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1. Introduction 

For several decades, researchers have predicted the roll-dependent aerodynamics 
of slightly asymmetric missiles to be modeled by a single harmonic equal in period 
to the roll angle between adjacent fins.1–4 However, for the configuration studied in 
this report, forces and moments vary with roll in a more complicated fashion. 
Inviscid computational fluid dynamics (CFD) predicts oscillations in the pitch and 
yaw moments, for instance, which have a fundamental period that is a fraction of 
the roll angle between lifting surfaces. In order to capture these oscillations to an 
acceptable level of fidelity, a two-step process was contrived to find roll-dependent 
polynomial models of the forces and moments.  

The high-speed, long-range Laboratory Technology Vehicle (LTV-1) depicted in 
Fig. 1 is designed for flight over a wide envelope from high subsonic to hypersonic 
speeds.5 Four long strakes enhance the lift generated when flying at nonzero angles 
of attack. Trailing edge flaps are mounted at the tail in line with each strake. Each 
flap moves independently, allowing for maneuvers that include pitch, yaw, roll, and 
aerobraking.6–8 

 

Fig. 1 The high-speed, long-range LTV-1 

To accurately model the aerodynamics of LTV-1, an inviscid CFD solver is used 
to predict the forces and moments over a large matrix of flight conditions. Force 
and moment predictions are broken into separate components for the body (without 
flaps), components for a single flap alone, and a set of predictions for the entire 
build. Breaking the forces and moments into these separate contributions allows for 
the prediction of total forces and moments using an assembly process that will be 
discussed later. The single flap model can be applied to each of the flaps by 
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adjusting the input conditions and transforming the force/moment contribution to 
match the physical location of other flaps around the body.  

The predictions from CFD were smoothed and interpolated using a novel approach 
based upon Fourier series. This postprocessing removed obvious outliers where the 
solver had not converged, enforced symmetry matching the vehicle’s geometric 
symmetry, and ensured null points in the transverse forces and moments at 
appropriate points in the roll cycle. Due to the choice of harmonic basis functions 
for this interpolation, symmetry and null points were ensured by choosing the 
fundamental period of the harmonics to match the vehicle’s roll symmetry. After 
smoothing and interpolation, each total force/moment component at a given Mach 
number is predicted as a function of angle of attack (AoA). These predictions are 
then used in a polynomial regression to obtain a polynomial model for each 
force/moment component at each given set of inputs. The result is a set of large 
look-up tables for the polynomial coefficients as functions of Mach, aerodynamic 
bank, and flap deflection. 

This report also presents several validation methods used to check the model. First, 
the total forces and moments are assembled in a common frame using 
superposition. These totals are then compared to the CFD data set for the entire 
vehicle at several Mach numbers, angles of attack, and zero deflection. This step 
not only validates the assembly process, but also checks that interpolation and 
polynomial regression have not skewed the estimates in any significant way. 
Second, a set of wind tunnel tests on a subscale model were performed at Florida 
State University.9 The results are compared to the assembled model for several 
configurations. Finally, tuning of the Fourier model to the wind tunnel data is 
explored using an approach from linear feedforward neural networks. 

2. Approach: Inviscid CFD over a Large Test Matrix 

This study began by first collecting data from simulations ran using a software 
package called Cart3D developed by NASA. NASA’s Cart3D is an inviscid CFD 
package for aerodynamic design and analysis. Cart3D provides utility for surface 
modeling and intersection, mesh generation, flow simulation, and postprocessing.10 
The mesh generation software with the Cart3D package produces Cartesian meshes 
for arbitrarily complex, watertight geometries. The mesh generation process 
automatically increases the fidelity of the domain near small features and 
inflections present in the geometry to better resolve flow features near the surface. 
The option also exists to create higher-resolution areas in the wake of the body. 
Adjoint-based mesh adaption is also available to refine the mesh based on the flow 
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solution. Aerodynamic coefficients for a given flight condition (i.e., Mach number 
and aerodynamic angles) are computed in several minutes. 

The meshes generated for the simulations numbered approximately 6.1 million 
cells. This was the result of using 14 levels of refinement in a cubical computational 
domain with an inscribed sphere of 14 body lengths. The meshes were also further 
refined using prescribed density boxes near the nose and near the body of the 
geometry. An example of one of the meshes is shown in Fig. 2. 

 

Fig. 2 Example Cart3D mesh 

For all simulations, the geometry was oriented in the plus (+) configuration in the 
mesh with the deflectable flap set on the starboard side. This orientation 
characterizes the zero roll orientation (𝜙𝜙 =  0°). Positive deflection of the flap 
corresponds to counterclockwise rotation as viewed from the starboard side while 
negative flap deflection is the opposite rotation. This is best illustrated in Fig. 3. 

  
Fig. 3 Positive flap deflection, δ = 25° (left) and negative flap deflection, δ = –25° (right) 
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Different flow conditions were simulated using a relative wind vector 
parameterized by Mach number, roll angle (𝜙𝜙), and total angle of attack (𝛼𝛼𝑇𝑇). An 
example of the relative wind vector is shown in Fig. 4. 

 

Fig. 4 Example of a relative wind vector for a generic projectile characterized by [𝜶𝜶, 𝜷𝜷] or 
[𝜶𝜶𝑻𝑻, 𝝓𝝓] 

Due to the construction and programming of Cart3D, roll angle and total angle of 
attack had to be converted into angle of attack (𝛼𝛼) and beta (𝛽𝛽) using the following 
equations: 

 𝛼𝛼 = tan−1(tan(𝛼𝛼𝑇𝑇) ∗ cos(𝜙𝜙)) (1) 

 𝛽𝛽 = sin−1(sin(𝛼𝛼𝑇𝑇) ∗ sin(𝜙𝜙)) (2) 

Including the flap deflection angle, the full simulation matrix of parameter values 
consists of 12 angles of attack, 15 deflections, 16 Mach numbers, and 32 bank 
angles. This simulation matrix yields a total quantity of 92,160. Due to this large 
number of simulations, an in-house Python driver system was used to automate job 
control and data logistics. The total project cost approximately 650,000 compute 
hours on the high-performance computing machine Onyx at the US Army Engineer 
Research and Development Center DOD Supercomputing Resource Center. Once 
the database was completed, a subset of the data was inspected via flow 
visualization. An example of this visualization is shown in Fig. 5, which contains 
Mach number contour slices of the flow superimposed with contours of pressure 
coefficient on the surface of the flight vehicle at Mach 2 with δ = 25°, αT = 20°, and 
ϕ = 180°. 

T 
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Fig. 5 Contour of Mach number and surface pressure coefficient simulated at Mach 2 with 
𝛅𝛅 = 𝟐𝟐𝟐𝟐°, 𝜶𝜶𝑻𝑻 =  𝟐𝟐𝟐𝟐°, and 𝝓𝝓 =  𝟏𝟏𝟏𝟏𝟐𝟐° 

3. Method: Fourier Series Interpolation and Superposition 

Previous studies have approximated the roll-dependent aerodynamics as a single 
harmonic with period assumed to be 2𝜋𝜋 divided by the number of fins.1–4 However, 
large angle-of-attack studies in CFD indicate that additional harmonics are required 
to fully capture the behavior of moment and force components. Also, since the 
projectile has periodic symmetry, harmonic basis functions are a logical choice to 
properly interpret the CFD output along the roll direction.  

3.1 The Complex Valued Fourier Series  

Any periodic function 𝑓𝑓(𝑡𝑡) with period T may be approximated by the finite series 
of harmonics 

 𝑦𝑦� = 𝑋𝑋0 + 2� |𝑋𝑋𝑛𝑛| cos(2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇 + ∠𝑋𝑋𝑛𝑛)
𝑛𝑛

 (3) 

where 𝑋𝑋𝑛𝑛 is a complex number defined by  

 
𝑋𝑋𝑛𝑛 =

1
𝑇𝑇
� 𝑓𝑓(𝑡𝑡)𝑒𝑒− 2𝜋𝜋𝑛𝑛𝜋𝜋𝜋𝜋𝑇𝑇
𝑇𝑇

0
𝑑𝑑𝑡𝑡 (4) 
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Considering the periodic symmetry of the projectile outer mold line, the period is 
assumed to be 𝑇𝑇 = 𝜋𝜋/2 for rigid aero surfaces (body and strakes) and 𝑇𝑇 = 2𝜋𝜋 for 
moving aerodynamic surfaces, since they move independently. However, if the 
forces and moments are written in the body frame, the period for rigid aero surfaces 
will be 𝑇𝑇 = 2𝜋𝜋 also.  

The results of CFD are discrete points representing a force or moment component 
at a specific Mach number, angle of attack, and aerodynamic roll. Equation 4 is 
applied to each of these, integrating along the roll axis. Due to the discrete nature 
of the data, trapezoidal integration (trapz) renders an exact solution to Eq. 4, where 
𝑓𝑓(𝑡𝑡) is the input data and 𝑑𝑑𝑡𝑡 is the discretization (typically 11.25° for this project). 

Figure 6 shows the CFD pitch moment estimates for the rigid aerodynamic surfaces 
at Mach 2 for a range of angles of attack. Some outliers have already been removed 
and replaced by interpolating adjacent points. The solid lines are the instances of 
Eq. 3 found at each angle of attack by applying Eq. 4 to the data. The solid lines 
provide a smooth interpolation of the data that exhibits the expected symmetry and 
null points at 90 and 270°.  

 

Fig. 6 Rigid aero surfaces, pitch moment CFD data at Mach 2 (dots). Fourier interpolation 
is superimposed (solid lines) showing smoothing, symmetry, and null points at phi-90, 270°. 

3.2 Fourier Series by Direct Regression 

Fourier series representation of a function may also be found by contriving the 
harmonic basis functions and solving for the amplitudes by regression. We found 
this method essential in order to model wind tunnel data where roll sweeps were 
performed for less than a full roll cycle. The method is based upon a rectangular 
version of the Fourier series such as  
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𝑦𝑦� =
𝑎𝑎0
2

+ �(𝑎𝑎𝑛𝑛 cos 2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇 + 𝑏𝑏𝑛𝑛 sin 2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇)
∞

𝑛𝑛=1

 
 

If 𝑦𝑦� ≈ 𝑓𝑓(𝜙𝜙), the formula above may also be represented as a matrix multiplication: 

𝑦𝑦� =
𝑎𝑎0
2
∙ 𝟏𝟏 + 

⎣
⎢
⎢
⎢
⎡cos �

2𝜋𝜋𝜙𝜙1
𝑇𝑇 � cos �

4𝜋𝜋𝜙𝜙1
𝑇𝑇 � ⋯

cos �
2𝜋𝜋𝜙𝜙2
𝑇𝑇 � cos �

4𝜋𝜋𝜙𝜙2
𝑇𝑇 � ⋯

⋮ ⋮ ⋮

sin �
2𝜋𝜋𝜙𝜙1
𝑇𝑇 � sin �

4𝜋𝜋𝜙𝜙1
𝑇𝑇 � ⋯

sin �
2𝜋𝜋𝜙𝜙2
𝑇𝑇 � sin �

4𝜋𝜋𝜙𝜙2
𝑇𝑇 � ⋯ 

⋮ ⋮ ⋱ ⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
⋮
𝑏𝑏1
𝑏𝑏2
⋮ ⎭
⎪
⎬

⎪
⎫

 
(5) 

where 𝟏𝟏 is a column vector of ones with length equal to that of 𝜙𝜙. We may write 
more compactly:  

𝑦𝑦� =
𝑎𝑎0
2
∙ 𝟏𝟏 + 𝚽𝚽

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
⋮
𝑏𝑏1
𝑏𝑏2
⋮ ⎭
⎪
⎬

⎪
⎫

 

Thus, if we assume zero bias (𝑎𝑎0 = 0), the coefficients 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 may be found by a 
least-squares solution (regression) of Eq. 5. Bias may be included in the regression 
by appending 𝚽𝚽 with a column of ones and appending the parameter vector with 
unknown 𝑎𝑎0/2. Conversion from the polar Fourier series (Eq. 3) to rectangular is 
explored in the Appendix.  

3.3 Finding Polynomial Coefficients for a Dense Roll Grid 

In order to find a mathematically tractable, yet precise model of the projectile 
aerodynamics, we chose to interpolate the total force and moment coefficients from 
CFD onto a finer roll grid. The CFD test matrix included the total force and moment 
coefficients for several Mach numbers and angles of attack, each swept a full roll 
cycle in increments of 11.25°. In order to maintain accuracy within the simulation 
while using linear interpolation, the Fourier series was used to smooth and 
interpolate each force/moment component along the roll direction. The result was 
a finer grid in bank at increments of 2.8125°. By using harmonic basis functions, 
smoothness, symmetry, and null values at certain angles of interest were ensured. 
Coefficients were then found at each bank angle such that the total force or moment 
coefficient was approximated by a high-order polynomial in α. Figure 7 illustrates 
the process using the total rigid aero surface pitch moment coefficient.  
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More specifically, Eqs. 3 and 4 were used to approximate each total force/moment 
coefficient for one angle of attack over a full roll cycle. Typically, three to six 
harmonics were required to fully capture the function profile observed in the CFD 
grid. Equation 3 was then used to predict the total force/moment coefficient over 
the finer roll grid (every 2.8125°) where the CFD grid was every 11.25°. This is 
interpolating along the “Aero Roll” axis in Fig. 7. The Fourier coefficients found 
at each Mach number, deflection, and AoA are also saved for later comparison with 
the wind tunnel data. At each bank angle in the fine grid, Eq. 3 was evaluated for 
11 values of α (𝛼𝛼 ∈ {0, 2, 4, … , 20}) degrees. Given the total/force moment 
coefficient at this set of α, a polynomial regression is performed such that the 
force/moment coefficient at the given bank angle is approximated as 

 𝐶𝐶𝜗𝜗𝑅𝑅 = 𝐶𝐶𝜗𝜗0𝑅𝑅 (𝑀𝑀,𝜙𝜙) + 𝐶𝐶𝜗𝜗1𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼 + 𝐶𝐶𝜗𝜗2𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼2 + 𝐶𝐶𝜗𝜗3𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼3

+𝐶𝐶𝜗𝜗4𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼4 + 𝐶𝐶𝜗𝜗5𝑅𝑅 (𝑀𝑀,𝜙𝜙)𝛼𝛼5
 (6) 

Thus, the regression is done along the 𝛼𝛼 axis, resulting in 129 curves, such as the 
red stripe shown in Fig. 7; we show that each coefficient (for rigid aero surfaces) is 
a function of Mach and aerodynamic bank.  

 

Fig. 7 Sample of interpolation and regression 

The final tables are a comprehensive set of coefficients for 129 bank angles and 16 
Mach numbers. For moving aero surfaces, each table has an additional dimension 
of deflection, so that, for instance, 𝐶𝐶𝜗𝜗𝜋𝜋𝑀𝑀 = 𝐶𝐶𝜗𝜗𝜋𝜋𝑀𝑀(𝑀𝑀,𝜙𝜙, 𝛿𝛿). About 15 deflection values 
are used in the current model.
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3.4 Full Model Buildup by Superposition 

Only the first flap or moving aerodynamic surface (MAS) was modeled in CFD. 
Assuming that all surfaces contribute equivalent force/moment terms for similar 
relative wind conditions, a full roll sweep of “MAS1” provides all the data needed 
to model the entire projectile with independently moveable flaps. Figure 8 
illustrates the various frames needed to find the correct combination of terms for 
superposition.  

 

Fig. 8 Local frames for MAS buildup 

First, note that aerodynamic bank is defined as the angle subtended from the body 
Z axis (MAS2) counterclockwise to the projection of relative wind on the y-z plane. 
Thus, moving clockwise from MAS1 to MAS2, the aerodynamic bank in the local 
MAS2 frame is the body aerodynamic bank plus 𝜋𝜋/2. Continuing to move around 
the projectile, the aerodynamic bank angle for each subsequent MAS is 𝜋𝜋/2  larger 
than the previous one. Specifically, this results in  

 𝐶𝐶𝑆𝑆
𝑀𝑀2(𝜙𝜙) = 𝐶𝐶𝑆𝑆

𝑀𝑀1 �𝜙𝜙 +
𝜋𝜋
2
� ,    𝐶𝐶𝑆𝑆

𝑀𝑀3(𝜙𝜙) = 𝐶𝐶𝑆𝑆
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋), (7a,b) 

 𝐶𝐶𝑆𝑆
𝑀𝑀4(𝜙𝜙) = 𝐶𝐶𝑆𝑆

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2) (7c) 

 𝐶𝐶𝑁𝑁
𝑀𝑀2(𝜙𝜙) = 𝐶𝐶𝑁𝑁

𝑀𝑀1 �𝜙𝜙 +
𝜋𝜋
2
� ,    𝐶𝐶𝑁𝑁

𝑀𝑀3(𝜙𝜙) = 𝐶𝐶𝑁𝑁
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋), (8a,b) 

and 

 𝐶𝐶𝑁𝑁
𝑀𝑀4(𝜙𝜙) = 𝐶𝐶𝑁𝑁

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2) (8c) 

as well as equivalent instances for 𝐶𝐶𝑚𝑚
𝑀𝑀𝑖𝑖 and 𝐶𝐶𝑛𝑛

𝑀𝑀𝑖𝑖. 

 𝐶𝐶𝑚𝑚
𝑀𝑀2(𝜙𝜙) = 𝐶𝐶𝑚𝑚

𝑀𝑀1 �𝜙𝜙 +
𝜋𝜋
2
� ,    𝐶𝐶𝑚𝑚

𝑀𝑀3(𝜙𝜙) = 𝐶𝐶𝑚𝑚
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋), (7d,e) 
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 𝐶𝐶𝑚𝑚
𝑀𝑀4(𝜙𝜙) = 𝐶𝐶𝑚𝑚

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2) (7f) 

 𝐶𝐶𝑛𝑛
𝑀𝑀2(𝜙𝜙) = 𝐶𝐶𝑛𝑛

𝑀𝑀1 �𝜙𝜙 +
𝜋𝜋
2
� ,    𝐶𝐶𝑛𝑛

𝑀𝑀3(𝜙𝜙) = 𝐶𝐶𝑛𝑛
𝑀𝑀1(𝜙𝜙 + 𝜋𝜋), (8d,e) 

and 

 𝐶𝐶𝑛𝑛
𝑀𝑀4(𝜙𝜙) = 𝐶𝐶𝑛𝑛

𝑀𝑀1(𝜙𝜙 + 3𝜋𝜋/2) (8f) 

Second, note the local frames shown for normal and side force components, and 
pitch and yaw moments (m,n). It is readily seen that the total transverse force 
contributions for the rigid aerodynamic surfaces (RAS) and all four MAS can be 
written in the body (B) or MAS1 frame as  

 𝐶𝐶𝑆𝑆𝐵𝐵 = 𝐶𝐶𝑆𝑆𝑅𝑅 + 𝐶𝐶𝑆𝑆
𝑀𝑀1 + 𝐶𝐶𝑁𝑁

𝑀𝑀2 − 𝐶𝐶𝑆𝑆
𝑀𝑀3 − 𝐶𝐶𝑁𝑁

𝑀𝑀4  (9) 

and  

 𝐶𝐶𝑁𝑁𝐵𝐵 = 𝐶𝐶𝑁𝑁𝑅𝑅 + 𝐶𝐶𝑁𝑁
𝑀𝑀1 − 𝐶𝐶𝑆𝑆

𝑀𝑀2 − 𝐶𝐶𝑁𝑁
𝑀𝑀3 + 𝐶𝐶𝑆𝑆

𝑀𝑀4  (10) 

Likewise, the transverse moment contributions are summed in the body frame by  

 𝐶𝐶𝑚𝑚𝐵𝐵 = 𝐶𝐶𝑚𝑚𝑅𝑅 + 𝐶𝐶𝑚𝑚
𝑀𝑀1 − 𝐶𝐶𝑛𝑛

𝑀𝑀2 − 𝐶𝐶𝑚𝑚
𝑀𝑀3 + 𝐶𝐶𝑛𝑛

𝑀𝑀4 (11) 

and 

 𝐶𝐶𝑛𝑛𝐵𝐵 = 𝐶𝐶𝑛𝑛𝑅𝑅 + 𝐶𝐶𝑛𝑛
𝑀𝑀1 + 𝐶𝐶𝑚𝑚

𝑀𝑀2 − 𝐶𝐶𝑛𝑛
𝑀𝑀3 − 𝐶𝐶𝑚𝑚

𝑀𝑀4 (12) 

Total force/moment coefficients were determined for the entire projectile with flaps 
set to zero deflection in two ways to validate the buildup. First, Cart 3D calculated 
total force/moment coefficients for the overall configuration. Second, Eqs. 7–12 
were used to compute the total force/moment coefficients starting with the 
polynomial model of each component in its local frame. The two totals were 
compared for zero deflection, many Mach numbers, and angles of attack from 2° to 
12°. Figure 9 contains sample plots for a typical comparison. 
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a) Side force component 

 
b) Normal force component 

 

 
c) Pitch moment component 

 
d) Yaw moment component 

Fig. 9 Validating the superposition buildup. Sample results at Mach = 0.75, alpha = 12°. 
Red circles are taken directly from CFD. Black diamonds show the total after applying the 
polynomial model for each component, then totaling in the body frame. 

Since many of the wind tunnel tests were performed in “X” mode, we will also need 
to perform the buildup using the X mode body frame. Figure 10 displays the local 
effector and body frames when defined in X mode at zero kinematic bank. Note 
that the body z axis points vertically down (opposite the depicted body normal force 
unit vector). Aerodynamic bank is now defined as the angle subtended 
counterclockwise from the body z axis to the relative wind. Thus, 𝜙𝜙 is reduced by 
pi/4 for X mode as opposed to “plus” mode.  
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Fig. 10 Local frames for MAS buildup 

Also, note that the MAS frames are no longer parallel or perpendicular to the body 
frame. Each set of MAS force/moment components will require a pi/4 rotation to 
body frame in addition to the component polarities defined in Eqs. 9–12. 
Specifically, if we define the rotation matrix  

𝐑𝐑 =
√2
2 �

1 0 0
0 1 −1
0 1 1

� 

then each component of the force/moment buildup is rotated into alignment with 
the body vertical/horizontal frame by 

 
�
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝐵𝐵

= 𝐑𝐑𝑇𝑇 �
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝐿𝐿

 (13) 

for forces and  

 
�
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝐵𝐵

= 𝐑𝐑 �
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝐿𝐿

 (14) 

for moments, where the superscript L takes on all values  
𝐿𝐿 ∈ {𝑅𝑅 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4}. After applying Eqs. 13 and 14 to the five 
components, the totals in the body frame require summation as defined in  
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Eqs. 9–12. Or, one could combine Eqs. 13, 14, and 9–12 to determine the full set 
of rotations from local effector frames to the body frame such as  

 
�
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�
tot

𝐵𝐵

= 𝐑𝐑𝑇𝑇 ��
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝑅𝑅

+ �
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝑀𝑀1

+ �
1 0 0
0 0 1
0 −1 0

� �
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝑀𝑀2

+ �
𝐶𝐶𝐴𝐴
−𝐶𝐶𝑆𝑆
−𝐶𝐶𝑁𝑁

�

𝑀𝑀3

+ �
1 0 0
0 0 −1
0 1 0

� �
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝑀𝑀4

�

 (15) 

and 

 
�
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�
tot

B

= 𝐑𝐑��
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝑅𝑅

+ �
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝑀𝑀1

+ �
1 0 0
0 0 −1
0 1 0

� �
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝑀𝑀2

+ �
𝐶𝐶𝑙𝑙
−𝐶𝐶𝑚𝑚
−𝐶𝐶𝑛𝑛

�

𝑀𝑀3

+ �
1 0 0
0 0 1
0 −1 0

� �
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝑀𝑀4

�

 (16) 

since the 45° rotation applies uniformly to all components.  

4. Wind Tunnel Validation 

Total force/moment components were measured using a one-fifth subscale model 
at the Florida State University wind tunnel.9 Aerodynamic roll was varied from  
–90° to +90° by rotating the model in a constant pitch orientation. Zero degree 
aerodynamic roll was defined as the “X” configuration. Angle of attack was held 
constant at approximately 12°. Mach was varied within the set  

𝑀𝑀𝑎𝑎𝑀𝑀ℎ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 2, 4, 5} 

Since the sting has a constant orientation with respect to the flow, force and moment 
components are measured in a “fixed plane” system. In order to compare with the 
model of Eqs. 7–16, the wind tunnel results were rotated into the body frame. The 
coefficient tables created for Eq. 6 define zero aerodynamic roll to be the “+” 
configuration, so a 45° bias was subtracted from roll before table lookups.  

4.1 Direct Comparisons 

As a first check, the aerodynamic model was compared with roll sweeps from the 
wind tunnel data. The wind tunnel model provides total force/moment coefficients 
for the entire assembly in a fixed-plane (tunnel) frame. Thus, in order to compare 
with the aero model, the wind tunnel data will need to be rotated into the body 
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frame by removing the aerodynamic roll. This can be done by defining the rotation 
matrix in terms of the aerodynamic roll (𝜙𝜙): 

𝐑𝐑 = �
1 0 0
0 𝑀𝑀𝜙𝜙 𝑠𝑠𝜙𝜙
0 −𝑠𝑠𝜙𝜙 𝑀𝑀𝜙𝜙

� 

Then, the wind tunnel force coefficients are transformed into the body frame by 

 
�
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝐵𝐵

= 𝐑𝐑𝑇𝑇 �
𝐶𝐶𝐴𝐴
𝐶𝐶𝑆𝑆
𝐶𝐶𝑁𝑁
�

𝑊𝑊𝑇𝑇

 (17) 

and the moment components by  

 
�
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝐵𝐵

= 𝐑𝐑 �
𝐶𝐶𝑙𝑙
𝐶𝐶𝑚𝑚
𝐶𝐶𝑛𝑛
�

𝑊𝑊𝑇𝑇

 (18) 

Figure 11 shows a sample comparison between wind tunnel (WT) data and aero 
model (AM) prediction. Results are shown for Mach 0.7. Note the excellent match 
in the force coefficients. At least two harmonics are evident in both curves with 
good agreement for the entire range plotted.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 11 Sample comparison between wind tunnel (WT) and aero model (AM), in body frame, 
roll sweep, AoA = 12°, Mach = 0.7, zero deflections 

In Figures 12–15, we plot the transverse force and moment coefficients from roll 
sweeps for the wind tunnel and aero model predictions. This allows us to confirm 
that the frame transformations in Eqs. 8–11 and 17–18 are correct.  

Wind tunnel roll sweeps were performed from –90° to +90° of aerodynamic bank, 
where phi = 0 is defined as the X configuration. The aero model predictions are 
aligned accordingly along the bank axis. In all cases (13–16), the aero model 
matches the wind tunnel transverse force coefficients very closely. Note also that 
the normal force component (𝐶𝐶𝑁𝑁) has a null point at +45° of bank. Likewise, the 
side force component (𝐶𝐶𝑆𝑆) has a node at –45° of bank.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 12 Sample comparison between wind tunnel (WT) and aero model (AM), in body frame, 
roll sweep, AoA = 12°, Mach = 0.7, 𝛅𝛅 =  [𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐] 

 
The aero model consistently overpredicts the pitch and yaw moment coefficients. 
This is especially evident in each pitch plot near 0° of bank and in each yaw plot 
near –90° and +90° of bank.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment  

d) Yaw Moment 

Fig. 13 Sample comparison between wind tunnel (WT) and aero model (AM), in body frame, 
roll sweep, AoA = 12°, Mach = 0.7, 𝛅𝛅 =  [−𝟐𝟐 −𝟐𝟐 −𝟐𝟐 −𝟐𝟐] 
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 14 Sample comparison between wind tunnel (WT) and aero model (AM), in body frame, 
roll sweep, AoA = 12°, Mach = 0.7, 𝛅𝛅 =  [𝟏𝟏𝟐𝟐 𝟏𝟏𝟐𝟐 𝟏𝟏𝟐𝟐 𝟏𝟏𝟐𝟐] 
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 15 Sample comparison between wind tunnel (WT) and aero model (AM), in body 
frame, roll sweep, AoA = 12°, Mach = 0.7, 𝛅𝛅 =  [−𝟏𝟏𝟐𝟐 −𝟏𝟏𝟐𝟐 −𝟏𝟏𝟐𝟐 −𝟏𝟏𝟐𝟐] 

The wind tunnel experiments also included configurations with the flaps deflected 
in specific ways to induce pitch moments without inducing roll or yaw. These 
configurations were designed for flight in both the plus and X roll orientations. A 
portion of the wind tunnel test matrix illustrating these configurations is shown as 
Table 1. These wind tunnel tests did not include roll sweeps but did include angle-
of-attack sweeps.  
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Table 1 Wind tunnel test conditions (courtesy of Florida State University) 

Model Deflections Mach 
number Pitch/roll sweeps 

Baseline 0 0.4, 0.5, 
0.6, 0.8, 
0.9, 1.1, 

1.2, 5 

Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 

0 3, 5 Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

0 2 Roll: –90° to 90° at Alpha = 10° 
Roll: –90° to 90° at Alpha = 4° 

0 0.7, 2 Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

Deflected + El 
–  El 

0.7, 2 Pitch: 0° to 12° at Phi = 0° 
Pitch: 0° to 12° at Phi = 45°  

+ Ail 
– Ail 

0.7, 2 Roll: –90° to 90° at Alpha = 12° 
Roll: –90° to 90° at Alpha = 6° 
Roll: 90° to –90° at Alpha = 0° 

 
Figure 16 shows the result at Mach 2 in plus mode with a 5° pitch deflection. Note 
that aero model normal force predictions are very accurate for the entire range. The 
aero model was contrived to predict null values of side force and side moment at 
0° of bank. This is reflected well in Fig. 16a and d. However, the wind tunnel 
captured small but negligible amounts of side force and side moment at most angles 
of attack, perhaps due to the bank angle not being set to exactly zero. The pitch 
moment matches well at zero angle of attack but diverges for larger angles of attack.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 16 Comparison between wind tunnel (WT) and aero model (AM), in body frame, AoA 
sweep, Mach = 2.0, plus mode, 𝛅𝛅 =  [𝟐𝟐 𝟐𝟐 −𝟐𝟐 𝟐𝟐] 

For Fig. 17, the pitch deflection is doubled. The largest apparent difference from 
the 5° deflection case is in the pitch moment bias. In Fig. 16, the zero angle-of-
attack pitch moment was above –0.5. In Fig. 17, it has reached nearly –1.0 due to 
the added deflection. The rest of the pitch moment profile is largely unchanged, 
indicating that angle of attack has a stronger influence than deflection as angle of 
attack in increased.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 17 Comparison between wind tunnel (WT) and aero model (AM), in body frame, AoA 
sweep, Mach = 2.0, plus mode, 𝛅𝛅 =  [𝟏𝟏𝟐𝟐 𝟐𝟐 −𝟏𝟏𝟐𝟐 𝟐𝟐] 

In Figs. 18, 19, and 20, we have repeated the comparison for pitch deflections in X 
mode. At 5° pitch deflection (Fig 18), the normal force and pitch moment 
coefficients match well in bias as well as in nonzero angle-of-attack cases. 
Doubling the deflection to 10° (Fig. 19), a significant difference in bias is observed. 
The normal force and pitch moment curves are otherwise parallel, indicating that 
the only significant error is in the bias terms for pitch moment and normal force. 
As we double the deflection again (Fig. 20), the bias error increases, but the pitch 
moment and normal force curves remain parallel. Thus, the aero model predictions 
differ from the wind tunnel primarily in the bias term. We explore tuning the aero 
model to the wind tunnel data later in this report.  
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 18 Comparison between wind tunnel (WT) and aero model (AM), in body frame, AoA 
sweep, Mach = 0.7, X mode, 𝛅𝛅 =  [𝟐𝟐 𝟐𝟐 −𝟐𝟐 −𝟐𝟐] 
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 19 Comparison between wind tunnel (WT) and aero model (AM), in body frame, AoA 
sweep, Mach = 0.7, X mode, 𝛅𝛅 =  [𝟏𝟏𝟐𝟐 𝟏𝟏𝟐𝟐 −𝟏𝟏𝟐𝟐 −𝟏𝟏𝟐𝟐] 
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 20 Comparison between wind tunnel (WT) and aero model (AM), in body frame, AoA 
sweep, Mach = 0.7, X mode, 𝛅𝛅 =  [𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 −𝟐𝟐𝟐𝟐 −𝟐𝟐𝟐𝟐] 

4.2 Neural Net Tuning of the Fourier Model 

Combining the methods presented in Eqs. 8–11, and Eq. 5, an alternative model can 
be built in the form of a Widrow–Hoff (linear feedforward) neural network. This 
network will predict the transverse forces and moments for the entire projectile 
based upon the Cartesian Fourier representation. By comparing the model 
prediction with the Fourier model found from wind tunnel data by direct regression, 
the Fourier model coefficients may be tuned using a steepest descent algorithm.  

We demonstrate the method here and present some sample results. Equation 5 may 
be applied to forces and moments from either an individual component of the 
projectile (RAS, MAS1, etc.), such as in the preceding reduction of Cart3D data, or 
to the entire projectile, such as the wind tunnel measurements. Thus, given a set of 
Fourier coefficients for an individual component (𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛), one could predict a force 
or moment contribution in the local frame of that component. By expanding Eq. 5 
slightly,  
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𝐲𝐲� = 𝚽𝚽

⎩
⎪
⎨

⎪
⎧𝑎𝑎1

𝑆𝑆

𝑎𝑎2𝑆𝑆
⋮

𝑎𝑎1𝑁𝑁

𝑎𝑎2𝑁𝑁
⋮

𝑏𝑏1𝑆𝑆

𝑏𝑏2𝑆𝑆
⋮

𝑏𝑏1𝑁𝑁

𝑏𝑏2𝑁𝑁
⋮ ⎭
⎪
⎬

⎪
⎫

= 𝚽𝚽 ∙ 𝚵𝚵 (19) 

We can predict both components of transverse force (𝐶𝐶𝑆𝑆,𝐶𝐶𝑁𝑁) in a single matrix 
multiplication in the local frame. Equations 8–11 or 12–15 may be achieved by two 
more matrix multiplications in series. By transposing Eq. 19, 𝐲𝐲� becomes two long 
rows representing the force components over a partial roll cycle. Thus, 
premultiplying by a 45° rotation (Eqs. 12–13 if X mode is desired), and then by a 
90° rotation (shown by the binary matrices that multiply MAS terms in  
Eqs. 14–15), the force predictions may be transformed into the desired body frame. 
In one equation, this is  

 𝐲𝐲�𝐵𝐵 = 𝐑𝐑 ∙ 𝐑𝐑𝟗𝟗𝟐𝟐∘ ∙ (𝚽𝚽 ∙ 𝚵𝚵)𝑻𝑻 (20) 

where R was previously defined and 𝐑𝐑𝟗𝟗𝟐𝟐∘ takes on one of four values depending 
on which component (RAS, MASi) is being predicted.  

𝐑𝐑𝟗𝟗𝟐𝟐∘ = 𝐈𝐈,   𝐑𝐑𝟗𝟗𝟐𝟐∘ = −𝐈𝐈 

𝐑𝐑𝟗𝟗𝟐𝟐∘ = � 𝟐𝟐 𝟏𝟏
−𝟏𝟏 𝟐𝟐�  or   𝐑𝐑𝟗𝟗𝟐𝟐∘ = �𝟐𝟐 −𝟏𝟏

𝟏𝟏 𝟐𝟐 � 

In order to build up a prediction for the entire projectile, an instance of Eq. 20 is 
evaluated for each component, choosing the corresponding 𝐑𝐑𝟗𝟗𝟐𝟐∘. Force and 
moment coefficients for the entire vehicle can then be predicted by a simple sum.  

If Eq. 20 is seen as forward propagation through a linear feedforward network, then 
the sensitivity of the prediction with respect to the parameters (𝚵𝚵) can likewise be 
written as a backpropagation:   

 𝜕𝜕𝐲𝐲�𝐵𝐵

𝜕𝜕𝚵𝚵
=∙ 𝐑𝐑𝟗𝟗𝟐𝟐∘

𝑇𝑇 ∙ 𝐑𝐑𝑇𝑇 ∙ (𝟏𝟏 ∙ 𝚽𝚽) (21) 

Premultiplying by 𝐑𝐑𝑇𝑇 results in a row of zeros in the sensitivities, so comparisons 
must be done in the “plus” body frame, and we hold 𝐑𝐑𝑇𝑇 = 𝐈𝐈. For practical 
implementation, only one row of 𝚽𝚽, and hence Eq. 21, is evaluated at a time, thus 
each row is treated as the sensitivity for one “training pair”. The length two-column 
vector, 1, replicates that row of 𝚽𝚽 such that Eq. 21 renders a 2 × 2𝜋𝜋 array of 
sensitivities, one row for each transverse force component and a column for each 
𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛. Each of these sensitivities is then used to populate a Jacobian matrix. We 
use separate Jacobians for each force and moment component.  
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Meanwhile, we apply Eq. 5 to the actual wind tunnel data of the entire projectile in 
order to smooth the data. The resulting Fourier model is then compared to the 
network predictions in order to tune the network. Separate residuals and Jacobians 
are found for each force/moment component. Thus, the tuning algorithm resembles 
Widrow–Hoff as subsets of the coefficients are tuned sequentially based upon 
subsets of the system gradient.  

4.3 Rigid Aero Surface Terms 

Since roll cycle data was only available for configurations where all flap deflections 
were set to equal values (roll deflections), the tuning algorithm shown previously 
was applied to only the rigid aero surface predictions in order to match these data 
sets. Equal flap deflections approximately cancel each other out in pitch and yaw, 
so tuning the MAS for such data would be ill-conditioned, hindering convergence.  

Figure 21 compares the wind tunnel data, three-term Fourier model from direct 
regression of wind tunnel data, Fourier model from Cart3D as described in  
Section 3.1, and Fourier model found from network tuning of the Fourier model 
found in Section 3.3. The comparison is done in the plus mode body frame—wind 
tunnel measurements had to be rolled into this frame. The yellow line is a three-
term Fourier approximation to the actual data, which fits in a least squares sense. 
The “Fourier tuned AM” was trained using the Fourier model of the wind tunnel 
data as truth. After the three steepest descent steps, the model predictions of all four 
force/moment components fit with a residual whose two-norm is less than 10‒13.  
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a) Side Force  

b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 21 Comparison between wind tunnel (WT) and tuned aero model (AM), in body frame, 
roll sweep, Mach = 2.0, plus mode, 𝛅𝛅 =  [𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐] 

Figure 22 compares the Fourier coefficients after tuning to those found using the 
method of Section 3.3. The blue squares represent the Fourier coefficients found 
from Cart3D using the method of Section 3.1 and converted to Cartesian form. The 
red diamonds are the same coefficients after tuning to the wind tunnel–based 
Fourier model. The top graph shows only small adjustments, reflecting the 
proximity of the untuned Fourier (red curves in Fig. 21a and b) and the wind tunnel 
data. Force components converge within 10‒4 in the first steepest descent step. 
Since the moment predictions include a component due to the distance from center 
of gravity to center of pressure, the moment parameters lag in convergence by one 
step, reaching residuals less than 10‒13 by the third step.  
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Fig. 22 Comparison of Fourier coeffcieints for rigid aero surface model from Cart3D before 
and after tuning to wind tunnel data. Mach = 2.0, plus mode, 𝛅𝛅 =  [𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐]. 

A second example will further illustrate the power of this method. Here we 
intentionally seed the algorithm with the Fourier coefficients for the model in the 
plus mode body frame. However, we provide the training data in the X mode body 
frame. Thus, the network model starts with the predictions shown as red curves in 
Fig. 21. Training data is shown in Fig. 23 as yellow curves, and the trained network 
predictions as purple curves. Initial residuals are thus considerably larger than the 
previous example. However, after only three iterations, all residuals are reduced to 
less than 10‒13, and the tuned model matches the training data exactly. The untuned 
Cart3D Fourier model is shown as a red curve in Fig. 23 to show its fidelity prior 
to tuning; however, this data is ignored in the actual tuning. 
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a) Side Force 

 
b) Normal Force 

 
c) Pitch Moment 

 
d) Yaw Moment 

Fig. 23 Comparison between wind tunnel (WT) and tuned aero model (AM), in body frame, 
roll sweep, Mach = 2.0, X mode, algorithm seeded with plus mode Fourier predictions,  
𝛅𝛅 =  [𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐] 

Figure 24 shows the Fourier coefficients for the untuned plus mode model as blue 
squares. Coefficients of the fundamental harmonics (𝑎𝑎1, 𝑏𝑏1) are found at indices 1 
and 4 for 𝐶𝐶𝑆𝑆 and 𝐶𝐶𝑁𝑁 and at indices 7 and 10 for 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑛𝑛, respectively. Note that 
these coefficients move the most during tuning to adjust for the 45° phase difference 
moving from plus to X mode. Movement of the higher harmonics is not as apparent 
due to their smaller overall magnitudes.  
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Fig. 24 Comparison of Fourier coefficients for Rigid Aero Surface Model from Cart3D 
before and after tuning to wind tunnel data. Mach = 2.0, plus mode, 𝛅𝛅 =  [𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐]. 

4. Conclusion 

The aerodynamics of a long-range, high-speed projectile were modeled by 
exercising an inviscid CFD solver over a large test matrix. To convert the table of 
predictions from CFD into a format suitable for high-fidelity simulation, a multistep 
approach was performed. Obvious outliers were discarded and replaced through 
linear interpolation of adjacent points when possible. If consecutive points in the 
roll cycle were determined to be outliers, they were all replaced with values from 
the next lowest Mach number. At each Mach number and angle of attack, a Fourier 
series approximation to the data was found and used to smooth the input data, and 
interpolated to provide additional estimates every 2.8125° of bank. The predictions 
from Fourier were assembled at each bank angle for angles of attack from zero to 
20°. These predictions were used in a regression to coefficients of up to a fifth-
order polynomial in sin(α). Unique coefficients were found at each bank angle and 
Mach number. The process was repeated for a single deflected flap resulting in a 
table of coefficients as functions of bank, Mach number, and flap deflections. In 
order to validate the process and resulting model, the total transverse force/moment 
coefficients were built up for various configurations and Mach numbers and 
compared to both CFD predictions for the entire airframe, and wind tunnel 
measurements from a one-fifth scale model. The model compared well at all 
conditions predicted, with better performance in force prediction as opposed to 
moment prediction. A subsequent report will discuss tuning the model to all wind 
tunnel and Navier Stokes CFD data currently available.11  
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Appendix. Converting between Cartesian and Polar Fourier
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Fourier coefficients for the wind tunnel data had to be determined in Cartesian 
form, since the data contained less than a full “period”. In order to compare these 
coefficients to those found from the Cart3D estimates, we need to map between the 
polar and Cartesian forms. The wind tunnel Fourier series is found in the Cartesian 
form  

 
𝑦𝑦� =

𝑎𝑎0
2

+ �(𝑎𝑎𝑛𝑛 cos 2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇 + 𝑏𝑏𝑛𝑛 sin 2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇)
∞

𝑛𝑛=1

 (A-1) 

where the C3D estimates were smoothed with a Polar form: 

 𝑦𝑦� = 𝑋𝑋0 + 2� |𝑋𝑋𝑛𝑛| cos(2𝜋𝜋𝜋𝜋 ∙ 𝜙𝜙/𝑇𝑇 + ∠𝑋𝑋𝑛𝑛)
𝑛𝑛

 (A-2) 

Thus, the biases are easily equated. Since cos and sin are orthogonal, the 
Pythagorean theorem may be used to write  

 |𝑋𝑋𝑛𝑛| = �𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑛𝑛2 (A-3) 

and likewise 

 
∠𝑋𝑋𝑛𝑛 = − tan−1

𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛

 (A-4) 

Since the wind tunnel estimates are for the entire vehicle in various configurations, 
superposition will need to be applied to the C3D Fourier terms in order to form a 
valid comparison. So instead of mapping from Cartesian to polar, we will need to 
do the inverse. We begin by squaring Eq. 28 to get  

 |𝑋𝑋𝑛𝑛|2 = 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑛𝑛2 (A-5) 

Manipulating Eq. 29, we can get 

 𝑎𝑎𝑛𝑛 ∙ tan(−∠𝑋𝑋𝑛𝑛) = 𝑏𝑏𝑛𝑛 (A-6) 

and 

 𝑎𝑎𝑛𝑛2 ∙ tan2(−∠𝑋𝑋𝑛𝑛) − 𝑏𝑏𝑛𝑛2 = 0 (A-7) 

Equations 30 and 32 can be solved simultaneously for the squares of the Cartesian 
amplitudes, and Eq. 31 will give the relative signs between them; however, that 
leaves two possible solutions. Thus, we use the quadrant of ∠𝑋𝑋𝑛𝑛 to disambiguate 
the signs by 
 

𝑎𝑎𝑛𝑛 = sign(cos(−∠𝑋𝑋𝑛𝑛)) ∙ �𝑎𝑎𝑛𝑛2  (A-8) 

and 
 𝑏𝑏𝑛𝑛 = sign(sin(−∠𝑋𝑋𝑛𝑛)) ∙ �𝑏𝑏𝑛𝑛2 (A-9) 
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List of Symbols, Abbreviations, and Acronyms 

3-D  three-dimensional 

AoA  angle of attack 

CFD  computational fluid dynamics 

CG  center of gravity 

LTV-1  Laboratory Technology Vehicle 

MAS  moving aerodynamic surface 

NASA  National Aeronautics and Space Administration 

RAS  rigid aerodynamic surface 

{𝜙𝜙,𝜃𝜃,𝜓𝜓}  projectile roll, pitch, and yaw in local ground frame (rad) 

|𝑋𝑋𝑛𝑛|∠𝑋𝑋𝑛𝑛  magnitude/phase of polar Fourier harmonic n  

T  period of harmonic function (rad) 

I  identity matrix 

𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛  Cartesian Fourier amplitudes 

𝑖𝑖  = √−1  

𝑀𝑀  Mach number 

𝚽𝚽  Matrix of harmonic basis functions 

𝜗𝜗  placeholder, 𝜗𝜗 ∈ {𝐴𝐴, 𝑆𝑆,𝑁𝑁, 𝑙𝑙,𝑚𝑚,𝜋𝜋} 

R  rotation matrix 

𝛼𝛼  angle of attack (deg)  

𝛿𝛿  flap deflection (deg) 

f (.)  function to be approximated 

D  projectile diameter (m) 

𝐶𝐶𝐴𝐴  axial force coefficient 

𝐶𝐶𝑆𝑆  side force coefficient 

𝐶𝐶𝑁𝑁  normal force coefficient 

𝐶𝐶𝑙𝑙  roll moment coefficient 
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𝐶𝐶𝑚𝑚  pitch moment coefficient 

𝐶𝐶𝑛𝑛  yaw moment coefficient 

Subscript 

90∘  90∘ rotation 

n  harmonic number  

Superscript 

T  matrix transpose 

𝐿𝐿  placeholder, 𝐿𝐿 ∈ {𝑅𝑅,𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑀𝑀4} 

𝑅𝑅  rigid aerodynamic surface 

𝑀𝑀𝑗𝑗  moving aerodynamic surface 𝑗𝑗 

𝐵𝐵  body frame  

𝑊𝑊𝑇𝑇  wind tunnel frame  

𝑁𝑁  normal force component 

𝑆𝑆  side force component 
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