
RESEARCH REVIEW 2020

Problems
• The need exists for increased

computational power to process,
exploit, and disseminate information
for decision makers.

• Massive amounts of information,
along with AI/ML algorithms, generate
data and computational-intensive
applications.

• Implementing these applications
efficiently on increasingly complex HW/
SW architectures is challenging.

• Too few engineers have the expertise to
optimize algorithms for the wide variety
of hardware currently available.

Solution
• Automatic code generation for data-

intensive computations
• Simultaneous, automatic co-

optimization for targeted hardware

Approach
• Identify and encode data-intensive

compute primitives into CMU’s SPIRAL
code generation technology.

• Develop and encode hardware
performance models into Spiral.

• Use Spiral to co-optimize for a set of
target hardware platforms.

Dr. Scott McMillan (SEI PI), Prof. Franz Franchetti (CMU PI), Prof. Tze Meng Low (CMU PI),
Dr. Daniele Spampinato, Mark Blanco, Anurag Kutuluru, Sanil Rao, Upasana Sridhar

info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A11

Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive
Computing in Resource Constrained Environments

Hardware-software co-optimization promises
timely, high-performance, and cost-effective
implementation and re-implementation of AI/ML
workloads on new DoD hardware platforms.

Trace File

Code Generation +
HW Spec

SPIRAL

GBTLX Interface

GBTLXProblem

GBTLXSolver

Internal Driver

Wrapped GBTL
Functions

GBTL

User Application

Problem Specification

Problem

Signature

Solver

Main Driver

GBTLX Program

Main Driver

GBTLX Generated
Code

1. S. Rao, A. Kutuluru, S. McMillan, F.
Franchetti, “GBTLX: A First Look”, in 2020
IEEE High Performance Extreme Computing
Conference (HPEC), 2020. Outstanding
Student Paper Award.

2. SPIRAL Project, Version 8.1.2. Available at
https://www.spiral.net.

3. GraphBLAS Template Library (GBTL), Version
3.0. Available at https://github.com/cmu-
sei/gbtl, June 2020.

4. A. Buluç, T. Mattson, S. McMillan, J. Moreira,
and C. Yang, “Design of the GraphBLAS API
for C,” in 2017 IEEE International Parallel
and Distributed Processing Symposium
Workshops (IPDPSW), pp. 643–652, 2017.

5. T. M. Low, V. N. Rao, M. Lee, D. Popovici, F.
Franchetti, and S. McMillan, “First look: Linear
algebra-based triangle counting without
matrix multiplication,” in2017 IEEE High
Performance Extreme ComputingConference
(HPEC), pp. 1–6, 2017.

6. J. Kepner, D. Bader, A. Buluç, F. Franchetti,
J. Gilbert, A. Lumsdaine, T. Mattson,
S. McMillan, et al., “Mathematical
Foundations of the GraphBLAS,” in 2016
IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–9, 2016.

Graph algorithms in the language of linear algebra
supports a rich notation for specifying graph, ML and AI
algorithms. For example, counting triangles in graph L:

∆ = || L .x (L +. ᴧ L) ||

includes use of semiring algebraic operations and
masked matrix multiplies.

GBTL implements the GraphBLAS specification that allows
simpler implementation of the math in code:

uint64 _ t triangle _ count(Matrix<bool> const &L) {
 Matrix<uint64 _ t> B(L. nrows(), L.ncols());

 // Masked matrix multiply: B = L .* (L +.̂ L)
 mxm(B, L, NoAccum(), PlusAndSemiring<uint64 _ t>(), L, L);

 //Perform reduction: ||B||
 uint64 _ t count;
 reduce(count, NoAccum(), PlusMonoid<uint64 _ t>(), B);
 return count;
}

Spiral wraps GBTL functions to build a trace file used for
analysis during code generation:

spiral _ session := [
 rec(op := “triangle _ count”), //function name
 rec(op := “MatrixCreation”,row:= 9877,col:= 9877,
 ptr := 0x7fffff45bb60, mat = 0x7fffff45bb60),
 rec(op := “Matrix Multiplication”,
 output = IntHexString(“0x7fffff45bb60”) ,
 mask = IntHexString(“0x7fffff45ba30”),
 inputA = IntHexString(“0x7fffff45bb30”),
 inputB = IntHexString(“0x7fffff45bb30”),
 semiring = “PlusAnd”),
 rec(op := “reduce(matrix->scalar)”,
 /*many more arguments*/),
];[3,4] [1] [1,5]

GBTLX generaged code is on par with hand-tuned code

[6]

[1]

[3]

[2]

References

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.
cmu.edu.
* These restrictions do not apply to U.S. government entities.
DM20-0900

