NITTF Tech Talk – Trends in Insider Risk Quantification, Part 3

Dan Costa

Derrick Spooner

Softw are Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

> [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Carnegie Mellon University Software Engineering Institute

Document Markings

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM21-0743

From Our Last Tech Talk

Test your technical controls in a test environment, and not in production

To do this, you'll need:

- Virtual Environments, e.g., <u>https://github.com/cmu-sei/crucible</u>
- User Simulation, e.g., https://github.com/cmu-sei/GHOSTS

← Today's Focus

Use Cases to Consider

Operational

• Example: measure alert volume, validate alert accuracy

Coverage

• Example: measure percentage of indicators covered by monitoring system(s)

Latency

• Example: measure average time between activity and alert, alert throughput

Compliance

• Example: validate percentage of recommended / required (NIST SP 800-53, NITTF Minimum Standards) controls implemented

Testing and Validation

Candidate Controls

- Faulty indicators
- Faulty monitoring tools
- Legacy Systems

Tune existing policies

• Overly active alerts

Data Sources

• Exploratory Analysis

Security Testing

- Assume the identity of an insider
- Training opportunities

•Software Tools

- Commercial
- Open-Source

New Deployment Environments

- Yellow/Red/Green Networks
- Federated SIEM

Functional Requirements for Simulation

 Technical observables: 	Enterprise and personal email
	Multi-browser web usage
	File operations (create/read/update/delete)
	Using Cloud storage s oftware
	Remova ble Media
	Virtual Private Networks
-	Printers/Scanners
_	Remote Administration
•Behavioral	Organizational structure
observables:	Privileged and Non-Privileged users
	Personnel Events (performance reviews, complaints, reprimands, travel)

Realistic work schedule

https://insights.sei.cmu.edu/blog/functional-requirements-for-insider-threat-tool-testing

Carnegie Mellon University Software Engineering Institute

Reference Approach

Configurable

• Adjust security controls, vendors, user behavior

Decoupled

• Data generation should not rely on specific tools or outputs

Controlled/Repeatable

• Follow a sound scientific method

Accessible

• Stakeholders, vendors, or third-parties

Comprehensive

• Technical and behavioral actions and indicators

Reference Architecture

- Virtualized (VM) on-prem environment
 - 2x: 256GB, Dual 8 Core Xenon
 - 2TB storage
 - Linked VM Clones
- Amazon Web Services Proof of Concept
 - GovCloud ITAR Compliance
 - 10 Service Systems (t3.nano xlarge)
 - 5-10 Users (t3.small)
 - 4-8 hours/day
 - <\$500/month

Open-Source/Freeware Infrastructure Tools

- Greybox/TopGen (Topology Generator) <u>https://github.com/cmu-</u> <u>sei/topgen /</u> <u>https://github.com/cmu-</u> <u>sei/greybox</u>
 - Isolated (Air-Gapped) Internet-in-a-box
- iRedMail <u>https://www.iredmail.org/</u>
 - Webmail simulation
- Owncloud Server
 <u>https://owncloud.com/</u>
 - Cloud storage simulation

Open-Source User Simulation Tools

- GHOSTS ((G)eneral HOSTS) Framework https://github.com/cmu-sei/GHOSTS
 - Non-player character (NPC) automation
 - Baseline traffic
- GHOSTS-Animator https://github.com/cmu-sei/GHOSTS-ANIMATOR
 - User detail generator
 - Addresses, Rank, Work Location, Potential Risk Indicators

https://insights.sei.cmu.edu/blog/generating-realistic-non-player-characters-for-trainingcyberteams/

Infrastructure as Code (IaC)

```
module "dc" [
source = "./modules/dc"
dc_instance_type = var.dc_instance_type
subnets = var.subnets
security_groups = var.security_groups
}
```

resource "aws_instance"	"this" {
ami	<pre>= data.aws_ami.this.id</pre>
instance_type	<pre>= var.dc_instance_type</pre>
<pre>iam_instance_profile</pre>	= "FIN SSM Role"
private_ip	= "10.0.40.20"
subnet_id	= var.subnets
<pre>vpc_security_group_ids</pre>	<pre>= var.security_groups</pre>
tags = {	
Terraform = "true"	
Name = "FIN-D	с"
Environment = "FIN T	est"
}	
}	

Open-Source Tools:

- Terraform <u>https://www.terraform.io/</u>
 - Infrastructure as Code
 - Multi-platform (Windows/Linux/OSX)
 - Multi-cloud (AWS/VMware/Azure)
- Packer https://www.packer.io/
 - Virtual machine image builder
- Ansible <u>https://www.ansible.com/</u>
 - System provisioning and configuration

What Next?

- Faster and more realistic baseline data generation
 - How 'real' is 'real enough' for certain test objectives?
- Variety and modularity of testing environment
- Automated test and evaluation

Q&A / Open Discussion

Carnegie Mellon University Software Engineering Institute Trends in Insider Risk Quantification © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Presenter Contact Information

Dan Costa, CISSP, PSEM

Technical Manager, CERT National Insider Threat Center

dlcosta@sei.cmu.edu

Derrick Spooner, CISSP Cybersecurity Engineer, CERT National Insider Threat Center <u>dspooner@sei.cmu.edu</u>