
 
 
 
 

 ARL-TR-9235 ● JULY 2021 
  
 
 
 

 
 
Combining Sparse and Dense Databases to 
Form a Robust Aerodynamic Model for a  
Long-Range High-Speed Projectile 
 
by Bradley T Burchett, Joseph D Vasile, and Joshua T Bryson 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 

 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-9235 ● JULY 2021 

 

 
 
Combining Sparse and Dense Databases to Form a 
Robust Aerodynamic Model for a Long-Range  
High-Speed Projectile 
 
Bradley T Burchett, Joseph D Vasile, and Joshua T Bryson 
Weapons and Materials Research Directorate, 
DEVCOM Army Research Laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 

 



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

July 2021  
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

1 November 2020–14 May 2021 
4. TITLE AND SUBTITLE 

Combining Sparse and Dense Databases to Form a Robust Aerodynamic Model 
for a Long-Range High-Speed Projectile 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Bradley T Burchett, Joseph D Vasile, and Joshua Bryson 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

DEVCOM Army Research Laboratory 
ATTN: FCDD- RLW-WD 
Aberdeen Proving Ground, MD  21005 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-9235 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release: distribution unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID IDs: Bradley T Burchett, 0000-0002-1934-0537; Joshua Bryson, 0000-0002-0753-6823; Joseph D Vasile, 0000-0003-
3812-6277 
14. ABSTRACT 

Several aerodynamic databases are combined to form an aerodynamic model for a high-speed long-range missile. A large test 
matrix of flight conditions was formed and exercised on a semi-empirical prediction code and an inviscid computation fluid 
dynamics (CFD) solver, providing full-density databases of low fidelity. Higher-fidelity methods, specifically Navier–Stokes 
CFD and wind tunnel tests, were applied to a small subset of the test matrix resulting in sparse but accurate predictions of the 
aerodynamic forces and moments. In this work we demonstrate a novel approach to combining the databases such that 
features of the low-fidelity predictions are preserved as they are tuned to intersect the sparse data provided by the high-fidelity 
sources. This is done by modeling the dense predictions with a set of basis functions, then tuning the basis functions to 
intersect the points from the high-fidelity sources. Harmonic basis functions are used to reflect the cyclical symmetry of the 
projectile used in this study. Examples show that this method outperforms established kriging methods. 
15. SUBJECT TERMS 

projectile aerodynamics, wind tunnel, WT, computation fluid dynamics, CFD, data fusion 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

35 

19a. NAME OF RESPONSIBLE PERSON 

Bradley T Burchett 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(410) 306-0792 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables iv 

1. Introduction 1 

2. Data Sources 2 

3. Method: Fourier Series Interpolation and Superposition 6 

3.1 The Complex Valued Fourier Series 6 

3.2 Collecting Smoothed CFD Predictions for a Range of AOA 7 

3.3 Full Model Buildup by Superposition 8 

4. Tuning the Basis Functions 9 

4.1 RAS Components 9 

4.2 MAS Components 12 

5. Polynomial Regression and Build 18 

6. Results 18 

7. Conclusion 25 

8. References 26 

List of Symbols, Abbreviations, and Acronyms 27 

Distribution List 29



 

iv 

List of Figures 

Fig. 1 High-speed LTV-1 ................................................................................ 2 

Fig. 2 Sparsity pattern of the CFD++ computational test matrix for pitch 
moment, entire airframe, Mach = 0.75, and zero deflections ............... 4 

Fig. 3 Sparsity pattern of the WT data for pitch moment after interpolation 
and replication, entire airframe, Mach = 2, and zero deflections ......... 5 

Fig. 4 RASs, side-force CFD data at Mach 2 (dots). Fourier interpolation is 
superimposed (solid lines) showing smoothing, symmetry, and null 
points at phi-0°, 45°,… 360°. ................................................................ 7 

Fig. 5 RASs, side-force CFD data at Mach 2, and Fourier approximations 
from Fig. 4 collected in a single surface ............................................... 8 

Fig. 6 Viewing the aero buildup as a network with tuning applied to the RAS 
terms ...................................................................................................... 9 

Fig. 7 Sequence of iterates for RAS tuning, pitch moment, Mach = 0.75, 
AOA = 6°. The blue curve is the Cart3D data manifold for the built-up 
coefficient before tuning, and diamonds depict the CFD++ data 
available. X’s are the iterates that become brighter red for subsequent 
iterations. ............................................................................................. 12 

Fig. 8 Tuning MAS terms by backpropagation ............................................. 14 

Fig. 9 Pitch coefficient matching prior to and after network tuning, Mach = 
2.0........................................................................................................ 17 

Fig. 10 Side-moment coefficient comparison for all data sources, plus mode, 
Mach = 2.0, roll angle = 22.5° ............................................................ 20 

Fig. 11 Pitch coefficient comparison for all data sources, Mach = 2.0, roll 
angle = 0° ............................................................................................ 22 

Fig. 12 Side-force coefficient comparison for all data sources, plus mode, 
Mach = 2.0, roll angle 22.5° ............................................................... 23 

Fig. 13 Normal force coefficient comparison for all data sources, plus mode, 
Mach = 2.0, roll angle = 22.5° ............................................................ 24 

 

List of Tables 

Table 1 Wind tunnel test conditions (courtesy of Florida State University) ..... 5 



 

1 

1. Introduction 

As computational fluid dynamics (CFD) software packages become ubiquitous in 
aerospace applications, and computing power continues to become more 
affordable, researchers can produce large sets of aerodynamic predictions at the 
touch of a button.1–3 The accuracy of these predictions is typically proportional to 
the number of floating point operations expended in computing each prediction. 
That quantity is a function of the grid size and prediction method (inviscid, 
Reynolds-averaged Navier–Stokes [RANS], large-eddy simulation, etc.). Thus, due 
to constraints of cost and time, it is customary to render large tables of predictions 
using less-accurate methods, while more-precise predictions are limited to coarse 
tables. When experiments such as wind tunnel (WT) tests are added to the mix, the 
experimental table is likely to be even more sparse than the most precise CFD 
predictions. In essence, if an engineer is dealing with multiple “data” sources, those 
less costly solutions are likely to provide more-comprehensive tables in Mach, 
angle of attack (AoA), roll, and deflections. The more accurate and more costly 
sources will provide fewer table entries; however, their predictions should be 
trusted as closer to the truth.  

This situation arises in many disciplines since more-accurate instrumentation 
typically comes with a higher cost, lower bandwith, and lower duty cycle. A brief 
review of the literature on aerodynamic data fusion from multifidelity sources 
reveals that most techniques involve the use of “surrogate models” that can take 
many forms.4–6 The surrogate model is used in place of the highest-fidelity models 
to allow for repeated low-cost predictions during the tuning process. Some 
surrogate models are physics-based equations typically of reduced order. Many are 
simply basis functions without any grounding in the underlying physics. In this 
work we use a surrogate model based upon Fourier series we have outlined in an 
accompanying report.7 

In this work we tune a Fourier model to the WT data using an approach from linear 
feedforward neural networks. The method is demonstrated on computational 
predictions and experimental observations from the Laboratory Technology 
Vehicle (LTV), a long-range high-speed projectile. Figure 1 depicts the CAD model 
of LTV-1. It is designed for high-speed long-range flight with four long low-aspect-
ratio fins to enhance body lift at non-zero AoAs. Due to these lifting surfaces, the 
aerodynamic forces and moments are strongly roll-dependent. In this work, all of 
the data sources were given in the wind or “tunnel” frame, unlike the previous work 
where we modeled them in the body frame. Thus forces and moments are measured 
much like they would be in a WT: The model is rotated with respect to the flow; 
however, the forces and moments are measured in a frame fixed to the tunnel. 
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Figure 1b depicts a projection of the relative wind and aerodynamic roll angle. The 
wind frame unit vectors for transverse forces {�̂�𝑆,𝑁𝑁�} and moments {𝑚𝑚� ,𝑛𝑛�} are 
depicted extending from the projectile axis of symmetry. The body frame unit 
vectors for normal and side force are depicted at the right edge of the figure for 
contrast.  

 
 

a) Isometric view of 3-D model 

 

 
 

b) Tail view in “plus” mode; aerodynamic roll 
and local frames defined 

Fig. 1 High-speed LTV-1 

We conclude this report by comparing the final model to the data sources to show 
model evolution, averaging, and accuracy. An alternative model is formed based 
on the kriging method from Ghoreyshi et al.4 Selected comparisons show that our 
method matches the training data, expected symmetry, and null points better than 
the kriging method.  

2. Data Sources 

To provide high-fidelity predictions within a 6 degrees of freedom (6DOF) 
simulation, several methods of increasing accuracy were used to estimate the 
aerodynamic forces and moments for the LTV-1 projectile: the DATCOM semi-
empirical aero-prediction code, NASA’s Cart3D Euler Computation Fluid 
Dynamic code (C3D), Metacomp’s CFD++ RANS simulation, and a WT 
experiment performed at Florida State University.8 

Since the aerodynamic forces and moments for this airframe tend to be highly  
roll- dependent, a dense matrix of test points was determined for the lower-fidelity 
methods. Each force/moment is dependent upon Mach number (M), AoA (𝛼𝛼), 
aerodynamic roll angle (𝜙𝜙), and for moveable aerodynamic surface (MAS) terms, 
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flap deflection (𝛿𝛿). The full test matrix can be described as all possible 
combinations of the following:  

𝑀𝑀 ∈ {0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.02, 1.2, 1.5, 2, 2.5, 3, 3.5, 4, 6, 9},𝑁𝑁𝑀𝑀 = 16 

𝜙𝜙 ∈ {0∘, 11.25∘, 22.5∘, … 348.75∘},𝑁𝑁𝜙𝜙 = 32 

𝛼𝛼 ∈ {0∘, 2∘, 4∘, … , 20∘, 25∘},𝑁𝑁𝛼𝛼 = 12 

𝛿𝛿 ∈ {−30∘,−25∘, … − 5∘,−2∘, 0∘, 2∘, 5∘, 10∘, … , 30∘},𝑁𝑁𝛿𝛿 = 15  

Thus the total number of cases computed in DATCOM and Cart3D is 

𝑁𝑁𝑀𝑀 ∙ 𝑁𝑁𝜙𝜙 ∙ 𝑁𝑁𝛼𝛼 ∙ 𝑁𝑁𝛿𝛿 = 92160. 

Cart3D was used to predict the force and moment vectors for the rigid aero surfaces 
(R, RASs) and MASs (M) separately (𝐶𝐶𝜗𝜗𝑅𝑅 ,𝐶𝐶𝜗𝜗𝑀𝑀 𝜗𝜗 ∈ {𝐴𝐴, 𝑆𝑆,𝑁𝑁, 𝑙𝑙,𝑚𝑚,𝑛𝑛}) as well as the 
total for the entire airframe (𝐶𝐶𝜗𝜗𝐵𝐵). Cart3D also calculated the MAS hinge moments. 
These results were stored in 12 × 16 × 33 arrays (𝛼𝛼 × 𝑀𝑀 × 𝜙𝜙) for RAS and sets of 
12 × 16 × 33 arrays—one for each 𝛿𝛿—for MAS. Data for 0° bank were replicated 
to create the 33rd layer for 360° bank. 

DATCOM was used to predict the force and moment vectors for the entire airframe. 
Its output was stored in 12 × 16 × 33 arrays to correspond pointwise to the Cart3D 
results. The DATCOM drag data were used to directly replace Cart3D drag. This 
is done by finding a Fourier basis fit to DATCOM drag (Section 3) and using it in 
place of Cart3D. The other DATCOM predictions are ignored. 

High-fidelity methods are computationally expensive and could not fill the entire 
test matrix without incurring a prohibitive computational cost. CFD++ was used to 
predict a subset of the total force and moment components for the entire airframe 
at points described by  

𝑀𝑀 ∈ {0.65, 0.75, 0.85, 0.95, 1.02, 1.2, 1.5, 2, 2.5, 3, 3.5, 4},𝑁𝑁𝑀𝑀 = 12 

𝛼𝛼 ∈ {0∘, 2∘, 4∘, … , 12∘},𝑁𝑁𝛼𝛼 = 7 

𝜙𝜙 ∈ {0∘, 11.25∘, 22.5∘, … 78.75∘},𝑁𝑁𝜙𝜙 = 8 

𝛿𝛿 = 0∘ 

These data were stored in 12 × 16 × 33 arrays to correspond pointwise to the Cart3D 
results. These arrays were filled with NaNs (not a number) where computation in 
CFD++ was skipped. Figure 2 illustrates the points actually computed in CFD++ 
as blue dots where rows are points in 𝛼𝛼, and columns are points in 𝜙𝜙 from the 
Cart3D test grid for pitch moment at Mach 0.75. The axis scaling is by indices into 
the array rather than the independent variables.  
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Fig. 2 Sparsity pattern of the CFD++ computational test matrix for pitch moment, entire 
airframe, Mach = 0.75, and zero deflections 

Since these were was for zero deflections, symmetry was invoked so that the 
computational output was replicated each 90° of bank.  

A large set of data was collected using a 1/5 scale model at the Florida State 
University WT.8 Test conditions are described in Table 1. Even though this is an 
extensive test set for the WT, these data are still sparse in comparison with that of 
the low-fidelity computational methods. Also note that due to the experimental 
nature of these tests, the points in the Cart3D test grid were not duplicated exactly. 
Because of this, the WT data were interpolated across Mach, 𝛼𝛼, and 𝜙𝜙 to the Cart3D 
input table, and these results were stored in 12 × 16 × 33 arrays. Extrapolation was 
avoided and no data were available for 𝛼𝛼 > 12 or 𝑀𝑀 > 4. Since roll sweeps were 
performed at 𝛼𝛼 ∈ {0∘, 6∘, 12∘}, and 𝛼𝛼 sweeps were performed for 𝜙𝜙 ∈ {0∘, 45∘}, 
symmetry could be invoked (replicating the results each 90° of bank) to produce 
the sparsity pattern shown in Fig. 3 for all Mach numbers 4 and below. Points that 
could not be interpolated from adjacent conditions in the WT were filled with 
NaNs.   

0 5 10 15 20 25 30

nz = 105

0

5

10

Cm, Mach = 0.75
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Table 1 Wind tunnel test conditions (courtesy of Florida State University) 

Model Deflections Mach 
number Pitch/roll sweeps 

Baseline 
 

0 

0.4, 0.5, 
0.6, 0.8, 
0.9, 1.1, 

1.2, 5 

Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 

0 3, 5 

Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

0 2 
Roll: –90° to 90° at Alpha = 10° 
Roll: –90° to 90° at Alpha = 4° 

0 0.7, 2 

Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

Deflected 

+El 
–El 

0.7, 2 
Pitch: 0° to 12° at Phi = 0° 

Pitch: 0° to 12° at Phi = 45°  

+Ail 
–Ail 

0.7, 2 
Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

 

 

 

Fig. 3 Sparsity pattern of the WT data for pitch moment after interpolation and 
replication, entire airframe, Mach = 2, and zero deflections 
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3. Method: Fourier Series Interpolation and Superposition 

Figure 1 depicts the CAD model of the LTV-1, which is designed for high-speed 
long-range flight with four long strakes to enhance body lift at non-zero AoA. Due 
to these lifting surfaces, the aerodynamic forces and moments are strongly  
roll-dependent. In a previous study,7 we chose to smooth and interpolate CFD force 
and moment predictions using harmonic basis functions. Since the projectile has 
periodic symmetry, harmonic basis functions were a logical choice to properly 
interpret the CFD output along the roll direction. Such basis functions ensured the 
appropriate symmetry and null points for each of the force and moment terms.  

3.1 The Complex Valued Fourier Series 

Any periodic function 𝑓𝑓(𝑡𝑡) with period T may be approximated by the finite series 
of harmonics 

 𝑦𝑦� = 𝑋𝑋0 + 2� |𝑋𝑋𝑛𝑛| cos(2𝜋𝜋𝑛𝑛 ∙ 𝜙𝜙/𝑇𝑇 + ∠𝑋𝑋𝑛𝑛)
𝑛𝑛

 (1) 

where 𝑋𝑋𝑛𝑛 is a complex number defined by  

 

𝑋𝑋𝑛𝑛 =
1
𝑇𝑇
� 𝑓𝑓(𝑡𝑡)𝑒𝑒− 2𝜋𝜋𝑛𝑛𝜋𝜋𝜋𝜋𝑇𝑇
𝑇𝑇

0
𝑑𝑑𝑡𝑡 

 

(2) 

In this work, all of the data sources were given in the wind or “tunnel” frame, unlike 
the previous work, where we modeled them in the body frame. Thus, forces and 
moments are measured much like they would be in a WT: The model is rotated with 
respect to the flow; however, the forces and moments are measured in a frame fixed 
to the tunnel. Considering the periodic symmetry of the projectile outer mold line, 
the period is assumed to be 𝑇𝑇 = 𝜋𝜋/2 for RASs (body and strakes), and 𝑇𝑇 = 2𝜋𝜋 for 
MASs since they move independently.  

The results of CFD are discrete points representing a force or moment component 
at a specific Mach number, AoA, and aerodynamic roll. Eq. 2 is applied to each of 
these, integrating along the roll axis. Due to the discrete nature of the data, 
trapezoidal integration (trapz) renders an exact solution to Eq. 2 where 𝑓𝑓(𝑡𝑡) is the 
input data and 𝑑𝑑𝑡𝑡 is the discretization (typically 11.25° for the most-dense data 
sources).  

Figure 4 shows the CFD side-force estimates for the rigid aerodynamic surfaces at 
Mach 2 for a range of AoAs. Some outliers have already been removed and 
replaced; the methods involved are described in our previous work. The solid lines 
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are the instances of Eq. 3 found at each AoA by applying Eq. 4 to the data. Note 
the solid lines provide a smooth interpolation of the data that provides the expected 
symmetry and null points every 45° of bank. The given “data” exhibits the expected 
period of 𝜋𝜋/2. 

 
Fig. 4 RASs, side-force CFD data at Mach 2 (dots). Fourier interpolation is superimposed 
(solid lines) showing smoothing, symmetry, and null points at phi-0°, 45°,… 360°. 

3.2 Collecting Smoothed CFD Predictions for a Range of AoA 

The end result of our modeling effort will be a set of tables of polynomial 
coefficients for each of the force and moment components (𝐶𝐶𝜗𝜗𝑅𝑅 ,𝐶𝐶𝜗𝜗𝑀𝑀 𝜗𝜗 ∈
{𝐴𝐴, 𝑆𝑆,𝑁𝑁, 𝑙𝑙,𝑚𝑚,𝑛𝑛}), where R denotes the rigid aerodynamic surfaces and M denotes 
the moveable ones. In the “ARL 6DOF” simulation,1 individual force/moment 
terms are then predicted by a high-order polynomial in AoA, 𝛼𝛼, such as  

 𝐶𝐶𝜗𝜗𝑅𝑅 = 𝐶𝐶𝜗𝜗0𝑅𝑅 (𝑀𝑀,𝜙𝜙) + 𝐶𝐶𝜗𝜗1𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝑠𝑠𝛼𝛼 + 𝐶𝐶𝜗𝜗2𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝑠𝑠𝛼𝛼2 + 𝐶𝐶𝜗𝜗3𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝑠𝑠𝛼𝛼3

+𝐶𝐶𝜗𝜗4𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝑠𝑠𝛼𝛼4 + 𝐶𝐶𝜗𝜗5𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝑠𝑠𝛼𝛼5
 

(3) 

where 𝑠𝑠𝛼𝛼 = sin𝛼𝛼. Our focus here is assembling and tuning a surface that represents 
each term 𝐶𝐶𝜗𝜗𝑅𝑅(𝑀𝑀,𝜙𝜙,𝛼𝛼) and 𝐶𝐶𝜗𝜗𝑀𝑀(𝑀𝑀,𝜙𝜙,𝛼𝛼, 𝛿𝛿) and provides the highest possible 
accuracy given the predictions of varying fidelity available. For instance, if we look 
at 𝐶𝐶𝜗𝜗𝑅𝑅(𝑀𝑀,𝜙𝜙,𝛼𝛼) for a specific mach number, we can depict the CFD predictions and 
Fourier models as shown in Fig. 4, or stretching the AoA axis into the page, we can 
plot a surface as shown in Fig. 5. Our goal is to preserve the shape of this surface 
while tuning the underlying basis functions to intersect the high-fidelity 
predictions.  
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Fig. 5 RASs, side-force CFD data at Mach 2, and Fourier approximations from Fig. 4 
collected in a single surface 

3.3 Full Model Buildup by Superposition 

Since the data sources were all provided in the “wind” or “tunnel” frame, we keep 
all of our analysis in this frame. One advantage of using this frame is that all 
components are found in a common frame, so the buildup is accomplished by a 
simple sum of like components:  

 𝐶𝐶𝜗𝜗𝐵𝐵 = 𝐶𝐶𝜗𝜗𝑅𝑅 + 𝐶𝐶𝜗𝜗
𝑀𝑀1 + 𝐶𝐶𝜗𝜗

𝑀𝑀2 + 𝐶𝐶𝜗𝜗
𝑀𝑀3 + 𝐶𝐶𝜗𝜗

𝑀𝑀4  (4) 

This is also convenient since three of the four data sources (DATCOM, CFD++, 
and WT) only provide predictions for the entire body. However, we want the final 
model to be decomposed into contributions from the rigid aero surfaces (R) and 
individual moveable surfaces (𝑀𝑀𝜋𝜋) in order to predict maneuvering flight (Fig. 6).  
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Fig. 6 Viewing the aero buildup as a network with tuning applied to the RAS terms 

Note that aerodynamic bank is defined as the angle subtended from the body Z axis 
(MAS2) counterclockwise to the relative wind. Thus, moving clockwise from 
MAS1 to MAS2, the aerodynamic bank in the local MAS2 frame is the body 
aerodynamic bank plus 𝜋𝜋/2. Continuing to move around the projectile, the 
aerodynamic bank angle for each subsequent MAS is 𝜋𝜋/2 larger than the previous 
one. Specifically, this is results in  

 

𝐶𝐶𝜗𝜗
𝑀𝑀2(𝜙𝜙) = 𝐶𝐶𝜗𝜗

𝑀𝑀1 �𝜙𝜙 +
𝜋𝜋
2
� ,    𝐶𝐶𝜗𝜗

𝑀𝑀3(𝜙𝜙) = 𝐶𝐶𝜗𝜗
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋),     

 𝐶𝐶𝜗𝜗
𝑀𝑀4(𝜙𝜙) = 𝐶𝐶𝜗𝜗

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2) 

 

(5a,b) 

(5c) 

4. Tuning the Basis Functions 

4.1 RAS Components 

The Fourier approximations for the RAS force and moment predictions, (𝐶𝐶𝜗𝜗𝑅𝑅) will 
be modified to intersect the CFD++ and WT data points in turn. Since the more 
trusted data sources only provide forces and moments for the entire vehicle, the 
buildup algorithm (Section 3.3) outlined previously will need to be applied to the 
Fourier of low-fidelity RAS estimates and the MAS1 estimates. For simplicity, we 
will use data that are all computed in the “wind” frame. Plainly put, this makes  
Eq. 4 into a simple sum of like components:  

 
𝐶𝐶𝜗𝜗𝐵𝐵 = 𝐶𝐶𝜗𝜗𝑅𝑅 + 𝐶𝐶𝜗𝜗

𝑀𝑀1 + 𝐶𝐶𝜗𝜗
𝑀𝑀2 + 𝐶𝐶𝜗𝜗

𝑀𝑀3 + 𝐶𝐶𝜗𝜗
𝑀𝑀4 (4) 
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Also, note from Eqs. 5a, 5b, and 5c that assembly of the four MAS terms actually 
pulls data from the same table (à la Fig. 5) at four bank angles. Only the RAS terms 
will be tuned using the zero deflection data from CFD++ and WT. This makes sense 
because the MAS terms approximately cancel each other out for transverse forces 
and moments at zero deflections. This approximation is exact at zero AoA, and 
loses accuracy with increasing AoA.  

If we substitute Fourier for the RAS term into the buildup, 

 𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� = 𝑋𝑋0𝑅𝑅 + � |𝑋𝑋𝑛𝑛|𝜗𝜗𝑅𝑅 ∙ cos(1 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋𝑛𝑛)
𝑛𝑛

+ �𝐶𝐶𝜗𝜗
𝑀𝑀𝑖𝑖(𝜙𝜙𝜋𝜋)

𝜋𝜋

 (6) 

A unique Fourier approximation �𝑋𝑋0𝑅𝑅 , |𝑋𝑋𝑛𝑛|𝜗𝜗𝑅𝑅� was found for each AoA in the test 
matrix. We choose to tune the bias and fundamental amplitude terms in each 
approximation at a specific AoA, as follows.  

Compute the total prediction using Eq. 6 and compare with the more trusted data 
source.  

 𝐑𝐑𝜋𝜋 =  𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞 ,𝛼𝛼� − 𝐶𝐶𝜗𝜗𝑁𝑁𝑁𝑁�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞 ,𝛼𝛼�, ∀  𝑖𝑖 ∈ 𝑁𝑁𝑆𝑆 (7) 

The number of data points i at each AoA varies with the data source. A fully dense 
data source will provide 33 points, one for each bank angle in the test grid. The bias 
term is corrected immediately by subtracting the mean of the residual  

 𝑋𝑋0𝑅𝑅+ =  𝑋𝑋0𝑅𝑅 − 𝐑𝐑�  (8) 

Next, recompute the prediction and residual with the updated bias. Apply a steepest 
descent algorithm to tune the amplitude of the fundamental frequency, as follows. 
The sensitivity of the ith Fourier predition to the fundamental amplitude (n = 1) can 
be found as  

 𝜕𝜕𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞�
𝜕𝜕|𝑋𝑋1|𝑚𝑚𝑅𝑅

= cos(1 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋1) (9) 

If we view Eq. 6 as a single-layer linear network, and apply a least-squares criterion, 

𝐸𝐸 =
𝑖𝑖
2
��𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� − 𝐶𝐶𝜗𝜗𝑁𝑁𝑁𝑁�𝜙𝜙𝜋𝜋, 𝛿𝛿𝑞𝑞��

2

𝜋𝜋

 

where i indicates a training pair and NS indicates the Navier–Stokes (CFD++) data, 
we can write  

 𝜕𝜕𝐸𝐸
𝜕𝜕|𝑋𝑋1|𝜗𝜗𝑅𝑅  

=
𝜕𝜕𝐸𝐸

𝜕𝜕𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� 
∙
𝜕𝜕𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞�
𝜕𝜕|𝑋𝑋1|𝜗𝜗𝑅𝑅

 (10) 

where  
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 𝜕𝜕𝐸𝐸
𝜕𝜕𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� 

= �𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� − 𝐶𝐶𝜗𝜗𝑁𝑁𝑁𝑁�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞�� = 𝐑𝐑𝜋𝜋 (11) 

The total sensitivity of a prediction set for one AoA is then found by summing  
Eq. 10 for all i. Substituing Eq. 9 and Eq. 11, we get  

 �
𝜕𝜕𝐸𝐸

𝜕𝜕|𝑋𝑋1|𝜗𝜗𝑅𝑅  
𝜋𝜋

= � cos(1 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋1) ∙ 𝐑𝐑𝜋𝜋
𝜋𝜋

 (12) 

This can be found by an inner product of the phase vector and the residual vector.  

After Eq. 8 is applied to correct the bias, the bias is left unchanged and the 
fundamental frequency is updated repeatedly using Eq. 13, where a learning rate of 
the reciprocal of the number of elements in the residual vector (𝜆𝜆) is introduced.  

 |𝑋𝑋1|𝜗𝜗𝑅𝑅 = |𝑋𝑋1|𝜗𝜗𝑅𝑅+ − 1/𝜆𝜆�
𝜕𝜕𝐸𝐸

𝜕𝜕𝐶𝐶𝜗𝜗𝐵𝐵�𝜙𝜙𝜋𝜋 , 𝛿𝛿𝑞𝑞� 
𝜋𝜋

 (13) 

Eq. 13 is applied for 14 iterations (after the bias correction), usually resulting in 
satisfactory convergence of the Fourier prediction to the more trusted data source.  

Figure 7 illustrates the tuning for the RAS pitch moment at Mach = 0.75 and AoA 
= 6°. CFD++ provides 31 data points for this condition. The blue curve depicts 
points on the untuned pitch moment manifold at these 31 points before tuning. The 
first correction is only in bias and moved the predictions to the darkest set of X’s. 
As the fundamental amplitude is gradually adjusted, we depict each subsequent 
iteration as brighter red X’s. After 15 iterations, the 2-norm of the residual vector 
is reduced from 2.09 to 0.81—a 61% reduction. 
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Fig. 7 Sequence of iterates for RAS tuning, pitch moment, Mach = 0.75, AoA = 6°. The blue 
curve is the Cart3D data manifold for the built-up coefficient before tuning, and diamonds 
depict the CFD++ data available. X’s are the iterates that become brighter red for subsequent 
iterations. 

4.2 MAS Components 

Since WT data were available for a variety of “pitch deflected” cases and 
configurations, albeit in AoA sweeps, we sought to contrive a method to tune the 
flap control authority in pitch (namely 𝐶𝐶𝑚𝑚

𝑀𝑀𝑖𝑖). Because we only have AoA sweeps, 
we effectively have one red stripe from Fig. 5 per flap deflection/configuration and 
Mach number. That stripe is at 0° of bank for plus configurations and at 45° of bank 
for X configurations. Referring to Fig. 5, note distinct Fourier approximations were 
found at each AoA in the test matrix during the interpolation and smoothing step. 
Thus, we propose an intermediate step, where the Fourier approximation for the 
MAS 𝐶𝐶𝑚𝑚

𝑀𝑀𝑖𝑖  is modified to intersect the WT data points. This will be a somewhat 
involved process, however, since the WT data is for the entire vehicle, while the 
Fourier fits are for individual (MAS, RAS) components. For simplicity, we will use 
data that are all computed in the “wind” frame. Plainly put, this makes Eq. 4 a 
simple sum of like components:  

 
𝐶𝐶𝑚𝑚𝐵𝐵 = 𝐶𝐶𝑚𝑚𝑅𝑅 + 𝐶𝐶𝑚𝑚

𝑀𝑀1 + 𝐶𝐶𝑚𝑚
𝑀𝑀2 + 𝐶𝐶𝑚𝑚

𝑀𝑀3 + 𝐶𝐶𝑚𝑚
𝑀𝑀4 (4) 

Also, note from Eqs. 5a, 5b, and 5c that assembly of the four MAS terms actually 
pulls data from the same table (à la Fig. 5) at four bank angles. For the pitch 
configurations, two deflections are used to eliminate roll and yaw tendencies, so 
ultimately we pull from two or three deflection tables (two flaps are set to zero in 
the plus configuration). Noting that the deflections are set to  

0 50 100 150 200 250 300 350 400

Roll (deg)

-0.8

-0.75
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C
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[𝜹𝜹𝟏𝟏 𝜹𝜹𝟐𝟐 𝜹𝜹𝟑𝟑 𝜹𝜹𝟒𝟒] = [𝜹𝜹𝒒𝒒 𝟎𝟎 −𝜹𝜹𝒒𝒒 𝟎𝟎] 

for plus configurations, and substituting Eqs. 5a, 5b, and 5c, Eq. 4 becomes  

 
𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞� = 𝐶𝐶𝑚𝑚𝑅𝑅 (𝜙𝜙) + 𝐶𝐶𝑚𝑚

𝑀𝑀1�𝜙𝜙, 𝛿𝛿𝑞𝑞� + 𝐶𝐶𝑚𝑚
𝑀𝑀1 �𝜙𝜙 +

𝜋𝜋
2

, 0� 

+𝐶𝐶𝑚𝑚
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋,−𝛿𝛿𝑞𝑞) + 𝐶𝐶𝑚𝑚

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2,0) 

(4p) 

for plus configurations, and  

 
𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞� = 𝐶𝐶𝑚𝑚𝑅𝑅 (𝜙𝜙) + 𝐶𝐶𝑚𝑚

𝑀𝑀1�𝜙𝜙, 𝛿𝛿𝑞𝑞� + 𝐶𝐶𝑚𝑚
𝑀𝑀1 �𝜙𝜙 +

𝜋𝜋
2

,−𝛿𝛿𝑞𝑞� 

+𝐶𝐶𝑚𝑚
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋,−𝛿𝛿𝑞𝑞) + 𝐶𝐶𝑚𝑚

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2, 𝛿𝛿𝑞𝑞) 

(4x) 

for X configurations, indicating that we will actually be pulling from two stripes 
separated by 𝜋𝜋 rad in bank from the 𝐶𝐶𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞) table and two more separated by 𝜋𝜋 
rad in bank from the 𝐶𝐶𝑚𝑚

𝑀𝑀1(−𝛿𝛿𝑞𝑞) one in the X case.  

Next, note that since we are finding the buildup in the Fourier domain, each term 
in Eqs. 4p and 4x will be found from instances of Eq. 1. For the MAS terms, 𝑇𝑇 =
2𝜋𝜋. When plotting Eq. 1 in the “wind” frame, as the vehicle rolls through a full 
cycle, the harmonic generated by a pitch deflection should have zero bias (𝑋𝑋0). That 
is, a flap deflected perpendicular to the pitch plane should produce zero pitch 
moment. Also, to re-emphasize, we are pulling points separated by 𝜋𝜋 rad in bank to 
determine a total pitch moment. Thus, we will tune the fundamental frequency 
amplitude, |𝑋𝑋1|, rather than the bias to match the WT totals. Note in Eq. 1 the 
fundamental amplitude is multiplied by a phase term prior to summing. Substituing 
𝑇𝑇 = 2𝜋𝜋, this becomes cos(𝑛𝑛 ∙ 𝜙𝜙 + ∠𝑋𝑋𝑛𝑛) and n = 1 for the fundamental frequency. 
The roll angle will be replaced with 𝜙𝜙 + 𝜋𝜋/2,𝜙𝜙 + 𝜋𝜋, … according to the flap 
involved. Thus, the assembly at a particular AoA can be viewed as a linear network 
with inputs cos(𝑛𝑛 ∙ 𝜙𝜙 + ∠𝑋𝑋𝑛𝑛), and gains |𝑋𝑋𝑛𝑛|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞) or |𝑋𝑋𝑛𝑛|𝑚𝑚
𝑀𝑀1(−𝛿𝛿𝑞𝑞), which will 

be tuned. For instance,  

 𝐶𝐶𝑚𝑚
𝑀𝑀1�𝜙𝜙, 𝛿𝛿𝑞𝑞� = 𝑋𝑋0 + � |𝑋𝑋𝑛𝑛|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞)
𝑛𝑛

∙ cos(𝑛𝑛 ∙ 𝜙𝜙 + ∠𝑋𝑋𝑛𝑛) (14) 

Figure 8 illustrates the buildup path and comparison with WT data.  
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Fig. 8 Tuning MAS terms by backpropagation 

At each AoA in 𝛼𝛼 ∈ {0, 2, … , 12} WT data are interpolated to the theoretical AoA. 
The comparison in Fig. 8 is done twice at each Mach number, pitch deflection, and 
AoA—once for plus mode, and once for X mode—since plus and X modes share 
deflections 𝛿𝛿𝑞𝑞 and −𝛿𝛿𝑞𝑞. We choose to compute 𝐶𝐶𝑚𝑚

𝑀𝑀1�𝜙𝜙, 𝛿𝛿𝑞𝑞� for all seven AoAs 
available as a batch, compare, and compute the gradient, so that tuning resembles 
a steepest descent in vector space rather than simple backpropagation. This results 
in two residual vectors, 𝐑𝐑+ for plus mode and 𝐑𝐑X for X mode. Substituting Eq. 14 
into Eq. 4 for the buildup, we can write  

 𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞� = 𝐶𝐶𝑚𝑚𝑅𝑅 (𝜙𝜙) + �𝑋𝑋0
𝑀𝑀𝑖𝑖 + � |𝑋𝑋𝑛𝑛|𝑚𝑚

𝑀𝑀𝑖𝑖(𝛿𝛿𝜋𝜋)
𝑛𝑛

∙ cos(𝑛𝑛 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋𝑛𝑛)
𝜋𝜋

 (15) 

Finding the sensitivity of the fundamental harmonic only, the summation in n 
disappears leaving only the summation in i.  

 𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞� = 𝐶𝐶𝑚𝑚𝑅𝑅 (𝜙𝜙) + �𝑋𝑋0
𝑀𝑀𝑖𝑖 + |𝑋𝑋1|𝑚𝑚

𝑀𝑀𝑖𝑖(𝛿𝛿𝜋𝜋) ∙ cos(1 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋𝑛𝑛)
𝜋𝜋

 (16) 

Then, realizing that all MAS terms are drawn from the MAS1 model, with adjusted 
input phase, the total contribution of |𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝜋𝜋) is the second term in the i 
summation. Thus, the sensitivity of the total pitching moment with respect to the 
fundamental harmonic amplitude is simply  

 𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�
𝜕𝜕|𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝜋𝜋) 
= � cos(1 ∙ 𝜙𝜙𝜋𝜋 + ∠𝑋𝑋𝑛𝑛)

𝜋𝜋

 (17) 

where 𝜙𝜙𝜋𝜋 ∈ {𝜙𝜙,𝜙𝜙 + 𝜋𝜋
2

,𝜙𝜙 + 𝜋𝜋,𝜙𝜙 +  𝜙𝜙 + 3𝜋𝜋
2

}, and 𝜙𝜙 is the MAS1 aerodynamic bank. 
If we view Eq. 14 as a single-layer linear network and apply a least-squares criterion 

𝐸𝐸 =
𝑝𝑝
2
��𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝
− 𝐶𝐶𝑚𝑚𝑊𝑊𝑇𝑇�𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝
�
2

𝑝𝑝
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where p indicates a training pair, and WT indicates the WT data, we can write  

𝜕𝜕𝐸𝐸
𝜕𝜕|𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞) 
=

𝜕𝜕𝐸𝐸
𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵 �𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝
 
∙
𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝

𝜕𝜕|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(𝛿𝛿𝑞𝑞) 

 

where 

𝜕𝜕𝐸𝐸
𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵 �𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝
 

= �𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�
𝑝𝑝
− 𝐶𝐶𝑚𝑚𝑊𝑊𝑇𝑇�𝜙𝜙, 𝛿𝛿𝑞𝑞�

𝑝𝑝
� = 𝐑𝐑𝜋𝜋

𝑝𝑝 

Now, recall that for “pitch” configurations, two distinct deflections are used to build 
up the total. Thus, in plus mode, Flap 1 contributes sensitivity  

𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�
𝜕𝜕|𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿1) 
= cos(1 ∙ 𝜙𝜙1 + ∠𝑋𝑋𝑛𝑛) = Ψ1 

while in X mode it becomes  

𝜕𝜕𝐶𝐶𝑚𝑚𝐵𝐵�𝜙𝜙, 𝛿𝛿𝑞𝑞�
𝜕𝜕|𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿1) 
= cos(1 ∙ 𝜙𝜙1 + ∠𝑋𝑋𝑛𝑛) + cos(1 ∙ 𝜙𝜙1 +

3𝜋𝜋
2

+ ∠𝑋𝑋𝑛𝑛) = Ψ1 + Ψ4 

For the same configurations, Flap 3 is deflected in the opposite direction, so similar 
expressions are written with −𝛿𝛿1. Thus, the total sensitivity for a particular 
deflection can be collected as  

𝜕𝜕𝐸𝐸
𝜕𝜕|𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞) 
= 𝐑𝐑+

𝑝𝑝 ∙ Ψ1 + 𝐑𝐑X
𝑝𝑝 ∙ Ψ1 + 𝐑𝐑X

𝑝𝑝 ∙ Ψ4 

We employ a simple algorithm where the fundamental amplitudes in the Fourier 
series model for two deflections +𝛿𝛿𝑞𝑞 ,−𝛿𝛿𝑞𝑞 are adjusted at each iteration by  

|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(𝛿𝛿𝑞𝑞) = |𝑋𝑋1|𝑚𝑚

𝑀𝑀1(𝛿𝛿𝑞𝑞) − Δ|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(𝛿𝛿𝑞𝑞) 

and 

|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(−𝛿𝛿𝑞𝑞) = |𝑋𝑋1|𝑚𝑚

𝑀𝑀1(−𝛿𝛿𝑞𝑞) − Δ|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(−𝛿𝛿𝑞𝑞) 

where  

Δ|𝑋𝑋1|𝑚𝑚
𝑀𝑀1(𝛿𝛿𝑞𝑞) =  �𝐑𝐑+

𝑝𝑝 ∙ Ψ1 + 𝐑𝐑X
𝑝𝑝 ∙ Ψ1 + 𝐑𝐑X

𝑝𝑝 ∙ Ψ4�/13 
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The 1/13 learning rate was found to provide good convergence (~15 iterations) 
without inducing oscillation, and equal weight on each residual resulted lower final 
residuals.  

Figure 9 illustrates the quality of predictions prior to and after training the 
fundamental Fourier amplitudes. The black diamonds and triangles are the WT total 
pitch coefficient for each given pitch deflection for plus and X configurations, 
respectively. The green pluses and X’s indicate the model predictions prior to 
tuning for plus and X configurations, respectively. The red plusses and X’s indicate 
the same predictions after tuning for 15 iterations. After 15 iterations, the sum of 
2-norm of the residual vector is reduced on average by 40%. Plus configurations 
match the training data somewhat better, especially at large AoAs. X configurations 
are harder to match using this method since points are being drawn from the same 
Fourier model at a 𝜋𝜋/2 phase offset. The residuals are reduced by 38% after just 
five iterations. The residuals after training are largely due to trade-offs between the 
two configurations. Note when the initial error for X and plus configurations have 
opposite polarity, the algorithm is largely unable to eliminate errors. This is 
especially evident for AoA = 8° and 10° in the examples shown in Fig. 9. 
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Fig. 9 Pitch coefficient matching prior to and after network tuning, Mach = 2.0 
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5. Polynomial Regression and Build 

The final tuned Fourier basis functions  

((𝑋𝑋0
𝑀𝑀𝑖𝑖(𝑀𝑀, 𝛿𝛿𝜋𝜋 ,𝛼𝛼𝑗𝑗), |𝑋𝑋𝑛𝑛|𝜗𝜗

𝑀𝑀𝑖𝑖(𝑀𝑀, 𝛿𝛿𝜋𝜋,𝛼𝛼𝑗𝑗),𝑋𝑋0𝑅𝑅(𝑀𝑀,𝛼𝛼𝑗𝑗), |𝑋𝑋𝑛𝑛|𝜗𝜗𝑅𝑅(𝑀𝑀,𝛼𝛼𝑗𝑗)) 

with 𝜗𝜗 ∈ {𝐴𝐴, 𝑆𝑆,𝑁𝑁, 𝑙𝑙,𝑚𝑚,𝑛𝑛} are evaluated at 𝛼𝛼𝑗𝑗 ∈ {0∘, 2∘, 4∘, … , 20∘} using a fine bank 
grid of 𝜙𝜙𝑘𝑘 ∈ {0∘, 2.8125∘, 5.625∘, … , 360∘}. At each bank angle in the grid, the 
11 force/moment estimates are collected and a polynomial regression is performed 
to render a set of polynomial coefficients. For instance, the following normal 
equation is solved at each Mach M and bank angle 𝜙𝜙𝑘𝑘 to determine a set of entries 
in the table of polynomial coefficients for RAS pitch moment.  

⎣
⎢
⎢
⎢
⎡ 𝒔𝒔𝟎𝟎∘

𝟓𝟓 𝒔𝒔𝟎𝟎∘
𝟒𝟒

𝒔𝒔𝟐𝟐∘
𝟓𝟓 𝒔𝒔𝟐𝟐∘

𝟒𝟒
⋯ 𝒔𝒔𝟎𝟎∘ 𝟏𝟏
⋯ 𝒔𝒔𝟐𝟐∘ 𝟏𝟏

⋮ ⋮
𝒔𝒔𝟐𝟐𝟎𝟎∘
𝟓𝟓 𝒔𝒔𝟐𝟐𝟎𝟎∘

𝟓𝟓
⋱ ⋮ ⋮
⋯ 𝒔𝒔𝟐𝟐𝟎𝟎∘ 𝟏𝟏⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧𝐶𝐶𝑚𝑚5

𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘)
𝐶𝐶𝑚𝑚4𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘)
𝐶𝐶𝑚𝑚3𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘)

⋮
𝐶𝐶𝑚𝑚0𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘)⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧ 𝐶𝐶𝑚𝑚𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘, 0∘)
𝐶𝐶𝑚𝑚𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘, 2∘)
𝐶𝐶𝑚𝑚𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘, 4∘)

⋮
𝐶𝐶𝑚𝑚𝑅𝑅 (𝑀𝑀,𝜙𝜙𝑘𝑘 , 20∘)⎭

⎪
⎬

⎪
⎫

 

A similar set of regressions is performed for the MAS terms with the added table 
dimension of deflection. The aero model (AM) consists of interpolating the 
resulting tables of polynomial coefficients 𝐶𝐶𝜗𝜗𝜋𝜋𝑅𝑅 (𝑀𝑀,𝜙𝜙),𝐶𝐶𝜗𝜗𝜋𝜋𝑀𝑀(𝑀𝑀,𝜙𝜙, 𝛿𝛿) at the given 
flight conditions, evaluating the polynomials  

 
𝐶𝐶𝜗𝜗𝑅𝑅 = 𝐶𝐶𝜗𝜗0𝑅𝑅 (𝑀𝑀,𝜙𝜙) + 𝐶𝐶𝜗𝜗1𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼 + 𝐶𝐶𝜗𝜗2𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼2 + 𝐶𝐶𝜗𝜗3𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼3

+𝐶𝐶𝜗𝜗4𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼4 + 𝐶𝐶𝜗𝜗5𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼5
 

 

(3) 

and adding like components as in Eq. 4. The results of this buildup are compared 
with the original data sources in the next section.  

6. Results 

The AM described in the previous section was exercised over part of the overall 
test matrix. Here we show comparisons between the final AM and the data sources 
to validate our tuning, regressions, and buildup. We present selected cases with zero 
flap deflections, as these were the most densely populated across data sources. An 
alternative model was formed to compare our method with a basic kriging method4 
(KRIGE). Kriging was used by finding a Gauss process regression model of 
differences �̂�𝛽𝜗𝜗𝑊𝑊𝑇𝑇 between the CART3D data and WT data using points in the WT 
database. True values of 𝛽𝛽𝜗𝜗𝑊𝑊𝑇𝑇 are found where data exist from both sources.  
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𝛽𝛽𝜗𝜗𝑊𝑊𝑇𝑇 = 𝐶𝐶𝜗𝜗𝑊𝑊𝑇𝑇 − 𝐶𝐶𝜗𝜗𝐶𝐶3𝐷𝐷 (18) 

The Gauss process regression model is found from these points and used to predict 
�̂�𝛽𝜗𝜗
𝑊𝑊𝑇𝑇

 for the entire test matrix. A second kriging model was also found from the 
differences �̂�𝛽𝑁𝑁𝑁𝑁 between Navier–Stokes predictions and Cart3D. The kriging 
models are then used to move the Cart3D surface closer to the truth by forming two 
averaged databases by 

 𝐶𝐶𝜗𝜗∗ = 𝐶𝐶𝜗𝜗𝐶𝐶3𝐷𝐷 + 𝑎𝑎 ∙ �̂�𝛽𝑊𝑊𝑇𝑇 + 𝑏𝑏 ∙ �̂�𝛽𝑁𝑁𝑁𝑁 (19) 

where 𝑎𝑎 + 𝑏𝑏 = 1. The first uses 𝑎𝑎 = 1 and 𝑏𝑏 = 0 and is labeled “wtKRIGE” in the 
plots. The second sought to combine the traits of all data sources and used 𝑎𝑎 = 1

2
+

√5
2
− 1 and 𝑏𝑏 = 1 − 𝑎𝑎. This case is labeled “bthKRIGE” in the plots. These data are 

then used to find a Fourier basis for RAS terms in similar fashion as our model. 
Thus, it benefits from the symmetry imposed by Fourier. 

Figure 10 shows the side moment for a range of Mach numbers at 22.5° of roll 
angle. This attitude was selected because symmetry should cause a zero side 
moment at 0° and 45°. WT data were available at this attitude for 0°, 6°, and 12° 
AoA since roll sweeps were performed at these values. In Fig. 10a, four of the six 
models overlap at exactly zero. This stems from the symmetry of the 3-D model 
imported into each CFD code. It is expected to exhibit zero moments at zero AoA 
(i.e., no “trim” moments). WT data show some slight deviations from theoretical 
perfection. Cart3D predicts non-zero trims at a few Mach numbers, most likely due 
to incomplete convergence. The AM is set to ignore the WT values when previous 
methods predict a zero force or moment—and it exhibits that behavior here. Figure 
10 (top right and bottom left) show some consequences of the sequential tuning. 
Trends are not remembered from AoA to AoA or from Mach to Mach, but memory 
of previous data sources exists at a particular Mach and AoA. Fig. 10, bottom left, 
is a good example of this. The algorithm starts with the C3D curve. It is tuned to 
the CFD++ data (“NS”), which would draw it slightly lower.   
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𝛼𝛼 = 0∘ 
 

𝛼𝛼 = 4∘ 

 

𝛼𝛼 = 6∘ 

 

𝛼𝛼 = 12∘ 

Fig. 10 Side-moment coefficient comparison for all data sources, plus mode, Mach = 2.0, roll 
angle = 22.5° 

In the final step, the AM curve is tuned to the “WT”. However, due to limited 
iterations, the model moves only slightly toward the WT data, therefore respecting 
the previous data sources. Keep in mind the y-axis scaling in each of these plots. 
Since residuals are quite small to begin with, training to the WT data is not very 
aggressive. Likewise, the kriging model resembles the Cart3D data for the points 
shown. WT data for this bank angle only exists at 0°, 6°, and 12° AoA. Apparently, 
the kriging model has difficulty interpolating the other points from neighboring 
bank angles, something our algorithm is better at because the harmonic bases are 
introduced earlier in the process.  

Figure 11 shows the pitch coefficient training for α = 2∘, 4∘, 6∘, 8∘, 10∘, and 12∘. 
Cart3D predictions are shown in cyan, CFD++ in green, WT in red, and AM in 
blue. Note in each case Cm gets more strongly negative as each subsequent data 
source is used: the curve moves downward. However, the previous data sources are 
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not completely supplanted since the final AM curve is slightly higher than the WT 
curve. The three data source curves and final model all morph to a common shape 
as AoA increases. For small AoA, the AM curve conforms to the WT data. Keep 
in mind that no memory exists from AoA to AoA; however, in the final model, 
distinct points in AoA are tied together through polynomial regression. 
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𝛼𝛼 = 2∘ 
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𝛼𝛼 = 10∘ 

 

𝛼𝛼 = 12∘ 

Fig. 11 Pitch coefficient comparison for all data sources, Mach = 2.0, roll angle = 0° 

Figure 12 shows the results for side force. Again, a roll angle of 22.5° was selected, 
because symmetry should produce a zero side force at 0° and 45° roll angles, and 
the model is able to ignore the non-zero trims from the WT and Cart3D. Side-force 
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predictions from the AM exceed the three sources (C3D, NS, and WT) for nearly 
all cases shown. What is not evident in these plots is that this is caused by the 
harmonic interpolation and polynomial regression, which happen after all data 
sources are considered. In other words, the Fourier series is truncated at three 
harmonics, so it will not exactly match the training at every roll angle (overfitting), 
but it will enforce the symmetry and null points expected from the projectile 
geometry. Thus, some amplitudes in the final model will exceed the data sources 
and others will be reduced. Second, the polynomial fitting induces a smoothing 
across AoAs. This can prove adverse if the force/moment of interest does not 
monotonically increase in magnitude with increased AoA. These effects combine 
to cause the final model to “forget” some of the finer details in the data sources.  
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Fig. 12 Side-force coefficient comparison for all data sources, plus mode, Mach = 2.0, roll 
angle 22.5°  
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Figure 13 shows a sample result for normal force at 22.5° of bank. Once again, the 
AM predicts no trim force at zero AoA. Figure 13c shows another good example 
of the influence of subsequent data sources. Starting from the cyan curve (C3D), 
training pushes the model up near the green curve (NS), then down toward the red 
curve (WT). Since the residuals between NS and WT are small, some of the trends 
from NS remain in the final model. As AoA is further increased, all data sources 
converge to a common shape. The AM provides a good balance at α = 12° among 
all three data sources, with high Mach number predictions finding a happy medium 
between CFD++ (green) and WT (red). 
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Fig. 13 Normal force coefficient comparison for all data sources, plus mode, Mach = 2.0, roll 
angle = 22.5°  
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7. Conclusion 

A novel approach to combining aerodynamic data sources for roll-dependent 
aerodynamics has been developed and tested. By finding and training a set of basis 
functions, sparse but accurate data sources were used to refine the model accuracy 
while preserving trends predicted by low-fidelity computation methods. The final 
model averages all data sources and exhibits symmetry and null points expected 
from the airframe geometry. By using harmonic basis functions, our method 
informs the model of the airframe geometry, unlike kriging models, which are 
solely based on available data. Our method balanced contributions from all data 
sources and converged much faster than the kriging approach.  
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List of Symbols, Abbreviations, and Acronyms 

3-D  three-dimensional 

6DOF  6 degrees of freedom 

Al  aileron 

AM  aero model 

AoA  angle of attack 

C3D  Cart3D Euler Computation Fluid Dynamic code 

CAD  computer-aided design 

CFD  computation fluid dynamics 

DATCOM  United States Air Force Stability and Control Digital 

El  elevator 

LTV  Laboratory Technology Vehicle 

MAS  moveable aerodynamic surface 

NaN  not a number 

NASA  National Aeronautics and Space Administration 

NS  Navier–Stokes 

RANS  Reynolds-averaged Navier–Stokes 

RAS  rigid aerodynamic surface 

WT  wind tunnel  

|𝑋𝑋𝑛𝑛|∠𝑋𝑋𝑛𝑛  magnitude/phase of polar Fourier harmonic n  

T  period of harmonic function [rad] 

I  identity matrix 

𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛  Cartesian Fourier amplitudes 

𝑖𝑖  = √−1  

𝑀𝑀  Mach number 

𝚽𝚽  Matrix of harmonic basis functions 

𝜗𝜗  placeholder, 𝜗𝜗 ∈ {𝐴𝐴, 𝑆𝑆,𝑁𝑁, 𝑙𝑙,𝑚𝑚,𝑛𝑛} 
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R  Rotation Matrix 

𝛼𝛼  angle of attack [deg]  

𝛿𝛿  flap deflection [deg] 

f (.)  function to be approximated 

D  projectile diameter [m] 

𝐶𝐶𝐴𝐴  axial force coefficient 

𝐶𝐶𝑁𝑁  side force coefficient 

𝐶𝐶𝑁𝑁  normal force coefficient 

𝐶𝐶𝑙𝑙  roll moment coefficient 

𝐶𝐶𝑚𝑚  pitch moment coefficient 

𝐶𝐶𝑛𝑛  yaw moment coefficient 

Subscript 

n  harmonic number  

Superscript 

T  matrix transpose 

𝐿𝐿  placeholder, 𝐿𝐿 ∈ {𝑅𝑅,𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑀𝑀4} 

𝑅𝑅  rigid aerodynamic surface 

𝑀𝑀𝑗𝑗  moveable aerodynamic surface 𝑗𝑗 

𝐵𝐵  body frame  

𝑊𝑊𝑇𝑇  wind tunnel frame  

𝑁𝑁  normal force component 

𝑆𝑆  side force component 
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