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Abstract

Wind tunnels are used to test scale-model air frames in order to collect aerody-

namic data. The Subsonic Aerodynamic Research Laboratory (SARL) Wind Tunnel

is a low speed wind tunnel located at Wright-Patterson Air Force Base. The SARL

Wind Tunnel team approached AFIT for assistance in creating statistically defensible

models for the conditions inside the wind tunnel. During a wind tunnel test, pressure

sensors cannot be placed at the test model. Instead, pressure is measured by a pitot

probe permanently mounted in the corner of the test chamber. The pressure at the

model location is predicted from the measurements taken by this pitot probe. This

thesis analyzes the models used previously to predict pressure and creates new models

using more rigorous statistical methods. These new models have a high prediction

accuracy and follow all the necessary assumptions to ensure accuracy for the SARL

wind tunnel team and their customers.
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STATISTICALLY DEFENSIBLE WIND TUNNEL MODELS

I. Introduction

1.1 Motivation and Background

The Subsonic Aerodynamic Research Laboratory (SARL) Wind Tunnel is a low

speed wind tunnel located at Wright-Patterson Air Force Base. Low speed wind

tunnels operate at wind speeds between MACH 0 and MACH 0.5. They test scale

models of aircraft, air foils or other models, providing aerodynamic data on the model.

The conditions around the test model are measured, and measurements are taken from

sensors within the model, to determine lift, drag, air resistance, and other important

properties. [1]

Pressure is an important measurement during a test, as it is used in calculating

many of the important properties. While testing, pressure is measured using a pitot

probe mounted in the corner of the wind tunnel test chamber. A pitot probe, also

known as a pitot-static probe, is a common tool for measuring pressure and air speed.

The probe measures total (or stagnation) and static pressure, which is then used

to calculate other measurements such as dynamic pressure and airspeed [2]. The

conditions at this mounted probe do not directly match the conditions in the center of

the wind tunnel where the test model is located. Our goal is to predict the conditions

in the center based off measurements from the mounted pitot probe.
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1.2 Problem Statement

During a test, the conditions inside the test chamber are measured using the

pitot probe mounted in the wind tunnel. However, the measurements taken at this

location may not be equivalent to the conditions at the model being tested. In the

past, the SARL team used a simple linear fit model to predict the conditions at the

test location.

The SARL Wind Tunnel team asked for a “statistically defensible” method of

predicting the conditions at the test location based off measurements taken by the

mounted pitot probe. There are three different response variables, total pressure,

static pressure, and dynamic pressure, requiring a model for each.

Currently, a simple linear fit model is used to estimate the pressures at the test site,

based off the measurements taken at the mounted probe. For this thesis, a number

of other factors were tested using standard regression techniques in an attempt to

create a more accurate and defensible model. The potential factors include different

measurements from the pitot probe as well as several environmental factors.

1.3 Research Objectives

The primary goal for this thesis is to test the models used previously by the SARL

team, and to create “statistically defensible” models using more advanced regression

techniques. The SARL team is also interested in modeling and predicting error in the

future, therefore, the residual terms from the linear regression models are of particular

interest. The SARL team also asked to investigate the effect, if any, external weather

conditions (temperature, wind speed, wind direction, etc...) have on the pressures in

the wind tunnel.
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1.4 Organization of the Thesis

This thesis is structured as follows: first, the methodology behind the data col-

lection and regression techniques are discussed; next, the models used by the SARL

team in the past are examined; and lastly, new models are created using more rigorous

regression techniques.

3



II. Methodology

2.1 Overview

This chapter discusses the data, as well as the data collection process. A brief

explanation of linear regression and the statistical process used in this thesis is also

provided. Also covered are methods used to evaluate linear regression models, as well

as important assumptions the models must meet.

The SARL team asked for “statistically defensible” models. Linear regression is a

very common and widely used statistical process. By applying this common method,

and assuring the assumptions are met for the models created, the models will meet

the requirement of being statistically defensible.

All analyses was performed using JMP v15.0, and an α of 0.01 was used for

statistical inference. A validation set of approximately 40% of the data was randomly

selected for validation of the model. The same validation set was used for each model.

2.2 Data Collection

The data for model building came from a calibration test performed following

the replacement of filter screens within the SARL wind tunnel over the summer of

2020. A true randomized design of experiment could not be accomplished as the only

factor controlled by the wind tunnel team is the speed of the turbine, meaning the

factors of interest could not be set manually. Further, the wind tunnel equipment

does not allow for a quick change in speed. Due to the combination of these two

limitations, the SARL team was not able to perform a true randomized design for

the data collection.

The methodology used for data collection was to collect data as the wind tunnel

accelerated from 0 MACH to 0.5 MACH. The speed of the wind tunnel would be

4



increased in increments of 0.05 MACH and a set of data points would be collected.

The speed would then be held constant and another set of data points at that speed

was collected after five minutes, and then again after ten minutes. After finishing

at each MACH level, the tunnel would accelerate to the next MACH level and the

process would repeat. Data were also collected as the tunnel decelerated after reaching

0.5 MACH. Only one data point was taken at each MACH level during deceleration.

Ten separate tests were performed, and a total of 393 data points were collected.

In some of the later tests, the time between measurements was shortened to four

minutes. This allowed the wind tunnel team to run the test twice per day, as they

had been been unable to test for a full week due to weather conditions. The SARL

team does not believe this change had any affect on the data collected.

During these calibration tests, pressure sensors were placed on the center platform

of the test chamber where the test model would be placed during an actual test. These

pressure sensors measured total, static and dynamic pressure at the test platform.

There are two measurements for dynamic pressure, MR1 for MACH 0 to MACH

0.23, and MR2 for MACH 0.23 to MACH 0.5. These measurements are used as the

response variable for the regression model, and are summarized in Table 1.

Table 1. Response Variable Characteristics

Variable Description Mean StDev Min Max

P0PRB Total Pressure 14.3511 0.0650 14.1963 14.4455
PSPRB Static Pressure 13.6394 0.6698 12.1344 14.4460

QPRB1PSID Dynamic Pressure MR1 0.1106 0.1824 0.0000 1.0944
QPRB2PSID Dynamic Pressure MR2 0.7126 0.6617 -0.0004100 2.1283

The analysis in this thesis focuses on the predictor variables summarized in Table

2. The SARL team performs many corrections and calculations on the data collected

in these tests. For this thesis, only the measured data was used.

The predictor variables include measurements for total static, and dynamic pres-

5



Table 2. Predictor Variable Characteristics

Variable Description Mean StDev Min Max

P0TS Pitot Total Pressure 14.3514 0.0652 14.1990 14.4483
PREF Tunnel Reference Pressure 14.6956 0.002880 14.6905 14.7013
PSTPRB Uncorrected Static Pressure 13.6167 0.6822 12.0908 14.4392
QTPRB Uncorrected Dynamic Pressure 0.7285 0.6742 -0.0001000 2.1674
ATM Reference Total Pressure 14.3570 0.06473 14.1960 14.4470
PPT4 Reference Total Pressure 14.4611 0.06405 14.2960 14.5560
T0TS Tunnel Total Temperature 520.1534 9.2715 499.8000 536.1400
DewPt Dew Point 500.5000 15.0304 469.0000 529.0000
WS Wind Speed 16.3507 4.6669 3.3756 32.0684

sure. A number of reference pressures are also measured, as well as the temperature

within the tunnel. External conditions, dew point and wind speed, are also included

in the analysis.

Pressure is measured in PSI, wind speed in feet per second, and temperature is

measured in Rankine, the imperial equivalent of Kelvin. The SARL team discovered

an error in reference total pressure (PPT4), and at their request, it was not included

in any analysis.

2.3 Simple Linear Regression

Previously, the SARL team had used a simple linear regression model to accom-

plish the task of modeling the pressures at the test platform. Simple linear regression

is a technique in which one variable, the response variable (normally denoted as Y),

is estimated based off another variable, the predictor variable (often denoted as X).

The overall goal of a linear regression model is to predict the value of Y for any given

value of X. The regression process is performed using a set of collected data, and

results in a formula for the simple linear regression model of the form:

Yi = β0 + β1 ∗Xi + εi, (1)

6



where Yi and Xi are the corresponding values for the ith observed values of Y and X

respectively, β0 and β1 are the parameters for the y-intercept an slope of the equation

respectively, εi is the random unknown error for the ith observation, for i=1,2,..,n.

The prediction equation for a Simple Linear Regression Model is:

Ŷ = β̂0 + β̂1 ∗X, (2)

where β̂0 and β̂1 are the estimates for the parameters β0 and β1, and Ŷ is the predicted

value for the response variable given a value of predictor variable X. The prediction

equation is used to estimate the value of the response variable for any given values

within the range of the predictor variable. [3]

2.4 Multiple Linear Regression

The new models created in this thesis were built using multiple linear regression.

Multiple linear regression has the same premise as simple linear regression, except

more than one predictor is used. The general formula for multiple linear regression

is:

Yi = β0 + β1 ∗Xi1 + β2 ∗Xi2 + ...+ βK ∗XiK + εi, (3)

where Yi, β0, and εi are the same as given in equation 1. The main difference between

equation 1 and 3 is that there are up to k possible predictor variables, denoted such

that each βk is the coefficient for the corresponding predictor Xk. The prediction

equation for multiple linear regression is:

Ŷ = β̂0 + β̂1 ∗X1 + β̂2 ∗X2 + ...+ β̂K ∗XK (4)

where β̂0,...,β̂K are the estimates for the parameters β0,...,βK , and Ŷ is the predicted

7



value for the response variable given values for each predictor X1,...,Xk. [3]

A technique known as backwards elimination was applied to fit the multiple lin-

ear regression models for this thesis. Backwards elimination is a step-wise selection

process which considers all the candidate predictors. Then, one by one the predictors

with the least significance are removed until all remaining predictors in the model

are significant. Significance is determined by comparing the p-value associated with

a particular predictor to a pre-selected level of significance denoted by α. A predictor

with a p-value smaller than α is said to be significant. Least significance is deter-

mined by the magnitudes of the p-values that are larger than α; larger in this regards

corresponds to less significant. [3]

These methods are used to fulfill the SARL team’s requirement that the models be

statistically defensible. Regression is a standard and well studied statistical method,

and adhering to this process will provide a statistically rigorous model for the SARL

team.

2.5 Model Evaluation

This thesis uses the correlation of determination, R2, to evaluate the model ade-

quacy and usefulness. The R2 is an indicator of the strength of a model, measured

on a scale between zero and one. Essentially, it is a measures of how well the hy-

pothesized model fits the data. It accounts for the percentage of the total variation

explained by the model. The R2 is calculated as follows:

R2 = 1 − SSE

SST
, (5)

where, SSE is error sum of squares and SST is the total sum of squares defined as

follows:

8



SSE =
∑

(Yi − Ŷi)
2, (6)

SST =
∑

(Yi − Ȳ )2, (7)

where Ȳ is the mean of the response variables, Yi.

An R2 = 1 is an indication that the predictor variables explain all the variation

in the response variable, while an R2 = 0 is an indication that the predictor variables

are not related to the response variable, and cannot be used in the prediction. The

higher the R2 the more accurate the model, in other words, the closer the predicted

value (Ŷi) is to the actual value (Yi) for all i. [3]

The R2
adj is also used in this thesis. The R2

adj has the same interpretation as the

R2, however, the R2 will always increase as predictors are added to the model. The

R2
adj modifies the R2 to account for additional predictors by penalizing the R2 value if

the included predictors do not contribute to better explaining the response variable.

The equation for R2
adj is:

R2
adj = 1 − (1 −R2)(N − 1)

N −K − 1
, (8)

where N is the number of observations and K is the number of predictors included in

the model. [3]

Lack of fit is a test of whether or not the model fits the data well. In order

to do a formal lack-of-fit test, there must be multiple observations with the same

measurement for each predictor. For this thesis, the requirements to perform a formal

lack-of-fit test were not met. Instead, lack of fit is assessed informally via visual

inspection. Lack of fit normally manifests as a pattern, such as a curve, in residual

(defined in Equation 11) vs. predicted plots. Having lack of fit in a model usually

9



indicates a variable is missing from the model or that the variables in the model are

misspecified. [3]

This thesis also uses mean squared prediction error (MSPE) as a test for model

accuracy. The data is randomly divided into a training set and a validation set. The

models are build using only the training set, and then tested on the validation set.

The SSE for the validation set (SSEpred) is calculated using the same formula shown

in Equation 6, but only using the data from the validation set to calculate ŷi. The

formula for MSPE is:

MSPE =
SSEpred

n∗
, (9)

where n* is the number of data points in the validation set. The MSPE is then

compared to the model MSE, which for comparison purposes is calculated as follows:

MSE =
SSE

n
, (10)

where MSE is normally calculated by dividing SSE by n− k − 1. For this thesis the

square root of the MSPE and MSE (denoted as RMSPE and RMSE) is used instead

of the MSPE and MSE. Using a validation set in this way allows verification that the

predictions for the training and validation set are equally accurate.

2.6 Assumption Diagnostics

The error terms, or residuals (ei), for a linear regression model are calculated as

follows:

ei = Yi − Ŷi. (11)

Linear regression models must meet some assumptions regarding residuals in order

to meet the “statistically defensible” requirement. The three main assumptions are

10



normality, independence, and constant variance.

Of the three, the most important assumption is that the residuals are independent

of one another. If the residuals are not independent, this is often due to autocorrela-

tion and often manifests as patterns in the residuals based off the order the data is

collected in. If autocorrelation is present, the estimated coefficients are inefficient and

the prediction equation could be ineffective. This leads to issues in the estimation of

variance, which in turn affects all other statistical tests. For this thesis, the Durbin-

Watson test is used to test for autocorrelation. The Durbin-Watson test statistic is

compared to an upper and lower bound which depends on α, K, and N . If the test

statistic is above the upper bound, it is concluded there is no autocorrelation, below

the lower bound means there is autocorrelation, and between the two bounds, the test

is inconclusive. The Cochrane-Orcutt procedure is used to remedy autocorrelation.

[3]

Another important assumption of linear regression is normality. This is the as-

sumption that the residuals follow a normal distribution. However, linear regression

is robust against minor departures from normality. Regardless, it is best if the resid-

uals are approximately normally distributed. The Anderson-Darling Goodness-of-Fit

test is used to test for normality. Also, normal quantile plots and histograms of the

residuals are useful visualization tools when exploring this assumption. If the shape

of the histogram resembles the normal curve, and the residuals when graphed on the

normal quantile plot are close to linear along the diagonal line, it is indication that

the residuals are normally distributed, and deviations from these are indications of

non-normality. [3]

Constant variance, also known as homoscedasticity, is the assumption that the

variance of the residuals is constant for all observations. Heteroscedasticity, or non-

constant variance, is when the variance of the residuals is different for different values

11



of the response variables. Ideally, the variance would be the same for all levels of the

response variable. Departures from constant variance would make error prediction

difficult, as the distribution of the error terms would be different depending on the

values of the variables. The Breusch-Pagan test is used in this thesis to test for

constant variance. Also, a residuals vs. the predicted plot is useful visualization tools

when exploring this assumption as well. [3]
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III. Results and Analysis

This chapter is organized into three sections, one for each response variable ex-

plored: total pressure, static pressure, and dynamic pressure. Each section covers the

previous methodology used by the SARL team to create their initial prediction model,

new model development, remedial measures, and results for each response variable.

3.1 Total Pressure Prediction

3.1.1 Previous Model

The first part of the analysis was to test the original model used by the SARL team.

A simple linear regression model was used, with the total pressure measurement from

the pitot probe (P0TS) as the predictor, and the reading from the central pressure

sensor (P0PRB) as the response. Since ultimately a new model was going to be

created, no remedial measures were performed on this model, and the residual analysis

will be brief. This model was explored to get an understanding of what had been done

previously, and to set a baseline for comparison to the new model. After fitting a

linear regression to the model building data set ,the prediction equation that resulted

was:

ˆP0PRB = 0.0001325 + 1.0011 ∗ P0TS. (12)

This model has an R2 of 0.9988 for the training set and 0.9986 for the validation set.

There is also a clear autocorrelation issue seen from the pattern in the residual

vs. observation graph in Figure 1, confirmed by a Durbin-Watson test. The Durbin-

Watson test statistic is 0.3341, well below the lower bound of 1.571, indicating there

is autocorrelation.

The residuals do not appear to be normally distributed, as shown in Figure 2, and

this was confirmed with an Anderson-Darling Goodness-of-Fit test with a p-value less
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than 0.0001. There also appears to be non-constant variance, from the residual vs.

predicted graph in Figure 3. The Breusch-Pagan test for constant variance depends

on independence, and as there is autocorrelation, the results are not reliable and was

not performed for this model.

Overall, this model did not meet the necessary assumptions to be labeled as

statistically defensible, and a new model was created.

Figure 1. Total Pressure Simple Model: Residual vs. Observation

Figure 2. Total Pressure Simple Model: Residual Distribution
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Figure 3. Total Pressure Simple Model: Residual vs. Predicted

3.1.2 New Model Development

A backwards elimination technique was used to build the new model. Starting with

a full model including all the predictor variables (see Table 2 for list of predictors), the

variables with the highest p-values were removed one at a time until all remaining

predictors were significant at alpha = 0.01. The three remaining predictors were

P0TS, Reference Total Pressure (ATM), and Tunnel Total Temperature (T0TS). The

prediction equation for this new model is:

ˆP0PRB = 0.04730 + 0.6865 ∗ P0TS + 0.3117 ∗ ATM − 0.00004622 ∗ T0TS. (13)

The R2
adj of this model is 0.9998 for both the training and validation set, an increase

from the original model. The RMSPE and RMSE for this model were 0.00078 and

0.00090, indicating the model fits the validation set well and has a high prediction

accuracy.

As with the previous model, there is autocorrelation for this model, with a Durbin-

Watson test statistic of 1.2245, below the lower bound of 1.571. Since autocorrelation

may influence the tests for normality and constant variance, these tests will be per-

formed after the autocorrelation is resolved via the Cochrane-Orcutt Procedure.
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3.1.3 Remedial Measures

The Cochrane-Orcutt procedure was used to remedy the autocorrelation issue.

After one iteration of the Cochrane-Orcutt procedure, the model passed the Durbin-

Watson test, with test statistic 2.2381, above the upper bound of 1.779, and it can

be concluded there is no longer autocorrelation. The residual vs. observation graph

post Cochrane-Orcutt is shown in Figure 4.

Figure 4. Total Pressure Final Model: Residual vs. Observation

3.1.4 New Model: Total Pressure

The final model produced after the remedial measure was performed is:

ˆP0PRB = 0.04139 + 0.6836 ∗ P0TS + 0.3151 ∗ ATM − 0.00004572 ∗ T0TS. (14)

The coefficients have been transformed to account for the autocorrelation. The final

R2
adj for the model was 0.9998 for both the training and validation sets, an improve-

ment over the original model. The RMSPE is 0.000788, compared to the RMSE of

0.000899, indicating the model fits the validation set well and has a high prediction

accuracy.

The residuals pass the Anderson-Darling Goodness-of-Fit Test with a p-value of

0.2870. Figure 5 shows the histogram and normal quantile plot of the residuals.
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From the residual vs. predicted graph in Figure 6, the model does not appear

to suffer from drastic non-constant variance. The model passes the Breusch-Pagan

test for constant variance with a p-value of 0.0131. Additionally, there is no clear

funneling in the residual vs. predicted graph. Therefore, the assumption of constant

variance is met for this model.

Figure 5. Total Pressure Final Model: Residual Distribution

Figure 6. Total Pressure Final Model: Residual vs. Predicted

This new model is overall a better model than what has been used previously. The

model has a high prediction accuracy, and despite the small non-constant variance

issue, this model will allow for much better error prediction for the SARL team in
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the future.

3.2 Static Pressure Prediction

3.2.1 Previous Model

The analysis for static pressure began with a recreation of the methodology used

previously by the SARL team. A simple linear regression model with with the static

pressure measurement from the pitot probe (PSTPRB) as the predictor, and the static

pressure reading from the central sensor (PSPRB) as the response. The formula for

the simple linear regression was estimated to be:

ˆPSPRB = 0.2738 + 0.9816 ∗ PSTPRB. (15)

This model had a strong fit, with an R2 of 0.99998 and a RMSPE of 0.00317. However,

this model suffers from autocorrelation, failing the Durbin-Watson test with a test

statistic of 0.2807, well below the lower bound of 1.571. This autocorrelation can be

seen in the patterns evident in the residual vs. observation graph in Figure 7.

Figure 7. Static Pressure Simple Model: Residual vs. Observation

As with total pressure, a new model will ultimately be created and residual anal-

ysis is not thoroughly explored. However, there is a clear lack of fit in this model as

seen in the curvature in the residual vs. predicted graph in Figure 8. This indicates

18



(PSTPRB) and (PSPRB) may not have a linear relationship and (PSPRB) may be

better described by a polynomial or other function of (PSTPRB).

The residuals for this model appear normally distributed, as shown in the his-

togram and normal quantile graph in Figure 9. Normality is confirmed with an

Anderson-Darling Goodness-of Fit test, passing with p-value of 0.014.

Figure 8. Static Pressure Simple Model: Residual vs. Predicted

Figure 9. Static Pressure Simple Model: Residual Distribution
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3.2.2 New Model Development

It was clear from the simple linear model that a higher order term for PSTPRB

should be considered in the new model to resolve the lack of fit issue. The backward

elimination method was used once again, and the final model included: PSTPRB,

(PSTPRB)2, and tunnel reference pressure (ATM), as well as two external weather

conditions, dew point (DEW) and wind speed (WS). Other polynomial terms were

also explored and were not significant. The formula for this new model was:

ˆPSPRB = −0.9931 + 1.1211 ∗ PSTPRB − 0.005225 ∗ PS2
TPRB

+ 0.02502 ∗ ATM − 0.00006623 ∗WS − 0.00003978 ∗DEW.
(16)

The R2
adj for the new model was 0.999997, with a RMSPE of 0.00115, improving on

the original. The lack of fit issue from the simple linear regression model seems to

have been resolved, based on the residual vs. predicted plot in Figure 10. However,

this model fails the Durbin-Watson test for autocorrelation with a test statistic of

0.7190, below the lower bound of 1.571, with the residual vs observation plot shown

in Figure 11. The rest of the assumptions will be tested after the autocorrelation is

resolved.

Figure 10. Static Pressure New Model: Residual vs. Predicted
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Figure 11. Static Pressure New Model: Residual vs. Observation

3.2.3 Remedial Measures

The Cochrane-Orcutt procedure was performed to fix the autocorrelation. After

one iteration the autocorrelation was resolved, with a Durbin-Watson test statistic of

2.1806, above the upper bound of 1.779. The residual vs. observation graph for the

transformed model is shown in Figure 12.

Figure 12. Static Pressure Final Model: Residual vs. Observation
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3.2.4 New Model: Static Pressure

The final model for static pressure post Cochrane-Orcutt procedure is:

ˆPSPRB = −0.9470 + 1.1186 ∗ PSTPRB − 0.005138 ∗ PS2
TPRB

+ 0.02314 ∗ ATM − 0.00004366 ∗WS − 0.00004585 ∗DEW.
(17)

The R2
adj for this model is 0.999997, and the RMSPE is 0.001123. For comparison,

the RMSE of the model is 0.001123 indicating the model fits the validation set well.

Now that the autocorrelation has been resolved, tests for normality and con-

stant variance can be reliably performed. The model passes the Anderson-Darling

Goodness-of-Fit test with a p-value of 0.0130. The histogram and normal quantile

plot of the residuals is shown in Figure 13.

The model also fails the Breusch-Pagan test for constant variance with a p-value

less than 0.0001. However, from the residual vs. predicted graph in figure 14, there

is no clear indication of non-constant variance and the constant variance assumption

is accepted.

Figure 13. Static Pressure Final Model: Residual Distribution

22



Figure 14. Static Pressure Final Model: Residual vs. Predicted

3.3 Dynamic Pressure Prediction

The process for dynamic pressure is more complicated than total or static pressure.

In the past, the SARL team calculated dynamic pressure by divided the data into

two MACH ranges: MR1 and MR2, and using different calculations for each range.

MR1 is between MACH 0 and MACH 0.23 and MR2 is from MACH 0.23 to MACH

0.5. Therefore, different formulation is used on each of the MACH ranges.

3.3.1 MACH Range Decomposition

There was no variable for measured dynamic pressure, the only response variable

available was corrected dynamic pressure. Instead there are two sensors that measure

for MR1 and MR2. Rather than exactly replicating the SARL team’s process initially,

a simple linear regression for corrected dynamic pressure was created. The resulting

formula was not a recreation of the SARL team’s previous method and was only used

to gain insight into the problem. Thus the model itself was not of much concern, but

the interesting take away was the lack of fit observed. Figure 15 is the residual vs.

predicted graph for the simple dynamic pressure model. As evident by the patterns

in this graph, this model suffers from both lack of fit and non-constant variance. The
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curvature in the model suggests that a higher order model may be more appropriate

for this data, opposed to a straight-line model. This graph also appears to have a

clear polarization regarding the variance. The predicted values ≤ 0.5 appears to have

a linear lack of fit and those > 0.5 appears to have a curved lack of fit. Overall, the

residual vs. predicted graph in Figure 15 depicts a lack of fit, but also presents a

dichotomy of the residuals.

In order to explore the lack of fit further, a polynomial model was created and

Figure 16 is the residual vs. predicted graph for that model. As suspected, the

higher-order fit appears to be a more appropriate model. However, this plot shows

the presence of the dichotomous residuals remains. The divide in the dichotomy

corresponds with the two MACH ranges used by the SARL team: MR1 and MR2.

In response to this, two different models were created for dynamic pressure, one for

each MACH range. This approach is similar to the SARL team’s methodology.

Figure 15. Lack of Fit in Simple Model
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Figure 16. Lack of Fit in Polynomial Model

3.3.2 New Model: Dynamic Pressure

In response to the difference between MR1 and MR2, the data was partitioned

accordingly and a model was created for each range.

MACH Range 1

The response variable for this model was QPRB1PSID, and the final model for

MACH Range 1 contains static pressure (PSTPRB) and total pressure (P0TS). The

model originally suffered from autocorrelation and the Cochrane-Orcutt procedure

was used once again. The prediction equation post Cochrane-Orcutt procedure for

dynamic pressure in MACH Range 1 is:

ˆQPRB1PSID = 0.001133 + 0.9761 ∗ P0TS − 0.9768 ∗ PSTPRB. (18)

The R2
adj for this model is 0.999998 for both data sets, with a RMSPE of 0.000222.

This RMSPE, when compared to the RMSE for the model of 0.000226, indicates the

model fits the validation data well and has a high prediction accuracy.

The autocorrelation was resolved using the Cochrane-Orcutt procedure, and the

test statistic for the Durbin-Watson test was 2.0805, above the upper bound of 1.765.

The Residual vs. Observation graph is shown in Figure 17. The residuals are normally
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distributed, with p-value of 0.052 for the Anderson-Darling Goodness-of-Fit test. The

histogram and normal quantile plot of the residuals is shown in Figure 18. The curved

lack of fit issue observed earlier has been fixed, however there may still be a small

lack of fit seen in the residual vs. predicted chart in Figure 19. Regardless, there

is nothing drastic observed in the residual vs. predicted graph, and the constant

variance assumption is accepted for this model.

Figure 17. Dynamic Pressure MR1: Residual vs. Observation

Figure 18. Dynamic Pressure MR1: Residual Distribution

26



Figure 19. Dynamic Pressure MR1: Residual vs. Predicted

MACH Range 2

The response variable for the MR2 model was QPRB2PSID, and the final model

for MACH Range 2 contains P0TS, DewPt, PSTPRB, PREF , and QTPRB, as well

as several interactions. The prediction equation for MACH Range 2 is:

ˆQPRB2PSID = −2.8471 + 1.4310 ∗ P0TS − 0.002066 ∗DewPt

− 1.4144 ∗ PSTPRB + 0.2197 ∗ PREF + 1.5776 ∗QTPRB

+ 0.006411 ∗Q2
TPRB + 2.5059 ∗DewPt2 − 0.00003136 ∗ PSTPRB ∗DewPt

− 0.1335 ∗ PREF ∗QTPRB − 0.004965 ∗QTPRB ∗ P0TS.

(19)

The R2
adj for this model is 0.9999992 for both the validation and training data.

The RMSPE is 0.0004255, compared to the model RMSE of 0.0004303, indicates the

model fits the validation data well and has a high prediction accuracy. The Durbin-

Watson test statistic for this model was 1.4584. This test statistic falls between the

lower and upper bound (1.335 and 1.765 respectively) for the Durbin-Watson test

criteria, meaning the test is inconclusive and a visual inspection will be used. From

the residual vs. observation graph shown in Figure 20, there are no clear signs of

autocorrelation, and for this model the independence assumption is accepted.

27



Figure 20. Dynamic Pressure MR2: Residual vs. Observation

The model also passed the Anderson-Darling Goodness-of-Fit test with a p-value

of 0.2650. Figure 21 shows the histogram and normal quantile plot for the residuals

of this model.

For the constant variance assumption, this model fails the Breusch-Pagan test

with p-value less than 0.0001. However, as with other models in this thesis, there is

nothing overly concerning in the residual vs. predicted graph in Figure 22. For this

thesis, the constant variance assumption is accepted for this model.

Figure 21. Dynamic Pressure MR2: Residual Distribution
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Figure 22. Dynamic Pressure MR2: Residual vs. Predicted
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IV. Conclusions and Recommendations

4.1 Conclusions

The methods used by the SARL team in the past had a high prediction accuracy

and were suitable for their needs. However, the SARL team’s desire for statistically

defensible models and accurate error prediction led to the creation of new models

created with statistical rigor.

Four strong models have been created in this thesis, one each for total and static

pressure, and two for dynamic pressure, one for each MACH range. These models

were created using standard regression techniques, and despite a pervading issue with

non-constant variance, the models meet all the necessary assumptions. Every model

failed the Breusch-Pagan test for constant variance. The Breusch-Pagan test can

be unreliable when the R2 of the model is high and the residuals are small, which

is the case for every model in this thesis. [3] In response to this limitation, a visual

inspection of the residual vs predicted graphs was performed to check for non-constant

variance. Based on these visual inspections, there is reasonable assurance that the

constant variance assumptions are acceptable. Based on the criteria laid out in this

thesis, all four models meet the criteria to be labeled statistically defensible.

The analysis has also answered another of the SARL team’s questions. Environ-

mental factors such as wind speed and dew point are significant. The static pressure

and dynamic pressure models both have environmental factors in the formulation.

These factors should continue to be collected and utilized where appropriate.

4.2 Recommendations

It is the recommendation of this thesis that the SARL team use the models created

herein for future tests. These models have a high accuracy and by accepting the
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necessary assumptions, estimates for error can easily be calculated. The analysis

in this thesis allows the SARL team to tell their customers with confidence that

their methodology is statistically rigorous. These models can be used to give highly

accurate predictions, as well as confidence intervals for the error terms.

It is also recommended that the SARL team monitor external weather conditions

as these measurements affect the conditions inside the wind tunnel and are needed

for the prediction models.
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