Carnegie Mellon University
Software Engineering Institute

RobertNord, Ipek Ozkaya, Carol Woody
July 2021

Executive Summary

In the course of development, evolution, and sustainment of software-intensive systems, accumulation
of technical debt is common. Development teams often make tradeoff decisions among competing
solutions, some of which leads to technical debt. When the path taken is expedient in the short term
(e.g., deploying a feature more quickly with suboptimal architectural choices), but more expensive in
the long term (e.g., work will have to be undone to “do it right), a project has usually taken on technical
debt. Not all debt is bad, but unmanaged debt often leads to a number of avoidable situations, such as

e escalating sustainment costs

e increasing delays in delivering new features

e inability to fix software defects, vulnerabilities, and design issues due to growing complexity
e operational problems that degrade system qualities

Often driven by a schedule rush, many causes can contribute to accumulation of technical debt, which
can adversely impact not only quality, cost, and schedule but also cybersecurity. Technical debt affects
the design of the system, making it more difficult to locate and fix vulnerabilities.

Organizations have turned to methods such as DevSecOps to reduce cybersecurity risk, with varying
results. DevSecOps seeks ways to reduce total cost, deliver on time, and improve productivity, all while
improving quality and security. Although the term “DevSecOps” is often linked to tools and automation,
experienced DevSecOps practitioners understand that tools and automation alone cannot ensure secu-
rity, particularly where there is substantial technical debt, nor can tools and automation ensure that
practitioners will recognize and eliminate technical debt in the first place.

Avoiding the negative outcomes associated with accumulating technical debt requires organizations to
embrace technical debt management as a core software engineering activity and incorporate technical
debt management with other project management and cybersecurity practices. A proactive focus on
design and architecture provides a practical way to optimize the use of DevSecOps, and identify, prior-
itize, and mitigate technical debt-related cybersecurity risks that might otherwise be missed.

Managing technical debt is about how much risk and liability an organization is willing to take. Well
managed technical debt can enable organizations to navigate the impact of challenging design tradeoffs
during a systems development and sustainment. Unmanaged technical debt increases the overall cost of
ownershipand liability by increasing the risk of security issues, bugs, and sustainability costs inaddition
to opening up the system to quality issues. This document offers representative examples of technical

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 02.05.2019
[Distribution A] Approved for public release and unlimited distribution.

debt to provide guidance on how organizations can utilize and adapt their existing practices, develop-
ment environments, and DevSecOps tooling to recognize and record technical debt in an effort to help
supplement their cybersecurity and software quality management practices. These examples reinforce
that technical debt is neither a special kind of defect or vulnerability, but it is a third kind of concept
that is critical to recognize and manage to improve the overall quality, security, cost, and schedule pos-
ture of software system development. While existing processes, tools, and DevSecOps approaches help,
they do not solve the problem without proactively managing technical debt and embracing related prac-
tices.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution A] Approved for public release and unlimited distribution.

Understand the Consequences of Technical Debt

All organizations with long-lived software-intensive systems have to deal with technical debt. And not
surprisingly, the longer the intended life of a system, the more important it becomes to manage technical
debt as over the course of many modifications, the system will be exposed to opportunities to take on
new technical debt and reduce the existing debt. Understanding that all systems have some level of
technical debt is a critical first step to successfully managing it. Issues characterized as technical debt
have a significant bearing on cybersecurity concerns and their resolution as well. Especially concerning
vulnerabilities, developers often opt to deploy an update quickly to mitigate a security problem. This
approach may result in developers failing to take the time to analyze the problem and get to the root
cause of the issue. In cases where the update fails to fix the issue at the root cause, vulnerabilities will
reoccur. The patches will introduce additional complexity, degrade the architecture of the system, and
increase the time developers need to understand that area of the code. This is a canonical, yet far too
common example of technical debt expanding cybersecurity risk because far-reaching effects of the bad
fix and the rework it introduces are not recognized and the update does not fix the cause. Failing to
recognize the technical debt increases both the total cost of ownership and cybersecurity risk.

A common operating definition of technical debt is essential for assessing, quantifying, and reducing
technical debt, especially for those organizations that operate their systems in a large ecosystem where
multiple internal teams and external organizations contribute to the development of the system. We
recommend the following definition that highlights the riskier aspects of systems which accumulate
added rework cost as an outcome of design decisions that impact systems’ structure and behavior:

In software-intensive systems, technical debt consists of design or implementation con-
structs that are expedient in the short term but that set up a technical context that can make
future change more costly or impossible [Kruchten 2019].

Indicators of technical debt include symptoms (e.qg., the situations listed above) and causes (e.g., friction
related to processes, people, and the development infrastructure). Neither the causes nor the symptoms
are the technical debt, but they are useful in detecting, prioritizing, monitoring, and preventing it. Causes
and symptoms should be analyzed for actual technical debt so that strategies can be developed for its
long-term management.

Sound software engineering practice includes the design and implementation of an architecture that
meets the “-ilities” or quality attribute requirements. Internal software quality determines the maintain-
ability and evolvability of the system. Other relevant quality attributes often include a combination of
availability, performance, reliability, security, and interoperability, in addition to any other organiza-
tion-specific quality concerns. The decisions made when designing an architecture are critical to achieve
its quality attribute goals. And the cost associated with correcting them at a later time can be significant.
Failing to address these architectural concerns will result in technical debt. Consequently, these flaws
related to technical debt will increase the likelihood that security vulnerabilities will be inserted when
the software is changed. Finally, technical debt when not managed escalates the total cost of ownership.
When technical debt problems remain in production code, they potentially cause damaging operational
events such as outages, data corruption, performance degradation, and security breaches in addition to
increased rework and development costs.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution A] Approved for public release and unlimited distribution.

While the software industry increasingly recognizes the importance of managing technical debt, organ-
izations need specific guidance and examples to assist their effective tracking and quantification, in
particular for understanding how technical debt may expand exposure to cybersecurity risk. This docu-
ment summarizes representative examples of technical debt to guide organizations in utilizing and
adapting their existing software engineering practices, development environments, and DevSecOps
tooling to recognize and record technical debt as a first step in establishing practices for managing tech-
nical debt.

Build on Software Quality ManagementPractices

Three categories of issues must be managed to deliver high-quality software successfully: defects, vul-
nerabilities, and technical debt [Figure 1].

Defect proneness implies increased
vulnerability risks.

Technical debt as it lingers in the system
increases defect proneness.

Technical debt increases vulnerability
risks.

Technical
Debt

Some issues just overlap, making them
hard to tease apart!

Figure 1: Categories of issues that need to be managed in software system development

Defects are errors in coding or logic that cause a program to malfunction or to produce incorrect and
unexpected results. Most, if not all, defects should be caught through routine testing and code analysis
practices including unit and acceptance tests. Vulnerabilities are weaknesses that can be accessed and
exploited by a capable attacker. The criticality of a vulnerability is assessed by determining the risk it
presents, where risk is a measure of the likelihood that a threat will exploit the vulnerability coupled
with the magnitude of the resultant impact. The higher the risk, the higher the criticality. And lastly,
technical debt consists of design or implementation constructs that make future changes more costly,
issues that neither defects nor vulnerabilities effectively address.

There are subtleties in these definitions that drive the reasons why they need to be explicitly managed
and overlaps where common quality management practices can help. Technical debt as it lingers makes
it more difficult to modify the system which indirectly affects security by making it more difficult or
time-consuming to fix vulnerabilities due to increased complexity. It might also make changing the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution A] Approved for public release and unlimited distribution.

software more error prone and amplify defect and vulnerability risks. Research has identified that man-
aging technical debt also assists in managing vulnerabilities [Nord 2016, 1zurieta 2019].

Software engineering practices across the development life cycle support teams working together to
plan, develop, deploy, and operate systems that meet the organization’s programmatic, business, and
mission goals. Developing and deploying high-quality software necessitates accepting that defects, vuk
nerabilities, and technical debt items all need to be actively managed to improve both the quality and
the delivery tempo of a system. Consequently, the approach enumerated below for uncovering technical
debt follows that for detecting any other issue in your system that may affect software quality and se-
curity. Uncovering technical debt, however, further emphasizes design and architecture choices and cost
of change.

1. Understand key programmatic, business, and mission goals. Any issue occurs in the context of
addressing a goal about market position, quality, productivity, or cost originating from a pro-
gram’s business and mission goals. Some organizations clearly communicate short-term and long-
term goals, while some development teams have to infer the goals through the pain felt across
their organization as a consequence of the debt they carry. The associated pain points are symp-
toms that can inform software analysis for identifying technical debt.

2. ldentify key concerns/questions about the system related to your goals. A clear understanding of
the goals will help identify the criteria you need to measure the concerns against. For technical
debt, these will relate to the cost of change to enhance the software.

3. Define observable qualitative and quantitative criteria related to your questions and goals. Tech-
nical debt as a design or code construct is traceable to a concrete system artifact, such as code,
build scripts, and automated test suites. Therefore, such criteria include the quantifiable effect on
system attributes that worsens over time. Examples include increasing numbers of defects and se-
curity vulnerabilities, decreasing maintainability and code quality, and propagation of changes
that trace to several locations in the system.

4. Select and apply one or more techniques or tools to analyze your software for the criteria defined.
Selecting which tools to use is not a trivial process. The nature of the technical debt felt, as well as
the key business and mission goals of the system, will often drive this selection. For example,
while government programs are mandated to conduct automated security analysis, only some
commercial organizations incorporate this into their basic testing practices.

5. Document the issues you uncover that meet the criteria as technical debt items. While develop-
ment efforts expect to track security-related issues and defects explicitly, the same is not true for
technical debt. An effective technical debt management practice starts with emphasizing the im-
portance of tracking the uncovered technical debt issues.

Theapproach to uncovering and managing technical debt is not a distinct, independent, one-time activity
but iterative and continuous and should be integrated with existing practices. Moreover, software pro-
grams that have decades of envisioned operational future must revisit their programmatic, business, and
mission goals periodically.

Security initiatives strive to introduce processes to seamlessly monitor and mitigate cybersecurity risk
across the application life cycle, utilizing automation where feasible. As the capabilities of automating

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution A] Approved for public release and unlimited distribution.

testing, integration, and conformance tools improve, DevSecOps will fulfill its promise of achieving
faster and more reliable software delivery. However, DevSecOps is not a magic solution to resolving
your technical debt. There are kinds of technical debt that an automated pipeline will not be able to
detect and solve. For example, architecture decisions can be tough to automate and monitor. A
DevSecOps pipeline, no matter how smooth the automation process, will not tell you whether you
have selected the Ul framework that best fits the user interaction you need to implement. While you
can push patches and upgrades to runtime, these can actually accumulate technical debt rather than fix
the problem at its source, increasing cybersecurity risks. An automated tool chain will not help you
detect major re-architecting that may need to be done, as the software will continue to work.
DevSecOps is a practice for improving software development quality and timeliness and can be an ef-
fective approach for intentional management of technical debt. However, DevSecOps does not replace
a holistic technical debt management practice. It is only when supplemented with architecture analy-
sis, the DevSecOps continuous analysis mindset will facilitate technical debt detection and manage-
ment.

The next sections provide representative categories of examples of technical debt, including a discussion
of how they can be identified and characterized using detection approaches that focus on a variety of
artifacts.

Identify Technical Debtltems

An organization needs to actively monitor four categories of technical debt to ensure that existing
DevSecOps, software quality, and security management practices are well aligned to also support tech-
nical debt management as part of the five-step process noted above. We organize these categories based
on the artifact they are detected from.

1. Detect technical debt from code, where code-level conformance and structural analysis indicate
maintainability and concerns related to the structure of the system and the codebase.
Detect technical debt from symptoms that signal architecture issues.
Detect technical debt from architecture during design reviews and analysis of decisions.

4. Detect technical debt from development and deployment infrastructure, which are not typically
part of the delivered system but may impact its delivery, security, and quality.

To reason about technical debt, estimate its magnitude, and offer information on which to base deci-
sions, you must anchor technical debt to explicit technical debt items that identify parts of the system:
code, design, test cases, or other artifacts. Atechnical debt item is a single issue that connects affected
development artifacts with consequences for the quality, value, and cost of the system triggered by one
or more causes related to business, change in context, development process, and people and teams.

We demonstrate each of the four categories of technical debt detection with examples next. These ex-
amples of criteria, techniques, and technical debt item descriptions are from actual systems and devel-
oper discussions, drawing on the concepts of secure design [IEEE 2014], and abstracted for a general

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution A] Approved for public release and unlimited distribution.

audience. In order to exemplify the relationship between technical debt and cybersecurity in some of
the examples, we refer to the Common Weakness Enumeration (CWE™). CWE is a categorized, publicly
accessible list of software and hardware weakness types (https://cwe.mitre.org). The CWE was recently
expanded to include quality characteristics such as maintainability that impact security [CISQ 2019].

Detect Technical Debtfrom Code

Technical debt takes different forms in different types of development artifacts. The source code em-
bodies many design and programming decisions. The code can be subjected to review, inspection, and
analysis with static checkers to find issues of finer granularity: while such analysis can detect some
types of technical debt such as code clones and unnecessary complexity, almost all other violations
detected will be symptoms that require some further analysis [ISO/IEC 2021, OMG 2018].

Static analysis checkers that are part of DevSecOps tool chains assist with detecting growing complex-
ity, business logic nonconformances, and some basic classes of design issues such as very large classes
and single points of failure. When not actively managed, all of these issues start accumulating unin-
tended future rework, resulting in technical debt. Furthermore, typical examples of technical debt, such
as greater complexity, increase opportunities for vulnerabilities.

Static analysis is not the only approachto examine code for technical debt and its symptoms. Examining
the code at a high level with a focus on architecture is another approach to surface code conformance
issues that result in technical debt. To understand the impact of change driven by technical debt, devel-
opers need to identify the modules of a system that are the focus of achange and follow the dependencies
to the modules that will be affected by the change. Relevant characteristics for analyzing individual
elements and their dependencies include complexity of individual software elements, interfaces of soft-
ware elements, interrelationships among the software elements, system-wide properties, and interrela-
tionships between software elements and stakeholder concerns.

Here is an example of a technical debt item that signals accumulating system complexity and uncovers
needed design analysis and rearchitecting using static code analysis, which alerts for CWESs. In this
example shown in Table 1, static code analysis the team regularly runs reveals many small, avoidable
coding issues related to reliability, security, performance efficiency, and maintainability that were never
addressed due to schedule pressure and lack of coding guidelines. Together they have caused the mod-
ifiability of the codebase to degrade.

™

CWE is atrademark of The MITRE Corporation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution A] Approved for public release and unlimited distribution.

https://cwe.mitre.org/

Table 1: Example for recognizing technical debtwith static code analysis

Nam e Accumulated CWEs fromviolating maintainability quality rules resulted in technical debt.

Summary Automated static source code analysis revealed an increasing number of issues with the follow ing
w eaknesses and security implications of maintenance and evolution: CWE-561 Dead Code, CWE-
1047 Modules w ith Circular Dependencies (120 issues), CWE-1074 Class w ith Excessively Deep In-
heritance (37 issues). Due to the severe number of these issues, systemmodifiability has degraded
significantly.

Consequences | We have already received tw o vulnerability reportsin the dead code area; more are likely to emerge.
There are increasing numbers of defects at the area of the codebase w ith the deep inheritance hier-
archy. Modules w ith circular dependencies also take longer to incorporate new capabilities, increas-
ing maintenance and evolution costs. In general, these areas of the codebase are difficult to
maintain, w hich affects security by making it more difficult or time-consuming to find and fix vulnera-
bilities.

Remediation Dead code: Remove the dead code.

approach ¢ Address during local refactoring within an iteration.

Circular dependencies and excessive inheritance: These will require rearchitecting.

o Designers need to understand how the architecture and evolution of the software influence se-
curity considerations under many circumstances. Address this in the next architecture review.
The addition of continuous integration processes creates a requirement for architecture modu-
larity and flexibility to support security, as changes to systems are pushed automatically and at
ever shorter periodicity.

e Understanding and restructuring module dependencies to eliminate circular dependencies and
excessive inheritance will require planning across iteration boundaries.

Reporter/ The dead code and inheritance hierarchy issues were automatically reported as a result of the static
assignee code analysis scan: As the software development lead, | am reporting this as a composite technical
debt item. | have also created tw o related issues in the backlog and linked to this issue:

1. Remove dead code (assigned to the developer team for the next iteration).

2. Remove circular dependencies and deep inheritance (assigned to the architecttoresolve as
part of the architecture refactoring effort).

It is important to recognize that there is no one-size-fits-all tool that automatically uncovers single in-
stances of such technical debt items. Running a static analysis tool for the first time can yield thousands
of issues. Recording all individual issues that tools identify as separate technical debt items or compos-
ing them as one major technical debt item is unwieldy and an incorrect approach. Furthermore, such an
approach often leads to these issues lingering in the backlog as they are perceived as false positive noise,
and developers might disable the rules for detecting them during future checks. Following the five-step
process noted above to understand system quality goals provides a focus for the development team to
create a manageable number of issues. They record the relevant results as technical debt items so they
can start managing them. As this example highlights, identification of such violations will point to areas
of further analysis to look at clusters of technical debt. Areas where large clusters of technical debt
issues accumulate are good candidates for rework and architectural changes.

Going forward, the organization can address how to ensure that the team does not inject new debt into
the source code so no one has to deal with these many issues again. The causes can be identified and
process improvement practices put in place to address them. Creating coding guidelines and providing
training for developers improves their savviness at recognizing when they potentially inject technical
debt in the code. Running static analysis in a continuous integration environment promotes clean code

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution A] Approved for public release and unlimited distribution.

where developers get immediate feedback on the issues during a commit and are required to fix them
before acceptance.

Detect Technical Debtfrom Symptoms

Technical debt symptoms are not always simple to recognize. Automated tools, such as tools that check
for code quality or secure coding violations, can uncover some symptoms that signal technical debt. As
seen in the previous section, one step in the right direction is to use agreed-upon CWEs associated with
maintainability checks as a basis for identifying technical debt related to security issues [CISQ 2019].
This approach also helps with concrete quantification.

Other symptoms such as major faults or delivery delays in the system can also signal technical debt.
Establishing continuous monitoring for such symptoms and reacting promptly will prevent technical
debt from accumulating in the first place. For example, symptoms of technical debt can be exposed
using metrics that indicate recurring defects and vulnerabilities, increasing number of defects and vul-
nerabilities in one particular area of the system, or defects that have not been possible to resolve, reduc-
ing delivery tempo. These should stimulate further analysis.

Repeated security breaches traced to security-related bugs, such as a crash or exploit enabled by an out-
of-bounds number, are additional examples of technical debt items that can be detected by their symp-
toms. Table 2 summarizes such an example of a technical debt issue that increases vulnerabilities.

Table 2: Example for recognizing technical debtfrom ob servable symptoms

Nam e Screen spacing creates numerous unexpected crashes across the codebase due to APl incompatibil-
ity.
Summary The source code uses avery large negative letter-spacing in an attempt to move the text offscreen.

The systemhandles up to -186 em fine, but crashes on anything larger. A similar issue w as fixed wih
a patch, but there w ere several other similar reports. Time permitting, 'm inclined to w ant to know the
root cause of this. My senseis thatif w e patch it here, it will pop up somew here else later.

Consequences | We already had 28 reports fromseven clients. And it definitely leaves the software vulnerable. Find-
ing the root cause can be time-consuming given that existing patches did not resolve the issue.

Remediation We already patched this tw ice. The responsible thing to doiis to first find the root cause and create a
approach fix at the source. My previous experience tells me that the external Web client and our softwareagain
has an APl incompatibility, but further analysis is needed.

The course of actionis to verify where the root of this is and see if w e can fix it on our side. If the ex-
ternal Web client team needs to fix it, w e would need to negotiate.

Reporter/ DevSecOpsTeam/ External WebClientTeam
assignee

While patches provide immediate relief, tracing interconnections in the design revealed a dependency
on an external library maintained by another group, as the developer suspected. The dependencies to
external software elements were not analyzed and designed for security issues, which resulted in multi-
ple crashes across the system with the same root cause. Repeated crashes are symptoms pointing to the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution A] Approved for public release and unlimited distribution.

technical debt in this example. They should trigger further architecture analysis and identification of the
external dependency which, if not fixed, will widen security risk exposure. The additional rework is
caused here by creating multiple patches, which increase system complexity without resolving the se-
curity issue.

A tendency sometimes exists to immediately categorize all of such symptomatic defects and vulnera-
bilities as technical debt. This approach results in an artificial increase in the number of issues while
hindering the opportunity to do deep analysis and find the root cause. In a highly dynamic DevSecOps
environment where organizations are under attack, the symptoms of vulnerabilities associated with an
attacker’s behavior need to be communicated between operations and development teams to trace oper-
ational weaknesses to root cause vulnerabilities in the source code. This further refines the goal of using
a static analysis tool to address the vulnerability associated with attackers’ behavior, rather than execut-
ing static analysis tools out of contextand trying to deal with the myriad results [lzurieta 2019]. The
same mindset needs to be embraced when using such tools to detect symptoms to identify and mitigate
technical debt.

Detect Technical Debtfrom Architecture

The key difference between detecting technical debt using code analysis and detecting it at the architec-
ture level is that the code is more concrete, tangible, and visible. It can be explored using software took,
but that provides information ata lower level of granularity, sometimes giving the impression that fixing
local issues will eliminate technical debt. Code analysis does not reveal system-wide, systematic archi
tecture issues which hint at technical debt. Architecture analysis reveals technical debt that is more
encompassing and pervasive. It involves choices about the structure or the architecture of the system:
choice of platform, middleware, technologies for communication, user interface, or data persistency. It
is typically more difficult to detect and assess architectural decisions resulting in debt with tools, and
the cost associated with repaying the debt is larger and intertwined in a complex network of structural
dependencies.

Architecture analysis allows a team to assess whether design decisions will meet the quality attribute
requirements early in development. Malicious external attacks that expose the vulnerabilities of asystem
at runtime are lagging indicators of the failure to meet a security quality attribute requirement. As oper-
ations staff employ countermeasures, development staff trace the cause to the source code vulnerability
to aid in patching the system in a first response. Tracing further to the root cause when there is a design
or architecture issue and remediating the technical debt can prevent the issue or related issues from
resurfacing and benefit the business by positioning the system to make it easier to analyze, maintain,
and evolve over its life span.

Lightweight architecture analysis techniques surface risks in design decisions that can lead to technical
debt. A number of analysis techniques have proven useful for examining the architecture as it is being
designed and used throughout the software development life cycle: thought experiments, reflective

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution A] Approved for public release and unlimited distribution.

questions, checklists, scenario-based analysis and walkthroughs, analytics models, prototypes, and sim-
ulations. Developers often use existing frameworks and components to provide some of the structure
and behavior of the system. The choices made to use these frameworks and components are design
decisions that affect the quality and security of the system. In this example of Table 3, a design decision
made early in the development effort has resulted in a security breach.

Table 3: Example of recognizing technical debtrequiring architecture rework to enhance security

Nam e Missing Authentication for Critical Function (CWE: 306) requires significant architectural rework.

Summary The authentication for functionality for user identity management had been assumed out of scopein
the firstrelease. This resulted in the recent security breach and compromised the datain the sys-
tem. No critical information w as compromised; how ever, we cannot continue to operate before add-
ing authentication.

Consequences | Given the number of features that depend on this, w e are looking at significant rearchitecting. The
consequences willdepend on the associated functionality, but w ewillhave to reassess readiwrite
accessesto our sensitive data and recreate administrative and other privileged functionality.

Remediation Divide the software into anonymous, normal, privileged, and administrative areas. Identify w hich of
approach these areas require a proven user identity, and use a centralized authentication capability.

Identify all potential communication channels, or other means of interaction w ith the software, to en-
sure that all channels are appropriately protected. Our developers sometimes performauthentica-
tion at the primary channel but open up a secondary channelthat is assumed to be private. For
example, a login mechanism may be listening on one netw ork port, but after successful authentica-
tion, it may open up a second portw here it w aits for the connection but avoids authentication be-
cause it assumes that only the authenticated party w ill connect to the port.

In general, if the software or protocol allows a single session or user state to persist across multiple
connections or channels, authentication and appropriate credential management need to be used

throughout.
Reporter/ Reported by a Dev engineer during systemintegration test. Remediation assigned to multiple team
assignee members including the DevSecOps team and lead architect.

CWE-306, Missing Authentication for Critical Functionality, is a vulnerability that enables attackers to
gain the privilege level of the exposed functionality. The technical impact of the weakness can be used
to determine the cost to the development team of carrying the technical debt and the risk exposure to
the business. Manual analysis is needed to understand the underlying design issue and the cost of reme-
diating the debt by improving the design.

Tradeoffs made among system qualities to meet the organization’s mission or business goals may lead
to such technical debt. For example, since authentication consumes system resources and results in tim-
ing lags that can degrade performance, the decision may be made to omit reauthentication given the
context (e.g., authentication occurs in the control panel software but not in the vehicle it is operating).
As hardware performance improves over time and software changes enlarge the attack surface, this
decision should be revisited. Whether it is easy or difficult to reinsert authentication depends on whether
architecture decisions made early on will support this kind of evolution. Recording this as a technical
debt issue proactively gives the team an opportunity to revisit the decision as hardware and software
assumptions evolve, and resolve it in atimely fashion. Even better, if the technical debt item is acknow!I-
edged and recorded at the time the decision is made—that is, when the decision to skip authentication

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution A] Approved for public release and unlimited distribution.

was agreed upon—architects and designers could consider other choices that would simplify reintro-
ducing authentication at a later time.

Detect Technical Debtfrom Developmentand Deployment
Infrastructure

Technical debt also occurs in the development and deployment infrastructure. This section describes
two examples of technical debt, one related to the suboptimal design and coding of test infrastructure
(Table 4) and another to misalignment between the infrastructure and the code itself (Table 5).

Infrastructure has become a key software development artifact. Analyzing for technical debt in the in-
frastructure that serves the completed code to a running system in operation encompasses issues in build,
test, and deployment code. Current DevSecOps trends are increasing automation capabilities and tool
support, and these trends have exposed deficiencies in the production process used by development
organizations. Infrastructure-related technical debt impedes a team’s ability to evolve a system or fix
known issues. These problems often influence an organization’s ability to achieve business goals, par-
ticularly if they slow velocity or hinder the ability to release in small rapid increments. Analysis tech-
niques for code and design can be applied to build scripts, test suites, and deployment scripts to detect
the presence of technical debt.

Consider the following first example of test suites. Test suites are, in effect, code. Suboptimal design
and coding of tests also lead to the same weaknesses as with the product code that have security impli-
cations related to maintenance and evolution. Inthis example, the development team would like to reuse
new Test Helper modules for a legacy test framework. The development team is migrating integration
tests to the new test framework. There are two parallel sets of Test Helper modules to maintain during
migration. Duplication is a source of technical debt and requires changes in two places. Often, changes
are not synced, resulting in unintended drift between frameworks. The remediation approach allows the
legacy test framework to reuse the new test framework’s Test Helper modules, which are cleaner (better
documentation, linted, obvious errors fixed). The technical debt item exemplified in Table 4 shows the
team’s analysis to get insight into the maintainability of the test framework.

Table 4: Recognizing technical debtin the test infrastructure

Nam e Maintaining tw o parallel Test Helper modules results in inconsistencies.

Summary While the DevTeam has been migrating its integration tests to the new testframework, there have
been tw o parallel Test Helper modules to maintain, one for the new framework and another for the
legacy framew ork. The redundancy is resulting in inconsistencies and unneeded w ork.

Consequences | This testcodeis a source of technical debt and requires team members to make changes in tw o
places. Often, they forget, w hichleads to unintended drift betw een the two frameworks. Scaling this
infrastructure to dozens of teams w ill magnify the challenges as w e roll out the testing framew ork.

Remediation Reuse the new testframework's Test Helper modules. The goal isn't 100% code reuse betw een the
approach old and new testframework, but 80—90%.

The test methods from the legacy module that remain are here for three reasons:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution A] Approved for public release and unlimited distribution.

e When ported to the new testframework, the test methods w ere refactored into different mod-
ules and w illrequire updating legacy tests to load new modules.

* Navigating the page in the old testframew orkis hacky and has been cleaned up in the new
testframew ork so they won't ever share implementations.
e Subtle refactoring changes make the new implementation fail certain tests. This testfailure

should be follow ed up by using the old implementation and then refactoring once alltests
have been migrated.

Reporter/
assignee

DevTeam / QATeam

The misalignment of the build, test, deployment, and delivery strategies and accompanying tools is
another area where technical debt appears in the development and deployment infrastructure. Technical
debt can appear in the misalignment between the infrastructure and the code in the following ways:

e Testing. As software evolves rapidly, new tests may be missing, may test an older interpretation
of the requirements, or may interact with other tests in unknown ways.

e Infrastructure of the operational system. Deferred binding generates a responsibility for the de-
velopment team to make architecture decisions to accommodate the change during deployment,
delivery, and runtime and a responsibility for the staff of the operational system to make the

change.

In the second example in Table 5, the security implications of a change request impact not only the code
but also its alignment with test, deployment, and delivery. These issues are documented as a technical
debt description and included in the backlog.

Table 5: Recognizing technical debtwithin infrastructure misalignment

Nam e Database misalignment w ith continuous delivery pipeline impacts security during upgrade.

Summary A database engine upgrade reveals that the security implications of the upgrade are notw ellunder-
stood and controlled. Secondary and tertiary dependencies are not w elldocumented or understood.
These dependencies are presently precluding us fromcompleting the upgrade because w e are con-
stantly running into issues.

Consequences | Designers need to understand how change influences security considerations under these second-

ary and tertiary dependencies. The need for security considerations willappear during continuous
delivery in
e testing, since all possible variations of states w ill need to be verified to guarantee that they up-
hold the security posture of the system(among, of course, other tested behavior)

e deployment, w hen permissions, access control, and other security-related activities and deci-
sions need to take place

o delivery and runtime, in the formof configuration changes, enabling and disabling of features,
and sometimes dynamic loading of objects
The addition of continuous integration processes creates arequirement for security flexibility, as
changes to systems are pushed automatically and at ever shorter periodicity.

Remediation

Analyze for the database and infrastructure dependencies and rework the design for secure up-

approach dates.
Reporter/ Reported by the Ops engineer doing the upgrade. Remediation assigned to multiple team members
assignee including the DevSecOps team and lead architect.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[Distribution A] Approved for public release and unlimited distribution.

The organization needs a deliberate strategy for managing technical debt not only for development but
also for testing and production. An agile or flexible architecture complements continuous integration
processes and allows the team to explore technical options rapidly with minimal ripple effect. The ar-
chitecture can be understood in terms of design decisions that influence the time and cost to implement,
test, and deploy changes and operate the software without introducing bugs and vulnerabilities.

When there are distributed teams, coordination issues can create misaligned assumptions about design
decisions, which can cause technical debt. Distributed teams face coordination challenges as the archi-
tecture is apportioned to them for implementation and again when they hand off their implementations
to an integrated testing environment. Tests and infrastructure should be designed and aligned for their
purpose, implemented following sound coding practices, and executed in alignment with the function-
ality and attributes they are meant to support.

Prioritize and Monitor Technical Debt at All Levels of Planning

The technical debt items identified through analyzing the code, symptoms of technical debt, architec-
ture, and development and deployment infrastructure are managed with the rest of the tasks and stories
in the backlog. A technical debt item description provides a systematic way of capturing a technical
debt item and its properties. The examples summarized in Tables 1-5 demonstrate some typical technical
debt items. Recording these examples in the backlog using a structured technical debt item description
enhances the clarity by documenting who, what, where, when, and why. As demonstrated in our exam-
ples, a description that allows stakeholders to monitor the debt and take appropriate action has the fol-
lowing parts:

e Name. What is it? This field is a representative name for the technical debt item.

e Summary. Where do you observe the technical debt in the affected development artifacts, and
where do you expect it to accumulate?

e Consequences. Why is it important to address this technical debt item? Consequences include
immediate benefits and costs as well as those that accumulate later, such as additional rework
and testing costs as the issue stays in the system and costs due to reduced productivity, induced
defects, or loss of quality or security incurred by building software that depends on using ele-
ments that have technical debt.

e Remediation approach. Describe the rework needed to eliminate the debt, if any. When should
the remediation occur to reduce or eliminate the consequences?

e Reporter/assignee. Who is responsible for serving the debt? Assign a person or team. In some
situations, the debt resolution may need to be assigned to external parties. If remediation is sig-
nificantly postponed, this field can communicate that decision.

Prioritizing technical debt items for resolution in the backlog is no different than managing the backlog
in general. Therefore, a key to a successful technical debt management practice is to start recording the
items so that known metrics and techniques can be used, such as the number of technical debt items,
their resolution time, and their key detection mechanism. Which technical debt items get prioritized for

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution A] Approved for public release and unlimited distribution.

resolution depends on the level of detail of the information recorded as technical debt items are identi-

fied as well as the priorities of the system. Atechnical debt item description is most effective when it is

concretely linked to the needed improvement to the system. For improved efficiency and effectiveness,

consolidate technical debt items or link to related issues in the backlog where possible, considering

answers to these questions:

e Inwhat ways are technical debt items related to development of features and cybersecurity capa-
bilities visible to the customer?

e What architectural decisions have an impact on technical debt?

e What bugs and vulnerabilities are consequences of a technical debt item?

e Which of these bugs and vulnerabilities are operational problems?

e Are any technical debt items blocking progress?

e Do any technical debt items need to be refined?

Technical debt should be a concrete consideration at every level of software development planning:
iterations, releases, and system increments.

A plan to remediate smaller code quality issues which signal technical debt items might involve allo-
cating a fixed percentage of resources for an iteration to service technical debt. This is analogous to
adding a buffer of time within an agile sprint for fixing defects. A fixed percentage gives a software
development team the discretion to deal with code quality issues while controlling spending. In cases
of extreme debt, you might allocate an iteration or two to work on paying back technical debt.

A plan to repay technical debt that shows problems with design will affect the cost of evolving the
system, which in turn will affect the decision to repay some debt or evolve the system. Reasoning about
architecture alternatives and using the architecture to guide implementation choices during release plan-
ning provides opportunities for managing technical debt. Here is an approach for developing a plan to
manage technical debt while you maintain and evolve a system:

1. Choose anitem in the backlog and plan development tasks as usual (e.g., add a new feature, re-
solve a defect or vulnerability).

Identify the parts of the system that will be affected by the item chosen from the backlog.
Determine whether other technical debt items are associated with these parts of the system.
Identify the consequences of technical debt on this and possibly other changes.

Estimate the cost of the debt repayment and add it to the cost of the change.

© o bk~ wn

Estimate the benefit of the debt repayment in enabling the development of this and possibly other
changes.

This approach is contingent upon grasping which areas in the system have more technical debt as well
as generating a few maintenance and evolution scenarios to compare potential outcomes. Experienced
teams consider aspects of evolution as they debate design options, backlog grooming, and technology
change.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution A] Approved for public release and unlimited distribution.

Conducting these discussions explicitly for the technical debt items will improve a team’s understanding
of the consequences and help members make decisions based on the benefit gained by fixing the related
technical debt items. The team will also become comfortable with understanding tradeoffs concretely
and deciding what technical debt items to not resolve, but continue to monitor. Monitoring the status of
existing technical debt items in the backlog will include revisiting their status during sprint retrospec-
tives and architecture reviews and monitoring their dependent metrics such as number of new defects
and vulnerabilities, velocity, and any specific metrics that relate to the context of the technical debt
items, such as complexity.

A technical debt repayment plan for a full system increment can be created at planning events for port-
folio-level considerations. This event provides an opportunity for stakeholders from multiple develop-
ment teams and product management to develop plans in support of the system-level needs of the
increment and the roadmap in support of program goals.

Software developers and architects bring knowledge of architecture and any related technical debt rec-
orded in the backlog. This includes insight into architecture from code quality metrics and any project-
related data regarding code churn, conceptual design integrity, and defect data. The product manager
brings knowledge of the roadmap for the next three to six months. This includes what parts of the ar-
chitecture are involved and the effort required to deliver each roadmap item.

Given these inputs, following agile planning approaches, the stakeholders together create a repayment
plan that identifies key features and cybersecurity capabilities not possible without debt repayment and
potential technical debt repayment that may be deferred. Other outcomes of the planning event include
a shared strategic vision for paying down technical debt and commitment to position the architecture to
carry the project into the future.

Manage Technical Debt Continuously Throughoutthe
Acquisition and DevelopmentLife Cycle

Technical debt management is most effective when it is interwoven into current software engineering
practice regarding features, defects, vulnerabilities, security risk, and process. The benefit of technical
debt management is that it is focused on issues that current software engineering practices have not
historically tracked and managed systematically and clearly. Explicitly managing technical debt pre-
sents an opportunity to represent tradeoffs among architectural design decisions and their changing con-
sequences as a system evolves.

Beginning with a quick sanity check of the business goals against the system architecture, development
practices, and organizational context will provide guidance for successfully executing a deeper analysis
of the system, determining actionable outcomes, and formulating a strategy for managing technical debt.
These key criteria should also be reviewed during important milestones such as the handover of a soft-
ware project from contractor to sustainment organization. The contractor is expected to identify all tech-
nical debt items and work with the government program office and stakeholder community to prioritize

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution A] Approved for public release and unlimited distribution.

remediations based on program goals and system-level needs prior to final qualification and release of
the software.

Monitoring technical debt will provide continuous visibility into the decisions being made by the soft-
ware development teams and product owners to better determine when corrective action is needed. This
information will also help teams identify how technical debt is injected into the system and develop
strategies to prevent its further accumulation.

Approach technical debt identification, monitoring, and remediation in an incremental and iterative
manner. Include the following:

e Definition of done criteria — Identify and document technical debt that becomes a hindrance dur-
ing development. The kinds of technical debt items uncovered can initially be based on team ex-
perience and software engineering practice. These later can be augmented with metrics collected
by the project (e.g., from commit history, issue trackers, static analysis tools, and design re-
Views).

e Definition of ready — Check the backlog before starting a new feature or fixing a defect or vulner-
ability to assess technical debt items that should be considered for remediation during implemen-
tation.

e Planning — Consider technical debt prevention at every level: iterations, releases, system incre-
ments, and product roadmaps. Look to include remediation with the code being updated. Con-
sider the effort to remediate or prevent any new debt when estimating the size of a feature.

e Retrospectives — Ask if technical debt has been discovered, not only in the system under develop-
ment but in the production infrastructure; then create technical debt items. Monitor how debt is
accumulating, and look for productivity and quality metrics that indicate when it is time to take
action on remediating the debt.

The table below provides a sampling of indicators that facilitate analysis in detecting technical debt.
Tools that support code analysis are becoming increasingly sophisticated and often support dependency
analysis as well. Lightweight architecture analysis techniques have proven useful and cost-efficient
early in the software development life cycle. Given advances in script-driven automation supporting
integration and deployment, analyzing the technical debt in production infrastructure shares some indi-
cators with technical debt in code and architecture. It also introduces new challenges in monitoring
alignment between production infrastructure and code.

Detect technical Sample indicators
debt from...
Code Maintainability and evolvability violations against established industry measurement standards:

ISO/IEC 25010 standard for systemand software quality, SEIl CERT Secure Coding Stand-
ards, relevant CWE measures

Code complexity measures: combination of source lines of code, coupling and cohesion, fan-
in/fan-out, dependency propagation associated with the current maintenance costs

Architecture insight fromcode

e Complexity of individual software elements: lines of code, module size uniformity, cy-
clomatic complexity

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution A] Approved for public release and unlimited distribution.

¢ |Interfaces of software elements: dependency profiles identifying hidden, inbound, out-
bound, and transit modules; state access violation; API function usage

¢ Interrelationships among the software elements: coupling, inheritance, cycles
e System-wide properties: change impact, cumulative dependencies, propagation, stability

¢ Interrelationships between software elements and stakeholder concerns: concern scope,
concern overlap, concern diffusion over software elements

Symptoms Defect and vulnerability trends: recurring defects and vulnerabilities, increasing number of de-
fects and vulnerabilities in one particular area of the system, or defects that have not been
possible to resolve, reducing delivery tempo

Software development trends: amount of time spent patching, changing velocity, potential ef-
fort spent per violation

Architecture Risks in design decisions surfaced using lightweight analysis techniques: thought experiments,
reflective questions, checklists, scenario-basedanalysis, analytics models, prototypes, and
simulations

Risks in design decisions surfaced using model-based techniques: simulations, experiments
and measurements against expected concrete response measures such as latency and availa-

bility
Development and Similar indicators as above for code and architecture applied to infrastructure
deployment Technical debtin production appears in misalignment of the build, test, deployment, and deliv-

infrastructure ery strategies and accompanying tools. Indicators include

e build and integration: unwanted and/or dead dependencies (links to unused code), zom-
bie targets (no builds for months), unbuildable code, dead flags

e testing: lots of preprocessing required fortest automation, tests that are time intensive or
difficult to set up, difficulty automating certain tests, test cases or test harnesses that are
hard to modify or extend

e Infrastructure: manual tasks repeatedly performed (e.g., deployment scripts), lack of ob-
servability (monitoring debt)

Runtime efficiency and security checking provide additional operational indicators that should
be communicated to development.

In Conclusion

We described in this paper that technical debt is a third critical issue category that should be explicitly
managed, similarly to defect and vulnerabilities. As our examples illustrated, understanding technical
debt and managing it explicitly provide opportunities to manage its architectural tradeoffs more proac-
tively, which reduces a system’s cybersecurity risk exposure. Consequently, it is critical to emphasize
that technical debt is not simply a project management panacea where all unplanned and to-be-done
work can be lumped as technical debt.

A key aspect of any successful technical debt management strategy is to recognize that a cause contrib-
utes to the occurrence of technical debt in the system, that a symptom is an indicator of technical debt,
and the cause or symptom is not the technical debt itself. Recognizing what is not technical debt, though
it may be a cause or symptom, will also assist in assessing how to take advantage of, and augment where
possible, existing acquisition practices to manage technical debt. A few guidelines will help an organi-
zation get started on managing the technical debt that is expanding both cybersecurity risks and other
risks to a system.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution A] Approved for public release and unlimited distribution.

e New features not yet implemented are not technical debt, but misunderstood requirements can
cause it. Aspects of evolution visible to the user in the form of additional functionality are distin-
guished from the technical debt issues that are visible only to software developers. Requirements
shortfall—in the form of not understanding architecturally significant requirements such as secu-
rity, performance, and availability that crosscut the system—uwiill cause technical debt.

e Low external quality in the form of defects and vulnerabilities are not technical debt but rather
possible symptoms. Most defects and vulnerabilities have an immediate impact and the need to
resolve them is well understood. Fixing them will not necessarily fix the underlying cause, as our
examples demonstrated. Technical debt will be felt in the future in the form of additional costs
and challenges when upgrading functionality and remediating security vulnerabilities. Technical
debt with underlying architecture issues should be considered during release planning. Open de-
fects and vulnerabilities that accumulate other costs and have complex remediation strategies can
be symptoms of technical debt.

e Lack of following software development processes is not technical debt, but is likely to cause
technical debt. Due to resource constraints, not all software life-cycle activities may be com-
pleted on time, such as reviewing code and design, running all of the test suites, or documenting
the complete architecture. However, improving the processes will not fix the technical debt that
has accrued in the system. Effective technical debt reduction involves understanding how undis-
ciplined ways of executing processes influence the system, create unintentional system complex-
ity, and result in technical debt. Process improvement need to be part of a focused strategy to
prevent some of the new debt from occurring.

All systems have technical debt. Since technical debt reflects consequences of tradeoffs, not all debt is
bad or needs to be resolved immediately. However, unmanaged debt will bring large-scale, long-lived
systems to bankruptcy sooner or later.

Adding technical debt management to your existing software architecture and DevSecOps practices will
help manage your cybersecurity risk and improve software quality. Incorporating an explicit focus on
identification and documentation of technical debt items is an essential first step for organizations who
are just starting their journey of managing technical debt proactively. The examples summarized in this

paper are intended to guide that process by focusing attention on the distinct categories from which to
detect technical debt.

Bibliography

[CISQ 2019] CISQ. List of Weaknesses Included in the CISQ Automated Source Code Quality
Measures. June 2019. https://www.it-cisg.org/pdf/cisg-weaknesses-in-ascqm.pdf

[IEEE 2014] IEEE Center for Secure Design. Avoiding the Top 10 Software Security Design Flaws. Be
flexible When Considering Future Changes to Objects and Actors. September 2014.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution A] Approved for public release and unlimited distribution.

[ISO/IEC 2021] ISO/IEC 5055: Automated Source Code Quality Measures. March 2021
https://www.it-cisg.org/standards/code-quality-standards/

[1zurieta 2019] Clemente lzurieta, Mary Prouty. Leveraging SecDevOps to Tackle the Technical Debt
Associated with Cybersecurity Attack Tactics. TechDebt@ICSE 2019: 33-37

[Kruchten 2019] Philippe Kruchten, Robert Nord, Ipek Ozkaya. Managing Technical Debt: Reducing
Friction in Software Development. Pearson. 2019.

[Nord 2016] Robert L. Nord, Ipek Ozkaya, Edward J. Schwartz, Forrest Shull, Rick Kazman: Can
Knowledge of Technical Debt Help Identify Software Vulnerabilities? CSET @ USENIX Security
Symposium 2016.

[OMG 2018] Object Management Group. Automated Technical Debt Measure. September 2018.
https://www.omg.org/spec/ATDM/1.0/PDF

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution A] Approved for public release and unlimited distribution.

https://www.it-cisq.org/standards/code-quality-standards/
https://www.omg.org/spec/ATDM/1.0/PDF

ContactUs

Softw are Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

Copyright 2021 Carnegie Mellon University.

This material is based upon workfunded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 w ith Carnegie Mellon University for the operation of the Softw are Engineering Institute, a feder-
ally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, ETHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMTED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSNVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNNERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative w orks fromthis material for internal
use is granted, provided the copyright and “No Warranty” statements are included w ith all reproductions and deriv-
ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form w ithout requesting formal permission. Permission is required for any other external and/or com-
mercial use. Requests for permission should be directed to the Softw are Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM21-0690

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu/

