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Problem
Software increasingly dominates safety- and mission-critical 
system development. Issues are discovered long after they 
are created.

Solutions
Our three-year project aims to make systems safer and 
more secure by enabling early discovery of system-level 
issues through virtual integration and incremental analytical 
assurance. This project consists of four efforts, all of which 
use the Architecture Analysis and Design Language (AADL), 
an SEI-created, internationally standardized language for 
designing software-centric critical systems.

Security Requirements
A new security annex to AADL and verification plugins
We developed an extension to AADL that enables system 
designers to describe how their system meets security goals 
by, for example, encrypting information or dealing with 
private keys. We also developed tools to verify that a system 
conforms to various policies, and we are publishing papers 
and documentation on how to use them.

Reusable Safety Patterns
A collection of patterns expressed using AADL
We proposed a library of safety design patterns that capture 
key safety architecture fragments. Each pattern is described 
using AADL, complemented by a machine-readable 
description of applicable error scenarios, a behavioral 
description of the nominal case, and a verification plan 
defined using custom tooling and AGREE / Resolute (tooling 
developed by Collins Aerospace). These formalizations are 
AADL implementations of existing patterns, and they equip 
system architects with modeling techniques and verification 
methods that are adaptable to various domains.

Architecture-Supported Audit Processor
A collection of system viewpoints for certification authorities
Performing a hazard analysis is a common way of 
examining a system for safety or security issues. This effort 
integrates a number of sources of system information—
system architecture, error behavior, Kansas State’s AWAS 
technology, and more—into a set of dynamic reports. The 
Architecture-Supported Audit Processor (ASAP) will allow 
system analysts to query interesting portions of a system’s 
architecture interactively, rather than read only what an 
analysis format specifies. 

[Off-]Nominal Behavior
Unified behavioral description
There are several ways to specify behavior in AADL, 
depending on what is being specified: (nominal) component 
behavior, off-nominal (i.e., erroneous) behavior, or mode-
transition semantics. We produced a proposal to unify 
behavior specifications, which will make the language 
simpler and enable more powerful automated analyses.
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We’re making it easier to 
specify, design, and assure 
critical systems that are safer  
and more secure.

Safety and Security Across the System Development Lifecycle

AADL has been used in a variety of safety-critical domains, including medical devices, automotive components, and 
military and commercial aviation.
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