
RESEARCH REVIEW 2020

Problem
Software increasingly dominates safety- and mission-critical
system development. Issues are discovered long after they
are created.

Solutions
Our three-year project aims to make systems safer and
more secure by enabling early discovery of system-level
issues through virtual integration and incremental analytical
assurance. This project consists of four efforts, all of which
use the Architecture Analysis and Design Language (AADL),
an SEI-created, internationally standardized language for
designing software-centric critical systems.

Security Requirements
A new security annex to AADL and verification plugins
We developed an extension to AADL that enables system
designers to describe how their system meets security goals
by, for example, encrypting information or dealing with
private keys. We also developed tools to verify that a system
conforms to various policies, and we are publishing papers
and documentation on how to use them.

Reusable Safety Patterns
A collection of patterns expressed using AADL
We proposed a library of safety design patterns that capture
key safety architecture fragments. Each pattern is described
using AADL, complemented by a machine-readable
description of applicable error scenarios, a behavioral
description of the nominal case, and a verification plan
defined using custom tooling and AGREE / Resolute (tooling
developed by Collins Aerospace). These formalizations are
AADL implementations of existing patterns, and they equip
system architects with modeling techniques and verification
methods that are adaptable to various domains.

Architecture-Supported Audit Processor
A collection of system viewpoints for certification authorities
Performing a hazard analysis is a common way of
examining a system for safety or security issues. This effort
integrates a number of sources of system information—
system architecture, error behavior, Kansas State’s AWAS
technology, and more—into a set of dynamic reports. The
Architecture-Supported Audit Processor (ASAP) will allow
system analysts to query interesting portions of a system’s
architecture interactively, rather than read only what an
analysis format specifies.

[Off-]Nominal Behavior
Unified behavioral description
There are several ways to specify behavior in AADL,
depending on what is being specified: (nominal) component
behavior, off-nominal (i.e., erroneous) behavior, or mode-
transition semantics. We produced a proposal to unify
behavior specifications, which will make the language
simpler and enable more powerful automated analyses.

Sam Procter, Peter Feiler,Dave Gluch, Aaron Greenhouse, Jerome Hugues, Lutz Wrage, Joe Seibel (info@sei.cmu.edu)
Kansas State University: John Hatcliff, Eugene Vasserman, Robby, Hari Thiagarajan, Jason Belt

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA6

Integrated Safety and Security Engineering for Mission-Critical Systems

Requirements
Validation

System
Architecture

Validation

Requirements
Engineering

Integration
Test

Integration
Build

Acceptance
Test

Deployment
Build

Unit
Test

Code
Development

System
Design

Build the
System

Build the
Assurance Case

Architecture
Modeling
Analysis &
Generation

Software
Architecture

Validation

Software
Architecture

Design

System
Test

Target
Build

Component
Software
Design

Design
Validation

We’re making it easier to
specify, design, and assure
critical systems that are safer
and more secure.

Safety and Security Across the System Development Lifecycle

AADL has been used in a variety of safety-critical domains, including medical devices, automotive components, and
military and commercial aviation.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM20-0853

