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Problems
• The need exists for increased 

computational power to process, 
exploit, and disseminate information 
for decision makers.

• Massive amounts of information, 
along with AI/ML algorithms, generate 
data and computational-intensive 
applications.

• Implementing these applications 
efficiently on increasingly complex HW/
SW architectures is challenging.

• Too few engineers have the expertise to 
optimize algorithms for the wide variety 
of hardware currently available.

Solution
• Automatic code generation for data-

intensive computations
• Simultaneous, automatic co-

optimization for targeted hardware

Approach
• Identify and encode data-intensive 

compute primitives into CMU’s SPIRAL 
code generation technology.

• Develop and encode hardware 
performance models into Spiral.

• Use Spiral to co-optimize for a set of 
target hardware platforms.
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Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive 
Computing in Resource Constrained Environments

Hardware-software co-optimization promises 
timely, high-performance, and cost-effective 
implementation and re-implementation of AI/ML 
workloads on new DoD hardware platforms.
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Graph algorithms in the language of linear algebra 
supports a rich notation for specifying graph, ML and AI 
algorithms.  For example, counting triangles in graph L:

∆ = || L .x ( L +. ᴧ  L) ||

includes use of semiring algebraic operations and 
masked matrix multiplies.

GBTL implements the GraphBLAS specification that allows 
simpler implementation of the math in code:

uint64 _ t triangle _ count(Matrix<bool> const &L) {
    Matrix<uint64 _ t> B(L. nrows(), L.ncols());

    // Masked matrix multiply: B = L .* (L +.̂  L)
    mxm(B, L, NoAccum(), PlusAndSemiring<uint64 _ t>(), L, L);

    //Perform reduction: ||B||
    uint64 _ t count;
    reduce(count, NoAccum(), PlusMonoid<uint64 _ t>(), B);
    return count; 
}

Spiral wraps GBTL functions to build a trace file used for 
analysis during code generation:

spiral _ session := [
    rec(op := “triangle _ count”), //function name
    rec(op := “MatrixCreation”,row:= 9877,col:= 9877,
        ptr := 0x7fffff45bb60, mat = 0x7fffff45bb60),
    rec(op := “Matrix Multiplication”,
        output = IntHexString(“0x7fffff45bb60”) ,
        mask   = IntHexString(“0x7fffff45ba30”),
        inputA = IntHexString(“0x7fffff45bb30”),
        inputB = IntHexString(“0x7fffff45bb30”),
        semiring = “PlusAnd”),
    rec(op := “reduce(matrix->scalar)”,
        /*many more arguments*/),
];[3,4] [1] [1,5]

GBTLX generaged code is on par with hand-tuned code
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