
Is Third Party Certification Necessary?

Judith Stafford and Kurt Wallnau
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

+1 412-268-5051 +1 412-268-3265

jas@sei.cmu.edu kcw@sei.cmu.edu

ABSTRACT

Developing software systems that are composed in total or in part
from software components over which the developer has little
control presents difficulties not yet addressed by component-
based software engineering research. Among the problems asso-
ciated with such component-based development is the potential
for a component developer to misrepresent the quality of compo-
nents. It is therefore paramount that some means of achieving of
trust be established between component developers and compo-
nent users. We are developing a model for the component mar-
ketplace that supports prediction of system properties prior to
component selection. In this paper we describe the model, and
describe two possible forms that the model may take in order to
establish trust among participants in component-based design. We
discuss the pros and cons of each choice, and leave the topic open
for further discussion.

1 INTRODUCTION

Component-based development can take many forms. In
this paper, we are concerned with system development that
involves the use of components over which the developer
has no control. Component-based design from pre-existing
components presents several challenges not found in tradi-
tional software design [1]. One challenge is the need to
predict the qualities of an assembly of components based
on the properties of its constituent components. By “quali-
ties” we mean a variety of quality attributes, for example
performance, security, reliability. By “properties” we mean
discernable features of components, for example latency,
encryption, and measured test coverage. The credibility of
assembly-level quality attribute prediction is a function of
the credibility the quality attribute analysis technique, and
the component properties that parameterize this technique.
System developers must be able to trust both the analysis
technique and component properties.

It is often assumed that the best way to trust in the proper-
ties of software components is through a trusted third-party
certifier. Examples of this model include Underwriter
Laboratories [10] and the National Infrastructure Assurance

Partnership1. However, there are alternative approaches.
Rather than vesting trust in a dedicated third party, we
claim that it is possible to distribute the responsibilities of a
third-party certifier among other actors in the component
market, and still achieve adequate levels of trust. Different
actors have roles to play in a component-based develop-
ment paradigm: Component Technology Specifier, Com-
ponent Technology Developer, Reasoning Framework De-
veloper, Component Developer, and System Developer.
These actors may interact in a variety of ways to achieve
trust. We base this conjecture on the validity of the follow-
ing analogy.

Assume that a system design must ensure that communica-
tion among users remains confidential. One way to achieve
confidentiality is through a confidentiality service. Another
way is to distribute responsibility for key exchange and
encryption among the communicants. The former approach
is analogous to using a third-party certifier, the latter to
distributing certification responsibility across other partici-
pants in component-based development.

We begin by defining key terms used in this paper, and
follow this with a discussion of the nature of trust and its
relationship to certification. We continue with descriptions
of a basic form of the model, present an extension to the
basic model that supports establishing trust, and then pre-
sent an alternative approach. We follow this with a discus-
sion of some of the pros and cons of each choice and con-
clude by highlighting some key concerns that warrant fur-
ther study.

2 TERMINOLOGY

To avoid confusion we supply definitions for key terms
used in this paper before proceeding to describe the general
form of the model and our experience to date in formalizing
its definition.

There is no shortage of definitions for software component
[1,2,3,5,9]. We adhere to the broad consensus that compo-

1 See http://niap.nist.gov/howabout.html

nents are binary implementations with an interface, but add
additional criteria that reflect our concern with components
over which the assembler may have little or no control.

A component is:

• an implementation of functionality that can be

• distributed in binary form and

• composed without modification according to a
composition standard.

A component technology consists of a standard for devel-
oping and modeling components and a language in which
to specify component assemblies.

A component framework is a conformant implementation
of a component technology.

Certification is the process of verifying a property value
associated with something, and providing a certificate to be
used as proof of validity.

Trust is confidence in the integrity of something.

3 TRUST AND CERTIFICATION

Trust is a property of an interaction and is achieved to vari-
ous degrees through a variety of mechanisms. When one
purchases a light bulb it is expected that the base of the
bulb will screw into the socket in such a way that it will
produce the expected amount of light. The size and thread-
ing has been standardized and a consumer “trusts” that the
manufacturer of any given lightbulb has checked to make
certain that each bulb conforms to that standard within
some acceptable tolerance of some set of property values.
The interaction between the consumer and the bulb manu-
facturer involves an implicit trust.

In the case of the lightbulb there is little fear that significant
damage would result if the bulb did not in fact exhibit the
expected property values. This is not the case when pur-
chasing a gas connector. In this case, explosion can result
if the connector does not conform to the standard. Gas
connectors are certified to meet a standard, and nobody
with concern for safety would use a connector that did not
have such a certificate attached. Certification is a mecha-
nism by which trust is gained. Associated with certification
is a higher requirement for and level of trust than can be
assumed when using implicit trust mechanisms.

When we apply these notions to component-based software
development, we recognize that it may also be valid to use
different mechanisms to achieve trust depending upon the
level of trust that is required and the cost associated with
providing it.

4 THE MODEL

Trust is important when assembling components. Compo-
nent users want to know that a component will function as
“advertised”. The user may also be interested in the long-
term prospects for the component: Will bugs be resolved
and patches released in a timely manner?, Will new ver-
sions be compatible with old?, etc. However, in this paper
we are concerned with the question of verifying functional
and quality-related values associated with a component.
Therefore, we restrict our scope to the model’s support for
trusted interactions.

At a minimum, there are five roles required to support
component-based development of systems. In the following
discussion, we describe each of these roles and follow up
with a discussion of the ways in which the participants in-
teract. We then discuss alternative mechanisms for extend-
ing the basic model to address the issue of trusted compo-
nent property values.

4.1 The five basic roles

Component technology specifier defines what it means to
be a component as well as the types of interactions used to
connect components. The resulting specification defines a
standard that must be adhered to by component and infra-
structure developers.

Component technology implementer provides the infra-
structure that enforces the standards imposed by a compo-
nent technology.

Reasoning framework developer creates analysis tech-
niques for predicting quality attributes of component as-
semblies. The developer of the reasoning framework de-
fines what needs to be known about a component in order
to be amenable to the technique. It may also supply the
means by which to determine the component property.

There are two primary classes of reasoning frameworks:
those that depend on the execution environment, and those
that can be performed given a static description of the sys-
tem. Determining system latency is of the former kind and
can be determined in a compositional way using rate mono-
tonic analysis [4]. Impact analysis, on the other hand, is a
static analysis technique and can be computed using com-
positional dependence analysis [8].

 Component implementer creates components that are con-
formant with some component standard. Conventional
component interfaces will be augmented to associate arbi-
trary properties and property values with components, us-
ing a mechanism such as <property,value,credibility> cre-
dentials [6].

System developer assembles components to fulfill some
high-level function. The system developer expects to be
able to predict the quality attributes of a proposed design
before commitments are made to use specific components.

4.2 Interactions among the Roles

Figure 1 shows the five basic elements of a component
technology along with their interactions. The arrows indi-
cate the direction of the interaction; their semantics is de-
scribed below.

Figure 1: Five basic roles of a component-based devel-
opment process and their interactions.

• Interaction A: The component technology implementer
uses the specification provided by a specifier of the com-
ponent technology to build conformant component infra-
structure.

• Interaction B: The component technology specifier may
suggest that a particular analysis technique be developed
to support reasoning about some quality attribute that is
important to the types of systems likely to be developed
using this framework.

• Interaction C: The component technology implementer
may suggest new types of analyses, and the developer of
the reasoning framework will provide input as to what
types of analyses are useful within certain types of sys-
tems.

• Interaction D: The component infrastructure provider
must provide the system implementer with trusted infra-
structure properties.

• Interaction E: The component implementer receives its
standards information from the implementer of the com-
ponent technology.

• Interaction F: The developer of the reasoning framework
defines component properties that must be trusted, while
the organization that actually build the component may

be required to divulge otherwise hidden implementation
details to support a particular analysis technique.

• Interaction G: The developer of the system receives
components and property documentation from the com-
ponent implementer, and may notify the component im-
plementer of the desire to use an analysis technique for
which a component under consideration has not been
validated.

• Interaction H: A reasoning framework developer supplies
the system developer with the necessary algorithms for
performing the compositional analysis techniques, and
the system developer may indicate to the developer of the
reasoning framework that a new type of analysis would
be useful.

4.3 Trust

Trust is a quality attribute we wish to affix to interactions
that transpire in the component marketplace (just as confi-
dentiality is a property we wish to affix to interactions in
our earlier analogy).

A typical mechanism for developing trust between other-
wise unrelated parties is a trusted third party such as Un-
derwriter’s Laboratory. In Figure 2 we show our original
model extended with the addition of a Component Property
Certifier.

Component property certifier acts as a trusted third party.
A property certifier might verify credentials that were pro-
vided by the component implementer along with compo-
nents or, alternatively, create an additional credential. The
component implementer trusts the certification organization
with the source code for a component and the system de-
veloper trusts that the certificates supplied along with com-
ponents and obtained through a certifier are valid.

Figure 2: The model extended to support trusted
interaction.

Component
Technology
Implementer

Component
Property
Certifier

Component
Technology

Specifier

Reasoning
Framework
Developer

Component
Implementer

System
Implementer

D

A

E

C

B

I

G
FH

J

Component
Technology
Implementer

Component
Technology

Specifier

Reasoning
Framework
Developer

Component
Implementer

System
Implementer

D G

A

H

C

B

F

E

The original communication between the component im-
plementer and the system developer has been replaced by
an interaction between the component implementer and the
component property certifier and two new two-way interac-
tions have been added.

• The redirection of interaction G forces the supply of
components to go through the certifier. This is probably
not optimal as is discussed further in the Section 5.

• The two-way interaction I between reasoning framework
developer and property certifier represents the mutually
informing relationship between the developer of compo-
sitional analysis techniques and the user of them. The
reasoning framework developer might devise an algo-
rithm that requires knowledge of component internals
that are not certifiable. In this case the property certifier
needs to notify the developer of the analysis technique so
that adaptations to the algorithm can be explored.

• The two-way interaction J between the property certifier
and system developer indicates that a request from the
developer for components with specific certificates and
property certifier’s supply of those components.

This model, as depicted in Figure 2, is analogous to the
"confidentiality service" available via yahoo's mail service.
This service assures confidentiality among participants
when communicating over the Web via a secure 3rd party.

There are other ways of achieving confidentiality over the
Web. For instance, two participants can communicate con-
fidentially through their use of private keys and encryption.
So, why should we assume there is a "certifier" role in the
component marketplace model that provides "trust?" Per-
haps there is a duality here: we can either achieve trust in a
property through a dedicated component, or through the
distribution of the logical responsibilities of that component
among the participants, i.e., over a pattern of interaction.

We introduce the notion of active component dossier, or
dossier for short, in which the component implementer
packs a component along with everything needed for the
component to be used in an assembly. A dossier is an ab-
stract component that defines certain credentials, and pro-
vides benchmarking mechanisms that, given a component,
will fill in the values of these credentials.

A dossier is customized for particular types of components.
Our desire to support customization is based on the fact that
certain types of components are more likely to be used in
certain types of systems for which certain types of analyses
are appropriate. For instance, a particular dossier might
contain an audio input component that one would expect to
be used in audio applications where performance is an is-
sue. Therefore the dossier contains, at a minimum, a postu-
lated credential that provides an expected range for a la-
tency measure, and a test harness that is adaptable to the

environment in which the component is to be deployed so
that the validity of the latency measure can be tested in
locus.

As mentioned in Section 4 in the context of our description
of the role of the reasoning framework developer, there are
properties that can be determined from the static descrip-
tion of the system alone. For each of these properties the
dossier contains a credential that includes the property
name, the value, and the name of the tool used to determine
the value.

What is important is that the dossier supports performance
of assembly-level analysis before commitment is made to
acquire a specific component. The measure of a compo-
nent property must be automated, and the measures associ-
ated with a component must be reliable.

The use of the active dossier to achieve trust allows the
interaction pattern shown in Figure 1 to remain. However,
the responsibilities associated with the component imple-
menter and the system developer are extended to include
the packing, unpacking, and use of the dossier.

5 DISCUSSION

The notion of active dossier grew out of our experience in
trying to package latency measures with components. We
discovered that there are certain aspects a component’s
structure, such as minimal cycle time, that can affect the
way in which the component’s latency should be measured.
While average expected latency can be estimated in the
component development environment, verification of these
measurements must take place in the proposed deployment
environment, thus we create the dossier as a means to pro-
vide a system developer with the information and tools
necessary to validate average component latency.

The dossier mechanism is more scaleable than a third party
certifier because it distributes the effort and avoids a central
service bottleneck. It also supports the notion of making
component selection decisions that are contingent on the
verification of postulated credentials within the deployment
environment. However, there are unresolved issues associ-
ated with the model. For instance, it is not clear who
should define the contents of a given dossier. In fact, it
may well be the case that several participants will have a
say and participation in the decision-making process will
require extra effort by all parties.

6 OPEN QUESTIONS

There are many issues that must be addressed before the
definition of active dossier is finalized. These issues in-
clude determining how to create a tamperproof dossier,
how to certify measurement techniques so that the system
developer can put trust in measurements made by the com-
ponent implementer, and how to define an economy of

components that includes the notion of contingent pur-
chases for those cases when a measurement must be made
by the system developer.

We realize that there are many other important issues re-
lated to the idea of using an active dossier to achieve trust.
We leave this as an open topic. Additionally, there are
other basic questions of trust that we feel are important
areas for discussion. For instance, What level of trust is
required under different circumstances? Are there other
mechanisms that might be used to support trust? If so, are
there different levels of trust associated with them and can
knowledge of these differences be used to direct usage of
different mechanisms under different conditions.

7 REFERENCE

1. F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda,
F. Long, J. Robert, R. Seacord and K. Wallnau. Vol-
ume II: Technical Concepts of Component-Based
Software Engineering. Technical Report CMU/SEI-
2000-TR-008. Software Engineering Institute, Pitts-
burgh, Pennsylvania, May 2000.

2. J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-Based Soft-
ware. Addison-Wesley, Boston, Massachusetts, 2000.

3. G.T. Heineman and W.T. Councill (eds.). Component-
Based Software Engineering: Putting the Pieces To-
gether. Addison-Wesley, Reading, Massachusetts,
2001.

4. M. Klein and J. Goodenough. Rate Monotonic Analy-
sis for Real-Time Systems. Technical Report
CMU/SEI-91-TR-006. Software Engineering Institute,
Pittsburgh, Pennsylvania, 1991.

5. J. Rumbaugh, G. Booch and I. Jacobson. The Unified
Modeling Language Reference Manual (UML). Addi-
son Wesley Longman, Inc. December 1998.

6. M. Shaw. Truth vs Knowledge: The Difference Be-
tweeen What a Component Does and What We Know
It Does. Proceedings of the 8th International Work-
shop on Software Specification and Design, March
1996.

7. J.A. Stafford and K.C. Wallnau. Predictable Assembly
from Certifiable Components. Technical Note
CMU/SEI-2001-TN-001.

8. J.A. Stafford and A.L. Wolf. Annotating Components
to Support Component-Based Static Analysis of Soft-
ware Systems, Proceedings of Grace Hopper Confer-
ence 2000 (on CD-ROM), Hyannis, Massachusetts,
September, 2000. Also available in hard copy form as
University of Colorado technical report CU-CS-896-
99.

9. C. Szyperski. Component Software Beyond Object-
Oriented Programming. Addison-Wesley, Boston,
Massachusetts and ACM Press, 1998.

10. UL 1998, 2nd ed. 1998. UL Standard for Safety for
Software in Programmable Components. Underwriters
Laboratories, Inc. Northbrook, IL.

6

