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Abstract

The operational capability of drones is limited by their inability to perform aerial

refueling. This can be overcome by automating the process with a computer vision

solution. Previous work has demonstrated the feasibility of automated aerial refu-

eling (AAR) in simulation. To progress this technique to the real world, this thesis

conducts experiments using real images of a physical aircraft replica and a motion

capture system for truth data. It also compares the error between the real and virtual

experiments to validate the fidelity of the simulation. Results indicate that the cur-

rent technique is effective on real images and that the simulation can predict errors

in real world experiments.
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Using Motion Capture and Augmented Reality to Test AAR with Boom Occlusion

I. Introduction

1.1 Problem Background

Drones are currently unable to perform aerial refueling due to the latency between

the pilot and the aircraft’s response to the control input. The inability to refuel in

flight reduces the drone’s range and operational capability. Automated aerial refueling

(AAR) using computer vision is close to becoming a reality, but further testing is

required. Real flight testing is expensive and not practical to be performed with the

frequency required to validate current AAR techniques.

Previous works have attempted to quantify the error between the 3D virtual world

and the real world. One researcher used motion capture truth data to compare real

and virtual AAR pose estimation, but boom occlusion was not taken into account [1].

Another also attempted this but was limited by the size of the motion capture area

in which he had to work [2]. Others have demonstrated methods for mitigating the

effects of boom occlusion but only in the virtual world [3]. This research will leverage

augmented reality and the truth data from motion capture to superimpose a virtual

boom onto real images to test boom occlusion mitigation techniques, as well as the

accuracy of the AAR pose estimation on real images.

1.2 Research Objectives

The questions this research aims to answer are:

❼ Is the 3D virtual world simulation an accurate model of the AAR process in the

1



real world?

❼ Can the current AAR techniques accurately estimate the pose of a receiver in

real time on real images?

❼ What are the effects of boom occlusion on real images as opposed to virtual?

Additionally, this research will construct a framework for future testing that can be

used to test boom occlusion mitigation techniques and approaches with real images.

1.3 Document Overview

Chapter II presents the prerequisite background knowledge, as well as recent work

on the AAR project. Chapter III describes how the experiments are constructed

and provides detailed explanation of how data is collected. Chapter IV shows the

comparison between the experiments done in the real and virtual environments. It

demonstrates that AAR has acceptable error even when using real images. To con-

clude, chapter V summarizes what this thesis has accomplished and how it benefits

future research.

2



II. Background and Literature Review

This chapter provides the background for the methodology and results that fol-

low. Beginning with computer vision, the theory behind the research, this paper will

explore the technical details of how features are matched between pairs of images

and then re-projected into 3D space. Augmented reality is used to enhance imagery

for the purpose of testing and evaluation; a section dedicated to each of those topics

follows. Finally, there are three sections that cover the previous work done in this

area. The first is a general review of the related works, followed by two sections that

discuss the most relevant papers to this thesis.

2.1 Geometric Computer Vision

This section gives a high level overview of the theory that makes geometric com-

puter vision possible. It first discusses the pinhole camera model, which is the model

that applies to most modern cameras. That is followed by camera calibration tech-

niques and, finally, epipolar geometry, which makes 3D pose estimation through stereo

vision possible.

The pinhole camera model is a simple, ideal model which describes the mathe-

matical relationships from points in 3-dimensional space to their corresponding 2-

dimensional points on an image plane [4]. A pinhole plane with a small hole in its

center is placed in front of an image plane. The rays of light from objects in the world

pass through the central hole in the pinhole plane and are projected upside down onto

the image plane. The distance between these two planes is known as the focal length

and will determine the size of the projected object on the image plane. This model is

representative of a real pinhole camera and can be constructed; however, to simplify

the math, an equivalent form of this model is more commonly used, one which cannot

3



be physically constructed.

In the equivalent model, shown in figure 1, the image plane is in front, and the

pinhole plane becomes known as the center of projection. All rays of light pass through

the image plane on their way to the center of projection behind it. For example, the

light from the point in 3D space Q = (X, Y, Z) passes through the image plane at

q = (x, y, f). Therefore, this ray of light is projected onto the image plane at the x,

y pixel coordinate, and f represents the focal length.

Along with the focal length, the principal point is the other component that makes

up the camera’s intrinsic matrix. The principal point is the intersection between the

optical axis and the image plane and, counterintuitively, will not always pass through

the exact center of the image plane. These parameters for the intrinsic matrix can

be found by performing camera calibration.

The method for camera calibration that is still most prominently utilized is de-

scribed in [5]. Prior to this study, accurate camera calibration was possible, but it

required prohibitively expensive equipment and setups. [5] created an accurate and

accessible method for camera calibration using a planar pattern. The first step in this

Figure 1: The Pinhole Camera Model
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method is to take images of the calibration plane from various orientations. In the

majority of cases the calibration plane is a checkerboard. This is followed by finding

the feature points in the image (Figure 2). The corners of the checkerboard are the

features used for calibration. All of the intrinsic and extrinsic parameters are initially

estimated using a closed form solution. Finally, all of these values are fine-tuned by

minimizing the equation

n
∑

i=1

m
∑

j=1

||mij − m̆(A, k1, k2, Ri, ti,Mj)||
2 (1)

where A is the intrinsic matrix, consisting of the focal lengths and principal point,

the k values represent the radial distortion, R and t make up the extrinsic matrix for

a particular image, which is the rotation and translation from the world coordinate

Figure 2: Corner Features Found with OpenCV
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system to the camera coordinate system, Mj is a corner on the checkerboard and

m̆(A, k1, k2, Ri, ti,Mj) is the projection of that corner into image coordinates. This

value is subtracted from the observed location of the corner mij for every corner in

every image where i represents images and j selects corners on the calibration plane.

By minimizing the difference between the observed corner coordinates, mij, and the

estimated corner coordinates, m̆, the accuracy of the parameters (A, k1, k2, Ri, ti,Mj)

is iteratively improved. Camera calibration functions are provided in OpenCV as

described in [4]. The most commonly used technique relies on a checkerboard as the

planar surface and the corners as the feature points. The number of corners on the

checkerboard and the length of the squares are input to the function to help with the

initial estimation of the parameters. Figure 3 shows an example of a checkerboard

pattern that has been successfully detected by OpenCV.

Epipolar geometry provides the means to localize points in 3D space using a stereo

camera system [4, 6]. When a point is projected onto an image plane, the distance

Figure 3: Checkerboard Corner Detection Using OpenCV
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information is lost; however, it can be determined if two well calibrated cameras view

that same point. In figure 5 two pinhole camera models are combined. Each camera

observes the point X in 3D space. OL and OR represent the optical centers of the

left and right cameras, respectively. As this section discussed earlier, the intersection

between the line XOR or XOL and the image plane gives the pixel location of X. In

the left camera’s image plane, this is XL; for the right camera, it is XR. Once the

3D point X has been found in one image, it would require a 2-dimensional search

across the other image to attempt to find the matching point. This would be time

consuming and error prone. By introducing the epipolar constraint, this is reduced to

a 1-dimensional search. The projection of the optical center OR onto the image plane

of the left camera gives us the left camera’s epipolar point eL and vice versa. The

line between the epipolar point and the point X on the image plane is the epipolar

line. By searching only along this line for a matching point, the epipolar constraint

is satisfied and the search process has been improved.

To accurately perform stereo block matching while satisfying the epipolar con-

straint row, aligned image planes are necessary. This requires the cameras’ optical

axes to be parallel. Unfortunately, a real stereo camera system is not likely to have

this property. Stereo rectification is used to reproject the image planes such that their

rows become aligned and their optical axes intersect at infinity. OpenCV provides

two algorithms for accomplishing this, one which requires a calibration and one that

does not. Figure 4 shows an example of a pair of images before and after stereo

rectification.
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Figure 4: Image Rectification

Figure 5: Epipolar Geometry

2.2 Augmented Reality

Augmented reality (AR) is the mixture of our real world with a 3D virtual world

(3DVW) through a combination of hardware and software. The applications of AR

8



range from training and education to medical care and construction. Several popular

applications recently have even included video games such as Pokemon Go. The game

utilizes a smart phone and its camera as the hardware and the installed app as the

software. This section will discuss the different types of AR technologies and the

current challenges in this field of study.

Over the last 20 years, a handful of AR research areas have remained in the

forefront due to their continued relevance and challenge. These areas include tracking,

interaction, and calibration. Research into using AR for evaluation/testing is a more

recent development [7]. Tracking is the means by which the user’s point of view is

registered so that the 3D models can be drawn in the correct location and orientation

on the screen. For example, the direction the user is holding his/her smartphone or

the way a user wearing a head mounted display (HMD) has turned his/her head is

measured by tracking technologies. Interaction is how and what the user is able to

manipulate in the augmented scene being rendered. Calibration is how the hardware,

such as the camera or inertial measurement unit (IMU), is adjusted so that it will

accurately align the real world with the virtual world [8].

There are two types of tracking: sensor based and vision based. Sensor based

tracking consists of magnetic, inertial, optical, and acoustic tracking techniques. Mag-

netic tracking utilizes a magnetic transmitter and receiver, the latter of which is

attached to the viewer. The transmitter is considered the origin of the virtual 3D

coordinate system, and the receiver’s pose can be estimated based on the magnetic

signals it receives. Inertial tracking is based on measurements from an IMU, such

as an accelerometer and a gyroscope. Modern virtual reality (VR) headsets make

use of this type to track the viewer’s head movements. Optical tracking uses two

or more cameras and 3D-localization technology to find the position of potentially

multiple objects in a predefined measurement space. The requirement for multiple
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cameras and a predefined measurement space is what differentiates sensor based opti-

cal tracking from vision based tracking. Acoustic tracking relies on how long it takes

an acoustic signal to reach its intended receivers. This is the technology that motion

capture systems employ when finding the position of the motion capture markers.

Vision based tracking uses one of the following: an infrared sensor, visible light

sensor, or a 3D-structure sensor to determine the position of the camera. This type

of tracking has two sub-categories: markerless and marker-based tracking. The latter

uses specialized fiducial markers, such as aruco markers, to identify where to draw

the computer generated models and at what orientation [9].

The most common types of hardware used for augmented reality are computers

with webcams, head mounted displays, glasses, and smartphones, the latter being

the most widely used platform for AR today. The HMD is the most immersive piece

of hardware since the user’s entire field of view is taken up by the built-in screens.

It is able to track head movements in 6DoF, so whichever way the user turns, the

IMU will be able to relay that to the software and to alter the augmented reality

accordingly. AR-glasses are a less common hardware platform but will likely become

more prevalent in the near future. Unlike the HMD, the AR-glasses do not take up

the user’s entire field of view and are, therefore, less immersive. They resemble a pair

of reading glasses and display information as an overlay to the real world.

A number of different software development kits (SDKs) are commonly used to

develop AR applications. The most popular are Metaio, Vuforia, and ARToolkit.

This paper will not go into more detail regarding these since they are all designed

to be used with game engines such as Unity or Unreal, but all development on this

project is done within the AftrBurner engine [10].

AR has been used in a wide variety of training and education applications. In [11]

augmented reality is used to help computer science students learn about the OpenGL
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computer graphics library. Since some of the commands may not be intuitive, espe-

cially to novice programmers, the ability to visualize what they are doing in the real

world enhances the learning process. Using ARMarkers, QR codes, and a webcam,

students can see a 3D model displayed on their desks at the location and orientation

of the ARMarker. Each different QR code represents a different OpenGL operation;

by showing the QR code to the webcam, the students can witness the effect of that

operation in real time. Soldiers and surgeons have made use of AR for training pur-

poses, as well. It has been used to teach soldiers how to repair their weapons and

even how to navigate using virtual maps. Surgeon trainees can have virtual 3D organs

superimposed into their view for practicing an operation [7].

2.3 Augmented Reality for Testing/Evaluation

Researchers are often constrained by safety or budgetary obstacles when seeking

to collect data. This section will discuss examples of augmented reality being used to

overcome such obstacles. The first example is a direct precursor to this thesis using

the AftrBurner engine [10] to augment flight imagery. The subsequent two are self-

driving car studies that use augmented reality to overcome the current infeasibility

of testing self-driving cars on busy roads.

Test flights were conducted without a boom present. To examine the effects a

boom would have on the collected images, [12] developed an augmented reality tech-

nique for displaying a perspective correct virtual boom into the image. A rectangular

quad, texture mapped with real images from a camera, is placed at the end of the

virtual EO camera’s viewing frustum. A boom is attached to the virtual tanker air-

craft in its correct location relative to the cameras. The resulting image from these

virtual EO cameras is the real image with a boom overlaid in the perspective correct

position and orientation as seen in figure 6. This perspective correct geometry is the
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key enabler for AR applications.

Augmented reality can be used for testing various sensors, not just EO cameras.

In[13], the authors are testing self-driving cars that are equipped with LiDAR, radar,

EO cameras, and a high precision GPS. The test vehicle is driven on roads in a closed

testing facility that is representative of a realistic urban environment, but there is

neither enough traffic nor pedestrians to test all scenarios. To overcome this, a simu-

lation environment is created which mimics the test facility. The test vehicle transmits

data to roadside processing units; these control an identical car with identical sensors

in the simulation. By adding additional objects into the simulation, this information

is fed back to the test vehicle via the roadside units, thereby creating a virtually

augmented environment with which the vehicle interacts. By performing these tests

in the real and virtual world simultaneously, failed scenarios can be replayed and

examined more closely in the simulation to help fine-tune the algorithms involved.

[14] uses augmented reality to create training images for a deep neural network

that controls self-driving cars. Training images that are generated in a 3D virtual

world lack sufficient detail for these researchers’ purposes, and gathering enough real

imagery is too time consuming. The solution is to overlay highly realistic car models

Figure 6: 3-Dimensional Boom Model Over Real Imagery
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onto real images. They found that the most effective method for choosing the pose

of the car model was to first use the homography between the ground plane and the

image plane to transform the image into a top down view, then to manually annotate

the paths a car could take and to place the vertical axis of the model along one

of those paths. The results using these augmented images were better than using a

fewer number of real non-augmented images. This demonstrates that computer vision

based machine learning will work equally as well with augmented imagery as with

real imagery, as long as the models have sufficient detail and the pose is chosen in a

plausible, realistic way.

2.4 Related work on AAR

Early efforts toward automated aerial refueling (AAR) attempted to solve the

problem using GPS [15, 16, 17, 18]. A common problem discovered in these studies

was that the refueling tanker occludes the area above the receiver, which makes it more

difficult for the receiver to be within the view of enough GPS satellites. Additionally,

GPS is an asset that could be degraded or denied by an enemy, and this fact must be

taken into account during research. Some of the aforementioned studies, such as [16]

and [18], combined GPS with other techniques to compensate for the shortcomings of

GPS alone. The authors in [16] combined GPS with other sensors, such as an inertial

measurement unit, using an extended Kalman filter. Those in [18] combined GPS

with machine vision.

The use of electro-optical (EO) and infrared sensors without GPS was explored

in [19, 1, 20, 21] . Lidar was studied in [19]. In [22], dual EO cameras, also known as

stereo vision, observed a small rotor-craft drone with markers at the refueling point.

Computer vision algorithms found the markers and the boom did point toward the

receptacle. Stability and accuracy, however, were not precise enough for AAR. [21]
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combined the techniques of EO and infrared. Many of these techiques demontrated

accurate results but only in experiments not representative of a real flight test.

Flight testing is prohibitively expensive, so it is crucial to this field of research

to have high fidelity testing techniques that can be accomplished virtually. Early

examples of simulations are proposed in [23, 24, 25]. The simulation in [23] was

an environment designed specifically for testing AAR with mathematical models for

the atmospheric turbulence and UAV docking controls. The simulation used for

all testing in this thesis is the AftrBurner engine [10], which is a high fidelity 3-

dimensional virtual world (3DVW). Despite the increasing prevalance of AR in testing

and evaluation, it has yet to be applied to AAR. This thesis uses AR to allow the

aformentioned techniques to be tested in the real world with the addition of boom

occlusion.

2.5 AftrBurner vs. Real World

A goal of this work is to verify the fidelity of the AftrBurner engine simulation

by comparing real and virtual experiments. The experiments are made as similar as

possible to each other to enable a valid comparison of the results. This is an evolution

upon the research in [2, 1], which was conducted with a similar goal.

A previous study conducted at AFIT used the truth data from a small motion

capture lab, approximately 10x10 square feet, to compare the error of the stereovision

pose estimation pipeline between the real and virtual worlds [2]. A virtual replica

was created in the Aftrburner engine of the motion capture lab and a quadcopter

drone using texture mapping that matched the real world environment. The truth

data from the motion capture lab was fed into the virtual world to recreate the exact

path of the drone within 2mm of accuracy. To imitate the real world as closely as

possible, the virtual cameras in the 3DVW used the same calibration as the cameras
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from the real world. The stereovision pose estimation pipeline was then run on both

sets of images to create a point cloud, and the amount of error was compared.

Although the difference in error was small, less than 0.6% for the x,y, and z com-

ponents, this study was limited in how closely it could replicate aerial refueling. It was

primarily limited by the amount of space that was available to operate; this resulted

in the stereo cameras having to be placed closer together than they usually would

be. Normally, they would have a baseline of 0.5m between them. For this study,

that distance had to be reduced to 63.6mm, which alters the disparity maps that are

generated. Additionally, the viewing frustum of the cameras was not able to accu-

rately represent a scaled refueling envelope, again due to the size of the experiment’s

environment (Fig. 7).

A similar study was conducted at AFIT, which was not limited by the size of the

testing environment [1]. This experiment was set up in a large motion capture lab

approximately 60 square feet in size. A 1:7 scale model of a receiver aircraft was

Figure 7: Virtual Model of Motion Capture Lab
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placed near the center of the room with a large truss system erected overhead to

support the cameras (Fig. 8). The stereo cameras could glide along a cable from

one truss to the other and create the illusion that the receiver aircraft was flying up

towards the cameras. This provided a more accurately scaled model of the refueling

envelope, but the goals of this paper were less concerned with direct comparison

between the real world and 3DVW than the work in [2]. The focus here was on using

real images to see if the pipeline could still produce accurate results in real time. The

motion capture lab provided the truth data against which to compare the results of

the pipeline. Some comparison between error trends in simulation and the real world

was done, but it was not the primary focus of the paper. To most accurately compare

the error in the real world study to the 3DWV, a 1-1 model would have to have been

constructed in the AftrBurner engine as it was in [2]. This paper did demonstrate

that the pipeline could still produce accurate results in real time, even on real world

imagery. Boom occlusion, however, was not taken into account in this paper.

Figure 8: Large Motion Capture Lab Experiment Setup
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2.6 Boom Occlusion Mitigation

The issue of boom occlusion is addressed in [3] by using ray-plane collision detec-

tion and shadow volumes. Once the receiving aircraft is within the refueling envelope,

the boom begins to occlude large portions of the aircraft. The stereo block matching

will produce points on the boom since the algorithm cannot differentiate between it

and the receiving aircraft. ICP is performed to attempt to match the 3D point cloud

to the shelled reference model. During this process, the points on the boom will pull

the model towards the boom and produce incorrect pose estimation. To improve the

accuracy of this process, the 3D point cloud must have outliers removed, including

those on the boom. Additionally, the shelled reference model is altered to more closely

match what the cameras see once the boom is occluding the image.

To address the erroneous points in the 3D point cloud, ray-plane collision detection

is used. This technique casts a ray through each of the sensed points to check whether

or not it collides with the boom model, in which case it is removed. Points on the

edges of the boom are not filtered out since the ray cast through them does not collide

with the boom. This is fixed by extruding, or enlarging, the boom’s geometric model

by 10 cm in all directions, after which 99% of the points on the boom are successfully

filtered out. The downside to this approach is that even when using an octree for

collision detection, it is still a slow process, O(n) for the approximately 8,000 points

over 1,600 faces of the boom model.

Shadow volumes are leveraged to dynamically adjust the reference model to match

the parts of the aircraft that the cameras can see. Initially, the shelled reference model

was statically altered prior to the pose estimation process to resemble the sections of

the aircraft that are visible during the most common occlusion phases. The closer the

reference model can resemble what the cameras should see, the less error there will be

when performing the ICP step. Shadow volumes are created by treating the cameras

17



as a point light source. The light volume is represented by a set of triangles, which all

share the camera as a point (Fig. 9). The remaining vertices of the triangles extend

to the edges of the boom silhouette. All triangles that would lie in a shadow for a

semi-infinite hull of darkness define the shadow volume. Point inclusion is performed

to check which points on the shelled reference model are being occluded from which

camera’s point of view and then are removed from the model.

The results showed significant improvement over approaches that made no attempt

to mitigate boom occlusion. Between the naive and final boom mitigation techniques,

the error was reduced by 80-90% in the various regions of the refueling approach.

These techiques, however, have only been implemented and tested in the 3DVW. A

framework is required which will allow for these techniques, as well as new ones, to

be tested on real images in the real world. That is what this work aims to achieve.

Figure 9: Shadow Volumes
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III. Methodology

3.1 Preamble

The primary goals of this work are as follows:

❼ Create a reusable framework for rapidly generating AAR test data from real

images with and without boom occlusion

❼ Demonstrate that SBM and ICP can achieve desired levels of accuracy with real

images in a full scale environment

❼ Examine error trends between the AftrBurner engine simulation and the real

world

To reach these goals, this paper conducts mock aerial refueling approaches in real and

virtual environments at near full-scale. Real images are taken of an aircraft replica in a

motion capture lab. The current state of the art AAR techniques are employed to find

the pose of the aircraft relative to the camera. The motion capture system provides

pose data for the tracked aircraft object, which serves as the truth. This experiment

is performed in the real world, as well as an equivelant version in the virtual world

for comparison. Both real and virtual environments are tested with a geometrically

accurate refueling boom imposed over the images. In order for the testing framework

to be useful to future researchers, it must demonstrate sufficient accuracy in non-

occluded imagery. This baseline will be the control against which future experiments

are compared. Also, to compare the error trends between approaches conducted in

the real and virtual worlds, the virtual environment must mimic the real one as closely

as possible.

This chapter details how the pose of the moving aircraft replica is accurately

estimated. It begins by outlining the experiment being performed, a set of mock aerial
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refueling approaches. Following that, it explains the techniques used to implement

augmented reality. This is critical because it enables the addition of the full-scale

3D boom model in the imagery. An explanation is provided for how the real and

virtual worlds are made as indistinguishable as possible. The source of truth data,

which is the information produced by the motion capture system, is then detailed and

justified. Finally, the potential sources of error are enumerated, and an explanation

is provided for how each of them is ruled out or corrected.

3.2 Experiment Overview

While the overall goal of this work is to provide a testing framework for future

researchers, the goal of the experiment is to track a moving aircraft in space, using

the current computer vision AAR techniques as accurately as possible in real images.

By doing so, it will not only demonstrate the feasibility of computer vision based

AAR, but will also prove the fidelity of the testing framework. This is achieved by

performing stereo block matching (SBM) and iterative closest point (ICP) on real

images in real time, using the motion capture data as the truth for the aircraft’s

pose. The same experiment is conducted in both the real and 3D virtual worlds to

compare the error trends. The scale of the experiment mimics the scale of a realistic

refueling scenario (Fig. 10). A set of 4K stereo cameras are mounted approximately

8 meters high and view a receiving aircraft as the refueling tanker would. The slant

distance from the cameras to the receiver at the far corner of our laboratory is 23.47

meters. This distance mimics a receiver’s position relative to the tanker prior to

contact. The receiving aircraft is represented by a 1/7th scale replica of a receiver

in both the real and 3DVW. In order to make the real and virtual experiments as

similar as possible, a full scale model of the motion capture lab was created in the

virtual world. Using the data provided by the motion capture system, the objects in
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Figure 10: Aerial Refueling

the 3DVW move in real time and match the position and orientation of their physical

counterparts. The primary tracked object is the receiving aircraft replica. Its pose is

the truth data against which ICP results are compared.

3.3 Virtual Environment

In order to visualize the truth data from the motion capture system, as well as the

results of the computer vision AAR pipeline, a virtual environment representative of

the real laboratory was created in the AftrBurner engine (Fig. 11). In figure 11 the

virtual aircraft is the visualization of the motion capture system’s pose data for the

physical aircraft replica. The visualization of the AAR pipeline results appear as the

yellow and red point clouds in figure 26. This to-scale 3D visualization enables the

recreation of equivalent experiments in the virtual world. That is, error trends can

be compared between the real and virtual experiments. There are 4 sets of stereo

cameras in total, 3 virtual and 1 physical, which are referred to in this section as
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Figure 11: 3D Virtual Scale Model of the Motion Capture Laboratory

the real stereo cameras, virtual stereo cameras, ARReal and ARVirtual. The real

stereo cameras (Fig. 12) are the physical cameras mounted in the lab that take real

images of the physical aircraft replica. The virtual stereo cameras act as the virtual

representation of the real stereo cameras. They are mounted in the virtual lab in the

same position and orientation as their physical counterparts. In figure 11 the virtual

stereo cameras are shown in the lower left quadrant of the image as a set of red, green

and blue axes. These take virtual images of the experiments performed in the virtual

motion capture lab that parallel those performed in the real lab. The ARReal and

ARVirtual cameras are used to achieve augmented reality.
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Figure 12: Real Stereo Cameras Mounted in Motion Capture Lab

3.4 Augmented Reality

The virtual environment enables the addition of an augmented reality boom to

the receiver approaches. This is accomplished by adding 2 sets of additional stereo

cameras, ARReal and ARVirtual, to the virtual environment; both of these observe

objects in the distance that act as green screens for approach imagery (Fig. 13).

These green screens are flat rectangular objects, which are texture mapped with
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the images from the real and virtual cameras. The ARReal and ARVirtual cameras

use the concept of a green screen to generate augmented imagery by placing a 3D

refueling boom in front of their respective screens. Similar to green screens used in

film, these rectangular models display sets of previously captured images while objects

are filmed in front of them. The green screens that the ARReal and ARVirtual stereo

cameras observe are displaying imagery sourced from either the real stereo cameras

or the virtual stereo cameras. The real stereo cameras are in an elevated position in

the corner of the motion capture laboratory to provide a distance from the receiver

comparable to that of a realistic aerial refueling approach. The virtual stereo cameras

are placed in the same position and orientation as their physical counterparts. In a

non-augmented reality setup, stereo block matching would be directly run on the

frames observing the receiver’s approach. In this environment, however, the frames

captured by the real and virtual stereo cameras are sent directly to the green screens,

Figure 13: AR Green Screen
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which perfectly fill the viewing frustum of the ARReal and ARVirtual cameras that

observe them. This is accomplished using the following equations:

W = tan(
FOVH

2
) (2)

D = F ∗ 0.99 (3)

X = 2 ∗ (W ∗D) (4)

Y =
X

A
(5)

Where W is the width of the camera’s far clipping plane, FOVH is the camera’s

horizontal field of view, D is the distance the green screen will be placed from the

camera, F is the camera’s far clipping plane, X is the x dimension of the green screen,

Y is the y dimension of the green screen and A is the camera’s aspect ratio.

A full scale virtual model of a boom is placed between these green screens and

their observers (Fig. 14). The two booms are placed in the ARReal and ARVirtual

coordinate frames using the equation:

Figure 14: AR Boom
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for each set of stereo cameras. The AR booms are 3D accurate geometry that is

virtually rendered on top of real imagery in a perspective correct manner. An observer

viewing this virtual boom would realistically believe that it was in the original image

if it were lit and colored properly, similar to special effects in a movie (Fig. 15).

The boom’s pose relative to the stereo cameras mimics that of a refueling tanker.

Therefore, the portion of the image that the boom occludes will be the exact same

pixels that a real boom would occlude. This provides an accurate and realistic method

to test the effects of boom occlusion (Fig. 44).

In order for the comparison between real and virtual experiments to be valid, the

virtual environment must mimic the real one as closely as possible. The goal is for

the real and virtual cameras to see identical imagery during an approach (Fig. 17).

The first step in achieving this is to create a full scale replica of the motion capture

lab (Fig. 18). The room is measured and the corner angles calculated (Fig. 19).

Images of the walls are texture mapped onto the virtual model of the room. A 1/7th

scale replica of a realistic receiver is used as the physical model in the laboratory.

The length to wingspan ratio of the physical model is within 0.006 of a full scale

receiver (Fig. 20). The virtual model is a full scale replica of a receiver with identical

dimensions and a length to wingspan ratio of 0.671. The physical model has a length

to wingspan ratio of 0.677. In order to maintain consistency between the real and

virtual environments, the virtual model is scaled down by 0.142 to match the size of

its physical counterpart.
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Figure 15: Virtually Rendered Geometry on Real Images
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Figure 16: Left: Augmented Reality Right: Augmented Virtual Reality

Figure 17: Left: Augmented Reality Top Down Right: Augmented Virtual Reality
Top Down

Figure 18: Real vs Virtual
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Figure 19: Motion Capture Room Diagram

Figure 20: Model Receiver Size Ratio

29



3.5 Truth Data

The laboratory is equipped with an IR camera based motion capture system

(MCS), which provides the truth data for the mock refueling approaches. The motion

capture system outputs 75Hz, millimeter accurate position and orientation for any

tracked objects within its bounds.

3.5.1 Communications

Motion capture data and images must be simultaneously acquired and processed in

order to associate them properly. Vicon Bridge, a ROS application, is used to listen for

the data coming in from the MCS. The data collection machine is running Windows

10, but Vicon Bridge and ROS only work in Linux. The Windows Subsystem for

Linux (WSL) is used on the data collection machine to run the ROS application.

Vicon Bridge listens for the data and publishes it as ROS topics. A ROS application

is written to listen for the data from Vicon Bridge and to convert it into an AftrBurner

Engine NetMessage that is sent to the 3DVW over the loopback address (Fig. 21).

On Windows 10, an AftrBurner Engine module asynchronously acquires stereo image

pairs, as well as the corresponding MCS truth pose data. These disparate data

streams are aligned and saved to file and can be replayed deterministically.
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Figure 21: Communications Diagram

3.6 Camera Configurations

Camera configurations, in the context of this paper, are describing the position

and orientation of the real stereo cameras in the lab, as well as their settings. Multiple

stereo camera configurations were used before determining which works best. Initially,

a pair of 4k Prosilica cameras were mounted in the corner of the motion capture lab,

approximately 3 meters off the ground. The lighting in the lab is dim compared to

outdoors. In order for the Prosilicas to capture images, the exposure setting had to be

increased. The exposure setting determines how long the cameras’ aperture is open,

thus letting in more or less light. Images need to be captured at 10Hz to perform

AAR in real time, but the exposure settings required to capture enough light in the

dimly lit lab prohibited the cameras from capturing that quickly. The result was that

the exposure was set to the point immediately before the cameras could no longer

31



capture at 10Hz, causing the images to be darker than desired. Additionally, many

of the images captured by the cameras with these settings came out blurry, likely due

to the aperture being open for so long. The blurry image quality made doing camera

calibrations infeasible.

A pair of grayscale 4k FLIR cameras alleviated the unusual exposure problem.

The FLIRs captured clear, bright images at 60Hz, even in the dimly lit laboratory.

These cameras initially were placed in the same location as the Prosilicas. With the

FLIRs, a good camera calibration was obtained. A reasonable sensed point cloud was

generated using imagery from this configuration, but the accuracy was not sufficient.

The cameras in this position were viewing the receiver from a head-on perspective. In

a real refueling scenario the cameras would be above the receiving aircraft viewing it

from a top down perspective. It was suspected that the head-on perspective reduced

the accuracy of SBM and ICP.

The third and final configuration places the FLIR cameras in a more elevated

position, approximately 8 meters high, and pitched down (Fig. 22). This creates

a viewing angle more similar to a real refueling scenario. Additionally, it creates a

larger area to conduct a mock approach before reaching the contact point at 20 meters

(Fig. 10).
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Figure 22: Top Down Camera POV

3.7 Sources of Error

Even with the real stereo cameras in an ideal location, the results still did not

meet the accuracy requirements. A reasonable sensed point cloud was obtained, which

resembled the receiving aircraft, but was slightly offset in one direction or another

(Fig. 23). Before attributing this error to factors such as a poor calibration or

SBM being inadequate, all sources of error within the confines of this thesis’s testing

framework must be examined. This section will systematically rule out or remedy

each of those possible sources of error.

3.7.1 Timing Test

While a mock refueling approach is being conducted, the images from the cameras

and the pose data from the MCS are being recorded asynchronously into a single log

file. The image from a camera must be correctly associated with the MCS pose data

from the instant that image was taken; otherwise, the image shows the receiving
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Figure 23: Offset Point Cloud

aircraft in one location, but the MCS truth data claims it is in another. This will

cause accurate results to appear to be incorrect.

A timing test was performed to rule out a timing offset between MCS pose data

and images as a possible source of error. To conduct the timing test, a MCS tracked

checkerboard object was used. The checkerboard was moved directly up and down

while being viewed by the cameras and tracked by the MCS. Images and motion

capture data were recorded at 30Hz. The Z component in the MCS coordinate frame

was plotted, along with the Y component in the left camera’s image frame. These are

the vertical components in the respective coordinate frames, so a successful timing
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test should depict the points of inflection on the graph occurring at the same data

points. This was observed as seen in Fig. 24, which indicates that, if there is a timing

offset, it is less than 1/30th of a second. Zooming into the graph reveals that all

points of inflection occur at the same data points (Fig. 25). Any error caused by an

offset that size is negligible due to how slowly the receiver is moving.

0 50 100 150 200 250 300 350
Data Point

1400

1600

1800

2000

2200

2400

Ve
rti

ca
l C

om
po

ne
nt

30Hz Timing Test

Figure 24: Timing Test
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3.7.2 Physical Receiver Pose vs Virtual Receiver Pose

The final step in the AAR pipeline, iterative closest point (ICP), is used to match

the shelled reference model of the aircraft onto the sensed points (Fig. 26). The error

value that this produces is based on the difference between the origin of the shelled

reference model and the origin of the virtual receiver. The origins of these two virtual

objects coincide when the shelled reference model lies perfectly on top of the virtual

receiver.

The position and orientation of the virtual receiver is based on the data from the

MCS and must precisely match the physical model in order for the truth data to

be meaningful. SBM is being performed on real images of the receiver to create the

sensed point cloud; therefore, if the virtual receiver is not in the correct location, an

accurate set of projected points will appear incorrect. This problem exists because the

MCS data for the physical model’s position and orientation is based on an origin that

is different from the virtual receiver. The position of the origin for the physical model

is the center of mass of the motion capture markers (Fig. 27) that are used to define

the object in the MCS tracker software. The orientation of this object’s coordinate

Figure 26: Shelled Reference Model (Red) Matched to Sensed Points (Yellow) MCS
Truth Data is the Textured Aircraft Model
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Figure 27: Approximate Location of Receiver’s Center of Mass According to MCS

frame is defined from the object’s orientation when it is created in the MCS tracker

software. For example, if the right wing were facing the positive x direction and the

nose were pointing in the positive y direction, then the positive y direction for the

aircraft’s coordinate frame is toward the nose and the positive x toward the right

wing.

To find the vector offset from the physical model’s origin to the virtual model’s

origin, a combination of physical measurements and 3DVW information is used. First,

the tip of the nose of the physical model is placed directly over the origin with the

body of the aircraft along the negative x axis. The accuracy of this is improved by

ensuring that the object’s motion capture markers are aligned along the axis in the

MCS tracker software and that the nose marker is at the origin. The distance from

the floor to the tip of the nose is measured then in the real world. In the virtual world,

the XYZ offset from the tip of the nose of the virtual receiver to the origin and known

height is recorded (Fig. 28). This translation vector is in the receiver’s coordinate

frame, but, in order to apply it to the receiver’s position, it must be transformed into
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the MCS coordinate frame.

Offset = RMCS
Recv ·













0.271

0.032

0.051













(7)

The vector on the right side of equation 7 is the measured distance from the virtual

aircraft’s nose to the MCS origin. The physical aircraft’s nose is directly over the

MCS origin; therefore, this vector is also the offset from the virtual aircraft origin to

the physical aircraft origin. The resulting vector from equation 7 is applied to the

virtual receiver every iteration of the simulation.

In order for the rotation to match between the physical and virtual receiver mod-

els, the physical model must be placed at the exact identity rotation of the virtual

receiver when the object is created in the MCS tracker software. This is infeasible and

adjustments are made in the virtual world to compensate. Physical measurements

are taken from the ground, which is the z plane in both the real and virtual environ-

ments, to the tip of each wing, as well as to the tip of the nose and tail. The heights

of the corresponding points on the virtual model are recorded. The rotations to move

the virtual model into the same orientation as the physical model are applied. The

physical and virtual models now have the same origin and rotation matrix and can

be trusted as truth data in the real and virtual environments.
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Figure 28: Virtual Receiver Before and After Offset Applied

3.8 Real Stereo Camera Pose vs Virtual Stereo Camera Pose

The MCS is capablable of outputting accurate pose data, but this comes with

the caveat that the tracked object must be large enough to accommodate a sufficient

number of motion capture markers. A small object, such as a single camera (Fig.

29), does not provide a stable enough orientation to be used as truth data in the

experiments.

A critical step in validating the truth data is to ensure the position and orientation

of the virtual stereo cameras match that of the real stereo cameras. Similar to the

issue with the virtual receiver not being in the correct location, the virtual cameras

not being placed correctly cause accurate sensed points to appear incorrect. After

SBM is performed, the sensed points are reprojected in the virtual world based on

the virtual stereo cameras’ position and orientation. Even small errors in rotation,

of approximately 1-2 degrees, cause large error in the sensed point cloud position at

20m. Initially, motion capture markers were placed on the cameras and the MCS
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Figure 29: Tracked Camera

was adjusted and recalibrated in order to capture pose data for these objects. It was

determined that the accuracy of the camera object was not sufficient, likely due to

the close proximity of the markers and how close the object was to the boundaries

of the motion capture area (Fig. 29). Additionally, the camera object’s origin in the

MCS tracker software is offset from the camera’s center of projection from which the

sensed points should be reprojected. These issues for the camera object prove more

difficult to solve than those encountered with the receiver.

3.8.1 Gauss-Newton Optimization

A Gauss-Newton optimization is used to find the position and orientation of the

real stereo cameras in the MCS coordinate frame. A slightly modified technique to

the one used in [26] is adapted for this problem. In [26], the authors’ goal was to find

the rotation and translation from the camera to the mount to which it was attached.

This was necessary because the motion capture data for the camera was not accurate
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enough for image reprojection, but it was accurate enough to yield the pose of the

larger mounting object. This paper requires the rotation and translation from the

motion capture system (MCS) coordinate frame to the camera (C) coordinate frame.

The virtual environment coordinate system is coincident with the MCS coordinate

frame, so finding the pose of the camera in the MCS coordinate frame dictates where

to place it in the virtual environment for accurate reprojection.

The Gauss-Newton attempts to minimize the error between the measured locations

of corners on a chessboard in captured images and where these corners are estimated

to be based on the initial guess for camera position and orientation. The measured

values are the image pixel coordinates of each corner. These are obtained using

OpenCV’s findChessboardCorners function, which returns the pixel coordinates for

every corner in each image. The estimated corner locations are calculated using

equation

λ
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Where T represents a 4x4 transformation matrix of the form

Ta
b =







Ra
b 03×1

01×3 1













I3 −tbb,a

01×3 1






(9)

The subscripts of the transformation (T) and rotation (R) matrices describe the co-

ordinate system they are going from. The super scripts describe which coordinate

system they are converting into. The translation vector −tbb,a denotes a vector from

coordinate system b’s origin to coordinate system a’s origin in b’s coordinate frame.

In the previous equation, the corner coordinates x, which are in the flatboard co-

41



ordinate (FB) system, are being transformed from flatboard to checkerboard (CB),

checkerboard to motion capture system (MCS), motion capture system to camera

(C), and, finally, into image coordinates using the calibration matrix K. In this case

K is represented as a 3× 4 matrix.

The corners start in the flatboard coordinate system. The origin of this 2-

dimensional coordinate system is the top left corner; subsequent corners are rep-

resented by their distance away from the origin in millimeters. For example, the top

left corner is [0,0], and the next corner to the right is [0,60]. The checkerboard has

motion capture markers on it and is being tracked by the MCS. The origin of this

object is not the top left of the board; rather, it is toward the center and slightly

displaced in the z direction (away from the front of the board). This coordinate

frame is referred to as checkerboard. The rotation and translation from FB to CB

(TCB
FB) is one of the transformations being optimized for; however, the authors of [26]

provided their results for this step, which are used as the initial guess. Since it is the

same checkerboard with the same markers, it proved accurate and showed negligible

change with optimization.

The next step is to transform from the CB coordinate frame to the MCS coordinate

frame. The rotation and translation are provided by the MCS since the checkerboard

is a tracked object. Finally, the corners are transformed from the MCS coordinate

frame to the camera coordinate frame using the initial guess for camera rotation and

translation. These are the primary values being optimized. Once the corners are in

the camera coordinate frame, the calibration matrix K is used to reproject them into

image coordinates. Once expressed as image coordinates, the estimated points can

be compared against the measured corners’ locations.

The Jacobian matrix has 2 rows and 12 columns for every corner from each image.

The rows are representing the u and v pixel coordinates, and the columns are the
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derivatives of equation 8 for the 12 values that are being optimized. These include

the translations from the FB to CB with respect to x, y and z, the rotations from FB

to CB with respect to the x, y and z rotation axes, as well as those six values for the

MCS to C.

Critical aspects for the success of this technique are accurate initial guesses, as

well as quantity and quality of images. If the camera is in a location where the

MCS can track it, the provided pose is a suitable initial guess. The final physical

camera position this paper uses was too high to be tracked, so an alternate method

was required. First, a plumb line was dropped to the ground from the camera.

This measurement provides the approximate z coordinate for the camera in the MCS

coordinate frame. A tracked object was placed on the ground with its center of

mass directly below the plumb line. This provided the approximate x and y. For

the rotation approximation, a recorded mock refueling approach was required. When

the mock refueling approach was replayed in the virtual environment, the receiver’s

sensed point cloud was reprojected into the virtual world. Small, manual adjustments

were made to the virtual camera’s rotation until the sensed point cloud lay on the

virtual receiver and the error was minimized. This orientation was then recorded and

used as the initial guess for the optimization. A sufficient number of images must

be used, and the images must be taken at varying distances from the camera, ideally

along the entire length of the receiver approach path. Additional images will improve

accuracy up to a point; however, beyond that point there are massive increases in

execution time for negligible improvement in error. A few hundred images are ideal

and the optimization takes approximately 20 minutes with 10 iterations.

The following images in Fig. 30 show where the corner points were estimated to

be based on the initial guesses. While those in Fig. 31 show the estimated points after

the optimization is complete. Before the optimization, the average distance between
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Figure 30: Before Gauss-Newton Optimization

Figure 31: After Gauss-Newton Optimization

the estimated corner coordinates and the measured corner coordinates was about 280

pixels. After optimization the average offset was about 3 pixels. This demonstrated

that an accurate pose estimate for the cameras had been obtained.

3.8.2 Reprojection Filters

The final source of error this section will discuss is the filtering of reprojected

points. Once an accurate sensed point cloud is obtained, ICP matches the red truth

point cloud to it as closely as possible. If the sensed point cloud is a perfect shelled

model of the aircraft and is in the correct position, but there are sensed points else-

where in the world, the truth point cloud will be pulled toward them and results will
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appear inaccurate.

The proximity of the receiver to the floor and walls creates a unique problem for

filtering reprojected points. In a real refueling scenario, a less restrictive reprojection

filter would be sufficient since there is nothing near the receiving aircraft. In this

experiment, however, a very restrictive filter must be implemented to avoid including

points from the floor and walls in the sensed point cloud. The filter is typically in the

stereo cameras’ coordinate frame. Due to the angle at which the cameras are viewing

the aircraft, this precludes the ability to perfectly filter points outside of the aircraft.

Since having surfaces so close to the receiver is unrealistic, the typical technique of

filtering in the camera’s coordinate frame is bypassed. Instead, a filter that relies on

the information from the 3DVW is used to perfectly remove any reprojected points

that lie outside the bounding box of the virtual receiver (Fig. 32).

Figure 32: Receiver Bounding Box
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IV. Results and Analysis

4.1 Preamble

This chapter presents the results from multiple experiments, which are explained

in further detail at the beginning of each section. There are five variations shown, each

performed in the real and virtual environments. These include a straight in approach,

a serpentine pattern, an occluded straight in approach, a diagonal approach and,

finally, a maximum distance approach. Each experiment will include the translation

error in one graph and the rotation error in another.

To preface the results, it is helpful to understand the difference between the dispar-

ity maps created by the real and virtual images. A real camera introduces randomness

when capturing an image; however, the virtual cameras do not. This results in SBM

finding more features in the images than it normally would (Fig. 33). The dense

virtual disparity map creates a noisier point cloud than the real disparity map, which

pulls the red truth model away from the correct position and orientation in the virtual

approaches.
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Figure 33: Left: Real image disparity map Right: Virtual image disparity map

4.2 Straight in Approach

The path of the receiver in this set of images is representative of how the tanker

would view the aircraft during a refueling approach. It approaches from the top center

of the image frame and moves towards the bottom, with the nose facing the cameras

(Fig. 22). Figures 34 and 36 show the translation and rotation error for the approach

done in the real environment, while figures 35 and 37 show the error for the same,

exact approach performed in the virtual environment with the virtual cameras.

4.2.1 Translation Graphs
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Figure 34: Straight In Real Approach Translation Error Graph
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Figure 35: Straight In Virtual Approach Translation Error Graph
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The only similarity observed between the real and virtual approaches, in this case,

is that the z component is the most stable and experiences the least amount of error.

Overall, both approaches remain within 6cm of error.

4.2.2 Rotation Graphs

The rotation error degrades as the receiver moves closer to the cameras. This

is primarily observed in the roll component. An imperfect extrinsic calibration is

suspected as the cause, with the error becoming more obvious as the receiver ap-

proaches the cameras. The increase in roll error is observed in both the real and

virtual approaches.
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Figure 36: Straight In Real Approach Rotation Error Graph
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Figure 37: Straight In Virtual Approach Rotation Error Graph

4.3 Zig Zag Approach

To thoroughly test the employed algorithms, the receiver is dragged in a serpentine

pattern. This would not be done during a real refueling approach, but it helps to

reveal weak spots in the current AAR process. Towards the end of the approach path,

the receiver makes a sharp turn to move from the right side of the frame across to the

left side (Fig. 38). At this point the ICP algorithm converges incorrectly, causing the

translation and rotation error to spike until the receiver is turned back towards the

cameras. The truth model point cloud is created from the perspective of the cameras

with the aircraft facing them; therefore, the majority of the points in that shelled

reference model are on the front and top of the receiver. A more complete truth

model could improve the results of ICP when viewing the receiver from the side.

This approach is valuable because it demonstrates that the 3DVW can predict

errors in the real world. The sudden spike in error occurs in both the real and virtual
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environments at approximately 17 meters from the cameras and is corrected at about

14.5 meters.

Figure 38: Receiver Side View
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Figure 39: Zig Zag Real Approach Translation Error Graph
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Figure 40: Zig Zag Virtual Approach Translation Error Graph
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Figure 41: Zig Zag Real Approach Rotation Error Graph
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Figure 42: Zig Zag Virtual Approach Rotation Error Graph

4.4 Boom Occluded Approach

A full scale, perspective correct refueling boom is placed over the straight in

approach for this experiment. The receiver model is only a 1/7th scale, so behind the

full scale boom, it is mostly occluded (Fig. ??). During this phase of the approach,

the overall error is high, but once the receiver’s wings become more visible, the

translation error stays below 10cm. This is the only approach where the virtual

environment outperformed the real one, providing an upper bound for experiments

done in the real world.
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Figure 43: Left: Boom Occluded Receiver at 19 Meters Right: Boom Occluded
Virtual Receiver at 19 Meters

Figure 44: Left: Boom Occluded Receiver at 16 Meters Right: Boom Occluded
Virtual Receiver at 16 Meters
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Figure 45: Boom Occluded Real Approach Translation Error Graph
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Figure 46: Boom Occluded Virtual Approach Translation Error Graph
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Figure 47: Boom Occluded Real Approach Rotation Error Graph
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Figure 48: Boom Occluded Virtual Approach Rotation Error Graph
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4.5 Diagonal Approach

This approach, similar to the zig zag approach, is designed to test the robustness of

the current AAR algorithms. Unlike the zig zag approach, there is no turning involved

here. The receiver is dragged from the left side of the frame across the the right side

of the frame, while the cameras are primarily viewing the side of the aircraft. The

real results demonstrate acceptable levels of accuracy, less than 7cm of transnational

error throughout. The only similarity between real and virtual environments in this

case is that the z component is the most stable.

4.5.1 Translation Graphs
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Figure 49: Diagonal Real Approach Translation Error Graph
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Figure 50: Diagonal Virtual Approach Translation Error Graph

4.5.2 Rotation Graphs
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Figure 51: Diagonal Real Approach Rotation Error Graph
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Figure 52: Diagonal Virtual Approach Rotation Error Graph
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4.6 Max Distance Approach

It is assumed that the refueling point is at approximately 20 meters from the

cameras, but all approaches so far have started at 19 meters or closer. This approach

is designed to simulate the aircraft being just outside the contact point at 22 meters

and moving forward to refuel at 20 meters. The difference between this approach and

the straight in approach is that, in this case, the aircraft is closer to the left side of

the image frame, since the farthest corner in the lab was near the left edge of the

cameras’ viewing frustum. Once again, it is observed that the z component is the

most stable in both the real and virtual experiments. The spike in error at 22 meters

is due to the aircraft being too close to the wall to filter out points on it, which pulls

the truth model toward the rear wall in the lab.

4.6.1 Translation Graphs
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Figure 53: Max Distance Real Approach Translation Error Graph
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Figure 54: Max Distance Virtual Approach Translation Error Graph

4.6.2 Rotation Graphs
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Figure 55: Max Distance Real Approach Rotation Error Graph
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Figure 56: Max Distance Virtual Approach Rotation Error Graph
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V. Conclusions

In this paper we have analyzed the differences between the real and virtual AAR

testing enviroments, the accuracy of AAR techniques on real images, and the effects of

unmitigated boom occlusion on both real and virtual images. This was made possible

by the testing framework designed for this thesis, which allows indentical experiments

to be performed in both the real and virtual enviroments. The testing framework

demonstrated acceptable levels of robustness and can, therefore, be used by future

researchers to perform experiments in the real world with accurate, reliable truth

data. This will be critical in developing new boom occlusion mitigation techniques

for use outside of the simulation.

The comparisons between real and virtual experiments show some similar error

trends; however, the real environment is likely a better indication of what to expect

during real flight testing. The virtual enviroment does act as an oracle in some cases

and indicates where the current AAR techniques will fail.

The straight in approach without boom occlusion proves that AAR can be done

on real images, in real time. The 1/7th scale receiver model begins at a distance of

approxmiately 20m from the cameras, the refueling point, and shows error acceptable

to perform AAR. A full scale aircraft at this distance would be an easier problem, as

it would take up a larger portion of the image frame.

5.1 Future Work

The next steps that build upon this work are as follows:

❼ Boom occlusion mitigation will be the most important step moving forward.

Boom occlusion mitigation has been done only in the virtual environment using

63



information that would not be available in the real world. New techniques for

overcoming the occlusion on real images will need to be researched.

❼ Incorporate faster ICP algorithm techniques to speed up that stage of the

pipeline. Work on that topic has been done concurrently with this paper and

shows promising results. Now, it needs only to be integrated into this frame-

work.

❼ Using 4k images slows down the process of generating disparity maps. An AI

was designed by a previous AFIT student [27] which automatically sets a region

of interest around the receiver aircraft. This will need to be incorporated going

forward to ensure real time AAR is possible.
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Appendix A. Gauss-Newton Optimization Code

https://git.nykl.net/aar/ViconAugRel.git

1 import numpy as np

2 import numpy . l i n a l g as l a

3 from sc ipy . l i n a l g import expm

4 from sc ipy . l i n a l g import l s t s q

5 import GNSupportingFunctions as gns f

6 import cv2

7 import glob

8

9 #conta ins the i n i t i a l guess f o r the f l a t board to checker board t rans fo rmat ion

10 FBtoCBInit ia lGuessFi le = ’C:/ Users /Vincent /Desktop/Cor r ec t ed Var i ab l e s . npz ’

11 #conta ins the precomputed corner l o c a t i o n s

12 CornerFi l e = ’C:/ Users /Vincent /Desktop/ c a l i b r a t i o n i n 5 . npy ’

13 #a csv f i l e generated by the AftrBurner engine from a vicon log f i l e

14 #conta ins the pose o f the checkerboard f o r each dat po int and

15 #a s s o c i a t e s i t with the corresponding image

16 viconPoseCSV = ’C:/ Users /Vincent /Desktop /24 ftGaussNewtonOptimization . csv ’

17

18 e s t img p t s = np . array ( [ ] )

19 img pts = np . array ( [ ] )

20

21 # Hard coded pose f o r the camera in the vicon coord frame

22 #conver t s from camera to vicon but we need other way around

23 v R cam = np . array ( [ [❂0.725 , ❂0.685 , ❂0.076] ,

24 [ 0 . 6 8 3 , ❂0.728 , 0 . 0 5 9 ] ,

25 [❂0.095 , ❂0.009 , 0 . 9 9 5 ] ] )

26

27

28

29 Rot25Deg = np . array ( [ [ 0 . 9063078 , 0 .0000000 , ❂0.4226183] ,

30 [ 0 . 0000000 , 1 .0000000 , 0 . 0000000 ] ,

31 [ 0 . 4226183 , 0 .0000000 , 0 .9063078 ] ] )

32 #ro ta t e t h i s by 25 degree s about the y s i n c e we know that i s approximately

33 #how much the cameras are angled downward . This would change i f the cameras are

34 #repo s i t i on ed

35 v R cam = Rot25Deg @ v R cam

36

37 #convert meters to m i l l ime t e r s

38 cam T v = np . array ( [ 7 .729 , ❂6.581 , 7 . 3 1 5 ] ) ✯ 1000

39

40 #get the i nv e r s e o f the r o t a t i on matrix

41 cam R v = np . t ranspose ( v R cam )

42

43 # then ro ta t e because the camera in the lab has x coming out o f the l en s

44 # but we need z coming out so i t can be mupltiped by K to g ive us the image coord

45 YawRot = gns f . createRot (np . array ( [ ❂90 ,0 ,0 ] ) , True )

46 PitchRot = gns f . createRot (np . array ( [ 0 , 0 , 9 0 ] ) , True )

47 cam R v = YawRot @ PitchRot @ cam R v

48

49 # th i s l oads our i n i t i a l guess f o r the t rans fo rmat ion from f l a tboa rd coords to checkerboard ob j e c t

coords

65



50 va r i a b l e s = np . load ( FBtoCBInit ia lGuessFi le )

51 cb T fb = va r i a b l e s [ ’ cb T fb ’ ]

52 cb R fb = np . array ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 . ] , [ 0 , 0 , 1 . ] ] )

53

54 # load in image corner po in t s . Eas i e r t h i s was than t ry ing to f i nd them everyt ime

55 openCVfindCornersStuff = np . load ( CornerFi le , a l l ow p i c k l e = True )

56 badImageIndexArr = [ ]

57 f o r img in range ( l en ( openCVfindCornersStuff ) ) :

58 #corner f i nd i ng AI g i v e s co rne r s s t a r t i n g from bottom l e f t then going up

59 #th i s codes needs them to s t a r t at the top l e f t and go ac ro s s . This swaps them

60 f o r corner in gns f . swapCorners ( openCVfindCornersStuff [ img ] [ 4 ] ) :

61 img pts = np . append ( img pts , corner )

62

63 img pts = img pts . reshape ( l en ( img pts ) , 1)

64

65 # Create checkerboard co rne r s in the checkerboards coord inate system

66 # I f a d i f f e r e n t checkerboard i s being used than the 12x9 board with 60mm sqaures

67 # th i s w i l l need to be changed

68 objp = gns f . c r e a t e c o r n e r s ( ( 11 , 8 ) , 60)

69 # Read in Vicon in format ion from corresponding CSV f i l e s

70 # th i s l oads in vicon pose data which g i v e s us the t rans fo rmat ion from checkerboard ob j e c t coords

to vicon coords

71 # (we need to take the t ranspose o f the r o t a t i on matrix though . . t h i s i s done in B ig S im funct i ons

. py , p r o j e c t i n image ( ) )

72 v T cb , v R cb , imagePaths = gns f . g rab Rotat ions and Trans lat ions and imagePaths ( viconPoseCSV )

73

74 # Hard coded i n s t r i n s i c c a l i b r a t i o n matrix f o r the l e f t EO camera in the lab

75 K = np . array ( [ [ 8 .4078562532560827 e+03, 0 . , 2 .0452493168634646 e+03] , [ 0 . ,

76 8.4239635709810391 e+03, 1.5026734947879536 e+03] , [ 0 . , 0 . , 1 . ] ] )

77

78 # ❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂Find est imated image po in t s over a whole s e t o f images❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

79

80 # Find the est imated image l o c a t i o n s based on vicon pose data and i n i t i a l gue s s e s

81 p r in t ( ” Ca l cu la t ing est imated image po in t s \n” )

82 f o r i in range ( l en ( v R cb ) ) :

83 pts = gns f . p r o j e c t i n image (K, cam R v , v R cb [ i ] , cb R fb , cb T fb , v T cb [ i ] , cam T v , objp )

84 e s t img p t s = np . append ( e s t img pts , pts )

85

86 #draw images f o r a san i ty check in the beginning

87 # i f ( i==0) :

88 # img = cv2 . imread (”Your image path here ”) #the image path w i l l have to correspond to

index i

89 # f o r pt in pts :

90 # img = cv2 . c i r c l e ( img , ( i n t ( pt [ 0 ] ) , i n t ( pt [ 1 ] ) ) , r ad iu s =3, c o l o r =(0 , 165 , 255) ,

th i ckne s s=6)

91 # s c a l e p e r c e n t = 30

92 # #ca l c u l a t e the 30 percent o f o r i g i n a l dimensions

93 # width = in t ( img . shape [ 1 ] ✯ s c a l e p e r c e n t / 100)

94 # he ight = in t ( img . shape [ 0 ] ✯ s c a l e p e r c e n t / 100)

95 # # ds i z e

96 # ds i z e = (width , he ight )

97 # out = cv2 . r e s i z e ( img , d s i z e )

98 # cv2 . imshow ( ’ img ’ , out )

99 # cv2 . waitKey (0)
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100 # cv2 . destroyAllWindows ( )

101 # e l i f ( i ==651) :

102 # img = cv2 . imread (”Your image path here ”) #the image path w i l l have to correspond to

index i

103 # f o r pt in pts :

104 # img = cv2 . c i r c l e ( img , ( i n t ( pt [ 0 ] ) , i n t ( pt [ 1 ] ) ) , r ad iu s =3, c o l o r =(0 , 165 , 255) ,

th i ckne s s=6)

105 # s c a l e p e r c e n t = 30

106 # #ca l c u l a t e the 30 percent o f o r i g i n a l dimensions

107 # width = in t ( img . shape [ 1 ] ✯ s c a l e p e r c e n t / 100)

108 # he ight = in t ( img . shape [ 0 ] ✯ s c a l e p e r c e n t / 100)

109 # # ds i z e

110 # ds i z e = (width , he ight )

111 # out = cv2 . r e s i z e ( img , d s i z e )

112 # cv2 . imshow ( ’ img ’ , out )

113 # cv2 . waitKey (0)

114 # cv2 . destroyAllWindows ( )

115

116 e s t img p t s = e s t img p t s . reshape ( l en ( e s t img p t s ) , 1)

117

118 # ❂❂❂❂❂❂Beginning o f Gauss Newton❂❂❂❂❂❂

119 i t e r c oun t = 0

120 i t e r a t e = True

121 num o f i t e r a t i on s = 10

122

123 whi le i t e r a t e i s True :

124 p r in t ( ”Beginning i t e r a t i o n ” + s t r ( i t e r c oun t ) )

125 Y = np . array ( [ ] )

126 J = np . array ( [ ] )

127 check va lue s = np . array ( [ ] )

128 p r in t ( ” Ca l cu la t ing the d i f f e r e n c e Y between est imated image po in t s and ac tua l image po in t s \n” )

129 Y = np . subt rac t ( img pts , e s t img p t s )

130 p r in t ( ’At the beg inning o f i t e r a t i o n , mag Yˆ2 i s ’ , np . l i n a l g . norm(Y) ✯✯2)

131 # ❂❂❂❂❂❂Der i va t i v e s f o r a s e t o f images❂❂❂❂❂❂

132 pr in t ( ”\nCalcu lat ing Jacobian matrix\n” )

133 f o r i in range ( l en ( v T cb ) ) :

134 f o r j in range ( l en ( objp ) ) :

135 de r iv = gns f . f i nd Der i v (K, cam R v , v R cb [ i ] , cb R fb , objp [ j ] , cb T fb , v T cb [ i ] ,

cam T v )

136 J = np . append (J , de r iv )

137 J = J . reshape ( l en ( img pts ) , 12)

138 #J [ : , : 3 ] = np . z e ro s ( ( l en ( img pts ) ,3 ) )

139 #J [ : , 6 : 9 ]= np . z e ro s ( ( l en ( img pts ) ,3 ) )

140 db = la . l s t s q (J ,Y, rcond=None ) [ 0 ]

141 # ❂❂❂❂❂❂Begining o f s ca l ed Gauss Newton❂❂❂❂❂❂

142 d e l t a y p r ed i c t e d = np . dot (J , db)

143

144 e r r o r = 5

145 k = 1

146 whi le ( ( e r r o r < 0 .25 or e r r o r > 4) and k < 10000) :

147

148 cb T fb prop = cb T fb . copy ( )

149 cb T fb prop [ 0 ] += db [ 0 ] / k

150 cb T fb prop [ 1 ] += db [ 1 ] / k
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151 cb T fb prop [ 2 ] += db [ 2 ] / k

152

153 cb R fb prop = cb R fb . copy ( )

154 cb dr1 = db [ 3 ] / k

155 cb dr2 = db [ 4 ] / k

156 cb dr3 = db [ 5 ] / k

157 cb skew = expm(np . array ( [ [ 0 . , ❂cb dr3 , cb dr2 ] ,

158 [ cb dr3 , 0 . , ❂cb dr1 ] ,

159 [❂ cb dr2 , cb dr1 , 0 . ] ] ) )

160 cb R fb prop = np . dot ( cb skew , cb R fb prop )

161

162 cam T v prop = cam T v . copy ( )

163 cam T v prop [ 0 ] += db [ 6 ] / k

164 cam T v prop [ 1 ] += db [ 7 ] / k

165 cam T v prop [ 2 ] += db [ 8 ] / k

166

167 cam R v prop = cam R v . copy ( )

168 cam dr1 = db [ 9 ] / k

169 cam dr2 = db [ 1 0 ] / k

170 cam dr3 = db [ 1 1 ] / k

171 cam skew = expm(np . array ( [ [ 0 . , ❂cam dr3 , cam dr2 ] ,

172 [ cam dr3 , 0 . , ❂cam dr1 ] ,

173 [❂cam dr2 , cam dr1 , 0 . ] ] ) )

174 cam R v prop = np . dot ( cam skew , cam R v prop )

175

176 Y prop = np . array ( [ ] )

177 e s t img pt s p rop = np . array ( [ ] )

178

179 # Find the est imated image l o c a t i o n s again based on new pose va lues

180 f o r i in range ( l en ( v R cb ) ) :

181 pts prop = gns f . p r o j e c t i n image (K, cam R v prop , v R cb [ i ] , cb R fb prop ,

cb T fb prop , v T cb [ i ] , cam T v prop , objp )

182 e s t img pt s p rop = np . append ( e s t img pts prop , pts prop )

183

184 e s t img pt s p rop = es t img pt s p rop . reshape ( l en ( e s t img pt s p rop ) , 1)

185

186 Y prop = np . subt rac t ( img pts , e s t img pt s p rop )

187

188 predicted mag = np . l i n a l g . norm(Y) ✯✯2 ❂ np . l i n a l g . norm(np . subt rac t (Y, d e l t a y p r ed i c t e d /k ) )

✯✯2

189 real mag = np . l i n a l g . norm(Y) ✯✯2 ❂ np . l i n a l g . norm(Y prop ) ✯✯2

190 pr in t ( ’At the end o f i t e r a t i o n Y prop mag squared i s ’ , np . l i n a l g . norm(Y prop ) ✯✯2)

191 e r r o r = predicted mag / real mag

192 k ✯= 2.0

193 # ❂❂❂❂❂❂End o f s ca l ed Gauss Newton❂❂❂❂❂❂

194

195 e s t img p t s = es t img pt s p rop

196 cam T v = cam T v prop

197 cam R v = cam R v prop

198 cb T fb = cb T fb prop

199 cb R fb = cb R fb prop

200

201

202 pr in t ( ” F in i sh ing i t e r a t i o n ” + s t r ( i t e r c oun t ) + ”\n” )
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203 i t e r c oun t += 1

204 i t e r a t e = i t e r c oun t < num o f i t e r a t i on s

205

206 # ❂❂❂❂❂❂End o f Gauss Newton❂❂❂❂❂❂

207

208 pr in t ( ”cam T v\n” , cam T v )

209 pr in t ( ”cam R v\n” , cam R v )

210 pr in t ( ” cb T fb\n” , cb T fb )

211 pr in t ( ” cb R fb\n” , cb R fb )

212

213 YawRot2 = gns f . createRot (np . array ( [ 9 0 , 0 , 0 ] ) , True )

214 PitchRot2 = gns f . createRot (np . array ( [0 ,0 , ❂90 ] ) , True )

215 cam R v2 = PitchRot2 @ YawRot2 @ cam R v

216

217 f i n a l= gns f . g e t T ran s f o rma t i on i nv e r s e s f r om s i ng l e t r an s f o rma t i on ( cam R v2 , cam T v )

218 pr in t ( f i n a l )

219

220

221 # #v i s u a l check

222 # pts2 = gns f . p r o j e c t i n image (K, cam R v , v R cb [ 0 ] , cb R fb , cb T fb , v T cb [ 0 ] , cam T v , objp )

223 # img2 = cv2 . imread (”Your image path here ”) #the image path w i l l have to correspond to index used

in v T cb [ 0 ] and v R cb [ 0 ] above

224 # f o r pt in pts2 :

225 # img2 = cv2 . c i r c l e ( img2 , ( i n t ( pt [ 0 ] ) , i n t ( pt [ 1 ] ) ) , r ad iu s =3, c o l o r =(0 , 165 , 255) , t h i ckne s s=6)

226 # s c a l e p e r c e n t = 30

227 # #ca l c u l a t e the 30 percent o f o r i g i n a l dimensions

228 # width = in t ( img2 . shape [ 1 ] ✯ s c a l e p e r c e n t / 100)

229 # he ight = in t ( img2 . shape [ 0 ] ✯ s c a l e p e r c e n t / 100)

230 # # ds i z e

231 # ds i z e = (width , he ight )

232 # out2 = cv2 . r e s i z e ( img2 , d s i z e )

233 # cv2 . imshow ( ’ img2 ’ , out2 )

234 # cv2 . waitKey (0)

235

236 # #v i s u a l check

237 # pts3 = gns f . p r o j e c t i n image (K, cam R v , v R cb [ 6 5 1 ] , cb R fb , cb T fb , v T cb [ 6 5 1 ] , cam T v ,

objp )

238 # img3 = cv2 . imread (”Your image path here ”) #the image path w i l l have to correspond to index used

in v T cb [ 6 5 1 ] and v R cb [ 6 5 1 ] above

239 # f o r pt in pts3 :

240 # img3 = cv2 . c i r c l e ( img3 , ( i n t ( pt [ 0 ] ) , i n t ( pt [ 1 ] ) ) , r ad iu s =3, c o l o r =(0 , 165 , 255) , t h i ckne s s=6)

241 # # ds i z e

242 # ds i z e = (width , he ight )

243 # out3 = cv2 . r e s i z e ( img3 , d s i z e )

244 # cv2 . imshow ( ’ img3 ’ , out3 )

245 # cv2 . waitKey (0)

Listing A.1: Gauss-Newton Optimization

1 import math as m

2 import numpy as np

3 import pandas as pd

4

5 de f img der iv (x , y , z , de r i v ) :

69



6 du = ( der iv [ 0 ] / z ) ❂ ( x/z ✯✯2) ✯ der iv [ 2 ]

7 dv = ( der iv [ 1 ] / z ) ❂ ( y/z ✯✯2) ✯ der iv [ 2 ]

8

9 return du , dv

10

11 de f f i nd Der i v (K, cam R v , v R cb , cb R fb , pt , cb T fb , v T cb , cam T v , s imu la t i on=False ) :

12

13 v R cb = qua t e rn i an t o r o t a t i on ( v R cb )

14

15 #f l a tboa rd point in checkerboard ob j e c t coord frame

16 pointChecker = cb R fb @ pt + cb T fb

17

18 #f l a tboa rd point in vicon coord frame

19 pointVicon = v R cb .T @ pointChecker + v T cb ❂ cam T v

20

21 #f l a tboa rd point in camera coord frame

22 pointCamera = cam R v @ pointVicon

23

24 #f l a tboa rd point in image frame

25 pointImage = K @ pointCamera

26

27 x = pointImage [ 0 ]

28 y = pointImage [ 1 ]

29 z = pointImage [ 2 ]

30

31 s s = [ ]

32 s s . append ( np . array ( [ [ 0 . , 0 . , 0 . ] ,

33 [ 0 . , 0 . , ❂1. ] ,

34 [ 0 . , 1 . , 0 . ] ] ) )

35

36 s s . append ( np . array ( [ [ 0 . , 0 . , 1 . ] ,

37 [ 0 . , 0 . , 0 . ] ,

38 [❂1. , 0 . , 0 . ] ] ) )

39

40 s s . append ( np . array ( [ [ 0 . , ❂1. , 0 . ] ,

41 [ 1 . , 0 . , 0 . ] ,

42 [ 0 . , 0 . , 0 . ] ] ) )

43

44 # Der i va t i v e s f o r cb R fb

45 A = K @ cam R v @ v R cb @ ss [ 0 ] @ cb R fb @ pt

46 cb R fb dr1 = (K @ cam R v @ v R cb .T @ ss [ 0 ] @ cb R fb @ pt ) . reshape (3 , 1 )

47 cb R fb dr2 = (K @ cam R v @ v R cb .T @ ss [ 1 ] @ cb R fb @ pt ) . reshape (3 , 1 )

48 cb R fb dr3 = (K @ cam R v @ v R cb .T @ ss [ 2 ] @ cb R fb @ pt ) . reshape (3 , 1 )

49

50 du cb R fb dr1 , dv cb R fb dr1 = img der iv (x , y , z , cb R fb dr1 )

51 du cb R fb dr2 , dv cb R fb dr2 = img der iv (x , y , z , cb R fb dr2 )

52 du cb R fb dr3 , dv cb R fb dr3 = img der iv (x , y , z , cb R fb dr3 )

53

54 CB dr1 = np . array ( [ du cb R fb dr1 , dv cb R fb dr1 ] ) . reshape (2 , 1 )

55 CB dr2 = np . array ( [ du cb R fb dr2 , dv cb R fb dr2 ] ) . reshape (2 , 1 )

56 CB dr3 = np . array ( [ du cb R fb dr3 , dv cb R fb dr3 ] ) . reshape (2 , 1 )

57

58 # Der i va t i v e s f o r cam R v

59 C = np . dot (K, cam R v )
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60 cam R rig dr1 = (K @ ss [ 0 ] @ cam R v @ ( v R cb .T @ ( cb R fb @ pt + cb T fb ) + v T cb ❂ cam T v

) ) . reshape (3 , 1 )

61 cam R rig dr2 = (K @ ss [ 1 ] @ cam R v @ ( v R cb .T @ ( cb R fb @ pt + cb T fb ) + v T cb ❂ cam T v

) ) . reshape (3 , 1 )

62 cam R rig dr3 = (K @ ss [ 2 ] @ cam R v @ ( v R cb .T @ ( cb R fb @ pt + cb T fb ) + v T cb ❂ cam T v

) ) . reshape (3 , 1 )

63

64 du cam R rig r1 , dv cam R rig r1 = img der iv (x , y , z , cam R rig dr1 )

65 du cam R rig r2 , dv cam R rig r2 = img der iv (x , y , z , cam R rig dr2 )

66 du cam R rig r3 , dv cam R rig r3 = img der iv (x , y , z , cam R rig dr3 )

67

68 cam dr1 = np . array ( [ du cam R rig r1 , dv cam R rig r1 ] ) . reshape (2 , 1 )

69 cam dr2 = np . array ( [ du cam R rig r2 , dv cam R rig r2 ] ) . reshape (2 , 1 )

70 cam dr3 = np . array ( [ du cam R rig r3 , dv cam R rig r3 ] ) . reshape (2 , 1 )

71

72 # Der i va t i v e s f o r cb T fb

73 dx cb T fb = (K @ cam R v @ v R cb .T @ np . array ( [ 1 . , 0 , 0 ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

74 dy cb T fb = (K @ cam R v @ v R cb .T @ np . array ( [ 0 . , 1 , 0 ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

75 dz cb T fb = (K @ cam R v @ v R cb .T @ np . array ( [ 0 . , 0 , 1 ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

76

77 du cb T fb tx , dv cb T fb tx = img der iv (x , y , z , dx cb T fb )

78 du cb T fb ty , dv cb T fb ty = img der iv (x , y , z , dy cb T fb )

79 du cb T fb tz , dv cb T fb tz = img der iv (x , y , z , dz cb T fb )

80

81 CB tx = np . array ( [ du cb T fb tx , dv cb T fb tx ] ) . reshape (2 , 1 )

82 CB ty = np . array ( [ du cb T fb ty , dv cb T fb ty ] ) . reshape (2 , 1 )

83 CB tz = np . array ( [ du cb T fb tz , dv cb T fb tz ] ) . reshape (2 , 1 )

84

85 # Der i va t i v e s f o r cam T v

86 K @ cam R v @ np . array ( [ ❂1 . , 0 , 0 ] ) . reshape (3 , 1 )

87

88 dx cam T rig = (K @ cam R v @ np . array ( [ ❂1 . , 0 , 0 ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

89 dy cam T rig = (K @ cam R v @ np . array ( [ 0 , ❂1 . , 0 ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

90 dz cam T rig = (K @ cam R v @ np . array ( [ 0 , 0 , ❂1 . ] ) . reshape (3 , 1 ) ) . reshape (3 , 1 )

91

92 du cam T rig tx , dv cam T rig tx = img der iv (x , y , z , dx cam T rig )

93 du cam T rig ty , dv cam T rig ty = img der iv (x , y , z , dy cam T rig )

94 du cam T rig tz , dv cam T r ig tz = img der iv (x , y , z , dz cam T rig )

95

96 cam tx = np . array ( [ du cam T rig tx , dv cam T rig tx ] ) . reshape (2 , 1 )

97 cam ty = np . array ( [ du cam T rig ty , dv cam T rig ty ] ) . reshape (2 , 1 )

98 cam tz = np . array ( [ du cam T rig tz , dv cam T r ig tz ] ) . reshape (2 , 1 )

99

100 de r iv = np . concatenate ( ( CB tx , CB ty , CB tz , CB dr1 , CB dr2 , CB dr3 , cam tx , cam ty , cam tz ,

cam dr1 , cam dr2 , cam dr3 ) , ax i s=1)

101

102 return de r iv

103

104 de f p r o j e c t i n image (K, cam R v , v R cb , cb R fb , cb T fb , v T cb , cam T v , pts ) :

105 img pts = [ ]

106 v R cb = qua t e rn i an t o r o t a t i on ( v R cb )

107

108 f o r i in range ( l en ( pts ) ) :

109
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110 #f l a tboa rd point

111 point = pts [ i ]

112

113 #f l a tboa rd point in checkerboard ob j e c t coord frame

114 pointChecker = cb R fb @ point + cb T fb

115

116 #f l a tboa rd point in vicon coord frame

117 pointVicon = v R cb .T @ pointChecker + v T cb ❂ cam T v

118

119 #f l a tboa rd point in camera coord frame

120 pointCamera = cam R v @ pointVicon

121

122 #f l a tboa rd point in image frame

123 pointImage = K @ pointCamera

124

125 UVarray = np . array ( [ ] )

126 UVarray = np . append (UVarray , pointImage [ 0 ] / pointImage [ 2 ] )

127 UVarray = np . append (UVarray , pointImage [ 1 ] / pointImage [ 2 ] )

128 img pts . append (UVarray )

129

130 return img pts

131

132 de f createRot (RPY, degrees=False ) :

133 i f degree s :

134 i yaw = m. rad ians (RPY[ 2 ] )

135 i p i t c h = m. rad ians (RPY[ 1 ] )

136 i r o l l = m. rad ians (RPY[ 0 ] )

137 e l s e :

138 i yaw = RPY[ 2 ]

139 i p i t c h = RPY[ 1 ]

140 i r o l l = RPY[ 0 ]

141

142 R yaw = np . array ( [ [m. cos ( i yaw ) , 0 . , ❂m. s i n ( i yaw ) ] , [ 0 . , 1 . , 0 . ] , [m. s i n ( i yaw ) , 0 . , m. cos (

i yaw ) ] ] )

143 R pitch = np . array ( [ [ 1 . , 0 . , 0 . ] , [ 0 . , m. cos ( i p i t c h ) , m. s i n ( i p i t c h ) ] , [ 0 . , ❂m. s i n ( i p i t c h ) , m.

cos ( i p i t c h ) ] ] )

144 R r o l l = np . array ( [ [m. cos ( i r o l l ) , m. s i n ( i r o l l ) , 0 . ] , [ ❂m. s i n ( i r o l l ) , m. cos ( i r o l l ) , 0 . ] , [ 0 . ,

0 . , 1 . ] ] )

145 return np . dot ( R ro l l , np . dot ( R pitch , R yaw) )

146

147 #corner f i nd i ng AI g i v e s co rne r s s t a r t i n g from bottom l e f t then going up

148 #th i s codes needs them to s t a r t at the top l e f t and go ac ro s s . This swaps them

149 de f swapCorners ( co rne r s ) :

150 newCorners = corne r s . reshape (11 ,8 , 2 )

151 swappedCorners = np . array ( [ ] )

152 f o r x in range (7 ,❂1 , ❂1) :

153 f o r y in range ( l en ( newCorners ) ) :

154 swappedCorners = np . append ( swappedCorners , newCorners [ y ] [ x ] )

155 return swappedCorners

156

157 # Creates ob j e c t po in t s in a checkerboards coord inate system

158 # Dimensions i s e i t h e r a tup l e or numpy array o f two elements

159 # Element one i s the number o f rows and element two i s the number o f columns

160 # Si ze i s the length , in mm, o f a checkerboard square ’ s s i d e
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161 de f c r e a t e c o r n e r s ( dimensions , s i z e ) :

162 co rne r s = np . z e ro s ( ( dimensions [ 0 ] ✯ dimensions [ 1 ] , 3) , np . f l o a t 3 2 )

163 co rne r s [ : , : 2 ] = np . mgrid [ 0 : dimensions [ 0 ] , 0 : dimensions [ 1 ] ] . T. reshape (❂1 , 2) ✯ s i z e

164 co rne r s [ : , 1 ] = ❂co rne r s [ : , 1 ]

165

166 return co rne r s

167

168 de f grab Rotat ions and Trans lat ions and imagePaths ( path ) :

169 t r a n s l a t i o n = np . array ( [ ] )

170 r o t a t i on = np . array ( [ ] )

171

172 obj = pd . r ead csv ( path )

173

174 tran x = obj [ ”x” ]

175 tran y = obj [ ”y” ]

176 t ran z = obj [ ”z” ]

177 rot w = obj [ ”quatW” ]

178 ro t x = obj [ ”quatX” ]

179 ro t y = obj [ ”quatY” ]

180 r o t z = obj [ ”quatZ” ]

181 imagePaths = obj [ ” imagePath” ]

182

183 f o r i in range ( l en ( t ran x ) ) :

184 tmp = np . array ( [ t ran x [ i ] , t ran y [ i ] , t r an z [ i ] ] )

185 t r a n s l a t i o n = np . concatenate ( ( t r an s l a t i on , tmp) , ax i s=0)

186 tmp2 = np . array ( [ rot w [ i ] , r o t x [ i ] , r o t y [ i ] , r o t z [ i ] ] )

187 r o t a t i on = np . concatenate ( ( ro tat ion , tmp2) , ax i s=0)

188

189 t r a n s l a t i o n = t r an s l a t i o n . reshape ( l en ( t ran x ) , 3) ✯ 1000

190 r o t a t i on = ro ta t i on . reshape ( l en ( t ran x ) , 4)

191

192 return t r an s l a t i on , ro tat ion , imagePaths

193

194 #wxyz

195 de f qua t e r n i an t o r o t a t i on ( r o t a t i on ) :

196 R = np . array ( [ [1 ❂2✯( r o t a t i on [ 2 ]✯✯2 + ro ta t i on [ 3 ] ✯ ✯ 2 ) , 2✯( r o t a t i on [ 1 ] ✯ r o t a t i on [ 2 ] ❂ r o t a t i on

[ 3 ] ✯ r o t a t i on [ 0 ] ) , 2✯( r o t a t i on [ 0 ] ✯ r o t a t i on [ 2 ] + ro t a t i on [ 1 ] ✯ r o t a t i on [ 3 ] ) ] ,

197 [ 2✯ ( r o t a t i on [ 1 ] ✯ r o t a t i on [ 2 ] + ro t a t i on [ 0 ] ✯ r o t a t i on [ 3 ] ) , 1❂2✯( r o t a t i on [ 1 ]✯✯2 +

ro ta t i on [ 3 ] ✯ ✯ 2 ) , 2✯( r o t a t i on [ 2 ] ✯ r o t a t i on [ 3 ] ❂ r o t a t i on [ 0 ] ✯ r o t a t i on [ 1 ] ) ] ,

198 [ 2✯ ( r o t a t i on [ 1 ] ✯ r o t a t i on [ 3 ] ❂ r o t a t i on [ 0 ] ✯ r o t a t i on [ 2 ] ) , 2✯( r o t a t i on [ 0 ] ✯ r o t a t i on [ 1 ]

+ ro t a t i on [ 2 ] ✯ r o t a t i on [ 3 ] ) , 1❂2✯( r o t a t i on [ 1 ]✯✯2 + ro ta t i on [ 2 ] ✯ ✯ 2 ) ] ] )

199

200 return R

Listing A.2: Gauss-Newton Optimization Supporting Functions
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