapt 
training to the students’ affective states, which are in perpetual flux. 

C. Reactive Step-Loop Adaptation 
Step-loop adaptivity refer to instructional adjustments based on moment-to-moment 

changes in student state within a learning task or activity, as inferred by learner actions or 
states. These inferences are often based on conversations between learning system agents 
and students in natural language. To make rapid inferences based on incomplete and 
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imperfect information requires state-of-the-art computing technology. As a result, systems 
that employ step-loop adaptivity have only been tested in controlled laboratory settings. 

1. Examples 
The following are three examples of individual learning systems that react to students 

based on their momentary affective state. 

a. Affective AutoTutor 
The first example of reactive step-loop adaptivity is provided by D’Mello et al. 

(2010). In this study, a version of the AutoTutor was designed to detect and react to student 
affective states of boredom, confusion, and frustration. The system monitored multiple 
cues: conversations between student and the tutor agent, gross body language, and facial 
features. The animated tutor agent reacted to cues to encourage and maintain student 
engagement, boost student self-confidence, and pique student interest. The agent’s face 
could display emotions, such as skepticism, approval, disapproval, enthusiasm, surprise, 
empathy, as well as no particular emotion (neutral). The tutor responses were tailored to 
the student’s current and previous affective state, the conceptual quality of the student’s 
immediate response, and the student’s general ability level determined over the entire 
session. For instance, if the AutoTutor system determined that a student (1) had been 
performing generally well, but less so on a current problem, and (2) had previously been 
frustrated but is currently showing signs of boredom, then the tutor might respond, “Maybe 
this topic is getting old. I’ll help you finish so we can try something new.” 

For the D’Mello et al. (2010) study, a 60-minute session on computer literacy was 
developed for the AutoTutor system. Eighty-four college students were assigned to either 
a session that provided emotional support as described above (experimental) or a session 
that did not include emotional support (control). Both groups were given knowledge 
pretests and post-tests before and after two sessions on different topics in computer literacy. 
Students in both groups were defined as having either high or low prior knowledge 
determined by a median split on their pretest knowledge scores. The two major findings 
were (1) the affect-sensitive version of AutoTutor was more effective than the regular tutor 
for low-domain knowledge students in the second session, but not in the first session; and 
(2) the affect-sensitive version never had a positive effect on high prior-knowledge students 
but was actually detrimental in the second session compared with the regular version used 
in the control group.  

b. Gaze Tutor 
In the second example, D’Mello, Olney, Williams, and Hays (2012) developed an 

intelligent tutoring system capable of dynamically detecting and responding to student 
boredom and disengagement. The capability was provided by a commercial eye tracker 
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built into the Guru intelligent tutor, a system that explicitly models expert human tutor 
behaviors and student-tutor dialogues. The criterion for disengagement was not looking at 
the tutor agent or the instructional image for more than 5 seconds. When the system 
detected student disengagement, the tutor agent reacted by immediately responding with 
statements such as “please pay attention.” The Guru tutor was programmed to deliver four 
sessions on biology topics: Golgi body, cytoskeleton, phases of mitosis, and ecological 
succession.  

For the D’Mello et al. (2012) study, 48 college students received instruction on 2 of 
these topics with the gaze-reactive capability activated (experimental condition) and two 
topics using the standard Guru tutor without the gaze-reactive capability (control). All 
students were tested before and after training using questions to assess students’ knowledge 
of shallow facts and deeper questions that required causal reasoning and inferences. Results 
indicated that fully one-third of the students (16) never reached the disengagement criterion 
in the experimental condition, and they were not included in the analyses. Analyses of the 
remaining 32 students indicated that the gaze-sensitive dialogues were effective in 
reorienting students’ attention toward the important parts of the screen presentation. For 
the content learned in the experimental condition, there were larger gains in those questions 
assessing deep learning. The findings also showed that the experimental gaze-reactive 
capability had a larger effect on students with higher academic aptitude, as measured by 
self-reports of ACT or SAT scores, than on students with average or lower ability scores. 
Results showed that high-aptitude students were more effective in reorienting their gaze 
when instructed to do so, and these same students showed greater knowledge gains under 
experimental conditions. D’Mello et al. (2012) speculated that high-aptitude students were 
more skilled at reallocating attentional resources than lower aptitude students. 

c. TC3Sim Serious Game 
DeFalco et al. (2018) conducted a multi-experiment study employing TC3Sim, a 

serious game used to train U.S. Army personnel on providing combat casualty care. The 
game was integrated with the Generalized Intelligent Framework for Tutoring (GIFT) to 
detect affective states and provide appropriate feedback to trainees. By examining the 
entire process of developing an affect-sensitive system, the DeFalco study provides “a 
template for future research to examine the sensitivity of instructional methods and to 
conduct validation studies or to examine the impact of various adaptive instructional tools 
or methods” (Sottilare, Baker, Graesser, & Lester, 2018). 

The study was conducted as three sequential experiments using cadets at the U.S. 
Army Military Academy as subjects. Experiment 1 provided the baseline for the 
subsequent investigations. Two types of posture sensors and interactions with the game 
were used to detect the affective states of boredom, confusion, engaged concentration, 
frustration, and surprise as determined by human observers using the BROMP technique. 
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Results indicated that the best results were obtained for detecting frustration from student 
interactions with the TC3Sim system. These interactions included conditions and behaviors 
such as whether the student was under fire, taking cover, or separated from his or her unit. 
Another important finding from Experiment 1 was that observed frustration was negatively 
correlated with performance on the TC3Sim game, confirming its relevance to instruction. 

In Experiment 2 (DeFalco et al., 2018), the frustration-detection system triggered 
three different types of feedback to students, appealing to (1) the perceived value of the 
learning activity, (2) the student’s social identity, or (3) the student’s self-efficacy to 
achieve a learning goal through effort. Comparisons of knowledge tests administered 
before and after game training indicated that all three motivational methods produced 
larger learning gains than the neutral feedback and no-feedback control groups. Of the three 
types of motivational feedback messages, however, the self-efficacy message produced the 
largest gains. Also, cadets scoring lower on the Short Grit Scale, a measure of self-
motivation, showed large learning gains when provided motivational feedback. In contrast, 
those scoring higher on the Short Grit Scale showed negative, but non-significant declines 
in learning when given motivational feedback.  

In Experiment 3, DeFalco et al. (2018) tested two different frustration-detection 
systems: one based on interactions developed in Experiment 1 and a posture-sensing 
system based on the Microsoft Kinect product. When these sensing systems detected 
frustration, the feedback system delivered a self-efficacy message. These two frustration-
sensing systems were compared to a control condition where self-efficacy messages were 
sent to the student on a regular schedule, regardless of the student’s affective state. The 
results showed significant learning gains in all three groups, but no differences in those 
gains between groups. A post hoc analysis revealed that the Kinect sensor failed to detect 
any frustration and consequently delivered no feedback, effectively making this a second 
no-feedback control group. Comparisons between groups showed no differences between 
the group provided feedback contingent on their interactions in the game and the two other 
de facto control conditions, which was a finding in contradiction to Experiment 2. 

2. Application to Synchronous Distance Learning 
Findings from research provide some evidence for the effectiveness of reactive step-

loop adaptivity, but the effectiveness is highly conditioned on other factors. The results of 
D’Mello et al. (2012) suggest that there is some advantage to step-loop system if 
adaptations are based on a single relevant emotional state (engagement) as determined by 
a relatively unambiguous cue (gaze). However, the advantage may accrue only to those 
high-aptitude learners who are more capable of controlling their attention. In contrast, if 
step-loop systems are based on multiple emotions that are ambiguously or inaccurately 
detected, frequent adaptive feedback may be less helpful and even annoying to high-
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knowledge students (D’Mello et al., 2010) or for students more motivated to persevere 
(DeFalco et al., 2018). 

Apart from questions about its effectiveness, we think that the step-loop approach is 
fundamentally incompatible with synchronous distance learning. The limitations of the 
task-loop approach, discussed previously, apply here. In addition, the step-loop 
requirement to adapt to the momentary actions of individual students is practically 
impossible to implement in a collaborative distance-learning environment. 
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5. Conclusions and Recommendations

In this chapter, we summarize our main conclusions and provide practical 
recommendations for applying emotion-recognition science and technology to 
synchronous distance learning. Our conclusions and recommendations are based on our 
review of the research on affect-sensitive instruction and on our interviews of experts in 
the field. Appendix A provides a summary of those interviews. 

The chapter is divided into two parts. The first presents conclusions concerning the 
theories and technologies of emotion recognition and affect-sensitive instruction. The 
second describes specific recommendations for applying emotion-recognition technologies 
to the synchronous distance-learning environment used, or planned to be used, at the SLC. 

A. Conclusions

1. Successful Implementation Requires Solving Three Separate Problems
Our expert interviewees were remarkably consistent in their comments that the

development of affect-sensitive instruction can be divided into three separate but 
interrelated problem goals: (1) assess the affective state, (2) understand the affective state, 
and (3) determine the learning intervention. The effects of the intervention are then 
assessed, which restarts the process. The three goals can be viewed as an iterative loop as 
depicted in Figure 6. To close the loop of affective computing, the instructional developer 
needs to have a solution for all three goals. Each of these problems is described below: 

• Goal 1: Assess affective state. Perhaps the most fundamental problem, the
instructor or the learning system must be able to detect a student’s affective
state. The focus of research has been on learning-centered emotions (e.g.,
frustration or confusion). Experts agreed that research and development efforts
have been aimed at solving this problem, and considerable progress has been
made. For example, as documented in Chapter 2, much progress has been made
using eye-tracking as a unimodal signal for affect and facial features paired with
contextual cues (e.g., dialogue) as multimodal cues.

• Goal 2: Understand the affective state. This problem requires modeling the
emotional processes and their effects on learning. Experts regard this as the most
difficult problem of the three. Chapter 3 documents some points of agreement
among models on the basic functions and processes of emotions, but there is a
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dearth of knowledge concerning the impact that these functions and processes 
have on learning. 

• Goal 3: Determine the learning intervention. Once the affective state is detected
and its effects on learning are understood, the instructor or instructional system
selects an appropriate instructional response intended to support training. Some
progress has been made on this problem, but it is limited by the lack of
understanding of affective states (Goal 2).

Figure 6. Affect-Sensitive Instructional Loop 

2. Emotion Recognition is Based on Well-Established Science Though Some
Theoretical Issues Remain Contentious
Our review of seven theories of emotions span over 50 years of research and reveal a

variety of scientific concepts and metaphors. Nevertheless, Ekman’s Basic Emotion 
Theory (BET, 1992) remains the “central narrative” of the science of emotion (Keltner, 
Sauter, Tracy, & Cowen, 2019), providing a point against which other theories are 
compared. Some of the theoretical deviations from that central narrative highlight some of 
the major points of contention: 

• Emotions are not discrete states as they are depicted by Ekman; rather, emotions
are determined by a combination of continuous characteristics, such as valence
and arousal.

• There are more, perhaps many more, than the six basic emotions enumerated by
Ekman.

• In recognizing and understanding an affective state, the context of an emotional
expression is as important, or more important, than the expression itself.

Despite these points of disagreement, researchers concur on some basic capabilities 
of emotions and the functions that they serve. In particular, four points of agreement have 
implications for emotion-recognition technology: 

• Emotions arise through an unconscious appraisal process.
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• Emotional experiences are brief and transitory. 

• There are distinct and detectable cues for determining the emotions that 
someone is experiencing. 

• Humans are quite good at recognizing and interpreting the emotional cues 
experienced from other people. 

Thus, despite some points of theoretical contention, emotion-recognition technology is 
built on a relatively broad and deep scientific base. 

3. The Evidence is Inconclusive Whether Affect-Sensitive Instruction Improves 
Learning Outcomes 
There is some evidence that affect-sensitive instruction can improve learning 

outcomes, but there is also evidence that it has no effect and even a negative effect on 
learning. The inconsistency in findings appears to be due to a number of moderating 
factors, some of which are discussed below. 

a. The Relation Between Affect and Learning is Indirect 
D’Mello, Blanchard, Baker, Ocumpaugh, and Brawner (2014) point out that it is 

unlikely that there are direct links between affect and learning outcomes, but instead, affect 
indirectly relates to learning by modulating cognitive processes. As an example, they argue 
that anxiety is unlikely to directly cause poorer learning; rather, anxiety negatively affects 
cognition in that anxiety-related thoughts, such as fear of failure, are consuming working-
memory resources, reducing the amount available for ongoing cognitive processes If 
researchers failed to find a relationship between anxiety and learning outcomes, the results 
could be because there is no effect of anxiety on working memory, there is no effect of 
working memory on learning, or both. In general, adding links to the causal chain decreases 
the probability of detecting a significant relationship between anxiety and learning. 

b. Affect Interacts with Individual Differences 
Our brief review in Chapter 4 indicated that the effects of affect-sensitive 

interventions may vary for people with different dispositions and abilities. For instance, 
results from DeFalco et al. (2018) suggested that motivating messages had a positive effect 
on students scoring low on resiliency (also known as grit). But the same messages had a 
deleterious effect on students with high resilience. If such individual differences are not 
accounted for, they can lessen, or even, nullify the overall effects of an intervention. 

c. This is a Fundamentally Difficult Problem  
As argued in the previous conclusion, the problem of improving learning outcomes 

through affect-sensitive instruction comprises actually three separate but interrelated 
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problems. All three problems are somewhat ill-defined in that they have no algorithmic 
solutions. This situation has some characteristics of a “wicked problem” that defies 
traditional solutions. 

Thus, demonstrating the training effectiveness of an affect-sensitive intervention is 
no mean feat. However, some solace and lessons learned can be gleaned from the handful 
of published studies demonstrating that affect-sensitive instruction can indeed enhance 
learning outcomes under certain circumstances.  

4. Student Disengagement Is Not Necessarily Counterproductive
Increased learner engagement is often cited as evidence for the effectiveness of an

affect-sensitive learning program—many demonstrations show that engagement leads to 
positive learning outcomes. While agreeing that engagement is related to learning 
outcomes, James Lester (one of our expert interviewees) pointed out that students cannot 
remain engaged indefinitely. Lester’s argument alluded to the Yerkes-Dodson Law. As 
represented in Figure 7, this law stipulates that increased arousal improves performance up 
to a point, but past that point increases can actually hurt performance. Although this 
analogy to the effects of arousal is intuitively appealing, this relationship has not been 
demonstrated for learner engagement. 

Figure 7. Yerkes-Dodson Law 

The larger point Lester was making was that student disengagement is not necessarily 
counterproductive. It may be the student’s method to prevent or dissipate over-arousal. 
Lester refers to this strategic disconnection with learning as “constructive disengagement.” 
Although the theoretical explanation of constructive disengagement is speculative, the 
implication is clear: distance learning must schedule breaks within learning sessions and 
allow students to temporarily disengage from the learning task. 
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5. Emotional Traits, as Well as States, Are Also Relevant
Affect-sensitive training systems are designed to react to the momentary emotional

states of learners. These systems should also take into consideration the learner’s emotional 
traits. These traits are relatively stable predispositions toward a particular emotional 
experience. When we make comments that “Joe is an angry man” or “Linda is a happy 
child,” we are implying that they possess certain emotional traits. 

Emotional traits can influence how a learner may react to an affect-sensitive 
intervention. An example of a technology that is reactive to affective states and traits is the 
TC3Sim Serious Game (DeFalco et al., 2018), which is described in more detail in Chapter 
4. In the DeFalco et al. (2018) study, the research team administered the Short Grit Scale
before the study. This personality scale measures a person’s tendency to persevere on tasks
and focus on long-term goals. Subjects were assigned to conditions such that they were or
were not provided motivational messages when the system detected that the subject was
frustrated. The findings indicated that learners scoring low on grit showed learning gains
when provided motivational messages. In contrast, learners having high grit scores showed
learning decrements when provided motivational feedback. The researchers speculated that
the high-grit learners regarded the messages as unnecessary and even annoying, and the
negative reaction may have led to frustration and disengagement.

Such findings suggest that if learning system developers know the dominant 
emotional traits of their student population, they can better predict the students’ reaction to 
affect-sensitive interventions. Thus, it would be useful to collect emotional trait data along 
with data on affective states. 

B. Recommendations

1. Use Multiple Modes of Affect Detection
The probability of accurately detecting an emotion using a single mode of detection

is low, but with advances in technology, unimodal detection is not out of the question. 
(Multimodal detection can provide a stronger signal, however.) Further, there are 
differences in accuracy between individual modes. For instance, eye tracking, mouse 
tracking, and language (speech and text) are the strongest signals. Also, unimodal research 
on eye-tracking and natural-language processing show promise. On the other hand, most 
researchers agree that facial movements provide a noisy and unreliable signal of emotional 
state, despite decades of research on this detection mode. 

Researchers are turning to combining multiple recognition modes to increase 
detection probability. Widely disparate modes provide complementary information 
sources. For instance, facial recognition combined with student data and text dialogue can 
provide a strong multichannel source. To be effective, however, mode combinations should 
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include student-specific data, like log data and exams for accurate detection. The ways 
different signals are combined are widely varied across the academic literature. Outside a 
lab setting, obvious constraints for multimodal detection include appropriateness of 
implementing signals in a classroom (i.e., feasibility, distraction), and cost. 

In addition, the type of signal one uses (sensor free vs. sensor based) contributes to 
the strength of the signal. For example, facial recognition (sensor based) is a noisy signal, 
but combining facial recognition with dialogue (sensor-free) could provide a substantial 
increase in affect detection. Log and dialogue data are particularly strong sensor-free 
signals that, when combined with sensor-based signals (e.g., eye tracking or mouse 
tracking), provide one of the strongest measures of affect and attention. 

In summary, we recommend using more than one mode to detect emotions. At the 
same time, we note that collecting and fusing signals from different input modes is 
technically challenging. Thus, we temper the recommendation to use multiple modes with 
the phrase “to the extent practical or feasible.”  

2. Focus on Most Relevant and Detectible Emotions
Our review of theories and taxonomies identified 43 affective states that are

potentially related to learning in general. This list was derived mostly from theoretical 
considerations, not empirical data. Also, the list does not consider important technical 
factors, such as frequency of occurrence, detectability, and specific implications for 
instructional interventions. Thus, this list likely includes emotions that are irrelevant to 
learning. 

In contrast, Graesser, D’Mello, and colleagues have focused their efforts on those 
emotions that have direct relevance to instruction in intelligent tutoring systems, the so-
called learning-centered emotions. For instance, D’Mello’s (2013) meta-analysis of studies 
employing individual advanced learning technologies reveals that only six states are 
detected with any frequency: engagement/flow, boredom, confusion, curiosity, happiness, 
and frustration. However, this focus on individual instruction omits consideration of social 
emotions (e.g., compassion, empathy, envy, social anxiety) that potentially pertain to 
collective or collaborative training employed in many synchronous distance-learning 
situations. Thus, this list may not include emotions relevant to the SLC learning 
environment. 

There is no agreed-on set of emotions that affect-sensitive learning systems should 
detect and respond to. Emotions of interest depend largely on the capability of the system 
and goals of the learning content. Nevertheless, the choice of emotions should follow two 
general guidelines: 

• The emotion should be detectible by the learning system. “The learning system”
includes the human instructor in synchronous distance learning.
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• The emotion has some direct or indirect effect on learning outcomes.

3. Use Student Audio and Video Feeds to Detect Emotions
Many virtual classrooms provide video and audio input of students as they interact

with the instructor and each other. A number of our expert interviewees suggested that the 
video and audio feeds from students provide the least expensive and most practical solution 
for affect-sensitive instruction in a synchronous distance-learning environment. 
Nevertheless, the solution requires that developers address two separate challenges. 

The first challenge is that instructors must learn to recognize the affective states of 
students as they occur. As discussed in Chapter 2, we all have some innate capability to 
recognize emotions in others, but not in a standardized way and using common language. 
To train instructors to accurately and reliably recognize emotions, our interviewees 
suggested that instructors adopt the Baker Rodrigo Ocumpaugh Monitoring Protocol 
(BROMP, Ocumpaugh, Baker, & Rodrigo, 2015), which is regarded as “gold standard,” to 
validate other emotion-recognition technologies. The system is sensitive to multiple 
emotion-recognition modes, including movement cues like body posture and position on 
chair, in addition to facial and verbal cues. However, it is not known the extent to which 
such signals are recognizable through the typical audio and video feeds employed in 
videoconferencing. 

The second challenge is that instructors need to know whether or how to intervene 
once they detect the emotional states of their students. There are production rules (if-then 
statements) for responding to affective states experienced in AutoTutor (e.g., D’Mello et 
al., 2010). Note, however, that these rules were explicitly developed for individual 
advanced learning technology systems. Research is needed to determine the extent to which 
these rules and other algorithms apply to synchronous distance learning. This research 
would provide the foundation for instructional intervention training. For maximal 
effectiveness, intervention training should be integrated with training to recognize 
emotional states. 

In short, the audio-video feed from students in virtual classrooms provides a 
straightforward method of capturing emotions and engagement during learning. But to 
make use of this data source, instructors must be trained to reliably recognize emotional 
states and respond appropriately. 

4. Use Proactive Approach to Design Courses That Induce Positive Emotions
and/or Impede Negative Emotions
D’Mello and Graesser (2015) proposed that affect-sensitive learning systems are

designed to intervene either proactively or reactively. Proactive systems are those that are 
designed before the fact to induce positive emotional states or impede negative states. In 
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contrast, reactive systems are designed to detect and respond to affective states as they 
arise. The problem with reactive systems is that it is practically impossible to adapt 
instruction to the momentary actions of individual students in a collaborative distance-
learning environment.  

In Chapter 4, we reviewed research on proactively designed affect-sensitive learning 
systems that have been demonstrated to enhance engagement and learning outcomes in 
individual tutorials (D’Mello, Lehman, Pekrun, & Graesser, 2014) and game-based 
instruction for classrooms (Rowe, Shores, Mott, & Lester, 2011; Sabourin & Lester, 2014). 
In addition, Aten and DiRenzo (2014) contended that the SLC Virtual Schoolhouse was 
proactively designed to promote student engagement and learning, but their data did not 
conclusively support that conclusion.  

Although proactive systems do not use data on student affect to react in real time, 
proactive programs typically do use affect data to design or redesign a course before 
implementation. Aleven et al. (2016) suggest that training developers collect affect data 
while students use the learning system to identify points where students are confused or 
frustrated. Developers then use the data to redesign the course to ameliorate those 
problems. Affect data should continue to be collected after the redesign is implemented to 
assess whether the changes work as intended.  

To design an affect-sensitive capability for a synchronous distance-learning 
environment, we suggest a proactive approach where features that induce positive 
emotional states or impede negative states are designed into the system before the fact. 
Although such systems do not react to student affect in real time, proactive systems should 
be designed and assessed in accordance with student affect data. 

5. Incorporate Instructional Features to Enhance Engagement
Several of our expert interviewees recommended adding minor instructional changes

or tweaks that are designed to build in moments of engagement into courses. Such 
relatively inexpensive course modifications are viewed as an alternative to complete course 
redesign as discussed in the previous recommendation. Example features include the 
following: 

• Periodic questioning. Instructors can use brief questioning periods to poll
students on key concepts. The intent is to quickly gauge learning and
engagement from students. Questions should require some thinking, but not be
too difficult. The aggregated and anonymous responses should be immediately
available to the instructor in real time so that the instructor can make an
assessment in real time and adapt instruction if needed.

• Small-group discussions. Students should be broken into smaller groups to
discuss the subject material. Such small-group interactions enhance student
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engagement. Instructors should listen into these discussions to assess student 
engagement and learning. 

• Shorter lectures and longer practice periods. Consistent with a previous
conclusion, some of our interviewees mentioned that students cannot focus on
difficult material for longer than 20 minutes in lectures. On the other hand,
periods where students actively practice problem-solving skills can enhance
engagement. Thus, lessons should be designed with shorter lectures and longer
practice periods.

In short, our advice is to take advantage of such cost-effective tweaks to increase 
student engagement in synchronous distance learning. 

6. Machine-Learning Models Show Promise, but Have Caveats
Ongoing research indicates that machine-learning methods can be used to accurately

detect emotional states from multiple data streams. Among the strongest signals are audio, 
text, eye tracking, and mouse tracking. 

Although promising, machine-learning methods are complex to develop (see Figure 
8). Machine-learning systems also require lots of data for training and validation, and 
crucially, the data need to be highly specific to the application context. Much of these data 
are from human coders, who need to be appropriately trained. Selecting and training coders 
is costly and time consuming. While the machine-learning pipeline is the approach that 
most researchers implement to collect, annotate, and analyze data, for SLC to implement 
such a method would require the help of a subject-matter expert to implement this method. 
But the success of the method is not guaranteed. 

Perhaps the most limiting feature is that machine-learning models are typically 
developed based on data from single learners, and those individual models don’t generalize 
to others very well. In fact, our research and expert interviews highlighted that the best 
machine-learning approach is creating student-specific models. There are significant 
limitations to this approach, but there may be some hope in methods under development 
by Ben Nye at the Institute for Creative Technology. Nye seeks to derive machine-learning 
models based on groups of individuals that potentially can be generalized to others within 
those groups. 

Though promising, machine-learning approaches are time intense, are costly (human 
coders, signal-detection instruments), and require significant ground truth data. They are 
currently employed primarily in laboratory settings and are not ready for classroom 
applications. 
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Figure 8. Steps Involved in Building a Machine-Learning Affect-Recognition System 
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Appendix A. 
Expert Interviews 

The IDA team interviewed 12 subject-matter experts who actively work in the field 
of affective computing. The experts we interviewed included professors, research 
scientists, and research psychologists working in a variety of fields (e.g., computer science, 
human factors, signal processing, and cognitive science). Table A-1 lists the people who 
were interviewed. 

Conducted in the fall of 2019, the interviews included visits to the University of 
Colorado, Boulder, the Signal Analysis and Interpretation Laboratory (SAIL) at the 
University of Southern California (USC), The Institute for Creative Technologies (a 
University Affiliated Research Center located in Los Angeles), and I/ITSEC 
(Interservice/Industry Training, Simulation and Education Conference) in Orlando, 
Florida. The information gathered from the conducted interviews have been incorporated 
into this report, and here we summarize the interviews. 

SME interviews focused on the IDA team gaining a deeper, more nuanced 
understanding of the state of the art in terms of affective computing and learning as it relates 
to SLC’s unique problem space. In addition, we were also interested in learning about 
current trends in the field, in particular, specific avenues of interest the SMEs were 
focusing on in their research, and gaining an overall better understanding of the field at 
hand (e.g., what’s working, what’s failing). 

Overall, almost every SME we interviewed asserted that knowing a student’s 
affective state does not equate to learning gains and is only one piece of the affective-loop 
(step one). Furthermore, depending on the dynamics of the student population, affective 
state might not have any correlation with learning gains at all. For example, adult learners 
might be sad or angry while learning, but still engaged or focused and able to perform, but 
the opposite might be true for children. In addition, certain student populations (e.g., those 
in the military) might not be particularly effusive to begin with and therefore detecting 
affective state is not particularly fruitful. Along the same lines, displaying affect is 
contextually dependent, and people deceive and hide their affective states all the time. For 
example, a student who is frustrated or confused may not display this to avoid social stigma 
in classrooms. One researcher strongly supported this view and noted that research should 
not look at facial expressions as an indicator of affect since humans can control and deceive 
others with facial expressions. 
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Table A-1. List of Experts Interviewed for IDA Project 

Name Title Area of Expertise Location 
Sidney D’Mello Associate Professor Affective and attentional 

computing, multimodal 
interaction 

Institute of Cognitive 
Science, Computer 
Science, Psychology and 
Neuroscience, UC Boulder 

Shri Narayanan Professor Electrical engineering, 
signal processing 

SAIL, USC 

Jonathan Gratch Director of Virtual 
Humans Research; 
Research Professor 

Virtual humans, 
computational models of 
emotion, cognition and 
emotion 

Institute for Creative 
Technologies (USC-ICT) 

Mohammad Soleyami Research assistant 
professor 

Computer science, 
behavior understanding, 
psychological signals 

USC-ICT 

Benjamin Nye Director of Learning 
Science 

Intelligent tutoring 
systems, intelligent 
agents, engineering 

USC-ICT 

Keith Brawner Senior Researcher 
and Project 
Manager 

Learning systems, AI, 
real-time algorithms, 
intelligent tutoring 

U.S. Army Futures 
Command-Simulation and 
Training Technology 
Center 

Jeanine DeFalco Research Scientist Artificial intelligence, 
education, intelligent 
tutoring systems 

U.S. Army Futures 
Command-Simulation and 
Training Technology 
Center 

Lauren Reinerman-Jones (former) Director of 
Prodigy, Associate 
Professor 

Cognitive Psychology N/A 

Randall Spain Research 
Psychologist 

Psychology, education, 
advanced training 
technologies 

Department of Computer 
Science, Center for 
Educational Informatics, 
NCSU 

Bradford Mott Senior Research 
Scientist 

Computer science, AI, 
game-based learning 

Department of Computer 
Science, Center for 
Educational Informatics, 
NCSU 

Jonathan Rowe Research Scientist Computer science, 
human-computer 
interaction, AI, game-
based learning 

Department of Computer 
Science, Center for 
Educational Informatics, 
NCSU 

James Lester Director of Center 
for Educational 
Informatics 

Education, AI-
augmented learning 

Department of Computer 
Science, Center for 
Educational Informatics, 
NCSU 

 



A-3 

With regard to detecting emotions, some researchers noted that detecting valence 
(positive or negative) or arousal (calm or excited/agitated) is much easier than detecting 
specific affective states. For this reason, it was noted that focusing efforts on certain 
emotions like confusion or frustration is more fruitful than focusing on the full suite of 
learning-centered emotions, for two reasons: confusion and frustration are thought to be 
the most important emotions related to learning, and they are also high on the 
valence/arousal spectrum, making them easier to detect. In general, because detecting 
emotions is difficult, and there is a lot of noise in recorded data (especially biometric; e.g., 
facial expressions are particularly difficult), simplifying the problem space is 
recommended. 

Some researchers strongly supported specific coding systems, like BROMP, as a 
method of collecting ground-truth emotions of students and using these human-generated 
data to feed machine-learning models. While data for automatic affect-detection models 
need to be generated, other researchers suggested that student-specific data be collected to 
move toward creating single-student models. Student-specific data include class 
performance (e.g., quizzes, attendance, exam grades); single-student level models are more 
accurate and combine student performance and physiological data to predict performance 
and learning gains. Any coding of data should be more student-specific. 

The type of coding done to acquire data is no doubt also related to the types of 
technologies most affective-computing researchers use. In particular, researchers 
employed various techniques to collect ground-truth data. Techniques include BROMP, 
FACS, peer-to-peer coding (i.e., one peer codes another peer), self-report, emote aloud, 
among others. These data are then used in machine-learning models to develop an 
automatic affect sensor. Machine-learning algorithms were adopted, depending on the 
particular problem set of researchers (e.g., classifies and support-vector machines, being 
used to distinguish/classify different affective states). 

In terms of psychological approach, the researchers with psychology backgrounds 
focused mostly on learning-centered emotions and the role of frustration and confusion in 
learning (e.g., cognitive disequilibrium being the most widely adopted approach). Those 
with engineering backgrounds didn’t adhere as strongly to certain psychological theories 
(i.e., if a theory fit or helped an engineering problem, it was adopted). Those with 
engineering and psychology backgrounds saw psychological theory playing a central role 
in effective affective-algorithm development. In fact, it’s well supported in the literature 
that any successful affective-computing approach needs to view the human and computer 
as one interacting system (Calvo & D’Mello, 2010). 

Turning to the more effective signals, almost unanimously, researchers agreed that 
eye-tracking was the best measure of attention and therefore engagement; where eyes are 
attending to is a direct measure of what they’re comprehending. Of course, there are 
individual difference (e.g., looking up and to the right while thinking can be interpreted as 
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not paying attention), but overall, this is the gold star for engagement and attention. Mouse-
tracking was the second best signal suggested to measure attention and engagement and is 
a good proxy for eye-tracking; that is, how someone is interacting with content on a 
computer screen is indicative of where they are attending to. Finally, speech or text is the 
third best signal, also being a good signal for measuring affect (e.g., detecting frustration 
via prosodic features or confusion via text responses). Text alone has been a signal used 
throughout the AutoTutor automatic affect-detection enterprise as either the single source 
of affect or part of a larger suite of affect signals. Of course, all SMEs interviewed used 
other biometric sensors in their research (e.g., wearables like FitBit,). 
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