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Preface

This research develops methodologies for understanding the mission 
impact of deploying artificial intelligence (AI) systems to support 
intelligence missions as a function of the performance achieved by the 
system. A two-pronged approach is pursued, with a general framework 
enabling qualitative analysis and a supplemental model of a particular 
class of systems with quantitative results. Our results underscore the 
importance of critically assessing how the performance of AI systems is 
measured and tailoring the metrics chosen to the function the system 
will perform. 

The research reported here was completed in March 2021 and 
underwent security review with the sponsor and the Defense Office of 
Prepublication and Security Review before public release.

This research was sponsored by the Office of the Secretary of 
Defense and conducted within the Cyber and Intelligence Policy Center 
of the RAND National Security Research Division (NSRD), which 
operates the RAND National Defense Research Institute (NDRI), a 
federally funded research and development center (FFRDC) sponsored 
by the Office of the Secretary of Defense, the Joint Staff, the Uni-
fied Combatant Commands, the Navy, the Marine Corps, the defense 
agencies, and the defense intelligence enterprise. 

For more information on the RAND Cyber and Intelligence 
Center, see www.rand.org/nsrd/intel or contact the director (contact 
information is provided on the webpage).

http://www.rand.org/nsrd/intel
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Summary

The intelligence community (IC) and Department of Defense (DoD) 
have shown interest in developing and deploying artificial intelligence 
(AI) systems to support intelligence analysis, both as an opportunity 
to leverage new technology and as a solution for a data glut. This glut, 
which stems from a proliferation of data that defies human process-
ing alone, is a particularly acute problem for certain intelligence dis-
ciplines. However, previous studies at the RAND Corporation, along 
with studies and strategies published by public organizations, have 
identified validation, verification, testing, and evaluation (VVT&E) 
as a central challenge complicating the deployment of AI systems in a 
national security context.

We focus on one portion of the VVT&E problem: identifying 
metrics (alternatively, measures of performance) for AI systems that are 
adapted to the mission at hand. Using the academic AI literature, intel-
ligence literature, and informal interviews with subject-matter experts 
across RAND and the government, this study develops a methodology 
for assessing the impact an AI system is likely to have on the intel-
ligence mission that it supports and traces those impacts back to the 
properties of the system itself. Both the calculated impact and the met-
rics that predict it can then be used to characterize the performance of 
the AI system in a way that informs decisionmakers as to the actual 
value of the system to the mission.

Though replicating human performance is sometimes cited as a 
sufficient criterion for success for an AI system and the most relevant 
threshold to cross before deploying a system, we argue that the applica-
bility of this criterion is much narrower than it might initially appear. 
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Additionally, even within the scope of its applicability, this standard 
is more limiting than a full accounting of system impact, since it pro-
vides only a minimum standard and not an understanding of the posi-
tive value the system might provide or how to optimally distribute this 
value.

In this report, we organize our analysis of AI systems by how 
well they support the next step in the intelligence process. Since we 
need a conceptual model for the process into which the AI system will 
be inserted in order to determine what the “next step” after the AI 
system is, we adopt the intelligence cycle as a model for the intelligence 
process. We define a set of four “system function categories” that are 
organized in part by the intelligence cycle and divide the functions 
of AI systems that support intelligence based on the properties of the 
“next step” they support (see Table S.1). Put another way, these system 
function categories bin AI systems by how their output is utilized. The 

Table S.1 
System Function Categories

Evaluation 
Support

Automated 
Analysis

Information 
Prioritization

Collection  
Support

Description Ingests reports 
or products to 
determine their 
quality and their 
alignment with 
priorities

Transforms or 
enriches data 
without human 
supervision

Ingests available 
information 
and analyst 
preferences to 
connect analysts 
with useful 
information

Ingests available 
information to 
direct future 
collections

Example A tool that 
classifies reports 
according 
to National 
Intelligence 
Priorities 
Framework 
(NIPF) and tracks 
which priorities 
are being 
adequately 
collected on

A tool that 
transcribes, 
translates, and 
summarizes 
signals intelli
gence (SIGINT)

A recommender 
that flags 
reports for 
all source 
analysts based 
on previous 
interests or 
ratings

A system that 
uses SIGINT to 
direct imagery 
intelligence 
(IMINT) to find 
or track a target

NOTE: Examples are artificial/notional and do not necessarily reflect actual systems.
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way the output is to be utilized provides a natural platform to analyze 
the consequences of errors in system output, which we can then trace 
back to understand how different error rates connect to different mag-
nitudes of consequences at this “next step.” For information prioritiza-
tion and collection support, we find that this procedure yields ways of 
reasoning about the impact of such systems without grappling with the 
difficult questions of how intelligence and the actions selected by deci-
sionmakers contribute to the overall security of the United States. For 
the two other categories, we find that obstacles to this sort of detailed 
analysis of absolute efficacy remain, though workable baseline perfor-
mance standards can be deduced.

We then develop a simple mathematical model for the operation 
of an information prioritization system that captures the consequences 
of errors on the part of systems that perform this function and use it 
to derive general results about the impact of such a system in terms of 
analyst time and the probability of missing a piece of relevant infor-
mation. To construct this model, we analyze the two errors that such 
a system can make: incorrectly prioritizing (false positive) and incor-
rectly de-prioritizing (false negative) a piece of information. In the case 
of a false positive, we find that the cost of such errors to be quanti-
fiable in terms of the impingement on the overall budget of analyst 
time without meaningful return. In the case of false negatives, on the 
other hand, we argue that it is difficult to defensibly assign a cost to 
them. To avoid this difficulty, we construct a model that predicts the 
residual risk of false negatives as a function of the amount of time the 
analyst spends using the system. Put another way, the model predicts 
the “return on investment” of analyst time mediated by the properties 
of the system.

We then demonstrate the utility of this model in a few artificial 
examples. First, we show that this model demonstrates the criticality 
of developing metrics properly matched with actual system usage by 
exhibiting an example where the model shows that a system with lower 
mathematical accuracy happens to be of greater utility for informa-
tion prioritization than one with greater accuracy. This theme is then 
extended to the model itself, as we demonstrate that different systems 
can be preferable depending on the amount of analyst time available 
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to review the output. We then demonstrate how this model can be 
used to optimize the degree to which the information prioritization 
system errs on the side of false positives or false negatives by tuning 
the threshold at which the system marks an item as useful. Under most 
conditions, this optimal threshold results in the system marking pre-
cisely as many items useful as the analyst can actually review. With 
this tuning accomplished, the model provides the promised return on 
investment on analyst time (see Figure S.1), a valuable input for strat-
egy for decisionmakers.

When combined with existing results from the AI and intelli-
gence literature, the study of this model furnishes two general conclu-
sions pertaining to the efficacy of AI systems supporting intelligence:

• Using metrics not matched to actual priorities obscures system 
performance and impedes informed choice of the optimal 

Figure S.1
Percentage of Useful Items Found as a Function of Review Capacity

NOTE: In this model, the Information Prioritization system marks all items as either 
useful or not useful, and the analyst then reviews a �xed percentage of the items 
that have arrived, shown on the x-axis. The �xed threshold corresponds to a single 
possible system with an arbitrarily chosen threshold. Each point on the threshold-
optimized curve represents the performance of the system optimized for that review 
percentage. More detail can be found in Chapter Three.
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system. Metrics are not necessarily meaningful in a vacuum, and 
decisionmakers should anticipate needing to do work to develop 
ways of measuring system performance that match their priori-
ties. Since the metrics typically used to capture the performance 
of a system do not all agree on which of a pair of systems is 
performing better, simply choosing a metric arbitrarily will not 
enable decisionmakers to rank systems by how useful they will 
be to the mission the system supports. Similarly, engineering 
decisions ranging from overall model design to the optimization 
of the trade between false positives and false negatives are made 
to maximize system performance with respect to the metric of 
record. Metric choice should take place before the system is built 
and be guided by attempts to estimate the real impact of system 
deployment.

• Effectiveness, and therefore the metrics that measure it, can 
depend not just on system properties, but on how the system 
is used. In the case of information prioritization systems, this is 
captured by the dependence of the number of useful items found 
on the amount of time an analyst spends reviewing the output of 
the system. Since the optimal system is necessarily the most effec-
tive, this also means that which system is optimal can depend on 
how the system is used. For instance, in the context of informa-
tion prioritization systems, different review percentages can result 
in different determinations as to which of a pair of systems is pref-
erable. That is, for a given pair of systems, which system is more 
effective can depend on how much of the system output can be 
reviewed. On an engineering level this affects the optimal trade-
off between false positives and false negatives. However, both for 
the question of understanding the effectiveness of a system and 
that of choosing the optimal system, these are simply examples of 
more general lessons. When deploying a system, decisionmakers 
should understand that choices about how the system is used may 
affect outcomes in concert with the properties of the system itself. 
Chief among these is the amount of resources devoted to the mis-
sion outside those devoted to building the system. 
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Based on this analysis, we make the following recommendations 
for DoD and IC.

Begin with the right metrics. When considering acquiring an 
AI system, DoD and IC should begin by developing a detailed under-
standing of the way this system will be utilized and choosing metrics 
that reflect success with respect to this utilization. For information 
prioritization AI systems in particular, we recommend a version of the 
information prioritization performance model, possibly adapted and 
extended to cover the precise case at hand. Through this process, AI 
system acquirers can understand what the impact of the performance 
achieved by system designers will be. AI system designers will also ben-
efit from the clear objective guiding their engineering decisions and 
will deliver a more effective AI system if this objective is aligned with 
user priorities.

Reevaluate (and retune) regularly. Since the world around 
the AI system continues to evolve after deployment, AI system evalu-
ation must continue as a portion of regular maintenance. Narrowly, 
this means continuing to assemble test data and measure the perfor-
mance of the AI system to detect any changes in performance. More 
broadly, this must include reevaluations of the deployment context of 
the system. Is the AI system still being used in the way first envisioned 
when it was deployed? Is the same amount of resources being devoted 
to utilizing the output of the system and accomplishing the mission 
the system is meant to support? As these details change, the right way 
to measure effectiveness may shift. At the most dramatic, this might 
result in entirely different metrics from those that were used to evalu-
ate the system at deployment becoming most appropriate. In addition, 
the AI system might need to be retuned (e.g., to a different balance 
between false positives and false negatives) to reflect the changing pri-
orities of users.

Speak the language. System designers have a well-established set 
of metrics typically used to capture the performance of AI systems. 
Though new metrics can be constructed, being conversant in these tra-
ditional metrics will ease communication with experts during the pro-
cess of designing a new system or maintaining an existing one. Ensure 
that coursework for acquisition professionals who may acquire AI sys-
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tems provides an introduction to these traditional metrics. Addition-
ally, acquisition professionals would benefit from an understanding of 
the assumptions and reasoning that underlie the statistical approach 
to evaluating these systems, which could also be included in the rel-
evant coursework. More broadly, a common resource on metrics for 
AI systems should be created or identified that can serve as a common 
touchpoint across IC.

Further research is needed into methods of evaluating AI 
system effectiveness. In addition to representing a step forward for 
assessing the effectiveness of AI systems supporting intelligence, this 
effort serves as a demonstration of what is lost when well-tuned meth-
ods of assessing this effectiveness are not present. Unfortunately, fur-
ther basic research is needed to provide these methods across all the 
systems and deployment contexts pertinent to intelligence missions. 
This research is distinct from the considerable effort rightly directed 
toward developing methodologies for assuring the integrity and reli-
ability of AI systems for defense and intelligence applications. In 
addition to being able to assure that these systems will not suddenly 
stop working at a critical juncture, we must be able to critically assess 
whether they will enhance effectiveness in the mission they support at 
all when judged not just by a narrow definition of their task but by the 
actual value they provide. Put another way, research is needed to actu-
ally understand the contours of the upside for such systems, in addi-
tion to understanding how to guard against downsides. At present, for 
intelligence in particular, the results of this effort indicate that room 
for improvement remains in methodologies for assessing the actual 
value provided to users by these systems.
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CHAPTER ONE

Introduction

The Office of the Director of National Intelligence (ODNI) chief tech-
nology adviser, Dean Souleles, stated in July 2020 that “in our increas-
ingly complex digital world, the IC [intelligence community] must 
adapt and adopt AI [artificial intelligence] and related technologies to 
carry out its critical mission.”1 Former Deputy Associate Director of 
the Central Intelligence Agency (CIA) for Learning, Joseph Gartin, 
wrote in June 2019 that 

the field of intelligence analysis is at an inflection point. Behind 
us, several decades of accomplishment and innovation, chastened 
at times by errors and shaped by cautious incrementalism. Ahead, 
a future—as in all knowledge industries—still coming into view 
but shaped by the powerful and potentially disruptive effects of 
artificial intelligence, big data, and machine learning.2

In August 2018, the National Security Commission on Artificial 
Intelligence (NSCAI) was created to “consider the methods and means 
necessary to advance the development of artificial intelligence, machine 
learning, and associated technologies to comprehensively address the 
national security needs of the United States.”3 The 2019 ODNI Aug-

1 Office of the Director of National Intelligence (ODNI), “Intelligence Community 
Releases Artificial Intelligence Principles and Framework,” press release, Washington, D.C., 
July 23, 2020.
2 Joseph W. Gartin, “The Future of Analysis,” Studies in Intelligence, Vol. 63, No. 2, 
Extracts, June 2019, p. 1. 
3 National Security Commission on Artificial Intelligence, “About,” webpage, undated. 
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menting Intelligence using Machines (AIM) Initiative notes that “the 
pace at which data are generated . . .  is increasing exponentially and 
long ago exceeded our collective ability to understand it or to find the 
most relevant data with which to make analytic judgments.” It declares 
that AI is “crucial for future mission success and efficiency” and that it 
poses both an opportunity to leverage new technology and a solution 
for a data glut.4

Indeed, too much data collected can make finding the right data 
challenging. As intelligence expert Mark Lowenthal aptly notes, “If 
you have more haystacks, you do not necessarily get more needles.”5 
IC confronts a large, and growing, haystack. Speaking at the National 
Geospatial Intelligence Symposium in 2017, then National Geospatial-
Intelligence Agency (NGA) Director Robert Cardillo stated: 

If we were to attempt to manually exploit the commercial satellite 
imagery, we expect to have over the next 20 years, we would need 
eight million imagery analysts. Even now, every day in just one 
combat theater with a single sensor, we collect the data equivalent 
of three NFL [National Football League] seasons—every game. 
In high definition!6 

Cardillo’s statement suggests that even within specific intelligence 
types, such as imagery intelligence (IMINT) or signals intelligence 
(SIGINT), the challenge of humans alone processing and making 
sense of the overwhelming amount of data is likely insurmountable.

This is not to say that IC is uniformly challenged by an over-
abundance of data. Data saturation seems to apply in varying degrees 
depending on the mission and function the intelligence analysis sup-
ports. For example, an intelligence analyst focusing on specific high-
value targets of a terrorist group or a human intelligence (HUMINT) 

4 ODNI, “The AIM Initiative: A Strategy for Augmenting Intelligence Using Machines,” 
ODNI Report, January 16, 2019, p. iv. 
5 Mark M. Lowenthal, Intelligence: From Secrets to Policy, 8th ed., Washington, D.C: Sage, 
Congressional Quarterly Press, 2020, p. 73.
6 Remarks as prepared for Robert Cardillo, Director National Geospatial-Intelligence 
Agency, June 5, 2017.
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counterintelligence analyst focusing on a particular set of assets might 
not be as overwhelmed as the analysts confronting the aforementioned 
flood of satellite imagery or even overwhelmed at all. The point is 
simply that IC is faced with the problem of sifting through massive 
streams of data and that it has, quite reasonably, identified deploying 
AI systems as a promising method to address this problem. 

This deployment presents a challenge, however. IC must carry 
out its mission in an uncertain world with a constrained budget. Ide-
ally, IC needs to understand the risks and benefits of any AI system it 
deploys in the context of the intelligence mission it will support and the 
way it will be utilized. That is, IC needs to be able to assess the actual 
benefit provided by an AI system to determine whether, for example, 
funds would be better spent increasing the number of personnel with 
language, analytical, and cultural expertise than developing a sophis-
ticated algorithm to sift through social media data. Furthermore, IC 
needs to understand the efficacy of these AI systems in order to under-
stand how much to rely on them. For example, hypothetically, if most 
imagery intelligence is only ever processed by a machine, how should 
we interpret a lack of imagery intelligence supporting an assessment 
based on other intelligence streams? Surely the answer depends on how 
reliable the system processing imagery intelligence is. Put another way, 
while the systems enabled by AI technology are impressive, they are not 
perfect. As with all systems, IC must understand how effective they are 
in order to determine how to use them. 

We are by no means the first to point out the need for a robust and 
effective way of measuring the effectiveness of AI systems. Challenges 
around AI validation, verification, testing, and evaluation (VVT&E) 
were also identified in RAND’s 2019 report on The Department of Defense 
Posture for Artificial Intelligence. That report stated that the “current state 
of AI VVT&E is nowhere close to ensuring the performance and safety 
of AI applications” and that “performance metrics optimized for com-
mercial applications are often misaligned with DoD [Department of 
Defense] needs.”7 The RAND report found that DoD AI strategy and 

7 Danielle C. Tarraf, William Shelton, Edward Parker, Brien Alkire, Diana Gehlhaus, 
Justin Grana, Alexis Levedahl, Jasmin Leveille, Jared Mondschein, James Ryseff et al., The 
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service AI annexes lacked baselines, metrics, or quantifiable measures to 
assess progress toward their vision.8 In June 2019, “The National Artifi-
cial Intelligence Research and Development Strategic Plan,” produced by 
the National Science and Technology Council, found that 

standard metrics are needed to define quantifiable measures in 
order to characterize AI technologies, including but not limited 
to: accuracy, complexity, trust and competency, risk and uncer-
tainty, explainability, unintended bias, comparison to human 
performance, and economic impact.9 

More recently, the July 2020 second-quarter NCSAI report noted 
that “significant work is needed to establish what appropriate metrics 
should be to assess system performance across attributes for responsible 
AI and across profiles for particular applications/contexts.”10 

While these findings relate largely to DoD, the need to identify 
the right ways to measure the performance and effectiveness of AI sys-
tems has also been acknowledged within IC. According to the June 
2020 “Artificial Intelligence Ethics Framework for the Intelligence 
Community,” IC personnel are encouraged to ask the right questions 
for procuring, managing, using, building, protecting, and deploying 
AI systems. Specifically, when it comes to balancing desired results 
versus acceptable risk, the framework suggests asking these questions: 

What performance metrics best suit the AI system, such as accu-
racy, precision, and recall, based on risks determined by mission 
managers, analysts, and consumers given the potential risks; and 
how will the accuracy of the information be provided to each of 

Department of Defense Posture for Artificial Intelligence: Assessment and Recommendations, 
Santa Monica, Calif.: RAND Corporation, RR-4229-OSD, 2019, p. 35. 
8 Tarraf et al., 2019.
9 National Science and Technology Council, Select Committee on Artificial Intelligence, 
“The National Artificial Intelligence Research and Development Strategic Plan: 2019 
Update,” June 2019, p. 34. 
10 National Security Commission on Artificial Intelligence, “Second Quarter Recommen-
dations,” Quarterly Series, No. 2, July 2020, p. 108. 
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those stakeholders? What impacts could false positive and false 
negative rates have on system performance, mission goals, and 
affected targets of the analysis?11

The 2019 AIM Initiative also laments that “too many AI/ML [machine 
learning] projects launch without metrics to allow the IC to under-
stand whether the investment is on track to succeed or fail.”12

Unfortunately, choosing the right metrics to assess the effective-
ness of an AI system based on the intelligence mission it supports and 
the way it will be deployed is easier said than done. As alluded to in the 
AI Ethics Framework, a number of standard ways of characterizing AI 
system performance exist, including metrics commonly referred to as 
“precision,” “recall,” and “accuracy.” These metrics measure the perfor-
mance of the AI system “in a vacuum,” without reference to the impact 
that the AI system has on the mission it supports. That is, though it 
is immediately clear that more accuracy is better, it is not necessarily 
clear what level of accuracy is sufficient, since accuracy is not, in and of 
itself, the goal of the AI system. Rather, the goal of the AI system is the 
success of the intelligence mission that the AI system supports. In the 
absence of a clear “exchange rate” between accuracy and intelligence 
mission success, we can make only ad hoc judgments about what level 
of performance is sufficient for the intelligence mission.

In addition to the difficulty this issue adds to the problem of 
establishing minimum standards of performance, the lack of an obvi-
ous relationship between standard AI system measures of performance 
and effectiveness in supporting the intelligence mission complicates 
the problem of choosing a set of metrics in the first place. A great 
many ways of measuring this performance exist and necessarily mea-
sure the performance of the AI system in different ways. Consequently, 
not all metrics will agree on which AI system is performing better. 
Choosing a metric without a direct relationship to actual mission suc-
cess might result in a misunderstanding of the actual effectiveness of 

11 ODNI, “Artificial Intelligence Ethics Framework for the Intelligence Community,” 
v. 1.0, June 2020. 
12 ODNI, 2019, p. 11. 
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the system, perhaps resulting either in deploying an AI system that is 
not performing adequately or discarding an AI system that is. Thus, 
even at the level of choosing how to measure the performance of an AI 
system, information about how standard metrics of performance con-
nect with AI system effectiveness is necessary to make the decision in 
an informed manner.

This report aims to begin closing this gap by identifying the ways 
in which AI systems produce effects in different contexts supporting 
intelligence and connecting those positive and negative effects with 
the properties of the AI system itself. That is, this report addresses 
the question “How are AI system measures of performance connected 
with effectiveness in intelligence analysis?” To make progress on this 
question, we introduce a taxonomy of the functions AI systems could 
perform when supporting intelligence and analyze how errors in AI 
system output for each of these functions might propagate to produce 
consequences. In other words, we understand the effects of errors by 
the AI system by examining how those errors affect the process around 
the system depending on the role that the AI system serves (i.e., the 
function that it performs). For one function in our taxonomy, we 
create and analyze a mathematical model to demonstrate this process 
in detail. In addition to providing general insights about how existing 
metrics relate to AI system effectiveness, this model could be used to 
analyze the impact of AI systems in the field.

Organization of This Report

Scope

The scope of factors contributing to effectiveness considered in this 
report is narrow due to the limited resources available for this study. 
This report is concerned only with how the statistical performance 
of AI systems is connected to the impacts generated by the system. 
This performance is the property measured by standard performance 
metrics such as precision, recall and accuracy. There are categorically 
different properties of these systems that are likely germane to the con-
tribution such systems make to mission success but are nonetheless 
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outside the scope of this work. Perhaps the most straightforward exam-
ple is the time it takes the system to return results in relation to the 
tempo of the mission supported. 

More generally, the relationship among the human analysts using 
the system, the policymakers consuming the analysis, and the system 
itself is likely critical to successful use of the system. Is the output of 
the system and its level of certainty clearly communicated? Do human 
intelligence analysts feel that the system assists them or that it represents 
another chore to be completed? How does IC incorporate the results of 
quantitative analysis into intelligence products? What ethical concerns 
might attend to the particular use case envisioned? These questions, and 
others like them, are critical, and not addressed in this report.

Finally, this analysis implicitly takes place assuming a permissive 
environment for the AI system to operate in. That is, we do not con-
sider how attacks on the underlying algorithm or on the infrastructure 
it needs to operate might affect analysis of the system’s effectiveness. In 
the real world, such attacks are a realistic concern for IC and should be 
considered when assessing the risks that might flow from deploying an 
AI system. These risks could in principle be incorporated into the sort 
of model considered in this report, but further basic research into the 
susceptibility of AI systems to attack may be necessary to enable this.

Research Approach, Audience, and Organization

In order to attack our central research question, we investigated three 
subsidiary questions:

1. How might AI be used to support the intelligence process, both 
as reflected in the development of real systems and in hypothet-
ical systems that may not yet be in development?

2. How can we model the intelligence process for the purposes of 
determining how AI systems situated in this process affect it?

3. What metrics exist to characterize the performance of AI 
 systems?

All three questions were addressed via the review of publicly avail-
able information, together with informal interviews of colleagues both 
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inside and outside of RAND with backgrounds in AI and/or intelli-
gence. For the first question, we relied on publicly available descriptions 
of AI projects supporting intelligence, such as those at the Joint Arti-
ficial Intelligence Center (JAIC) and Intelligence Advanced Research 
Projects Activity (IARPA). For the second question, we relied heavily 
on the intelligence literature, official national security, intelligence and 
defense doctrine publications, and works of scholar practitioners. For 
the third question, we utilized the extensive ML literature on perfor-
mance measures, with a particular focus on binary classifiers due to the 
limited resources available for this study.

The primary audience for this report consists of decisionmakers 
within IC or DoD who may contemplate deploying an AI system to 
support intelligence missions. This report is intended to frame the prob-
lem of critically, rigorously, and quantitatively analyzing how much 
value these AI systems provide in steady-state operations and the extent 
to which they provide decisionmakers with the tools to strategize about 
how these systems might be best utilized to support their mission. We 
expect that a secondary audience of AI researchers, designers, and engi-
neers building systems to support intelligence missions will likely also 
find this document useful for contextualizing the utility that their sys-
tems might provide to the intelligence process. In particular, we intend 
the primary and secondary audiences to use the contents of this report 
to “meet in the middle” and find a useful basis for communication 
about system requirements and capabilities. Finally, we suspect that 
the contents of this report might prove useful to a tertiary audience of 
AI system users and builders in noncommercial settings even outside of 
the context of intelligence. For example, we can envision many of these 
results being useful in the context of in-house cybersecurity efforts or 
even health care quality monitoring. Readers from contexts other than 
intelligence are encouraged to consider whether their processes and 
problems are analogous to those considered here.

Key Terms

Here, we introduce a few terms that this report uses to convey specific 
concepts. In general, these are terms that are at risk of being under-
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stood colloquially, rather than in the narrow senses that serve the pur-
poses of this report. 

• System versus model: ML systems in particular are frequently 
referred to as “models” for the data used in their construction in 
technical circles. When discussing a mathematical model for the 
effectiveness of such a system, this usage can lead to unhelpful 
phrases such as “the model for model effectiveness” and render 
uses of the noun “model” ambiguous in certain contexts. To alle-
viate this issue, in this report we always refer to the system whose 
effectiveness we are trying to analyze as a “system” and the math-
ematical or qualitative model that assists us in this analysis as a 
“model.” “System” always means system in this sense, and “model” 
always means model in this sense. However, do not exclusively 
use the word “system” to refer to a system of interest when a more 
specific term is available. For example, much of Chapter Three 
is devoted specifically to binary classifiers functioning as an ML 
system; in this case we refer to these systems as “binary classifiers” 
when speaking only about binary classifiers.

• Deployment context/deploy: The “deployment context” of a 
system refers to the things that system interacts with when in 
normal operation along with the configuration of those things 
and the manner of this interaction. For example, both a system’s 
users and the way those users interact with the system are a part of 
the system’s deployment context. Similarly, “deploying” a system 
refers to beginning to use the system to perform the task for which 
it was developed.

• Performance versus effectiveness/impact: Following a con-
vention we did not originate, “performance” refers to how well a 
system completes a narrow definition of its task, while “effective-
ness” or “impact” refers to whether the underlying goals of the 
system are achieved. For example, the performance of a computer 
vision system in a self-driving car concerns how often the system 
successfully recognizes a stop sign, and the effectiveness or impact 
concerns how often the car fails to stop at a stop sign.
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• Intelligence process: This term refers to the process by which 
intelligence is collected, analyzed, and disseminated without 
invoking a particular model for this process. That is, the intel-
ligence cycle is a conceptual model or framework for the intel-
ligence process.

• Metrics, or measures of performance/effectiveness: By “met-
rics,” or “measures of performance” or “measures of effectiveness,” 
we mean numbers that capture properties of a system and bear on 
either the performance or effectiveness of that system.

Artificial Intelligence and Machine Learning

“Artificial intelligence” refers to “computing technologies that exhibit 
what humans would consider to be intelligent behavior.”13 While this 
definition is intuitive, the judgment as to whether a task requires intel-
ligence is somewhat subjective and depends on one’s expectations of 
what computers can do. On a practical level, AI usually refers to the 
use of ML systems that utilize data to automatically learn the prop-
erties of a phenomenon of interest. ML has shown promise across a 
number of applications, from understanding the meaning of text and 
recognizing objects in images to building systems to automatically play 
competitive strategy games.14 Other approaches to similar problems, 

13 National Academies of Sciences, Engineering, and Medicine, Implications of Artificial 
Intelligence for Cybersecurity: Proceedings of a Workshop, Washington, D.C.: The National 
Academies Press, 2019, p. 1-1. 
14 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R 
Bowman, “Glue: A Multi-Task Benchmark and Analysis Platform for Natural Language 
Understanding,” Cornell University arXiv.org, February 22, 2019; Olga Russakovsky, Jia 
Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Kar-
pathy, Aditya Khosla, Michael Bernstein et al., “ImageNet Large Scale Visual Recognition 
Challenge.” International Journal of Computer Vision, Vol. 115, No. 3, 2015; David Silver, Aja 
Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian 
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot et al., “Mastering 
the Game of Go with Deep Neural Networks and Tree Search,” Nature, Vol. 529, No. 7587, 
2016.
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typically called “rules-based” or “expert systems” approaches, make up 
the remainder of AI.15

ML itself is typically subdivided into three classes of techniques: 
supervised learning, unsupervised learning, and reinforcement learn-
ing.16 Supervised learning is fundamentally concerned with prediction. 
Given a set of examples of some relationship such as images labeled by 
whether they contain a tank or text passages labeled by whether they 
pertain to chemical weapons, supervised learning techniques can be 
used to automatically construct a program predicting the presence of a 
tank in unlabeled images or identifying passages pertaining to chemi-
cal weapons in unlabeled text. Supervised learning is a close cousin 
to the classical statistical technique of regression—that is, finding the 
best fit line through a set of datapoints. The distinction between super-
vised learning and classical statistics is more cultural than technical 
in that classical statistics tends to be more concerned with using the 
system as a surrogate for understanding the phenomenon the system 
pertains to while supervised learning tends to be interested only in pre-
dictive power.17

Unsupervised learning techniques are designed to analyze data 
without a preidentified relationship of interest to extract some informa-
tion about its structure. For example, Google’s original architecture for 
its search engine utilized the PageRank algorithm, which determines 
which webpage is likely most relevant to a user’s query and operates 
using unsupervised learning on the network of links in webpages.18 
Unsupervised learning can also be used to support supervised learning 
techniques within a given domain by learning statistical features in the 
data that can later be exploited for prediction. For example, the cur-

15 National Academies of Sciences, Engineering, and Medicine, 2019.
16 Jerome Friedman, Trevor Hastie, and Robert Tibshirani, “The Elements of Statistical 
Learning,” Springer Series in Statistics, Vol. 1, No. 10, 2001; Richard S. Sutton and Andrew 
G. Barto, Reinforcement Learning: An Introduction, Cambridge, Mass.: MIT Press, 2018.
17 Leo Breiman, “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder 
by the Author),” Statistical Science, Vol. 16, No. 3, 2001.
18 Friedman et al., 2001; Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale 
Hypertextual Web Search Engine,” Computer Networks and ISDN Systems, 30.1-7, 1998.
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rent dominant class of language analysis systems utilize unsupervised 
learning on massive amounts of unannotated language to learn general 
structures within the language of interest before a supervised learning 
step on a more limited dataset that reflects the statistical relationship 
of interest.19 That is, unsupervised learning helps the system learn the 
overall statistical properties of text in general, giving it a head start on 
learning the statistical properties that predict the specific categories of 
interest. Returning to the example above about whether a text pertains 
to chemical weapons, one might first deploy these unsupervised tech-
niques on a large volume of language data not annotated by whether it 
pertains to chemical weapons before proceeding to a supervised learn-
ing step with the annotated text. Unsupervised learning techniques 
can also be used to train generative models, which produce synthetic 
examples of a particular type of data (e.g., images), according to the 
statistical distribution of real examples. This is the technology under-
lying the production of “deepfakes,” though this technology can also 
be used to build synthetic anonymized datasets to allow analysis while 
preserving privacy.20

Finally, reinforcement learning refers to a set of technique for 
automatically building systems to select actions according to uncertain 
rewards. These systems can be thought of as systems that learn to play 
a game successfully, either against the environment or against another 
player, by using the current state of the “board” to statistically select 
the most profitable next “move.” Perhaps the most dramatic recent 
example of reinforcement learning at work is the success of AlphaGo, 
a system to play the game of Go.21 Despite the massive space of actions 
available to choose from during each turn and the need for AlphaGo 
to optimize the long-term strategies that its short-term actions served, 

19 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “BERT: Pre-
Training of Deep Bidirectional Transformers for Language Understanding,” Cornell Uni-
versity arXiv, 2018.
20 Yuezun Li and Siwei Lyu, “Exposing Deepfake Videos by Detecting Face Warping Arti-
facts,” Cornell University arXiv, 2018; Yi Liu, Jialiang Peng, James J. Q Yu, and Yi Wu, 
“PPGAN: Privacy-Preserving Generative Adversarial Network,” 2019 IEEE 25th Interna-
tional Conference on Parallel and Distributed Systems, 2019.
21 Silver et al., 2016.
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AlphaGo was capable of beating a world-class human opponent, defeat-
ing Lee Sedol 4–1 in a five-game series.22

Across all three domains, ML systems learn from data through a 
process called “training.” For each round of training, the ML system 
is evaluated on a subset of the data according to some measure of the 
system’s quality. Typically, this measure is chosen for its mathematical 
properties rather than its practical value. The parameters in the ML 
system are then adjusted slightly to improve its performance on this 
data. From the perspective of this report, this represents an important 
philosophical point: ML systems are built through a process of opti-
mization against some measure of performance, offering our first sign 
of the way these systems are shaped from start to finish by the way we 
choose to quantify their performance.

A full review of AI systems currently supporting intelligence 
 analysis across IC or DoD is beyond the scope of this report. None-
theless, we believe it is important to highlight select examples of AI 
systems to provide real-world context for our analysis.

Multidimensional Anomaly Detection fusing High Performance 
Computing, Analytics, and Tensors (MADHAT), an AI system out 
of JAIC, is an unsupervised learning system designed to assist analysts 
in detecting suspicious network traffic. Analysts are currently being 
trained to use the tool.23 JAIC is developing another AI tool called 
“Entropy,” which supports analysts concerned with the information 
environment, which might include information warfare analysts. The 
system assists human analysts with counter-information operations 
and psychological operations. Entropy currently identifies and sum-
marizes real-time internet trends based on text and video.24

Project Maven is a prominent Pentagon AI effort that attempts to 
use ML to identify objects and people in full-motion video generated 
by unmanned aerial vehicles and thus supports analysts who evaluate 

22 Cade Metz, “In Two Moves, AlphaGo and Lee Sedol Redefined the Future,” Wired, 
March 16, 2016.
23 Joint Artificial Intelligence Center, “Joint Information Warfare,” undated.
24 Mark Pomerleau, “Pentagon’s AI Center to Field New Psychological Operations Tool,” 
C4ISRNET, September 11, 2020.
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this footage for useful information and threats.25 In recent public com-
ments, the current JAIC chief technical officer (former acting JAIC 
director at the time), Nand Mulchandani, suggested that JAIC was 
working with Project Maven on “the algorithmic side but also on the 
deployment and testing side”; and Colonel Bradley Boyd stated that 
the JAIC’s Smart Sensor project “is interacting with Maven as well as 
the Air Force on developing the Agile Condor pod capability to enable 
potentially autonomous sensing [and] autonomous tracking.”26 JAIC 
describes its Smart Sensor program as “a video processing AI prototype 
that rides on unmanned aerial vehicles and is trained to identify threats 
and immediately transmit the video of those threats back to manned 
computer stations for real-time analysis.”27 

The Palantir Gotham platform includes the Ava module, an AI 
tool used by analysts across DoD and IC. This module continuously 
looks for connections between data streams and integrated and feder-
ated data holdings, alerting human investigators of connections worth 
investigating. Palantir’s Foundry, used by some government clients, 
allows users to build and deploy AI models themselves.28

25 John Keller, “Project Maven Moves to ABMS to Showcase Technologies in Artificial 
Intelligence (AI) and Machine Learning,” Military & Aerospace Electronics, September  8, 
2020; Lizette Chapman, “Palantir Wins New Pentagon Deal with $111 Million from the 
Army,” Bloomberg, December 13, 2019; Andrew Liptak, “Palmer Luckey’s Company Earned 
a Contract for the Pentagon’s Project Maven AI Program,” The Verge, March 10, 2019; Frank 
Wolfe, “Testing Begins for Condor Pod to Enable AI-Powered MQ-9 Reaper Targeting,” 
Aviation Today, September 14, 2020.
26 Nand Mulchandani, Jane Pinelis, and Brad Boyd, “Joint Artificial Intelligence Center 
Leaders Update Reporters on DOD AI Developments,” transcript, September 10, 2020. See 
also Src, Inc., “Teraflops of Processing Power at 26,000 Feet,” 2018; Carlo Munoz, “JAIC 
Smart Sensor Plays Key Role in USAF Advanced ISR Pod Prototype,” Janes, September 21, 
2020; Joseph Trevithick, “MQ-9 Reaper Flies with AI Pod That Sifts Through Huge Sums 
of Data to Pick Out Targets,” The Drive, September 4, 2020; Wolfe, 2020; Brandi Vincent, 
“How the Pentagon’s JAIC Says It’s Prioritizing Ethics in Its AI-Driven Pursuits,” Nextgov, 
September 10, 2020; Nathan Strout, “Inside the Army’s Futuristic Test of Its Battlefield 
Artificial Intelligence in the Desert,” C4ISRNET, September 25, 2020.
27 The Joint Artificial Intelligence Center, “The JCF and the Combatant Commands: A 
Symbiotic Relationship,” AI in Defense, June 3, 2020.
28 Palantir Technologies, Form S-1/A, 2020.
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IARPA invests heavily in AI systems with utility to intelligence 
analysts, especially in its research areas of analysis, anticipatory intel-
ligence, and collection. In the analysis space, IARPA has invested in 
programs such as Aladdin Video, Better Extraction from Text Towards 
Enhanced Retrieval (BETTER), Creation of Operationally Realis-
tic 3D Environment (CORE3D), Deep Intermodal Video Analytics 
(DIVA), and Machine Translation for English Retrieval of Information 
in Any Language (MATERIAL). Aladdin Video developed technology 
to enable analysts to search massive numbers of video clips for specific 
events of interest with an eye toward analyzing the massive amounts of 
video uploaded to internet platforms.29 BETTER funded performers 
for systems that extract and retrieve fine-grained semantic information, 
targeted for a particular analyst, from text, working across languages 
and domains to produce events structured as “who-did-what-to-whom-
when-where,” with an eye toward the massive amounts of unstructured 
text information being produced daily.30 CORE3D funded perform-
ers that build systems that use satellite imagery, airborne imagery, and 
Geographic Information System (GIS) vector data to construct three-
dimensional models of large geographic areas accurately, automatically, 
and quickly to improve situational awareness and support rapid mili-
tary, intelligence, and humanitarian responses where manual methods 
for such modeling, while accurate, would be too time consuming.31 
DIVA funded performers who built systems that detected activities 
across multiple, ground-based camera streams with both overlapping 
and nonoverlapping viewpoints, with an eye toward assisting secu-
rity professionals at airports, border crossings, or government facilities 
to analyze video streams from a large number of cameras.32 Finally, 

29 IARPA, “Automated Low-Level Analysis and Description of Diverse Intelligence Video 
(ALADDIN) Broad Agency Announcement (BAA),” IARPA-BAA-10-01, June 28, 2010. 
30 IARPA, “Better Extraction from Text Towards Enhanced Retrieval (BETTER),” IARPA-
BAA-18-05, September 28, 2018, p. 5. 
31 IARPA, “Creation of Operationally Realistic 3D Environment (CORE3D) Broad Agency 
Announcement,” IARPA-BAA-16-06, November 1, 2016. 
32 IARPA, “Deep Intermodal Video Analytics (DIVA) Broad Agency Announcement,” 
IARPA-BAA-16-13, March 17, 2017. 
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MATERIAL funded efforts to build an “English-in, English-out” 
information retrieval system that can take a domain-sensitive English 
query and return information retrieved from a multilingual repository 
as query-biased summaries in English.33

In the anticipatory intelligence space, IARPA has invested in pro-
grams such as Open Source Indicators (OSI), Cyber-Attack Automated 
Unconventional Sensor Environment (CAUSE), Hybrid Forecasting 
Competition (HFC), and Mercury. OSI funded performers who built 
systems that continuously analyze publicly available data to forecast 
major societal events, such as political crises, in an attempt to “beat the 
news.”34 Taking a similar approach with a cyber focus, CAUSE funded 
performers who built systems that attempted to provide warnings of 
cyberattacks with significant lead time, high recall, and low false dis-
covery rate, based not only on conventional cyber information, but also 
on unconventional information sources such as social media.35 Another 
similar program is Mercury, which focuses on using foreign SIGINT 
data to forecast events, such as terrorist activities, political crises, and 
disease outbreaks, with high accuracy and lead time.36 Other projects, 
such as HFC, have sought to combine human forecasting and machine 
forecasting in hybrid approaches, with the machines compensating for 
the cognitive biases and lack of scalability of human analysis while the 
humans offer an ability to understand unusual or novel geopolitical 
issues.37 In the collection space, IARPA has invested in programs such 
as Finding Engineering-Linked Indicators (FELIX) and Functional 
Genomic and Computational Assessment of Threats (Fun GCAT). 
FELIX funds performers that use AI to detect genetic engineering 
signatures. Determining that a given biological system is engineered 
allows the United States to rapidly respond to the accidental or delib-

33 IARPA, “MATERIAL PD Announcement,” August 1, 2016.
34 IARPA, “Open Source Indicators (OSI),” IARPA-BAA-11-11, August 23, 2011, p. 3.
35 IARPA, “Cyber-Attack Automated Unconventional Sensor Environment (CAUSE),” 
IARPA-BAA-15-06, July 17, 2015.
36 IARPA, “Mercury Broad Agency Announcement,” IARPA-BAA-15-08, June 12, 2015.
37 IARPA, “Hybrid Forecasting Competition (HFC),” IARPA BAA-16-02, September 12, 
2016; IARPA, “HFC Proposers Day Announcement,” December 18, 2015.
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erate release of engineered organisms that can pose health risks.38 Fun 
GCAT funds systems that apply novel approaches to screening nucleic 
acid sequences and identifying sequences of concern to prevent the 
intentional or accidental creation of a biological threat.39

38 IARPA, “Finding Engineering-Linked Indicators (FELIX) Broad Agency Announce-
ment,” IARPA-BAA-17-07, August 31, 2017. 
39 IARPA, “Functional Genomic and Computational Assessment of Threats (Fun GCAT) 
Broad Agency Announcement,” IARPA-BAA-16-08, September 22, 2016.
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CHAPTER TWO

Tracing Effectiveness from Mission to System

The output of an AI system is not an end unto itself. This means that 
the success of an AI system is defined by the success in achieving the 
objectives of the mission supported by the system utilizing the output 
of the system. In the context of intelligence, this manifests through 
the fact that no matter how self-contained any given AI system is, its 
output will contribute to informing intelligence assessments. These 
assessments give decisionmakers information about the world that they 
use to select courses of action that affect the security of the United 
States. The impact generated by the courses of action selected is the 
ultimate source of success or failure for the AI system. In a perfect 
world, the effectiveness of the system would be understood by tracing 
the effects backward along this chain of consequences. That is, the 
change in the security situation of the United States would be traced 
back to actions taken by the decisionmakers, which would be traced 
back to the intelligence used to select those actions, all the way back to 
the output of the system itself. In this way, the system would be judged 
by the net effect it had on the outcome we care most directly about: the 
overall security of the United States.

In a private-sector context, such a thorough analysis may even 
be possible, due to the limited scope of both the available actions and 
the definition of success. Ultimately the success of a company is deter-
mined by its financial situation. Particularly in a data-rich environment, 
the ease with which success that results from a financial definition of 
success can be measured may enable connecting system performance 
directly to this definition of success. For example, one could imagine 
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a company such as Netflix connecting the performance of its recom-
mender algorithm with data on user retention to construct a precise 
model of the revenue gained or lost by changes in the performance of 
the recommender algorithm.

Unfortunately, when analyzing such systems in the context of 
intelligence, effectiveness is not so obviously defined and measured. 
The value of intelligence cannot be reduced to dollars and cents. For 
example, a 2016 ODNI whitepaper, “Processes for Assessing the Effi-
cacy and Value of Intelligence Programs,” notes that “the efficacy of 
any particular program is difficult to assess” in part because individual 
programs “are not typically used in isolation.”1 This white paper then 
details the methodologies that ODNI utilized to assess the efficacy 
of collection programs in spite of this difficulty, at least at the time. 
Broadly speaking, these methodologies sought to capture how well the 
reporting generated conformed to priorities in the National Intelli-
gence Priorities Framework (NIPF), how often these reports were cited 
in intelligence products, and how valuable the reports were perceived 
to be by intelligence professionals and consumers. 

A comprehensive review of the problem of evaluating the effective-
ness of the intelligence process or of present ODNI evaluation policy is 
well outside the scope of this report, and we do not intend to speak to 
the relative utility of this approach. However, it should be noted that 
the methodologies outlined in this white paper do not actually directly 
measure how effective the reporting emerging from a program is. To 
put a fine point on it: the procedure ODNI describes measures whether 
consumers are satisfied, not what impact the reporting generates. If, 
hypothetically, decisionmakers were faced with a choice between a pro-
gram that generated reports that were frequently cited and satisfied 
intelligence consumers and a program that materially improved the 
security of the United States, they should choose the latter. These mea-
sures are therefore valuable primarily as a proxy for the positive effect 
on the security of the United States, which is more difficult to measure. 
Indeed, we need such proxies since actually tracing this effect back 

1 ODNI, “Processes for Assessing the Efficacy and Value of Intelligence Programs,” Febru-
ary 8, 2016, p. 1.
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to the system is complicated and would require understanding how 
reporting influences analysts, how those analysts influence policymak-
ers, and the concrete impacts of the actions selected by policymakers 
on the security and interests of the United States. This final step seems 
especially challenging, as it would require a deep enough understand-
ing of the evolution of geopolitics to support analysis of how the state 
of the world would have changed if U.S. policymakers had chosen a 
different course of action.

One aspect of how ODNI addressed the challenge in the above 
example offers a hint as to a way forward in the context of analyz-
ing the impact of AI systems. Implicitly, ODNI’s approach measures 
efficacy by asking how well the reporting emanating from a program 
supports the next step (that is, analysis and the production of finished 
intelligence) along the chain from requirements through analysis to the 
action selected by the decisionmaker. To make this concrete, consider 
one of the measures of program efficacy used highlighted by ODNI 
in “Processes for Assessing the Efficacy and Value of Intelligence Pro-
grams”: the number of times reporting from a program was cited in 
an intelligence product. This measure serves as a proxy for the effect 
of this program on the security of the United States by addressing the 
question of how well the program is supporting the next step in the 
chain, analysis, since citations are a direct measure of the utilization of 
reporting by analysts.

In this report, we organize our analysis of AI systems in a similar 
manner, judging AI systems by how well they support the next step 
in the intelligence process. Since we need a conceptual model for the 
process into which the AI system will be inserted in order to deter-
mine what the “next step” after the AI system is, we adopt the intel-
ligence cycle as a model for the intelligence process. We define a set 
of four “system function categories” that are organized in part by the 
intelligence cycle and divide the functions of AI systems that support 
intelligence based on the properties of the “next step” they support. 
Put another way, these system function categories bin AI systems by 
how their output is utilized. The way the output is to be utilized pro-
vides a natural platform to analyze the consequences of errors in system 
output, which we can then trace back to understand how different 
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error rates connect to different magnitudes of consequences at this 
“next step.” For two of these categories (out of four in total), we find 
that this procedure yields ways of reasoning about the impact of such 
systems without grappling with the difficult questions of how intel-
ligence and the actions selected by decisionmakers contribute to the 
overall security of the United States. For one of these two, we analyze 
a simple quantitative model of these consequences to demonstrate the 
power of this analysis. For the two other categories, we find that obsta-
cles to this sort of detailed analysis of absolute efficacy remain, though 
workable baseline performance standards can be deduced. 

A little additional context is called for before we launch into our 
analysis. First, we should note that strictly speaking these categories 
divide the functions that AI systems perform, not the systems them-
selves. So, entities that might have a single name and be thought of as 
a single system might nonetheless perform functions in multiple differ-
ent categories. We will discuss this in more detail after the categories 
have been introduced. Second, we caution the reader against viewing 
the categories as too authoritative or definitive. They are intended as 
a useful conceptual framing device for this analysis and are almost 
certainly not the only way one could categorize AI systems supporting 
intelligence, in much the same way that there is no single definitive 
version of the intelligence cycle.

Additionally, the scope of the analysis enabled by this framework 
is limited by the fact that it considers only a single step downstream of 
the system. This means that it cannot be used to analyze whether the 
impact of a system is limited by a bottleneck farther downstream of the 
system whose deployment is being analyzed. For example, Lowenthal 
notes that processing and exploitation AI systems used in DoD’s Proj-
ect Maven or in the Defense Innovation Unit’s Experimental xView 
Detection challenge seek to address the imbalance between data col-
lected and the processing and exploitation of that data. However, as 
Lowenthal explains, sifting through all of the processed data and ana-
lyzing it take skills acquired through experience and training, which 
could be a bottleneck for a number of intelligence agencies.2

2 Lowenthal, 2020.
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It will also become clear as we discuss examples that these catego-
ries abstract away details about the systems they are used to analyze. In 
particular, these categories are insensitive to the type of data on which 
the system operates, the engineering details of the system, and the mis-
sion and analysts that the system supports. This is by design, as at this 
level of abstraction one can separate important differences in the ways 
that the performance of systems in each category leads to impact with-
out drowning in the wide variety of systems, missions, and analysts. 
However, in the section on “Information Prioritization” in Chapter 
Three, where we develop a quantitative model for the impact of sys-
tems in one of these categories, we will discuss the ways that adding 
back some of these details would enrich the analysis of a particular 
system. To the extent that this abstraction flows from using the intel-
ligence cycle as a model for the intelligence process, we discuss how 
more detailed models of the intelligence process might support more 
detailed models of AI system effectiveness in the “Intelligence” section 
of this chapter.

The framework also cannot compare the deployment of an AI 
system to support one kind of analysis or stream of intelligence with 
investments to support another. That is, this framework cannot inform 
whether it is strategically more valuable to deploy an AI system to sup-
port the analysis of SIGINT or to spend those resources to hire addi-
tional foreign language or cultural experts. Since the ultimate goal of 
the framework is to support decisionmakers in analyzing the impacts 
of AI systems to support their development of organization strategy, 
these represent genuine limitations of our analysis, as well as oppor-
tunities for future research. However, since policymakers already have 
some tools for identifying limiting capabilities in their organization 
and weighing the benefits of disparate programs, this analysis should 
still prove useful even with those limitations. So, we merely emphasize 
that decisionmakers should be aware of these possibilities and include 
them in their analysis.
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On “Human Equivalent” Performance

For systems that replicate a task that is currently being performed by 
humans, one minimum standard of performance is always available 
to decisionmakers contemplating deploying an AI system: The per-
formance of the system in question can be compared with that of the 
humans currently performing the task. For example, for a task where 
humans might reasonably be expected to disagree on some examples, 
such as assessing the objectivity of an intelligence product, the AI 
system to perform this task can be judged by whether it is at least as 
good at predicting the majority opinion as the average human per-
forming the task. If this system is being considered for deployment 
to save time or effort on the part of the humans currently performing 
the task, this criterion is a reasonable baseline for system performance 
to demand before deployment. Though the exact risks might remain 
uncertain, the risks accepted by deploying the system are the same risks 
as in the existing process using humans to perform the task.3

While this approach is workable, it has important limitations even 
beyond the fact that it does not allow estimation of impacts aside from 
the resources needed to complete the task at a given level of risk. As 
will be discussed in Chapter Three, there are stronger and weaker ways 
to compare the performance of AI systems to determine which one is 
better. Roughly speaking, the strong definition of exceeding human 
performance requires the AI system to perform better regardless of 
which errors are more significant. However, depending on which errors 
are in fact more significant, AI systems might perform better than or 
equal to human performance in “impact-adjusted” terms, even though 
they are not better in the strong sense. Therefore, meeting or exceeding 

3 Of course, this statement is true only within the scope of this report. That is, strictly 
speaking, only the risks due to the overall rate of errors while operating in a permissive 
environment are the same. The differing needs and vulnerabilities of computer systems and 
humans give rise to distinct risks. For example, replacing humans in a process with machines 
would likely increase the risk due to hacking but might decrease the risk due to pandemic 
disease. This also neglects any incidental benefits not given by the completion of the task 
itself, such as knowledge or information that is gained by the humans performing the task 
and that can then be leveraged to complete other tasks.
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human performance is actually an especially strong criterion to enforce 
on the AI system.4

Furthermore, simply because the human and the machine make 
errors at the same rates does not mean they will make the same errors. 
For concreteness, consider a system that identifies vehicles in images. It 
is possible that the features of a given image that could cause humans 
to struggle with the task would be different from those that cause 
machines to struggle. Perhaps humans struggle to identify vehicles in 
images with poor lighting conditions while machines struggle with 
crowded images. If some class of images is particularly important, such 
as images with poor lighting conditions, then human equivalent perfor-
mance needs to be defined in an even more fine-grained manner that 
differentiates between the performance on distinct classes of images.5 
Of course, in order to enable this fine-grained distinction, one needs 
a reproducible definition of the different classes of images of differ-
ing importance. These errors may also not be distributed identically 
in time. For example, if more than one human works with another to 
accomplish the task and these humans take shifts, error rates might 
differ between shifts, as we should expect some people to be more 
effective at the task than others.

The assumptions required to justify the analysis that the risk is 
equivalent before and after deployment are also more restrictive than 
they may first appear to be. Strictly speaking, the deployment of the AI 
system must be the only thing that changes. In particular, if the entire 
task is scaled up or down after deployment, the risks are not guaran-
teed to remain the same. For example, consider a hypothetical system 

4 In terms of the concepts to be introduced in Chapter Three, the lack of a single summary 
metric for the performance of the system means that “better than human performance” 
needs to be interpreted as “better both in recall and specificity.” Note that this also means 
we have no way of choosing a unique threshold for classification, since we have no criterion 
to use to choose among the whole range of thresholds that exceed human performance. 
5 If the ratios of the importance of the different classes are known, then the overall per-
formance can be re-weighted across these classes to take these ratios into account. However, 
if these ratios cannot be rigorously established, the only available criterion is the system 
exceeding human performance individually in each class, a yet more restrictive definition 
of exceeding human performance. It is the authors’ judgment that this latter case should be 
expected to be typical.
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that assesses the objectivity of intelligence products. Entirely for the 
sake of argument, suppose that if an intelligence product is assessed to 
be below some certain level of objectivity, this assessment has negative 
consequences for the analyst who authored the product, which they 
can appeal. Now, if the process by which products were reviewed were 
to transition from a team of humans reviewing a randomly sampled 
subset of intelligence products to an AI system reviewing all intelli-
gence products, the total number of people receiving below-critical 
marks for objectivity despite being suitably objective will increase. This 
is because the greater number of products reviewed means that a fixed 
probability of false positives leads to a larger number of false positives. 
In addition to possibly being sensitive to the overall number of false 
positives for the sake of analysts who would otherwise have avoided the 
ordeal of an appeal, an increase in the resources of the office that han-
dles appeals would be needed to match an increased volume. Failing 
to do so would result in an increase in the number of analysts facing 
negative consequences in error. Even if the capacity of this office does 
get increased, we should expect the number of analysts facing negative 
consequences in error to increase, since the appeals office likely makes 
errors as well.

Intelligence 

There is no standard definition of “intelligence” across defense and 
intelligence communities. For this study, we adopt the ODNI defini-
tion of intelligence as “information gathered within or outside the U.S. 
that involves threats to our nation, its people, property, or interests; 
development, proliferation, or use of weapons of mass destruction; and 
any other matter bearing on the U.S. national or homelands security.”6 
There is also no standard definition of “intelligence analysis” across 
defense and intelligence communities. In this study, we settle on the 
definition provided by Rob Johnston in his landmark book, Analytic 
Culture in the US Intelligence Community, An Ethnographic Study. 

6 ODNI, “What Is Intelligence?” webpage, undated b.
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Johnston defines intelligence analysis as the “socio-cognitive process, 
occurring with a secret domain, by which a collection of methods is 
used to reduce a complex issue to a set of simpler issues.”7

The Intelligence Cycle

The intelligence cycle is a conceptual model or framework for the intel-
ligence processes. The intelligence process, as noted earlier, are those 
practical actions taken to collect, analyze, and disseminate informa-
tion. Different interpretations exist in the defense and intelligence 
communities for how to exactly model the intelligence process. Dis-
agreement can be found in the number and naming of steps that make 
up the intelligence cycle model. In this study, we refer to ODNI’s intel-
ligence cycle, which includes six steps: planning, collection, processing, 
analysis, dissemination, and evaluation.

1. Planning involves determination of issues and needs that have 
to be addressed. These are formally called “intelligence priori-
ties.” These priorities inform how the intelligence is to be col-
lected.

2. Collection is the process of obtaining and assembling the data 
that will be analyzed. At this step, the data are often referred to 
as “raw intelligence,” because they have not been analyzed and 
evaluated.

3. Processing involves cleaning and synthesizing data into infor-
mation so that intelligence analysts can make sense of it.

4. Analysis is the examination, evaluation, and integration of 
information collected and the production of finished intelli-
gence. Finished intelligence products are assessments of events, 
situations, and issues that include analytical judgments.

5. Dissemination is the distribution of intelligence products or 
reports to decisionmakers, policymakers, and other intelligence 
analysts.

7 Rob Johnston, Analytic Culture in the US Intelligence Community, An Ethnographic Study, 
Washington, D.C.: CIA, Center for the Study of Intelligence, 2005, p. 37. 
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6. Evaluation involves ensuring that intelligence products and 
reports, as well as the intelligence process, are relevant, free of 
bias, accurate, and timely. This step includes feedback from 
consumers.8

Limitations of the Intelligence Cycle

The intelligence cycle is only a model of the intelligence process. That 
is, the lack of consistency in the number, naming, and understanding 
of steps in the model, actions, and activities performed at each step 
indicates that different organizations performing intelligence have dif-
ferent conceptual models for their process, despite all nominally having 
an intelligence mission. Whether or not these differences correspond to 
differences in the process at each of these organizations, this inconsis-
tency is a signal that the intelligence cycle presented here is an imperfect 
reflection of the process of intelligence. Like all models, some details of 
the underlying phenomenon are lost in the process of abstraction. For 
instance, the intelligence cycle fails to distinguish among the six core 
intelligence collection disciplines of SIGINT, geospatial intelligence 
(GEOINT), HUMINT, IMINT, measurement and signature intelli-
gence, and open-source intelligence.9 The processes that produce each 
of these six types of intelligence might differ significantly, conceivably 
in ways germane to the effectiveness of an AI system supporting each 
of those processes.

For one example of a higher fidelity model of the intelligence pro-
cess, consider Rob Johnston’s analysis of the intelligence cycle model 
in which he identifies inputs, processes, and outputs to characterize 
the way information moves through the intelligence cycle in much the 
same way that a part moves through an assembly line.10 This “sys-
temic analysis” identifies points of friction between the intelligence 
cycle model and the reality of the intelligence process. For example, the 
intelligence cycle model does not account for repetitions of each step; it 
assumes the process is the same for every intelligence objective; and it 

8 ODNI, “How the IC Works,” webpage, undated a. 
9 ODNI, undated b. 
10 Johnston, 2005, chap. 4.
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does not capture how each actor (human and/or machine) in the cycle 
contributes to the cycle itself or how the completion and activities of 
one step influence the start of the next step. Additionally, in reality the 
steps of the intelligence cycle model do not necessarily occur along the 
orderly single path that the cycle depicts. Depending on the situation, 
some steps are missed, and some bleed into others. This observation 
actually predates Johnston’s work, going at least as far back as Gregory 
Treverton’s “Real Intelligence Cycle,” which depicts, for example, situ-
ations where analysis does not get published into a finished intelligence 
product, but rather leads directly to new intelligence requirements or 
times when collected raw data is so critical that it is immediately sent 
to a policymaker or decisionmaker (see Figure 2.1).11

In Johnston’s case, the higher fidelity “process model” of the intel-
ligence process is deployed to explore how the level of resources avail-
able to the analyst impacts the throughput of the process. The more 
careful analysis of how productivity depends on resources enabled by 
this process model, relative to that enabled by the standard intelligence 
cycle, suggests that improvements in assessing the utility of AI sys-
tems to intelligence analysis can be made by improving our model of 

11 Johnston, 2005, p. 49. 

Figure 2.1
Treverton’s “Real” Intelligence Cycle

SOURCE: Adapted from Johnston, 2005.
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how intelligence is analyzed. For example, models such as Johnston’s 
may help identify “bottlenecks” farther upstream or downstream of the 
system and other similar effects. Such bottlenecks might be critical fac-
tors in determining the real value of a system assessed holistically, but 
would be missed using the methods outlined in this report.

Moreover, the intelligence cycle does not distinguish between the 
three common intelligence analysis levels known as “tactical,” “opera-
tional,” and “strategic” intelligence. Generally speaking, these intelli-
gence analysis levels are distinguished from one another by the speed 
at which the intelligence analysis is performed to meet decisionmaker 
requirements, the consumers of the intelligence, and most important 
the scope of the analysis, with timescales, the seniority of the consum-
ers, and the scope of the analysis generally increasing as the analy-
sis moves from tactical toward strategic.12 These levels are designed 
to aid intelligence analysts in understanding their responsibilities and 
decisionmakers in understanding the context and resources needed to 
provide analysis at a given level. From the perspective of this study, 
decisionmakers should anticipate that the ingredients for an effective 
AI system might differ among intelligence missions at different levels 
of analysis. Consequently, the way performance is measured and the 
standards set for AI system performance might depend on the level of 
analysis the system supports. For example, given the fact that strategic 
analysis occurs on longer timescales, analysts might have more time 
to review and corroborate the output of systems; this might lead to 
a greater tolerance for false positives. Understanding these levels can 
help decisionmakers develop strategies for where and how to deploy 
AI systems at each level and generalize about performance metrics and 
measures of effectiveness. 

For this study, these gaps between the intelligence cycle and the 
actual practice of intelligence represent both a limitation and an oppor-
tunity for the future. As a limitation, these gaps raise the concern that 
our analysis will likely miss factors that drive the effectiveness of AI 
systems in much the same way that the intelligence cycle does not iden-
tify the burden placed on analysts. As an opportunity, however, John-

12 ODNI, 2016.
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ston’s systemic analysis provides a roadmap for ways that future studies 
can begin to search for these effects in a systematic manner by analyz-
ing the process in which both humans and machines operate.

Artificial Intelligence System Function Categories

In this section, we introduce the four system function categories (see 
Figure 2.2 and Table 2.1) and qualitatively analyze the drivers of impact 
for AI systems that perform functions in each of these categories. We 

Figure 2.2
Relationship of the System Function Categories to the Intelligence Cycle
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give examples of systems highlighted in the introduction that perform 
each of these functions and close with a discussion of systems that 
perform functions in multiple categories. To supplement observed 
real-world examples, we offer some hypothetical examples of systems. 
Both the real and hypothetical systems were chosen for the clarity 
with which they demonstrate the contours of the categories, and we 
do not intend to indicate that they are necessarily valuable or achiev-
able systems. Over the course of this section and in the remainder of 
the report, we will speak of systems as falling into categories or being 
examples of a given category. This language facilitates discussion and 
is more intuitive. When faced with corner cases, however, the reader 
should keep in mind that this language really indicates that the system 
performs the function the category represents.

Ultimately, these categories are designed to enable analysis of 
the consequences of the errors of an AI system. They were therefore 
designed to separate the types of systems that give rise to distinct 
classes of consequences using the minimal number of categories. His-
torically, these categories emerged organically out of our discussions 
with subject-matter experts consulted for this effort. Starting with the 

Table 2.1
System Function Categories

Evaluation 
Support

Automated 
Analysis

Information 
Prioritization

Collection 
Support

Description Ingests reports 
or products to 
determine their 
quality and their 
alignment with 
priorities

Transforms or 
enriches data 
without human 
supervision

Ingests available 
information 
and analyst 
preferences to 
connect analysts 
with useful 
information

Ingests available 
information to 
direct future 
collections

Example A tool that 
classifies reports 
according to 
NIPF and tracks 
which priorities 
are being 
adequately 
collected on

A tool that 
transcribes, 
translates, and 
summarizes 
SIGINT

A recommender 
that flags 
reports for 
all source 
analysts based 
on previous 
interests or 
ratings

A system that 
uses SIGINT to 
direct IMINT to 
find or track a 
target

NOTE: Examples are artificial/notional and do not necessarily reflect actual systems.
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intelligence cycle, however, one can obtain these systems by analyz-
ing whether systems supporting a step in the intelligence cycle would 
produce qualitatively different consequences when making errors as 
opposed to those supporting a different step in the intelligence cycle. 
For those that do not produce such qualitative differences, if one col-
lapses the categories, the three categories tied to the intelligence cycle 
will result. Alternatively, these categories could be thought of as reflect-
ing a simplified three-step intelligence cycle of collection, analysis, and 
evaluation. These three categories should then be supplemented with 
the more general information prioritization category to capture a role 
for AI systems that we observed in development and in our interviews 
and that were not tied as closely to the step in the intelligence cycle 
being supported.

More broadly, though we refer to these categories as “AI” system 
function categories, by no means should a debate over whether a system 
truly represents AI preclude analysis in this framework. As we alluded 
to in Chapter One, questions of whether a system is truly an AI system 
can spark semantic debates. From the point of view of assessing impact, 
these debates are unhelpful. The ultimate guide should be whether the 
system performs functions that fall into the categories outlined in the 
following sections, since the criteria for these categories are designed to 
select for the necessary features to organize and enable analysis.

Evaluation Support Systems

Evaluation support systems are those whose output is used in the evalu-
ation step of the intelligence cycle. Put another way, these are systems 
whose output is used to monitor the intelligence process, determine 
how well it is functioning, and identify where it can be improved. For 
example, the 2016 ODNI whitepaper discussed briefly in the introduc-
tion to this chapter notes that “for reasons of feasibility and effective-
ness, these methods [which count the citations of reports in intelligence 
products] focus on reports and citations that fit carefully defined crite-
ria (e.g., based on topics of high interest).”13 One could imagine using a 
computer system to assemble and analyze these counts at scale. If such 

13 ODNI, 2016, p. 3.
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a system were to be built, it would be an evaluation support system. 
Similarly, one could imagine building a system to assist with or par-
tially automate review of finished intelligence products, say by using 
natural language processing (NLP) to score each finished product for 
its objectivity, one of the five analytic standards in “Intelligence Com-
munity Directive 203: Analytic Standards.”14 Such a system would also 
be an evaluation support system.

Evaluation of current processes and effectiveness is a critical por-
tion of the feedback loop through which IC makes improvements, 
reforms, and reinvestments. Therefore, errors in the output of an eval-
uation support system might affect choices about which programs to 
expand and which to cut, whom to promote and whom to lay off, and 
where the greatest value from new programs and innovations might 
lie. Unfortunately, these consequences are inexorably intertwined with 
the difficult question of understanding the overall effectiveness of the 
intelligence process. Thus, it does not appear that systems in this cat-
egory can be analyzed for direct impact without grappling with that 
question in some form. When analyzing specific evaluation support 
systems, however, the details of the deployment context of that system 
might provide a means to rigorously identify and model impacts in a 
way that stops short of tracing the impact all the way to the actions 
selected by policymakers.

Automated Analysis Systems

Automated analysis systems transform or enrich data without human 
supervision for the purposes of supporting intelligence analysis. Col-
loquially, we can think of an automated analysis system as being any 
system that draws conclusions about intelligence data. The critical fea-
ture of these systems is the fact that, while they use intelligence data to 
determine what they present to their users, they change them in some 
way rather than simply presenting the entirety of the data. For exam-
ple, a system that crops out and presents only the most relevant piece 
of an image annotated with additional context would be an automated 
analysis system. These systems can support the processing, analysis, 

14 ODNI, “Intelligence Community Directive 203: Analytic Standards,” 2015.



Tracing Effectiveness from Mission to System    35

production, or dissemination steps of the intelligence cycle. For exam-
ple, the system envisioned by IARPA’s MATERIAL program would 
be an automated analysis system.15 This program supports efforts to 
build “English-in, English-out” information retrieval, returning rele-
vant documents in other languages along with English summaries of 
these documents that include the documents’ relevance to the query. 
As output, the English summary might stand alone as capturing the 
contents of the document, especially when the user cannot read the 
language the document is written in. 

As these systems are performing analytical work, the impacts they 
generate flow from the same place as those of any analytical work. If 
these systems make errors, we run the risk of misunderstanding the 
state of the world and selecting nonoptimal actions based on that mis-
understanding. We will not belabor the difficulty in rigorously assess-
ing this impact, as we have already touched on this point a number of 
times. However, this means that, as with evaluation support systems, 
we may not be able to rigorously assign impact without grappling with 
this issue.

If the system in question produces intelligence reports or finished 
intelligence products, we can sidestep this difficulty by evaluating 
these reports or products according to the same standards to which 
we hold human analysts. That is, we have already accepted that these 
standards will serve as our proxy for the impact of a report or product, 
so it is natural to evaluate the output of the machine in the same way. 
For these systems, the standards can function as the metrics of record 
for the system, provided they can be phrased in a sufficiently quantita-
tive way. On the other hand, for systems that do not directly produce 
reports or products, we find ourselves in a situation identical to that 
discussed with regard to evaluation support systems.

Information Prioritization Systems

Information prioritization systems help to direct the attention of a user, 
likely an intelligence analyst, to informational artifacts (e.g., reports, 
images, or intelligence products) in order to optimize the value of the 

15 IARPA, “MATERIAL PD Announcement,” August 1, 2016.
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information that the user can consume in a fixed amount of time. 
More concretely, we can imagine these systems as sitting between the 
user and a vast amount of information that cannot all be reviewed and 
helping the user choose which information should be reviewed first. 
These systems can assist at any point in the intelligence cycle, and 
indeed can be found even outside of the context of intelligence.16 For 
example, within the context of intelligence, Palantir’s AVA module (a 
part of its Gotham product) “alerts users to new . . .  connections . . .  
ensuring that analysts spend time on their most important investiga-
tions,” per a recent filing with the Securities Exchange Commission.17 
Though it is hard to parse precisely what the system does with the level 
of detail available, this description certainly suggests that this module 
performs an information prioritization role. As a general rule, warning 
systems, such as a cyber intrusion detection system, also perform an 
information prioritization role, since they serve to direct the attention 
of human users to the subject of the warning.

We will say much more about how to measure the effectiveness 
of an information prioritization system in the next chapter. However, 
even without descending into the mathematical details, one can see 
that these systems enable more detailed analysis of the implications of 
their performance than the two categories discussed above. These sys-
tems ultimately serve to allocate a resource, the subset of analyst time 
devoted to their use. Their effectiveness is then determined by whether 
they allocate that resource prudently or wastefully. The outcome of the 
allocation directed by the system, what proportion of the useful items 
is actually identified by the analyst using the system, is the return on 
the investment of analyst time directed by the system. As a practical 
matter, some approximation of this return must be available as a side 
effect of system construction, since in order to train a system to iden-

16 For an example in the context of health care quality monitoring, see Daniel Ish,  
Andrew M. Parker, Osonde A. Osoba, Marc N. Elliot, Mark Schlesinger, Ron D. Hays, 
Rachel Grob, Dale Shaller, and Steven C. Martino, Using Natural Language Processing to 
Code Patient Experience Narratives: Capabilities and Challenges, Santa Monica, Calif.: RAND 
Corporation, RR-A628-1, 2020.
17 Palantir Technologies, Form S-1/A, 2020.
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tify which items will be useful for an analyst to look at, the designers 
must have a definition of utility that is consistent and measurable.

Though this analysis enables the construction of a consistent defi-
nition of the effectiveness of an information prioritization system, it 
is important to remember that this is ultimately a proxy for the true 
effectiveness of the system. While the resources spent by the system 
(both analyst time and the financial resources needed to assemble and 
maintain the system) are clearly and unambiguously measurable, the 
definition of utility of an item for the analyst, which serves as the return 
on the investment for the AI systems investment of these resources, is 
almost certainly ultimately given by some proxy. That is, chances are 
that the system is built not by predicting the ultimate impact on the 
security of the United States of an individual item to be recommended, 
but by predicting some more accessible quantity such as the utility that 
the analyst perceives the item to have.

Collection Support Systems

Collection support systems are those whose output serves to direct or 
trigger the collection of new intelligence. Put another way, these are 
systems whose output has a hand in the question of where a camera 
gets pointed, where an Intelligence, Surveillance, and Reconnaissance 
drone flies, or which new lead is forwarded on to a case officer. Col-
lection support systems therefore necessarily support functions in the 
planning and direction or collection steps of the intelligence cycle.

At the most basic level of analysis, collection support systems have 
a lot in common with information prioritization systems. A sensor 
cannot be pointed everywhere at once, so these systems choose what it 
does and does not point at. If the sensor fails to develop useful infor-
mation, the sensor time was wasted in much the way an error from 
an information prioritization system wastes user time. Similarly, the 
return on the investment of “sensor time” is set by the reporting that 
emanates from the program directed in part by the collection support 
system. So, much of what will be discussed in Chapter Three will apply 
at least to some extent to these systems.

The collection support and information prioritization categories 
quickly distinguish themselves when one considers what models with 
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a greater level of detail might look like. As addressed in more depth 
in the next chapter, for information prioritization systems more detail 
can be added by modifying the process by which the reports arrive to 
the information prioritization system and are forwarded in order to 
account for the differences in tempo between recommendation and 
warning systems, whereas in the case of collection support systems, one 
could imagine including any role these systems might have in man-
aging the platforms for collection, weighing both the efficiency with 
which these systems allocate resources and any risk to the integrity 
of the platforms themselves. Building a more detailed model of the 
deployment context of a collection support system may also, depending 
on the system, benefit from utilizing the literature on tracking theory.18

Systems Spanning Multiple Categories

We have already mentioned that AI systems can fall into multiple cate-
gories in this framework. To illustrate this phenomenon, consider the 
hypothetical analyst’s AI-powered digital assistant discussed by Josef 
Gartin in “The Future of Analysis.” Gartin imagines this assistant 
briefing an analyst in the morning on the state of the government of 
“Farlandia,” which the analyst had previously predicted was at risk 
of political instability. This morning, the assistant tells her, among 
other things, that “the global base rate for a no-confidence vote in 
similar situations over the past 40 years is 67 percent” (indicating auto-
mated  analysis functionality); that “there is new, sensitive compart-
mented reporting relevant to your account” (indicating information 
prioritization functionality); and that “your personal accuracy rating 
has fallen three points to 47 percent” (indicating evaluation support 
functionality).19 While we do not have any direct evidence of this 
hypothetical system helping to manage collection, it seems in the spirit 
of Gartin’s discussion to imagine the system taking general questions 
such as “Where is the finance minister of Farlandia today?” and con-

18 See, e.g., Y. Bar Shalom, and X. R. Li, Multisensor, Multitarget Tracking: Principles and 
Techniques, Storrs, Conn.: YBS, 1979.
19 Gartin, 2019, p. 4. 



Tracing Effectiveness from Mission to System    39

verting them into tasking. With this supposition, this single system 
performs functions in all four of our categories.

This hypothetical system actually serves as an excellent example 
of the ways in which the categories, rather than breaking down when 
more than one category is at work, help to organize and enable analy-
sis. If we were faced with Gartin’s hypothetical analyst’s digital assis-
tant and asked to evaluate how well it was performing, we might find 
ourselves disoriented by the sheer number of things the assistant does 
and the unstructured natural language form of its output. Walking 
through the system categories allows us to separate out distinct func-
tions by thinking about how the analyst uses each piece of the output.

For a real-world example, consider IARPA’s CAUSE, which funded 
research into systems to forecast and detect cyberattacks at their earlier 
phases, such as reconnaissance and planning, and to detect and coun-
ter adversary campaigns before they reach more damaging phases.20 
Since the system this program envisions issues warnings that direct the 
attention of a cyber-analyst, it is an information prioritization system. 
However, since these warnings do not consist solely of the underly-
ing data the system used to make the determination, but rather also 
include a prediction of when and how the attack will occur, it is also an 
automated analysis system.

20 IARPA, “Cyber-Attack Automated Unconventional Sensor Environment (CAUSE),” 
webpage, July 17, 2015.
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CHAPTER THREE

Measuring Performance and Effectiveness

In this chapter, we offer a self-contained treatment of the problem of rig-
orously measuring the performance and effectiveness of an AI system. 
For the most part, the discussion is confined to binary classifiers, which 
make a simple yes-or-no decision about data, and to information priori-
tization systems. Even with the discussion limited in this way, general 
lessons can be learned and are likely portable to other types of AI sys-
tems. Though this chapter touches on rather technical subjects, every 
effort has been made to keep it accessible to a general audience. Conse-
quently, many of the technical details have been removed to a support-
ing appendix. Ultimately, the topics discussed in this chapter are inex-
orably intertwined with the problem of analyzing the properties and 
performance of an AI system to understand what value such a system 
might provide to an organization and how to best utilize such a system. 
We intend the concepts introduced here to provide a useful set of con-
ceptual tools to enable decisionmakers to be critical consumers of these 
systems, even though they may never build one themselves.

Metrics, Measurement, and Communication

In the dominant methodology for characterizing the performance of 
AI systems, the only attribute of interest is its likely performance on 
unseen data, characterized statistically.1 To estimate this likely perfor-

1 Though this methodology is typically couched in contrast with classical statistical tech-
niques for model evaluation, one can adopt the same methodology when evaluating the per-
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mance, we proceed as if we are experimenting on an AI system that 
dropped out of the sky. We begin by selecting a set of metrics to rep-
resent the performance of the AI system. Possible metrics include the 
myriad of metrics for binary classifiers discussed in the next subsec-
tion, similar quantities for other problem domains, and properties such 
as the time it takes the system to return an answer. 

Then, we assemble a set of data, the test data, that is representa-
tive of the data the system will encounter during deployment, and the 
metrics are measured on that dataset in order to estimate the true value 
of these metrics.2 For example, the time it takes the system to process 
each datapoint in the test data might be recorded, and the average 
of those processing times used as an estimate of the average time the 
system is expected to spend processing any given datapoint once it is 
deployed. For ML systems in particular, it is also important to ensure 
that the test data do not reuse any data from the training process, as 
such systems should be expected to do better on those data than on 
data not used in training.3

Within this methodology, these quantifiable properties serve as a 
surrogate for the system itself in much the same way that the measured 
ability of a vehicle to accelerate under load might be used to stand in 
for the vehicle when considering its ability to tow a load. Were one to 
procure a vehicle for the purpose of towing, one would communicate 
about the requirements of this vehicle by specifying the load that the 
vehicle needs to be able to accommodate. Analogously, if one was to 
procure an AI system to fill some role in an organization, choosing a 
set of metrics and specifying the needed performance in terms of these 
metrics would define the requirements for the AI system. In the course 
of the design process, engineers will attempt to optimize the system 
with respect to the metrics provided. We will see in the next section 

formance of any system designed to solve a given problem, regardless of whether that system 
was built using machine learning. See Breiman, 2001.
2 The situation is somewhat more complicated in the case of reinforcement learning, as 
there the system takes actions and receives rewards rather than simply processing data from 
a fixed distribution. Ultimately the mode of evaluation still proceeds by experimentation in 
much the same manner, however. See, e.g., Silver et al., 2016.
3 Friedman, 2001.
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that different choices of metrics can disagree as to which system is per-
forming better, meaning that different choices of metrics reflect dif-
ferent priorities for the system and result in different design choices 
on the part of engineers attempting to construct the best system. If 
metrics are mis-specified or left ambiguous when communicated to 
AI system engineers, then the system requirements that these metrics 
represent are mis-specified or left ambiguous, which, in turn, results 
in a system that may not meet users’ needs or reflect their priorities. 
In addition to enabling post hoc reasoning about the properties of a 
fixed system, therefore, specifying metrics of record for a system is the 
central means of communicating the properties required of this system 
to those building it. Defining the metrics that will be used to measure 
performance is the most concrete way for system users to communicate 
their needs and priorities to system designers.

If we use measurement of our desired metrics on the test dataset 
to reason about the properties of the system in deployment, we must 
understand any general limitations of this experimental design and be 
able to connect those with possible risks. For example, ultimately this 
process relies on the data available to test the system being representa-
tive of the data the system will encounter after deployment. This could 
flatly fail to be true when the dataset is assembled, if representative data 
are unavailable or if some detail of how the data were collected skews 
their distribution relative to that of the data the system will encounter 
after deployment. For example, when testing a system that identifies 
tanks in images, perhaps there are no available images of one particular 
model of tank fielded by an adversary when the system is being tested. 
Moreover, even if the data were representative at the time they were 
assembled, the underlying phenomenon might shift over time. Con-
tinuing with the above example, perhaps after the system has already 
been deployed, an adversary fields an entirely new model of tank. 

To give a real-world example, privacy issues have generally com-
plicated the task of assembling a representative set of test data for spam 
filters.4 Since spam filters distinguish legitimate emails from spam, a 

4 Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras, “Spam Filtering with 
Naive Bayes—Which Naive Bayes?” CEAS, Vol. 17, 2006.
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test set needs legitimate emails on which to test the performance of 
the filter whose sender and recipient might consider private and be 
unwilling to share. A dataset could be assembled of publicly shared 
emails, like those sent to public mailing lists, but these might not be 
representative of the emails between individuals, because public emails 
may exclude topics and data considered personal or of a private nature. 
Similarly, relying on voluntarily shared emails risks the possibility that 
the very characteristics of the message or participants that lead to the 
sharing of the message restricts the degree to which a dataset assembled 
in that way represents all email. For example, this, too, might lead to 
a dearth of emails about personal topics relative to a truly random 
sample of all extant emails. One of the larger public email datasets is 
actually composed of emails from the work accounts of Enron employ-
ees, which were made public as a consequence of the fraud investiga-
tion.5 While this circumvents the issue of whether voluntary sharing 
might render a dataset of emails unrepresentative, it is not immediately 
obvious whether restricting the dataset to emails from and to a single 
company, in a single sector, in a single location, that was engaged in a 
massive fraud might also introduce idiosyncrasies into the dataset.

Additionally, there is an important distinction between the sample 
value of a metric and the actual value of that metric. The sample value 
is calculated using the test data, while the actual value is the value one 
would obtain with an infinite amount of test data. The smaller the 
sets of data, the more the value of the metric should be expected to 
vary between different sets of data. Returning to the above example of 
a system that identifies tanks in images, if we tested such a system on 
a test set containing 100 images, it might return 72 images correctly 
(i.e., correctly label them as possessing or not possessing a tank). This 
would lead us to conclude that the system has a sample accuracy of 72 
percent. Were we to assemble a much, much larger test set containing 
millions of images, we might find that the system has an accuracy of 
67.5 percent. This would indicate that the system made a “lucky guess” 
with about five images on the initial, smaller test set. 

5 Metsis et al., 2006.
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Classical statistics has a number of techniques to quantify this 
variation, but a thorough inventory is well outside the scope of this 
report.6 A consumer of these estimates of metrics of performance need 
only confirm that some quantification was attempted, or that “error 
bars” are given, denoting the likely extent of the variation. Such a 
consumer should also confirm that the anticipated variation does not 
extend over a range that renders the value of the system ambiguous. 
In the context of the above example, these error bars might indicate a 
95-percent probability that the true accuracy lies between 62.5 percent 
and 80 percent. Also, as a practical matter, note that as the amount 
of data increases, the anticipated range of variation should decrease to 
match the expected variation in the sample quantity. However, simply 
increasing the amount of test data cannot address whether the test data 
are representative of the data that will be encountered in deployment, 
however.

Consumers of these metrics should also look out for “multiple 
testing” issues. The classical statistical techniques used to create the 
error bars can bound only the probability that the actual value of a 
metric lies outside of the error bars. When multiple quantities are of 
interest, the small chance that any given quantity lies outside of its 
error bars can translate to a significant risk that at least one lies outside 
of its error bars. Essentially, rare things become more common when 
there are multiple opportunities for them to happen. Elaborating on 
the running example of an image analysis system that detects tanks, we 
might consider a system that detects and identifies ten different types 
of tanks. Without mitigation, a 95-percent chance that the accuracy 
of the system on any given type of tank lies within the specified error 
bars translates to as much as a 40-percent chance that the accuracy on 
at least one type of tank lies outside, possibly below, the given range. 
There are well-established techniques for mitigating these issues, but 
system acquirers may want to confirm that one of these techniques has 
in fact been deployed and anticipate the fact that they will generally 
result in wider error bars.

6 For a thorough discussion, see, e.g., George Casella and Roger L. Berger, Statistical Infer-
ence, Vol. 2, Pacific Grove, Calif.: Duxbury, 2002.



46    Evaluating Artificial Intelligence Systems in Intelligence Analysis

Finally, since training a system necessarily changes its performance, 
systems that continue training after deployment, as in recommenders 
that adapt based on their interactions with users, are more challeng-
ing to evaluate than systems that follow a simple three-step procedure 
of train, test, deploy. One option to mitigate this is testing the system 
after each new round of training, forming a cycle of the three steps in 
the simple procedure. While this is feasible, it could become statisti-
cally complicated due to the multiple testing issue described above. To 
address this, one might be drawn to the idea of testing periodically to 
detect how much improvement the system has accrued through train-
ing and assuming between tests that the system must be performing at 
least as well as its last test. Unfortunately, the phenomenon of double 
descent, wherein system performance improves, then degrades, then 
improves again as training proceeds for certain classes of systems, indi-
cates that this assumption is not universally true.7 Understanding these 
sorts of deployments would be aided by a theoretical understanding of 
how system performance scales with training and data availability. To 
our knowledge, no general theoretical results about this subject exist, 
though recent progress has been made in the context of systems for 
analyzing text in particular.8

Metrics for Binary Classifiers

As noted in the previous subsection, metrics are the central means of 
communication between system designers and users, and ML systems 
in particular are designed to maximize the precise objective for which 
they are designed. These relationships set up a feedback loop between 
metric choice, risk preferences, and system design. Consequently, a 
detailed understanding of metrics for the evaluation of these systems 
is advisable for system users and acquirers. As we will see, even when 
characterizing the performance of these simple systems, one encoun-

7 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya 
Sutskever, “Deep Double Descent: Where Bigger Models and More Data Hurt,” Cornell 
University arXiv, 2019.
8 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, 
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei, “Scaling Laws for 
Neural Language Models,” Cornell University arXiv, 2020.
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ters a wide array of metrics without a clear “best” choice for all cir-
cumstances. Indeed, though this subsection covers a large number of 
evaluation schemes, we do not have the space to exhaustively discuss all 
existing metrics even for this simple type of system.

By “binary classifier,” we mean a system that makes a simple yes-
or-no determination about each datapoint. The prototypical example is 
a spam filter, which ingests an email and determines whether it is likely 
to be unsolicited and unwanted (spam), or a legitimate email of inter-
est to the user (not spam). Given the perennial problem of unwanted 
email, it is perhaps unsurprising that a number of approaches to creat-
ing such a system has been explored, spanning both the rules-based 
and statistical approaches.9

In more detail, we will call the two conditions the system seeks 
to choose between “positive” and “negative.” In the example of a spam 
filter, we could assign spam as positive (the presence of the condition 
of interest) and not spam as negative (the absence of that condition). 
When comparing the labels assigned by the classifier to the true labels, 
there are four possible outcomes on each datapoint: true positive (tp), 
true negative (tn), false positive (fp), and false negative (fn). A true posi-
tive is an example (an email) that does in fact possess the condition of 
interest (is spam, positive) and was correctly labeled as possessing the 
condition by the system (marked as spam by the filter, labeled positive). 
A false positive, on the other hand, is an example that does not pos-
sess the condition of interest (is not spam, negative) but is nonetheless 
labeled as possessing the condition by the system (marked as spam by 
the filter, labeled positive). True negative and false negative are identi-
cal with all conditions reversed, respectively. 

Since these four cases are the only possible outcomes of a classifi-
cation decision by the classifier, the rate at which each happens is suffi-
cient to capture the performance of the classifier. However, only two of 
these quantities are actually necessary to characterize the performance 
of the classifier itself, since rates at which the four cases happen must 

9 Mithilesh Kumar Paswan, P. Shanthi Bala, and G. Aghila, “Spam Filtering: Comparative 
Analysis of Filtering Techniques,” IEEE-International Conference on Advances in Engineering, 
Science and Management (ICAESM-2012), 2012.
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satisfy two constraints independently of how the classifier is perform-
ing: a fixed total number of datapoints and a fixed number of data-
points that are actually positive regardless of their label. Unfortunately, 
the two degrees of freedom (i.e., two quantities) left after satisfying 
those two constraints are independent properties of the classifier and 
so must both be specified to fully capture the classifier performance. 
Strictly speaking, a wide variety of pairs of metrics could be used to 
capture these two independent properties, provided that the members 
of the pair are suitably independent from one another.10 In practice, 
when intending to completely specify classifier performance in this 
way, any two of the four metrics in Table 3.1 are typically chosen. In 
the authors’ experience, recall and specificity or recall and precision 
appear to be the most common pairs.

The entries in Table 3.1 illustrate one way of understanding the 
necessity of using two numbers to fully capture classifier performance: 
Performance on positive examples can vary entirely independently 
from performance on negative examples. Take, for example, recall and 
specificity. Recall captures information about how well the classifier is 
doing on positive examples, and specificity captures information about 
how well the classifier is doing on negative examples. A classifier with 
high recall does not make many false negative errors, while a classifier 
with high specificity does not make many false positive errors. Classifi-
ers with a high recall and a low specificity successfully identify most of 
the positive examples in the data but mark many negative examples as 
positive alongside them. Roughly, one can think of this as resulting in 
a group of data that is labeled positive and contains the majority of the 
positive examples along with a significant number of false positives and 
a group of data labeled negative largely depleted of positive examples.11

Of course, needing to specify two numbers to completely capture 
classifier performance means that for some pairs of classifiers there is 
no obvious “best” classifier. If classifier A has both a higher recall and 
higher specificity than classifier B, classifier A is strictly better than 
classifier B. If, however, classifier A has a higher recall but lower speci-

10 For more detail on this subject, see the appendix.
11 Exactly how true this picture is depends on the overall prevalence of positive datapoints.
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ficity than classifier B, whether classifier A is better than classifier B 
depends on whether false negatives or false positives represent a bigger 
problem. In order to adjudicate situations like this, we can specify a 
single metric that combines the two independent degrees of freedom 
for classifier performance. For example, precision and recall are some-
times combined into the F1 score12 to give a single number that cap-

12 Peter A. Flach, “The Geometry of ROC Space: Understanding Machine Learning Met-
rics through ROC Isometrics,” Proceedings of the 20th International Conference on Machine 
Learning (ICML-03), Washington, D.C., 2003.

Table 3.1
Basic Binary Classifier Measures of Performance

Formula Names
Complement 

Name Description

tp

tp + fn
Recall, true 
positive rate

False negative 
rate

Recall is the proportion of the positives 
that are labeled positive (e.g., the 
percentage of the images that contain a 
tank that are labeled as containing a tank).

tn

tn + fp
Specificity, 
true 
negative 
rate

False positive 
rate

Specificity is the proportion of negatives 
that are labeled negative (e.g., the 
percentage of the images that do not 
contain a tank that are labeled as not 
containing a tank).

tp

tp + fp
Precision, 
positive 
predictive 
value

Precision is the proportion of examples 
labeled positive that are actually positive 
(e.g., the percentage of the images labeled 
as possessing a tank that possess a tank).

tn

tn + fn
Negative 
predictive 
value

The negative predictive value is the 
proportion examples labeled negative that 
are actually negative (e.g., the percentage 
of the images labeled as not possessing a 
tank that do not possess a tank).

SOURCES: Tom Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition 
Letters, Vol. 27, No. 8, 2006; Douglas G. Altman and J. Martin Bland, “Statistics 
Notes: Diagnostic Tests 2: Predictive Values,” BMJ, Vol. 309, No. 6947, 1994.

NOTE: tp stands for the probability that the labeled example will be a true positive, 
fp the probability of a false positive, tn the probability of a true negative, and fn 
the probability of a false positive. The complement name is the name given to one 
minus the quantity given, when that is used in place of the quantity itself. The names 
given in this table are not exhaustive of those used in the literature but capture the 
authors’ judgment as to the most essential names. 
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tures some information about performance on positive and negative 
examples simultaneously. In symbols,

F1 =
2× precision × recall
precision + recall

.

Choosing a single metric to represent classifier performance in 
this way allows unambiguous comparison of any pair of systems. Mea-
sured by F1, classifier A is performing either better than, worse than, 
or equivalently to classifier B. The converse is also true: Any way of 
unambiguously ranking pairs of systems is equivalent to choosing a 
single metric to capture system performance.13 Since choosing this 
metric corresponds to adjudicating the ambiguous cases when which 
system is better depends on whether false positives or false negatives are 
more detrimental, metric choice is an implicit statement of risk prefer-
ence between false positives and false negatives.

For many of the traditional metrics used to characterize the per-
formance of binary classifiers, this statement of risk preference remains 
implicit due to the lack of a clear line between the way the metric mea-
sures performance and the effect the system has on its surroundings. 
For example, the impact of a marginal increase in F1 on the effective-
ness of system is unclear. In the absence of an argument for why F1 is 
directly related to the effectiveness of the system, the implicit risk pref-
erence declared by F1 cannot be connected to concrete risks in the real 
world. While this issue is present for many extant metrics, one class of 
metrics, which will be introduced in the next section, is designed spe-
cifically to connect the metric constructed to the actual effectiveness of 
the system under consideration.

Accuracy and Cost Models

Perhaps the most immediately recognizable metric for binary classi-
fier performance is accuracy, the proportion of the examples labeled by 

13 This result is subject to some mild assumptions about the continuity of the ranking 
system. See the appendix for more detail.
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the model that it gets right. That is, accuracy of the proportion of true 
positives and true negatives among all datapoints. In symbols,

accuracy = tp + tn.

Among the metrics discussed so far, the implicit values expressed by 
the use of accuracy are unusually clear: Accuracy treats the value of the 
two types of errors as precisely equal regardless of the overall error rate. 
That is, if we envision a hypothetical system that performs some task 
which results in a $1 reward for a correct classification and no reward 
or penalty for incorrect classifications, the expected reward is $1 times 
the accuracy. Similarly, if there is a $1 penalty for each incorrect classi-
fication and no reward for a correct classification, the expected penalty 
is proportional to one minus the accuracy.

This ease of interpretation also offers an especially sharp demon-
stration of how metric choice can fail to match the actual value pro-
vided by the classifier. If the costs of the two types of errors are not 
actually equal, accuracy gives a false impression of the effectiveness 
of the classifier. For example, in the case of a tactical missile warning 
system, false negative errors are likely to be considerably more costly 
than false positive errors. In many practical situations, this mismatch 
between accuracy and the actual effectiveness of the system is exac-
erbated by the tendency of the more important class to be the rarer 
one. That is, though missile attacks are more important to successfully 
spot than the lack thereof, the base is likely to spend most of its time 
not under attack. In such cases, the accuracy might be misleadingly 
inflated by the sheer number of times the system correctly does not 
raise the alarm, possibly concealing poorer performance on the more 
important case.

Metrics that are broadly similar to accuracy but that account for 
the possibility of some cases being more critical than others can be 
constructed through a technique called “cost-sensitive classification.”14 
In cost-sensitive classification, one assigns a value to each of the four 

14 Charles Elkan, “The Foundations of Cost-Sensitive Learning,” Proceedings of the 17th 
International Joint Conference on Artificial Intelligence, Vol. 2, August 2001.



52    Evaluating Artificial Intelligence Systems in Intelligence Analysis

possible classification outcomes and asks what the average value of the 
classifier’s decisions are. The best classifier is then the one that has the 
highest average value, taking into account the impact of the classifica
tion decisions. In symbols, this corresponds to using the metric

cost =  (benefit of a true positive) × (percentage of true positives) 
+ (cost of a false positive) × (percentage of false positives) 
+ (benefit of a true negative) × (percentage of true negatives) 
+ (cost of a false negative) × (percentage of false negatives).

This can be regarded as a straightforward generalization of accuracy, 
since accuracy is simply the expected cost if benefit of a true positive = 
benefit of a true negative = 1 and cost of a false positive = cost of a false 
negative = 0. 

Balanced accuracy, another common metric for classifier perfor
mance, is measured by the value of correctly identify rare phenomena: 
The rarer a phenomenon is, the more valuable correctly identifying it 
is. Balanced accuracy can be phrased as a cost model with

benefit of a true positive = 1
percentage of positives

,

benefit of a true negative = 1
1− percentage of positives

.

That is, balanced accuracy values positive examples inversely propor
tional to how common they are. 

Cost models can be a powerful way of measuring the practical 
effectiveness of a classifier, provided there is a way of assigning the rele
vant costs. When the classifier is deployed in a privatesector context, 
cost models may be quite straightforward to apply, since costs and ben
efits to the model’s operation can be expected to be dollar denominated 
and relatively easy to determine. For example, if the classifier in ques
tion is designed to guide the placement of ads in front of the individu
als most likely to respond to those advertisements by purchasing the 
product in question, the cost of a false positive is simply the cost of the 
ad while the benefit to a true positive is the profit from the sale less 
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the cost of the ad. Similarly, the cost of a false negative and the benefit 
of a true negative are zero since no ad is placed and no sale is made. 
The metric constructed from these values is the expected profit from 
using this system (neglecting the costs of deploying and maintaining 
the system and those of the alternative), which is precisely the value 
provided by the classification decisions of the system.

In the context of intelligence, however, cost models are likely to 
be significantly less applicable. In addition to the general difficulties in 
rigorously assigning a number to the benefits provided by intelligence, 
as discussed in Chapter Two, intelligence applications are unlikely to 
present costs and benefits that can simply be added together. Return-
ing to the missile warning system, the resources spent by a false posi-
tive, the normal operations disrupted by the preparations for an attack 
that will not come, cannot be directly compared with the consequences 
of a false negative, the lives and equipment lost in an attack for which 
the base was unprepared. That is, these two sets of consequences are 
not even in the same units, much less of the same magnitude.

Erring on the Side of Positives Versus on the Side of Negatives

As discussed in the previous sections, the use of a single metric consti-
tutes a decision about the relative value of positive and negative exam-
ples. This decision, as with all decisions about how to value perfor-
mance, feeds back into the design of the AI system itself. In addition to 
the broader feedback effect that this has on shaping the engineering of 
the system through the requirements and metrics of record chosen, there 
is a narrow way that metric choice drives choices of system parameters: 
through the decision of whether the system should, broadly speaking, 
err on the side of false positives or false negatives.

In general, binary classifiers can be adjusted to be either more 
reticent or more willing to mark an example as positive, depending on 
the preferences of the system designer. The mechanism for this design 
freedom is perhaps easiest to grasp in the case of score-based classifi-
ers.15 These classifiers do not produce a classification decision directly; 
instead, they produce a number, called a “score,” that represents the 

15 Flach, 2003.
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classifier’s level of belief that an example possesses the quality of inter-
est. For example, a score-based spam filter might mark an email that 
shows all the hallmarks of a poorly constructed phishing scheme with a 
0.99, indicating that this email is very suspicious, while assigning only 
a 0.55 to a sophisticated spear-phishing email, thereby indicating only 
that there is something a little off about it. This score is then compared 
with a threshold in order to turn it into a hard yes-or-no classification. 
In this example, perhaps the engineers have set the threshold at 0.5, 
meaning both of these emails would be marked as spam.

The choice of threshold is a “knob” that can be turned in order to 
control whether the classifier errs on the side of classifying an example 
as positive or negative.16 Analogizing the classifier to an alarm system, 
we can imagine this “knob” as controlling how readily the classifier 
raises the alarm,—for example, whether the perimeter detection system 
on an embassy, station, or base alerts on every passing bird or fails to 
detect a real incursion. When the threshold is low, the score does not 
have to be very high in order to prompt a positive classification by the 
system. The bar for marking an example positive is low. As the thresh-
old gets higher, encountering examples that meet this higher standard 
becomes rarer and rarer. We can see an example in Figure 3.1, where 
the recall falls and the specificity rises as the threshold increases.17 

Because different metrics imply different relative values for posi-
tive and negative examples, they will imply that different thresholds for 
positive classification are optimal. Figure 3.2 depicts this choice, plot-
ting the summary metrics discussed so far against the total percentage 

16 Other techniques can be used to tune classifiers between these two extremes even when 
the classifier does not utilize scores in its determination. These techniques include resam-
pling, which refers to adjusting the statistical properties of the training data (see, e.g., N. V. 
Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minor-
ity Over- Sampling Technique,” JAIR, Vol. 16, June 1, 2002) and the use of “weights” to 
assign additional importance to either positive or negative examples (see, e.g., Yang Gu and 
Gondy Leroy, “Use of Conventional Machine Learning to Optimize Deep Learning Hyper- 
Parameters for NLP Labeling Tasks.” Proceedings of the 53rd Hawaii International Conference 
on System Sciences, 2020). In general, if one wants to adjust a classifier’s willingness to mark 
an example as positive, there are techniques that can be used to accomplish this.
17 The data depicted in Figures 3.1 and 3.2 are collected from a score-based classifier trained 
to serve as a demonstration. Further detail can be found in the appendix.
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Figure 3.1
True Positive Rate and True Negative Rate Versus Threshold for a 
Demonstration Classifier

NOTE: This graph depicts data from a demonstration classi�er trained speci�cally to 
illustrate metrics in this report. See appendix for more details.
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Figure 3.2
Some Metrics of Performance for the Demonstration Classifier Versus the 
Total Proportion of Examples Marked Positive

NOTE: This graph depicts data from a demonstration classi�er trained speci�cally to 
illustrate metrics in this report. See appendix for more details. 
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of examples marked positive. Since decreasing the threshold results in 
a greater proportion of the examples being marked positive, this is in 
one-to-one correspondence with thresholds but easier to interpret on 
this plot. Each exhibits a clear maximum, obviously the optimal choice 
for the threshold with respect to that metric. The three maxima do not 
agree as to which threshold is optimal, occurring as they do at differ-
ent thresholds. Thus, depending on the relative value one assigns to 
positive and negative examples (through choice of metric), one should 
choose a different strategy with respect to the willingness of the system 
to mark an example as positive (through, e.g., choice of threshold).

Information Prioritization Performance Model

In this section we offer a quantitative model that provides a way of 
connecting the performance of an information prioritization system to 
its impacts, as measured by the resources devoted to using the system 
and the resulting risk of a missed detection. This model will be directly 
applicable only to binary classifiers and will make some simplifying 
assumptions about the deployment context of this system, particularly 
the operational tempo at which the system will be utilized. Even at 
this level of simplicity, we will see that the model can serve as a useful 
guide for connecting system properties to system impacts for system 
users and a way to understand the consequences of changing thresh-
olds for classification. As we will discuss below, this model also serves 
as a useful starting point for more sophisticated models adapted to a 
particular real-world system.

For these systems, some progress can be made on rigorously and 
quantitatively assessing impact even at the level of abstraction at which 
the system categories are conceived. To ascertain what the impact of 
errors in a system that directs analyst attention is, we should ask what 
the impact of misdirecting analyst attention is. In the context of binary 
classifiers, this corresponds to asking what a false positive and a false 
negative mean for an analyst using the system. A false positive repre-
sents a waste of time: The system flags some artifact for review that, 
upon review, turns out to not assist the analyst with their job. This 
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error can be treated as using up a portion of a budget of a constrained 
resource, user time, without providing any return on that investment. 
At first glance, this seems easily quantified. A false negative, however, 
is more challenging to trace to an impact. A false negative represents 
a missed opportunity for the user to interact with useful information. 
This could be a report that the analyst does not see and so does not 
make it into the analyst’s product. How much does the absence of this 
one report affect the product written by the analyst? How much does 
the difference in the product move decisionmakers? 

This issue can be sidestepped by analyzing false positives and false 
negatives differently. That is, the performance of the AI system can 
be viewed as determining the residual risk, or the overall number of 
false negatives, as a function of the resources invested to minimize 
that risk, or the amount of time a user spends reviewing the output of 
the system. If the user is willing to spend more time looking for useful 
pieces of information, the user will always find more useful items (or 
miss fewer, in the above formulation). The performance of the system 
sets the return on investment for this time. That is, does looking at 
twice as many items double the number of useful things one can expect 
to find, triple it, or increase it by a factor of one and a half?

When analyzing a concrete system, this allows us to calculate the 
level of risk (i.e., the number of items missed) that a given system pro-
duces as a function of the number of items that will actually be reviewed 
in practice. Alternatively, this can be used to derive the amount of 
review capacity required to reach a certain specified level of risk. Since 
each of these two calculations presents a single goal, either minimize 
risk or minimize resources needed, we can also use this framework to 
optimize classification thresholds according to either goal.

To accomplish this, the model considers the time an analyst has 
to review reports or raw data in a given day and the number of reports 
or pieces of raw data that arrive for review. We assume, given the afore-
mentioned data glut experienced by intelligence analysts, that the latter 
exceeds the capacity of the former. Some of these reports will be useful 
to the analysts’ set of assigned tasks, and others will not be. What the 
analyst must do is find the useful items and review them. As a simpli-
fying assumption, we assume that the analyst has no helpful signals 
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from the items themselves on which to base a guess as to which items 
are useful and must therefore choose completely at random.18 The 
information prioritization system we seek to analyze helps in this task 
by providing a binary useful/not useful label to every item. Of course, 
this system is not perfect and will make errors, sometimes recommend-
ing items to the analyst that are not actually useful or failing to recom-
mend important items. However, the analyst can expect to find more 
useful items this way than unassisted and so reviews items marked as 
useful before reviewing any marked as not useful, choosing randomly 
when necessary.19 Under these assumptions, the model calculates how 
many useful items the analyst will find as a function of the number of 
items that arrive, the proportion that are actually useful, the propor-
tion the analyst can review, and the properties (e.g., recall and specific-
ity) of the system. See Figure 3.3 for a schematic depiction.

It might be clarifying to think of the model as operating on three 
categories of information—namely, information about the data, the 
system, and the deployment. Within each category, the model considers

• Data: How many items arrive per day? What percentage of them 
are useful?

• System: What is the performance of the classifier?20

• Deployment: What percentage of the items will be examined per 
day? What percentage of useful items will be found?

The model allows us to solve for exactly one of these quantities in terms 
of the others. Most frequently, we will be solving for one of the two 

18 This assumption is certainly not true in practice, but it does simplify the mathematics. 
More simplifying assumptions of this sort will follow shortly. While higher fidelity models 
can be built (see Directions for Generalization later in this chapter), even at this level the 
model illustrates the mechanisms that drive the effectiveness of an information prioritization 
system and more closely connect to concrete impacts than existing metrics. 
19 That is, if the system marks more items as useful than the analyst can review, the analyst 
chooses randomly among them. If the system marks fewer items as useful, the marked not-
useful items the analyst reviews when they are done with those marked useful are chosen at 
random.
20 This is specified in terms of any pair of the four metrics from Table 3.1. See Metrics for 
Binary Classifiers above for discussion on the sufficiency of this pair.
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deployment quantities, usually what percentage of useful items will be 
found.

An Artificial Demonstration Scenario

In order to make this discussion more concrete and demonstrate the 
utility of this approach, we offer a simple vignette demonstrating the 
inputs and outputs to the model. Though the scenario we construct is 
entirely artificial, it shows what the model calculates and how it might 
inform strategy around whether to deploy a given system and how to 
devote resources to system utilization. 

Thus, consider a hypothetical imagery analyst who on average 
receives 10,000 images conceivably related to their remit every day, but 
has the time to review only 100 when all of their duties are taken into 
account. For the purposes of applying the model, we must know how 
many images per day would contain useful information on average. In 
this example, we will assume ten images per day contain useful infor-

Figure 3.3
Schematic Depiction of Information Prioritization Performance Mode

NOTE: Each square represents an individual item on which the system operates and 
that the analyst might review. The border color represents the determination of the 
classi�er, and the interior color represents the truth, with black denoting useful, and 
gray denoting useless. So, for example, a black border with a gray interior represents 
a false positive. The box represents the subset of the items that the analyst will 
review. Note that there are more items marked useful than the analyst can review, 
so the analyst chooses among those marked useful.
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mation. Without the aid of an information prioritization system, we 
can calculate that the expected number of useful images per day found 
by the analyst will be 0.1. Or, more concretely, we can expect the ana-
lyst to find one useful image every ten days.

Suppose that we have two systems that we can deploy to help the 
analyst; their properties are given in Table 3.2. As displayed in that 
table, we have two different questions we can ask of the model. The 
first question is: if the analyst devotes the same amount of resources to 
reviewing images (i.e., reviews 100 images every day), how many useful 
images will be found? We will call this a “fixed-resource deployment.” 
Alternatively, we may have been comfortable with the efficacy of the 
analyst before we deployed the system. Perhaps finding one useful 
image every ten days is entirely sufficient for the mission with which 
this analyst is tasked. In this case, we might ask: how many images 
does the analyst have to look at in order to match their performance 
without the system? We call this a “fixed-impact deployment.” More 
generally, we could vary the number of images reviewed freely after 
deployment and are not obligated to choose these two points. How-
ever, examining these two points can help demonstrate that we face a 
trade between the resources invested and the impact achieved.

System 1 represents a significant improvement over the status 
quo. If the analyst examines 100 images per day chosen with the assis-
tance of the model, they can expect to find three useful images every 
day, a 30-fold improvement over unassisted searching. Conversely, the 
analyst must examine only 3.3 images every day (perhaps more easily 
parsed as ten images every three days) to match their previous perfor-

Table 3.2
Artificial Model Demonstration

Recall Specificity Accuracy
Fixed- 

Resource
Fixed- 
Impact

System 1 62% 98% 98% 3 images  
found

3.3 images 
examined

System 2 10% 99% 99% 1 image  
found

10 images 
examined

NOTE: Systems are notional and do not represent any real system.
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mance while expending the minimal effort. In keeping with the theme 
that metric choice is nontrivial and metrics can disagree, System 2 per-
forms less well when measured by these impact-derived metrics (one 
image found using System 2 versus three found using System 1, for 
example) despite possessing the higher accuracy (see Table 3.2). 

General Features of the Model

As alluded to in the previous section, one might also target a system 
deployment with a specified amount of resources that is devoted to 
reviewing the output of the system and that is not equal to the amount 
presently devoted to the task or to the amount required to match pre-
vious performance. In the above example, we might decide that we 
would like to distribute the gains of the system both to reducing the 
amount of time the analyst spends reviewing imagery and finding a 
greater proportion of useful imagery, say by having the analyst review 
only 50 images per day. How many images is the analyst expected to 
find, then?

The performance model is, in itself, agnostic as to how many 
images were being reviewed before deployment of the system. It is 
simply an equation for how many useful images are expected to be 
found using the information prioritization system as a function of how 
many images are reviewed. Therefore, the effectiveness of the classi-
fier as judged by the information prioritization performance model 
is captured by a whole curve rather than a single number. One such 
curve for a notional system can be seen in Figure 3.4.21 That is, for the 
same AI system different review capacities result in a different number 
that captures performance (i.e., a different percentage of useful items 
found). Therefore, the information prioritization performance model 
does not provide a single metric that captures the effectiveness of an 
information prioritization system but rather furnishes a family of met-
rics indexed by the percentage of the items that arrive each day and will 
be reviewed relative to the total number that arrive.

Though perhaps unexpected, the piecewise linear shape of this 
curve is intuitive in retrospect. On the left side of the curve, the analyst 

21 For more detail on what form these performance curves can take, see the appendix.



62    Evaluating Artificial Intelligence Systems in Intelligence Analysis

is still reviewing reports that the system has flagged as useful. There is 
a fixed chance (i.e., the precision) that any given report marked useful 
is in fact useful, so the number of useful reports found grows linearly 
in the number examined with slope equal to the precision. At a cer-
tain point, however, the analyst runs out of reports marked useful to 
review and must start reviewing reports marked as not useful. At this 
point, the corner in Figure 3.4, the slope decreases because a different 
and lower proportion of these items (one minus the negative predictive 
value) is in fact useful.

Recalling the discussion from the section on “Metrics for Binary 
Classifiers,” we see that each of these metrics represents a distinct judg-
ment as to the relative value of positive and negative examples. In this 
case, this judgment flows from a concrete reality of the deployment sit-
uation: As review capacity increases, more false positives can be toler-
ated in the service of surfacing more true positives, since review capac-
ity becomes less scarce. Nonetheless, in situations where one classifier 
has better performance on positive examples and another has better 
performance on negative examples, which system is performing better 
overall should generally be expected to depend on the review capac-

Figure 3.4
Percentage Found Versus Percentage Reviewed for a Notional System
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ity, just as preference between any such pair of classifiers should be 
expected to depend on the metric chosen.

Since each review capacity gives rise to a different metric, the opti-
mal balance between false positives and false negatives for the classifier 
will depend on the review capacity through this metric, as discussed in 
the section on “Metrics for Binary Classifiers.” Concretely, in the case 
of score-based classifiers, the optimal threshold for the classifier will 
depend on the number of items that can be reviewed. In and of itself, 
this fact is important to consider when managing the deployment of an 
information prioritization system, since changes in the review capacity 
devoted to using the system (e.g., resulting from budgetary changes or 
changes in analyst responsibilities) necessitate a different threshold to 
optimally utilize analyst time. Thus, changes in the system utilization 
may necessitate retuning the system.

As discussed in more detail in the appendix, under a relatively mild 
assumption the optimal threshold takes a simple and intuitive form: 
The information prioritization system should be optimized to return 
exactly as many items as can be reviewed every day. Essentially, this is 
due to the fact that returning either more or less than the number of 
items the analyst can review is a waste. If more items are returned than 
the analyst can review, chances are the pool has a lower proportion of 
useful items that it would have had if the system had been choosier and 
returned only as many as the analyst can review. On the other hand, if 
the system returns fewer items than the analyst can review, the analyst 
eventually has to examine items beyond those returned by the system 
in order to fill their time, thereby basically losing the help of the system 
for a portion of the task at hand.

Optimizing the threshold for each review capacity produces a 
new curve of how many reports will be found by the analyst as a func-
tion of how many can be reviewed where the performance at each point 
is the performance using the optimal threshold for that review capac-
ity. This curve for the demonstration classifier is depicted in Figure 3.5 
along with an arbitrarily chosen curve for a particular fixed threshold 
for comparison. This curve represents a useful ingredient for a deci-
sionmaker when making investment decisions in the utilization of an 
information prioritization system. The x-axis, the review percentage, 
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can be converted into the resource that it represents, such as analyst 
time or percentage of department budget. By considering what items 
the system serves to prioritize (e.g., images or SIGINT reports), deci-
sionmakers can develop an understanding of what sort of risks are 
implied by missing 20 percent, 50 percent, or 80 percent of the items 
that are actually useful. Armed with this knowledge, decisionmakers 
can decide how many resources to devote to utilizing the system with 
an understanding of what risks and benefits attend to that decision. 
For example, looking at the system depicted in Figure 3.5, a decision-
maker might elect to allocate resources to review 20 percent of the 
incoming items every day using the system since a roughly 90-percent 
chance of catching any given useful item is sufficient, and obtaining a 
rough certainty of catching such an item would require doubling the 
resources allocated to utilizing the system. 

Taking Stock

The information prioritization performance model represents a step 
forward in assessing the performance of systems that direct the atten-
tion of their user. This step forward was enabled by carefully analyz-
ing the consequences of errors in the system and noticing that they are 

Figure 3.5
Percentage of Useful Items Found as a Function of Review Capacity
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different primarily in kind rather than in magnitude. In a sense, the 
system spends a fixed budget of false positives, representing a fixed 
budget of user time, in order to minimize its false negatives, represent-
ing missed detections. This gives rise to ways of measuring the per-
formance of these systems that do not attempt to conflate the conse-
quences of the two errors by assigning them net value and sidesteps the 
difficult question of determining what the impact of a false negative is. 
This measure of performance is more closely related to the true effec-
tiveness of the system and enables both more informed strategy about 
the value of the system in question and a more informed approach to 
optimizing the system for its task.

Of course, there is still work to be done and effects that should 
be captured in future studies. In reality, “usefulness” is not a binary 
variable but a spectrum. Two intelligence reports might both be useful, 
though one is absolutely critical and the other is simply informative. 
Similarly, the analyst cannot be expected to analyze precisely the same 
number of items every day, nor should we expect all items to take the 
same amount of time. For that matter, the analyst likely has some abil-
ity to understand what the content of a report is without reading it in its 
entirety, which conflicts with our assumption that the analyst chooses 
completely at random.22 As it stands, the model is also not well opti-
mized to characterize the effectiveness of warning systems. Though the 
warning function is squarely an information prioritization function (in 
that it directs attention to some emergent and important matter), many 
warnings do not come in batches in the way envisioned by the model. 
For example, a cyber intrusion detection system would likely raise a 
warning whenever it determined there was likely an intrusion.

22 It should be noted, though, that the analyst must allocate a non-zero amount of time to a 
report in order to make a judgment as to the report’s utility without the assistance of the system.
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CHAPTER FOUR

Conclusions

Key Findings

A clear criterion for what success looks like is critical for understanding 
both how close one has come and how to move closer to unambiguous 
success. In the case of AI systems, this definition must include some 
number of measured properties of the system’s metrics, which sum-
marize system performance. At present, although the AI and ML com-
munities have a number of metrics for characterizing the performance 
of these systems, these metrics are frequently opaque and are not clearly 
connected with outcomes of interest in the context of intelligence.

In order to mitigate the opacity of existing metrics, we have offered 
a brief primer that details the methodology that underlies these met-
rics and gives a brief description of what a subset of them, those that 
characterize the performance of binary classifiers, actually measure. 
In order to attempt to connect these metrics with outcomes of interest 
to decisionmakers in intelligence analysis, we introduced a conceptual 
framework categorizing these systems by the way their output is uti-
lized. For two of these categories, evaluation support and automated 
analysis, we found that characterizing the outcomes and impact that 
flow from the deployment of an AI system in that category is entangled 
with the question of assessing the overall impact of the intelligence 
process, which complicates a simple model of system effectiveness. For 
the remaining two, collection support and information prioritization, 
we identified ways to characterize the effectiveness of these systems 
that insulate them from these questions. For one of these, the category 
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of information prioritization systems, we built and analyzed a simple 
quantitative model of how system properties create impacts.

In addition to providing the means to connect basic metrics char-
acterizing the performance of an information prioritization binary clas-
sifier to the actual effectiveness of this system in terms of time savings 
and increase in capacity, the information prioritization performance 
model, together with the general discussion of metrics in machine 
learning, illustrates two general lessons:

• Using metrics not matched to actual priorities obscures 
system performance and impedes informed choice of the opti-
mal system. Metrics are not necessarily meaningful in a vacuum, 
and decisionmakers should anticipate needing to do work to 
develop ways of measuring system performance that match their 
priorities. Since the metrics typically used to capture the perfor-
mance of a system do not all agree on which of a pair of systems 
is performing better, simply choosing a metric arbitrarily will 
not enable decisionmakers to rank systems by how useful they 
will be to the mission the system supports. Similarly, engineering 
decisions ranging from overall model design to the optimization 
of the trade between false positives and false negatives are made 
to maximize system performance with respect to the metric of 
record. Metric choice should take place before the system is built 
and be guided by attempts to estimate the real impact of system 
deployment.

• Effectiveness, and therefore the metrics that measure it, can 
depend not just on system properties, but on how the system 
is used. In the case of information prioritization systems, this is 
captured by the dependence of the number of useful items found 
on the amount of time an analyst spends reviewing the output of 
the system. Since the optimal system is necessarily the most effec-
tive, this also means that which system is optimal can depend 
on how the system is used. In the context of information priori-
tization systems, this manifests in the fact that different review 
percentages can result in different determinations as to which of 
a pair of systems is preferable. That is, for a given pair of sys-
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tems, which system is more effective can depend on how much 
of the system output can be reviewed. On an engineering level, 
this affects the optimal trade-off between false positives and false 
negatives. However, both for the question of understanding the 
effectiveness of a system and that of choosing the optimal system, 
these are simply examples of more general lessons. When deploy-
ing a system, decisionmakers should understand that choices 
about how the system is used may affect outcomes in concert 
with the properties of the system itself. Chief among these is the 
amount of resources devoted to the mission outside those devoted 
to building the system. 

Recommendations for the Intelligence Community

Begin with the right metrics. When considering acquiring an AI 
system, DoD and the IC should begin by developing a detailed under-
standing of the way this system will be utilized and choosing met-
rics that reflect success with respect to this utilization. For informa-
tion prioritization systems in particular, we recommend a version of 
the information prioritization performance model, possibly adapted 
and extended to cover the precise case at hand. Through this process, 
system acquirers can understand what the impact of the performance 
achieved by system designers will be. System designers will also benefit 
from the clear objective guiding their engineering decisions and will 
deliver a more effective system if this objective is aligned with user 
priorities.

Reevaluate (and retune) regularly. Since the world around the 
system continues to evolve after deployment, system evaluation must 
continue as a portion of regular maintenance. Narrowly, this means 
continuing to assemble test data and measure the performance of the 
system to detect any changes in performance. More broadly, this must 
include reevaluations of the deployment context of the system. Is the 
system still being used in the way first envisioned when it was deployed? 
Is the same amount of resources being devoted to utilizing the output 
of the system and accomplishing the mission the system is meant to 
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support? As these details change, the right way to measure effectiveness 
may shift. At the most dramatic, this might result in entirely different 
metrics from those that were used to evaluate the system at deployment 
becoming most appropriate. In addition, the system might need to be 
retuned, for example, to a different balance between false positives and 
false negatives, to reflect the changing priorities of users.

Speak the language. System designers have a well-established set 
of metrics typically used to capture the performance of AI systems. 
Though new metrics can be constructed, being conversant in these tra-
ditional metrics will ease communication with experts during the pro-
cess of designing a new system or maintaining an existing one. Ensure 
that coursework for acquisition professionals who may acquire AI sys-
tems provides an introduction to these traditional metrics. Addition-
ally, acquisition professionals would benefit from an understanding of 
the assumptions and reasoning that underlie the statistical approach to 
evaluating these systems, which could also be included in the relevant 
coursework. More broadly, a common resource on metrics for AI sys-
tems should be created or identified that can serve as a common touch-
point across the IC.

Conduct further research into methods of evaluating AI 
system effectiveness. In addition to representing a step forward for 
assessing the effectiveness of AI systems supporting intelligence, this 
effort serves as a demonstration of what is lost when well-tuned meth-
ods of assessing this effectiveness are not present. Unfortunately, fur-
ther basic research is needed to provide these methods across all the 
systems and deployment contexts pertinent to intelligence missions. 
This research is distinct from the considerable effort rightly directed 
toward developing methodologies for assuring the integrity and reli-
ability of AI systems for defense and intelligence applications.1 In 
addition to being able to assure that these systems will not suddenly 
stop working at a critical juncture, we must be able to critically assess 
whether they will enhance effectiveness in the mission they support at 

1 See, e.g., Andrew J. Lohn, “Estimating the Brittleness of AI: Safety Integrity Levels and 
the Need for Testing Out-of-Distribution Performance,” Cornell University arXiv, preprint 
arXiv: 2009.00802, 2020.



Conclusions    71

all when judged not just by a narrow definition of their task but by the 
actual value they provide. Put another way, research is needed to actu-
ally understand the contours of the upside for such systems, in addi-
tion to understanding how to guard against downsides. At present, for 
intelligence in particular, the results of this effort indicate that room 
for improvement remains in methodologies for assessing the actual 
value provided to users by these systems.
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APPENDIX

Derivations and Technical Details

This appendix gives additional detail on some of the arguments and 
methods discussed in the main report for the benefit of the more techni-
cal segment of the audience, who may be curious about the structure of 
the arguments or interested in adapting them for their own use case. We 
open with a brief discussion of the mathematical underpinnings of some 
of the discussion on the metrics for binary classifiers and then move to a 
presentation of the information prioritization performance model.

Measuring the Performance of a Binary Classifier

Assuming the classification decisions are independent of one another, 
the performance of a binary classifier is captured by the statistical rela-
tionship between two binary variables, Z, the label assigned by the 
classifier; and Y, the true label. As noted in the main text, the two pos-
sible outcomes for each of these variables gives rise to four mutually 
exclusive possible outcomes for the classification decision. Therefore, at 
most four numbers, namely P (Z = 1, Y = 1), P (Z = 1, Y = 0), P (Z = 0, 
Y = 1), and P (Z = 0, Y = 0), are needed to fully capture the performance 
of the classifier. Since these numbers are the probability of four mutu-
ally exclusive, exhaustive events, they must sum to 1:

P (Z = 1, Y = 1) + P (Z = 1, Y = 0) + P (Z = 0, Y = 1) + P (Z = 0, Y = 0) = 1.

This one constraint means that at most, three numbers are needed to 
capture the performance of the classifier. However, one of these three 



74    Evaluating Artificial Intelligence Systems in Intelligence Analysis

numbers is not a property of the classifier but of the underlying data: 
The marginal probability of the true label does not depend on the per-
formance of the classifier at all. From the point of view of distinguish-
ing among the performance of different classifiers on the same data, 
the equation for this marginal probability,

P (Y = 1) = P (Z = 1, Y = 1) + P (Z = 0, Y = 1),

can be regarded as a second constraint on the four numbers capturing 
classifier performance.

The remaining two degrees of freedom can be reparametrized as

P Z = 1 |Y = 1( ) = P Z = 1,Y = 1( )
P Y = 1( )

and

P Z = 0 |Y = 0( ) = P Z = 0,Y = 0( )
P Y = 0( ) ,

which are clearly properties of the variable Z and thus properties of 
the classifier. The first of these two can be recognized as the recall and 
the second as the specificity. Thus, the space of possible classifiers for 
a given set of data is parametrized by two numbers between 0 and 1.1

These two numbers are sufficient to characterize the performance, 
up to any invertible reparameterization. Provided that any reparam-
eterization is increasing in both specificity and recall, that reparam-
eterization will also preserve the order of preferences where a universal 
preference exists between a pair of classifiers. However, as noted in the 
main report, the fact that there are two separate degrees of freedom 
for classifier performance means that even with the assumption that 
higher recall and higher specificity must both be preferable, there are 
ambiguous cases where no universal preference exists between pairs of 
classifiers. Choosing a metric certainly adjudicates these cases, as the 

1 For additional discussion and a different perspective, see Flach, 2003.
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metric induces a preference relation on the two-dimensional space of 
classifier performances. A theorem of microeconomics gives the con-
verse, provided that the preference relation is continuous, and higher 
specificity and recall are preferred to lower.2

The Information Prioritization Performance Model

Recall that in this model, we assume that the information prioritiza-
tion system marks every item as useful or not useful and that the ana-
lyst then reviews a fixed number of the items chosen based only on 
the label assigned by the system. For compactness of notation, write 
r = P Y = 1( ) , p1 = P Z = 1|Y = 1( ) , and p0 = P Z = 0 |Y = 0( ) . For 
simplicity, we assume that the number of items arriving in the period of 
analysis, n, is Poisson distributed with mean N. We denote the number 
of documents that the analyst can review by M. Provided that 

p1 >1− p0 ,

then the first-order stochastic dominant strategy is for the analyst to 
review items marked useful (i.e., positives) before those marked useless. 
In the case of equality, all strategies are equivalent to random guessing. 
If the inequality is reversed, then an item marked useless is actually 
more likely to be useful than one marked useful, and the labels on the 
classifier should be reversed, reversing the inequality.

The expected number of items found, E f[ ] , simplifies some-
what in the limit of large N with fixed M N . Though working in this 
limit is a limitation of this work, we expect that this limit is the most 
relevant to the applications envisioned, since these systems are nec-
essary only when there is a great deal of data to sift through. With 
the stated assumptions, this is due to the fact that the Poisson distri-
bution is asymptotically Gaussian in this regime with a variance that 
grows linearly in the mean. We suspect that this result depends only on 

2 G. A. Jehle and P. J. Reny. Advanced Microeconomic Theory, 3rd ed., Essex: Pearson Edu-
cation Limited, 2011, Theorem 1.1.
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the variance of n growing more slowly than N 2, though. In this limit, 
we have

 E f[ ] ≈ ρ1MΘ 1− M
λN

⎛
⎝

⎞
⎠ + 1− ρ0( ) M − λN( )+ p1rN⎡⎣ ⎤⎦Θ

M
λN

−1⎛
⎝

⎞
⎠ ,  (A.1)

where Θ denotes the Heavyside step function, 

λ = p1r + 1 = p0( ) 1− r( )

is the percentage of the items that are marked positive, 

p1 =
p1r
λ

is the precision, and

p0 =
p0 1− r( )
1− λ

is the negative predictive value.
Figure A.1 gives an example of the shape of E f[ ]  as a function of 

M, scaled as E f[ ]
rN

 plotted against M N . This is precisely the return-
on-investment curve alluded to in the main report. Per Equation A.1, 
this curve can be seen to be piecewise linear in M N . It is likely easiest 
to think of this curve as being controlled by the point x = λ, y = p1 , 
since the curve will always consist of two line segments: one from (0,0) 
to this point, and one from this point to (1,1). The first line segment, 
connecting (0,0) to the point that controls the curve, gives the perfor-
mance while the analyst is reviewing items that were marked useful by 
the system. This explains why the slope in this region is the precision, 
ρ1 : The chance that a marginal additional item examined by the ana-
lyst will be useful is the chance that a randomly chosen item marked 
useful by the system will in fact be useful. At the controlling point, 
the slope changes since the useful items have been exhausted, and the 
chance that a marginal item will be useful is one minus the negative 
predictive value. 
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Figure A.2 demonstrates how the shape of this curve changes as 
the properties of the classifier change. Increasing the recall with fixed 
precision affords a larger window of M N  for the percentage found to 
grow at the initial slope, moving the controlling point up along the ini-

Figure A.1
Annotated Performance of a Notional System
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Figure A.2
Demonstration of the Effect of System Performance on Effectiveness
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tial slope. Increasing the precision with fixed recall, on the other hand, 
slides the point leftward at a fixed height, because the system reaches the 
height at which the slope changes, that is, the recall, more rapidly due to 
the increased slope. This figure also demonstrates the effect alluded to 
in the main report: Since each review percentage gives rise to a different 
summary metric, which classifier is preferable can depend on the review 
percentage. In this figure, the classifier with greater precision is prefer-
able at lower review percentages, while the classifier with greater recall is 
preferable at higher review percentages. This is generally true of any pair 
of classifiers between which the preference is ambiguous.

As with any metric, some threshold must be optimal with respect 
to the number of useful items found at any fixed percentage of items 
reviewed. Figure A.3 explores the relationship between the threshold 
(as captured by the percentage of the items that are marked positive, 

ρ µ φ Θ λ) and the percentage of items that will be reviewed by the analyst. 
The figure is the analog of Figure 3.2, but with the compared metrics 
defined by different review percentages. Figure A.3 demonstrates that 

Figure A.3
Demonstration of Classifier Percentage Found Versus Percentage Returned
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proper choice of threshold can make a dramatic difference in the per-
formance of an information prioritization system. For example, with a 
review percentage of 40 percent, the demonstration classifier achieves 
percentages found ranging from 40 percent to nearly 100 percent, 
depending on how close to optimally the threshold is set. This figure 
also strongly suggests a general result: The optimal threshold matches 
the percentage returned by the system to the percentage that can be 
reviewed.

To explore the conditions under which this is true, rewrite Equa-
tion A.1 as

φ ≈ φ1Θ 1− µ
λ

⎛
⎝

⎞
⎠ +φ0Θ

µ
λ
−1⎛

⎝
⎞
⎠ , (A.2)

where

φ =
E f[ ]
rN

µ = M
N

φ1 = p1
µ
λ
,

and

φ0 = 1− 1− p1( )1− µ
1− λ

.

ρ µ φ Θ

d 2p1
dλ 2 < 0,

then using the fact that p1 must lie below its tangents, one can show that

dφ0

dλ
> 0 and

dφ1
dλ

< 0,

If p1 is strictly concave in λ,



ρ ρ µ φ Θ ρ
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which implies that φ  reaches a maximum at λ  = µ, giving the result 
that the system should return precisely as many items as the analyst 
will review. Evaluating Equation A.2 at this point shows that the 
opti-mal number found is then simply the recall, p1.

Inspecting Figure 3.5, which plots the recall against the percent-
age returned in the guise of the number found, we see that the demon-
stration classifier is clearly strictly concave. The requirement that the 
recall be strictly concave is not as restrictive as it might initially seem, 
since techniques exist to “repair” regions of convexity in this func-
tion by building “hybrid” classifiers out of classifiers that exist around 
the region of convexity.3 Though the requirement for strict concavity 
should be kept in mind, it is unlikely to be limiting in practice.

Demonstration Classifier

The demonstration classifier used was a BERT-based natural language 
classifier trained by fine-tuning the pretrained BERT model distrib-
uted with the “transformers” python module using the methodology 
laid out in the original paper on the Quora Question Pairs dataset, a 
portion of the GLUE natural language benchmark.4 The results shown 
are derived from the scores this classifier assigned to the development 
set. To render some of the effects more easily seen on the graphs, we 
conducted subsequent analysis as if the prevalence of the positive class 
was 15 percent rather than the approximately 37 percent implied by the 
distribution of the development set. 

3 Foster Provost and Tom Fawcett, “Robust Classification for Imprecise Environments,” 
Machine Learning, Vol. 42, No. 3 (2001); Peter A. Flach and Shaomin Wu, “Repairing Con-
cavities in ROC Curves,” IJCAI, 2005.
4 Devlin et al., 2018; Wang et al., 2019.
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