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Games for Computation and Learning

Final Report

Program Manager: Dr. Fariba Fahroo AFOSR/RTA
Contract/Grant #: FA9550-18-1-0271.
Reporting Period: 7/15/2018 to 7/14/2021
PI: Houman Owhadi
Organization: California Institute of Technology

Abstract:
This project had two main objectives for methods emerging at the interface be-

tween game theory, uncertainty quantification, and numerical approximation (I) their
continued application to high impact problems of practical importance in compu-
tational mathematics (II) their development towards machine learning. With this
purpose and a dual emphasis on conceptual/theoretical advancements and algorith-
mic/computational complexity advancements the accomplishments of this program
are as follows. (1) We have developed general robust methods for learning kernels
through (a) hyperparameter tuning via Kernel Flows (a variant of cross-validation)
with applications to learning dynamical systems and to the extrapolation of weather
time series, and (b) programming kernels through interpretable regression networks
(kernel mode decomposition) with applications to empirical mode decomposition.
(2) We have discovered a very robust and massively parallel algorithm, based on
Kullback-Liebler divergence (KL) minimization that computes accurate approxima-
tions of the inverse Cholesky factors of dense kernel matrices with rigorous a priori
O(N log(N) log2d(N/ε) complexity vs. accuracy guarantees (this is the new state of
the art) (3) We have introduced Competitive Gradient Descent, a surprisingly simple
but powerful generalization of the gradient descent to the two-player setting where
the update is given by the Nash equilibrium of a regularized bilinear local approx-
imation of the underlying game. This algorithm avoids oscillatory and divergent
behaviors seen in alternating gradient descent, and the ability to choose larger step-
sizes furthermore allows the proposed algorithm to achieve faster convergence. (4) We
have developed a rigorous framework for the analysis of artificial neural networks as
discretized image registration algorithms with images replaced by high dimensional
functions in high dimensional spaces. (5) We have introduced a general Gaussian
Process/Kernel method approach for solving and learning arbitrary nonlinear PDEs.
(6) We have introduced a new Uncertainty Quantification framework addressing the
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limitations of traditional approaches (in terms of accuracy, robustness, and compu-
tational complexity).
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1 Accomplishments in Scientific Computing

Figure 1.1: [2, Fig. 14]. Comparison between our sparse Cholesky solver and two
implementations of AMG from two libraries, namely AMGCL [5] and Trilinos [1].

1.1 Cholesky factorization of dense kernel matrices and fast
linear solvers

� [16] has been accepted for publication by SIAM SISC. This paper introduces a
rigorous and embarrassingly parallel sparse Cholesky factorization algorithm for
the inversion of the dense kernel matrices (useful for kernel methods, Gaussian
process regression, the computation of integral operators, etc.). The algorithm
is both rigorous (with the best-known complexity vs. accuracy guarantees) and
practical.

– A presentation is available online at https://www.youtube.com/watch?

v=VAGtjw0_Mj8.

– This work introduces an algorithm for computing the inverse Cholesky fac-
tors of an N×Ndense kernel matrix in (rigorous) Nlog2d(N/ε) complexity
(this is the new state of the art)

– The algorithm is also very robust and practical (it is stable and has small
constants): it achieves the factorization of a 106× 106 dense kernel matrix
in 10s on a single core and is also massively parallelizable.

– This work also solves a major problem in computational statistics (the
efficient factorization of dense kernel matrices with additive noise).

3
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– Julia codes have been released at https://github.com/f-t-s/cholesky_
by_KL_minimization.

– ARL [18] has used an older version [17] to significantly accelerate surrogate
modeling for energetic materials.

� [2] has presented a concrete implementation (as a fast linear solver for elliptic
PDEs) of the sparse Cholesky factorization algorithm introduced in [17]. As
observed in [2], the proposed approach

“far exceeds the performance of existing carefully-engineered libraries
for graphics problems involving bad mesh elements and/or high con-
trast of coefficients.”

See Fig. 1.1 (The proposed method is robust to high contrast and more efficient
than AMG.

1.2 Solving and learning nonlinear PDEs with GPs

[3] has introduced a general Gaussian Process/Kernel method approach for solving
and learning arbitrary nonlinear PDEs. This approach is an extension of the gam-
blet framework [10, 8, 11] to nonlinear PDEs. This method was co-developed under
AFOSR MURI # 19 and the complexity of the proposed approach reduces to the
inversion/compression of dense kernel matrices. Therefore solving and learning non-
linear PDEs inherit the (state of the art) complexity of algorithm developed in [16]
under FA9550-18-1-0271.

1.3 Publications

The following book has been published by Cambridge University Press

� Operator adapted wavelets, fast solvers, and numerical homogenization from a
game-theoretic approach to numerical approximation and algorithm design. H.
Owhadi and C. Scovel. Cambridge University Press, Cambridge Monographs
on Applied and Computational Mathematics, 2019.

The research performed under this program has also been featured in Notices of
the AMS

� Statistical Numerical Approximation. H. Owhadi, C. Scovel and F. Schäfer.
Notices of the American Mathematical Society, volume 66, number 10, featured
article, pages 1608-1617, 2019.

We also report the following publications.
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� Sparse Cholesky Factorization by Kullback–Leibler Minimization Schäfer, Flo-
rian, Katzfuss, Matthias, and Owhadi, Houman SIAM J. Sci. Comput. 2021.

� Compression, inversion, and approximate PCA of dense kernel matrices at near-
linear computational complexity Schäfer, Florian, Sullivan, T. J., and Owhadi,
Houman Multiscale Model. Simul. 2021.

� Material-adapted Refinable Basis Functions for Elasticity Simulation Jiong Chen,
Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu Des-
brun. ACM Trans. Graph. (SIGGRAPH Asia), 38(6), Art. 161, 2019.

� Fast eigenpairs computation with operator adapted wavelets and hierarchical
subspace correction. H. Xie, L. Zhang and H. Owhadi, SIAM Journal on Nu-
merical Analysis, 2019.

� J. Chen, F. Schäfer, J. Huang, and M. Desbrun. Multiscale Cholesky precondi-
tioning for ill-conditioned problems. Sci- Graph. 2021.

� Solving and Learning Nonlinear PDEs with Gaussian Processes. 2021. Y. Chen,
B. Hosseini, H. Owhadi, AM. Stuart [arXiv:2103.12959]

2 Accomplishments in learning

2.1 Kernel flows

We have introduced kernel flows (KF) [12] from a numerical approximation approach
to kernel design and learning. Kernel Flows (KF) offer a scalable solution to the kernel
construction/selection problem based on the simple premise that a kernel K must be
good if the number N of interpolation points can be halved without significant loss in
accuracy (measured using the intrinsic RKHS norm ‖·‖K associated with the kernel).

2.1.1 Learning dynamical systems

Regressing the vector field of a dynamical system from a finite number of observed
states is a natural way to learn surrogate models for such systems. In [7] we used
Kernel Flows [12] and its variants as simple and effective approaches for learning the
kernel used in these emulators.

2.1.2 Extrapolation of weather/climate time series

Figure 2.1 provides an example of application of [7] to the extrapolation of weather/climate
time series. In that example, in collaboration with Argonne National Lab [6] (see fig-
ures 2.1 and 2.2), we used Kernel Flows [12] (an algorithm performing Kriging with
a kernel learned from data) for weather time series prediction and compared those
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Figure 2.1: Left: Weather prediction, true satellite data vs Kernel Flows vs 2 ANL
PDE based models ran on HPC. Right: Kernel Flows predictions vs true data.

predictions to true satellite data to PDE based models (HYCOM and CESM, devel-
oped by ANL) run on HPC and to LSTM neural networks (also developed by ANL
and run on HPC). Our simple laptop-run algorithm ended up outperforming both
ANL PDE-based models and LSTM neural networks both in terms of complexity and
accuracy. Indeed, HYCOM took 800 core-hours per day of forecast on a Cray XC40
system. CESM took 17 million core-hours on Yellowstone, NCAR’s high-performance
computing resource. The architecture optimized LSTM took 3 hours of wall time on
128 compute nodes of the Theta supercomputer. Our method took 40 seconds to
train on a single node machine (a laptop) without acceleration

2.1.3 Analysis

Hierarchical modeling and learning has proven very powerful in the field of Gaussian
process regression and kernel methods, especially for machine learning applications
and, increasingly, within the field of inverse problems more generally. The classical
approach to learning hierarchical information is through Bayesian formulations of the
problem, implying a posterior distribution on the hierarchical parameters or, in the
case of empirical Bayes, providing an optimization criterion for them. In [4] we have
compared the empirical Bayesian and the Kernel Flows [12] approach to hierarchical
learning, in terms of large data consistency, variance of estimators, robustness of the
estimators to model misspecification, and computational cost. Our analysis shows
the consistency, near optimal accuracy and robustness of Kernel Flows.

6
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Figure 2.2: Top row: Comparison between (1) our method and (2) CESM on the
NOAA-SST dataset. Bottom rows: comparisons between (a) our method (b) an
architecture optimized LSTM (c) persistence and (d) climatology.
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2.2 Kernel mode decomposition and the programming of
kernels

In [13] we introduced a new approach to the classical mode decomposition problem
through nonlinear regression models, which achieve near-machine precision in the
recovery of the modes. Although kernel methods have strong theoretical founda-
tions, they require the prior selection of a good kernel. While the usual approach
to this kernel selection problem is hyperparameter tuning, we discovered an alter-
native (programming) approach to the kernel selection problem while using mode
decomposition as a prototypical pattern recognition problem. In this approach, ker-
nels are programmed for the task at hand through the programming of interpretable
regression networks in the context of additive Gaussian processes. As a prototypi-
cal application we have programmed regression networks approximating the modes
vi = ai(t)yi

(
θi(t)

)
of a (possibly noisy) signal

∑
i vi when the amplitudes ai, instan-

taneous phases θi and periodic waveforms yi may all be unknown and shown near
machine precision recovery under regularity and separation assumptions on the in-
stantaneous amplitudes ai and frequencies θ̇i. Python codes have been released at
https://github.com/kernel-enthusiasts/Kernel-Mode-Decomposition-1D.

2.3 Competitive gradient descent

We have introduced Competitive Gradient Descent [14], a surprising simple but pow-
erful generalization of the gradient descent to the two-player setting where the update
is given by the Nash equilibrium of a regularized bilinear local approximation of the
underlying game. This algorithm avoids oscillatory and divergent behaviors seen in
alternating gradient descent and the ability to choose larger stepsizes furthermore
allows the proposed algorithm to achieve faster convergence.

In [15] we have introduced competitive mirror descent (CMD, a generalization
of competitive gradient descent [14] completed during year 1), a general-purpose
algorithm for solving constrained competitive problems, as a counterpart of gradient
descent in unconstrained single-agent optimization.

2.4 Idea registration

We have shown that artificial neural networks are discretizations of image registration
problems with images replaced by high dimensional RKHS spaces [9]. Whereas image
registration compares images through deformations of their coordinate systems, idea
registration compares abstractions (ideas) through deformations of their feature space
representations (Fig. 2.3). The proposed theory provides principled solutions to many
questions in deep learning such as: (a) how to design good architectures? (b) how to
design neural networks that are equivariant to an arbitrary group of transformation?
(c) what is the stochastic process underlying deep learning? (d) How to make Deep
Learning rigorously robust to attacks?
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Figure 2.3: The continuous limit of ANNs is a registration problem with images
replaced by high dimensional functions.

Technical approach. Learning can be seen as approximating an unknown func-
tion f † : X → Y by regressing the training data (X, Y ). Given a kernel K,
ridge regression approximates f † with the minimizer of λ‖f‖2

K + ‖f(X) − Y ‖2
Y .

Given another kernel Γ defining an RKHS of functions mapping X to X , consider
the mechanical regression (MR) problem of approximating f with a minimizer of
(νL/2)

∑L
i=1 ‖vi‖2

Γ +λ‖f‖2
K + ‖f ◦φ(X)−Y ‖2

Y where φ = (I + vL) ◦ · · · ◦ (I + v1) is a
deformation of the input space obtained from the composition of L small deformations
vk : X → X . In the limit where L→∞ minimizers of (MR) converge to minimizers

of the idea registration (IR) problem (ν/2)
∫ 1

0
‖vt‖2

Γ dt + λ‖f‖2
K + ‖f ◦ φ(X) − Y ‖2

Y
with φ̇ = v(φ(·, t), t). Minimizers of (IR) have the representation φ̇ = Γ(φ, q)p where
(q, p) follows a Hamiltonian dynamic with energy pTΓ(q, q)p/2. If the kernels Γ and
K are obtained from feature maps of the form ϕ(x) = Aa(x) + c where a is an acti-
vation function defined as an elementwise nonlinearity, then minimizers of (MR) are
minimizers of (AF) (νL/2)

∑L
i=1(‖wk‖2 +‖bk‖2)+λ(‖w̃k‖2 +‖b̃k‖2)+‖f ◦φ(X)−Y ‖2

Y
with f = w̃a(·) + b̃ and vk = wka(·) + bk. f ◦ φ obtained from (AF) has the exact
structure of one block of a residual neural network (ResNet). Iterating (AF) over a
hierarchy of spaces (layered in between X and Y) produces input-output functions
that have the exact structure of Artificial Neural Networks (ANNs) and ResNets.
If K and Γ are projected (reduced) and averaged with respect to the action of a
group (e.g., translations), the input-output functions obtained from the hierarchical
version of (AF) is a convolutional neural network (CNN). The convergence of (MR)
towards (IR) implies that ANNs, ResNets and CNNs are discretized idea registra-
tion problems (they converge towards (IR) in the continuous/infinite depth limit).
Whereas image registration compares two images by creating alignments via defor-
mations of their coordinate systems, idea registration compares abstractions (ideas)

9
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by creating alignments via hierarchical deformations of their feature spaces. This
identification of ANNs as discretized idea registration problems has several immedi-
ate consequences such as: (1) Energy preservation implies that, at a minimum, the
Euclidean norm of the weights and biases of a ResNet must be preserved across lay-
ers. (2) The search for good architectures for ANNs is equivalent to the search of
good kernels for (IR), in particular, we identify architectures generalizing CNNs that
are equivariant (preserving the relative pose information) to the action of arbitrary
groups of transformations. (3) Trained ANNs can be identified as MAP estimators of
deep residual Gaussian processes (introduced here). (4) L2 regularized ANNs satisfy
a neural least action principle and can be represented via the Hamiltonian dynamic
generated by their feature maps. (5) Trained ResNets are discretized integrators for
these Hamiltonian ODEs. (6) The identification of hidden momentum variables in
CNNs. (7) The generalization of CNNs/ResNets to arbitrary Hilbert spaces (possibly
infinite-dimensional and functional).

2.5 Publications

The following book will be published by Springer

� Kernel mode decomposition and the programming of kernels. H. Owhadi, C.
Scovel and G. R. Yoo. Springer, 2021. [arXiv:1907.08592]

We also report the following publications.

� Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines
with kernel methods. 2021 B. Hamzi, R. Maulik, H. Owhadi [arXiv:2103.10935].
To appear in Proc. Royal Society A.

� Do ideas have shape? Plato’s theory of forms as the continuous limit of artificial
neural networks. 2020 H. Owhadi [arXiv:2008.03920]

� Deep regularization and direct training of the inner layers of Neural Networks
with Kernel Flows. 2020. G. R. Yoo and H. Owhadi. Physica D: Nonlinear
Phenomena, 2021

� Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter
Estimation. Mathematics of Computation, 2021. Y. Chen, H. Owhadi, A. M.
Stuart [arXiv:2005.11375]

� Learning dynamical systems from data: a simple cross-validation perspective,
part I: Parametric kernel flows. B. Hamzi and H. Owhadi Physica D: Nonlinear
Phenomena, Volume 421, 2021

� Kernel Flows: from learning kernels from data into the abyss. H. Owhadi, G.
R. Yoo, Journal of Computational Physics, volume 389, Pages 22-47, 2019
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� De-noising by thresholding operator adapted wavelets. G. R. Yoo and H.
Owhadi, Statistics and Computing, volume 29, number 6, 1185–1201, 2019.

� Competitive gradient descent. F. Schäfer and A. Anandkumar. In Advances in
Neural Information Processing Systems (pp. 7625-7635), 2019.

� Implicit competitive regularization in GANs Schäfer, Florian, Zheng, Hongkai,
and Anandkumar, Anima In the 37th International Conference on Machine
Learning (ICML 2020).

� Robust Reinforcement Learning: A Constrained Game-theoretic Approach Yu,
Jing, Gehring, Clement, Schäfer, Florian, and Anandkumar, Animashree In
Proceedings of the 3rd Conference on Learning for Dynamics and Control 2021.

� Competitive Mirror Descent Schäfer, Florian, Anandkumar, Anima, and Owhadi,
Houman, 2021. [arXiv:2004.14455]

3 Accomplishments in Uncertainty Quantification

There are essentially three kinds of approaches to Uncertainty Quantification (UQ):
(A) robust optimization (min and max) (B) Bayesian (conditional average) (C) de-
cision theory (minimax). Although (A) is robust, it is unfavorable with respect to
accuracy and data assimilation. (B) requires a prior, it is generally non-robust (brit-
tle) with respect to the choice of that prior and posterior estimations can be slow.
Although (C) leads to the identification of an optimal prior, its approximation suf-
fers from the curse of dimensionality and the notion of loss/risk used to identify the
prior is one that is averaged with respect to the distribution of the data. We have
introduced a 4th kind which is a hybrid between (A), (B), (C) and and hypothesis
testing. It can be summarized as, after observing a sample x, (1) defining a likelihood
region through the relative likelihood and (2) playing a minmax game in that region
to define optimal estimators and their risk. The resulting method has several desir-
able properties (a) an optimal prior is identified after measuring the data and the
notion of loss/risk is a posterior one, (b) the determination of the optimal estimate
and its risk can be reduced to computing the minimum enclosing ball of the image of
the likelihood region under the quantity of interest map(such computations are fast
and do not suffer from the curse of dimensionality). The method is characterized by
a parameter in [0, 1] acting as an assumed lower bound on the rarity of the observed
data (the relative likelihood). When that parameter is near 1, the method produces
a posterior distribution concentrated around a MLE with tight but low confidence
UQ estimates. When that parameter is near 0, the method produces a maximal risk
posterior distribution with high confidence UQ estimates. In addition to navigat-
ing the accuracy-uncertainty tradeoff, the proposed method addresses the brittleness
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of Bayesian inference by navigating the robustness-accuracy tradeoff associated with
data assimilation.

4 Honors and awards

PI H. Owhadi has been awarded the 2019 SIAM Dahlquist prize. Florian Schäfer has
been awarded the 2021 W.P. Carey prize in applied and computational mathematics.

5 Training

Florian Schäfer defended his Ph.D. in June 2021 and will be joining Georgia Tech as an
assistant professor in computational science and engineering this August 2021. Gene
Ryan Yoo defended his Ph.D. in May 2020 and joined Susquehanna International
Group as a Quantitative Researcher.
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