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Abstract
Memory corruption bugs account for 70% of existing vulnerabilities. Such bugs pro-
liferate because critical code such as operating systems is still implemented in unsafe
languages like C and C++. To address this, memory safe languages such as Rust
have been developed. Rust provides memory safety in its default usage by perform-
ing static and dynamic checks to ensure code conforms to its safety model. However,
these checks may be too restrictive for certain OS code. In these cases, programmers
must write unsafe code to escape the safety guarantees. Even for kernels developed
in Rust, guaranteeing safety for memory mapped input output (MMIO) device inter-
actions remains a challenge given these interactions necessitate unsafe Rust to access
addresses that appear arbitrary to the compiler.

We build the Software Defined Memory Ownership System, or SDMOS, that
enforces safe MMIO interactions in the Zero-Kernel Operating System (ZKOS), an
operating system written in Rust. SDMOS leverages a tagged architecture to embed
semantic metadata with IO memory regions and low-level device driver code in addi-
tion to policies that define proper MMIO access at varying levels of granularity. We
also implement a pipeline to apply tags at the compiler level, minimizing the amount
of manual tagging. Our results show that SDMOS eliminates memory corruption
resulting from buggy user space applications and device drivers. The main factor
that dictates performance of SDMOS is the total number of rules installed to the
tag cache. Our evaluations show that SDMOS’s cache load should not exceed the
capacity of most cache implementations.
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Chapter 1

Introduction

Memory corruption bugs introduced by unsafe languages serve as a common attack

vector that can grant adversaries abilities ranging from crashing programs to exe-

cuting arbitrary code [36]. C and C++ are popular unsafe systems programming

languages that are still widely used due to the performance and flexibility they offer.

These unsafe languages are able to achieve performance due to the lack of abstrac-

tions that guarantee static and run time memory safety [5]. Similarly, they are flexible

in that no restrictions are placed on how programmers can allocate memory or how

pointers should be manipulated, leading to undefined behavior when an invalid ad-

dress is inevitably referenced [47, 16, 48].

Lack of memory safety is especially problematic in operating systems, which serve

as the foundation for a secure computing system. Common operating systems such

as Windows, Linux, and MacOS alike have core implementation roots in C and C++.

These languages’ lack of memory safety has led to an abundance of spatial and tem-

poral memory bugs in low level OS code. To highlight the severity of these problems,

a recent internal review from Microsoft revealed that 70% of their common vulner-

ability and exposure reports have to do with memory safety [34]. A search on the

Common Vulnerabilities and Exposure (CVE) database reveals that there are over

1200 Linux memory related vulnerabilities as of August 2020 [2]. Device drivers are

up to seven times more likely to contain bugs compared to the rest of the kernel [9].

Additionally, the Intel e1000e network adapter bug [12] shows that having code other
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than the device driver interact with MMIO memory can result in the hardware being

destroyed.

Recent efforts to improve memory safety include the use of static bug finders such

as sanitizers [43] and fuzzers [35, 40, 11]. However, the main problem is that these

techniques cannot guarantee all bugs are identified. Formal analysis [25, 24, 22] can

offer more concrete guarantees on code correctness but is extremely time consuming

to utilize. This is discussed in more detail in subsection 2.1.1. Device driver security

has also been an active area of research. Safe device driver interface generation [33],

domain specific device driver languages [10], and reducing driver privilege [39] are all

techniques that have varying trade-offs for security and performance.

To address the existing vulnerabilities in operating systems, this thesis describes

the design, implementation, and evaluation of the Software Defined Memory Owner-

ship System (SDMOS). In SDMOS, we use Rust [32], a programming language with

strong memory safety guarantees provided by its ownership type system and a tagged

architecture to prevent memory corruption in unsafe device driver code within the

kernel by enforcing a version of Rust’s type system.

Rust has two models of code: safe and unsafe. In safe Rust, the compiler prevents

programmers from writing code that has memory corruption bugs by performing

static and dynamic checks against its safety model. Rust’s safety model includes a

set of overarching rules that, when followed, provides memory safety. However, these

rules reduce flexibility. There exists situations where safe Rust’s compiler checks are

too restrictive and would prevent programmers from performing the necessary raw

memory manipulations required in OS programming. Thus, Rust allows programmers

to use the unsafe keyword to write code that escapes these checks. This is necessary

because there are instances of OS code where no current compiler can be expected to

provide safety guarantees.

To reap the security properties of Rust, we build SDMOS on the Zero Kernel

Operating System (ZKOS). ZKOS is a fork of Tock [29], an OS written in Rust.

ZKOS aims to utilize Rust’s memory safety guarantees wherever possible in order

to eliminate memory corruption bugs. However, ZKOS depends on modules that
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have underlying unsafe implementations such as device drivers. In ZKOS, physical

peripherals’ registers are mapped to a range of memory addresses which must be

read and written to by device driver code. While this is a simple pointer operation in

C/C++, it can only be done with unsafe code in Rust, exposing this part of the kernel

to memory corruption bugs. We categorize this interaction as memory mapped input

output, or MMIO, interactions. Rust providing memory safety guarantees for MMIO

interactions would be tantamount to its compiler having semantic understanding of

all hardware peripherals in order to ensure legitimate memory accesses. This kind of

compiler does not currently exist.

Tagged architectures can address the lack of safety guarantee in unsafe Rust by

allowing for semantic information to be embedded at run-time. A tagged architec-

ture associates metadata tags with every word in memory. These tags can encode

a multitude of information from access rights to data type that gives context to the

data at an address. The processor can then validate tags against a programmable

set of policies to determine whether certain instructions should be allowed. We write

policies to enforce a concept of ownership for MMIO devices, allowing MMIO inter-

actions only when device driver code has the proper ownership of the memory range

on which it operates. This provides memory safety for the otherwise unsafe MMIO

interaction. Ownership also has the added benefit of safety for hardware devices,

which can prevent catastrophic hardware failure as seen in the Intel e1000e bug.

In SDMOS, we enhance the ZKOS tagged architecture policies to improve the

security of MMIO interactions. Since ZKOS is a security focused OS written in Rust,

we benefit from the safety properties of the language where possible, preventing mem-

ory corruption altogether. In MMIO driver code where unsafe Rust is necessary, we

leverage tagged architecture policies to limit memory regions with which unsafe code

can interact using the concept of ownership. By limiting the scope of memory acces-

sible to unsafe code, we eliminate the possibility of corruption outside those regions.

Although unsafe code blocks can still corrupt regions they are authorized to interact

with, we can guarantee undefined behavior does not occur.
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Our contributions are as follows:

• Extend Rust’s safety by defining the notion of ownership for IO memory region.

• Enforce compartmentalization for MMIO functions with tagged architecture

policy.

• Design a pipeline for applying tags to unsafe code in device drivers and IO

memory ranges at compile time.

• Evaluate cache load as a key performance metric for policies at three levels of

protection granularity.
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Chapter 2

Background

SDMOS consists of three main components which will be discussed in this section.

First, we explore the security benefits as well as limitations of safe and unsafe Rust.

Next, we examine Tock, an exiting operating system written in Rust upon which

ZKOS is built. Lastly, we give an overview of tagged architecture and example

policies.

2.1 Rust

Rust is a programming language designed with two primary goals: performance and

safety. Notably, Rust achieves memory safety without the use of garbage collection

(GC). We recognize performance and safety have historically been viewed as orthogo-

nal goals since safe languages typically provide memory safety by utilizing GC, whose

overhead trades off performance for safety [5]. This has led to a proliferation in lan-

guages such as C/C++ in systems development that have little safety guarantee but

high performance. In this section, we review some common memory safety problems

observed with C/C++. Additionally, we examine the memory safety guarantees Rust

provides as well as limitations it imposes on systems programming.
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2.1.1 Memory Safety Problems

Without memory safety built into a language, programmers are responsible for en-

suring that buffers respect boundaries and all memory locations with which code

interacts are valid. Since C and C++ do not have memory safety guarantees, pro-

grammers have the ability to specify arbitrary memory locations and de-reference

them. This becomes problematic when the specified location is invalid, leading to

corruption.

Another problem is the lack of bounds checking, which can allow for an attack

vector such as return oriented programming (ROP) [42]. In ROP, attackers inject

argument values and overwrite return addresses in order to execute arbitrary code.

Suppose a programmer allocates a length n character array buffer; nothing prevents

code from assigning values beyond that boundary unless explicit checks are performed.

A classic example is when the programmer calls gets, a function that takes one line of

characters from stdin and copies it to a specified memory address without checking

that the input is less than n. In Figure 2-1a, getUserResponse() uses gets and puts

user input in buffer. If the length of input string exceeds n, it can overwrite memory

locations that store critical values such as return addresses as seen in Figure 2-1b. In

benign cases, this will only result in a segmentation fault. However, an attacker can

specify a return address to point to libc. Using the right arguments and function

from libc, the attacker can ultimately execute arbitrary code.

2.1.2 Attempts to Secure C/C++

Current state-of-the-art mitigation for memory corruption include Google’s Address-

Sanitizer [41], referred to as ASan, which consists of compiler and run-time checks to

catch memory corruption bugs. However, this tool incurs a significant run-time CPU

slowdown of 2x and increases memory usage by up to 3x. Additionally, ASan cannot

detect access to uninitialized memory. A wide range of similar techniques for sanitza-

tion [43] or runtimes defenses [47] have also been proposed in the community, which

provide various performance and security trade-offs. Another mitigation is kAFL

18



(a) Ownership of entire
MMIO region

(b) Ownership of individual device
regions

Figure 2-1: Depiction of ROP attack

[40], which uses a technique known as fuzzing to detect bugs in kernel code. Fuzzing

randomly mutates test case in order to explore program execution paths, providing

substantial code coverage. While this can detect bugs during testing, it is not able

to provide any security monitoring for deployed code nor is it guaranteed to identify

all existing bugs. Formal verification [25, 24, 22] is another technique which utilizes

mathematical modeling and proofs to identify and prevent entire classes of bugs. Al-

though formal verification provides the strongest guarantees for memory safety, it is

not currently scalable due to the time consuming nature of producing proofs. Despite

these efforts to solve this problem, a majority of bugs today still arise due to the lack

of memory safety. Writing programs and OSes in languages with poor memory safety

is a fundamental problem that leads to a cat-and-mouse chase in securing exploits

after they are found and damages already incurred.

2.1.3 Safe vs. Unsafe Rust

There are two categories of code in Rust: safe and unsafe. Safe Rust guarantees

memory safety so programs cannot overflow buffers or de-reference raw pointers. The

compiler will check for these violations at compile time as well as inject run-time
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checks if needed and raise an error upon any of the violations described in subsec-

tion 2.1.1. These checks ensure attacks like ROP cannot occur and that all memory

locations referenced are valid. However, under safe Rust, a raw pointer operation to

arbitrary memory space is not allowed. There are cases in OS code such as interacting

with hardware peripherals where pointer operations are necessary. To circumvent the

limitations imposed by safe Rust, programmers can write unsafe Rust code.

As its name suggests, unsafe Rust code does not have memory safety guarantees

and therefore have the safety and flexibility characteristics of C/C++. Operations like

raw pointer access and inline assembly are allowed only in unsafe Rust since ensuring

safety for them is not currently feasible at the compiler level. For example, pointer

de-references can be used to change a value that has been marked immutable or break

safe Rust’s single ownership model by generating multiple mutable references. Unsafe

code can also cause corruption in safe Rust since unchecked pointer operations can

mutate data at any address in the memory space of a given process.

We note that unsafe code is not necessarily buggy. For example, if all the addresses

provided to unsafe functions in device drivers are valid, memory corruption will not

occur. Problems only arise when an invalid address is provided. Therefore, it is

important to define clear specifications about any unsafe code’s assumption on input

values in order to avoid undefined behavior and facilitate seamless integration with

safe Rust. SDMOS will further prevent undefined behavior from propagating by

implementing appropriate policies.

2.2 ZKOS

The operating system that SDMOS runs on is ZKOS, which is forked from Tock, an

OS written in Rust. In this section, we give an overview of MMIO devices and Tock’s

security benefits.
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Figure 2-2: Tock’s Kernel Structure

2.2.1 Tock

Given the lack of safety guarantees in legacy languages, Tock’s Rust implementation

is a good starting point for security. Operating systems written in safe languages

such as Spin [7] and Singularity [22] have had varying degrees of success but due

to dependence on garbage collection, performance has suffered. Since Rust does not

utilize garbage collection, Tock does not suffer from the same problem.

Tock’s kernel comprises of a trusted core kernel and untrusted capsules as shown

in Figure 2-2. To get the most from the safety benefits of Rust, Tock minimizes

the amount of unsafe code on which the core kernel depends. Capsules are used

to compartmentalize untrusted implementations within the kernel, which includes

device drivers. Capsules are Rust structs that can protect their internal state against

other capsules by not exporting certain functions or fields. Rust’s safety guarantees

are applied to capsules. However, device driver capsules must depend on unsafe

implementations given that interacting with memory mapped hardware necessitates

raw pointer operations, resulting in an attack vector for adversaries. SDMOS aims

to eliminate this attack vector.

2.2.2 MMIO Devices

A practical example in which an OS must manipulate raw memory is in device drivers.

Hardware devices in computer systems such as GPUs and network adapters have

registers mapped to a range of addresses in memory. This is commonly referred to

as memory mapped input/output devices, or MMIO for short. A diagram of MMIO

space is shown in Figure 2-3

In order for the drivers to access MMIO devices, they must write to and read
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Figure 2-3: Example MMIO memory layout

from these addresses. Doing so is dangerous because correct behavior depends on

consistency between the assumed and actual memory layout. Memory layout varies

depending on the hardware used. Even within a family of boards, there are a variety of

different configurations. Any deviation can result in reading from or writing to critical

memory regions that are not reserved for MMIO, leading to undefined behavior.

Unfortunately, Rust makes no safety guarantees for raw pointer interactions, leaving

device driver code a significant attack surface.

To make the problem worse, many OS implementations treat MMIO memory and

regular memory identically even though they are semantically different. Writing to

and reading from MMIO space can induce side effects since it can trigger hardware

peripheral actions whereas regular memory does not. This is exemplified in the e1000e

device driver bug that caused fatal damage to the e1000e network card when a regular

memory write was allowed to execute on its mapped memory, causing the network card

to be bricked permanently [12]. The inadvertent write occurs when a kernel tracing

subroutine, whose job is to replace certain function call instructions at runtime to

nops, accidentally writes to the e1000e’s memory mapped space, which is illustrated

in detail in Figure 2-4. The cmpexchg instruction that replaced the function call is

supposed to be "safe" since it first checks whether the target memory location actually

contains a function call before changing the opcode to a nop. The probability that the

MMIO region contained the exact opcode that matched the function call instruction
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Figure 2-4: The e1000e bug: In 1, the memory is loaded with an arbitrary module. To
enable debugging, the compiler adds a function jump at the beginning of the module.
In 2, the kernel has a runtime patching subroutine which notes all debugging function
call sites and patch the debug function jump if debugging is not enabled. 3 shows
a view of the memory after the module is freed and the e1000e is mapped to where
the module used to be. Unfortunately, the cmpexchg instruction executes since it
still believes 0xdeadbeef is the callsite and accidentally writes to the e1000e NVRAM
space, destroying the device.
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is low enough that this bug might have never occurred. However, cmpexchg always

performs a write no matter the result of its check (i.e., even if the target memory does

not contain a function call, it will rewrite the existing memory value). This results

in defined behavior in regular memory but writing to IO regions may cause hardware

state to change or may not be permitted at all. In the e1000e’s case, it was destroyed

due to writes to its NVRAM region. Tock does not distinguish regular memory from

IO memory thus its peripherals are susceptible to the same fate as the e1000e network

driver. SDMOS will prevent this from happening by compartmentalizing IO memory

so only device driver code can interact with it.

2.3 Tagged Architecture

Tagged architectures allow for every word of memory to be augmented with a tag

which can be used to give context to the data. With tagged architectures, we can

effectively sandbox unsafe Rust code used to facilitate MMIO interactions by tagging

the region and writing policies to enforce defined interactions. In this section, we

discuss Dover’s core tagged architecture [45] implementation components and give

an example Read/Write/Execute (RWX) policy to illustrate Dover’s domain-specific

policy language syntax.

2.3.1 Dover’s Implementation

There are a few elements in Dover’s implementation relevant to SDMOS. Below, we

provide an overview to how tags are checked upon every instruction in addition to

the significance of the Policy Execution Core (PEX) and policy rule cache.

Tags

At a high level, tags allow semantic information to be appended to registers and

memory at the word granularity. We note that in Dover’s implementation, a tag

is actually a pointer to metadata, or the actual bytes, that describes the data at a

particular address. This indirection is due to the fact that metadata is stored in a
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location not accessible by the CPU for security reasons. For SDMOS we will refer

to tags and metadata interchangeably. We define tag sites which are a collection

of relevant tags associated with the current instruction. Tags in each of the tags

sites must be reviewed prior to the execution of the current instruction. In Dover’s

implementation there are six possible tag sites and each site is capable of holding

multiple tags:

1. ci: the current instruction

2. env: the program counter register

3. op1: the first operand to the current instruction

4. op2: the second operand to the current instruction

5. op3: the third operand to the current instruction

6. mem: the memory referenced

PEX and Rule Cache

The PEX, is central to the operation of Dover’s tagged architecture. It is a co-

processors that maintains tags on every word of memory and checks these tags against

software defined policies to determine if an instruction should be allowed to execute.

Policy rules are also only accessible to the PEX and is not modifiable by the applica-

tion processor’s CPU meaning not even the kernel can directly mutate tags or policy

rules. Therefore, prior to every instruction execution, the application processor has

to query the PEX to see if there are any policy violations. In order to increase per-

formance, a rule cache is implemented within the application processor, which allows

policy evaluation results to be cached and fetched without being stalled by the PEX

query. The cache’s lookup key is formed by matching the combination of tags on each

tag site.

2.3.2 Policy

Policies allow us to program the PEX to enforce expected behavior given some com-

bination of tags on each tag site by either allowing an instruction to execute and
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Figure 2-5: Example read, write, execute Policy: 1. load instruction successfully
reading from code, which has the read tag 2. store instruction successfully writing to
stack, which has the write tag 2’. store instruction failing to write to code 3. code
with executable tag gets executed 3’. code from the stack is prevented from executing
without the executable tag

update tags in each cache site or triggering an interrupt that stops the application

processor from execution.

As an example, we give a high-level overview of how to use the policy language

to enforce proper read, write, and execute (RWX) behavior. First, an application

binary file containing sections for code and stack is tagged with a combination of

read, write, or execute tags on the mem cache site. This produces a new ELF file,

augmented with tags that can be read by the PEX at boot-time. Next, we write a

policy which specifies:

1. all current load instructions must check for the read tag at the desired load

address

2. all store instructions must check for the write tag at the desired store address

3. all instructions that are executed must have the executable tag

The PEX will read the tags for all relevant operands and instructions at run-time

and upon failure to meet the checks above, crash the program.

26



2.4 Threat model

Attackers can exploit a variety of attack vectors to compromise security. The kernel

code may contain implementation bugs due to its low-level nature and lack of formal

verification. Attackers can invoke system calls that may have underlying unsafe im-

plementation to circumvent the safety guarantees of Rust. Given ZKOS has a flat

address space that is shared between the kernel and userspace applications, a buggy

or malicious userspace application can use this as an attack vector. Attackers can

readily access memory space and interact with MMIO devices with pointer operations

in userspace applications.

However, there are some limitations for the attacker. We assume the Rust compiler

is bug free and thus attackers cannot break the memory and type safety guarantees

in Rust code that is not explicitly marked unsafe. Attackers also cannot tamper with

Dover’s tagged architecture hardware and we assume its implementation is bug free,

allowing us to trust the security benefits our tagged architecture provides. Although

the attacker can input corrupted values with external hardware peripherals to MMIO

memory regions, this should not result in undefined behavior.
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Chapter 3

Design

MMIO device drivers must perform raw pointer operations to interact with hardware

peripherals, requiring unsafe Rust code. This presents itself as an attack vector since

unsafe Rust code does not possess any safety guarantees. In addition, hardware

peripherals can be susceptible to damage or data exfiltration if unauthorized code

is able to interact with them. To solve these issues, we introduce the notion of

ownership for each device driver and require any interaction with MMIO memory

regions to be contingent on valid ownership. A driver owns the memory region to

which its hardware device is mapped as depicted in Figure 3-1. This definition of

ownership can also be applied at finer granularity (e.g., to functions inside device

drivers and specific registers in MMIO regions). Drivers are compartmentalized; they

can only interact with memory regions they own. It is possible to compartmentalize

device drivers due to the predictability in their structure: any raw pointer operation

must be applied to a static memory range to which a hardware peripheral has been

mapped.

To compartmentalize MMIO drivers, we design policies that ensure all pointer

reads and writes to any hardware device must come from the appropriate device

driver and respect ownership. We also explore the trade-offs in varying the granularity

of ownership. At the coarsest level of granularity, we distinguish ownership between

devices and their respective drivers (e.g., UART driver cannot write to GPIO memory

range). At the finest level of granularity, we distinguish ownership between registers
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Figure 3-1: Ownership of memory regions by device drivers

in a device and functions that are allowed to access them within the driver.

Overall, we limit the scope of access for memory regions designated for hard-

ware devices with the notion of ownership and compartmentalization, minimizing

the attack surface. In figure 3-2a, user space applications can read and write to the

MMIO space with the same privilege as the device driver due to ZKOS’s flat address

space topography and lack of compartmentalization. Our design introduces a sandbox

mechanism as shown in figure 3-2b, which guarantees that any pointer operations to

MMIO space come from the corresponding driver and rogue pointer reads and writes

will be blocked, compartmentalizing the MMIO driver code in ZKOS. As a practical

example, even an exfiltrated pointer to the MMIO space cannot be used by malicious

programs since only the appropriate driver can operate on that space. The sandbox

mechanism comprises of two main components: a set of tags to be associated with

registers, instructions, or memory as well as policies that processes the tags and either

allow or disallow an instruction from executing.

3.1 Goals

Goals that guide the design of SDMOS are security, performance, and simplicity.

To maximize security, we follow the principle of least privileges, which states that

all components should only be granted the minimum amount of privilege in order

to perform their function. Device drivers are only given enough privilege to operate
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(a) Unrestricted MMIO writes

(b) Compartmentalized MMIO writes

Figure 3-2: Examples of MMIO writes

on their corresponding memory region. Along with this, compartmentalization will

also be employed to establish distinct access privileges between devices and their

registers. To achieve this, we note that device drivers need to support read and write

operations to the mapped memory range corresponding to their hardware devices. In

our application, the mapped memory ranges remain static, allowing us to associate

static tags with them at boot time. These static tags enable our tagged architecture to

identify memory ranges occupied by hardware peripherals, which allows us to define

ownership rules in policies.

We choose to compartmentalize device drivers since all hardware interactions in

ZKOS must invoke one of their functions. Thus, these drivers are critical components

to secure. Additionally, drivers’ ownership relationship to memory ranges of hardware

devices are well defined by their specification. Drivers should only read from and write

to predetermined locations in memory. Device drivers can be structured to cover all

possible register operations with individual function calls to which we can assign

privilege, giving us fine control in defining ownership granularity. Due to the static

nature of MMIO operations in ZKOS, it is feasible to sandbox them.
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To optimize performance, we minimize the number of tags used. Since the bot-

tleneck of the system will be fetching and computing policy rules and loading them

in the cache, minimizing the number of tags will ensure that the hit rate is high,

eliminating most of the performance overhead.

Lastly to achieve simplicity in implementation, we design the policy to be as small

as possible. The scope of each policy should be just enough to cover a single hardware

driver and be modular enough to be run independently or in conjunction with other

policies. We also consider the amount of manual modifications that ZKOS needs in

order to scale with additional devices and aim to minimize this work.

3.2 Policy Design

We use the following categories of tags to give context to memory and enforce com-

partmentalization:

1. A property tag is used to associate unique identity with each MMIO region and

distinguish it from regular memory. This type of tag can be applied at varying

levels of granularity, ranging from entire device ranges to single registers.

2. An owner tag is required to access memory that is tagged as property.

Policies must process the tags defined above and only allow execution for load and

store instructions that interact with MMIO space when the owner and property tags

match. We design three policies that enforce varying levels of ownership and explore

the design trade offs between them. The level 1 policy defines ownership between

drivers and all MMIO regions but does not distinguish ownership between differ-

ent devices. The level 2 policy increases granularity and defines ownership between

respective device drivers and the memory range to which their hardware has been

mapped. The level 3 policy has the finest ownership granularity, defining it between

code within the driver and registers they should access. These policies can be run

individually or in conjunction other policies. See Figure 3-3 for an illustration of
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allowed and disallowed MMIO interactions and Figure 3-4 for an illustration of each

policy level and its corresponding memory granularity.

Figure 3-3: Property and owner tags used in sandbox mechanism, tags are shown in
braces

(a) Ownership of entire
MMIO region

(b) Ownership of individual
device regions

(c) Ownership of individual
registers

Figure 3-4: Available ownership levels, increasing granularity from left to right

3.2.1 Level 1 Policy: MMIO Space Ownership

All MMIO memory spaces will be associated with an mmio property tag. Any load and

store instructions that interact with memory tagged with mmio require an mmio-owner
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owner tag. The main security goal of the level 1 policy is to elevate the privilege

needed to interact with MMIO region. Since there is no distinction between memory

ranges within any MMIO region, the level 1 policy only requires one pair of ownership

tags for all device drivers. Therefore, little overhead will be incurred because the

number of tags required stays constant even with increasing number of hardware

devices. This is the simplest and least costly form of compartmentalization in our

design but it does not enforce correct access behavior between different devices. For

example, any compromised driver may interact with any hardware devices.

3.2.2 Level 2 Policy: Device Driver Ownership

In the level 2 policy, ownership is given based on hardware devices and corresponding

drivers. In the previous design, any MMIO driver may interact with any hardware

devices. This is undesirable given our goal of least privileges. In this policy, each

device driver will own the memory region to which its hardware is mapped and can

therefore only interact with that region. For example, the UART device may receive

a uart0 property tag and the GPIO device may receive a gpio0 property tag. Reads

and writes to the memory range of each device will require respective owner tags such

as uart0-owner and gpio0-owner.

Compartmentalizing devices offers improved security given the increased granu-

larity in ownership compared to only compartmentalizing the MMIO region. Even if

one device driver is compromised, it can only corrupt memory that it owns. However,

this level of ownership incurs a linear increase in the number of tags used with each

hardware peripheral, potentially decreasing performance if the total number of tags

exceed what can be stored inside the tag cache.

We note the level 2 policy makes no guarantee on compartmentalization within

device drivers. This means that any function inside a device driver may access any

register so long as the registers are owned by the driver. This is particularly prob-

lematic in devices that have more valuable information in certain registers. In order

to address this problem, we further increase granularity and define ownership for

registers in the level 3 policy.
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3.2.3 Level 3 Policy: Register Ownership

Peripherals such as the UART module have varying privilege concerns due to the

availability of more sensitive information in certain registers. For example, the UART

module’s buffer register may be more attractive to an attacker given that it communi-

cates with other devices and transfers important information or it serves as a gateway

to gain shell access and therefore control of the system. Thus, it is advantageous to

define ownership at the register level. In this particular case, we draw a distinction

between the configuration registers and the buffer register by tagging the two groups

of registers with the uart-config and uart-buffer property tags. In order to access

each register, the appropriate owner tags must be present.

Compartmentalizing registers offers the most security and least possible privilege.

It is also the most expensive in terms of the tags used since each device typically has

a number of registers. Note that in the design example above, it is possible to assign

a unique owner tag to each register, but registers are grouped together in order to

reduce tag usage. The number of tags used will scale linearly with the number of

registers in each device in the level 3 policy. Although this ownership level is the

most tag intensive of our three designs, case specific optimizations such as binning

multiple registers into the same ownership group can reduce the cost while providing

improved security over the level 1 and level 2 policies.
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Chapter 4

Implementation

The two major components we implement for SDMOS are a tagging pipeline and a

set of security policies. We have chosen to implement SDMOS on Dover’s tagged

architecture since it fulfills our need for a robust policy language with register and

memory tagging capability. The architecture is also flexible enough that it can be

integrated with a custom Rust compiler, modified to make tagging feasible at scale.

In this section, we outline the initial approach that we took in our tagging pipeline

and discuss implementation details of the two components.

4.1 Tagging

There are two classes of tags that must be applied in SDMOS: property tags and

owner tags. Applying property tags to memory is immediately supported by the

Dover toolchain. At the time of writing, Dover allows tags to be specified across

MMIO regions at the device level with a YAML configuration file. This configuration

file binds device names to their mapped memory ranges and specify the tags that

should be applied. In order to achieve finer granularity we can modify this file to

bind register names to respective memory ranges, allowing byte level references.

The application of owner tags differs from that of property tags since owner tags

must be applied to code in ZKOS rather than a static memory range. This leads to

more complexity as addresses at which MMIO driver functions reside may change if
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the code base changes. Thus, manual tagging would not scale well with granularity

or increased number of hardware peripherals. We implement compiler support to

encode owner tags in the ZKOS binary to solve this issue.

4.1.1 Initial approach: Instruction Tagging

Our initial approach assigns owner tags to the load and store instructions within

hardware driver functions that interact with MMIO space. This method allows us

to perfectly abide by the principle of least privileges since only targeted, relevant

instructions acquire ownership.

However, because of the way device drivers in ZKOS were written, all raw pointer

operations are made through a function call to a register interface crate as depicted

in Figure 4-1. Tagging the instructions within the register interface would only allow

Figure 4-1: Call stack of a UART driver in ZKOS

us to support one owner since the load and store instructions interacting with MMIO

space is called and therefore shared by multiple drivers. This makes it impossible to

distinguish or scale to multiple devices by assigning ownership at the register interface

level. We considered refactoring the driver code to forgo the register interface and

instead add unsafe Rust code to directly write to the MMIO region in each device

driver function. This would ensure a load or store operation in each device driver

function that we could tag but increase overall complexity. Furthermore, it would
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introduce extensive unsafe code in all drivers rather than compartmentalizing it to

one module, decreasing security.

4.1.2 Function Entry and Exit Tagging

Tag Code
#fn txdata_write(data) 

{ lw    a0,0(a0)uart_entry
... ...

ret }uart_exit

Figure 4-2: Tags applied at the entry and exit point of an MMIO function

Instead of refactoring load and store instructions into each driver, we choose to

tag, and thus give ownership, to individual function in device drivers. This approach

still increases the attack surface since instructions that do not necessarily require

ownership privilege will have it within the scope of a tagged function. However, im-

plementing ownership at the function level allows us to preserve the register interface,

avoiding major refactors to the device driver, yet still enforce compartmentalization

with fine grained control over granularity.

To support function tagging in SDMOS and all interactions with a hardware

peripheral, device drivers must implement at least one function per register whose

sole function is to read to or write from that register. These functions should be as

simple as possible, typically containing just a call to the register interface. We define

these functions as MMIO functions and we apply ownership to all such functions

within a device driver. This allows all load and store instructions within the scope of

the function, including those resulting from a call to the register interface, to interact

with the corresponding property memory region. MMIO functions can have the same

privilege as seen in the level 1 policy, or unique privileges as seen in the level 3 policy,

allowing variable granularity.

However, we cannot directly apply an owner tag to a function since Dover’s tooling
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only supports tagging of instructions 1. We also cannot simply tag all instructions

inside the scope of a function since ownership needs to be "passed" via function calls

to the register interface.To implement function tagging, we introduce two additional

tag classes.

1. entry tags: These tags are applied to the start of all MMIO functions.

2. exit tags: These tags are applied to the end of all MMIO functions.

Entry and exits tags are used to denote the scope of functions for the PEX. An

example of entry and exit tags for an MMIO function is shown in Figure 4-2. Upon

entering an MMIO function we append an owner tag to the current env tag site. The

same owner tags will be removed upon exiting the function. This allows SDMOS to

keep track of ownership as a state and persist it through function calls. In this way,

the actual store and load instruction in the register interface can only inherit the

ownership from the particular function that calls them.

4.1.3 Compiler Support

Since SDMOS requires a large number of entry and exit tags to be applied for each

hardware device driver, doing so manually would not scale. Instead, we implement

logic in the compiler to encode addresses where tags should be applied in the resulting

binary. We modify the LLVM backend to check every compiled function against a list

of sets of keywords that identify MMIO functions. If the function name string matches

all the keywords in a set, an entry tag is applied to the first instruction of that function

and an exit tag is applied to the return instruction. We pursue partial function name

matching since the LLVM Rust backend mangles original function names, making

it difficult to match original function names in a deterministic manner. Refer to

Figure 4-3 for a depiction of how the ZKOS binary is tagged.

To avoid having to modify the compiler every time we introduce a new tag or

function, we implement a new utility class in the RISCVAsmPrinter module, which
1Memory ranges can also be tagged but there is no way for the tool chain to calculate a memory

range from a function.
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Figure 4-3: Flow of input program to tagged binary

loads a CSV file containing sets of keywords that identify an MMIO function along

with the entry, and exit tags that should be associated with that function. This CSV

file allows us to dynamically tag new MMIO functions and change granularity without

waiting for LLVM to recompile, simplifying the tagging pipeline.

4.1.4 Driver Refactor

In addition to compiler support, we also refactor the device driver code to make calls

to MMIO functions rather than directly writing to multiple distinct registers within

a function. This allows the compiler support we implement to assign least privilege

to MMIO functions. The refactor does not change the overall structure of the driver

and the principle can be applied to any new driver code.

In general, MMIO functions should be implemented to the following specification:

1. Interact with only one register: reading and writing to multiple registers would

not allow SDMOS to assign least privilege.

2. Minimize function calls: this localizes permission as much as possible.

3. Have a return type instruction demarcating the end of a function. In ZKOS,

the Rust flag to do this is #[inline(never)].
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4.2 Policy

We note the mechanism by which ownership is assigned to each MMIO function as

well as the rule that enforces compartmentalization. Additionally, we discuss the

limitations introduced with assigning ownership at the function level.

4.2.1 Ownership Assignment

All policies have rules that assign owner tags to the env register based on entry and

exit tags.

a l lGrp ( code == [+ fn_entry ] , env == _ −> env = env[+owner ] )

a l lGrp ( code == [+ fn_exit ] , env == [+owner ] −> env = env[−owner ] )

These two rules check every instruction, denoted by the allGrp opgroup, as they

execute. Upon finding an instruction that is tagged with the fn_entry tag, the first

rule dictates an owner tag to be appended to the env tag site since this indicates the

instruction belongs to the beginning of an MMIO function. Similarly, the second rule

states that upon exiting an MMIO function, the owner tag should be removed.

4.2.2 Compartmentalization

All policies have rules that enforce compartmentalization. In other words, only the

owner of a memory region with a property tag can interact with it.

storeGrp ( env == [−owner ] , mem == [+ property ] −> f a i l )

loadGrp ( env == [−owner ] , mem == [+ property ] −> f a i l )

The two classes of instructions that interact with memory are stores and loads as

denoted by the opgroup. The rules above ensure that any interaction with memory

that has been tagged with the property tag without the proper owner tag will result

in failure.
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4.2.3 Limitations

We note that tagging the env tag site presents a security limitation regarding interrupt

handling. Suppose an interrupt is triggered while in the scope of an MMIO function,

code inside the interrupt handler can potentially gain unauthorized access to the

MMIO region. However, ZKOS handles interrupts by silencing them and they are

only ever serviced upon return from kernel space to user space. Therefore, only the

small amount of code in the interrupt handler can illegitimately gain an owner tag.

Given the size of the interrupt handler it is feasible to manually verify that it does not

interact with MMIO regions. Another potential solution is to introduce an additional

policy that pushes any tags on the env tag site upon entry to the handler and pops

the tags upon exit.
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Chapter 5

Evaluation

We evaluate SDMOS with a number of microbenchmarks to highlight the security

properties it provides. Additionally, we measure cache load as a key performance

metric in each of the policies. The evaluation is carried out on an emulated version of

the hardware. Key software versions and machine details are as follows – OS: Ubuntu

18.04.3 LTS, CPU: 32x Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz, Memory: 64

GB, Rustc version: 1.40.0-dev, LLVM version: 9.0.0.

5.1 Security

MMIO operations are fundamentally different from regular stores and loads since

they change the state of peripheral hardware. Given that storing out of specification

values can have catastrophic consequences as seen in the e1000e network driver bug

[12], SDMOS improves security by elevating the privilege required to interact with

MMIO regions through ownership. We present microbenchmarks that demonstrate

certain security properties. These properties prevent code without the appropriate

ownership privileges from inadvertently writing erroneous values to hardware devices.

This system would have prevented the e1000e bug from occurring, or at the very least

drastically reduced the time it took to find the source of the bug.

The microbenchmarks below illustrate illegal MMIO operations that can be pre-

vented with SDMOS. One microbenchmark illustrates user space applications access-
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ing MMIO space with pointer operations, especially problematic in systems without

address space privilege separation such as ZKOS. The other microbenchmarks test

cases in which parts of the device driver or kernel have implementation bugs and

erroneously interact with the MMIO space, analogous to the e1000e bug.

5.1.1 Userspace access

1 int main(void) {

2 char *uart_ptr = 0x10013000;

3 char sensitive_val = *uart_ptr;

4 *uart_ptr = ’a’;

5 return 0;

6 }

Listing 5.1: User space code accessing MMIO space

Since ZKOS has a flat address space, with every process sharing one address space, it

is trivial for malicious programs to access sensitive data that can reside in peripherals

such as the UART data buffer. Without SDMOS running, a user space application

can simply de-reference a pointer pointing to the UART data register to access the

raw bytes. Similarly, it can also trigger writes by the UART peripheral by simply

writing values to the data register. Refer to Listing 5.1 for a sample user space C

application interacting with a UART device.

SDMOS prevents this from occurring since user space applications are not granted

any ownership privilege and are therefore not allowed to directly interact with any

MMIO regions. With SDMOS, user space apps are enforced to call ZKOS’ respec-

tive MMIO drivers in order to perform any MMIO operations. Running the sample

benchmark, SDMOS produces an explicit failure and halts the program execution at

the first pointer de-reference operation.
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5.1.2 Compromised Driver

Given that device drivers require unsafe code and may have implementation bugs and

configuration issues, they can inadvertently interact with an incorrect device. This

can be prevented with SDMOS’s enforcement of ownership where each device driver

can only interact with the memory they own. As seen in Listing 5.2, the UART

driver’s base address, which should be 0x10013000, is mis-configured as 0x10012000.

Running this with SDMOS produces an explicit failure and halts program execution

when the UART driver attempts to write to 0x10012000, memory space that it does

not own.

1 const UART0_BASE: StaticRef<UartRegisters> =

2 unsafe { StaticRef::new(0x1001_2000 as *const UartRegisters) };

Listing 5.2: Configuration error in Driver

5.2 Performance

Computing the result from rule policies accounts for a large portion of the performance

overhead so we measure the cache load of each policy as the metric of performance.

We collect cache load statistics from a QEMU based emulator of the Dover tagged

hardware, which is still under active developement. Although the emulated hardware

does not give accurate cycle counts, cache performance will determine how many

additional cycles are introduced, so ensuring that the miss rate is as low as possible

guarantees good performance. Our evaluation provides insight into how much cache

space is required in order to fully accommodate the rules in each policy.

We run a user space program that prints to the UART 20 times and toggles a

GPIO pin 20 times with three policies that vary in granularity, from level 1 to level 3

as described in section 3.2. We increase the cache size that is used to run these policies

until saturation. For the purposes of this evaluation, saturation is defined when the

miss rate is minimized and account for misses resulting from initially loading a rule

into the cache. The rule cache lookup key is constructed with an array of six sets
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Figure 5-1: Miss rate (log scale) vs. cache size at level 1 ownership

of tags, with each set corresponding to tags that can be applied to the environment

(env), current instruction (ci), operands 1 - 3 (op1, op2, op3), and memory (mem),

tag sites. We use this fact to perform a worst case analysis for slots required for each

policy by calculating all possible lookup keys with (5.1) where tagsi corresponds to

the number of unique tags that can appear in each of the six tag sites (env, ci, op1,

op2, op3, mem).
5∏

i=0

tagsi∑
k=0

(
tagsi
k

)
=

5∏
i=0

2tagsi = 2
∑5

i=0
tagsi (5.1)

We name this worst case figure the potential complexity as in practice, many of the

tag combinations that are accounted for should not be observed. Additionally, tag

combinations that result in a failure state halts the program execution and therefore

do not end up growing the cache size.

5.2.1 Level 1 Ownership

At the coarsest ownership granularity, we expect the lightest cache load given the

least number of tags used. Table 5.1 shows the number of unique tags available to
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Tag site env ci op1 op2 op3 mem
Unique tags 1 4 0 0 0 1

Table 5.1: Number of unique tags available to each tag site for a level 1 policy

each tag site. The potential complexity with this number of tags would be 26 = 64

slots. In practice, 23 slots are sufficient in accommodating all the rules in this policy.

Refer to Figure 5-1 for a graph that shows the miss rate decreasing with increasing

cache size. At more than 23 slots, the miss rate stabilizes and only account for the

initial misses before the rules were loaded into the cache.

5.2.2 Level 2 Ownership

Tag site env ci op1 op2 op3 mem
Unique tags 1 4 0 0 0 1

Table 5.2: Number of unique tags available to each tag site for a level 2 policy

Structurally, the GPIO and UART policies at level 2 are identical, using the same

number of tags as shown in 5.2. The worst case cache load with this number of tags

would be 26 = 64 slots. Empirically, the GPIO and UART policy both require 25

cache slots in order to accommodate all their rules. Running both the GPIO and

UART policies in combination requires 33 slots. Note that this is less than the sum

of cache slots required for running both policies individually since there is overlap in

cache rules. For example, both policies share the rule:

a l lGrp ( code == _ , env == _ −> env = env )

Since this rule matches all instruction regardless of tags, all rules residing in the cache

such as those shown in Table 5.3 would overlap across both policies. Rules involving

the gpio and uart owner and property tags would require their own entries in the

cache and do not overlap.
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Rule 1 Rule 2 Rule 3
env {} {} {}
co {allGrp} {loadGrp, allGrp} {storeGrp, allGrp}

op1 {} {} {}
op2 {} {} {}
op3 {} {} {}
mem {} {} {}

Table 5.3: Examples of cache keys shared by the level 2 GPIO and UART policies.
Rule 1 matches all instructions, Rule 2 matches load instructions, and Rule 3 matches
store instructions.

Refer to Figure 5-2 for a graph showing the effect of increasing cache size on the

miss rate. As we expect, the miss rate monotonically decreases as cache size increases.

Fewer evictions occur until the cache is big enough to accommodate all rules.

5.2.3 Level 3 Ownership

Tag site env ci op1 op2 op3 mem
Unique tags 2 6 0 0 0 2

Table 5.4: Number of unique tags available to each tag site for a level 3 policy

At the finest ownership granularity, we expect the highest cache load given the

most number of tags used. For the two register group ownership model we implement

in the UART policy, the potential complexity is 210 = 1024 calculated with the unique

tags presented in Table 5.4. Empirically 35 slots are needed in order to accommodate

all the rules. Refer to Figure 5-3 for a graph showing the effect of increasing cache

size on miss rate. As observed in the previous policies, the experimental cache slot

requirement differs from the theoretical potential complexity. Due to the fact that

some tag combinations accounted for in the theoretical figure is not observed, the

exponential increase in potential complexity is irrelevant. Another way of explaining

this observation is that since the level 3 policy still enforces the same ownership

mechanism as in level 1 and 2, therefore tag usage only increases linearly due to the

linear increase in ownership definitions. The same set of tags can be used by policies

to enforce more complicated behavior, which would result in a cache slot requirement
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Figure 5-2: Miss rate (log scale) vs. cache size at level 2 ownership with policies
running in isolation and combined

Figure 5-3: Miss rate (log scale) vs. cache size at level 3 ownership with the UART
Policy running in isolation
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closer to the potential complexity figure. We also note running the level 3 UART

policy with the level 2 GPIO policy resulted in an observed cache load of 43 slots.

Consistent with the observation made while evaluating the level 2 policy, the cache

slot requirement for the combination of two policies is less than the sum of their

individual requirements due to overlap.
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Chapter 6

Future Work

In this section, we discuss avenues for future research to extend SDMOS. Future

work includes supporting multiple hardware device instances, expanding ownership to

dynamically allocated memory, providing device driver fault isolation, and designing

a peripheral description language that can automatically generate policies.

6.1 Device Instances

Currently, SDMOS does not support applying ownership rules to multiple instances

of the same device type. Since we grant ownership at the function level for each

device driver, SDMOS does not have a way of distinguishing between device driver

instances. Instance support can be implemented by tagging the struct containing the

base pointer to a peripheral that device driver initialization creates with a new class

of tags named instance tags. Then, we can write a policy that uses instance tags to

check for device drivers’ instance identity, making our definition of ownership stricter.

This instance checking policy can be run in conjunction with the current policies.

6.1.1 Dynamic Memory Ownership

SDMOS as presented in this thesis has provided its ownership bindings for static, IO

memory. It is possible to broaden the ownership concept to other classes of unsafe
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code such as context switching. In context switching, processor state is saved to

the stack. SDMOS can compartmentalize this chunk of memory in the stack by

dynamically tagging it and only allowing interaction by the context switching code.

6.2 Fault Isolation

SDMOS requires ownership in order for driver code to write to IO memory. However,

it currently does not prevent buggy device drivers from corrupting other memory

regions. To provide fault isolation to device drivers, we recognize that the load and

store instructions that perform the pointer write to IO memory must be tagged. We

can then write a policy to prevent these instructions from interacting with non-IO

memory. The main challenge for this improvement is isolating the correct load and

store instructions given that function prologues and epilogues can introduce them.

6.3 Peripheral Description Language

Each device that SDMOS supports requires a distinct policy to be written. A substan-

tial amount of manual work is needed to write these policies although they generally

have the same structure, differing mainly in tags used and granularity at which tags

are applied. In addition, tags must be defined at several independent stages in the

pipeline (e.g. LLVM stage [27] and Dover tool chain stage) and remain consistent.

SDMOS would benefit from a peripheral description language that automates the

above processes by taking a memory map of its registers as well as functions that

should be allowed to access each register then generating device policies and inserting

tag definitions in the pipeline. This can greatly reduce the margin for human error

and allow reuse of peripheral descriptions for devices with similar topology.
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Chapter 7

Related Work

In this section we discuss related work on efforts to increase memory and operating

system safety. We also examine alternate methods to specifically provide IO safety

guarantees.

Bug Finding. Fuzzing is a technique that randomly mutates inputs to a program

in order to test large numbers of program execution paths and provide adequate bug

finding coverage. There exists a variety of application specific fuzzers such as kAFL

[40], DIFUZE [11] and Syzkaller [17], which specialize in fuzzing kernels JANUS [50]

takes this further and fuzzes file system implementations within an OS. Another run-

time bug finding tool is a sanitizer, which instrument tests by embedding what is

known as inline reference monitors (IRMs) into the program at compile time [43].

These IRMs monitor instructions such as memory stores and loads that can poten-

tially lead to a vulnerability. LLVM TySan [14], UBSan [15], MemorySan [44], and

EffectiveSan [18] are all examples of memory safety sanitizers that instrument IRMs

at the language or IR level. Configuring a sanitizer’s bug finding policies is difficult

as too strict a policy may result in numerous false positives that require manual con-

firmation. Since fuzzing and sanitizing both rely on brute-force exploration of a large

number of execution paths, it is difficult for them to scale to large code bases. In ad-

dition, neither technique can guarantee finding all existing bugs. An interesting work

that combines the two techniques is ParmeSan [37], where the fuzzers are directed to

trigger sanitizer IRM checks, lowering the time-to-exposure of bugs.
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Proving Correctness. Since exhaustively finding all existing bugs in a system

may be infeasible, formal verification can be employed to prove the correctness and

memory safety of a code base. The Singularity [22] OS is mostly written in Sing#

[19], a memory safe language based on C# that can readily be formally verified.

However, due to the difficulty in modeling programs for formal verification, it often is

generally not practical to apply this technique to large code bases. SeL4 [25], which

is a formally verified kernel code base, took over 30 person years to verify.

Safe Languages. Language safety is another attractive option for OS security.

BiscuitOS [13] and CliveOS [6] are written in Golang, which provies memory safety.

However, they both suffer reduced performance due to overhead incurred by garbage

collection. Tock [29] and RedoxOS [4] are both OSes written in Rust, which does not

utilize garbage collection to provide its safety guarantees. Along with this, Rustbelt

[24] is a semantic model that reveals verification conditions in order to prove the

safety of unsafe code.

Safe Interfaces. Given device driver code is 7x more likely than the rest of kernel

code to be buggy [49] due to their low level implementation, IO memory safety is of

paramount importance. SUD [8], SafeDrive [51], DeCaf [39], and Leslie [28] all sug-

gest radical ways of writing driver code centered around safety. In particular, We note

the idea of writing safe interface for interaction between kernels and device drivers

as an orthogonal approach to our work. Devil [33] is a high level interface definition

language used to write specifications for hardware that describe the device and gen-

erate safe driver code. Since Devil compiles to C, performance is preserved. Unlike

the device specific interface of Devil, Nooks [46] implements a safe interface layer for

secure interaction between all device drivers and the kernel. It also keeps track of and

validates all kernel data structure modifications made by device drivers, allowing it

to facilitate automatic recovery from driver bugs that would have otherwise caused

the kernel to crash. The reference validation mechanism [49] (RVM) has features

of both Nooks and Devil, supporting a device safety specification language that de-

scribes valid hardware interaction per device as well as interposing a global reference

validation mechanism interface in the kernel that validates all hardware interactions.
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In addition to enforcing memory safety for device drivers, RVM also monitors and

rate limits interrupts that device drivers can handle, preventing processor starvation.

Hardware Protection. Complementing the secure interface work, Input/Out-

put Memory Management Units (IOMMU) are a hardware protection mechanism

that have also been adopted by major chip manufacturers like Intel [3] and AMD

[1]. IOMMUs protect against direct memory access (DMA) attacks in which device

drivers act maliciously with DMA enabled devices to access kernel memory ranges, by-

passing any MMU protection. There has also been efforts to virtualize the IOMMU

[21] so it is available in virtualized guest OS instances. However, IOMMUs have

translation and management overhead, which means native DMA performance will

be degraded [38, 31, 20]. Additionally, recent survey has shown that IOMMU resis-

tant DMA attacks have surfaced for peripherals using widely adopted standards such

as Thunderbolt [30, 26, 23].
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Chapter 8

Conclusion

Programming languages like Rust can eliminate entire classes of memory safety bugs.

However, current compilers are not advanced enough to provide guarantees for unsafe

code, which is necessary to implement parts of an OS. We note that device drivers

are at a higher risk of containing bugs due to their low level implementation and

often convoluted specifications. SDMOS demonstrates that tagged architecture and

policies can be used to extend the concept of memory type safety to unsafe device

driver code through the notion of ownership. Our security policies can be fine tuned

depending on the threat profile of certain hardware devices and require minimal

refactoring of existing driver code. In addition, the tagging pipeline that we have

implemented for SDMOS allows tags to be embedded in large, complex code bases

such as ZKOS with minimal manual work. Our evaluation also show it is feasible to

implement the ownership policies without incurring significant cache load, predicting

good performance on hardware. In conclusion, SDMOS offers a novel, software defined

solution to ensure memory safety in unsafe device driver Rust code, improving security

of ZKOS while maintaining simplicity and performance.
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