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Executive Summary 

An assessment of the Advanced Research version of the Weather Research and 
Forecasting (WRF-ARW) model1 was conducted over a winter-season 99-day 
study period to quantify the accuracy of forecasts produced over the complex 
terrain of the southwestern United States and northern Mexico. The study focused 
on near-surface meteorological variables and cloud cover. Weather Research and 
Forecasting–Chemistry (WRF-Chem) model2 is a version of WRF-ARW that 
contains a code module forecasting chemical constituents in addition to the standard 
meteorological forecasts. This evaluation used outputs of WRF-Chem configured 
to only include dust forecasts beyond the standard WRF-ARW fields (without 
allowing dust to impact radiation); since dust is not evaluated in this study (and dust 
does not affect other fields) the model used in the study will generally be referred 
to as WRF-ARW, or more simply WRF. The model forecasts evaluated were 
produced using the Weather Running Estimate–Nowcast Real-Time System 
(WREN_RT),3 which is a US Army Combat Capabilities Development Command 
Army Research Laboratory-scripted system that performs data gathering, executes 
WRF preprocessors, and runs WRF itself with the goal of supporting mission 
planning and execution with high-resolution forecast information.  

Weather-knowledge products for the Warfighters include forecasts of tactically 
significant variables and decision-aid products that depict the 2-D distribution of 
weather phenomena that can impact Army missions and systems. The WREN_RT 
provides the forecasts that are ingested into the decision aids. The decision aids 
apply weather thresholds to locate areas in time and space that exceed the thresholds 
and indicate the possibility of significant impacts. To evaluate the accuracy of the 
forecasts at the high resolutions of interest to the Army, high-quality gridded 
observations are needed for ground truth to perform spatial verification. For this 
assessment, the gridded observations used were the UnRestricted Mesoscale 
Analysis (URMA) produced by the National Oceanic and Atmospheric 
Administration for verification of Numerical Weather Prediction models.4 The 
assessment involved comparing forecasts produced by the WRF model with 
                                                 
1 Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG. A 
description of the advanced research WRF version 3. University Corporation for Atmospheric Research; 2008. 
Report No.: NCAR/TN-475+STR.  
2 Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B. Fully-coupled “online” 
chemistry within the WRF model. Atmos Environ. 2005;39(37):6957–6975. 
3 Reen BP, Dawson LP. The Weather Running Estimate–Nowcast Realtime (WREN_RT) system, version 1.03. 
Army Research Laboratory (US); 2018 Sep. Report No.: ARL-TR-8533. https://apps.dtic.mil/sti/pdfs/ 
AD1060869.pdf. 
4 De Pondeca Manuel SFV, Manikin G, DiMego G, Benjamin S, Parrish D, Purser RJ, Wu WS, Horel J, Myrick 
D, Lin Y, et al. The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: 
current status and development. Weather Forecast. 2011;26(5):593–612. 
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URMA gridded observations over two domains located over the southwestern 
United States and northern Mexico. This assessment has the benefit of a 
significantly larger data set of input data compared with previous assessments that 
were limited to periods of less than 30 days. This longer study period results in this 
study having statistically stronger skill scores and statistics. The results of the study 
show the accuracy of forecasts produced by the WRF for ingesting into decision 
aids, and that the accuracy varies depending on the threshold used for determining 
weather impacts.  
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1. Introduction 

The Army requires weather-knowledge products to support the Intelligence 
Preparation of the Battlefield process (ATP 2021) that is used to develop situational 
understanding and identify those aspects of the operational environment that can 
impact mission accomplishment. Weather systems can traverse multiple domains 
interacting with the varied terrain and topography features to produce unique 
conditions depending on location. Because multidomain operations rely on the 
continuous integration of all domains of warfare, the commander must be aware of 
the full spectrum of weather impacts across all domains produced by weather 
phenomena from a wide range of spatial and temporal scales (TRADOC 2018). 
These phenomena can range from large-scale areas of precipitation or dust storms 
extending across hundreds of kilometers occurring over a period of 24 h or less to 
erratic wind-flow patterns associated with dense urban environments that occur on 
spatial scales of less than 1 km and time scales of a few minutes to 1 h.  

1.1 Army Numerical Weather Prediction (NWP) for Weather-Impacts 
Prediction 

To address the need for the prediction of atmospheric conditions over multiple 
domains, the Army has developed new NWP models and modified existing NWP 
models that employ a range of grid sizes, initialization techniques, and 
parameterizations to simulate weather phenomena across multiple spatial and 
temporal scales. The Army Weather Running Estimate–Nowcast Real-Time 
System (WREN_RT; Reen and Dawson 2018) executes the Advanced Research 
version of the Weather Research and Forecasting (WRF-ARW; Skamarock et al. 
2008) NWP model to provide the forecast grids that are ingested into the decision 
aids. The decision aids apply thresholds to these forecasts to determine the spatial 
and temporal distribution of weather conditions that can impact the effectiveness 
of multidomain formations.  

1.2 Evaluation of Army NWP Weather Forecasts 

To evaluate the accuracy of the forecasts at the high resolutions of interest to the 
Army, advanced methods of model verification are needed to verify high-resolution 
output spatially as opposed to the more traditional methods that perform point-by-
point comparisons with observational ground-truth data coming from weather 
observations. This grid-to-point approach to verification cannot adequately assess 
the true skill of high-resolution forecasts.  
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Traditional grid-to-point methods use point observations to verify the skill of NWP 
models in predicting continuous meteorological variables by computing such 
statistics as mean error and root-mean-square error, which characterize model 
accuracy over the entire domain. When these techniques are applied to high-
resolution models such as the Weather Running Estimate–Nowcast (WRE–N), the 
results can give misleading error estimates when compared with lower-resolution 
models, which often score better when using these techniques. The issue is the 
inability of the verification technique to evaluate the true skill of higher-resolution 
forecasts, which replicate mesoscale atmospheric features in a way that is more 
representative of the actual phenomenon owing to their use of a finer grid over 
smaller domains, higher-resolution land-surface input data and models, and better 
parameterization of subgrid physical processes (Jolliffe and Stephenson 2012). 

In recent years, various nontraditional verification techniques were developed that 
apply different approaches to show the value of higher-resolution forecasts. In 
particular, spatial verification techniques have been developed that overcome the 
limitations of grid-to-point techniques, which score on the basis of the exact 
matching between point observations and the forecasts at those points. Fuzzy 
verification, also known as neighborhood verification, is a spatial technique using 
an approach that does not require exact matching and instead focuses on how well 
the atmospheric feature or object is replicated by the model—even if there is a 
spatial displacement of the feature. Ebert (2008) reviews a number of such methods. 
The goal is to determine the amount of displacement by using a range of sizes of 
neighborhoods of surrounding forecasts and observed grid points in the verification 
process. In this way, model performance as a function of spatial scale can be 
determined to allow selection of the scale required to have the desired accuracy. 
These spatial verification methods require gridded observations instead of point 
observations for ground truth.  

1.3 UnRestricted Mesoscale Analysis (URMA) Gridded 
Observational Ground Truth Data for NWP Evaluation 

Sources of gridded observations are few, particularly at the spatial scale needed for 
Army weather-knowledge products tailored for multidomain formations operating 
in regions with varied and complex terrain conditions. For this study, the gridded 
observations used were the UnRestricted Mesoscale Analysis (URMA) (De 
Pondeca et al. 2011). URMA is used by the National Oceanic and Atmospheric 
Agency (NOAA) National Weather Service (NWS) for verification of NWP 
models. The Real-Time Mesoscale Analysis (RTMA), in conjunction with URMA, 
provides real-time, 2-D meteorological gridded analysis products produced from 
NWP analyses and hourly point weather observations from the national networks 
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of Météorologique Aviation Régulière (METAR) and mesonet sensors that are 
distributed over the continental United States (CONUS). Two-dimensional 
RTMA/URMA was developed by National Centers for Environmental Prediction 
(NCEP) in collaboration with the Earth System Research Laboratory and the 
National Environmental, Satellite, and Data Information Service (De Pondeca et al. 
2011). RTMA/URMA is produced on an hourly basis using a mesoscale analysis 
background field produced from the 3-km High-Resolution Rapid Refresh (HRRR) 
model and the 3-km North American Mesoscale model downscaled to the 2.5-km 
grid as a first-guess background field (Morris et al. 2020). For the URMA products 
used for this study, HRRR v2 on a 3-km grid was used (Benjamin et al. 2016). To 
fill in gaps at the edges of the domain, the most recent forecasts from the Rapid 
Refresh (RAP) were used (Morris et al. 2020). The RAP (RAP v3 for this study) 
provides an hourly forecast on a 13-km grid over North America (Benjamin et al. 
2016). The first guess field is then adjusted through a  
2-D variational data assimilation technique (2DVAR) to analyze point weather 
observations from the national networks of METAR and mesonet sensors (De 
Pondeca et al. 2011). The first cycle of the analysis is the RTMA on a 2.5-km 
CONUS grid that is used for weather situational awareness, calibration, and 
aviation safety. URMA is produced by rerunning the RTMA on the same grid 6 h 
following the first cycle to enhance the number of point observations used for 
analysis to make it a better product for model verification/validation (Pondeca et 
al. 2015). For example, NOAA uses URMA gridded observations for verification 
and bias correction of the National Blend of Models used by NWS forecasters (Ruth 
et al. 2017). URMA also serves as the NWS Analysis of Record (UCAR 2015). A 
future development anticipated for the RTMA/URMA analysis system is the 3-D 
RTMA, which is planned to provide 3-D analysis fields with subhourly updates 
(Weygandt et al. 2019).  

A number of studies have been conducted to compare the RTMA with observations. 
Morris et al. (2020) reviews the results from a few such studies and presents the 
results, which focused on performing an assessment of the RTMA to evaluate its 
value as an alternative source of weather observations for use by airports for current 
conditions affecting safety of flight. Their study consisted of running data-denial 
experiments for retrospective periods of time that involved generating RTMA 
output using specified ingest configurations. These configurations allowed the 
assimilation phase to be controlled to restrict the available observational data to 
create three distinct cases. The cases were 1) CONTROL case, which assimilated 
all expected observations considered to be a more typical or normal scenario, 2) 
EXP case, which denied access to observations coming from certain airports 
considered to be a rare but not unprecedented scenario, and 3) NODA case that 
denied access to all observations, which is considered to be the worst-case scenario. 
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They determined the RTMA could be used as a substitute for airfield weather 
observations under certain conditions, for only certain meteorological variables, 
and only at certain locations. This is the most complete assessment compared to 
any others investigated. The previous studies focused on evaluating the RTMA 
using independent analyses products and controlled data-denial experiments and 
not on providing a quantitative, grid-to-point verification over a longer, continuous 
period of time.  

To address the lack of a quantitative evaluation of URMA, Raby et al. (2020) 
conducted an evaluation of the URMA during a continuous “winter” period from 
11 Nov 2016 to 17 Feb 2017 over a large domain encompassing much of the 
western United States, northern Mexico, portions of the Gulf of Mexico, Sea of 
Cortez, and the eastern Pacific Ocean. This domain was also the outer nest region 
(d01) for the WRF simulations produced during the same time period for included 
subnests used in this study. The evaluation compared the URMA values for near-
surface meteorological variables to point observations of the same variables using 
a traditional grid-to-point verification technique that generated continuous error 
statistics over the 99-day time period. The results of the evaluation showed the 
URMA provided a very-good analytical product for use as ground truth with certain 
limitations. The limitations are attributable to 1) use of the grid-to-point verification 
technique for high-resolution forecasts, and 2) use of point observations. This first 
limitation refers to the requirement for exact matching between the forecast value 
(in this case the URMA value) at the location of the point observation, which leads 
to double-penalty errors for the forecast object being slightly displaced in space 
from the observed object and gives no credit for a near-miss situation where the 
forecast (URMA) object, despite replicating the observed object quite well 
spatially, is displaced in location and/or time. The second limitation arises from two 
sources. One source is that the URMA product is generated from the same point 
observations that are being used for verification. The other source is the fact the 
verification was conducted only at the locations in the URMA grid where there 
were point observations and nowhere else, leaving areas where there is no 
verification. The combined effect of these limitations on the accuracy of the URMA 
error statistics generated from the evaluation is difficult to quantify, as well as their 
impact on this assessment of WRF. That said, with no other source of better ground 
truth and given the acceptance of URMA by NOAA as the analysis of record to be 
used for verification, this study does provide reasonable evidence of the 
performance of WRF based on a 99-day data set of simulation and URMA gridded 
observational data.  
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2. Design of the Assessment 

2.1 Verification Approach 

The approach used for this objective assessment was spatial verification. The 
specific techniques used were the neighborhood or “fuzzy” verification and 
categorical verification. The neighborhood technique compared the model forecast 
with the URMA gridded observations to determine the fraction of grid cells from 
each exceeding a particular threshold within a given neighborhood size. The 
resulting score is called the Fractions Skill Score (FSS; Roberts 2008; Roberts and 
Lean 2008). For a given neighborhood size, each possible neighborhood of that size 
within the evaluation domain is evaluated. By examining neighborhoods instead of 
merely comparing grid points individually, the FSS is able to include the value of 
near misses. A perfect forecast results in an FSS of 1.0. The FSS compares the 
proportion of grid boxes within a forecast neighborhood that have events with the 
proportion of grid boxes within the observed neighborhood that have events; this 
results in a score that expresses the skill of the forecast by application of the 
assumption that useful forecasts are those whose frequency of forecast events is 
close to the frequency of observed events (Ebert 2008).  

In this study we computed FSS for a range of neighborhood sizes and threshold 
values to provide breadth in the FSS values to allow future analysis of the 
dependency of FSS on those factors. For this report we selected one neighborhood 
size with specific thresholds unique to each variable to provide some baseline 
scores and statistics to characterize forecast accuracy of the WRF forecasts 
produced over the middle (d02) and inner (d03) nests with grid spacing of 3 km and 
1 km, respectively. The choice of neighborhood size was based on the “effective 
resolution” considering the grid spacing of both nests and the lower bound for the 
structure scale, which can be resolved by the nest with the largest grid spacing 
(Skamarock et al. 2014).  

We also computed related scores and statistics that are threshold dependent, based 
on the categorical verification framework, but these are computed over the entire 
domain and not computed using neighborhoods. These are the Critical Success 
Index (CSI), frequency bias (FBIAS), observed rate (O-Rate), and forecast rate  
(F-Rate). Traditional categorical verification scores and statistics are computed by 
defining an event from both the forecast and the observation grids. The event is 
defined by applying a threshold over the entire domain as the basis for determining 
“hits” or “misses”, which follows the established theoretical framework for 
evaluating deterministic binary forecasts. A CSI value of 1.0 indicates a perfect 
forecast. O-Rate and F-Rate are fractional values of relative frequency of 
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occurrence of the observed and forecast events ranging from 0 to 1 and FBIAS is 
the ratio of the numbers of forecast events and the number of observed events. A 
value of 1.0 for FBIAS is optimal, while less than 1.0 shows an underforecast 
tendency and greater than 1.0 shows an overforecast tendency. This framework 
evaluates the forecast skill by counting the numbers of times the event was 
forecast—or not—and observed—or not—in a contingency table. Although 
categorical scores and statistics have been widely used, they are not always reliable 
for assessing the skill of high-resolution forecasts due to their sensitivity to 
observed rate (Mittermaier et al. 2013). Raby (2016) determined that combining 
categorical scores and statistics with those computed using a fuzzy verification 
approach provides a more comprehensive assessment of model performance. To 
overcome the limited applicability of scores and statistics generated from small data 
sets for inferring information about the true accuracy of the model, Raby and Cai 
(2016) suggested using a more rigorous approach that requires the generation of 
larger data sets of forecast output and gridded observations so that more reliable 
statistical results can be obtained. This approach is intended to improve the validity 
of scores and statistics, particularly when observed event rates are low due to the 
use of very-high or very-low threshold values of interest to the Army for predicting 
impacts to systems and missions. For this reason, the decision was made to use 
output from the WRF model, run on a daily basis producing 24 hourly forecasts 
from 1200 to 1100 UTC, and the hourly URMA gridded observations for the same 
hours over an extended time period. The period chosen was 11 Nov 2016 to 17 Feb 
2017 because there were no significant changes made to the daily WREN_RT over 
this time period and because of the availability of URMA gridded observations 
produced using a single software version. This period contained 99 days that were 
characterized as having typical “winter” conditions for the southwestern United 
States and northern Mexico, and coincides with the period of the URMA evaluation 
conducted by Raby et al. (2020). 

2.2 Verification Domains 

The two domains selected, shown in Fig. 1, were located over the southwestern 
United States and northern Mexico. These domains were also the middle (3-km) 
nest and the inner (1-km) nest for the WRF simulations produced during the 99-day 
time period. 
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Fig. 1 Verification domains 

The verification was conducted over the two domains, both characterized by a 
complex, mountain–desert–basin terrain landscape using hourly WRF forecasts and 
URMA gridded observations collected for the 99-day “winter” period. 

3. Generation of Assessment Data  

3.1 Model Evaluation Tools 

The software used to perform the scores and error statistic calculations was the 
Model Evaluation Tools (MET) (Jensen et al. 2020). The MET was developed at 
NCAR through grants from the United States National Science Foundation (NSF), 
NOAA, the United States Air Force (USAF), and the United States Department of 
Energy (DOE). NCAR is sponsored by the NSF. The output of MET was visualized 
using the METviewer tool, also developed by NCAR. METViewer enabled the 
aggregation of the error statistics over each lead time for all 99 days and then 
produced plots of the statistics for each lead time. 
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3.2 Assessment Data 

The URMA gridded observations used for this study were collected from the real-
time repository operated by the National Center for Environmental Prediction 
(NCEP) (NOAA 2017).  

The forecasts were created with WREN_RT using WRF-ARW V3.8 and the WRF 
Pre-Processing System V3.8.1. Nested 9-, 3-, and 1-km horizontal grid spacing 
domains centered just south of the White Sands Missile Range, New Mexico, were 
executed for each day (Fig. 2) with 57 vertical full levels. The number of grid points 
in the three domains are 9 km: 279 × 279, 3 km: 241 × 241, and 1 km: 205 × 205. 
The 3-km domain covers about 12.4 times as much area as the 1-km domain, and 
thus the 1- and 3-km domain overlap for only 8% of the area covered by the 3-km 
domain. Each day a 3-h data-assimilation preforecast (0900–1200 UTC) preceded 
a 24-h forecast from 1200–1200 UTC. (This study uses the 0–23 h forecast within 
this period.) 

 

Fig. 2 Area covered by the 9-, 3-, and 1-km WRF domains 

Initial conditions were created by using Obsgrid (NCAR 2016) to perform 
multiscan Cressman analyses with observations using 0.5-degree Global Forecast 
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System model output as the first guess field. Observations were obtained from 
NCEP’s Meteorological Assimilation Data Ingest System (MADIS; 
madis.noaa.gov). Specifically, the MADIS surface, maritime, radiosonde, profiler, 
and Aircraft Communications, Addressing, and Reporting System (ACARS) data 
sets were used. In additional to being used in the analysis used in the initial 
conditions, these observations were also applied in observation nudging data 
assimilation (Reen 2016) during the preforecast from 0900 to 1200 UTC (the 
nudging terms ramp down in the following hour after 1200 UTC, but no 
observations valid after 1200 UTC are nudged towards). Observation nudging of 
wind, potential temperature, and water vapor mixing ratio is applied with a 
weighting of 6 × 10–4 s–1. The base horizontal radius of influence for the 9-, 3-, and 
1-km domains are 120, 45, and 20 km, respectively, while the actual radius of 
influence increases linearly with decreasing pressure to twice this value at 500 hPa 
and is half this value at the surface. Observations are nudged in a 3-h time window 
centered on the valid time of the observation with linearly decreasing temporal 
weight in the outer half of the time window (for surface observations the time 
window is two-thirds as large).  

The planetary boundary layer scheme used was the Mellor-Yamada Nakanishi 
Niino (MYNN) Level 2.5 scheme (with the MYNN surface-layer scheme). 
Microphysics were parameterized using the Thompson aerosol-aware scheme. The 
Grell–Freitas ensemble cumulus parameterization was used. For radiation, the 
RRTMG (rapid radiative transfer model for general circulation models) shortwave 
and longwave schemes were employed. The Noah land-surface model was used to 
simulate the land surface. The simulations use WRF-Chem with dust-only enabled 
using the Air Force Weather Agency’s dust scheme (WRF namelist settings 
chem_opt = 401, dust_opt = 3); however, dust forecasts are not evaluated in this 
report. 

3.3 Verification Data Preprocessing 

Some preprocessing tasks were completed before both the URMA gridded 
observations and WRF forecasts for all 99 case-study days could be ingested into 
the MET Grid-Stat tool to produce error statistics data, as shown in Fig. 3. The 
scripts were developed and implemented in Python to make the preprocessing and 
postprocessing tasks easier and more efficient resulting in the generation of 
verification data that is better organized compared to running the tool on its own. 
The 24 hourly URMA gridded observations in GRIB2 format from the evaluation 
study described in Raby et al. (2020) were used as observation input into the MET 
Grid-Stat tool. Next, the 24 hourly WRF forecasts were postprocessed using 
Unified Post Processor (UPP) developed by NCEP (NCEP 2020) and a Python 
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script, rename_upp.py, was used to rename each hourly, postprocessed WRF 
forecast output file for all 99 case-study days to a standard filename convention. 
Then, the renamed, postprocessed WRF forecasts were used as forecast input into 
the MET Grid-Stat tool. Both the URMA gridded observation files and the 
postprocessed WRF forecasts were ingested into the MET Grid-Stat tool using 
another Python script, runGridStat.py, that performed the automation of the run and 
data processes associated with the tool (Dawson et al. 2016). 

 

Fig. 3 Generation of verification-data flow diagram using the MET Grid-Stat tool 

3.4 MET Grid-Stat Processing 

The MET Grid-Stat tool ingests the URMA gridded observations and the 
postprocessed WRF forecasts so that matched pairs of forecast and observed values 
for all the variables at each lead time can be processed over the 99-day period. 
Because the URMA data is on a CONUS domain with 2.5-km grid spacing, Grid-
Stat regridded it to create domains with grids that matched the 1- and 3-km grids of 
the WRF output to achieve the grid matching necessary for computing the forecast-
observation differences and error statistics. Grid-Stat applied the specified 
neighborhood sizes (spatial scales) and thresholds and computed the neighborhood 
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fractional coverage, contingency-table statistics, and skill scores for each spatial 
scale.  

The output of Grid-Stat consists of a tabular ASCII data formatted text file, called 
STAT, which is used by other MET tools to access the fundamental data from 
which the scores and error statistics are calculated. The STAT file contains 1) the 
scalar partial sums generated during the calculation of the WRF–URMA 
differences and 2) the contingency table counts and statistics for the entire domain 
and for each neighborhood. For this study, the availability of the contingency table 
counts in the hourly STAT files enabled their aggregation to produce the error 
statistics and scores for each lead time over the entire 99-day period (Jensen et al. 
2020). The METViewer software loads the STAT files, computes the FSS and other 
error statistics according to user-specified settings by aggregating the data from all 
the STAT files, and then generates plots of the statistics (NCAR 2018). Plots of the 
statistics were generated for meteorological variables at the 2- and 10-m above 
ground level (AGL) and cloud cover variables listed in Table 1.  

Table 1 Near-surface meteorological and cloud-cover variables and threshold values used 
for the assessment 

Variable name/units Abbreviation Level (AGL) Threshold values 

Temperature (degrees 
Kelvin [K]) 

TMP 2 m GE 273, LE 273  

Dew-point temperature 
(degrees K) 

DPT 2 m GE 265, GE 280 

U wind component (m/s) UGRD 10 m GE 0, GE 8 

V wind component (m/s) VGRD 10 m GE 0, GE 8 

    

Wind speed (m/s) WIND 10 m GE 14, GE 18 

Specific humidity 
(kg/kg) 

SPFH 2 m GE 0.002, GE 
0.008 

Total cloud cover (%) TCDC Entire 
atmosphere 

GE 25, GE 50 

Visibility (m) VIS Surface GE 8000, LE 
8000 

  
Threshold values used in this study are defined by the following acronyms: 

“greater than or equal to” logical statement (GE) 

“greater than” logical statement (GT) 

“less than or equal to” logical statement (LE) 
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“less than” logical statement (LT) 

Some of the thresholds used in this study were values that have operational 
significance due to their potential impact on aviation safety. For TMP, the 
thresholds for approximately defining above- and below-freezing events were 
selected. For WIND, the typical criteria for NWS issuance of wind advisories 
(GE 14) and high-wind warnings (GE 18) were used. Note that criteria are subject 
to variation by the local NWS office and are in mph (NOAA 2019).  

For VIS, the thresholds used delineate the cutoff value separating the VIS criterion 
for Visual Flight Rules (VFR) from the less favorable conditions of Marginal VFR 
and potentially unfavorable conditions of Instrument Flight Rules (IFR). For cloud 
cover, the thresholds used define the conditions of FEW (25%) or greater coverage 
and SCT (50%) or greater coverage. 

For the analysis of the output from MET Grid-Stat and METViewer, plots of the 
FSS, CSI, O-Rate, and F-Rate for both WRF nested grids were generated to show 
the trend as a function of lead time and Mountain Standard Time (MST). Note that 
the middle WRF domain (d02) extends eastward into the Central Standard Time 
zone. The readers are referred to the MET User’s Guide for the formulas used for 
computing these statistics (Jensen et al. 2020). 

4. Analysis of Assessment Data 

4.1 1-km WRF Domain 

The graphics showing the FSS, CSI, FBIAS, O-Rate, and F-Rate for all variables 
for both thresholds and the analysis for the 1-km WRF domain are presented first 
followed by those for the 3-km WRF domain. Figure 4 shows the 2-m-AGL TMP 
scores for freezing and above temperatures and Fig. 5 shows the scores for freezing 
and below temperatures for each model lead time for the 99-day period. 
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Fig. 4 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for freezing and above 
temperatures 

 

Fig. 5 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for freezing and below 
temperatures 

The FSS scores in the left graphics (Figs. 4 and 5) are for a 21- × 21-km 
neighborhood, which is somewhat larger than the “effective resolution” for a 1-km 
grid spacing that is approximately 6–8 km. So the scores characterize the skill for 
larger features that can be resolved relatively well by the WRF in this domain. For 
above-freezing TMP, the FSS is perfect at all times. This is consistent with the CSI 
and FBIAS values in the right graphics, which are very close to a perfect 1.0 value. 
The O-Rate and F-Rate values show relative frequencies of occurrence of forecast 
and observed events to be very high and nearly equal for the daytime period. At 
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night, the frequencies differ with the F-Rate being slightly higher than the O-Rate, 
which results in a slight over-forecast tendency. For below-freezing TMP, the FSS 
is not as high, and varies widely over the diurnal period. The highest FSS scores 
occur in the early morning, which is consistent with higher frequencies of 
occurrence of O-Rate and is an indication that when below-freezing temperatures 
are more likely to occur, the WRF in this domain shows good skill. This is also 
reflected in the FBIAS values in the early morning, which are fairly close to 1.0. 
From midmorning to midafternoon, the FSS is lowest with the FBIAS showing an 
over-forecast tendency when the relative frequency of occurrence of observed 
events is lowest. By early evening, the FSS has increased to show good skill as the 
frequency of occurrence of observed events starts to rise and the over-forecast 
tendency decreases to a value near 1.0. At night, there is a steady increase in the 
frequency of occurrence of observed events into the early morning hours, but the 
frequency of forecast events does not match this steady increase resulting in the 
transition to an under-forecasting tendency and lower FSS values. The CSI for 
below-freezing TMP is decidedly lower than for above-freezing TMP and remains 
steady near a value of 0.5 over the 24-h period.  

The graphics showing the FSS, CSI, FBIAS, O-Rate, and F-Rate for 2-m-AGL DPT 
for the 1-km WRF for both thresholds are presented in Figs. 6 and 7, respectively. 
Figure 6 shows the scores for DPT GE 265 K and Fig. 7 shows the scores for DPT 
GE 280 K for each model lead time for the 99-day period. 

 

Fig. 6 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for DPT GE 265 K 
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Fig. 7 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for DPT GE 280 K 

For DPT GE 265 K, the skill of the WRF is perfect, as indicated by the FSS being 
1.0 and the CSI being very close to 1.0 over the 24-h period. The FBIAS values 
show good agreement with the values being close to 1.0 over the diurnal period. 
The overall tendency is for slight over-forecasting for most of the day except for 
midmorning when the O-Rate and F-Rate are nearly equal, resulting in FBIAS 
values being closest to 1.0. Despite FBIAS being close to 1.0 over the remaining 
portions of the day, the O-Rate and F-Rate do not track each other very well, as was 
the case for TMP, but the magnitude of their difference is not significant as 
indicated by the FBIAS being close to 1.0. For DPT GE 280 K, the skill of the WRF 
is not as good as that at the lower threshold as evidenced by the lower FSS and CSI 
scores. The FBIAS values show an under-forecasting tendency in the early morning 
to the late afternoon and then transitions to an over-forecasting tendency at night. 
This transition is reflected in the behavior of the O-Rate and F-Rate with the former 
increasing sharply during midmorning to a peak well above the latter by midday. 
This is followed by a sharp decrease in O-Rate from the afternoon into nighttime 
contrasted with a sharp increase in F-Rate during the same time period. Despite the 
seemingly small differences in the values of O-Rate and F-Rate, the magnitude of 
the FBIAS, before and after this transition, is relatively large. 

The graphics showing the FSS, CSI, O-Rate, and F-Rate for 10-m-AGL WIND for 
the 1-km WRF for both thresholds are presented in Figs. 8 and 9, respectively. 
Figure 8 shows the scores for WIND GE 14 m/s and Fig. 9 shows the scores for 
WIND GE 18 m/s for each model lead time for the 99-day period. 
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Fig. 8 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for WIND GE 14 m/s 

 

Fig. 9 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for WIND GE 18 m/s 

For WIND GE 14 m/s, the FSS and CSI scores are fairly low, which is a reflection 
of the impact of the threshold value that is sufficiently high to reduce the O-Rate to 
very-low values over the 24-h period. This is consistent with the reduced incidence 
of stronger winds over the 1-km domain in winter compared to other times of the 
year. However, the WRF tended to over-forecast WIND over the entire period with 
the FBIAS exceeding a value of 2.0 most of the time. This reduction in skill and 
increase in over-forecast tendency is especially evident for WIND GE 18 m/s, 
which shows extremely small values of O-Rate and F-Rate indicative of a situation 
where there are only very limited areas when the threshold is exceeded and resulting 
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in lower scores due to the difficulty imposed when scoring over limited areas 
(Jolliffe and Stephenson 2012). Raby and Cai (2016) and Raby (2016) apply an 
object-based analysis of the underlying cause of the lower skill scores, which is due 
to the difficulty of matching smaller objects compared to larger objects. For smaller 
objects, a displacement error can result in a significant decrease in the number of 
hits and increases in the number of misses, which serves to lower scores compared 
to larger objects that have more hits and less misses from the same displacement 
error. Thus, the lower scores may not be totally attributable to the reduced skill of 
the WRF in forecasting higher wind speeds. 

The graphics showing the FSS, CSI, O-Rate, and F-Rate for TCDC for the 1-km 
WRF for both thresholds are presented in Figs. 10 and 11, respectively. Figure 10 
shows the scores for TCDC GE 25% and Fig. 11 shows the scores for TCDC GE 
50% for each model lead time for the 99-day period. 

  

Fig. 10 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for TCDC GE 25% 
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Fig. 11 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for TCDC GE 50% 

For TCDC, the two threshold values chosen represent the NWS criteria for defining 
cloud-cover conditions of FEW (25%) or greater coverage and SCT (50%) or 
greater coverage. For cloud cover, the O-Rates for both thresholds do not indicate 
significant reduction of event frequency associated with increased threshold 
magnitude as was the case for WIND, but the O-Rate for the higher threshold value 
is lower than that of the lower threshold indicating a modest reduction in event 
frequency. Overall, the FBIAS for TCDC GE 50 is better than that for TCDC GE 
25, which is atypical compared to the other variables. The FBIAS values for both 
thresholds show the strongest under-forecast tendency in the early morning 
between 0500 to 0800 MST, followed by some improvement for the remainder of 
the day. The FSS and CSI for TCDC at the lower threshold are not high, but are 
better than those at the higher threshold. It is interesting to note the FSS score of 
1.0 at 0500 MST. The low value of the CSI at this time (0.4) does not seem 
consistent with the high FSS value. More investigation is needed to explain this 
occurrence. It should be noted that these scores were computed using postprocessed 
WRF output and not raw, prognostic WRF output. The UPP postprocessing 
software uses an algorithm that calculates cloud cover from WRF prognostic 
parameters and variables.  

The graphics showing the FSS, CSI, O-Rate, and F-Rate for VIS for the 1-km WRF 
for both thresholds are presented in Figs. 12 and 13, respectively. Figure 12 shows 
the scores for VIS GE 8000 m and Fig. 13 shows the scores for VIS LE 8000 m for 
each model lead time for the 99-day period. 
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Fig. 12 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for VIS GE 8000 m 

 

Fig. 13 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for VIS LE 8000 m 

For VIS, the two threshold values chosen define the cutoff value separating the VIS 
criterion for VFR from the less favorable conditions of Marginal VFR and 
potentially unfavorable conditions of IFR. The FSS and CSI scores for VIS GE 
8000 m are near perfect, while those for LE 8000 m are not as good. The overall 
reduction in the scores for LE 8000 m, as compared with GE 8000 m, appears to be 
related to the drastic reduction in the event frequency as indicated by O-Rate with 
attendant smaller object sizes. For GE 8000 m, the FBIAS is very good with values 
close to 1.0, but at LE 8000 m the values range between 0.5 and 0.8 indicating an 
under-forecast tendency for lower VIS events. For lower VIS events, it is 
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noteworthy that the lowest skill occurs during the afternoon hours as opposed to 
the early morning hours. Reduction in VIS during the afternoon hours may be 
associated with the occurrence of some blowing-dust events, which are relatively 
infrequent during the winter months. Another factor contributing to this apparent 
lack of skill might be the code used by the UPP for postprocessing the WRF output. 
The VIS algorithm does not account for dust in its calculations; thus, even though 
WRF was predicting a dust field (and outputting a VIS field based solely on dust), 
this was not accounted for in the forecast VIS used for this verification. This, in 
combination with the fact that the METAR VIS observations used in the URMA 
analysis will necessarily include the effects of dust, may have contributed to this 
apparent lack of skill in the afternoon hours. 

The scores and statistics for the remaining variables UGRD, VGRD, and SPFH all 
present the same patterns in terms of high scores with lower thresholds and lower 
scores with higher, event-limiting thresholds. Since there are no operational 
thresholds for these variables, their scores will not be presented here, but are 
presented in the Appendix. 

4.2 3-km WRF Domain 

The following graphics show the FSS, CSI, FBIAS, O-Rate, and F-Rate for all 
variables for both thresholds and the analysis for the 3-km WRF domain. The 
graphics showing the scores for TMP for both thresholds are presented in Figs. 14 
and 15, respectively. Figure 14 shows the 2-m-AGL TMP scores for freezing and 
above temperatures and Fig. 15 shows the scores for freezing and below 
temperatures for each model lead time for the 99-day period. 
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Fig. 14 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for TMP GE 273 K 

 

Fig. 15 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for TMP LE 273 K 

The FSS scores in the left graphics are for a 21- × 21-km neighborhood that is 
within the “effective resolution” for a 3-km grid spacing, which is approximately 
18–24 km, so the scores characterize the skill for smallest features that can be 
resolved by the WRF in this domain. For above-freezing TMP, the FSS is near 
perfect over the 24-h period. This is consistent with the CSI and FBIAS values in 
the right graphics, which are very close to a perfect 1.0 value. The O-Rate and  
F-Rate values show relative frequencies of occurrence of forecast and observed 
events to be very high and nearly equal for the daytime period. At night, the 
frequencies differ with the F-Rate being slightly higher than the O-Rate, which 
results in a slight over-forecast tendency. For below-freezing TMP, the FSS is not 
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as high and varies over the diurnal period. The highest FSS scores occur in the early 
morning, which is consistent with higher frequencies of occurrence of O-Rate and 
is an indication that when below-freezing temperatures are more likely to occur, the 
WRF shows good skill. This is also reflected in the FBIAS values in the early 
morning, which are fairly close to 1.0. From midmorning to late afternoon, for 
below-freezing TMP, the FSS is lowest with the FBIAS showing an over-forecast 
tendency when the relative frequency of occurrence of observed events is lowest. 
By early evening, the FSS has increased to show good skill as the frequency of 
occurrence of observed events starts to rise and the over-forecast tendency 
decreases to a value near 1.0. At night, there is a steady increase in the frequency 
of occurrence of observed events into the early morning hours, but the frequency 
of forecast events does not match this steady increase resulting in the transition to 
an under-forecasting tendency and slightly lower FSS values. The CSI for below-
freezing TMP is decidedly lower than for above-freezing TMP and remains steady 
near a value of 0.6 over the 24-h period. 

The graphics showing the FSS, CSI, FBIAS, O-Rate, and F-Rate for 2-m-AGL DPT 
for the 3-km WRF for both thresholds are presented in Figs. 16 and 17, respectively. 
Figure 16 shows the scores for DPT GE 265 K and Fig. 17 shows the scores for 
DPT GE 280 K for each model lead time for the 99-day period. 

 

Fig. 16 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for DPT GE 265 K 
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Fig. 17 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for DPT GE 280 K 

For DPT GE 265 K, the skill of the WRF is judged to be almost perfect as indicated 
by the FSS being 1.0 and the CSI being very close to 1.0 over the 24-h period. The 
FBIAS values show good agreement with the values being close to 1.0 over the 
diurnal period. The overall tendency is for slight over-forecasting over most of the 
day except for midmorning when the O-Rate and F-Rate are nearly equal resulting 
in FBIAS values being closest to 1.0. Despite FBIAS being close to 1.0 over the 
remaining portions of the day, the O-Rate and F-Rate do not track each other very 
well as was the case for TMP, but the magnitude of their difference is not significant 
as indicated by the FBIAS being close to 1.0. For DPT GE 280 K, the skill of the 
WRF is not as good as that at the lower threshold as evidenced by the lower FSS 
and CSI scores. The best skill is achieved in the early morning when the relative 
frequency of these higher DPT values is at its lowest for the 24-h period. The 
FBIAS values show an under-forecasting tendency in the early morning to the late 
afternoon and then transitions to an over-forecasting tendency at night. This 
transition is reflected in the behavior of the O-Rate and F-Rate with the former 
increasing sharply during midmorning to a peak well above the latter by midday. 
This is followed by a sharp decrease in O-Rate from the evening into early morning. 
The F-Rate undergoes a similar pattern of an increase followed by a decrease, but 
displaced later in time. Despite the seemingly small differences in the values of  
O-Rate and F-Rate, the magnitude of the FBIAS before and after this transition is 
relatively large. 

The graphics showing the FSS, CSI, FBIAS, O-Rate, and F-Rate for 10-m-AGL 
WIND for the 3-km WRF for both thresholds are presented in Figs. 18 and 19, 
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respectively. Figure 18 shows the scores for WIND GE 14 m/s and Fig. 19 shows 
the scores for WIND GE 18 m/s for each model lead time for the 99-day period. 

 

Fig. 18 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for WIND GE 14 m/s 

 

Fig. 19 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for WIND GE 18 m/s 

For WIND GE 14 m/s, the FSS and CSI scores are fairly low, which is a reflection 
of the impact of the threshold value that is sufficiently high to reduce the O-Rate to 
very-low values over the 24-h period. This is consistent with the reduced incidence 
of stronger winds over the 3-km domain in winter compared with other times of the 
year. However, the WRF tended to over-forecast WIND GE14 m/s over the entire 
period with the FBIAS exceeding a value of 2.0 most of the time. The impact of 
low O-Rate on reduced skill and increased over-forecast tendency is especially 
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evident for WIND GE 18 m/s. This variable shows extremely small values of  
O-Rate and F-Rate, indicative of a situation where there are only very-limited areas 
when the threshold is exceeded and resulting in lower scores due to the difficulty 
imposed when scoring over limited areas characterized by small objects as was the 
case for the 1-km domain. Similarly, the lower scores for the 3-km domain may not 
be totally attributable to the reduced skill of the WRF to forecast higher wind 
speeds. 

The graphics showing the FSS, CSI, FBIAS, O-Rate, and F-Rate for TCDC for the 
3-km WRF for both thresholds are presented in Figs. 20 and 21, respectively. 
Figure 20 shows the scores for TCDC GE 25% and Fig. 21 shows the scores for 
TCDC GE 50% for each model lead time for the 99-day period. 

  

Fig. 20 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for TCDC GE 25% 
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Fig. 21 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for TCDC GE 50% 

For cloud cover, in contrast to the significant reduction in event frequency for 
WIND for both thresholds, the O-Rate for the lower threshold shows only a modest 
reduction in event frequency and the O-Rate for the higher threshold shows a 
somewhat larger reduction in frequency. Overall, the FBIAS for TCDC GE 50% is 
better than that for TCDC GE 25%, which is atypical compared with the other 
variables. The FBIAS values for both thresholds show the strongest under-forecast 
tendency in the early morning between 0500 to 0800 MST, followed by some 
improvement for the remainder of the day. The FSS and CSI for TCDC at the lower 
threshold are not high, but are better than those at the higher threshold. 

The graphics showing the FSS, CSI, O-Rate, and F-Rate for VIS for the 3-km WRF 
for both thresholds are presented in Figs. 22 and 23, respectively. Figure 22 shows 
the scores for VIS GE 8000 m and Fig. 23 shows the scores for VIS LE 8000 m for 
each model lead time for the 99-day period. 
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Fig. 22 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for VIS GE 8000 m 

 

Fig. 23 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for VIS LE 8000 m 

The FSS and CSI scores for VIS GE 8000 m are near perfect while those for LE 
8000 m are not as good. The overall reduction in the scores for LE 8000 m appears 
to be related to the drastic reduction in event frequency as indicated by O-Rate with 
attendant smaller object sizes. As was the case for the 1-km WRF, for GE 8000 m 
the FBIAS is very good with values close to 1.0, but at LE 8000 m the values range 
between 0.4 and 0.6 indicating an under-forecast tendency for lower VIS events. 
For lower VIS events, the period of time with the lowest skill occurs during the 
afternoon hours as opposed to the early morning hours, which was also the case for 
the 1-km WRF. Reduction in VIS during the afternoon hours may be associated 
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with the occurrence of some blowing dust events, which are relatively infrequent 
during the winter months. Thus, the same contributing factors described for the  
1-km nest, namely the UPP VIS algorithm not accounting for dust and the METAR 
VIS observations including the effects of dust, may explain some of the apparent 
lack of skill in the afternoon hours. 

The scores and statistics for the remaining variables UGRD, VGRD, and SPFH all 
present the same patterns in terms of high scores with lower thresholds and lower 
scores with higher, event-limiting thresholds. Since there are no operational 
thresholds for these variables, their scores will not be presented here, but are 
presented in the Appendix.  

5. Summary and Conclusion 

This assessment was conducted to provide a statistically strong evaluation of the 
accuracy of the WRF model that was run as part of the DEVCOM Army Research 
Laboratory’s WREN_RT system, which provides the forecasts of tactically 
significant variables and input to decision aids used for battlefield-knowledge 
products. Previous assessments of the WRF were based on relatively short periods 
of time that do not have the statistical strength attainable from a large data set of 
forecast and ground-truth data. This assessment was the first of our ongoing 
program of model verification to apply a set of input data from a continuous  
99-day period for the computation of spatial-verification skill scores and error 
statistics. The assessment used advanced neighborhood and traditional categorical-
verification techniques to accomplish verification of the WRF forecasts using 
URMA gridded observations as ground truth. The data used for the evaluation 
consisted of WRF forecasts for the middle, 3-km, and inner, 1-km, domains and 
URMA gridded observations, which were collected for a 99-day winter period from 
11 November 2016 to 17 February 2017. The domains for the data were the middle 
and inner nested grids of the WRF model domains located in the southwestern 
United States and northern Mexico characterized by complex mountain-desert-
basin topography.  

The MET Grid-Stat tool was used to perform the verification, which involved the 
ingestion of hourly WRF forecasts and URMA gridded observations of several 
near-surface meteorological variables and cloud cover for each grid point. The 
Grid-Stat tool computed the differences between the WRF and observed variables 
at each grid point and generated partial sums, and the contingency table counts and 
statistics for a range of neighborhood sizes and threshold values for the entire 
domain and for each neighborhood from which skill scores and error statistics were 
calculated. The METViewer tool was used to ingest the output of Grid-Stat, 
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aggregate the contingency table counts data, and generate the error statistics and 
graphics for a selected neighborhood size over the both domains, and display them 
as 24-h time series. The plots depicting the FSS, CSI, FBIAS, O-Rate, and F-Rate 
for all variables were analyzed to gain insight into the factors that affect their 
evaluation of the accuracy of the WRF model. The accuracy of WRF predictions 
varied diurnally over the 24-h period and with the model domain (a larger 3-km 
grid spacing domain and a smaller 1-km grid spacing domain) and also varied 
depending on the threshold value. 

5.1 1-km WRF Domain 

The skill of the WRF is judged to be very good when the FSS values are GE 0.9. 
Generally, in these cases, the CSI score was also high (GE 0.9) and the FBIAS 
values were very close to 1.0. These scores are associated with high frequencies of 
observed and forecast events that were characterized by values of O-Rate and  
F-Rate GT 0.55. Forecasts of TMP GE 273 K, DPT GE 265 K, VIS GE 8000 m, 
UGRD GE 0 m/s, and SPFH GE 0.002 Kg/Kg fell into this category. The exception 
to this was UGRD, which had CSI scores ranging between 0.6 and 0.8. In this case, 
the values of O-Rate and F-Rate fell between 0.55 and 0.70. 

The skill of the WRF is judged to be not as good when the FSS values were LT 0.9. 
Generally, in these cases, the CSI score was also not high (LT 0.9) and the FBIAS 
values were not as close to 1.0 showing varying degrees of over- and under-forecast 
tendency. These scores are associated with lower frequencies of observed and 
forecast events, which were characterized by values of O-Rate and F-Rate LT 0.55. 
Forecasts of TMP LE 273 K, DPT GE 280 K, VIS LE 8000 m, WIND GE 14 m/s, 
WIND GE 18 m/s, UGRD GE 8 m/s, VGRD GE 0 m/s, VGRD GE 8 m/s, TCDC 
GE 25%, TCDC GE 50%, and SPFH GE 0.008 Kg/Kg fell into this category. 
VGRD GE 0 m/s was a borderline case where the FSS ranged between 0.85 and 
0.91 and the O-Rate and F-Rate values were GT 0.55 for several hours. 

5.2 3-km WRF Domain 

The skill of the WRF is judged to be very good when the FSS values are GE 0.9. 
Generally, in these cases the CSI score was also high (GE 0.9) and the FBIAS 
values were very close to 1.0. These scores are associated with high frequencies of 
observed and forecast events, which were characterized by values of O-Rate and  
F-Rate GT 0.55. Forecasts of TMP GE 273 K, DPT GE 265 K, VIS GE 8000 m, 
UGRD GE 0 m/s, and SPFH GE 0.002 Kg/Kg fell into this category. The exception 
to this was UGRD, which had CSI scores ranging between 0.7 and 0.8. In this case, 
the values of O-Rate and F-Rate fell between 0.55 and 0.70. 
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The skill of the WRF is judged to be not as good when the FSS values were LT 0.9. 
Generally, in these cases, the CSI score was also not high (LT 0.9) and the FBIAS 
values were not as close to 1.0, showing varying degrees of over- and under-
forecast tendency. These scores are associated with lower frequencies of observed 
and forecast events, which were characterized by values of O-Rate and F-Rate LT 
0.55. Forecasts of TMP LE 273 K, DPT GE 280 K, VIS LE 8000 m, WIND GE 
14 m/s, WIND GE 18 m/s, UGRD GE 8 m/s, VGRD GE 0 m/s, VGRD GE 8 m/s, 
TCDC GE 25%, TCDC GE 50%, and SPFH GE 0.008 Kg/Kg fell into this category. 
VGRD GE 0 m/s was a borderline case where the FSS ranged between 0.87 and 
0.91 and the O-Rate and F-Rate values were GT 0.55 for several hours. 

5.3 Both WRF Domains 

Evaluating the skill of the WRF in both domains using the FSS and CSI scores was 
subject to significant influence from the relative frequencies of observed and 
forecast events. When the frequencies are high the scores were better, and when the 
frequencies were lower the scores were not as good. These frequencies are affected 
by the particular threshold value used. In this study, an attempt was made to select 
thresholds that reflected operational values used by the NWS to advise of 
potentially hazardous weather conditions. Often such conditions are, by their 
nature, very infrequent, but nonetheless of high interest because of their impacts on 
aviation and other activities. This enhances the need to evaluate the skill of 
forecasts of low-frequency events. Other impacts on the frequencies come from 
seasonal and diurnal changes in weather conditions, which can vary as a function 
of domain location and terrain features. This would seem to indicate forecasting 
less-frequent events is more of a challenge for the WRF, but there are factors 
associated with the use of this verification method that contribute to the lower 
scores. When applying thresholds that limit the frequency of events so there are 
only a few small objects available for matching, the resulting scores are often 
poorer due to the impact of a displacement error on the numbers of hits and misses 
used for scoring. For a given displacement error, matching smaller objects results 
in a smaller number of hits and a larger number of misses, which lowers the scores, 
and matching larger objects results in a larger number of hits and a smaller number 
of misses. 

This study was designed to evaluate the accuracy of WRF forecasts over two 
different domains—the larger domain for the 3-km WRF covered an area 12.4 times 
the area covered by that of the smaller domain for the 1-km WRF with an overlap 
of about 8% of the area of the 3-km domain. This makes any comparison of the 
scores in the two domains very problematic as there are different weather 
conditions occurring in the two domains that impact the scores differently. In 
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addition, there are terrain differences between the two domains. For a fair 
comparison using the same input data, the design could be changed to score the two 
domains over the common area, which would eliminate the differences in weather 
conditions and terrain. Another factor that adds to the difficulty of comparing the 
scores of the two domains is the selection of the FSS scores for one neighborhood 
size for showing results. The size chosen was 21 × 21 km, which is larger than the 
“effective resolution” of the 1-km WRF and the same as that of the 3-km WRF. 
This could potentially give an advantage to the 1-km WRF because the scoring is 
applied to features larger than the minimum resolved size, while for the 3-km WRF 
the scoring is applied to features with the minimum resolvable size. 

The scores do not take into account the error inherent with the URMA ground truth 
data. The evaluation conducted by Raby et al. (2020) quantified the continuous 
error statistics of URMA when compared with point observations, so the use of 
URMA for this study will introduce some uncertainty into the scores computed, but 
it is difficult to quantify the impact of URMA errors. Certainly, using the URMA 
gridded observations on a 2.5-km grid may provide a fair set of ground truth data 
for evaluating the WRF over the 3-km domain, but for the WRF over the 1-km 
domain, the potential lack of skill of the URMA in capturing smaller scale, terrain-
induced features may have affected the scores of the 1-km WRF in a negative way. 

5.4 Future Work 

Additional assessments using different techniques are needed to more completely 
characterize the skill of the WRF in view of the uncertainty in the scores from this 
study arising from smaller relative frequencies of events. Another benefit of 
conducting further assessments is to better understand the impact of domain 
location, size, and geography on model errors. Furthermore, understanding which 
processes or parameterizations of the model are contributing to the errors would be 
of value to modelers striving to improve model performance. To achieve this, 
studies are needed that 1) provide independent assessments of each WRF nest using 
a few different methodologies and 2) provide assessments of both nests over the 
inner nest common to both nests. 

Providing independent assessments of the WRF for each nest will enable 
comparisons with the results of this study. One approach would be to perform a 
grid-to-point verification using MET Point-Stat using point observations to 
generate continuous error statistics as well as categorical error statistics and scores. 
Another approach would be to use a different technique that will provide the same 
spatial-categorical approach used in this study. MET Series-Analysis can be used 
to apply the same thresholds as the present study using the same 99-day input data 
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set to generate the same categorical statistics and scores (except for FSS) 
aggregated over the 99 days for each grid point to produce a 2-D distribution of 
scores over each domain at each lead time (Jensen et al. 2020). Having the areal 
distribution of scores over each domain may provide insight on the impacts of 
terrain features on model performance.  

Assessing the WRF over a domain common to both nests provides a way to 
eliminate any differences between both nests attributable to their respective areas 
encompassed within each nest, their respective locations as well as the weather 
conditions occurring in each nest. This will provide insight into the relative 
strengths and weaknesses of the 1-km WRF compared with the 3-km WRF. One 
method to apply this approach would be to rerun MET Grid-Stat using the same 
input data as the present study, but instead of scoring over the entire areas of the 
two domains, apply a mask to perform scoring only over the area common to both 
domains. Additionally, studies that use the MET Point-Stat and MET Series-
Analysis tools over the common domain could be used to provide a more 
comprehensive assessment to further understand the differences between the two 
WRF nests.  

To better understand what aspects of the model are causing low scores, the next 
step is to develop techniques that can isolate the process or configuration setting in 
the WRF, which is contributing significantly to the errors. This information could 
assist in efforts to improve model performance. Smith and Penc (2017) describe a 
promising approach that uses the statistical design of experiments (DoE) technique 
and present a method for developing the design matrix for applying the technique 
to NWP forecasts. Smith et al. (2019) demonstrates an application of this method 
to NWP. Although other methods are available to study these factor level effects, 
for example Stein and Alpert (1993), Cleveland et al. (2020) demonstrates that 
factor methods are a special case of DoE. The DoE technique involves a controlled 
statistical analysis of numerous model runs that were configured and run as 
prescribed by the design matrix.  
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Appendix. Fractions Skill Score (FSS), Critical Success Index (CSI), 
Frequency Bias (FBIAS), Observed Rate (O-Rate), and 
Forecast Rate (F-Rate) for U Wind Component (UGRD),  
V Wind Component (VGRD), and Specific Humidity (SPFH)
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Fig. A-1 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for UGRD GE 0 m/s 

 

Fig. A-2 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for UGRD GE 8 m/s 
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Fig. A-3 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for VGRD GE 0 m/s 

 

Fig. A-4 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for VGRD GE 8 m/s 
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Fig. A-5 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for SPFH GE 0.002 Kg/Kg 

 

Fig. A-6 FSS, CSI, FBIAS, O-Rate, and F-Rate for 1-km WRF for SPFH GE 0.008 Kg/Kg 
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Fig. A-7 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for UGRD GE 0 m/s 

 

Fig. A-8 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for UGRD GE 8 m/s 
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Fig. A-9 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3km WRF for VGRD GE 0 m/s 

 

Fig. A-10 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for VGRD GE 8 m/s 
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Fig. A-11 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for SPFH GE 0.002 Kg/Kg 

 

Fig. A-12 FSS, CSI, FBIAS, O-Rate, and F-Rate for 3-km WRF for SPFH GE 0.008 Kg/Kg 
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List of Symbols, Abbreviations, and Acronyms 

2-D two-dimensional 

2DVAR  two-dimensional variational data assimilation 

3-D three-dimensional 

ACARS Aircraft Communications, Addressing, and Reporting System  

AGL  above ground level 

CONUS  continental United States 

CSI Critical Success Index 

DEVCOM US Army Combat Capabilities Development Command 

DOE  US Department of Energy 

DoE Design of Experiments 

DPT  dew-point temperature 

FBIAS frequency bias 

F-Rate forecast rate 

FSS Fractions Skill Score 

GE “greater than or equal to” logical statement 

GT “greater than” logical statement 

HRRR  High-Resolution Rapid Refresh 

IFR Instrument Flight Rules 

K  Kelvin 

LE “less than or equal to” logical statement 

LT “less than” logical statement 

m/s  meters per second 

MADIS Meteorological Assimilation Data Ingest System 

MET  Model Evaluation Tools 

METAR  Météorologique Aviation Régulière 
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mph miles per hour 

MST Mountain Standard Time 

MYNN Mellor-Yamada Nakanishi Niino 

NCAR  National Center for Atmospheric Research 

NCEP  National Center for Environmental Prediction 

NOAA  National Oceanic and Atmospheric Agency 

NSF  US National Science Foundation 

NWP  Numerical Weather Prediction 

NWS  National Weather Service 

O-Rate observed rate 

RAP  Rapid Refresh 

RTMA  Real-Time Mesoscale Analysis 

STAT  tabular ASCII data format 

SPFH specific humidity 

TCDC total cloud cover 

TMP  temperature 

UGRD  U wind component 

UPP Unified Post Processor 

URMA  UnRestricted Mesoscale Analysis 

USAF  US Air Force 

UTC Coordinated Universal Time 

VIS visibility 

VFR Visual Flight Rules 

VGRD  V wind component 

WIND  wind speed 

WRE-N  Weather Running Estimate – Nowcast 

WREN_RT  Weather Running Estimate – Nowcast Real-Time  
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WRF Weather Research and Forecasting  

WRF-ARW Weather Research and Forecasting – Advanced Research 

WRF-Chem Weather Research and Forecasting – Chemistry   
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