

Proton Radiography for Density Movies of Dynamic Exploding Events

Dr. Kathy Prestridge pRad Project Leader

AIAA Defense Forum Laurel, Maryland September 14, 2021

LA-UR-21-27378

Proton radiography allows us to see material deformation & explosive detonation front positions and speeds

A density movie of the explosion can be directly compared to simulations to see if we are modeling materials correctly

Contact: John Budzinski

pRad takes place at the Los Alamos Neutron Science Center (LANSCE, TA 53)

The Line C Dome is where all of the dynamic experiments occur

Object thicknesses and densities can be discerned from the multiple coulomb scattering observed at the transmission plane

Explosive experiments take place in a vessel

pRad images are acquired with fast scintillators and high speed framing cameras

LYSO scintillator panel generates visible light with ~50 ns lifetime.

Fast cameras gated on different proton pulses take individual frames that are then stacked to make a movie.

Camera	10-frame	3-frame
Min integration time	50 ns	150 ns
Min inter-frame time	150 ns	358 ns
Dynamic Range	3430	1330
Read Noise (e⁻)	79	216
Pixel array	1100 x 1100	720 x 726
Pixel pitch	40 µm	26 µm
Sensitivity (e ⁻ /J/cm ²)	3.0 x 10 ¹²	1.9 x 10 ¹³
Sensor size	44 x 44 mm	21 x 22 mm
Well Depth	272	180

Temporal resolution allows capture of shock waves and detonation fronts in objects

7

Going from raw radiograph to areal density

Several magnification systems are available for changing spatial resolution and FOV

Dynamic material strength experiments show the structure in material failure

Contact: Chris Morris

WRX experiments study how inert materials can disrupt a detonation front

Detonation front moves left to right through HE slab

Polycarbonate wedge (starting proportions)

pRad images the **speed and shape** of the detonation shock waves through the HE and the det products, plus **pre- and post-shock densities**, giving strong constraints to equations of state

Experiments in collaboration with the UK's Atomic Weapons Establishment

WRX experiments study how inert materials can disrupt a detonation front

Flat detonation front

Curved det front

PROTON RADIOGRAPHY

Reflected shocks in det products

Shock speed/position through polycarbonate wedge

ARL shots demonstrated a new way to use pRad to look at magnetic field effects in plasmas

Contacts: Mike Zellner, ARL; Neukirch + Freeman¹³

ARL experiments studying plasma behavior, conduction pathways in material mixtures, and MHD instability growth

Proton Radiograph (Fourier) @ 52.5 /mus

Development and extent of plasma 45.65 µs -61.1kA 100mm 47.65 µs -66.3kA 48.65 µs -65.4kA 50.65 µs -55.9kA 53.65 µs -55.9kA

Explosives exhibit different dead zone behavior depending upon temperature

Dead zone masses are estimated from pRad density images and compared to pre-shot calculations

Contacts: Clif Mortensen, LLNL; Chris Morris

15

High strain rate drive (~225 kbar) shows how manufacturing processes affect strength

Manufacturing method (wrought vs AM) affects material strength

Contact: Anna Llobet

Army Research Lab reverse flyer series to examine armor failure using the pRad powder gun

Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series.

Contact: Brady Aydelotte

Support Fixture

Holder

All experiments for pRad must be approved by a Proposal Advisory Committee

Submitted proposals should address these ranking criteria:

- 1. Quality of the science being proposed (What is the problem, and why are experiments needed?)
- 2. Impact to programs (How will the data be used?)
- 3. Appropriateness of the use of the pRad diagnostic for the experiments (Why can't this be done somewhere else?)
- 4. Readiness of the experiments, feasibility with stated resources, and requested time (Has other work been done informing the pRad experiments?)

What are the characteristics of highly-ranked experiments?

- Time and density resolution are needed
 - Justify time-resolved areal density measurements
- Thickness/transmission is optimized for pRad
 - Is this an experiment that will image well with 800 MeV protons?
- Facilities/Drivers
 - Are you using an existing capability, such as the powder gun or 6' vessel?
 - Will the proposal require significant investment?
- Materials
 - Are the proposed materials allowed? How will you know?

The best practice is to talk to a pRad team member. Your proposal should address the above concerns.

More info about pRad is online

- The call for proposals for the 2022 Run Cycle comes out in December
- The LANSCE Website has the User Manual <u>https://lansce.lanl.gov/facilities/pRad/index.php</u>
- I will put you in contact with someone whose expertise can best assist you with experiment planning.

