
Vulnerability Detection in ActiveX Controls
through Automated Fuzz Testing

Will Dormann and Dan Plakosh

CERT R© Coordination Center
Software Engineering Institute

4500 Fifth Avenue, Pittsburgh, PA 15213-2612
http://www.cert.org

Abstract. Vulnerabilities in ActiveX controls are frequently used by
attackers to compromise systems using the Microsoft Internet Explorer
web browser. A programming or design flaw in an ActiveX control can
allow arbitrary code execution as the result of viewing a specially-crafted
web page. In this paper, we examine effective techniques for fuzz testing
ActiveX controls, using the Dranzer tool developed at CERT. By testing
a large number of ActiveX controls, we are able to provide some insight
into the current state of ActiveX security.

1 Introduction

We live in a world where software vulnerabilities are pervasive. One important
aspect of a vulnerability is how it can be reached, or what are its attack vectors.
In the early days of the internet, server-side vulnerabilities were targeted the
most. For example, the Morris Worm of 1988 worked by exploiting vulnerabilities
in sendmail and fingerd [1]. Even as late as 2001, vulnerabilities in high-profile
network server software were widely exploited [2]. As the internet landscape
has changed, there has been a shift in focus to client-side vulnerabilities [4].
With most software vulnerabilities, the attack vector is to cause the vulnerable
application to process specially-crafted data. With server-side applications, such
as sendmail or fingerd, an attacker may connect to the vulnerable service as a
client and send data that was crafted in a way that causes the service to crash
in an exploitable manner. As time passed, popular services have become robust
through thorough testing, and firewalls have become more commonplace, which
restrict the number of server-side applications an attacker may be able to access.
But at the same time, the number of client systems connected to the internet
and the functionality of client software has increased dramatically.

Web browsers are of high interest when it comes to client-side vulnerabili-
ties. The normal operation of a web browser is to parse, interpret, and render
untrusted content that is provided by a web server. In the early days of the
web, a web browser’s primary functions were text layout, image rendering, and
hyperlink navigation. Even with this limited functionality, viewing a malicious
web page could cause the execution of arbitrary code. For example, the image

http://www.cert.org


Vulnerability Detection in ActiveX Controls 2

rendering library used by a web browser may crash when processing a crafted
JPEG image [3]. Depending on the details of the crash, it may be exploitable
to run code of the attacker’s choice. The introduction of Netscape 2.0 in March
of 1996 brought with it the support of a scripting language called JavaScript.
While JavaScript revolutionized user interactivity with web pages, it also turned
out to be a technology that is frequently leveraged by attackers.

With the release of Internet Explorer 3.0 in 1996, Microsoft introduced sup-
port for ActiveX, which originated as the Component Object Model, or COM [5].
COM allows developers to make reusable objects that can be used by other ap-
plications. COM objects can be written in a variety of programming languages.
The minimum requirement is that the object implements the IUnknown inter-
face [6]. A COM object that has been designed for use in the Internet Explorer
web browser is commonly referred to as an ActiveX control [7]. With its support
for ActiveX controls, Internet Explorer allowed for the creation of web pages
that had never-before seen levels of functionality. ActiveX controls are not lim-
ited by a sandbox like Java applets [8], and any Windows developer could easily
make their code available for use in the Internet Explorer web browser. Internet
Explorer’s support for both ActiveX and scripting languages gives the browser
a large attack surface [9] and a high level of control, which makes it a primary
target for attackers.

Because of the ubiquity of Internet Explorer and ActiveX, CERT developed
a fuzz tester [10] for detecting vulnerabilities in ActiveX controls. The remainder
of this paper is structured as follows. Section 2 looks at some historical events
and also other rationale for investigating ActiveX security. Section 3 describes
the attack surfaces of ActiveX controls. Section 4 discusses how we test these
attack surfaces of ActiveX controls, and also describes the techniques used to
automate the test processes. As the result of testing a large number of ActiveX
controls, we have been able to compile the results to obtain the statistics listed
in section 5.

2 History and Rationale

On August 22 and 23, 2000, the CERT Coordination Center held a workshop in
Pittsburgh, Pennsylvania to discuss security issues related to ActiveX controls
[11]. The result of this workshop was a paper that thoroughly documents Ac-
tiveX, its risks, and the actions that end-users and developers can use to more
safely use ActiveX. In this paper, several ActiveX vulnerabilities are described,
including the Microsoft scriptlet.typelib and Eyedog vulnerabilities [12]. The
scriptlet.typelib ActiveX control contained unsafe methods, yet it was marked
as “Safe for Scripting” in Internet Explorer. As a result, this control was widely
exploited by the KAK virus and the Bubbleboy exploit [11]. The Eyedog ActiveX
control contained unsafe methods and was also vulnerable to buffer overflow [12].

On November 2, 2004, Internet Exploiter 0.1 was published by Berend-Jan
Wever to the Full-Disclosure mailing list [13]. This segment of JavaScript code
prepares heap memory on client systems to facilitate exploitation of bugs that

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 3

cause memory access violations. In this particular case, it was used to exploit
the Internet Explorer IFRAME element buffer overflow [14].

On March 1, 2005, Shane Hird posted a message to the Bugtraq mailing list
titled “IObjectSafety and Internet Explorer” [15]. This post describes the process
that Internet Explorer uses to determine if an ActiveX control is safe for scripting
or initialization. When Internet Explorer checks if a control implements the
IObjectSafety interface, it requires the COM server process to start. In certain
cases, this can cause Internet Explorer to crash in a way that may be exploitable
to execute arbitrary code [16]. Hird described this process as a “design flaw.”
A tool called axfuzz [17] was released, which can check if a control implements
IObjectSafety and can perform basic fuzz tests.

The combination of the publicly-available Internet Exploiter JavaScript code
and the publicly-available axfuzz testing tool made it easier for people to discover
ActiveX vulnerabilities [18]. The first vulnerable COM object that CERT/CC
discovered that crashes in manner described by Hird is the BlnMgr Proxy COM
object [19], which comes with Microsoft Office. This vulnerability was discovered
using a modified version of axfuzz along with a PHP web page that attempts
to sequentially instantiate COM objects that are specified in an input list. Any
controls that caused a crash were later investigated with a debugger to determine
if the crash appeared to be exploitable.

Several characteristics about ActiveX served as motivation to spend the ef-
fort to develop a fuzz testing tool. First is ubiquity. Microsoft Windows is the
most popular desktop operating system, and Internet Explorer is the default
web browser in Windows. The default configuration of Internet Explorer has
ActiveX enabled. Second is uniformity. ActiveX provides a standard interface,
which simplifies the ability to fuzz test whatever code may lie behind that inter-
face. The final characteristic is coverage. Microsoft is not the only vendor that
uses ActiveX. By writing an ActiveX fuzz testing tool, we are able to test code
that is written by multiple vendors in any language from any part of the world.
For these reasons, we developed the “Dranzer” ActiveX fuzz tester.

3 ActiveX Attack Surfaces

ActiveX controls can have several types of flaws that may be leveraged by at-
tackers. We refer to these types of flaws as “attack surfaces.”

3.1 Crash on Instantiation

As explained in the Bugtraq post by Hird, some COM objects cause Internet
Explorer to crash when it checks for the IObjectSafety interface of the control.
Such controls were likely never designed to be used in the Internet Explorer web
browser. Simply opening a web page that refers to one such control can cause the
browser to crash. Depending on the nature of the crash, it may be exploitable
to run arbitrary code through use of heap-spraying techniques like Internet Ex-
ploiter. A crash that results from a null pointer dereference is less likely to be

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 4

exploitable than one that references a memory location that is reachable via
heap spraying.

3.2 Input Validation

An ActiveX control may be exploitable if it fails to properly validate input. For
example, if an ActiveX control accepts a string from an untrusted source, it may
be vulnerable to a buffer overflow if it does not properly validate that string
length.

Methods and Properties One of the characteristics of an ActiveX control is
whether it is “Safe for Scripting” or not. A control can indicate that it is Safe for
Scripting either through the IObjectSafety interface or the appropriate registry
key [20]. When an ActiveX control asserts that it is Safe for Scripting, it means
that Internet Explorer can call its methods and get or set its properties through
use of scripting, such as JavaScript or VBScript. If the control fails to properly
validate input to its methods, it may cause a crash as the result of receiving
malformed data to its methods.

Initialization Parameters Just as a control may assert Safe for Scripting, it
may also indicate that it is “Safe for Initialization” with persistent data. Rather
than passing malformed data to a control’s methods, it may be possible to pass
malformed data as a parameter to the control when it is initialized.

3.3 Unsafe Methods

It is up to an ActiveX control’s developer to mark the control as Safe for Scripting
if it has methods that are designed to be used in Internet Explorer. Microsoft
provides guidelines [21] for how to determine if a control should be marked as safe
or not, however in many cases a control is incorrectly marked Safe for Scripting
when it contains methods than can be abused by attackers.

4 Test Methodology

4.1 Crash on Instantiation

For COM objects that cause Internet Explorer to crash when a web page refer-
ences the control, Dranzer generates HTML test case files and opens them with
Internet Explorer. Dranzer sets the Alternate Data Stream Zone.Identifier to
have Internet Explorer treat the test case as if it were loaded from the Internet
zone. The reason for this is that the Local Machine zone has different security
properties than the Internet zone, and consequently ActiveX controls may be-
have differently based on their zone. When Internet Explorer is launched to open
the test case, a debugger is attached to the web browser. Once loaded, the page
is reloaded, the ActiveX control is clicked, and then the browser is closed. If a
crash occurs at any point, Dranzer logs the details for the COM object and the
crash.

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 5

4.2 Input Validation

Methods and Properties Dranzer tests an ActiveX control’s methods with-
out using the Internet Explorer web browser or Windows Scripting Host. The
ActiveX control is created in the process space of the testing tool, which dramat-
ically increases test performance. Dranzer will emulate the routines that Internet
Explorer uses to determine if a control is Safe for Scripting or not, and whether
the control has a kill bit [22] set. For controls that can be scripted by Internet
Explorer [23], Dranzer gets and sets its methods, and calls its methods using
malformed data. For example, if a method accepts a string parameter, Dranzer
tests the method by calling it with a 10k long string of lowercase ‘x’ characters.
This test can find buffer overflow vulnerabilities. Integer parameters receive a
value of ‘-1’ to check for integer overflow vulnerabilities. Dranzer establishes an
exception handler to capture access violation details and continue when possi-
ble. When an access violation is encountered by calling a method or property,
Dranzer records a complete backtrace for the ActiveX control test. This is done
because in many cases, the last method called when the access violation occurs
is not the one that actually contained the fault. Consider the following sequence:

Method1(BSTR param1)
Method2()

It is possible that Dranzer reports an access violation in Method2, but in actual-
ity it is likely that Method1 is where the overflow occurred, and calling Method2
triggered the access violation caused by the overflow. We refer to this type of
flaw as a “second-order” vulnerability [24].

Initialization Parameters Unlike the testing of methods and properties,
Dranzer uses Internet Explorer to test initialization parameters. This is done
so that the passing of parameters from the HTML page to the ActiveX control
is reproduced exactly as it occurs in the web browser. Additionally unlike the
testing process for methods and properties, there is not a well-defined routine
for obtaining the initialization parameters that an ActiveX control may accept.
Dranzer employs two techniques for determining initialization parameter can-
didates. One technique uses the IPropertyBag interface of the ActiveX control.
The other technique searches for text in sections of the COM server binary. The
combination of these two techniques is effective in finding initialization param-
eters in an automated fashion. Once Dranzer compiles a list of initialization
parameter candidates, it generates an HTML test case file and loads it into In-
ternet Explorer, similar to the crash on instantiation test. The OBJECT section
of the test case has a PARAM element that contains a malformed value. For
example, a 10k string of lowercase ‘x’ characters is used for string parameters. If
Internet Explorer crashes when opening the test case file, the file is copied to the
Dranzer directory and the crash details are logged. The test case can be used to
reproduce the crash. Further investigation is required to determine which of the
initialization parameters caused the crash.

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 6

4.3 Unsafe Methods

Dranzer is unable to programmatically determine if an ActiveX control contains
unsafe methods. This is because the name of a method may not accurately repre-
sent what the method actually does. For example, DownloadAndExecute(BSTR
url) may be perfectly safe and S(BSTR p1) may be dangerous. Also, some con-
trols may contain dangerous methods but are tied to specific domains. This can
be accomplished through the SiteLock template, for example [25]. An ActiveX
control that is locked to a specific domain generally cannot be abused by at-
tackers unless the host name lookup methodology of a client system is subverted
[26]. For these reasons, Dranzer can only report the methods that are exposed
by a control that is marked as Safe for Scripting. Manual testing is required to
determine if a control contains unsafe methods that could be used by an at-
tacker. We developed a set of web pages called the ActiveX Workspace for this
purpose. Through use of the ActiveX Workspace, a control’s properties can be
retrieved (using get) or set, and methods can be called, all while examining the
behavior of the system. For example, Process Monitor [27] can be used to mon-
itor registry, file, and thread details, and Wireshark [28] can be used to monitor
network traffic.

4.4 General ActiveX Fuzzing Design

Dranzer was designed to minimize or eliminate any required human interaction.
This allows a large number of controls to be tested effectively with a minimal
amount of effort.

Button Clicker Many ActiveX controls present new windows or dialogs when
the control is initialized or certain methods are called. If these windows are not
dismissed, the testing process can hang. Dranzer installs a global hook during
the testing process to address this problem. Dranzer monitors all open windows
and when a new window is activated, Dranzer determines if a window contains
any buttons by looking for the class name “button” within the child windows. If
the child window contains a button, the display name is obtained by using the
GetWindowText() API. If a button contains a display name such as “OK,” “No,”
or “Cancel,” Dranzer clicks the button based on its priority as determined by
its order in the “act upon” list. Dranzer will also close new windows, regardless
of whether they have buttons or not. This design feature allows Dranzer to test
most controls without reporting a hang due to a window that is opened.

Master / Slave Architecture The Dranzer ActiveX testing tool is imple-
mented with a master/slave architecture. The Dranzer process is the master,
which spawns the TestAndReport process. TestAndReport is the process that
hosts the ActiveX control and performs the fuzz testing. In certain cases, an
ActiveX control may cause the process that hosts the control to hang. If the
TestAndReport process hangs, the master Dranzer process detects this, logs the

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 7

hang, and proceeds to test the next object. Some ActiveX flaws may cause the
slave test process to experience an unhandled exception. For example, a stack
buffer overflow in an ActiveX control may overwrite the Structured Exception
Handler (SEH) [29] of the process that is hosting the control. In such a case,
the test process will terminate without being able to capture the details of the
access violation. In the cases of both hangs and unhandled exceptions, the mas-
ter/slave architecture of Dranzer allows the tests to continue where other testing
tools may fail.

Process Monitor Certain ActiveX controls may cause other processes to be
spawned when the control is initialized or tested. When testing large numbers
of controls, these extra processes may slow the system down and may interfere
with test results. When an object is tested, Dranzer will take a snapshot of all
processes running on the system. After the test completes, any extra processes
are terminated. In tests that require Internet Explorer, Dranzer checks if Internet
Explorer is running before performing the test. If it is running, Dranzer will
terminate the process before proceeding. In our testing, several ActiveX controls
behave differently if another Internet Explorer window is open. By eliminating
this extra variable, we are able to get more accurate results.

Command-Line Driven While perhaps daunting to the new user, Dranzer was
designed to be a command-line tool. Command-line tools are easily scriptable,
while GUI tools can be difficult to automate.

ActiveX Test Target Selection Dranzer was designed to be flexible in the
selection of ActiveX test targets. For example, one may wish to target a specific
control. In such a case, the “include list” feature of Dranzer would be used. In
this list, the user includes the CLSID [30], or unique identifier, for the ActiveX
control. When run with the appropriate command line flags, Dranzer will test
only those ActiveX controls that are specified.

Another useful way of running Dranzer is with the “exclude list” feature.
Consider the case where it is not known which ActiveX controls an application
may install. One can run Dranzer to generate a baseline of ActiveX controls
installed at that time, then install the application, and then run Dranzer again,
excluding those ActiveX controls in the baseline. For example, Ahead Nero 8
[31], which is a popular CD and DVD burning program for Windows, installs
1053 COM objects in our testing. Without the ability to use exclude lists, it
would not be practical to test each of the controls that an application installs.

5 Dranzer Test Results

From a fuzz-testing perspective, only certain types of COM objects are of inter-
est. We are concerned primarily in ActiveX controls that are exploitable using
Internet Explorer as an attack vector. Excepting COM objects that cause a

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 8

crash upon instantiation, the controls that are either marked Safe for Scripting
(SFS) or Safe for Initialization (SFI) are the primary targets because they can be
forced to process data from an untrusted source. If an ActiveX control contains
a buffer overflow in a method but is not marked SFS, Internet Explorer cannot
be used to call that method. If one must run a specially-written application to
exploit that control, that doesn’t give the attacker any advantage, as the victim
is already running an arbitrary program at that point.

In our testing, we found that a Windows XP SP2 system contains 2701 COM
objects by default. Out of these controls, 375, or 13.88 percent, are marked as
either SFS or SFI. The percentage of ActiveX controls that are either SFS or
SFI varies depending on the type of software used. For example, out of the
1053 COM objects installed by Ahead Nero 8, only four are either SFS or SFI.
While testing stand-alone applications can be useful in checking their security,
the return on investment (ROI) is not ideal. Each application must be selected
manually, installed manually, and then tested. And out of the installed COM
objects, a relatively low percentage of those will be marked SFS or SFI.

Downloaded ActiveX controls have multiple advantages over those installed
by stand-alone applications. If a web page wants to use an ActiveX control, it
can specify the CODEBASE or download location for that control [32]. Because
downloaded ActiveX controls are generally all designed to be used in a web
browser, a higher percentage of them are typically marked SFS or SFI. Windows
keeps track of all ActiveX controls that it has downloaded and the associated
download location for the control in the Windows registry. The final advantage of
downloaded ActiveX controls comes in the method that can be used to determine
test targets. A popular Windows program that is used to help browser users
troubleshoot their web browsing experience is HijackThis [33]. This application
takes an inventory of the various aspects of a Windows system that can affect
web browsing. These reports are commonly posted on forums where analysts
indicate which items need to be removed because they are spyware, are malicious,
or contain other unnecessary components. One of the sections of a HijackThis
report is a list of downloaded ActiveX controls, along with the location from
which the control was downloaded.

By scraping HijackThis reports from various web forums, we have been able
to compile a list of downloadable ActiveX controls, while archiving the controls at
the same time. Not only does this give us a wide variety of software from different
vendors in different countries to test, many downloadable ActiveX controls can
be installed in an automated fashion. For the test results section of this paper,
we focus on a set of 5956 ActiveX controls that were discovered in HijackThis
reports and downloaded from the Internet. Because of the unknown nature of
the controls being installed, the test environment consisted of a virtual machine
that was on a network with no internet connectivity. For this reason, ActiveX
controls that functioned as “downloader” controls to obtain additional software
were not able to successfully download their payload.

Table 1 contains a breakdown of the properties of the downloaded ActiveX
controls. Over half of ActiveX controls installed from the web are either SFS or

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 9

SFI. If a control is either SFS or SFI, it is most likely that it is both SFS and
SFI. In some cases, the control is marked as SFS-only, and in a small number
of cases, the control is marked as SFI-only. Figure 1 is a Venn diagram that
demonstrates this distribution.

Table 1. Downloaded control safety distribution

Type Count Percent

SFS Only 971 16.30%
SFI Only 29 0.49%
SFS and SFI 2097 35.21%
SFS or SFI 3097 52.00%
Not Safe 2859 48.00%

Total 5956 100.00%

Fig. 1. Downloaded control safety distribution diagram

Table 2 shows the test results for those downloaded ActiveX controls that
are either SFS or SFI. All Dranzer tests were performed on the controls that
were either SFS or SFI

Approximately 23 percent of downloaded ActiveX controls that are either
SFS or SFI fail at least one Dranzer test, resulting in a crash. Certain crashes
are more likely to be exploitable than others. Table 3 shows which crashes look
to be exploitable based on the Dranzer reports. For our report, an interesting
crash is one that has one of three characteristics: First, the access violation occurs

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 10

Table 2. Safe for Scripting or Safe for Initialization control test results

Result Count Percent

Pass 1779 57.44%
Hang 613 19.79%
Crash 705 22.76%

Total 3097 100.00%

when attempting to execute code at a certain address. If this address is reachable
with heap spraying, then it is usually trivial to create an exploit web page for
the vulnerability. Second, the control caused an unhandled exception. In these
cases, the Structured Exception Handler (SEH) is often overwritten as the result
of a stack buffer overflow, which are also usually exploitable. Third, the access
violation occurred at an address under control of the attacker. For example, a
buffer overflow with a string of lowercase ‘x’ characters that results in an access
violation trying to read memory location 0x78787878. In our testing, all three
of these types of crashes have a high chance of exploitability. Table 3 also has
a breakdown of the interesting crashes. Note that the percentages for the three
types of interesting crashes adds up to more than 100 percent. This because a
single control may fail multiple Dranzer tests with different crash characteristics.

Table 3. Crash characteristics for Safe for Scripting or Safe for Initialization
objects that failed Dranzer tests

Crash Type Count Percent

Less interesting 421 59.72%
Interesting 284 40.28%

Total 705 100.00%

Interesting crashes Count Percent

Access violation executing 63 22.18%
Unhandled exception 173 60.92%
Attacker-controlled address 105 36.97%

Total 284 100.00%

6 Related Work

CERT Dranzer was developed because of limitations with the other publicly-
available ActiveX fuzz testing tools. Below is a brief description of the other
ActiveX tools. Table 4 compares the tools using a known vulnerable ActiveX
control, the AOL YGP Pic Downloader Plugin [34].

6.1 Axfuzz

Axfuzz [17] provided the initial model for creating the Dranzer tool. Evaluating
the software on an entire system requires a combination of axenum (used to

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 11

enumerate the COM objects on a system) and axfuzz tools. In cases where the
testing tools crash, the tools must be restarted manually at a point after the
crash. Crash details are not included in the reports.

6.2 COMRaider

COMRaider [35] is a graphical tool for fuzz testing a single COM object. Crash
details are included, which can aid in the determination of which COM flaws
may be exploitable. Due to the program design, a high level of user interaction
is required, and brute force testing of multiple COM objects is not easy.

6.3 AxMan

AxMan [36] is a web-based ActiveX fuzzing tool. Because it is web-based, it re-
quires a web server and a high amount of user interaction to work. An advantage
AxMan holds over a tool like COMRaider is that it can batch process multiple
COM objects at a time. A debugger must be attached manually to Internet Ex-
plorer to retrieve crash results. Once a crash is encountered, the test process
must be restarted manually after the crash occurs.

6.4 COMbust

COMbust [37] is a COM auditing tool presented at a BlackHat Briefing in
July 2003, by Frederic Bret-Mounet of @stake (now Symantec). COMbust is
a command-line tool that includes multiple test cases for each parameter. How-
ever, because the testing occurs in a single process, it is difficult to determine
vulnerable methods beyond the first one.

Table 4. Comparison of ActiveX fuzz testing tools.

Dranzer axfuzz COMRaider AxMan COMbust

Test time 1 sec 4 sec 140 sec 660 sec 2 sec
Exceptions found 3 2 3 1 1
Test instantiation crash Yes No No No No
Test methods (SFS) Yes Yes Yes Yes Yes
Test initialization (SFI) Yes No No No No
Test unsafe methods Yes No No No Yes
Output Text Text Database None Text
User interaction required None Medium High High Medium
Test multiple objects Yes Yes Yes Yes No
Test method sequences Yes Yes No Yes Yes
Crash details reported Yes No Yes No No

Copyright 2008 Carnegie Mellon University



Vulnerability Detection in ActiveX Controls 12

7 Conclusion

We have learned through testing thousands of ActiveX controls that using In-
ternet Explorer with ActiveX enabled is a high-risk activity because Internet
Explorer can be coerced to install malicious software or provide an intruder
with a way to compromise your system. Automation is essential to be able to
test a large amount of software. This was achieved through automation inter-
nal to the design of Dranzer itself and also through the automation of ActiveX
control discovery, ActiveX control archiving, and ActiveX control installation
on a test machine. For safe web browsing, the CERT/CC suggests disabling
ActiveX for the Internet zone [38]. However because the default configuration
for Internet Explorer is to enable ActiveX in the Internet zone, end-users are
being put at risk. The tests that Dranzer currently performs are finding only
the simplest buffer and integer overflows, and yet it has been effective in finding
vulnerabilities.

8 Future Work

Dranzer is well-architected, as demonstrated by its ability to test a large volume
of ActiveX controls with minimal user interaction. However, there are several
areas where Dranzer can be improved, for instance by adding more test cases.
Rather than just a simple 10k string of lowercase ‘x’ characters or a -1 integer,
Dranzer could test for format string vulnerabilities, more integer edge cases, or
special strings, such as those beginning with “http://.” Another improvement
we have contemplated is to test methods and parameters in different orders.
Dranzer currently uses one order with properties first and then methods after
that. Dranzer could find more vulnerabilities by simply randomizing the test
order, or perhaps by using a more intelligent algorithm that tests methods with
the most number of parameters first and the least number of parameters last.
Dranzer could also combine initialization parameter tests with method and prop-
erty tests for those controls that are both SFS and SFI.

Dranzer is already an effective tool, but it should prove to be even more
useful with these improvements.

References

1. RFC 1135 The Helminthiasis of the Internet (1989), http://tools.ietf.org/html/
rfc1135

2. CERT R© Incident Note IN-2001-03, Exploitation of BIND Vulnerabilities (2001),
http://www.cert.org/incident_notes/IN-2001-03.html

3. JPEG COM Marker Processing Vulnerability in Netscape Browsers
(and Microsoft Products) (2000), http://www.openwall.com/advisories/

OW-002-netscape-jpeg/

4. CORE Security, Client-side Exploits, http://www.coresecurity.com/?module=

ContentMod&action=item&id=519

Copyright 2008 Carnegie Mellon University

http://tools.ietf.org/html/rfc1135
http://tools.ietf.org/html/rfc1135
http://www.cert.org/incident_notes/IN-2001-03.html
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.coresecurity.com/?module=ContentMod&action=item&id=519
http://www.coresecurity.com/?module=ContentMod&action=item&id=519


Vulnerability Detection in ActiveX Controls 13

5. The Component Object Model: A Technical Overview, http://msdn2.microsoft.
com/en-us/library/ms809980.aspx

6. INFO: Difference Between OLE Controls and ActiveX Controls, http://support.
microsoft.com/kb/159621

7. Security Vulnerability Research & Defense : The Kill-Bit FAQ: Part
2 of 3 http://blogs.technet.com/swi/archive/2008/02/07/The-Kill_2D00_

Bit-FAQ_3A00_-Post-2-of-3.aspx

8. Java Security Architecture: The Original Sandbox Model, http://java.sun.com/
j2se/1.4.2/docs/guide/security/spec/security-spec.doc1.html#18313

9. Howard, M., Pincus, J., and Wing, J.: Measuring Relative Attack Surfaces (2003),
http://www.cs.cmu.edu/%7Ewing/publications/Howard-Wing03.pdf

10. Sawyer, J.: Tech Insight: The Buzz Around Fuzzing, Fuzzing tools can help identify
vulnerabilities before the bad guys do http://www.darkreading.com/document.

asp?doc_id=144773

11. CERT/CC: Results of the Security in ActiveX Workshop., http://www.cert.org/
reports/activeX_report.pdf

12. Microsoft Security Program: Microsoft Security Bulletin (MS99-032) Patch Avail-
able for ”scriptlet.typelib/Eyedog” Vulnerability, http://www.microsoft.com/

technet/security/Bulletin/MS99-032.mspx

13. MSIE <IFRAME> and <FRAME> tag NAME property bufferoverflow PoC
exploit (was: python does mangleme (with IE bugs!)), http://seclists.org/

fulldisclosure/2004/Nov/0053.html

14. Vulnerability Note VU#842160 Microsoft Internet Explorer vulnerable to buffer
overflow via FRAME and IFRAME elements, http://www.kb.cert.org/vuls/id/
842160

15. IObjectSafety and Internet Explorer, http://www.securityfocus.com/archive/
1/391803

16. Vulnerability Note VU#959049 Multiple COM objects cause memory corruption
in Microsoft Internet Explorer, http://www.kb.cert.org/vuls/id/959049

17. SourceForge.net: axfuzz, http://sourceforge.net/projects/axfuzz/
18. MoAxB - Month of ActiveX Bug, http://moaxb.blogspot.com/
19. Vulnerability Note VU#898241 Microsoft BlnMgr Proxy (blnmgrps.dll) COM

object fails to implement required methods, http://www.kb.cert.org/vuls/id/

898241

20. Safe Initialization and Scripting for ActiveX Controls, http://msdn2.microsoft.
com/en-us/library/aa751977.aspx

21. Designing Secure ActiveX Controls, http://msdn2.microsoft.com/en-us/

library/aa752035.aspx

22. How to stop an ActiveX control from running in Internet Explorer, http://

support.microsoft.com/kb/240797

23. Security Vulnerability Research & Defense : Not safe = not dangerous? How to
tell if ActiveX vulnerabilities are exploitable in Internet Explorer, http://blogs.
technet.com/swi/archive/2008/02/03/activex-controls.aspx

24. Ollmann, G.: Second-order Code Injection Attacks,
HowtostopanActiveXcontrolfromrunninginInternetExplorer

25. SiteLock Template 1.04 for ActiveX Controls, http://msdn.microsoft.com/

archive/en-us/samples/internet/components/sitelock/default.asp?frame=

true

26. Vulnerability Note VU#400601 Symantec Automated Support Assistant ActiveX
control buffer overflow, http://www.kb.cert.org/vuls/id/400601

Copyright 2008 Carnegie Mellon University

http://msdn2.microsoft.com/en-us/library/ms809980.aspx
http://msdn2.microsoft.com/en-us/library/ms809980.aspx
http://support.microsoft.com/kb/159621
http://support.microsoft.com/kb/159621
http://blogs.technet.com/swi/archive/2008/02/07/The-Kill_2D00_Bit-FAQ_3A00_-Post-2-of-3.aspx
http://blogs.technet.com/swi/archive/2008/02/07/The-Kill_2D00_Bit-FAQ_3A00_-Post-2-of-3.aspx
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc1.html#18313
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc1.html#18313
http://www.cs.cmu.edu/%7Ewing/publications/Howard-Wing03.pdf
http://www.darkreading.com/document.asp?doc_id=144773
http://www.darkreading.com/document.asp?doc_id=144773
http://www.cert.org/reports/activeX_report.pdf
http://www.cert.org/reports/activeX_report.pdf
http://www.microsoft.com/technet/security/Bulletin/MS99-032.mspx
http://www.microsoft.com/technet/security/Bulletin/MS99-032.mspx
http://seclists.org/fulldisclosure/2004/Nov/0053.html
http://seclists.org/fulldisclosure/2004/Nov/0053.html
http://www.kb.cert.org/vuls/id/842160
http://www.kb.cert.org/vuls/id/842160
http://www.securityfocus.com/archive/1/391803
http://www.securityfocus.com/archive/1/391803
http://www.kb.cert.org/vuls/id/959049
http://sourceforge.net/projects/axfuzz/
http://moaxb.blogspot.com/
http://www.kb.cert.org/vuls/id/898241
http://www.kb.cert.org/vuls/id/898241
http://msdn2.microsoft.com/en-us/library/aa751977.aspx
http://msdn2.microsoft.com/en-us/library/aa751977.aspx
http://msdn2.microsoft.com/en-us/library/aa752035.aspx
http://msdn2.microsoft.com/en-us/library/aa752035.aspx
http://support.microsoft.com/kb/240797
http://support.microsoft.com/kb/240797
http://blogs.technet.com/swi/archive/2008/02/03/activex-controls.aspx
http://blogs.technet.com/swi/archive/2008/02/03/activex-controls.aspx
How to stop an ActiveX control from running in Internet Explorer
http://msdn.microsoft.com/archive/en-us/samples/internet/components/sitelock/default.asp?frame=true
http://msdn.microsoft.com/archive/en-us/samples/internet/components/sitelock/default.asp?frame=true
http://msdn.microsoft.com/archive/en-us/samples/internet/components/sitelock/default.asp?frame=true
http://www.kb.cert.org/vuls/id/400601


Vulnerability Detection in ActiveX Controls 14

27. Process Monitor v1.26 By Mark Russinovich and Bryce Cogswell, http://

technet.microsoft.com/en-us/sysinternals/bb896645.aspx

28. Wireshark: Go deep., http://www.wireshark.org/
29. Structured Exception Handling, http://msdn2.microsoft.com/en-us/library/

ms680657(VS.85).aspx

30. CLSID Key, http://msdn2.microsoft.com/en-us/library/aa908849.aspx
31. Nero - Nero - Nero 8, http://www.nero.com/enu/nero8-introduction.html
32. CODEBASE Attribute — codeBase Property, http://msdn2.microsoft.com/

en-us/library/ms533576(VS.85).aspx

33. TrendSecure — TrendMicro HijackThis Overview , http://www.trendsecure.

com/portal/en-US/tools/security_tools/hijackthis

34. Vulnerability Note VU#661524 AOL YGP Pic Downloader Plugin ActiveX control
buffer overflow, http://www.kb.cert.org/vuls/id/661524

35. Fuzzing Software Tools // iDefense Labs, http://labs.idefense.com/software/
fuzzing.php#more_comraider

36. AxMan ActiveX Fuzzer, http://www.metasploit.com/users/hdm/tools/axman/
37. COMbust, http://www.blackhat.com/presentations/bh-usa-03/

bh-us-03-bretmounet-combust.zip

38. Dormann, W., Rafail, J.: Securing Your Web Browser, http://www.cert.org/

tech_tips/securing_browser/

Copyright 2008 Carnegie Mellon University

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://www.wireshark.org/
http://msdn2.microsoft.com/en-us/library/ms680657(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms680657(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa908849.aspx
http://www.nero.com/enu/nero8-introduction.html
http://msdn2.microsoft.com/en-us/library/ms533576(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms533576(VS.85).aspx
http://www.trendsecure.com/portal/en-US/tools/security_tools/hijackthis
http://www.trendsecure.com/portal/en-US/tools/security_tools/hijackthis
http://www.kb.cert.org/vuls/id/661524
http://labs.idefense.com/software/fuzzing.php#more_comraider
http://labs.idefense.com/software/fuzzing.php#more_comraider
http://www.metasploit.com/users/hdm/tools/axman/
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-bretmounet-combust.zip
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-bretmounet-combust.zip
http://www.cert.org/tech_tips/securing_browser/
http://www.cert.org/tech_tips/securing_browser/

	Introduction
	History and Rationale
	ActiveX Attack Surfaces
	Crash on Instantiation
	Input Validation
	Methods and Properties
	Initialization Parameters

	Unsafe Methods

	Test Methodology
	Crash on Instantiation
	Input Validation
	Methods and Properties
	Initialization Parameters

	Unsafe Methods
	General ActiveX Fuzzing Design
	Button Clicker
	Master / Slave Architecture
	Process Monitor
	Command-Line Driven
	ActiveX Test Target Selection


	Dranzer Test Results
	Related Work
	Axfuzz
	COMRaider
	AxMan
	COMbust

	Conclusion
	Future Work

