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1 SUMMARY 

This report describes the work completed under grant FA9453-19-1-0013 entitled “State 

Initialization using Doppler-Shift of Radio Frequency Signals.” During the grant period of 

performance, the research team at Rensselaer Polytechnic Institute (RPI) investigated how 

signals from an unknown radio frequency (RF) transmitter might be used to infer the state 

(position and velocity) of the unknown transmitter. The work began by looking at Doppler 

observables, but quickly expanded to include a full array of RF observables --- including 

direction of arrival (DOA), time difference of arrival (TDOA), and others. We demonstrated how 

these observables might be used for geolocation (finding the position of a stationary transmitter 

on the Earth’s surface), initial orbit determination (IOD), and sequential estimation in an 

extended Kalman filter (EKF). Theoretical analyses and numerical studies were performed to 

determine the efficacy of different RF observables in different scenarios. Our work to date 

demonstrates that RF observables may be used to localize a transmitter, though additional 

investigation is required to arrive at numerically stable solutions for the fully generic state 

initialization (e.g., initial orbit determination) problem. 
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2 INTRODUCTION 

Navigation is vital for any vehicle requiring knowledge of its position and velocity to achieve its 

mission. Much of modern navigation is done using radio-frequency (RF) measurements, with 

applications across nearly all application environments --- land, maritime, air, and space. 

Examples of RF-based navigation systems abound, such as trilateration-based systems (e.g., 

Global Positioning System (GPS)) and hyperbolic positioning systems (e.g., Loran-C) [1]. The 

proposed work explores the mathematics of RF-only localization. The exact same mathematical 

framework may be used to (1) localize an unknown transmitter with signals received at many 

stations or (2) to navigate a vehicle whose receiver observes signals originating from many 

known transmitters.  

Widespread use of Doppler measurements for vehicle localization dates back to World War II, 

and Doppler measurements have remained a valuable tool in navigation since then. Doppler 

measurements are easily attainable, and sources of waves from which to take these 

measurements are pervasive and inexpensive. Doppler navigation can be done using RF 

measurements taken from WiFi sources [2] [3], from TV and cell phone towers [4] [5], from

GPS satellites [6] [7], and from many other sources.

In this work, we focus on the problem of localizing a RF transmitter broadcasting at an unknown 

frequency from an unknown location. The simplest scenario is the geolocation problem, where 

the transmitter is assumed to be stationary on the surface of the Earth---and we develop a number 

of solutions for this specific situation. More challenging is the case of a moving transmitter, 

which would generally be the case for a transmitting satellite. In this situation, both the position 

and velocity of the transmitter are unknown. Relatively straightforward solutions exist when 

concurrent observations are available, and the problem becomes more complicated for non-

concurrent measurements. 

2
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

Radiometric navigation uses the principles of RF wave propagation to infer information about a 

vehicle’s state—which, in our case, is the unknown transmitter’s location and (in some cases) 

velocity. RF signals produce at least three fundamental classes of measurements: bearing-based 

[8] [9], time-based [10] [11], and Doppler-based [12] [13]. Here, we develop models for all three

measurement types.

First, we develop the background necessary to obtain bearing measurements from observed RF 

signals. We choose to focus on the well-known MUSIC algorithm, though other options do exist. 

Second, we develop time-based and frequency-based measurements. TDOA and FDOA 

techniques are commonly used in the application of geolocation. One common time-based 

technique, TDOA, uses the difference in the time of arrival of one signal measured by two 

receivers [14]. Similar to TDOA, we will focus on the FDOA technique that differences the 

measured frequency by two receivers [15]. There are techniques that involve both TDOA and 

FDOA measurements [16] [17]. 

Finally, we briefly explore the efficacy of MUSIC-based orbit determination within the context 

of an extended Kalman filter (EKF). 

3.1 RF-Based Bearing Measurements: The MUSIC Algorithm 

The MUltiple SIgnal Classification (MUSIC) algorithm is used to estimate Direction-Of-Arrival 

(DOA) of multiple received signals [18]. The algorithm requires a uniform linear array (ULA) of 

radio receivers with 𝑚 number of elements, where 𝑚 is greater than the number of uncorrelated 

signals [19], 𝑘. Of particular note, numerous authors have investigated the efficacy of the 

MUSIC algorithm for estimating the DOA of interference signals [20] [21]. These example 

works both consider the problem of finding transmitters attempting to interfere with GNSS 

signals. The article [20] provides two antenna arrays recommendations and the results for both. 

The array samples the signals and produces an observation vector 𝒚(𝑡) with an 𝑚 number of 

elements. A 2-d diagram of this can be seen in Figure 1, where each black box is an element of 

the ULA, d is the distance between each element, and θ is the angle at which the signal arrives at 

each element. 

3
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Figure 1. A simple diagram of a Uniform Linear Array 

This vector encompasses the signal sample from each element of the array at that time step. This 

observational vector, also called a snapshot, can be modeled as a linear combination of 𝑘 incident 

signals and additive Gaussian noise using the equation,  

𝒚(𝑡) =  𝐴𝒔(𝑡) + 𝝎 (1) 

where 𝐴 is an 𝑚× 𝑘 steering vector matrix, 𝒔(𝑡) is a 𝑘 × 1 vector that encompasses the    

incident signals' amplitude and phase, and 𝝎 is an 𝑚 × 1 Gaussian noise vector. Each column    

of the steering vector matrix is made up of the incident signal mode vectors, or steering vectors. 

These steering vectors, denoted as 𝜷(𝜃) are functions of the signal's angle of arrival and the 

distance between each element of the ULA. To determine the DOA we will need to extract the 

angle of arrival from the steering vectors. We can do this by exploiting the fact that the steering 

vectors for the angle of each incident signal span the signal subspace which is disjoint from the 

noise subspace. 

The goal of the MUSIC algorithm is to determine the DOA of each incident angle measured by 

the array. This is accomplished by determining the incident signal subspace and the noise 

subspace using through eigenvalue decomposition. We begin by estimating the covariance matrix 

from multiple snapshots taken by the array. This is primarily done through time averaging using 

the equation, 

𝑅 =
1

𝑁
∑𝒚(𝑡𝑖)𝒚(𝑡𝑖)

𝐻

𝑁

𝑖=1

(2) 

where 𝑁 is the number of snapshots used to estimate the covariance matrix and 𝐻 is the 

Hermitian conjugate. We can also express the signal covariance matrix as 

𝑅 = 𝐸[𝒚𝒚𝐻] (3)

4
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After some manipulation, we can express the covariance matrix as 

𝑅 = 𝐴𝐸[𝒔𝒔𝐻]𝐴𝐻 + 𝐸[𝝎𝝎𝐻] = 𝐴𝑅𝑠𝐴
𝐻 + 𝑅𝜔 (4) 

where 𝑅𝑠 is the incident signal covariance matrix and 𝑅𝜔 is the noise covariance matrix. An 

eigenvalue decomposition is performed on the covariance matrix we estimated, 𝑅. From this 

eigenvalue decomposition, an 𝑛 = 𝑚 − 𝑘 number of eigenvalues on the order of the noise 

variance are chosen as noise eigenvalues. The eigenvectors related to these eigenvalues span 

the noise subspace and make up the matrix 𝑄𝜔. Using the known steering vector function of    

the array, 𝜷(𝜃), we can sweep a range of angles to estimate the power at each angle using        

the equation 

𝑃 =
1

𝜷𝐻(𝜃)𝑄𝜔𝑄𝜔
𝐻𝜷(𝜃)

(5) 

The peaks of the power spectrum provide the DOA of each incident signal received by the array 

[18] [22].

MUSIC is limited by the need for all signals to be non-coherent [19] [21] and is affected by the 

signal-to-noise ratio (SNR) [21], spacing between each element in the array [22] and the number 

of elements in the array [23] [22]. These effects can be limited with a higher SNR, setting the 

distance between the elements to half the expected signal wavelength [22], and increasing the 

number of elements in the array [23] [22]. 

Accuracy of the MUSIC algorithm is affected by a multitude of parameters including the 

parameters mentioned in the previous paragraph. Depending on the hardware and scenario the 

accuracy for MUSIC can ranges from about 0.001 degrees [19] to about 10 degrees [21]. Two 

variations of the MUSIC algorithm that improves upon the accuracy include the Root-MUSIC 

algorithm [19] [24] and the STC-MUSIC [21]. Root-MUSIC couches the problem as a 

polynomial and solves for its roots to estimate the DOA while STC-MUSIC introduces a 

focusing parameter. Another MUSIC variation actually suppresses all other signals than the 

target's [25]. For this algorithm to work, an approximation of the target's bearing must be known 

a priori.  

There are a variety of alternatives to the classical MUSIC algorithm, such as those presented in 

[26] and [27]. A full comparative assessment of RF-based DOA algorithms within the context of

space transmitter localization is a topic of future work. We focus just on MUSIC here.

5
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3.2 RF-Based Timing Measurements: TDOA 

Time-based measurements use the time it takes for the signal to travel between two points to 

estimate the distance between the two points. For TDOA we will take the difference in time 

measurements at two different receiver locations.  

We begin our derivation of TDOA by considering the time required for the RF signal to travel 

from the unknown transmitter to one of the known receivers. Assuming light travels at a constant 

speed c (taken to be the speed of light in a vacuum), one may compute the so-called pseudo-

range as  

𝜌𝑖 =  𝑐[𝑡𝑟𝑖 − 𝑡𝑇] (6) 

where 𝑡𝑟𝑖 is the time the signal was observed by the i-th receiver and 𝑡𝑇 is the (unknown) time of

signal transmission. The distance 𝜌𝑖 is called the pseudo-range since it varies from the true 

geometric range due to receiver clock errors and changes in the speed of light as it passes 

through various media between the transmitter and receiver. 

In the TDOA problem, we are concerned with the difference between when the signal arrives at 

the i-th receiver (𝑡𝑟𝑖) and the j-th receiver (𝑡𝑟𝑗). This equates to a pseudo-range difference

𝛥𝜌 = 𝜌𝑗 − 𝜌𝑖 = 𝑐 [𝑡𝑟𝑗 − 𝑡𝑇] − 𝑐[𝑡𝑟𝑖 − 𝑡𝑇] =  𝑐 [𝑡𝑟𝑗 − 𝑡𝑟𝑖] (7) 

3.2.1 Clock Bias  

The clock bias of the receivers cause measured time to be different from the true time. We can 

see this in the receiver time equation 

𝑡𝑟(𝑡) = 𝑡 + 𝛿𝑡𝑟(𝑡) (8) 

where 𝑡 is the true time and 𝛿𝑡(𝑡) is the clock bias for the receiver at time 𝑡. If the receivers were 

to be synchronized with a GPS clock, the biases for both clocks would be on the order of ∼ 10−9

seconds [28]. Combining Eqs. 6 and 8 we find the difference between the transmit and measured 

receiver time to obtain the pseudo-range 

𝜌𝑖 = 𝑐[𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖) − 𝑡𝑇]

= 𝑐[𝑡𝑇 + 𝜏𝑖 + 𝛿𝑟𝑖(𝑡𝑇 + 𝜏𝑖) − 𝑡𝑇]

= 𝑐[𝜏𝑖 + 𝛿𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖)]

= 𝑐𝜏𝑖 + 𝑐𝛿𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖)

(9)

6
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where 𝜌 is the pseudo-range along the line of sight between the transmitter and receiver and 𝜏 is 

the time elapsed between transmission and receiving. With the atmospheric delays, we now 

know that the measured range from the time of flight from the signal is 

𝑐𝜏𝑖 = ‖𝒓𝑟_𝑖/𝑇(𝑡𝑇 + 𝜏𝑖)‖ + 𝐼𝜌𝑖
+ 𝑇𝑅𝜌𝑖 (10) 

where 𝒓𝑟_𝑖/𝑇(𝑡𝑇 + 𝜏𝑖) is the magnitude of the distance from receiver to transmitter, 𝐼𝜌 is the

ionosphere delay, and 𝑇𝑅𝜌 is the troposphere path delay. Combining Eqs. 9 and 10 we can see 

that the pseudo-range is the summation of the distance between the receiver and transmitter, 

clock bias, ionosphere path delay, and the troposphere path delay. 

3.2.2 Tropospheric Path Delay  

As the signal travels between the transmitter and the receiver the signal is delayed by the 

different media it must propagate through. This delay derives from the media changing the speed 

at which light propagates through them. In our scenario, the two largest delays come from the 

troposphere and ionosphere. From basic optics, the index of refraction 

𝑛 = 𝑐/𝑐𝑚 (11) 

is the ratio of the speed of light in a vacuum and the speed of light in the medium, cm. To find the 

excess delay let us begin with the first principles equation 

𝑐𝑚(𝑙) =
𝑑𝑙

𝑑𝑡
(12) 

where the speed of light in the medium is the time derivative of the position of the signal along 

the signal path, l. Through some minor manipulation we can find the time it takes the signal to 

travel through the medium 

𝜏 =
1

𝑐
∫

𝑐

𝑐𝑚(𝑙)
 𝑑𝑙 =

1

𝑐
∫ 𝑛(𝑙) 𝑑𝑙
𝑅

𝑇

𝑅

𝑇

 (13) 

where we integrate along the signal path from the transmitter, 𝑇, and receiver, 𝑅. To find the 

excess time delay we can set 𝑐𝑚  =  𝑐 and find 

𝜏0 =
1

𝑐
∫

𝑐

𝑐
𝑑𝑙 =

1

𝑐
∫ 𝑑𝑙
𝑅

𝑇

𝑅

𝑇

 (14) 

where 𝜏0 is the time it takes the signal to travel from the transmitter to the receiver in a vacuum. 

Subtracting Eq. 13 from Eq. 14 we find the excess time delay equation to be 

𝛥𝜏 = 𝜏 − 𝜏0 =
1

𝑐
∫ [𝑛(𝑙) − 1] 𝑑𝑙
𝑅

𝑇

 (15)

7
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The initial medium the signal propagates through is the troposphere. The troposphere spans  

from the earth’s surface to an average height of about 12 km. The troposphere contains a 

majority of the Earth’s gasses and water vapor which are the two main sources of delay. To 

derive our tropospheric delay, we begin by defining refractivity [28] as 𝑁 =  (𝑛 −  1)  ×  106. 

The refractivity of the troposphere can be split into the refractivity of the dry gasses and the 

water vapors 

𝑁 = 𝑁𝑑 + 𝑁𝑤 (16) 

where 𝑁𝑑 is the dry refractivity and 𝑁𝑤 is the wet refractivity. The refractivity for dry and wet 

are well-modeled as [28] 

𝑁𝑑 = 77.64
𝑃

𝑇

𝑁𝑤 = 3.73 × 105
𝑒

𝑇2

(17) 

where 𝑒 is the partial pressure from the water vapors and 𝑃 is the total pressure with both 

measured in millibars and 𝑇 is the temperature in kelvin. We can find the excess measured 

distance (the excess time delay multiplied by the speed of light) by combining Eqs. 15 and 17 

𝑇𝑅𝜌𝑧 = 10
−6∫[𝑁𝑑(𝑙) + 𝑁𝑤(𝑙)] 𝑑𝑙 (18) 

where 𝑇𝑅𝜌𝑧 is the zenith tropospheric delay (meters). There are multiple models to measure 

tropospheric delay including the Saastamoinen model [29] and the Hopfield model [30]. 

The zenith tropospheric delay must be scaled with respect to the elevation angle of the receiving 

satellite compared to the transmitter. This is because at lower elevation angles there is a longer 

path taken through the troposphere causing an excess delay to the zenith delay. This scaling is 

achieved by multiplying the zenith tropospheric delay by an obliquity factor. Most simple models 

use the same obliquity factor for the wet and dry delay [28] 

𝑂𝐹𝑇𝑅(𝑒𝑙) =
1

{1 − [cos (𝑒𝑙)/1.001]2}−1/2
(19) 

where 𝑂𝐹𝑇𝑅(𝑒𝑙) is the obliquity factor for the tropospheric delay in terms of elevation angle. 

Combining Eqs. 18 and 19 the tropospheric delay is 

𝑇𝑅𝜌 = 𝑇𝑅𝜌𝑧𝑂𝐹𝑇𝑅(𝑒𝑙) (20)

8
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3.2.3 Ionospheric Path Delay 

After the troposphere, the signal then propagates through the ionosphere. The Earth's ionosphere 

is an ionized region spanning from about 60-1,000 km above the Earth's surface. The main 

sources of the ions come from photoionization (high energy photons are absorbed by particles 

leading to ionization) and energetic particle collisions [31]. The total electron content (TEC) in 

the path of the signal is the major contributor to ionospheric delay [28] and is measured using  

the equation 

𝑇𝐸𝐶 = ∫ 𝜂𝑒(𝑙) 𝑑𝑙
𝑅

𝑇

(21) 

where 𝜂𝑒 is the electron density along the path of the signal. The index of refraction of the

ionosphere [28] for RF signals is 

𝜂𝐼 = 1 +
40.3𝜂𝑒
𝑓2

(22) 

where 𝑓 is the frequency of the signal. We can see from this equation that the index of refraction 

is based on the signal's frequency making the ionosphere a dispersive medium. Combining Eqs. 

21, 22, and 15 we find the equation for excess measured distance from the ionosphere is  

𝐼𝜌𝑧 = 40.3
𝑇𝐸𝐶

𝑓2
(23) 

where 𝐼𝜌𝑧 is the zenith ionospheric delay (meters). The most widely used model to solve for the 

ionospheric delay is the Klobuchar model [32]. 

Similar to the tropospheric delay, the zenith ionospheric delay must be scaled using an obliquity 

factor. A common model used for the obliquity factor for ionospheric delay makes the 

assumption that the ionosphere is a thin shell around the Earth and is pierced at a height of ℎ𝐼 
[28]. Instead of using the elevation angle, we use its complement, or zenith angle (𝜁) when 

defining the obliquity factor as [28] 

𝑂𝐹𝐼(𝜁) =  1 − [
𝑅𝐸 sin(𝜁)

𝑅𝐸 + ℎ𝐼
]

2

(24) 

where 𝑂𝐹𝐼(𝜁) is the obliquity factor of the ionospheric delay in terms of zenith angle, 𝑅𝐸 is the 

radius of the Earth, and ℎ𝐼 is the height of the ionosphere thin shell above the Earth's surface. 

Combining Eqs. 23 and 24 the ionospheric delay is  

𝐼𝜌 = 𝐼𝜌𝑧𝑂𝐹𝐼(𝜁) (25)

9
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3.2.4 TDOA Equation  

Combining Eqs. 9 and 10 we get the full pseudo-range equation 

𝜌𝑖(𝑡𝑇 + 𝜏𝑖) = ‖𝒓𝑟𝑖/𝑇(𝑡𝑇 + 𝜏𝑖)‖ + 𝑐[𝛿𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖)] + 𝐼𝜌𝑖 + 𝑇𝑅𝜌𝑖 (26) 

Since TDOA is the difference in time measurements by the two receivers, multiplying the 

measurements by the speed of light will yield the difference in pseudo-ranges. Using Eq. 7 we 

get the TDOA equation 

𝑐(𝜏𝑗 − 𝜏𝑖) = 𝜌𝑗 − 𝜌𝑖 = 𝛥𝜌 

= ‖𝒓𝑟𝑗/𝑇(𝑡𝑇 + 𝜏𝑗)‖ − ‖𝒓𝑟_𝑖/𝑇(𝑡𝑇 + 𝜏𝑖)‖ + 𝑐 [𝛿𝑡𝑟𝑗(𝑡𝑇 + 𝜏𝑖)] − 𝑐[𝛿𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖)] + 𝐼𝜌𝑗 − 𝐼𝜌𝑖
+ 𝑇𝑅𝜌𝑗

− 𝑇𝑅𝜌𝑖

(27) 

Table 1 provides the order of magnitude for each error source for TDOA. This includes error 

from models or in the case of clock synchronization error, synchronizing clocks with GPS 

satellites. The clock bias delay without synchronization depends on each receiver's clock offset 

and clock drift. Knowing both the offset and drift, the clock bias can be solved for. The order of 

magnitude for tropospheric and ionospheric delay [28] are provided with and without models. 

Since these are constantly changing and every new TDOA measurement comes with a new pair 

of ionosphere and troposphere terms, including them as solve for terms would add unknowns 

faster than new equations. It is not evident how one would solve for 𝐼𝜌𝑗 − 𝐼𝜌𝑖 and 𝑇𝑅𝜌𝑗 −

𝑇𝑅𝜌𝑖 within the TDOA-based geolocation problem. Thus, ionosphere and troposphere delay 

terms and errors in their associated models place a performance floor on TDOA-based 

geolocation, regardless of the sensor system being used. 

Table 1: Order of magnitude of each error source for TDOA 
Error Sources Delay w/o Model(s) Delay w/ Model(s) Can be Solved For? 

Clock Synchronization Error Depends on clocks 10−9 Y 

Tropospheric Delay 10−9 10−10 N 

Ionospheric Delay 10−8 10−9 N 

In some cases, it may be necessary to solve for the bias between the two receiver clocks. For 

simplicity, let us define clock offset as 

𝑈 = 𝑐[𝛿𝑡𝑟𝑗(𝑡𝑇 + 𝜏𝑗) − 𝛿𝑡𝑟𝑖(𝑡𝑇 + 𝜏𝑖) (28) 

and the vector from transmitter to receiver is  

‖𝒓𝑟𝑖/𝑇‖ = ‖𝒓𝑟𝑖 − 𝒓𝑇‖ (29) 

Using basic algebra, we expand Eq. 27 to a polynomial in terms of (𝑥𝑇,𝑦𝑇,𝑧𝑇,U) where 

(𝑥𝑇,𝑦𝑇,𝑧𝑇) are the cartesian components of the transmitter's location, (𝑥𝑖,𝑦𝑖,𝑧𝑖) are the Cartesian 

components of the 𝑖𝑡ℎ orbiting receiver positions, and we define 𝐾𝑖  =  𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2. Note that

10
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this is a fourth order polynomial in terms of four variables. Thus, we may solve for the 

transmitter's location if we take four TDOA measurements. According to Bèzout's theorem, such 

a polynomial will yield at most 256 unique solutions. If 𝑈 was set to zero the polynomial would 

match the geometric only simultaneous TDOA polynomial [33]. Using the Bèzout's theorem we 

can see such a polynomial will yield at most 8 solutions. 

In order to preliminarily assess our polynomial's response to measurement and clock 

synchronization error, we perform a Monte Carlo simulation on the geometric only simultaneous 

TDOA polynomial in which we include the TDOA measurement errors detailed in Table 1. The 

atmospheric error includes the tropospheric and ionospheric delay which is changing for all three 

measurements. The clock synchronization error is kept constant for all three measurements. In 

performing the Monte Carlo trials, the clock error and atmospheric error are considered 

Gaussian. The range of sigma levels considered for these errors are indicated on the x and y axes 

of Figure 2. For each trial, three TDOA measurements were simulated, the three second-order 

polynomials were solved, and the position error magnitude between the true transmitter location 

and the solution closest to this location was calculated. The scenario chosen for this Monte Carlo 

simulation includes two receiver satellites in a leader-follower formation in a low Earth orbit. 

The transmitter's position on Earth is 35° north and 92° east. Figure 2 shows us that the position 

error magnitude is more sensitive to the atmospheric error than the clock synchronization error. 

Figure 2. Monte Carlo simulation results 

3.3 RF-Based Frequency Measurements: FDOA and FROA 

In this section, we will focus on the Doppler-based measurements involved in localization. 

Doppler-based measurements use Doppler shift to estimate the component of the relative 

velocity along the line-of-sight direction, or range-rate. For FDOA and FROA using the range 

rate difference, or ratio, of two satellites allows us to estimate the position of the transmitter.  

11
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Let us begin our derivation of both equations by first defining frequency shift as 

𝑧 =
𝑓 − 𝑓𝑇
𝑓𝑇

=
𝛥𝑓

𝑓𝑇
(30) 

where 𝑓 is the shifted frequency and 𝑓𝑇 is the original (transmitted) frequency. As a signal 

propagates from the Earth's surface to an orbiting receiver  

𝑓𝑚 =
𝑓𝑚
𝑓𝐷

𝑓𝐷
𝑓𝐼

𝑓𝐼
𝑓𝑇𝑅

𝑓𝑇𝑅
𝑓𝑇
𝑓𝑇 

= [𝑧𝑚 + 1 ][𝑧𝐷 + 1][𝑧𝐼 + 1 ][𝑧𝑇𝑅 + 1]𝑓𝑇 

(31) 

where 𝑓𝑚 is the frequency measured by the receiver, 𝑧𝑚 is the measurement frequency shift, 𝑧𝐷  

is the relativistic Doppler shift, 𝑧𝐼 is the ionospheric frequency shift, and 𝑧𝑇𝑅 is the tropospheric 

frequency shift.  

3.3.1 Measurement Frequency Shift 

We will begin by looking at the frequency shift from measurement error. These measurement 

errors come from receiver instrumental noise [34] and can be modeled as a frequency shift with 

the equation 

𝑓𝑚 = 𝑓0 + 𝑓0𝑓𝑎𝑖  
= 𝑓0[1 + 𝑓𝑎𝑖] 

(32) 

where 𝑓0 is the original frequency received and 𝑓𝑎𝑖 is the accuracy of the frequency measured by 

the receiver. This leads to the equation 

𝑧𝑚𝑖 + 1 =  1 + 𝑓𝑎𝑖 (33) 

3.3.2 Relativistic Doppler Shift 

The next frequency shift is the relativistic Doppler shift. The frequency of a signal is shifted due 

to the relative velocity between the receiver and the transmitter. Let us first define for simplicity 

𝜷𝑖 =
𝒗𝑟𝑖/𝑇

𝑐
(34) 

where 𝒗𝑟𝑖/𝑇 is the relative velocity between the receiver and transmitter. The Lorentz

transformation [35], used in Special Relativity as a transformation from a stationary frame to a 

moving frame, is then defined to be 

𝛾 =
1

√1 − 𝜷𝑖
𝑇𝜷𝑖

(35)

12
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The relativistic Doppler shift as defined by Einstein's 1905 paper on the Theory of Special 

Relativity is defined as [35] 

𝑓𝐷 =
𝑓0

𝛾[1 − 𝜷𝑖
𝑇𝒖𝑖]

(36) 

where 𝑓𝐷 is the frequency observed in the moving frame and 𝒖𝑖 is the unit vector pointing from 

the spacecraft to the transmitter. This vector can be expressed as, 

𝒖𝑖 =
𝒓𝑇/𝑟𝑖

‖𝒓𝑇/𝑟𝑖  
‖

(37) 

Since ‖𝜷𝑖‖ is on the order of 10−6 in our scenario, we can perform a Taylor Series expansion on

Eq. 36 about 𝜷𝑖 = 𝟎3×1. This gives us the equations [36] 

𝛾−1 = 1 −
𝜷𝑖
𝑇𝜷𝑖
2

+ 𝒪(𝜷4) (38) 

and 

[1 − 𝜷𝑖
𝑇𝒖𝑖]

−1 = 1 + 𝜷𝑖
𝑇𝒖𝑖 + [𝜷𝑖

𝑇𝒖𝑖]
2 + [𝜷𝑖

𝑇𝒖𝑖]
3 + 𝒪(𝜷4) (39) 

where 𝒪(𝜷4) are the fourth order terms. Combining Eqs. 38 and 39 we get

𝑧𝐷 + 1 = 1 + 𝜷𝑖
𝑇𝒖𝑖 + {[𝜷𝑖

𝑇𝒖𝑖]
2 −

𝜷𝑖
𝑇𝜷𝑖
2
} + {[𝜷𝑖

𝑇𝒖𝑖]
3 −

𝜷𝑖
𝑇𝜷𝑖𝜷𝑖

𝑇𝒖𝑖
2

}  + 𝒪(𝜷4) (40) 

In our scenario, the relativistic Doppler shift comes from the relative velocity between a ground 

based transmitter and an orbiting receiver. Suppose the receiver is in a circular orbit 200 

kilometers above the Earth's surface. The relative velocity between the orbiting receiver and the 

stationary transmitter will be around 7.79
𝑘𝑚

𝑠
 .This means the second order terms of 𝜷𝑖 is on the 

order of 10−10. With this knowledge, we have decided to simplify the equation to only include

the linear term 

𝑧𝐷𝑖 + 1 = 1 + 𝜷𝑖
𝑇𝒖𝑖 (41) 

3.3.3 Ionospheric Frequency Shift 

As discussed before, as RF signals propagate through the Earth's atmosphere there is a delay to 

the signal due to the medium's index of refraction. This causes a phase advance to the signal 

13
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 [28]. The change in refraction of the medium causes a change in phase advance and in turn a 

shift in frequency. This is because instantaneous frequency is defined as  

𝑓(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
(42) 

where 𝜃(𝑡) is the instantaneous phase. Therefore, our ionospheric effect on frequency is the time 

derivative of the effect on phase [37] 

𝐼𝑓𝑖(𝑡) =
40.3

𝑐𝑓0

𝑑𝑇𝐸𝐶

𝑑𝑡
(43) 

where 𝑓0 is the frequency before the effect. The ionospheric shift on frequency is 

𝑧𝐼𝑖 + 1 = 1 + 𝐼𝑓𝑖 (44) 

Unfortunately, the authors were unable to find any models for the time derivative of TEC in 

the ionosphere. 

3.3.4 Tropospheric Frequency Shift 

Similar to the ionospheric frequency shift, the temporal change in the troposphere's index of 

refraction causes a shift in frequency. The tropospheric effect is defined as [38] 

𝑇𝑅𝑓𝑖(𝑡) =  −10
−6
𝑓0
𝑐
∫
𝑑𝑁𝑑(𝑙, 𝑡)

𝑑𝑡
+
𝑑𝑁𝑤(𝑙, 𝑡)

𝑑𝑡
𝑑𝑙 (45) 

The tropospheric frequency shift is 

𝑧𝑇𝑅𝑖 + 1 = 1 + 𝑇𝑅𝑓𝑖 (46) 

Similar to Ionospheric frequency shift, the authors were unable to find any models for the 

changes in refractivity of the troposphere. 

3.3.5 FDOA Equation 

With the four frequency shifts accounted for, we can substitute Eqs. 33, 41, 44, and 46 into Eq. 

31 to get 

𝑓𝑚
𝑓𝑇
= [𝑧𝑚𝑖 + 1][𝑧𝐷𝑖 + 1][𝑧𝑇𝑅𝑖 + 1]

= 1 + 𝜷𝑖
𝑇𝒖𝑖 + [1 + 𝜷𝑖

𝑇𝒖𝑖]𝑇𝑅𝑓𝑖 + {1 + 𝜷𝑖
𝑇𝒖𝑖 + [1 + 𝜷𝑖

𝑇𝒖𝑖]𝑇𝑅𝑓𝑖}𝐼𝑓𝑖
+ {1 + 𝜷𝑖

𝑇𝒖𝑖 + [1 + 𝜷𝑖
𝑇𝒖𝑖]𝑇𝑅𝑓𝑖 + {1 + 𝜷𝑖

𝑇𝒖𝑖 + [1 + 𝜷𝑖
𝑇𝒖𝑖]𝑇𝑅𝑓𝑖}𝐼𝑓𝑖}𝑓𝑎𝑖

(47)
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which we can use to set up our pseudo-range rate equation 

�̇�𝑟𝑖 = 𝑐 [
𝛥𝑓𝑟𝑖
𝑓𝑡
] 

= 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖 + {𝑐 + 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖}𝐼𝑓𝑖
+ {𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖 + {𝑐 + 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖}𝐼𝑓𝑖}𝑓𝑎𝑖

(48) 

where �̇�𝑟𝑖 is the receiver to transmitter pseudo-range rate. For simplicity let us define

𝑎𝑖(𝑡) = [𝑐 + 𝒗𝑟𝑖
𝑇

𝑇 𝒖𝑖] 𝑇𝑅𝑓𝑖  

𝑏𝑖(𝑡) = {𝑐 + 𝒗𝑟𝑖
𝑇

𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖
𝑇

𝑇 𝒖𝑖] 𝑇𝑅𝑓𝑖} 𝐼𝑓𝑖  

𝑑𝑖(𝑡) =  {𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖 + {𝑐 + 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + [𝑐 + 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖]𝑇𝑅𝑓𝑖}𝐼𝑓𝑖}𝑓𝑎𝑖

(49) 

Table 2 provides the order of magnitude for each error source for FDOA and FROA. Although 

the measurement frequency shift can be solved for, the frequency shifts from the troposphere and 

ionosphere cannot be solved for. This is due to the both the troposphere and ionosphere 

constantly changing. Similar to TDOA, the ionosphere and troposphere shift terms place a 

performance floor on the frequency based geolocation.  

Table 2. Order of magnitude of each error source for frequency 

based geolocation 
Error Sources Delay w/o Model (Hz) Can be Solved For? 

Frequency Shift Depends on System Y 

Tropospheric Shift 10−1 N 

Ionospheric Shift 1 N 

For FDOA we difference the frequency shifts measured by two receivers leading to the equation 

𝑐
𝛥𝑓𝑟𝑗

𝑓𝑇
− 𝑐

𝛥𝑓𝑟𝑖
𝑓𝑇

= �̇�𝑟𝑗 − �̇�𝑟𝑖

= 𝒗𝑟𝑗/𝑇
𝑇 𝒖𝑗 − 𝒗𝑟𝑖/𝑇

𝑇 𝒖𝑖 + 𝑎𝑗(𝑡) − 𝑎𝑖(𝑡) + 𝑏𝑗(𝑡) − 𝑏𝑖(𝑡) + 𝑑𝑗(𝑡) − 𝑑𝑖(𝑡)
(50) 

We can now expand Eq. 50 to a polynomial in terms of transmitter position and the frequency 

measurement error for both receivers. However, this leads to a twelfth order polynomial with 

over 2000 terms. This polynomial is clearly intractable and an alternate method may need to be 

explored. If the error terms are ignored the resulting polynomial is still eighth order with over 

100 terms. Another problem facing FDOA is the required knowledge of the carrier frequency of 

the transmitter. In our scenario, this may be difficult or impossible to know. With these issues 

facing FDOA, we may want to utilize Frequency Ratio of Arrival (FROA) instead. 
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3.3.6 FROA Equation 

In FROA we will take the ratio of the frequency shifts measured by both receivers. Using Eq. 48 

we get the FROA equation  

�̇�𝑟𝑗

�̇�𝑟𝑖
=
𝒗𝑟𝑗/𝑇
𝑇 𝒖𝑗 + 𝑎𝑗(𝑡) + 𝑏𝑗(𝑡) + 𝑑𝑗(𝑡)

𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡) + 𝑑𝑖(𝑡)

(51) 

To solve this equation, it is required to know the carrier frequency of the transmitter. To remove 

this requirement, we take the ratio of Eq. 47 for both satellites  

𝑓𝑟𝑗

𝑓𝑟𝑖
= 𝜁𝑗/𝑖 =

𝑐 + 𝒗𝑟𝑗/𝑇
𝑇 𝒖𝑗 + 𝑎𝑗(𝑡) + 𝑏𝑗(𝑡) + 𝑑𝑗(𝑡)

𝑐 + 𝒗𝑟𝑖/𝑇
𝑇 𝒖𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡) + 𝑑𝑖(𝑡)

(52) 

Taking into account frequency measurement error from both orbiting receivers we can expand 

Eq. 52 into a twelfth order polynomial with over 2000 terms. If we disregard the measurement 

error we can expand Eq. 52 into 

0 = {𝒗𝑟𝑗/𝑇
𝑇 [𝒓𝑇/𝑟𝑗  𝒓𝑇/𝑟𝑗

𝑇 ] 𝒗𝑟𝑗/𝑇} 𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖 + 𝜁𝑗/𝑖

2 {𝒗𝑟𝑖/𝑇
𝑇 [𝒓𝑇/𝑟𝑖  𝒓𝑇/𝑟𝑖

𝑇 ]𝒗𝑟𝑖/𝑇}𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗

− 2𝜁𝑗/𝑖 [𝒗𝑟𝑗/𝑇
𝑇 𝒓𝑇/𝑟𝑗  ] [𝒗𝑟𝑖/𝑇

𝑇 𝒓𝑇/𝑟𝑖  ]‖𝒓𝑇/𝑟𝑖  ‖ ‖𝒓𝑇/𝑟𝑗 ‖

− 𝑐2[𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖  ] [𝒓𝑇/𝑟𝑗

𝑇 𝒓𝑇/𝑟𝑗  ] [𝜁𝑗/𝑖 − 1]
2

(53) 

Expanding Eq. 53 provides an eighth order polynomial. This is a very similar result to the  

FDOA polynomials where both polynomials generated are intractable and are in need of an 

alternative method. 

3.3.7 FROA/TDOA Hybrid Polynomial 

Here we derive a method that utilizes a hybrid polynomial that uses both TDOA and FROA 

equations. We begin by expanding Eq. 52, ignoring frequency measurement error and 

atmospheric error, to get the equation 

0 = 𝒗𝑟𝑗/𝑇
𝑇 𝒓𝑇/𝑟𝑗 ‖𝒓𝑇/𝑟𝑖  ‖ − 𝜁𝑗/𝑖𝒗𝑟𝑖/𝑇

𝑇 𝒓𝑇/𝑟𝑖 ‖𝒓𝑇/𝑟𝑗 ‖ − 𝑐‖𝒓𝑇/𝑟𝑖  ‖ ‖𝒓𝑇/𝑟𝑗 ‖ [𝜁𝑗/𝑖 − 1] (54) 

We then ignore the error in Eq. 27 to get 

𝛥𝑟𝑗𝑖 = ‖𝒓𝑇/𝑟𝑗 ‖ − ‖𝒓𝑇/𝑟𝑖  ‖ (55)
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which we can now perform simple algebra and rearrange to be 

‖𝒓𝑇/𝑟𝑗 ‖‖𝒓𝑇/𝑟𝑖  ‖ =
1

2
[𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 + 𝒓𝑇/𝑟𝑖

𝑇 𝒓𝑇/𝑟𝑖 − 𝛥𝑟𝑗𝑖
2] (56) 

We can also perform simple mathematics and rearrangement on Eq. 56 to get the equations 

‖𝒓𝑇/𝑟𝑗 ‖ =
1

2𝛥𝑟𝑗𝑖
[𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 + 𝛥𝑟𝑗𝑖

2 − 𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖 ] (57) 

and 

‖𝒓𝑇/𝑟𝑖 ‖ =
1

2𝛥𝑟𝑗𝑖
[𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖 + 𝛥𝑟𝑗𝑖

2 − 𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 ] (58) 

Substituting Eqs. 56, 57, and 58 into Eq. 53 we get the equation 

0 = 𝒗𝑟𝑗/𝑇
𝑇 𝒓𝑇/𝑟𝑗

1

2𝛥𝑟𝑗𝑖
[𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖 + 𝛥𝑟𝑗𝑖

2 − 𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 ]

− 𝜁𝑗/𝑖𝒗𝑟𝑖/𝑇
𝑇 𝒓𝑇/𝑟𝑖

1

2𝛥𝑟𝑗𝑖
[𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 + 𝛥𝑟𝑗𝑖

2 − 𝒓𝑇/𝑟𝑖
𝑇 𝒓𝑇/𝑟𝑖 ]

− 𝑐
1

2
[𝒓𝑇/𝑟𝑗
𝑇 𝒓𝑇/𝑟𝑗 + 𝒓𝑇/𝑟𝑖

𝑇 𝒓𝑇/𝑟𝑖 − 𝛥𝑟𝑗𝑖
2] [𝜁𝑗/𝑖 − 1]

(59) 

For simplicity let us define the three variables 

𝜖 = 𝒓𝑇/𝑟𝑖 
𝑇 + 𝒓𝑇/𝑟𝑗

𝑇

𝜉 = 𝒓𝑇/𝑟𝑗 
𝑇 𝒓𝑇/𝑟𝑗 + 𝒓𝑇/𝑟𝑖

𝑇 𝒓𝑇/𝑟𝑖
𝜂 = 𝜉𝐼3×3 + 2 𝒓𝑇/𝑟𝑗  𝒓𝑇/𝑟𝑗

𝑇 + 2 𝒓𝑇/𝑟𝑖  𝒓𝑇/𝑟𝑖
𝑇

(60) 

where 𝐼3×3 is the identity matrix. We can expand Eq. 60 using Eq. 29 and then rearrange into 

0 = 𝒓𝑇 
𝑇 𝐴𝒓𝑇 + 𝐵

𝑇𝒓𝑇 − 𝐶

(61)
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where 𝐴, 𝐵, and 𝐶 are 

𝐴 =
1

𝛥𝑟𝑗𝑖
{𝜁𝑗/𝑖𝒗𝑟𝑖/𝑇 − 𝒗𝑟𝑖/𝑇}𝜖 − 𝑐[𝜁𝑗/𝑖 − 1]𝐼3×3

𝐵𝑇 =
1

2𝛥𝑟𝑗𝑖
{𝒗𝑟𝑗/𝑇 [𝜂−𝛥𝑟𝑗𝑖

2 𝐼3×3]−𝜁𝑗/𝑖𝒗𝑟𝑖/𝑇
𝑇 [𝜂− 𝛥𝑟𝑗𝑖

2 𝐼3×3]}+𝑐 [𝜁𝑗/𝑖 −1]𝜖

𝐶 =
1

2𝛥𝑟𝑗𝑖
[𝜁𝑗/𝑖𝒗𝑟𝑖/𝑇

𝑇 𝒓𝑇/𝑟𝑖 − 𝒗𝑟𝑗/𝑇
𝑇 𝒓𝑻/𝑟𝑗] [𝜉 + 𝛥𝑟𝑗𝑖

2] −
1

2
𝑐[𝜁𝑗/𝑖 − 1][𝜉 + 𝛥𝑟𝑗𝑖

2]

(62) 

Equation 57 can then be expanded to a second order polynomial in terms of (𝑥𝑡,𝑦𝑡,𝑧𝑡). 

3.4 Sequential Estimation with an Extended Kalman Filter (EKF) 

The measurement types discussed in the prior sections (e.g., MUSIC, TDOA, FDOA) may be 

used for either initial orbit determination (IOD) or precise orbit determination (POD). If the 

objective is POD, we further have the option of processing the measurements as a group (the so-

called batch processing approach) or processing the measurements sequentially. After 

conversations with the sponsor, we decided the sequential option was of most interest and chose 

to accomplish this via an extended Kalman filter (EKF). 

After the Kalman filter’s initial development in the 1960s, it was quickly expanded into the EKF 

to handle situations with non-linear measurement models and non-linear dynamics. The details of 

an EKF are well understood and the interested reader is directed to a number of excellent texts 

on this topic, including Refs. [39], [40], and [41]. Moreover, the application of the EKF to 

sequential estimation of a spacecraft’s state is also well understood and well documented. 

Verbose explanations of all the requisite equations and concepts may be found in popular texts 

such as [42] or [43]. These ideas are further expanded upon in a recent NASA-published 

document on “best practices” for spacecraft navigation [44]. The EKF implemented for this work 

is entirely consistent with the conventions laid out in the references cited here. 

The EKF designed and implemented as part of this work is a proof-of-concept filter, intended 

primary to explore the POD performance possible using only MUSIC measurements. The 

scenario investigated here is for a single transmitter in low Earth orbit (LEO) and a single 

receiver in a different orbit. The filter state is comprised of the position and velocity of the 

transmitter, since we assume the state of the receiver is known. As a proof-of-concept, the filter 

dynamics are governed by Keplerian motion (i.e., two-body orbital dynamics), though we do 

account for a representative amount of random accelerations as process noise. 

Measurements are obtained by simulating the RF signal at the receiver location, which consists 

of a primary signal (from an arbitrary direction) and an interfering signal from the unknown 

transmitter. We assume each of these signals have a different signal-to-noise ratio (SNR), which 

is used to corrupt each of these ideal signals. The corrupted plane wave is then sampled and 

passed to the MUSIC algorithm, which returns the bearing (i.e., direction) to the two sources. 

Since we presume the primary signal originates from a known asset, we can determine which 

bearing measurement is associated with the unknown transmitter---and it is this measurement 

that is passed to the EKF for POD. 
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4 RESULTS AND DISCUSSION 

4.1 MUSIC Algorithm Analysis Results 

We performed an analysis of the MUSIC algorithm for both single and two signal cases. We 

developed a set of scenarios for each case. Each scenario would result in a contour plot of 

bearing angle error and would be used to determine the MUSIC algorithm's sensitivity to certain 

signal and sensor array properties. Each point on the contour plot is determined using a Monte 

Carlo analysis where random noise of a certain power, determined by the Signal-to-Noise Ratio 

(SNR), was added to the received signal. Each Monte Carlo analysis provides the mean and 

standard deviation of the bearing angle error between the estimated DOA and true DOA. 

4.1.1 Single Signal Results 

We began by analyzing the MUSIC algorithm with a set of scenarios involving a single signal. 

The first group of scenarios determined the algorithm’s sensitivity to signal’s azimuth and 

elevation. Each scenario used a different array geometry and number of elements and the defined 

parameters of these scenarios can be found in Table 3. Results are shown in Figure 3 to Figure 7. 

 Table 3. Parameters for group 1 scenarios for single signal 

MUSIC analysis 
Scenario Frequency SNR (dB) Number of Elements Array Geometry 

1 2.2 GHz 5 5x5 
Uniform Rectangular 

Array 

2 2.2 GHz 5 5x5 
Rectangular Array 

with Offset 

3 2.2 GHz 5 25 
Uniform Circular 

Array 

4 2.2 GHz 5 2x2 
Uniform Rectangular 

Array 

5 2.2 GHz 5 2x2 
Rectangular Array 

with Offset 
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Figure 3. Monte Carlo result for group 1, scenario 1 for single 

signal MUSIC analysis 

Figure 4. Monte Carlo result for group 1, scenario 2 for single 

signal MUSIC analysis 
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Figure 5. Monte Carlo result for group 1, scenario 3 for single 

signal MUSIC analysis 

Figure 6. Monte Carlo result for group 1, scenario 4 for single 

signal MUSIC analysis 
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Figure 7. Monte Carlo result for group 1, scenario 5 for single 

signal MUSIC analysis 

From these results, we can see that MUSIC is more sensitive to elevation of the incoming signal 

rather than the azimuth. A lower elevation for all array geometries provides a higher bearing 

angle error. Looking at Figures 6 and 7 we see that the bearing angle is larger when less receiver 

elements are used. 

The second group of scenarios analyzed the algorithm's response to varying signal carrier 

frequency and Signal to Noise Ration (SNR). We define the parameters of this group in Table 4. 

Results are shown in Figure 8 and Figure 9. 

Table 4. Parameters of group 2 scenarios for single signal 

MUSIC analysis 

Scenarios Azimuth of Signal (deg) Elevation of Signal (deg) Number of Elements Array Geometry 

1 0 85 5x5 
Uniform 

Rectangular Array 

2 45 45 5x5 
Uniform 

Rectangular Array 
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Figure 8. Monte Carlo result for group 2, scenario 1 for single 

signal MUSIC analysis 

Figure 9. Monte Carlo result for group 2, scenario 2 for single 

signal MUSIC analysis 

Figures 8 and 9 show us that MUSIC is more sensitive to SNR than carrier frequency. 

We then analyzed MUSIC’s response to sample frequency. The parameters for this third group of 

scenarios can be found in Table 5. Results are shown in Figure 10 to Figure 12. 
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Table 5. Parameters for group 3 scenarios for single signal 

MUSIC analysis 

Scenario Frequency SNR (dB) 
Azimuth of Signal 

(deg) 

Elevation of Signal 

(deg) 

Number of 

Elements 
Array Geometry 

1 2.2 GHz 5 0 85 5x5 
Uniform 

Rectangular Array 

2 2.2 GHz 5 45 45 5x5 
Uniform 

Rectangular Array 

3 2.2 GHz 5 45 45 2x2 
Uniform 

Rectangular Array 

Figure 10. Monte Carlo result for group 3, scenario 1 for single 

signal MUSIC analysis 

Figure 11. Monte Carlo result for group 3, scenario 2 for single 

signal MUSIC analysis 
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Figure 12. Monte Carlo result for group 3, scenario 3 for single 

signal MUSIC analysis 

These results agree with our intuition that the higher the sampling frequency the lower the error 

in the DOA estimation.  

Our previous results show that MUSIC is sensitive to the elevation of the signal and the SNR 

of the signal. Our last group of scenarios explores this by analyzing MUSIC’s response to 

varying elevation and SNR. The parameters for this fourth and final group for single signal 

analysis can be found in Table 6. Results are shown in Figure 13 to Figure 15. 

Table 6. Parameters for group 4 scenarios for single signal 

MUSIC analysis 

Scenario Frequency Azimuth of Signal (deg) Number of Elements Array Geometry 

1 2.2 GHz 0 2x2 
Uniform 

Rectangular Array 

2 2.2 GHz 0 5x5 
Uniform 

Rectangular Array 

3 2.2 GHz 0 10x10 
Uniform 

Rectangular Array 
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Figure 13. Monte Carlo result for group 4, scenario 1 for single 

signal MUSIC analysis 

Figure 14. Monte Carlo result for group 4, scenario 2 for single 

signal MUSIC analysis 
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Figure 15. Monte Carlo result for group 4, scenario 3 for single 

signal MUSIC analysis 

These results show that the algorithm has a higher error sensitivity to elevation than SNR. 

4.1.2 Two-Signal Results 

We performed two groups of scenarios for the two-signal analysis of the MUSIC algorithm. The 

first group analyzes the algorithm’s sensitivity to varying angle between the signals and the 

power ratio between the two signals. The defined parameters provide an azimuth and elevation of 

the primary signal that we perform a DOA estimation on. The provided SNR is the ratio between 

the weaker signal (our primary signal) and noise. We can find the parameters in Table 7. Results 

are shown in Figure 16 to Figure 18. 

Table 7. Parameters for group 1 for two-signal MUSIC 

Analysis 

Scenario Frequency SNR (dB) 
Azimuth of Signal 

(deg) 

Elevation of Signal 

(deg) 

Number of 

Elements 
Array Geometry 

1 2.2 GHz 1 45 45 5x5 
Uniform 

Rectangular Array 

2 2.2 GHz 5 45 45 5x5 
Uniform 

Rectangular Array 

3 2.2 GHz 10 45 45 5x5 
Uniform 

Rectangular Array 
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Figure 16. Monte Carlo result for group 1, scenario 1 for two-

signal MUSIC analysis 

Figure 17. Monte Carlo result for group 1, scenario 2 for two-

signal MUSIC analysis 
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Figure 18. Monte Carlo result for group 1, scenario 3 for two-

signal MUSIC analysis 

We found in these results that when the angle between two signals is small enough, the 

algorithm has a difficulty in separating the two angles. That is why there are areas in the plots 

that are white. Rather than producing two DOA, one for each signal, the algorithm may produce 

only  one DOA. 

Similar to the first group in the single signal analysis, our second group of scenarios analyzes 

MUSIC’s response to varying azimuths and elevations of the primary signal. We also vary the 

array geometry in each scenario. The parameters for this group can be found in Table 8. Results 

are shown in Figure 19 to Figure 21 

Table 8. Parameters for group 2 for two-signal MUSIC 

Analysis 

Scenario Frequency SNR (dB) Power Ratio 
Angle Between 

Signals (deg) 

Number of 

Elements 
Array Geometry 

1 2.2 GHz 10 0.5 5 5x5 
Uniform 

Rectangular Array 

2 2.2 GHz 10 0.5 5 5x5 
Rectangular Array 

with Offset 

3 2.2 GHz 10 0.5 5 25 
Uniform Circular 

Array 
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Figure 19. Monte Carlo result for group 2, scenario 1 for two-

signal MUSIC analysis 

Figure 20. Monte Carlo result for group 2, scenario 2 for two-

signal MUSIC analysis 
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Figure 21. Monte Carlo result for group 2, scenario 2 for two-

signal MUSIC analysis 

We find that the MUSIC is more sensitive to elevation of the primary signal rather than its 

azimuth. This is similar to the results of the first group of scenarios for the single signal cases. 

4.2 Geolocation with TDOA and FROA Results (Root Locus Analysis) 

Root locus is used extensively in modern control systems for the development of compensators. 

The modern root locus method analyzes migration of the characteristic equation's (a polynomial) 

roots as a single parameter is varied. Instead of adjusting one parameter, our analysis involves 

adjusting multiple parameters in a polynomial system to better understand the effect on the 

system's solutions. We visualize this by plotting a root locus of each of the variables in the 

polynomial system. 

Our goal is to visualize the effects of error added to the TDOA and FROA measurements 

on    the solution to their respective polynomials. We begin by developing a TDOA or 

FROA/TDOA polynomial system for each scenario. We then perform a Monte Carlo     

simulation of the geometric only TDOA and FROA/TDOA hybrid polynomial systems      

adding error to each measurement. We plot the roots of the system for each of the 300 trials 

of the Monte Carlo simulation. 

Information on our two scenarios can be found in Tables 9 and 10. These tables provide 

transmitter and satellite information. The large (X) markers in our root locus plots represent the 

zero error solutions with the red solution being the true solution. All other solutions are 

represented by blue or gray dots. Blue dots are solutions that satisfy the original TDOA equation 

or both TDOA and FROA equation we refer to these as valid solutions. Gray dots represent 

extraneous solutions that satisfy the final polynomial, but do not satisfy the original equations. 

Extraneous solutions are introduced when the original TDOA or FROA equations are squared to 

arrive at a polynomial representation of the problem. 
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Table 9. Transmitter location and measurement times for 

scenario 1 and 2 
Scenario Date Time Ground Information Measurement Times (s) 

Latitude Longitude t1 t2 t3 

1 10/31/2019 17:00:00 42.7 N 73.7 W 428 988 1548 

2 10/31/2019 17:00:00 42.7 N 73.7 W 386 1000 1614 

Table 10. Satellite 1 and 2's orbital parameters for scenario 1 

and 2 
Satellite 1 Parameters 

Scenario 
Semi-Major 

Axis (km) 

Eccentricity 

(~) 

Inclination 

(deg) 
RAAN (deg) 

Argument of 

Perigee (deg) 

True 

Anomaly 

(deg) 

1 8000 0.05 55 180 0 0 

2 8000 0.05 71 196 0 0 

Satellite 2 Parameters 

Scenario 
Semi-Major 

Axis (km) 

Eccentricity 

(~) 

Inclination 

(deg) 
RAAN (deg) 

Argument of 

Perigee (deg) 

True 

Anomaly 

(deg) 

1 8000 0.05 55 180 0 15 

2 8000 0.05 50 172 19 0 

We begin by plotting the root locus results for scenario 1 in Figures 22, 23, 24, and 25. We can 

see that there is no interaction between the real roots for the TDOA polynomial (Figures 22 and 

23). We see in Figure 22 there are two groups of valid solutions (blue dots), one surrounding the 

true position of the transmitter and the other surrounding an extraneous solution. Two real roots 

of the FROA/TDOA polynomial (Figures 24 and 25) seem to migrate towards each other and 

move to the imaginary axis. This means there are instances where error added to the 

measurements drives the polynomial to provide zero real or valid solutions. 

We then plot the root locus results for scenario 2 in Figures 26, 27, 28, and 29. Similar to 

scenario 1, we see that the TDOA solutions do not migrate as far as the FROA/TDOA 

polynomial. This may be due to the addition of error to both TDOA and FROA measurements. 

We also see that the error added to the FROA measurements is much smaller than the error added 

to the TDOA and there is more migration of the FROA/TDOA polynomial roots than the TDOA 

polynomial roots. This suggests that the hybrid polynomial may be more sensitive to error in 

FROA measurements than in the TDOA measurements. Comparing Figures 26 and 28 to Figures 

22 and 24 we see more of a point cloud on some of the roots in the imaginary plane for scenario 

2 than in scenario 1. 
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Figure 22. Scenario 1 root locus results with 1 km error applied 

to TDOA measurement for TDOA polynomial 

Figure 23. Zoom-in of Figure 22 about the true solution 

Figure 24. Scenario 1 root locus results with 100 m error 

applied to TDOA measurement and frequency ratio error of 

𝟑 × 𝟏𝟎−𝟖 for FROA/TDOA polynomial
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Figure 25. Zoom-in of Figure 24 showing the interaction 

between the true root and the extraneous root  

Figure 26. Scenario 2 root locus results with 1 km error applied 

to TDOA measurement for TDOA polynomial 

Figure 27. Zoom-in of Figure 26 about the true solution 
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Figure 28. Scenario 2 root locus results with 100m error applied to 

TDOA measurement and a frequency ration error of 𝟑 × 𝟏𝟎−𝟖 for

FROA/TDOA polynomial

Figure 29. Zoom-in of Figure 28 showing the interaction 

between the true root and the extraneous root 

4.3 Initial Orbit Determination (IOD) with Frequency Based Observables 

We analyzed the existence and uniqueness of Doppler-based orbit determination. In the case of 

seven (or more) concurrent measurements, we have shown a solution to exist and be locally 

unique for a transmitter and receivers in general position. There are specific degenerate 

geometries leading to ambiguous (non-unique) solutions, such as a “string of pearls” orbital 

configuration or all elements along a line. Both of these degenerate configurations may often be 

avoided in practice. 

Existence and uniqueness of non-concurrent measurements is more challenging. While we have 

not yet shown this analytically (for two body motion), we have demonstrated local uniqueness 

numerically. Under the situation where a reasonable initial guess of the transmitter's orbit is 

known, we have shown that a simple gradient-based method may be used to find the transmitter's 

actual orbit. 
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4.3.1 Manipulation of the Doppler Equation for IOD 

Let's first consider the first order Doppler measurement 

𝑓 = (1 −
𝒗𝑇𝒖

𝑐
)𝑓𝑇 (63) 

where 𝑓 is the measured frequency, 𝑓𝑇 is the carrier frequency, 𝑐 is the speed of light, 𝒗 is the 

relative velocity between the transmitter and the receiver, and 𝒖 is the unit vector pointing from 

the receiver to the transmitter and can be expressed as 

𝒖 =
𝒓

𝑟
(64) 

where 𝒓 is the position of the transmitter relative to the position of the receiver. We will express 

the relative velocity as 

𝒗 = 𝒗𝑇 − 𝒗𝑅 (65) 

where [  ]𝑇 and [  ]𝑅 will denote the transmitter and the receiver respectively. We will also

express the relative position as 

𝒓 = 𝒓𝑇 − 𝒓𝑅 (66) 

The Doppler equation can be rearranged into 

𝑐 (
𝛥𝑓

𝑓𝑇
) = −𝒗𝑇𝒖 = −(𝒗𝑇 − 𝒗𝑅)

𝑇
𝒓𝑇 − 𝒓𝑅
‖𝒓𝑇 − 𝒓𝑅‖

(67) 

4.3.2 IOD from Concurrent Frequency Measurements 

Let's begin by setting up a system of nonlinear equations of the form 𝑆(𝒙) = 0. Using Eq. 67 we 

choose to define S as 

𝑆 =

{

(
𝑓𝑅1 − 𝑓𝑇
𝑓𝑇

) = −𝒗𝑇𝒖 = −(𝒗𝑇 − 𝒗𝑅1)
𝑇
𝒓𝑇 − 𝒓𝑅1
‖𝒓𝑇 − 𝒓𝑅1‖

⋮

(
𝑓𝑅𝑘 − 𝑓𝑇
𝑓𝑇

) = −𝒗𝑇𝒖 = −(𝒗𝑇 − 𝒗𝑅𝑘)
𝑇
𝒓𝑇 − 𝒓𝑅𝑘
‖𝒓𝑇 − 𝒓𝑅𝑘‖

(68)
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Our knowns in these systems of equations include the position and velocity of each receiver, 

{𝒓𝑟𝑖 , 𝒗𝑟𝑖}𝑖=1
𝑘

. Our observables are the frequency measured by each receiver at a certain time, 𝑡. 

The unknowns include the position, velocity, and the carrier frequency of the transmitter. For the 

perfect measurement case, the measured frequency of each receiver is related to the position and 

velocity of the receiver and the position, velocity, and frequency of the transmitter by Eq. 63.  

There are seven unknown states for a generic 3D orbit with an unknown transmitter frequency. 

Therefore, recognizing that each RF measurement corresponds to a 1D equation for the observed 

frequency, a minimum of 𝑘 = 7 measurements are required to solve for the unknowns. We must 

also impose the requirement that none of the receivers is coincident with the transmitter.   

The proof that a solution exists is trivial for perfect measurements. We know from Eq. 63 that the 

frequency measured by a receiver is related to the relative velocity, relative position, and the 

frequency of the transmitter. Because of this relation the position, velocity, and the frequency of 

the transmitter will always solve the system of equations. Unfortunately, the frequency 

measurements at our receivers are noisy and our knowledge of the receiver states (position and 

velocity) are not perfect. Future work will involve deriving a proof that a real solution exists for 

the perturbed measurement case. 

Although it is difficult to prove global uniqueness of a solution to a set of nonlinear equations, 

we can prove local uniqueness of the solution by invoking the Inverse Function Theorem [45] 

[46]. The theorem states that a system of equations, 𝑆(𝒙) = 𝑦, has a unique solution for a 

neighborhood about a point 𝒙0 if the Jacobi matrix of 𝑆 at point 𝒙𝟎 is non-singular. We will 

define the Jacobi matrix as 

𝐽 =

[

𝑑𝑆1
𝑑𝒓𝑇

𝑑𝑆1
𝑑𝒗𝑇

𝑑𝑆1
𝑑𝑓𝑇

⋮
𝑑𝑆7
𝑑𝒓𝑇

⋮
𝑑𝑆7
𝑑𝒗𝑇

⋮
𝑑𝑆7
𝑑𝑓𝑇]

(69) 

From Eq. 68 we know that 

𝑆𝑖( 𝒓𝑇 , 𝒗𝑇 , 𝑓𝑇) =  𝑐 (
𝛥𝑓𝑖
𝑓𝑇
) + (𝒗𝑇 − 𝒗𝑅𝑖)

𝑇 𝒓𝑇 − 𝒓𝑅𝑖
‖𝒓𝑇 − 𝒓𝑅𝑖‖

(70) 

We will begin by taking the derivative of 𝑆𝑖 with respect to 𝒓𝑇 which gives us 

𝑑𝑆𝑖
𝑑𝒓𝑇

=
(𝒗𝑇 − 𝒗𝑅𝑖)

𝑇

[(𝒓𝑇 − 𝒓𝑅𝑖)
𝑇
(𝒓𝑇 − 𝒓𝑅𝑖)]

1/2
−
(𝒗𝑇 − 𝒗𝑅𝑖)

𝑇
(𝒓𝑇 − 𝒓𝑅𝑖)(𝒓𝑇 − 𝒓𝑅𝑖)

𝑇

[(𝒓𝑇 − 𝒓𝑅𝑖)
𝑇
(𝒓𝑇 − 𝒓𝑅𝑖)]

3/2 (71)
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Our next derivative of 𝑆𝑖 will be with respect to 𝒗𝑇 

𝑑𝑆𝑖
𝑑𝒗𝑇

=
(𝒓𝑇 − 𝒓𝑅𝑖)

𝑇

[(𝒓𝑇 − 𝒓𝑅𝑖)
𝑇
(𝒓𝑇 − 𝒓𝑅𝑖)]

1/2
 (72) 

Our last derivative of 𝑆𝑖 is with respect to 𝑓𝑇 

𝑑𝑆𝑖
𝑑𝑓𝑇

= −𝑐
𝑓𝑖

𝑓𝑇
2   (72) 

We can utilize this method to determine which specific geometries will provide degenerate 

solutions. Some of these degenerate geometries are enumerated in the following paragraphs. 

However, we can also show that the solution will be locally unique for a transmitter having a 

general position and velocity. For example, consider the general geometry show in Tables 11 and 

12. Using this configuration to calculate our observable for each receiver and substituting these 

results into the Jacobi matrix, we find that the condition number is about 2 × 104. This tells us 

that although the general case is not degenerate. It also tells us that some geometries may lead to 

a poorly conditioned Jacobi matrix, suggesting a large sensitivity to measurement noise. 

Table 11. Position, velocity, and carrier frequency of the 

transmitter for the general geometry example 
Transmitter 

Position (km) Velocity (km/s) Frequency (Hz)  

8000 6000 0 0 5 5 1 × 109 

 

Table 12. Position and velocity of each receiver for the general 

geometry example 
Receivers 

Receiver Position (km) Velocity (km/s) 

1 1319 10 169 4.9 17.4 2.7 

2 8138 2628 612 0.25 7.9 0.57 

3 5310 -6359 -267 8 1.3 0.82 

4 11264 -7437 554 4.3 3.6 0.24 

5 42390 -104890 930 1.9 0.33 0.03 

6 -5032 -11865 334 4.9 -2.7 0.11 

7 4997 -4716 -190 6.4 4.5 0.45 

 

Our first degenerate geometry is the “string of pearls” geometry where all satellites, including all 

receivers and transmitters, are in a leader-follower formation in the same circular orbit. An 

example of this geometry can be seen in Figure 30. In this formation, the relative velocity 

between each of the receivers and the transmitter will be zero. Looking at the Jacobi matrix we 

can see that this will reduce the rank from seven to three. 
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Figure 30. An example of the "string of pearls" geometry 

The next degenerate geometry that we will look at is where all receivers and the transmitter are 

lined up along a single line of sight. An example of this geometry can be seen in Figure 31. 

Figure 31. An example of the geometry where each receiver has 

the same line of sight to the transmitter 

We can prove that this geometry is degenerate by looking at the Jacobi matrix. For this geometry, 

Eq. 72 would be the same for each of the receivers. Thus, the Jacobi matrix would have a rank of 

five rather than seven. This geometry is very rare because the measurements from each receiver 

must be taken when the receivers line up. 

4.3.3 IOD from Non-Concurrent Frequency Measurements 

For the single receiver taking FOA measurements over time case. We can now set up our system 

of nonlinear equations of the form 𝑆(𝒙) = 0. We will define 𝑆 to be 

𝑆 =

{

(
𝑓𝑅(𝑡1) − 𝑓𝑇

𝑓𝑇
) = −(𝒗𝑇(𝑡1) − 𝒗𝑅(𝑡1))

𝑇 𝒓𝑇(𝑡1) − 𝒓𝑅(𝑡1)

‖𝒓𝑇(𝑡1) − 𝒓𝑅(𝑡1)‖
⋮

(
𝑓𝑅(𝑡𝑘) − 𝑓𝑇

𝑓𝑇
) = −(𝒗𝑇(𝑡𝑘) − 𝒗𝑅(𝑡𝑘))

𝑇 𝒓𝑇(𝑡𝑘) − 𝒓𝑅(𝑡𝑘)

‖𝒓𝑇(𝑡𝑘) − 𝒓𝑅(𝑡𝑘)‖

(73) 

The knowns in our system include the position and velocity of the receiver at each measurement 

time and the time at each measurement, 𝑡𝑖. The observables include the frequency measured by 

the receiver at each measurement time. The unknowns include the position and velocity of the 

transmitter at each measurement time and the carrier frequency. We assume that the carrier 

frequency is constant over time. Our observables are related to knowns and unknowns using    

Eq. 63.  
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To reduce the number of unknowns, we relate the position and velocity of the transmitter at each 

measurement to the position and velocity of the transmitter at the first measurement. As long as 

we know the time elapsed between measurements we can us Kepler's equation to accomplish  

this task. 

At the moment, we have only attempted to solve the non-concurrent frequency-based IOD 

problem using the Newton-Raphson method. The Newton-Raphson method is an iterative, 

gradient-based algorithm used to solve nonlinear system of equations [47]. The algorithm 

requires an initial guess, and a reasonable guess at that. As discussed later in this section, an 

unreasonable guess may cause the method to not converge or converge to an incorrect solution. 

Our solver uses the initial guess to calculate the Jacobi matrix using forward finite differencing. 

The step is then calculated by dividing the residual from the initial guess by the Jacobi matrix. 

This step is then subtracted from the current guess to form a new guess. We then calculate the 

error by taking the norm of the residual from the new guess. We repeat these steps with the new 

guess until the error reaches a certain threshold.  

We developed a general case to test this method. Tables 13 and 14 provide the orbital states of 

the transmitter and receiver at the time of the initial measurement, respectively. 

Table 13. Position, velocity, and carrier frequency of the 

transmitter at the time of the first measurement for the general 

geometry example 
Position (km) Velocity (km/s) 

36515 21082 0 -1.537 2.627 0 

Table 14. Position and velocity of the receiver at the time of the 

first measurement for the general geometry example 
Receiver 

Position (km) Velocity (km/s) 

10629 15133 68161 -4.017 3.072 0.408 

Our initial findings show that the Newton-Raphson method would converge if the initial guess of 

the position was within 100 km and the velocity was within 100 m/s. We have also found 

instances outside of the regions discussed above where the method converges to an incorrect 

orbit. This tells us that although the problem is locally unique, it is not globally unique. 

4.3.4 Relative IOD from Non-Concurrent Frequency Measurements 

In the special case where both the transmitter and receiver are in orbit, the situation may arise 

when the two are known to be close to one another. In such a case, it is often reasonable for IOD 

purposes to assume the relative motion between the transmitter and receiver is governed by the 

so-called Clohessy-Wiltshire (CW) equations. Under this assumption, we linearize the dynamics 

and analytically compute the state transition matrix---thus allowing us to propagate a relative 

state forwards (or backwards) in time with a simple linear transformation. That is, if 𝒓 is the 
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relative position and 𝒗 is the relative velocity, we may propagate the relative translational state 

from time 𝑡0 to time 𝑡 according to 

𝒙(𝑡) = [
𝒓(𝑡)
𝒗(𝑡)

] = [
𝚽𝒓𝒓 𝚽𝒓𝒗

𝚽𝒗𝒓 𝚽𝒗𝒗
] [
𝒓(𝑡0)
𝒗(𝑡0)

] = [
𝚽𝒓

𝚽𝒗
] 𝒙(𝑡0) (74) 

Now, we may apply this to the Doppler equation as shown in Eq. 63 to find the frequency 

observed by the receiver at time 𝑡,  

𝑓(𝑡) = (1 −
𝒗(𝑡)𝑇𝒖(𝑡)

𝑐
) 𝑓𝑇 (75) 

Recognizing that 𝒖(𝑡) = 𝒓(𝑡)/‖𝒓(𝑡)‖, we find that 

𝑐𝑓(𝑡) = 𝑐𝑓𝑇 − 𝑓𝑇
𝒗(𝑡)𝑇𝒓(𝑡)

‖𝒓(𝑡)‖
(76) 

which we may rewrite in terms of the state at 𝑡0, 𝒙0 = 𝒙(𝑡0) 

𝑐𝑓(𝑡) = 𝑐𝑓𝑇 − 𝑓𝑇
𝒙0
𝑇𝚽𝒗

𝑇𝚽𝒓𝒙0
(𝒙0

𝑇𝚽𝒓
𝑇𝚽𝒓𝒙0)

1/2
(77) 

Preliminary numerical experimentation has shown this seven-parameter estimation problem 

(unknowns of 3D position, 3D velocity, and 1D transmit frequency) to be fully observable for a 

transmitter and receiver in general orbits. There do exist degenerate configurations, such as those 

discussed in prior sections (e.g., the Doppler shift will always be zero for any trailing orbit 

because the range-rate is zero). 

4.4 Extended Kalman Filter (EKF) with MUSIC Measurements 

We implemented a proof-of-concept EKF to demonstrate the performance of angles-only IOD 

using RF-based DOA measurements obtained via the MUSIC algorithm. Details of the MUSIC 

algorithm are in Section 3.1 and EKF background is discussed in Section 3.4. This example 

assumes a transmitter broadcasting at a frequency of 27 GHz (example Ka band signal). We  

assume this signal is detected by a receiver having a uniform rectangular array (URA) with 

elements in a 13x13 grid pattern. The MUSIC algorithm is used to construct DOA measurements 

once every three minutes (i.e., a MUSIC measurement is supplied to EKF every three minutes). 

Now, consider the situation where the transmitter and receiver are on different orbits. For the 

sake of demonstrating efficacy, we choose arbitrary (but realistic) orbital elements for each, as 

summarized in Table 15. 
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Table 15. Initial conditions for transmitter and receiver for 

EKF demonstration with MUSIC 

Spacecraft 
Semi-Major 

Axis (km) 

Eccentricity 

(~) 

Inclination 

(deg) 
RAAN (deg) 

Argument of 

Perigee (deg) 

True 

Anomaly 

(deg) 

Transmitter 8091.8 0.10 39 221 30 15 

Receiver 8091.8 0.15 40 220 30 15 

Finally, assuming a signal-to-noise ratio (SNR) of 2 dB for the transmitter, we may look at the 

EKF state estimation performance over a period of three orbits (about 6 hours). These results are 

shown in Figure 32 and Figure 33, with the thick black line showing the state estimation error, 

and the red/blue lines showing the covariance bounds. 
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Figure 32. EKF position estimation performance over three 

orbits  
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Figure 33. EKF velocity estimation performance over three 

orbits  
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5 CONCLUSIONS 

Radio frequency (RF) signals from an unknown transmitter may be used to infer the position and 

velocity of the transmitter. This may be accomplished using a number of different RF 

observables, including: direction-of-arrival (DOA), time difference of arrival (TODA), and 

Doppler shift. In this work, we investigated the efficacy of all three of these RF observables for 

transmitter localization. 

The work on this grant began by studying the various algorithms and techniques to extract state 

data from RF observables. We explored the MUltiple SIgnal Classification (MUSIC) algorithm 

for DOA measurements, classic TDOA measurements, and a variety of Doppler measurements. 

The Doppler measurements included a simple frequency shift, but also included more 

complicated measurements types like frequency difference on arrival (FDOA) and frequency 

ratio on arrival (FROA). 

The various measurement types were evaluated for a few different types of transmitter 

localization. The first was the geolocation problem, where our objective was to determine the 

location of a stationary transmitter on the surface of Earth. Next, we considered determination of 

the full orbital state (position and velocity) for a transmitter in Earth orbit. In this case we studied 

both the initial orbit determination (IOD) and precise orbit determination (POD) problems. For 

the IOD problem, a solution was developed for the special case of concurrent measurements---

though this requires at least seven receivers in general position. We began the study of a solution 

procedure for non-concurrent measurements, though more work remains to be done to arrive at 

an algorithm that works when no a priori state knowledge. For the POD problem, we studied the 

efficacy of the MUSIC algorithm within an extended Kalman filter (EKF) estimation framework. 

Our preliminary analysis suggests that RF-based observables may be used for determining the 

state of an unknown transmitter. Further work is required to have stable and globally convergent 

algorithms for solving this problem in practice. 

45



Approved for public release; distribution is unlimited. 

6 BIBLIOGRAPHY 

 

[1]  M. Kayton and W. Fried, Avionics Navigation Systems, 2nd Ed, Wiley, 1997.  

[2]  B. Tan, K. Woodbridge and K. Chetty, "Areal-time high resolution passive wifi Doppler-

radar and its applicaitons," in 2014 International Radar Conference, 2014.  

[3]  S. Ziraril, P. Canalda and F. Spies, "Wifi GPS Based Combined Positioning Algorithm," in 

2010 IEEE International Conference on Wireless Communications, Networking and 

Information Security (WCNIS), 2010.  

[4]  G. Opshaug, J. Do and D. Rubin, "Doppler-aided positioning, navigation, and timing using 

broadcast television signals". USA Patent 8,125,389, 2012. 

[5]  H. Sun, D. Tan, Y. Lu and M. Lesturgie, "Applications of Passive Surveillance Radar 

Systems using Cell Phojne Base Station Illuminators," IEEE Aerosapce and Electronic 

Systems Magazine, vol. 25, no. 3, pp. 10-18, 2010.  

[6]  J. Ashjaee, "GPS Doppler Processing for Precise Positioning in Dynamics Applicaionts," 

Navigation, vol. 25, no. 3, pp. 370-385, 1985.  

[7]  S. Wu and V. Ondrasik, "Orbit Determination of Low-Altitude Earth Satellites using GPS 

RF Doppler," in PLANS '82, 1982.  

[8]  E. P. Krider, R. C. Noggle, A. E. Pifer and D. L. Vance, "Lightning direction-finding 

systems for forest fire detection," Bulletin of the American Meteorological Society, vol. 61, 

p. 980–986, 1980.  

[9]  J. Kennedy and M. C. Sullivan, "Direction finding and ``smart antennas" using software 

radio architectures," IEEE Communications Magazine, vol. 33, p. 62–68, 1995.  

[10]  B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, Global positioning system: theory 

and practice, Springer Science & Business Media, 2012.  

[11]  S. Shuster, A. J. Sinclair and T. A. Lovell, "Initial relative-orbit determination using 

heterogeneous TDOA," in 2017 IEEE Aerospace Conference, 2017.  

[12]  W. H. Guier and G. C. Weiffenbach, "A satellite Doppler navigation system," Proceedings 

of the IRE, vol. 48, p. 507–516, 1960.  

[13]  X. Ning and J. Fang, "Spacecraft autonomous navigation using unscented particle filter-

based celestial/Doppler information fusion," Measurement Science and Technology, vol. 

19, p. 095203, 2008.  

[14]  K. C. Ho and Y. T. Chan, "Solution and performance analysis of geolocation by TDOA," 

IEEE Transactions on Aerospace and Electronic Systems, vol. 29, p. 1311–1322, 1993.  

[15]  L. I. Jinzhou, G. U. O. Fucheng and W. Jiang, "A linear-correction least-squares approach 

for geolocation using FDOA measurements only," Chinese Journal of Aeronautics, vol. 25, 

p. 709–714, 2012.  

[16]  K. Ho and Y. T. Chan, "Geolocation of a known altitude object from TDOA and FDOA 

measurements," IEEE transactions on aerospace and electronic systems, vol. 33, p. 770–

783, 1997.  

46



Approved for public release; distribution is unlimited. 

[17] T. T. J. Brooks, H. H. C. Bakker, K. A. Mercer and W. H. Page, "A review of position

tracking methods," in 1st International conference on sensing technology, 2005.

[18] R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE transactions 

on antennas and propagation, vol. 34, p. 276–280, 1986.

[19] M. Jalali, M. N. Moghaddasi and A. Habibzadeh, "Comparing accuracy for ML, MUSIC,

ROOT-MUSIC and spatially smoothed algorithms for 2 users," in 2009 Mediterrannean

Microwave Symposium (MMS), 2009.

[20] Z. H. U. Liang, G. O. N. G. Wen-fei and G. U. O. Xu-qiang, "Research on GNSS System

Single Interference Direction Finding," DEStech Transactions on Computer Science and

Engineering, 2019.

[21] H. Wang, Q. Chang, Y. Xu and X. Li, "Estimation of Interference Arrival Direction Based

on a Novel Space-Time Conversion MUSIC Algorithm for GNSS Receivers," Sensors, vol.

19, p. 2570, 2019.

[22] P. Gupta and S. P. Kar, "MUSIC and improved MUSIC algorithm to estimate direction of

arrival," in 2015 International Conference on Communications and Signal Processing

(ICCSP), 2015.

[23] C. R. Dongarsane and A. N. Jadhav, "Simulation study on DOA estimation using MUSIC

algorithm," International Journal of Technology And Engineering System (IJTES), vol. 2,

p. 54–57, 2011.

[24] A. Vesa, "Direction of arrival estimation using MUSIC and root–MUSIC algorithm," in

18th Telecommunications Forum, Pg, 2010.

[25] C. Wen, Z. Wen, M. Lina, W. Yanqun, W. Jun and H. Zhengliang, "A MUSIC based

Interference Suppression Algorithm and Its Application in weak Target Tracking," in 2019

IEEE 2nd International Conference on Information Communication and Signal Processing

(ICICSP), 2019.

[26] S. Shao, A. Liu, C. Yu, H. Yang, Y. Li and B. Li, "Spatial time-frequency distribution of

cross term-based direction-of-arrival estimation for weak non-stationary signal," EURASIP

Journal on Wireless Communications and Networking, vol. 2019, p. 1–12, 2019.

[27] L. Qiu, T. Lan and Y. Wang, "A Sparse Perspective for Direction-of-Arrival Estimation

Under Strong Near-Field Interference Environment," Sensors, vol. 20, p. 163, 2020.

[28] P. Misra and P. Enge, Global positioning system: signals, measurements, and performance,

Ganga-Jamuna Press, 2006.

[29] J. Saastamoinen, "Atmospheric correction for the troposphere and stratosphere in radio

ranging satellites," The use of artificial satellites for geodesy, vol. 15, p. 247–251, 1972.

[30] H. S. Hopfield, "Two-quartic tropospheric refractivity profile for correcting satellite data,"

Journal of Geophysical research, vol. 74, p. 4487–4499, 1969.

[31] M. C. Kelley, The Earth's ionosphere: plasma physics and electrodynamics, vol. 96,

Academic press, 2009.

[32] J. A. Klobuchar, "Ionospheric time-delay algorithm for single-frequency GPS users," IEEE

Transactions on aerospace and electronic systems, p. 325–331, 1987.

[33] A. J. Sinclair, T. A. Lovell and J. Darling, "RF localization solution using heterogeneous

TDOA," in 2015 IEEE Aerospace Conference, 2015.

47



Approved for public release; distribution is unlimited. 

[34] S. W. Asmar, J. W. Armstrong, L. Iess and P. Tortora, "Spacecraft Doppler tracking: Noise

budget and accuracy achievable in precision radio science observations," Radio Science,

vol. 40, 2005.

[35] A. Einstein, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, p.

50, 1905.

[36] J. A. Christian, "StarNAV: Autonomous Optical Navigation of a Spacecraft by the

Relativistic Perturbation of Starlight," Sensors, vol. 19, p. 4064, 2019.

[37] J. A. Klobuchar, "Ionospheric effects on Earth-space propagation," 1983.

[38] H. S. Hopfield, "The effect of tropospheric refraction on the Doppler shift of a satellite

signal," Journal of Geophysical Research, vol. 68, p. 5157–5168, 1963.

[39] A. Gelb, Applied Optimal Estimation, MIT Press, 1974.

[40] P. Maybank, Stochastic Models: Estimation and Control, Vol. 2, Academic Press, 1982.

[41] R. Brown and P. Hwang, Introduction to Random Signals and Applied Kalman Filtering,

Wiley, 1997.

[42] B. Tapley, B. Schutz and G. Born, Statistical Orbit Determination, Elsevier, 2004.

[43] J. Crassidis and J. Junkins, Optical Estimation of Dynamic Systems, Chapman &

Hall/CRC, 2004.

[44] J. Carpenter and C. D'Souza, Navigation Filter Best Practices, NASA/TP-2018-219822,

NASA, 2018.

[45] J. Nash, "The imbedding problem for Riemannian manifolds," Annals of mathematics, p.

20–63, 1956.

[46] J. Moser, "A rapidly convergent iteration method and non-linear partial differential

equations-I," Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, vol. 20, p.

265–315, 1966.

[47] T. J. Ypma, "Historical development of the Newton–Raphson method," SIAM review, vol.

37, p. 531–551, 1995.

48



Approved for public release; distribution is unlimited. 

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

Acronym/ Abbreviation Description 

AFRL Air Force Research Laboratory 

DOA Direction of Arrival 

EKF Extended Kalman Filter 

FDOA Frequency Difference on Arrival 

FROA Frequency Ratio on Arrival 

IOD Initial Orbit Determination 

MUSIC MUltiple SIgnal Classification 

RF Radio Frequency 

RPI Rensselaer Polytechnic Institute 

SNR Signal-to-Noise Ratio 

TDOA Time Difference of Arrival 
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