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Preface

Recent high-profile demonstrations of artificial intelligence (AI) sys-
tems achieving superhuman performance on increasingly complex 
games along with successful commercial applications of related tech-
nology raise the questions of whether and how the U.S. Air Force can 
use AI for military planning and command and control (C2). The 
potential benefits of applying AI to C2 include greater decision speed, 
increased capacity to deal with the heterogeneity and volume of data, 
enhanced planning and execution dynamism, improved ability to syn-
chronize multimodal effects, and more efficient use of human capital. 
Together, the technology push prompted by recent breakthroughs in AI 
and the market pull arising from emerging C2 needs have prompted 
the Air Force and the Department of Defense to identify AI as a stra-
tegic asset.

In 2019, the Air Force Research Laboratory, Information Direc-
torate (AFRL/RI) asked RAND Project AIR FORCE (PAF) to exam-
ine and recommend opportunities for applying AI to Air Force C2. 
The research project Exploring the Near-Term Feasibility and Utility 
of Machine Learning-Assisted Operational Planning was conducted in 
PAF’s Force Modernization program to address this question. A second 
project was conducted in parallel to examine the separate but related 
topic of complexity imposition. This report presents the primary result 
of the study on AI: an analytical framework for understanding the suit-
ability of a particular AI system for a given C2 problem and for evalu-
ating the AI system when applied to the problem. We demonstrate 
the analytical framework with three technical case studies focused on 
master air attack planning, sensor management, and personnel recovery. 
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The C2 processes examined in these case studies are central to current 
and future C2 concepts of operation, and they exemplify the range of 
characteristics that make C2 problems so challenging.

RAND Project AIR FORCE

RAND Project AIR FORCE (PAF), a division of the RAND Corpo-
ration, is the Department of the Air Force’s (DAF’s) federally funded 
research and development center for studies and analyses, supporting 
both the United States Air Force and the United States Space Force. 
PAF provides DAF with independent analyses of policy alternatives 
affecting the development, employment, combat readiness, and sup-
port of current and future air, space, and cyber forces. Research is con-
ducted in four programs: Strategy and Doctrine; Force Modernization 
and Employment; Manpower, Personnel, and Training; and Resource 
Management. The research reported here was prepared under contract 
FA7014-16-D-1000.

Additional information about PAF is available on our website:   
www.rand.org/paf/

This report documents work originally shared with DAF on 
March 11, 2020. The draft report, issued on April 14, 2020, was reviewed 
by formal peer reviewers and DAF subject-matter experts.

http://www.rand.org/paf/
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Summary

Issues

•	 A key priority for the U.S. Air Force is to use artificial intelligence 
(AI) to enhance military command and control (C2).

•	 The academic and commercial contexts in which AI systems have 
been developed and deployed are qualitatively different from the 
military contexts in which they are needed.

•	 The Air Force lacks an analytical framework for understanding 
the suitability of different AI systems for different C2 problems 
and for identifying pervasive technology gaps.

•	 The Air Force lacks sufficient metrics of merit for evaluating the 
performance, effectiveness, and suitability of AI systems for C2 
problems.

Approach

The RAND team reviewed the computer science, cognitive science, 
and operations research literature to create a taxonomy of C2 problem 
characteristics and a taxonomy of AI solution capabilities. These taxon-
omies were refined through interviews with military C2 subject-matter 
experts and with experts in AI. To determine the solution capabilities 
essential for dealing with each problem characteristic, the RAND team 
conducted an online expert panel. Finally, the RAND team demon-
strated the framework for evaluating the suitability of different AI sys-
tems for C2 problems through three technical case studies developed 
in conjunction with active-duty and retired AF personnel.
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Conclusions and Recommendations

The RAND team proposes a structured method for determining the suit-
ability of an AI system for any given C2 process (Figure S.1). The meth-
odology involves (1) evaluating the C2 problem characteristics, (2) eval-
uating the AI system capabilities, (3)  comparing alignment between 
problem characteristics and solution capabilities, (4) selecting measures 
of merit, and (5) implementing, testing, and evaluating potential AI sys-
tems. In addition to providing a methodology to determine alignment 
between C2 problems and AI solutions, this research supports several 
conclusions shown in Figure S.1 along with associated recommendations.

Conclusion 1. C2 processes are very different from games and environ-
ments used to develop and demonstrate AI systems.

• Recommendation 1. Use the structured method described in this 
report to systematically analyze the characteristics of games, prob-
lems, and C2 processes to determine where existing AI test beds 
are representative and nonrepresentative of C2 tasks.

Figure S.1
Artificial Intelligence System Capability Mapping and Command and 
Control Process Evaluation

NOTE: T&E: test and evaluation; V&V: verification and validation. 

Conclusion 1. C2 processes are very different from many of the games and 
environments used to develop and demonstrate AI systems
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multitude of problem 
characteristics present 
in C2 processes 

Conclusion 2. The distinctive nature of 
C2 processes calls for AI systems different 
from those optimized for gameplay

 Command and control process

  Measures of merit

 Taxonomic mapping

  Evaluation

Operational
context

Operational 
need

Problem
analysis

Problem
characteristics

Solution
capabilities

Proposed
solution(s)

Matrix

T&E/ V&V

Measures of
performance

Measures of
effectiveness

Measures of
suitability



Summary    xi

•	 Recommendation 2. Develop new AI test beds that are more rep-
resentative of C2 tasks.

Conclusion 2. The distinctive nature of C2 processes calls for AI sys-
tems different from those optimized for game play.

•	 Recommendation 3. Use the structured method described in this 
report to identify and invest in high-priority solution capabilities 
called for across a wide range of C2 processes and not currently 
available (e.g., robustness and assuredness).

•	 Recommendation 4. Use the structured method described in this 
report to evaluate alignment between the characteristics of poten-
tial AI systems and particular C2 processes to prioritize which 
systems to develop.

Conclusion 3. The distinctive nature of C2 processes calls for measures 
of merit different from those typically used in AI research.

•	 Recommendation 5. Develop metrics for AI solutions that assess 
capabilities beyond algorithm soundness and optimality.

•	 Recommendation 6. Use the structured method described in this 
report to identify key measures of performance, effectiveness, and 
suitability for a given C2 process and to comprehensively assess 
candidate AI solutions.

Conclusion 4. Hybrid approaches are needed to deal with the multi-
tude of problem characteristics present in C2 processes.

•	 Recommendation 7. Identify, reuse, and combine algorithmic solu-
tions that confer critical AI system capabilities.
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CHAPTER ONE

Introduction and Project Overview

In November 2014, former Secretary of Defense Chuck Hagel artic-
ulated a Third Offset Strategy, which focused on robotics, autono-
mous systems, and data.1 The strategy echoed recommendations from 
earlier science and technology reports by the Department of Defense 
(DoD), the armed forces, and other federal agencies. For example, of 
the 30 potential capability areas called out for emphasis by the U.S. Air 
Force in Technology Horizons: A Vision for Air Force Science and Tech-
nology 2010‒2030, “adaptive flexibly-autonomous systems” was given 
highest priority.2 More recently, the 2019 National Defense Authoriza-
tion Act established the Joint AI Center to coordinate DoD’s efforts to 
develop and transition artificial intelligence (AI) technologies and also 
a National Security Commission on Artificial Intelligence to ensure 
national leadership in the development of AI technologies.3 These legis-
lative actions have been accompanied by increased funding: in 2018, for 
example, the Defense Advanced Research Projects Agency (DARPA) 
announced a $2 billion campaign for AI technology development.4

1	 DoD, “Secretary of Defense Speech, Reagan National Defense Forum Keynote,” Defense 
.gov, December 7, 2019. DoD lacks agreed upon definitions of autonomy and of artificial 
intelligence. Although the two terms are not synonymous, any autonomous system contains 
one or more forms of AI.
2	 W. J. Dahm, Technology Horizons: A Vision for Air Force Science and Technology During 
2010‒2030, Arlington, Va.: U.S. Air Force, 2010.
3	 Sections 238 and 1051 of the National Defense Authorization Act, respectively.
4	 DARPA, “DARPA Announces $2 Billion Campaign to Develop Next Wave of AI Tech-
nologies,” Arlington, Va., March 12, 2020.
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Breakthroughs in computing power, data availability, and algo-
rithms during the past fifteen years have contributed to a surge of 
interest. Demonstrations of AI systems achieving superhuman perfor-
mance on complex games like chess, poker, and StarCraft reveal their 
ever-increasing capabilities. Additionally, commercial applications of 
AI systems have overwhelmingly established their real-world value.5 
Despite the abstraction from military contexts, DoD has frequently 
cited potential applications of these technologies to warfighting func-
tions.6 China and Russia have also undertaken extensive programs in 
AI, giving urgency to the United States’ pursuit of these technologies 
to maintain a strategic advantage.7

DoD’s recent interest in AI is also driven by emerging needs.8 For 
example, the proliferation of wide-area surveillance sensor systems gives 
rise to volumes of data that exceed human processing capacity. Addi-
tionally, the imposition of joint all-domain effects requires planning 
and coordinating across a suite of capabilities that challenges human 
ability to manage complexity. Lastly, improvements in unmanned 
platforms and the need to operate in contested environments places 
vehicles beyond the range of human control. Yet despite the apparent 
potential for AI to address these and other challenges, it remains dif-
ficult to discern the applicability of specific academic and commercial 
AI systems to specific warfighting functions.

5	 For example, see Bernard Marr and Matt Ward, Artificial Intelligence in Practice: How 
50 Successful Companies Used AI and Machine Learning to Solve Problems, Chichester, U.K.: 
Wiley, 2019.
6	 U.S. Air Force Scientific Advisory Board, Technologies for Enabling Resilient Command 
and Control MDC2 Overview, Washington, D.C., 2018; G. Zacharias, Autonomous Hori-
zons: The Way Forward, Maxwell Air Force Base, Ala.: Air University Press, Curtis E. LeMay 
Center for Doctrine Development and Education, 2019a.
7	 This has been reported extensively elsewhere. For example, see Yuna Huh Wong, John M. 
Yurchak, Robert W. Button, Aaron Frank, Burgess Laird, Osonde A. Osoba, Randall Steeb, 
Benjamin N. Harris, and Sebastian Joon Bae, Deterrence in the Age of Thinking Machines, 
Santa Monica, Calif.: RAND Corporation, RR-2797-RC, 2020.
8	 U.S. Air Force, Science and Technology Strategy: Strengthening USAF Science and Technol-
ogy for 2030 and Beyond, Washington, D.C., April 2019b.
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This report concerns the potential for AI systems to assist in Air 
Force command and control (C2) from a technical perspective. Spe-
cifically, we present an analytical framework for assessing the suitabil-
ity of a given AI system for a given C2 problem. The purpose of the 
framework is to identify AI systems that address the distinct needs of 
different C2 problems and to identify the technical gaps that remain.9 
Although we focus on C2, the analytical framework applies to other 
warfighting functions and services as well.

Study Context

Terminology

For the purposes of this report, we define AI and machine learning 
(ML) as follows: AI is an academic discipline concerned with machines 
demonstrating intelligence—that is, behaving in a rational way given 
what they know;10 ML is a subfield of AI that concerns machines per-
forming tasks without first receiving explicit instructions. The field of 
AI is expansive and includes topics such as problem-solving, knowledge 
and reasoning, planning, and learning. ML is a type of AI in which the 
machine learns to perform tasks through exposure to training data or 
through interactions with a simulation environment. Neural networks 
are but one class of ML techniques, along with many other statistical 
methods.

The Need for Artificial Intelligence in Command and Control

C2 is “the exercise of authority and direction by a properly designated 
commander over assigned and attached forces in the accomplishment 

9	 Though important, we do not address other operational, doctrinal, and organizational 
issues surrounding the use of AI in this report. Defense Science Board, Defense Science Board 
Summer Study on Autonomy, Washington, D.C.: Office of the Under Secretary of Defense, 
June 2016; U.S. Air Force, Artificial Intelligence Annex to the Department of Defense Artificial 
Intelligence Strategy, Washington, D.C., 2019a.
10	 S. Russell and P. Norvig, Introduction to Artificial Intelligence: A Modern Approach, New 
Delhi: Prentice-Hall of India, 1995.
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of the mission.”11 The goal of C2 is to enable what is otherwise opera-
tionally possible by planning, synchronizing, and integrating forces in 
time and purpose. AI systems have the potential to address immediate, 
midterm, and far-term C2 needs.

Immediate needs. The Air Operations Center (AOC) provides 
operational-level C2 of air and space forces to accomplish joint force 
commander objectives. The AOC Technical Requirements Document 
contains more than 700 technical requirements traceable to opera-
tional requirements and to the AOC mission threads.12 Presently, mis-
sion threads are supported by a patchwork of legacy software systems, 
and the tasks they entail are immensely human intensive. The AOC 
development and modernization outlined in the AOC 10.2 program 
sought to address these challenges in part by facilitating task flows 
through increased automation.

The AOC technical requirements fall into two general categories: 
those that involve modifying information objects, such as creating a 
master air attack plan based on the commander’s guidance and other 
inputs, and those that involve simply storing or handling information 
objects, such as publishing the air tasking order and transmitting it to 
units. Requirements in the former category, which account for 44 per-
cent of total requirements, are more likely to call for AI because they 
involve reasoning about inputs to reach decisions. Figure 1.1 shows the 
number of requirements by type and mission thread. Opportunities 
for AI are ubiquitous across mission threads and throughout the air 
tasking cycle (ATC). The AOC 10.2 program called for increasingly 
autonomous capabilities like “automated airspace deconfliction” and 

11	 Joint Publication 3-0, Joint Operations, Washington, D.C.: U.S.  Joint Chiefs of Staff, 
January 17, 2017. Command is the authority lawfully exercised over subordinates, and con-
trol is the process—inherent in command—by which commanders plan, guide, and conduct 
operations.
12	 Lockheed Martin Information Systems and Global Services, Technical Requirements Doc-
ument (TRD), for the Air and Space Operations Center (AOC) Weapon System (WS), draft, 
AOCWS-TRD-0000-U-R8C0, prepared for 652 ELSS/KQ Electronic Systems Center, 
Hanscom AFB, Colorado Springs, Colo.: Lockheed Martin Information Systems and Global 
Services, November 16, 2009. Not available to the general public.
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“smart agent decision aids.” Following the cancelation of the AOC 10.2 
in 2016, these capabilities have not yet been delivered.

The retirement of legacy the AOC systems and the deployment 
of new Block 20 applications by Kessel Run provide an on-ramp for 
AI into operational-level C2. Additionally, the enterprise services and 
platform managed by Kessel Run enable the transition of software—
potentially including AI—to the AOC. Finally, other Kessel Run 

Figure 1.1
Number of Requirements by Type and by Air Operations Center Mission 
Thread

SOURCE: Lockheed Martin Information Systems and Global Services, Technical 
Requirements Document (TRD), for the Air and Space Operations Center (AOC) 
Weapon System (WS), draft, AOCWS-TRD-0000-U-R8C0, prepared for 652 ELSS/KQ 
Electronic Systems Center, Hanscom AFB, Colorado Springs, Colo.: Lockheed Martin 
Information Systems and Global Services, November 16, 2009.

NOTE: ACO: Airspace Control Order Development; ACP: Airspace Control Plan; AADP: 
Area Air Defense Plan; AOD: Air Operations Directive; ATO (air tasking order): ATO 
Development; CAS: Close Air Support; CSAR: Combat Search and Rescue; DT: Dynamic 
Targeting; ISR (intelligence, surveillance, and reconnaissance): ISR Planning; JAOP: Joint 
Air Operations Planning; JIPTL: Joint Integrated Prioritized List Development; PBA:
Predictive Battlespace Awareness; TMD: Theater Missile Defense.
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products in development, such as Rebel Alliance, enable automatic 
data sharing across the AOC, creating new opportunities for AI.

Midterm needs. The ATC is the canonical 72-hour process used 
for the planning, execution, monitoring, and evaluation of air power. 
Yet Cold War‒era assumptions that once motivated the ATC fail to 
meet the dynamics needed for defensive operations and real-time mis-
sion changes.13 During Operation Desert Storm, 20 to 40  percent 
of sorties changed from conception to execution. During Operation 
Allied Force, the emphasis on fielded forces gave rise to flex targeting, 
which matured into dynamic targeting. During Operation Enduring 
Freedom, most fixed targets were destroyed within the first 15 minutes 
of the war. Finally, during Operation Iraqi Freedom, kill-box interdic-
tion and close air support accounted for 79 percent of designated mean 
points of impact struck, and dynamic targeting and time sensitive tar-
geting accounted for an additional 4 percent of designated mean points 
of impact struck.

These examples show that the majority of missions in recent 
conflicts were planned outside the ATC. Although extensive manual 
replanning was feasible in these cases, it would likely be infeasible in 
a conflict with a near peer that involved substantial resource limita-
tions and for which air superiority was not assured. AI could enable 
more dynamic planning by dramatically shortening the duration of the 
ATC, by accounting for more contingencies during the deliberate plan-
ning phase, and by developing and enacting new contingencies during 
force execution. The need for AI to facilitate planning will increase 
as the Air Force adopts Joint All-Domain Command and Control 
(JADC2) due to the greater diversity of available effects and, hence, 
the complexity of coordinating them.

Far-term needs. “Centralized control and decentralized execution” 
are long-standing tenets of air power.14 Yet the concentration of opera-
tional planning processes and staffs at forward deployed AOCs con-

13	 Robert Winkler, The Evolution of the Joint ATO Cycle, Norfolk, Va.: Joint Advanced 
Warfighting School, 2006.
14	 Joint Publication 3-30, Command and Control of Joint Air Operations, Washington, D.C.: 
U.S. Joint Chiefs of Staff, January 12, 2010.
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stitutes a critical vulnerability. One way to increase the resiliency of 
air component C2 is to evolve from the current centralized C2 archi-
tecture to a globally distributed one. However, this requires that the 
architecture be robust against disrupted communications and the tem-
porary or permanent loss of nodes.15 AI could enable distributed C2 by 
prioritizing communications between nodes, by coordinating planning 
activities across intermittently isolated nodes, and by allowing smaller 
and potentially less experienced staffs to complete planning activities. 
The need for AI to coordinate activities will increase as the Air Force 
adopts JADC2, which is inherently dispersed across geographically 
and functionally dispersed nodes.

Potential use cases for AI in the Air Force and DoD are not lim-
ited to C2. For example, the first two National Mission Initiatives 
identified by the Joint AI Center involve using computer vision to 
extract information from imagery (e.g., Project Maven) and predictive 
vehicle maintenance to increase readiness by pre-positioning parts and 
maintenance personnel.16 AI could also be applied to Air Force train-
ing and professional education (e.g., Pilot Training Next). Although we 
primarily focus on C2, there are potential applications for AI across all 
Air Staff directorates.

Recent Technological Advances in Artificial Intelligence

Since the advent of AI, human games have served as a benchmark for 
evaluating computer intelligence.17 Many recent high-profile demon-
strations have shown AI systems achieving superhuman performance 
on increasingly difficult games of strategy and skill. At one time, each 
of the games listed in Table 1.1 was thought to require uniquely human 
abilities. For example, the game of go has been described as one of the 
“most challenging domains in terms of human intellect,” a view that 

15	 U.S. Air Force Scientific Advisory Board, 2018.
16	 John Shanahan, “Artificial Intelligence Initiatives,” statement to the Senate Armed Ser-
vices Committee Subcommittee on Emerging Threats and Capabilities, Washington, D.C., 
U.S. Senate, March 12, 2019.
17	 N. Ensmenger, “Is Chess the Drosophila of Artificial Intelligence? A Social History of an 
Algorithm,” Social Studies of Science, Vol. 42, No. 1, 2012.
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has motivated over 50 years of AI research on games of the mind.18 
Indeed, many of these games have been used by cognitive scientists 
to study human memory, planning, and expertise.19 The finding that 
AI systems can outperform elite-level humans in these games is, then, 
somewhat remarkable and suggests that AI may be relevant for tasks 
once thought to require human cognition.20

Recent commercial applications of AI systems have been equally 
impressive (Table 1.2). Neural networks have been trained to achieve 
cardiologist-level performance at classifying electrocardiogram read-
ings; optimization techniques have been used to control energy plant 

18	 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, 
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy 
Lillicrap, Karen Simonyan, and Demis Hassabi, “A General Reinforcement Learning Algo-
rithm that Masters Chess, Shogi, and Go Through Self-Play,” Science, Vol. 362, No. 6419, 
December 2018.
19	 F. Gobet and H. A. Simon, “Templates in Chess Memory: A Mechanism for Recalling 
Several Boards,” Cognitive Psychology, Vol. 31, No. 1, 1996.
20	 In some games, such as chess, advanced play by teams of expert humans and computer 
programs has been explored, although the strongest players are now purely computational.

Table 1.1
Recent Milestones in Artificial Intelligence Game Play

Source Game Key Characteristics System Architecture

Mnih et al., 
2013

Atari games Continuous play

High dimensionality

Deep reinforcement learning

Silver et al., 
2018

Go, chess, shogi 
(Japanese 
chess)

High dimensionality Deep reinforcement learning

Monte Carlo tree search

Brown and 
Sandholm, 
2018

No-limit Texas 
hold’em

High dimensionality

Imperfect information

Monte Carlo counterfactual 
regret minimization

Subgame solving

Self-improvement

Vinyals et 
al., 2019

StarCraft II Continuous play

High dimensionality

Imperfect information

Multiplayer

Deep reinforcement learning
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production and transmission; game theory approaches have been used 
for patrol scheduling by the U.S.  Coast Guard in the port of Bos-
ton.21 These examples underscore that AI is no longer a mere academic 
curiosity but offers real-world value. Additionally, they show that AI 
systems can function successfully as components of larger human-
machine teams.

Managing Artificial Intelligence Expectations

Amid the recent hype surrounding AI, it is important to remember 
that DoD not only has been investing in AI research since the 1950s 
but was the primary funder of AI research through the early 2000s.22 

21	 The DoD defense industrial base is also advancing applied AI in such areas as processing, 
exploitation, and dissemination (e.g., Project Maven), operational C2 (e.g., DARPA Resil-
ient Synchronized Planning and Assessment for the Contested Environment), and tactical 
control (e.g., DARPA Air Combat Evolution).
22	 National Research Council, Funding a Revolution: Government Support for Computing 
Research, Washington, D.C.: National Academy Press, 1999.

Table 1.2
Recent Milestones in Applied Artificial Intelligence

Source Task System Architecture

Hannun et al., 
2019

Detect irregularities in 
continuous electrocardiogram 
leads

Neural network trained using 
supervised learning paradigm to 
identify 12 rhythm classes from 
91K (labeled) electrocardiogram 
lead samples

Jamei et al., 
2019

Determine best operating 
levels for electric power plants 
to meet demands throughout 
transmission network

Neural network trained to 
provide a warm start to IPOPT 
optimization method

Julian, 
Kochenderfer, 
and Owen, 
2019

Airborne collision avoidance 
threat detection and escape 
maneuver selection

Train deep neural network to 
compress and approximate 
state-action lookup table

Sinha et al., 
2018

Generate U.S. Coast Guard 
patrol schedules for port 
of Boston and park ranger 
patrols for wildlife protection

Quantile response model 
of attacker embedded in 
Stackelberg game
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During the past 70 years, and across the first and second AI “winters,”23 
the Advanced Research Projects Agency and DARPA have provided 
continuous support for basic and applied AI research. This support has 
contributed to various commercial successes. For example, the multi-
billion-dollar market for autonomous cars can be traced back to the 
first DARPA Grand Challenge; and Siri emerged from the DARPA 
Personal Assistant that Learns program. This support has also contrib-
uted to various military successes. For example, U.S. Transportation 
Command used the Dynamic Analysis and Replanning Tool during 
Operation Desert Storm to move tanks and heavy artillery to Saudi 
Arabia three weeks faster than would have otherwise been possible, and 
the Command Post of the Future has become a U.S. Army program 
of record.

Notwithstanding these successes, few AI systems have been tran-
sitioned to the military. To enable such transitions, the right techno-
logical capabilities must be aligned to operational needs and integrated 
with existing and emerging systems. The following four issues encom-
pass some of the primary challenges to this transition:

•	 Issue 1: alignment with operational needs. The lack of AI expertise 
embedded within the Air Force, paired with the sensitive nature 
of operational planning and execution tasks, makes it hard to assess 
alignment between AI systems and military tasks. Understanding 
the former requires depth of computer science knowledge; under-
standing the latter requires depth of operational knowledge. Com-
plicating matters, the operational needs associated with nascent 
JADC2 concepts of operations are ill defined.

•	 Issue 2: remaining technology gaps. DoD needs are not perfectly 
aligned with commercial demand signals. For example, many 
DoD problems lack large labeled-data sets. Additionally, they lack 
high-speed, high-fidelity simulation environments. Finally, they 
require stronger assurances because of their consequential nature. 
DoD must take an active role in promoting the development of 
critical technologies not already being strongly addressed by the 

23	 For example, see Kathleen Walch, “Are We Heading for Another AI Winter Soon?,” 
Forbes, October 20, 2019.
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industry (e.g., data-efficient learning, transfer learning, and veri-
fication and validation [V&V]).

•	 Issue 3: integration with existing systems. The AOC comprises more 
than 50 commercial and government off-the-shelf technologies 
and third-party applications.24 The applications and interfaces 
they share are proprietary and frequently modified. The challenge 
of integrating the patchwork legacy C2 structure that makes up the 
AOC was one factor that contributed to the cancelation of the 
AOC 10.2.25

•	 Issue 4: integration with emerging capabilities. The AOC is but one 
of many C2 nodes. Ultimately, AI must also be integrated with 
all domain distributed planning cells (i.e., space and cyber), mul-
tiservice systems (e.g., Distributed Common Ground System and 
Advanced Battle Management System), and tactical platforms. 
Like the AOC, the technical architectures associated with each 
are constantly evolving.

In this report, we primarily focus on determining alignment 
between AI systems and C2 processes (Issue 1). Our analysis of 
C2 processes is also informative with respect to pervasive technological 
capabilities that will be required of DoD AI systems (Issue 2). Finally, 
the metrics we identify for evaluating DoD AI systems include system 
integration (Issues 3 and 4).

Study Methodology

As AI moves out of the laboratory and into the home, workplace, and 
battle space, the need to identify high-quality solutions to real-world 
problems grows ever more acute. Applied AI demands methodologies 

24	 Air Force Life Cycle Management Center, Battle Management Directorate, Descriptive 
List of Applicable Publications (DLOAP) for the Air Operations Center (AOC), Hanscom Air 
Force Base, Mass., April 1, 2019. Not available to the general public.
25	 DoD, A Critical Change to the Air Operations Center—Weapon System Increment 10.2 
Program Increased Costs and Delayed Deployment for 3 Years, Washington, D.C.: Inspector 
General, DODIG-2017-079, 2017a.
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to identify promising solutions for practical use cases. We conducted a 
literature review of existing frameworks. We synthesized characteristics 
of existing frameworks and tailored them to the unique characteris-
tics of C2 and other military problems. In this section we present the 
resulting framework.

The methodology we developed comprises two complementary 
taxonomies for problem and solution characteristics. The two taxono-
mies each begins with a small number of broad categories, which then 
branch out into a larger number of subcategories. The subcategories of 
the two respective taxonomies converge to identify probable value crite-
ria. As a key fits a lock, the AI system’s capabilities must be aligned with 
the problem’s characteristic (Figure 1.2). For example, a problem with a 
dearth of data may call for a data-efficient solution. A dynamic problem 
may call for a computationally efficient solution. And a problem that 
embodies the highest level of risk may call for an assured solution.

The problem and solution taxonomies incorporate both techni-
cal and informal criteria. The technical criteria are inspired by, but not 
directly equivalent to, such computer science concepts as NP-hardness 
(nondeterministic-polynomial-time hardness) and Big-O complexity. 
Other problem and solution characteristics are of indeterminate for-
mality. Some problems, for instance, have rigorous formal specifica-
tions, while others are defined in part by their indeterminacy. A final 

Figure 1.2
Determining Alignment Between Problem Characteristics and Solution 
Capabilities

Solution capabilities

Problem characteristics

C2 problem

AI solution
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category of problem and solution characteristics resists formalization 
altogether. These are exemplified by those characteristics embodying 
qualitative value trade-offs. This is not to say that these cannot be cast 
into formal or quantitative terms but rather that such transmutations 
are inevitably artificial impositions.

Figure 1.3 displays the complete framework we propose to evalu-
ate the efficacy of a potential solution for a particular use case. To use 
the framework, the analyst first works through the problem taxonomy 
to identify its characteristics (Step 1). Some of these problem charac-
teristics are likely to be imperfectly known at the outset: one objective 
of the problem taxonomy is to illuminate these issues so that adequate 
attention can be directed toward them.

Once the subcategories of the problem characteristics tree have 
been populated, the analyst can begin considering potential solution 
methods (Step 2). In all but the simplest cases potential solutions will 
not be simple algorithms (e.g., A* search) or broad methodological 

Figure 1.3
Evaluative Framework

Evaluate AI alternatives to address Air Force C2 needs

Identify evaluative metrics

Test and evaluation

Step 1
Evaluate problem characteristics

Step 2
Evaluate solution capabilities

Step 3
Compare alignment between problem and solution

Step 4
Select measures of performance, effectiveness, and suitability

Step 5
Implement and evaluate candidate architectures
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approaches (e.g., deep learning); rather, they will be architectures com-
prising multiple components, as well as software for implementing 
the algorithm and hardware on which to run the algorithm. As with 
problem characteristics, certain features of the solution are liable to be 
uncertain at first and will require additional investigation. Even so, in 
many cases it will immediately become apparent that a proposed solu-
tion is a poor fit for the envisioned use case. This initial weed-out pro-
cess can often proceed without the need for the precise characterization 
of problem and solution characteristics.

Of the remaining potential solutions, further attention is given 
to the critical capabilities implied by the problem characteristics 
(Step 3). Armed with results from the first and second steps, the ana-
lyst can determine the extent to which each potential solution possesses 
the desired characteristics. The comparison of problem characteristics 
to solution capabilities ends with one of three conclusions:

•	 misalignment: solution X does not apply to problem Y
•	 partial alignment: solution X conditionally applies to problem Y if 

gap Z is addressed
•	 perfect alignment: solution X applies to problem Y de facto.

Ultimately one or more solution architectures are selected for full 
implementation—the goal of which is to enable quantitative evalua-
tions. These evaluations must cover the AI system’s performance (i.e., 
Does it behave as intended? ), effectiveness (i.e., Does it enhance the 
C2  process?), and suitability (i.e., Can it be supported and deployed?). 
Identifying a sufficiently diverse set of metrics in advance of evaluation 
is key (Step 4). Once the solution architectures have been implemented 
and the evaluation metrics have been identified, the architectures can 
be evaluated (Step 5).

Balancing problems, solutions, and value in applied AI is not an 
exact science. Analysts and decisionmakers cannot escape the need to 
make value judgments in the face of uncertainty. The objective of our 
proposed framework is to make these judgments more explicit from 
early in the design process and to force sufficiently broad evaluations 
of systems once implemented.
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Of note, our framework is not limited to a particular type of 
AI—for example, it is equally applicable to learning systems, auto-
mated planners, optimization techniques, and other computational 
approaches. The framework is also applicable to hybrid systems that 
combine multiple types of methods and algorithms and, in fact, 
can be used to identify components to add to a system to augment its 
capabilities. Finally, the framework is based on an analysis of domain-
agnostic problem characteristics and solution capabilities, so it is broadly 
applicable.

Organization of Report

This report comprises two volumes. The first contains the primary 
findings and recommendations. It is designed for the policymaker. The 
second contains the supporting analysis. It is designed for those inter-
ested in technical details and potential extensions. The remainder of this 
volume follows the evaluative framework outlined in Figure 1.3:

•	 Chapter Two presents the taxonomy of problem characteristics 
and applies them to numerous games and C2 processes.

•	 Chapter Three presents the taxonomy of solution capabilities and 
applies them to numerous AI systems.

•	 Chapter Four presents results from an expert panel used to deter-
mine the importance of each solution capability given each prob-
lem characteristic.

•	 Chapter Five defines measures of performance (MoP), measures 
of effectiveness (MoE), and measures of suitability (MoS) used to 
evaluate AI systems, once implemented, and to demonstrate and 
socialize their utility.

•	 Chapter Six summarizes the work and provides recommendations.
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CHAPTER TWO

Taxonomy of Problem Characteristics

In this chapter, we describe a taxonomy of general problem character-
istics. The purpose of the taxonomy is to standardize the characteriza-
tion of C2 processes in terms of the technical or mathematical chal-
lenges they entail. This is the first step toward determining which 
AI methods are best suited to address them.

Taxonomy and Definitions

To create a taxonomy of problem characteristics, we began by review-
ing computer science, organizational science, and operations research 
(Table 2.1). In the early 1970s, Horst Rittle and Melvin Webber pro-
posed ten properties to distinguish between what they referred to as 
“tame” and “wicked” problems.1 Some distinguishing properties of 
wicked problems involve the completeness of their specification (“There 
is no definitive formulation of a wicked problem”), goal clarity (“Solu-
tions to wicked problems are not true-or-false, but good-or-bad”), rela-
tionship to past problems (“Every wicked problem is essentially unique”), 
and importance (“The planner has no right to be wrong”). Later, in the 
1990s, Stuart Russell and Peter Norvig enumerated properties of task 

1	 H. W. J. Rittle and M. M. Webber, “Dilemmas in a General Theory of Planning,” Policy 
Sciences, Vol. 4, No. 2, 1973. For a related list of properties applied to decision problems, see 
Y. Reich and A. Kapeliuk, “A Framework for Organizing the Space of Decision Problems 
with Application to Solving Subjective, Context-Dependent Problems,” Decision Support Sys-
tems, Vol. 41, No. 1, 2005.
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environments related to observability (fully versus partially observable), 
action outcomes (deterministic versus stochastic), environment change 
(static versus dynamic), and environment complexity (discrete versus 
continuous).2

Most recently, in 2019, Gabriel Dulac-Arnold, Daniel Mankow-
itz, and Todd Hester identified challenges for real-world reinforce-
ment learning.3 Many of the challenges they articulated overlap with 
those previously identified (e.g., “Reward functions are unspecified, 
multi-objective, or risk-sensitive”; “High-dimensional continuous state 
and action spaces”; “Tasks that may be partially observable, alterna-
tively viewed as non-stationary or stochastic”; and “Safety constraints 
that should never or at least rarely be violated”), while others are new 
(e.g., “System operators who desire explainable policies and actions”). 
In summary, researchers have articulated a surprisingly consistent set 
of problem characteristics over the past 50 years and across academic 
fields.

Based on our review of the literature, we created a taxonomy 
of problem characteristics that can be grouped into four categories 
(Table  2.2). Some characteristics stem solely from the nature of the 
problem itself (e.g., operational tempo), while others incorporate value 

2	 Russell and Norvig, 1995.
3	 Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester, Challenges of Real-
World Reinforcement Learning, Ithaca, N.Y.: Cornell University, eprint arXiv:1904.12901, 
April 2019.

Table 2.1
Literature Review of Problem Characteristics

Problem Taxonomies Description

Rittle and Webber, 1973 10 properties of planning problems that make them 
“wicked”

Russell and Norvig, 1995 7 properties of environments

Reich and Kapeliuk, 2005 11 characteristics of decision problems

Dulac-Arnold, Mankowitz, 
and Hester, 2019

9 challenges of real-world reinforcement learning
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Table 2.2
Problem Characteristics, Descriptions, and Command and Control Examples

Grouping
Problem 

Characteristic Description C2 Example

Temporality Operational 
tempo

The rate at which operations 
must be planned, 
replanned, and executed

The duration of time 
available for prosecuting 
a dynamic target

Rate of 
environment 
change

How long it takes for the 
context to evolve from those 
previously encountered, 
rendering past tactics and 
learning outdated

How frequently rules of 
engagement and special 
operating instructions 
change

Complexity Problem 
complexity

The combination of the size 
of the action space and the 
size of the state space

The number and types 
of sensors available to a 
commander

Reducibility Whether the problem 
can be decomposed into 
simpler parts

Relationships between 
missions and mission types 
that the MAAP (master air 
attack plan) Team must 
account for

Quality of 
information

Data 
availability

The quantity, quality, and 
representativeness of data 
available for training and 
testing

The availability of 
operational-level 
simulators suitable for 
training a system to 
perform air battle planning

Environmental 
clutter/noise

Whether signals of interest 
are contaminated by signals 
from other potentially 
unknown and random 
processes

The effects of 
environmental noise and 
deliberate camouflage 
and concealment on 
intelligence assessments

Stochasticity 
of action 
outcomes

How predictable immediate 
effects are based on the 
actions taken

Probability of kill for 
a kinetic or nonkinetic 
effect  

Clarity of 
goals/utility

How clearly the values of 
outcomes delivered during 
and at the end of task 
performance are defined

Availability of assessment 
data and how directly 
they relate to tactical 
tasks, operational tasks, 
and operational objectives

Incompleteness 
of information

How much is known 
about the state of the 
environment, and about 
the adversary’s goals and 
intent

The extent to which 
the commander lacks 
complete information 
about the battlespace or 
the adversary’s disposition

Importance Operational 
risks and 
benefits

The potential for the 
outcome to include the 
loss of something of value 
or the advantage or profit 
gained

The consequences of 
achieving or failing to 
achieve mission objectives
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judgments (e.g., operational risks and benefits) or grant the enemy an 
active role (e.g., the adversary can increase environmental clutter/noise 
via such means as decoys and jamming). Certain characteristics tend to 
co-occur in problems, but all are independent of one another. Volume 2 
elaborates on the definitions given in Table 2.2.

Analysis of Games and Command and Control Problems

To demonstrate the problem taxonomy, we analyzed ten games and 
AI test environments and ten C2 processes. The games we chose are 
commonly used in AI research. To rate the problem characteristics for 
each, we used source documents, descriptions, and experience. The C2 
processes we selected span level of war (tactical, operational, and stra-
tegic) and service branches. To rate the problem characteristic for each, 
we used a structured protocol to interview active-duty subject-matter 
experts from each service. A description of these games, the formal 
method for scoring problem characteristics, and worked examples are 
provided in Volume 2.

Table 2.3 contains ratings for the ten games and C2 processes. 
Ratings range from 0 (problem characteristic not present) to 4 (prob-
lem characteristic present to a large extent). Strikingly, only a modest 
number of problem characteristics were present for each game, while 
most problem characteristics were present for all C2 processes. For 
games, 30 percent of problem characteristics received a rating greater 
than 0 (i.e., the characteristic was present to at least a moderate extent). 
The median number of characteristics present per game was 2.5 out of 
10. For C2 processes, 93 percent of problem characteristics received a 
rating greater than 0 and the median number of characteristics present 
per C2 process was 9 out of 10.

Figure 2.1 shows the average ratings for problem characteristics 
in games and C2 processes. The average rating for operational tempo 
was higher for games than for C2 processes. All other problem charac-
teristics had equal or higher ratings for C2 processes than for games.4 

4	 The variability of scores was somewhat lower for games because so many values were zero.
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Table 2.3
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Tic-tac-toe 3 0 0 0 0 0 0 0 0 0

Tetris 4 0 0 0 0 0 0 0 0 0

Checkers 3 0 2 0 0 0 0 0 0 0

Chess 3 0 2 3 0 0 0 0 0 0

Go 3 0 3 3 0 0 0 0 0 0

Texas Hold’em 3 0 2 0 0 0 2 0 3 1

CartPole-v1 4 0 3 0 0 0 0 0 0 0

HalfCheetah-v2 4 0 3 0 0 0 0 0 0 0

Bridge 3 0 2 2 2 0 2 0 4 0

StarCraft II 4 0 2 3 0 1 0 0 2 0

C2 Process

Army Intelligence 
Preparation of the 
Battlefield

1 3 2 3 3 3 0 3 3 3

MAAP 2 2 2 2 3 1 0 1 2 3

Nuclear retargeting 3 4 2 2 3 3 1 2 3 4

Operational assessment 2 1 2 3 2 1 0 1 4 2

Personnel recovery: locate 
and authenticate

3 1 2 1 4 2 0 0 3 3

Reallocating ISR assets 3 2 2 3 2 2 1 1 3 2

Sensor management 3 3 2 2 2 3 1 1 2 3

Army Military Decision 
Making Process

1 3 2 3 3 3 1 2 2 3

Tomahawk Land Attack 
Missile (TLAM) planning

2 1 1 1 3 1 1 0 2 2

Troop leading procedures 2 3 1 1 4 3 1 0 2 3
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As illustrated by the figure, games of skill used to develop and demon-
strate leading-edge AI systems are quantitatively and qualitatively dif-
ferent from C2 processes. This calls into question the generalizability 
of these systems to military contexts.

The ratings differed between games and C2 processes for the fol-
lowing reasons:

• Operational tempo. Most games are played in an hour or less, which 
places a lower limit on operational tempo. Conversely, many C2
processes take place across hours and days. Tactical processes (e.g.,
aircraft maneuvering) may have higher operational tempos than
the C2 processes we analyzed. For example, ISR reallocation and
sensor management, which are at the tactical-operational seam,
did have higher operational tempos.

• Rate of environment change. For most games, the boards, rules,
and objectives never change. Conversely, most C2 processes are
affected by changes in the battle space environment and the com-

Figure 2.1
Average Values of Problem Characteristics
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mander’s guidance. For example, sensor management is affected 
by daily changes in enemy order of battle, rules for positive iden-
tification, and special instructions.

•	 Problem complexity. Games and C2 processes appear to have com-
parable levels of complexity. The environments in which C2 pro-
cesses take place are far more complex than those of games, yet 
for operational-level planning, many low-level details of the envi-
ronment can be abstracted away. For example, a TLAM navigates 
through a continuous state space with multiple degrees of free-
dom, yet the TLAM planner only has to set waypoints.

•	 Reducibility. Most games consist of one or a small number of sub-
problems. An exception is StarCraft II, which contains multiple 
interrelated subproblems (e.g., gathering resources, building units, 
and attacking). Conversely, most C2 processes include a moder-
ate or large number of interrelated subproblems. For example, a 
MAAP entails planning multiple types of missions. The plan-
ning tasks are partially decomposable: each task is performed by a 
separate cell. Yet the cells are collocated to allow for coordination.

•	 Data availability. Because of their exact formulations, games 
can act as simulations for themselves. An exception is simulat-
ing human teammates in multiplayer games like bridge. Con-
versely, C2 processes like personnel recovery lack simulators and 
have only dozens of historical data points. The outputs of other 
processes, like the Military Decision Making Process, are neither 
standardized nor routinely recorded. Even for C2 problems where 
simulators exist (e.g., Advanced Framework for Simulation, Inte-
gration, and Modeling software for simulating aspects of sensor 
management, ISR reallocation, or MAAP), computational com-
plexity can prohibit exhaustive sampling. Finally, physics-based 
models are more mature than adversary behavioral and statistical 
models.

•	 Environmental clutter/noise. Most games do not include sensory 
noise. Conversely, virtually all C2 processes involve environmen-
tal clutter and noise. In cases like sensor management and ISR 
reallocation, some sources of noise occur naturally, and others are 
deliberately induced by the adversary.
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•	 Stochasticity of action outcomes. Some of the games we analyzed 
included stochastic outcomes like card draws. Of the C2 processes 
that we analyzed, those with actions also included a stochastic 
component. To deal with this stochasticity, operators are briefed 
on a platform’s limiting factors in the case of sensor management, 
and they develop contingencies for launch failure in the case of 
TLAM planning. When commands are executed by humans, as 
with troop leading procedures, human behavior introduces addi-
tional uncertainty. This uncertainty is mitigated in the Military 
Decision Making Process by issuing execution checklists.

•	 Clarity of goals/utility. End states and objectives are clearly defined 
for most games. Additionally, intermediate outcomes during game 
play have approximate values, as captured by the blizzard score in 
StarCraft II, for example. Many C2 processes also have approx-
imately defined utilities. For example, the Joint Integrated Pri-
oritized Target List provides a rank-ordered list of objectives for 
MAAP, and track quality and coverage during sensor manage-
ment can be precisely quantified. Other processes like Army 
Intelligence Preparation of the Battlefield have less clearly defined 
goals and utility.

•	 Incompleteness of information. A defining feature of some games, 
such as Texas Hold’em and bridge, is a high percentage of incom-
plete information. Nearly all C2 processes involve a moderate or 
high amount of incomplete information. Incompleteness arises 
from limited ISR coverage in operational assessment, as well as 
from deliberate attempts at concealment in sensor management. 
Incompleteness also arises from communication challenges. For 
example, during TLAM planning, communications are cut off 
when the submarine is below periscope depth.

•	 Operation risks and benefits. Games do not inherently present the 
potential for the loss or gain of something of value. Presumably, 
this is why some games have evolved to include betting. Con-
versely, most C2 processes present the possibility for the loss of 
life and equipment. These risks are greatest in the case of nuclear 
retargeting.
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Summary

Games, problems, and C2 processes can be difficult in a variety of 
ways. Our analysis of ten games revealed that in most cases only one or 
a small number of problem characteristics were meaningfully present. 
Conversely, most problem characteristics were present in all C2 pro-
cesses. Put simply, these C2 processes exemplify wicked problems. Com-
plicating matters, the problem characteristics may act as amplifiers—
a complex problem with high operational risks and benefits seems 
harder than two separate problems, one that is complex and the other 
with high operational risks and benefits.

The results from our analysis do not detract from the signifi-
cance of highly capable AI in games. Yet they clearly illustrate the leap 
needed to apply AI to C2. As an interim step, the Air Force could focus 
on C2 processes that present a more limited number of problem char-
acteristics. Alternatively, the Air Force could develop human-machine 
teaming constructs in which AI is only applied to suitable  subtasks 
within larger C2 processes.
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CHAPTER THREE

Taxonomy of Solution Capabilities

In this chapter, we describe a taxonomy of solution capabilities. The 
purpose of the taxonomy is to standardize the characterization of com-
putational architectures, whether they use one or multiple algorithmic 
approaches, in terms of the capabilities they afford. This is the second 
step toward determining whether an AI system that is potentially suit-
able for a C2 process can in fact be implemented.

Taxonomy and Definitions

To create a taxonomy of solution capabilities, we began by reviewing 
computer science and cognitive science literature (Table 3.1). Russell 
and Norvig provide the seminal index of AI capabilities, broken out by 
functional category.1 Some of these categories involve perceiving, rea-
soning, planning, and acting, and they are strikingly similar to those 
identified in texts on the human cognitive architecture (although the 
functions are accomplished differently in situ versus in silico).2 A simi-
lar functional decomposition is evident in the Defense Science Board’s 
four-category characterization of autonomous system technologies into 
sense, think/decide, act, and team.3

1	 Russell and Norvig, 1995.
2	 J. R. Anderson, Cognitive Psychology and Its Implications, New York: Macmillan, 2005.
3	 Defense Science Board, 2016.
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In Autonomous Horizons: The Way Forward, Greg L. Zacharias, 
the chief scientist of the U.S. Air Force, presented a different set of 
requirements for autonomous systems grouped among properties for 
proficiency, tenets of trust, and principles of flexibility.4 These are consis-
tent with the call in Technology Horizons for trusted, adaptive, and flex-
ible autonomous systems.5 The requirements identified by the U.S. Air 
Force chief scientist are consistent with functional capabilities—which 
contribute to an autonomous system’s proficiency, flexibility, and trust-
worthiness—identified in the computer science and cognitive science 
literature.

Finally, in a 2016 review of commercial investments in AI-focused 
companies, the McKinsey Global Institute presented yet another 
grouping of solution capabilities by business use case.6

Based on our review of the literature, we created a taxonomy of 
solution capabilities that can be grouped into four categories (Table 3.2). 

4	 Zacharias, 2019a.
5	 Dahm, 2010.
6	 McKinsey Global Institute, Jacques Bughin, Eric Hazan, Sree Ramaswamy, Michael 
Chui, Tera Allas, Peter Dahlström, Nicolaus Henke, and Monica Trench, Artificial Intel-
ligence: The Next Digital Frontier?, New York: McKinsey & Company, June 2017.

Table 3.1
Literature Review of Solution Capabilities

Problem Taxonomies Description

Russell and Norvig, 1995 Problem-solving, reasoning, planning, learning, 
communicating, perceiving, acting

Anderson, 2005 Perception, memory, problem-solving, reasoning and 
decisionmaking, language, movement

Dahm, 2010 Trusted, adaptive, and flexible

Defense Science Board, 2016 Sense, think/decide, act, team

McKinsey Global Institute 
et al., 2017

Machine learning, computer vision, natural language, 
smart robotics, autonomous vehicles, virtual agents

Zacharias, 2019a Properties for proficiency, tenets of trust, principles 
of flexibility
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Table 3.2
Solution Capabilities and Definitions

Grouping
Problem 

Characteristic Description C2 Example

Complexity Computational 
efficiency

How the amount of 
time/memory that a 
system needs scales with 
the size of the problem

The time for a computational 
air battle planner to return a 
complete MAAP

Performance Data efficiency The amount of training 
data that a system needs 
to produce acceptable-
quality solutions

The number of labeled 
samples needed to train 
a deep neural network to 
classify adversary equipment

Soundness The quality of a system 
with inference rules 
that return only valid 
solutions

Whether a computational air 
battle planner returns MAAPs 
that can be executed given 
special operating instructions, 
friendly order of battle, and 
other constraints

Optimality The quality of a system 
with inference rules that 
produce the maximum 
value for the objective 
function

Whether a computational 
air battle planner returns a 
MAAP that maximizes the 
total value of all completed 
missions

Flexibility Robustness The ability to produce 
reasonable outputs and/
or degrade gracefully 
under unanticipated 
circumstances

How the performance of a 
trained classifier changes 
when environmental 
conditions in imagery vary 

Learning The ability to improve 
performance through 
training and/or 
experience

Whether a computational 
air battle manager can learn 
to improve its performance 
in simulation and/or in situ

Practicality Explainability The ability of an expert 
human to understand 
why the system 
produces the outputs 
it does

Whether a human analyst 
can understand why a 
computational air battle 
planner recommended 
aspects of the plan that 
it did 

Assuredness The ability of an expert 
human to determine 
that the system operates 
as intended

Whether a computational 
air battle manager 
can be verified and 
validated during test and 
evaluation and whether 
those assurances can be 
maintained once it has 
been deployed.
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The purpose of the taxonomy is to determine whether a potential solu-
tion addresses the problem characteristics defined in the previous chap-
ter. Volume 2 elaborates on the definitions given in Table 3.2.

Analysis of Artificial Intelligence Systems

To demonstrate the solution taxonomy, we analyzed ten AI systems. 
The systems we chose vary in their use of classic versus contemporary 
AI techniques, their reliance on knowledge engineering versus learn-
ing, and their suitability for reactive, planning, and classification-type 
tasks. To rate the solution capabilities for each system, we used source 
code, published descriptions, and a structured protocol to interview an 
AI researcher from RAND knowledgeable about the system. A descrip-
tion of these systems, the formal method for scoring solution capabili-
ties, and worked examples are provided in Volume 2.

Table 3.3 contains ratings for the ten AI systems. Ratings range 
from 0 (solution capability not present) to 4 (solution capability pres-

Table 3.3
Scoring of Solution Capabilities
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Deep Q-Learning 4 1 3 0 0 3 0 0

AlphaZero 3 4 3 0 0 3 0 0

Instance-based learning 2 1 1 2 2 3 2 0

Recurrent neural network 4 1 3 1 1 3 0 0

Iterated-Width Planning 1 4 3 4 3 0 3 3

Alpha-beta pruning 3 4 2 4 2 0 4 4

Mixed integer program (MIP) 0 4 4 4 2 0 3 4

Greedy heuristic 4 4 1 4 2 0 4 4

Influence network 1 4 4 3 2 0 3 4

Genetic algorithm 2 3 2 3 1 0 0 1
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ent to a large extent). The mean rating across systems and capabili-
ties equaled 2.1 out of 4, and no single system had all capabilities. 
The ratings illustrate a general trade-off between systems that learn 
and systems that do not. As compared with systems that learn, sys-
tems that do not have higher average ratings for data efficiency (3.7 
versus 0.8), assuredness (3.3 versus 0), soundness (3.8 versus 1.8), and 
explainability (2.8 versus ‒0.8). Conversely, systems that do not learn 
have lower average ratings for computational efficiency (1.8 versus 
3.3) and similar average ratings for optimality (2.7 versus 2.5) and 
robustness (2 versus 0.8).

Figure 3.1 shows the average ratings for solution capabilities 
across all AI systems. Overall, the systems had highest average ratings 
for soundness, optimality, and data efficiency. The finding that data 
efficiency was rated relatively high and learning was rated relatively 
low reflects the different numbers of learning and nonlearning systems 
included in the sample (four and six, respectively). Robustness had 
moderate-to-low ratings for learning and nonlearning systems alike.

Figure 3.1
Average Values of Solution Capabilities
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Summary

Computer science research has primarily focused on the ability of an AI 
system to optimize some objective function. However, other important 
solution capabilities exist. Based on our evaluation of AI systems, no 
one system typically has all capabilities. And so the choice of a system 
embodies a decision about which capabilities to trade off. The most 
striking trade-off in the sample of ten systems that we analyzed was 
between learning on the one hand and data efficiency, sound, assured, 
and explainability on the other hand. The implication here is twofold: 
systems for real-world AI must be evaluated along multiple dimen-
sions, and the system with the highest level of performance may not be 
the preferred solution.
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CHAPTER FOUR

Mapping Problem Characteristics to Solution 
Capabilities

The previous chapters present two complementary taxonomies for 
problem characteristics and solution capabilities. We hypothesized that 
different problem characteristics call for different solution capabilities. 
As a key fits a lock, the capabilities of an AI system must be aligned 
with the characteristics of a C2 problem. The existing literature does 
not provide such a crosswalk. In this chapter, we report results from 
an expert panel conducted to determine which solution capabilities are 
most important for each problem characteristic. Based on the results of 
the panel, we present a method for scoring the suitability of an AI system 
for a particular C2 problem.

Expert Panel on Artificial Intelligence for Command 
and Control

Expert Sample and Panel Design

We invited 50 individuals from Federally Funded Research and Devel-
opment Centers, government laboratories, academia, industry, and 
military services to participate in an expert panel on AI for C2. All 
participants were experienced AI researchers. These experts came from 
diverse backgrounds: 20 were from Federally Funded Research and 
Development Centers, 6 were from active-duty military service, 5 were 
from industry, 12 were from government laboratories, and 6 were from 
academia. About two-thirds were knowledgeable about C2 processes, 
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but given the general nature of the problem characteristics and solution 
capabilities, C2 expertise was not needed to participate.

The panel featured an embedded mixed-methods design and fol-
lowed established practices for eliciting expert judgments.1 Quantita-
tive data were used to determine the importance of solution capabili-
ties for each problem characteristic, and qualitative data were used to 
understand factors influencing those ratings. Experts completed two 
rating rounds interspersed with a discussion round (Figure 4.1).

In the first round, experts reviewed definitions of all problem 
characteristics and solution capabilities. The instructions explained 
that the purpose of the panel was to determine the importance of each 
solution capability for each problem characteristic. Experts were pre-
sented with all 80 pair-wise combinations of problem characteristics 
and solution capabilities, and they rated and commented on the impor-
tance of the solution capability for each pair. Experts used nine-point 
scales to rate the importance of the solution capability given the prob-
lem characteristic. The scale ranged from not important (ratings 1 to 3), 

1	 Kathryn Fitch, Steven J. Bernstein, Maria Dolores Aguilar, Bernard Burnand, Juan 
Ramon LaCalle, Pablo Lazaro, Mirjam van het Loo, Joseph McDonnell, Janneke Vader, and 
James P. Kahan, The RAND/UCLA Appropriateness Method User’s Manual, Santa Monica, 
Calif.: RAND Corporation, MR-1269-DG-XII/RE, 2001.

Figure 4.1
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to moderately important (ratings 4 to 6), to extremely important (ratings 
7 to 9). Experts were asked to explain their ratings and list the factors 
that most strongly influenced their responses.

In the second round, experts reviewed bar charts showing their 
own responses along with others’ responses. We thematically analyzed 
comments from this round and displayed summaries beside the corre-
sponding bar charts. Summaries showed the most common thematic 
responses by quantile (i.e., low, medium, or high importance). Finally, 
experts discussed the results of this round using asynchronous and 
moderated discussion boards. In the third round, experts were allowed 
to revise their original ratings based on feedback and discussion from 
the second round. Once again, experts were asked to explain their ratings.

To assess the importance of solution capabilities for each problem 
characteristic, we adopted the analytical approach used previously in 
expert panel studies.2 Additional details about the panel design, online 
platform, and data analysis approach are reported in Volume 2.

Data Analysis and Results

Figure 4.2 shows median ratings for all problem-solution pairs after 
the final round. Red and yellow indicate high and low importance, 
respectively. Bolded cells correspond to the 36 pairs where the solu-
tion capability was rated as extremely important for the correspond-
ing problem characteristic. Two problem characteristics, complex and 
high risks/benefits, were especially demanding in terms of the number 
of solution capabilities they called for (6 and 5, respectively). Addi-
tionally, two solutions capabilities, robust and assured, were especially 
pervasive in terms of the number of problem characteristics they were 
essential to (9 and 7, respectively). These results have two implications: 
First, problems that are complex and that have high risks/benefits may 
present the greatest challenges for AI systems. Second, investments to 
increase the robustness and assuredness of AI systems will be broadly 

2	 D. Khodyakov, S. Grant, B. Denger, K. Kinnett, A. Martin, M. Booth, C. Armstrong, 
E. Dao, C. Chen, I. Coulter, H. Peay, G. Hazlewood, and N. Street, “Using an Online, 
Modified Delphi Approach to Engage Patients and Caregivers in Determining the Patient-
Centeredness of Duchenne Muscular Dystrophy Care Considerations,” Medical Decision 
Making, Vol. 39, No. 8, 2019.
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beneficial. More detail about expert ratings and free responses may be 
found in Volume 2.

Scoring Alignment Between Command and Control 
Processes and Artificial Intelligence Systems

The results from the expert panel enable a general and systematic way 
to judge the suitability of an AI system for a given problem. We demon-
strate the method with three worked examples, beginning with AI for 
computer chess and ending with AI for C2. The first example involves 
applying alpha-beta pruning to the game of chess. The method is as 
follows:

• Rate the problem characteristics. Volume 2 lists ratings for the ten
problem characteristics for chess. We duplicate these values down
the column labeled “Rating” in Table 4.1.

Figure 4.2
Median Ratings of Importance by Problem-Solution Pair

Operational tempo 

Nonstationary 

Complexity

Reducibility

Data availability 

Environmental clutter 

Stochastic action effects 

Clarity of goal/utility 

Incomplete information 

Operational risks/benefits

Pr
o

b
le

m
 c

h
ar

ac
te

ri
st

ic

Solution capability

Co
m

p 
ef

�cie
nt

Dat
a 

ef
�cie

nt
So

un
d

O
pt

im
al

Ro
bu

st
Le

ar
ni

ng
Ex

pl
ai

na
bl

e
Ass

ur
ed

Importance

9

7

5

3

1



Mapping Problem Characteristics to Solution Capabilities    37

•	 Rate the solution capabilities. Volume 2 lists ratings for the eight 
solution capabilities for alpha-beta pruning. We duplicate these 
values across the row labeled “Rating” in Table 4.1.

•	 Multiply the values of problem characteristics by the values of solution 
capabilities. We then multiply ratings for problem characteristics in 
chess with ratings for solution capabilities in alpha-beta pruning. 
Note that we only do this for the 36 critical problem-solution pairs 
identified by the expert panel, which are shaded in gray in Table 4.1.

•	 Sum over the critical pairs. The bottom row of Table 4.1 provides 
the sum of scores for each column. The right-most value in the 
bottom row is the sum across all columns and represents a com-
posite measure of alpha-beta pruning’s suitability for chess.

Table 4.1
Determining the Suitability of Alpha-Beta Pruning for Chess
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Rating 3 4 4 2 2 0 4 4

Operational tempo 3 9 12 6 12

Rate of environment change 0 0 0 0 0

Problem complexity 2 6 8 4 0 8 8

Reducibility 3 12

Data availability 0 0 0 0 0

Environmental clutter/noise 0 0 0 0

Stochasticity of action outcomes 0 0 0

Clarity of goals and utility 0 0 0 0

Incompleteness of information 0 0 0 0 0

Operational risks and benefits 0 0 0 0 0 0

Alpha-beta pruning total 15 8 12 0 10 0 8 32 85
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In this example, the suitability score of alpha-beta pruning for 
chess equals 85. Three problem characteristics are present in chess (i.e., 
operational tempo, problem complexity, and reducibility). Based on 
the critical pairs, these characteristics call for all solution capabilities 
except for optimality. Alpha-beta pruning has most of these capabili-
ties and so is suitable for chess.

For comparison, Table  4.2 shows the suitability of AlphaZero 
for chess. Surprisingly, its suitability score is far lower. AlphaZero is a 
stronger chess player than alpha-beta pruning—this is reflected in its 
greater optimality rating. Yet the one problem characteristic that calls 
for optimal solutions—operational risks and benefits—is not pres-
ent in chess. Conversely, alpha-beta pruning is more explainable and 
assured than AlphaZero. Because these solution capabilities are called 
for by characteristics present in chess, alpha-beta pruning receives a 
higher suitability score.

One could argue that research on computer chess artificially ele-
vates operational risks and benefits to the highest level—maximum 
performance is effectively (if not logically) paramount. If the value 
assigned to operational risks and benefits is increased to 4, the new 
suitability scores for alpha-beta pruning and AlphaZero change to 149 
and 61, respectively. In other words, the gap between alpha-beta prun-
ing and AlphaZero increases. Among other things, operational risks 
and benefits call for solutions that are (i) optimal, (ii) explainable, and 
(iii) assured. AlphaZero has an advantage relative to alpha-beta prun-
ing in terms of optimality, whereas alpha-beta pruning has relative 
advantages in terms of explainability and assuredness.3 The somewhat 
counterintuitive finding that alpha-beta pruning has a higher suitabil-
ity score reflects the fact that the superiority of AlphaZero has been 
demonstrated in the rarefied context of game play, whereas our method 
is intended to evaluate real-world AI.

3	 One could argue that the assessment of optimality for alpha-beta pruning was too gener-
ous and the assessment for AlphaZero was too harsh. If we set the values of optimality to 
1 and 4, respectively, the new suitability scores still strongly favor alpha-beta pruning (145 
versus 65).
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This method can be used to determine the suitability of AI sys-
tems for C2 processes as well. Table 4.3 compares two computational 
solutions, a MIP and a greedy heuristic, for MAAP.4 As shown in the 
second column of the table, most problem characteristics are present 
to a moderate or high extent for MAAP. Accordingly, every problem 
characteristic is called for. As shown in the second row of the table, 
solution capabilities differ between the MIP and the heuristic.

Overall, the suitability score of the MIP for MAAP is lower than 
that for the heuristic. The difference can be understood in terms of 

4	 Additional details about the MIP and the heuristic are provided in Volume 2.

Table 4.2
Determining the Suitability of AlphaZero for Chess
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Rating 3 0 4 3 0 3 0 0

Operational tempo 3 9 12 0 0

Rate of environment change 0 0 0 0 0

Problem complexity 2 6 0 0 6 0 0

Reducibility 3 0

Data availability 0 0 0 0 0

Environmental clutter/noise 0 0 0 0

Stochasticity of action outcomes 0 0 0

Clarity of goals and utility 0 0 0 0

Incompleteness of information 0 0 0 0 0

Operational risks and benefits 0 0 0 0 0 0

AlphaZero total 15 0 12 0 0 6 0 0 33
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the system’s different capabilities. The MIP was rated higher for opti-
mality, whereas the heuristic was rated higher for computational effi-
ciency and explainability. Given the problem characteristics embod-
ied in MAAP, the latter two capabilities, computational efficiency and 
explainability, are more important than optimality.

Finally, this method can be used to determine which solution 
capabilities are most called for across a collection of problems or pro-
cesses. Chapter Two contains an analysis of problem characteristics for 

Table 4.3
Determining the Suitability of a Mixed-Integer Program and a Greedy 
Heuristic for a Master Air Attack Plan
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Rating 0, 4 4, 4 4, 4 4, 1 2, 2 0, 0 3, 4 4, 4

Operational tempo 2 0, 8 8, 8 4, 4 8, 8

Rate of environment change 2 0, 8 8, 8 4, 4 0, 0

Problem complexity 2 0, 8 8, 8 4, 4 0, 0 6, 8 8, 8

Reducibility 2 8, 8

Data availability 3 12, 12 6, 6 0, 0 12, 12

Environmental clutter/noise 1 2, 2 0, 0 4, 4

Stochasticity of action outcomes 0 0, 0 0, 0

Clarity of goals and utility 1 2, 2 0, 0 3, 4

Incompleteness of information 2 8, 8 4, 4 0, 0 6, 8

Operational risks and benefits 3 12, 12 12, 3 6, 6 9, 12 12, 12

MIP total 0 36 20 12 32 0 24 52 176

Heuristic total 24 36 20 3 32 0 32 52 199

NOTE: The first value in each cell is for the MIP, and the second value in each cell is for 
the heuristic.
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ten games and C2 processes (Table 2.3). The results from that analysis 
combined with the 36 critical problem-solution pairs identified by the 
expert panel can be used to determine the relative importance of the 
eight solution capabilities for each set of problems.

Figure 4.3 shows the importance of the eight solution capa-
bilities separately for games and C2 processes.5 Values are higher for 
C2 processes—because they embody more problem characteristics, 
they also call for more solution capabilities. Games of strategy and 

5 For each solution capability, we determined the problem characteristics that called for it. 
We then summed across the ratings for those problem characteristics for a given game or C2 
process. For example, computational efficiency is called for by problems with high opera-
tional tempo, high rate of environment change, and high complexity. The importance of 
computational efficiency for MAAP equals 2 + 2 + 2, or 6 (Table 4.3). The values shown in 
Figure 4.3 reflect the average importance of each capability taken across the ten games and 
the ten C2 processes.

Figure 4.3
Relative Importance of Solution Capabilities Across Ten Command and 
Control Processes and Games, and Capabilities of Artificial Intelligence 
Systems Analyzed

C2 problems

Games

Assuredness

Explainability

Computational
efficiency

Learning Data efficiency

Robustness

Soundness

Optimality

AI systems
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C2 problems both call for basic capabilities like computational effi-
ciency, soundness, and optimality. However, C2 processes call for addi-
tional advanced capabilities like robustness, assuredness, learning, and 
explainability.

Figure 4.3 also shows capabilities averaged across the ten AI sys-
tems described earlier (Table  3.3). The AI systems place relatively 
greater emphasis on soundness and optimality than the C2 processes 
call for, while they place relatively less emphasis on robustness, assured-
ness, and learning. Collectively, these results suggest that certain AI 
systems optimized for game play, in their current form, may be of lim-
ited use to DoD.

Summary

Problems can be difficult in a variety of ways, and different AI sys-
tems have different capabilities. The suitability of an AI system for a 
given problem depends on the alignment between its capabilities and 
the problem’s characteristics. All solution capabilities are desirable, but 
the ones that are essential depend on characteristics of a particular 
problem. For example, a problem with low data availability calls for 
a system that is data efficient, a problem with high operational tempo 
calls for a system that is computationally efficient, and a problem with 
high operational risks and benefits calls for a system that is sound. 
These solution capabilities—data efficiency, computational efficiency, 
and soundness—seem less critical for a problem with abundant histori-
cal data, ample time to respond, and little consequence.

Though useful in its own right, the method is limited in certain 
ways that remain to be addressed in future research:

•	 Qualitative nature of problem and solution ratings. Presently, the 
ratings assigned to problem characteristics and solution capabili-
ties are based on expert judgment. A corresponding set of quanti-
tative metrics could be derived for the dimensions.

•	 Weighting function. Presently, we applied a threshold to define criti-
cal pairings of problem characteristics and solution capabilities, 
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and we assigned uniform weight to those pairs. Alternate weight-
ing functions that give continuously varying values to different 
pairs could be used as well.

•	 Contextual variation in problem characteristics. The results of the 
analysis depend on assumptions about problem characteristics, 
which are assumed to be constant. If the characteristics of a 
C2 problem vary by context—as might be the case, for instance, 
if a commander has initiative versus if they are trying to seize it—
then the results of the analysis will vary by context as well.

Notwithstanding these limitations, the method provides a sys-
tematic way to relate problem characteristics to AI capabilities and to 
trace results back to assumptions about each.
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CHAPTER FIVE

Metrics for Evaluating Artificial Intelligence 
Solutions

In the preceding chapters, we showed that different combinations of 
C2 problem characteristics call for different combinations of AI solu-
tion capabilities, and we described a method for selecting an AI solu-
tion that is likely to fit the C2 problem. In this chapter, we look more 
closely at certain aspects of this fit and propose three categories of 
assessment measures for AI solutions to help complete the selection 
process. Establishing assessment measures in advance helps to ensure 
that development progress is evaluated fairly and that potential imple-
mentation issues are identified. We discuss each category in detail 
and highlight specific metrics that are of particular importance to 
AI solutions.

From our review of the strategic guidance on AI solutions, our 
review of documents on C2 problems, and discussions with subject-
matter experts (see Volume 2), we find that three broad categories 
of measure are needed to assess the utility of AI-enabled C2 systems 
in operational contexts: MoE, MoP, and MoS. All three categories 
of measures are important to properly evaluate progress and iden-
tify shortfalls. For our purposes, we define these categories in accor-
dance with the Defense Acquisition University glossary, as shown in 
Table 5.1.1

1	 DoD, Glossary of Defense Acquisition Acronyms and Terms, Fort Belvoir, Va.: Defense 
Acquisition University, 2017b.
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Table 5.1
Categories of Measure

Category Definition

MoE The data used to measure the military effect (mission accomplishment) 
that comes from the use of the system in its expected environment. 
That environment includes the system under test and all interrelated 
systems, that is, the planned or expected environment in terms of 
weapons, sensors, C2, and platforms, as appropriate, needed to 
accomplish an end-to-end mission in combat.

MoP System-particular performance parameters, such as speed, payload, 
range, time on station, frequency, or other distinctly quantifiable 
performance features.

MoS Measure of an item's ability to be supported in its intended operational 
environment. MoS typically relate to readiness or operational 
availability and, hence, reliability, maintainability, and the item's 
support structure.

SOURCE: DoD, 2017.

Measures of Effectiveness

MoE capture the underlying reasons why change is needed—to use a 
market analogy, they represent the “demand” signal. In the context of 
C2 systems, these are measures of how well the system supports what 
is otherwise operationally executable. MoE are typically familiar mea-
sures of mission success derived from the C2 problem itself, such as 
survivability and force exchange ratios. MoE should be independent 
of the proposed solution: they should apply equally well to any pro-
posed doctrine, organization, training, materiel, leadership and educa-
tion, personnel, facilities, and policy solution. MoE can also be used to 
benchmark the performance of the current C2 system.2

Careful consideration of MoE is important to ensure that the 
proposed AI solution addresses the right C2 problem. Quantifying 
and standardizing MoE is challenging, however. From our review 
of the C2 literature, we identified two main challenges to doing so: 

2	 MoE cannot be derived from the C2 problem characteristics discussed in Chapter Two. 
Those characteristics describe the mathematical nature of the problem, but they do not cap-
ture the associated military benefits—for example, improved outcomes.
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(1) the inherent complexity of C2 systems and (2) the wide variety of 
C2 missions.

The largest challenge in measuring C2 systems is the inherent 
complexity of those systems.3 C2 systems involve many coordinated 
processes, require human decisionmaking, and are subject to such 
external factors as environmental conditions and adversary actions. To 
isolate the effect of a single change to the C2 system while controlling 
for all other variables is often not feasible. As the North Atlantic Treaty 
Organization code of best practices for C2 assessment explains,

C2 issues differ in fundamental ways from physics dominated 
problems. C2 deals with distributed teams of humans operat-
ing under stress and in a variety of other operating conditions. 
C2 problems are thus dominated by their information, behav-
ioural, and cognitive aspects that have been less well researched 
and understood. This focus creates a multidimensional, complex 
analytic space.4

The second major challenge is that different missions call for dif-
ferent metrics. For example, traditional C2 metrics, such as mission 
success and force exchange ratios, are not relevant for humanitarian 
assistance/disaster relief operations, which may themselves require a 
different set of metrics than peacekeeping operations. Furthermore, 
changes to C2 processes may alter effectiveness differently in different 
missions.

For these reasons, no single, standard set of MoE can be derived 
for all C2 problems: MoE must be tailored for each mission. In light of 
this, we do not provide a fixed list of MoE but rather a set of subcatego-
ries and questions that should be considered when devising them. Our 
goal here is to identify groups broad enough to be applicable to most 
C2 functions and to cover the areas in which we anticipate AI solutions 

3	 A C2 system “consists of the facilities; equipment; communications; staff functions and 
procedures; and personnel essential for planning, preparing for, monitoring, and assessing 
operations.” Joint Publication 3-0, 2017.
4	 North Atlantic Treaty Organization, Code of Best Practice for C2 Assessment, Brussels: 
Research and Technology Organization, 2002.
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will be most appropriate. These different groups are listed in Table 5.2, 
and we discuss each in more detail below.

Decision quality is perhaps the most direct measure of an effective 
C2 process. U.S. Marine Corps doctrine holds that “a principal aim of 
command and control is to enhance the commander’s ability to make 
sound and timely decisions,”5 while joint doctrine notes that “the C2 
function supports an efficient decision-making process.”6 The relevant 
question here is whether the choice made was the best one possible 
given the information available. However, determining whether this 

5	 U.S. Marine Corps, Command and Control, Doctrinal Publication 6, Washington, D.C., 
2018.
6	 Joint Publication 3-0, 2017.

Table 5.2
Measures of Effectiveness

Group Assessment Question Examples of Metrics

Decision 
quality

Does the C2 system 
make the best 
decision possible 
given the information 
available? 

•	 Closeness to optimal decision, outcome
•	 Robustness of decision against range of 

operational considerations
•	 Number of courses of action considered
•	 Comparisons with historical benchmarks 

or other decisionmaking processes

Situational 
awareness

Is the information 
available to the 
C2 system accurate, 
complete, and current?

•	 Probability of detection
•	 False alarm rate
•	 Currency of common operational picture
•	 Various ISR and data quality metrics

Timeliness How quickly does the 
C2 system process the 
information available 
to make decisions?

•	 Speed of C2 process
•	 Relative speed of the observe, orient, 

decide, and act (OODA) loop compared 
with that of the adversary

Survivability/
lethality

How does the C2 
system contribute to 
the survivability and 
lethality of the force?

•	 Probability of survival
•	 Force-loss exchange ratios
•	 Various battle damage assessment 

metrics

Resource 
management

How well does 
the C2 system use 
available resources?

•	 Efficiency of resource allocation
•	 Number of different missions pur-

sued or not pursued due to resource 
availability

•	 Opportunity costs
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is so—or quantifying how far from optimal a decision may be—is 
difficult.

Mission outcomes are often used as a way to evaluate decision qual-
ity. While mission outcomes can provide an indication of good decision-
making, they also can be misleading. Missions may succeed or fail due 
to external factors that are unknown or unknowable at the time that 
decisions must be made: changing environmental conditions and adver-
sary actions can conceal the effects of both good decisions and bad ones. 
(As the saying goes, the enemy gets a vote.) For these reasons, experts 
caution against using outcomes as the only measure of C2 effectiveness: 
“While mission outcomes should be a factor in the equation, the quality 
of C2 should not be deduced solely from mission outcomes.”7

But there are other ways to assess decision quality. Modeling and 
simulation can be used to assess whether a decision would have been 
good under other conditions—that is, to determine its robustness—
and to evaluate the effects of actions not taken.8 Comparisons with his-
torical examples or other decisionmaking processes can also be helpful. 
However, none of these methods are generalizable or prescriptive: they 
must be tailored to a particular situation.

Situational awareness is also an essential part of an effective C2 
process. While decision quality concerns the optimality of the decision 
made given the information available, situational awareness concerns 
underlying information flow. As Air Force doctrine states: “Fluid hori-
zontal and vertical information flow enables effective C2 throughout 
the chain of command. This information flow, and its timely fusion, 
enables optimum decision-making.”9

7	 David S. Alberts and Richard E. Hayes, Understanding Command and Control, Washing-
ton, D.C.: Command and Control Research Program, 2006.
8	 Abbie Tingstad, Dahlia Anne Goldfeld, Lance Menthe, Robert A. Guffey, Zachary Hal-
deman, Krista S. Langeland, Amado Cordova, Elizabeth M. Waina, and Balys Gintautas, 
Assessing the Value of Intelligence Collected by U.S. Air Force Airborne Intelligence, Surveillance, 
and Reconnaissance Platforms, Santa Monica, Calif.: RAND Corporation, RR-2742-AF, 
2021.
9	 U.S. Air Force Doctrine, Annex 3-30: Command and Control, Maxwell Air Force Base, 
Ala.: Lemay Center for Doctrine, 2020.
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Situational awareness is commonly defined as “the perception of 
the elements in the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in 
the near future.”10 Although situational awareness is often synonymous 
with the commander’s knowledge, situational awareness includes other 
processes associated with collecting and understanding information, for 
example, a collection management strategy that resolves priority infor-
mation requests. For this reason, proxy metrics for situational awareness 
often include the dimensions of data quality: accuracy, completeness, 
consistency, timeliness, uniqueness, and validity.11 It is important to 
note, however, that not all C2 processes affect situational awareness, so 
this group is not always needed to assess a specific C2 problem.

Timeliness refers to the speed with which the C2 system com-
pletes, or contributes to the completion of, the entire OODA loop.12 
According to Army doctrine, “Timely decisions and actions are essen-
tial for effective command and control.”13 While timeliness is a part 
of situational awareness, this group focuses on the speed of the C2 
process. Timeliness is about getting the right information to the right 
people, so they can make the necessary decisions before it is too late—in 
other words, timeliness is about getting inside the adversary’s OODA 
loop. Or, as Marine doctrine puts it,

Whatever the age or technology, effective command and control 
will come down to people using information to decide and act 
wisely. And whatever the age or technology, the ultimate measure 

10	 Mica R. Endsley, “Design and Evaluation for Situation Awareness Enhancement,” Pro-
ceedings of the Human Factors Society Annual Meeting, Vol. 32, No. 2, 1988.
11	 There are many definitions of the dimensions of data quality. An often-cited paper is 
Nicola Askham, Denise Cook, Martin Doyle, Helen Fereday, Mike Gibson, Ulrich Land-
beck, Rob Lee, Chris Maynard, Gary Palmer, and Julian Schwarzenbach, The Six Primary 
Dimensions for Data Quality Assessment: Data Quality Dimensions, Bristol, U.K.: Data Man-
agement Association and Data Quality Dimensions Working Group, October 2013.
12	 John R. Boyd, “Patterns of Conflict,” unpublished briefing slides, 1986.
13	 Army Doctrine Publication 6-0, Mission Command: Command and Control of Army 
Forces, Washington, D.C.: U.S. Department of the Army, 2019.
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of command and control effectiveness will always be the same: 
Can it help us act faster and more effectively than the enemy?14

Survivability/lethality is a measure that applies to most force-on-
force missions and to some noncombat missions as well. There may be 
a trade-off between survivability and other measures of effectiveness:

Command post survivability is vital to mission success and is mea-
sured by the capabilities of the threat in the context of the situa-
tion. Survivability may be obtained at the price of effectiveness.15

However, as with situational awareness, it should be noted that 
not all C2 processes affect the survivability of the force, particularly 
in military operations other than war. Furthermore, it is important 
to note that many traditional measures, such as force exchange ratio, 
are no longer considered adequate to the growing complexity of war-
fare.16 For this reason, this group is not always relevant to a specific 
C2 problem.

Finally, C2 relies on effective resource management in many areas. 
There are often important trade-offs in how resources are allocated: 
focusing on achieving one objective may limit the ability to achieve 
another objective. As David Alberts and Richard Hayes explained,

There are many ways to allocate resources among entities and 
there are many ways resources are matched to tasks. Each of these 
has the potential to result in different degrees of effectiveness 
and/or agility. . . . How well resources are allocated and utilized 
is often the determining factor in whether or not the intended 
purpose is achieved.17

14	 U.S. Marine Corps, 2018.
15	 Army Doctrine Publication 6-0, 2019.
16	 Alberts and Hayes, 2006.
17	 Alberts and Hayes, 2006, pp. 46–47.
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Here we refer to how efficiently resources are employed and what trade-
offs must be made to obtain them, including opportunity costs. These 
measures are of particular importance for C2 of logistics processes.

Measures of Performance

MoP capture the power of the proposed AI solution—to use a market 
analogy, they represent the “supply” that is offered. Typically, MoP are 
familiar measures of software and hardware, focusing, for instance, on 
such issues as run time and error rates. Because MoP align well with 
software development, they are often used to define requirements for 
the acquisition process. However, since the ultimate goal is to satisfy the 
MoE, MoP are better understood as proxy metrics: the bars should be set 
high enough to ensure high confidence that the MoE will be satisfied.

In our review of AI proposals described later in this chapter, we 
found that most AI metrics in use today—and especially for ML—
revolve around solution accuracy. But, as Kri Wagstaff points out, 
“Suites of experiments are often summarized by the average accuracy 
across all data sets. This tells us nothing at all useful about generaliza-
tion or impact, since the meaning of an X% improvement may be very 
different for different data sets.”18 Table 5.3 summarizes the different 
types of MoP we identified from the AI solution capabilities.19

The MoP derive directly from the AI solution capabilities that we 
discussed in detail in Chapter Three and are defined in more rigorous 
quantitative terms. Two additional points are worth noting.

First, as mentioned above, accuracy is the most common type of 
AI measure. In our scheme, accuracy derives from two AI capabilities—
soundness and optimality—but the distinction is not essential. What 
matters more is that choosing which accuracy metrics to use requires 

18	 Kri L. Wagstaff, “Machine Learning that Matters,” Proceedings of the 29th International 
Conference on Machine Learning, Madison, Wisc.: Omnipress, 2012.
19	 Note that categories associated with practicality—V&V and explainability—are missing 
from this list because they are not truly benchmarks or properties of the algorithm itself. 
V&V is an activity performed on the algorithm, and explainability is about human under-
standing of the process. We include these as MoS (see next section).



Metrics for Evaluating Artificial Intelligence Solutions    53

a clear understanding of the goal of the algorithm and the costs of an 
incorrect output. Some applications may require a low false positive rate, 
while others may require a low false negative rate. These requirements 
must be known and understood when developing metrics and criteria.

Second, algorithm performance will rely heavily on the data that 
are input into the model. If these data are not understood by the devel-
opers or the users, they could lead to poor results. For example, a largely 
unbalanced data set may require additional methods to better train the 
model.20 The accurate assessment of MoP requires a high-quality data 
set. Accordingly, data sets should be examined to ensure that they are 
characterized by minimal bias, balance, relevancy, sufficiency, and so on.

Measures of Suitability

MoS capture the range of operational conditions under which an AI 
solution must be able to solve a C2 problem. Typically, MoS are famil-

20	 An unbalanced data set is one in with an unequal distribution of classes—for example, 
few instances of radar sites in an image classification library.

Table 5.3
Measures of Performance

AI Solution Capability Examples of Metrics

Computational 
efficiency

•	 Run time
•	 Speed of computation as a function of input
•	 System requirements (memory, processors, storage)

Data efficiency •	 Labeled training data required per object class

Soundness •	 Completeness (e.g., number of feasible alternatives found)
•	 Error rate

Optimality •	 Probability of detection
•	 Geolocation accuracy

Robustness •	 How other MoP vary when the algorithm is run against 
new data sets

Learning •	 How other MoP vary when additional examples are 
provided to the algorithm from the original data set on 
which it was trained
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iar measures of system integration, such as interoperability and all the 
other “-ilities”:21 as one study described it, “Algorithms should undergo 
the ‘-ilities’ test. The test looks at reliability, accountability, maintain-
ability, functionality.” For these standard categories of operational con-
ditions, which can and should apply to almost any acquisition pro-
gram, we reviewed DoD acquisition literature, most notably Defense 
Acquisition University guidance.

For AI systems, however, certain other operational conditions are 
of particular importance as well. We identified those conditions during 
our review of the AI strategy documents, as described above. Table 5.4 
shows all MoS groups. We have grouped some of the -ilities together: 
because these definitions were originally designed for hardware, they 
are less distinct for software-based systems—so often one subgroup 
will suffice.

This list of MoS groups may not be exhaustive, and not every AI 
algorithm will require metrics associated with every group. However, 
based on current literature, strategy, and technology, all MoS groups 
should be considered when developing metrics for AI solutions, and a 
reason should be given for any omission. We now discuss each group 
in more detail.

Reliability comprises mission reliability, system reliability, and 
algorithm reliability. Reliability in general refers to whether a system 
can be counted on to work as intended. Mission reliability refers to the 
likelihood that a solution will work sufficiently well to allow comple-
tion of a particular mission, while system reliability is essentially a mea-
sure of uptime. Algorithm reliability, while arguably a subset of system 
reliability, deserves separate mention because of the difference between 
ML code and traditional code:

Unlike traditional code, which is written line by line in a sequen-
tial pattern (even if auto-generation is used), ML will be deployed 
as models, created by frameworks that learn. Models will, in a 
very real sense, be birthed. And like any form of offspring, you 

21	 Public-Private Analytic Exchange Program, AI: Using Standards to Mitigate Risks, Wash-
ington, D.C.: U.S. Department of Homeland Security, 2018.
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Table 5.4
Measures of Suitability

Group Definitions

Reliability Mission reliability. The probability of a system completing an attempted 
mission successfully, which depends on both the reliability of the 
hardware and the redundancy built into the system.a

System reliability. The probability that an item will perform a required 
function without failure under stated conditions for a stated period.b

Algorithm reliability. Behaving as expected, even for novel inputs.c

Maintainability/ 
sustainability

Maintainability. The ability of an item to be retained in, or restored to, a 
specified condition when maintenance is performed by personnel having 
specified skill levels, using prescribed procedures and resources, at each 
prescribed level of maintenance and repair.d

Sustainability. The ability to maintain the necessary level and duration 
of operational activity to achieve military objectives. Sustainability is a 
function of providing for and maintaining those levels of ready forces, 
materiel and consumables necessary to support military effort.d

Interoperability The ability of systems, units, or forces to provide data, information, 
materiel, and services to and accept the same from other systems, units, 
or forces and to use the data, information, materiel, and services so 
exchanged to enable them to operate effectively together.e

Scalability The ability of a system, component, or process to “handle throughput 
changes roughly in proportion to the change in the number of units of 
or size of the inputs.”f

Cybersecurity Prevention of damage to, protection of, and restoration of computers, 
electronic communications systems, electronic communications services, 
wire communication, and electronic communication, including 
information contained therein, to ensure its availability, integrity, 
authentication, confidentiality, and nonrepudiation.d

Human-machine 
teaming

Human system integration is concerned with ensuring that the 
characteristics of people are considered throughout the system 
development process regarding their selection and training, their 
participation in system operation, and their health and safety. It is 
also concerned with providing tools and methods meeting these same 
requirements to support the system development process itself.g

Explainability/ 
credibility

The ability of an AI solution to explain the logic behind a 
recommendation or action, the ability to understand the logic behind 
recommendations, at least in the near term.h

a William L. Stanley and John L. Birkler, “Improvising Operational Suitability Through Better 
Requirements and Testing,” R-3333-AF, a project AIR FORCE report prepared for the United 
States Air Force, November 1986.
b Memorandum of Agreement on Multi-Service Operational Test and Evaluation (MOT&E) and 
Operational Suitability Terminology and Definitions, February 2017; O’Connor and Kleyner, 2012.
c Steve Eglash, “Progress Toward Safe and Reliable AI,” Stanford AI Lab Blog, May 2, 2019. 
d Defense Acquisitions University, “Department of Defense Acquisition University (DAU) 
Foundational Learning Directorate Center for Acquisition and Program Management Fort 
Belvoir, Virginia,” DAU Glossary of Defense Acquisition Acronyms and Terms, website.
e MOT&E, 2017.
f Linux Information Project, “Scalable Definition,” undated. 
g National Research Council, Human-System Integration in the System Development Process: A 
New Look, Washington, DC: The National Academies Press, 2007. 
h DIB, AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the 
Department of Defense, Arlington, Va., 2019.
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can never really be sure of just what you will be getting until it 
arrives.22

Reliability is particularly important for the responsible and 
effective use of AI: unreliable systems are prone to behavior outside 
the intended domain of use. As the Defense Innovation Board (DIB) 
put it:

DoD AI systems should have an explicit, well-defined domain 
of use, and the safety, security, and robustness of such systems 
should be tested and assured across their entire life cycle within 
that domain of use.23

Maintainability and sustainability are important characteristics of 
any system. We group them together here because, while they are dis-
tinct for hardware, the difference between them is largely immaterial 
for software. For AI, however, there is a special flavor concerning the 
ability to maintain the necessary models and data: “Maintaining accu-
rate model parameters requires that attention be given to the process 
by which the parameters are chosen and changed. [DoD] also needs 
to ensure that it will have the full sources of all of the models and data 
available for its use.”24

Interoperability focuses on the AI system’s ability to interact with 
existing systems. Interoperability is as important to AI solutions as it 
is to any other defense system. DIB emphasizes the need to consider 
interoperability in the testing and validation of defense systems:

DoD should take care during T&E [test and evaluation] and 
V&V to adequately consider the overarching AI system of sys-
tems, including the interaction of subordinate, layered systems, 
and identification of and solutions to failure in one or more of 

22	 Steve Roddy, “The Success of Machine Learning Rests on Scalability,” Massachusetts 
Institute of Technology Review, November 14, 2019.
23	 DIB, 2019. See also Greg Zacharias, Emerging Technologies: Test and Evaluation Implica-
tions, Washington, D.C.: U.S. Department of Defense, April 10, 2019b.
24	 Defense Science Board, 2016.
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the subsystems. This may in fact be impossible, given the inabil-
ity to test, model, or simulate such a large state space, as well as 
adequately test all components in dynamic, unpredictable, and 
unstructured environments with high fidelity.25

Scalability is the ability to continue to function as expected when 
the requirements placed on an algorithm are raised. Curiously, scal-
ability is not discussed much in strategic guidance documents or stan-
dard acquisition documents. This may be because the scale of use is 
generally specified in acquisition requirements. Nevertheless, we call 
out scalability as a particular concern for AI solutions because moving 
AI from the laboratory to large-scale use poses unique difficulties for 
training and testing: 

Communication time starts dominating total compute time as 
we parallelize to large-scale. . . . Therefore, we need to go beyond 
naïve parallelization schemes to be able to benefit from large com-
putation resources (as in a public cloud) for reducing the time to 
train large models.26

Cybersecurity metrics address the “safety and security” issues 
raised in the strategic guidance documents, namely, maintaining the 
AI system’s integrity. AI systems are vulnerable to attack, which could 
result in reduced performance or, in some instances, benefit an adver-
sary. As noted by the National Science and Technology Council:

AI systems also have their own cybersecurity needs. AI-driven 
applications should implement sound cybersecurity controls to 
ensure integrity of data and functionality, protect privacy and 
confidentiality, and maintain availability.27

25	 DIB, 2019. See also Zacharias, 2019b.
26	 Pradeep Dubey and Amir Khosrowshahi, “Scaling to Meet the Growing Needs of AI,” 
Intel AI Developer Program, October 26, 2016.
27	 National Science and Technology Council Committee on Technology, Preparing for 
the Future of Artificial Intelligence, Washington, D.C.: Executive Office of the President, 
October 2016.
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Human-machine teaming is an important aspect of integrating 
AI into the military context. AI systems may be implemented as fully 
autonomous, as human-on-the-loop systems, or as human-in-the-
loop systems. Even when fully autonomous, however, AI systems will 
still be part of the larger human military effort. The proper choice of 
human-machine teaming takes advantage of both human and machine 
strengths:

While completely autonomous AI systems will be important in 
some application domains, many other application areas (e.g., 
disaster recovery and medical diagnostics) are most effectively 
addressed by a combination of humans and AI systems working 
together to achieve application goals.28

We include training and testing with humans in this category. As 
a prior RAND study noted: “If the human is to be an integral part of 
the system tested, then the tests need to include the human to replicate 
real-world conditions.”29

Explainability/credibility is the most discussed characteristic of AI 
systems in strategic guidance documents, and it also appears often in 
the academic literature. For example, Robert Hoffman and his coau-
thors identify several classes of explainability measures.30 These mea-
sures may be resolved through user evaluations (e.g., surveys) after 
interacting with the AI.

The purpose of explainability is to offer credibility and trust. 
Having an explanation for why an AI system made a certain deter-
mination helps the user decide whether to accept or reject that result 
during the V&V process. Otherwise, AI appears to be a “black box.” 
Explainability is commonly thought to be a prerequisite for trust:

28	 Select Committee on Artificial Intelligence, The National Artificial Intelligence Research 
and Development Strategic Plan: 2019 Update, Washington, D.C.: National Science and 
Technology Council, June 2019.
29	 Amado Cordova, Lindsay D. Millard, Lance Menthe, Robert A. Guffey, and Carl 
Rhodes, Motion Imagery Processing and Exploitation (MIPE), Santa Monica, Calif.: RAND 
Corporation, RR-154-AF, 2013.
30	 For example, see Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman, 
Metrics for Explainable AI: Challenges and Prospects, Ithaca, N.Y.: Cornell University, eprint 
arXiv:1812.04608, December 2018.
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Truly trustworthy AI requires explainable AI, especially as AI 
systems grow in scale and complexity; this requires a compre-
hensive understanding of the AI system by the human user and 
the human designer.31

Analysis of Metric Categorization

As noted in Volume 2, the literature shows significant variation in 
the level of acceptance and interest in these categories. To determine 
whether these categories are relevant, we collected 241 metrics from 
30 different DARPA Broad Agency Announcements, from the period 
2014–2020, and assessed which category each metric belonged to, if 
any.32 Figure 5.1 (top) shows the assignment of metrics to categories 
(including all categories discussed above), and Figure 5.1 (bottom) 
shows the percentage of programs with at least one metric per category.

Summary

In this chapter, we identified categories to guide the development of 
MoP, MoE, and MoS. We demonstrated that these were reasonable 
categories that appear to cover the range currently in use—but we also 
showed that there is a strong focus on MoP at the expense of the other 
two categories. Because all three categories are needed to evaluate the 
suitability of AI solutions to C2 problems in their operational context, 
we find three shortfalls in current practice:

1.	 Too little focus on MoE and MoS. Our review of DARPA metrics 
shows that the primary focus of AI evaluation tends to be on 
performance accuracy and optimality. While this is certainly 
important, this keeps the focus on the solution space. Strate-

31	 Select Committee on Artificial Intelligence, 2019.
32	 We originally considered 53 Broad Agency Announcements but narrowed it to 30 that 
were relevant to AI. Of the 258 metrics in these programs, 17 were judged not to be associ-
ated with AI, leaving 241 metrics. Two team members categorized all metrics separately and 
then reconciled their lists. There was initially a wide discrepancy in coding between the two 
members, which underscores the importance of clear definitions.
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Figure 5.1
Defense Advanced Research Projects Agency Metric Classifications by 
Number (top) and by Percentage of Programs with Metric (bottom)
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gic guidance documents indicate that equal consideration needs 
to be given to the problem space and to integration issues. An 
accurate and efficient algorithm is not of military utility if it is 
not addressing the right problem.

2.	 Too little focus on data set availability and quality. It is important 
to understand the limitations of the data being used to train 
and test the algorithm. As seen in our analysis of C2 problems, 
data set limitations are ubiquitous. The size and completeness 
of examples contained in a data set may dictate the use of addi-
tional methods to better train the model. Data sets may also 
benefit from their own data quality metrics to ensure minimal 
bias, balance, relevancy, sufficiency, currency, balance, and so on. 
The other side of this coin is better data may be more important 
to the results than a smarter algorithm.33

3.	 Limited resources for evaluation of the impact of AI algorithms. 
DIB plainly states that “DoD lacks AI T&E tools for validation 
of AI/ML models.”34 MoE and MoS require an operationally 
realistic environment in which the system can be tested. The 
focus on MoP may be partly responsible for obscuring these 
needs.

33	 For example, see Lance Menthe, Dahlia Anne Goldfeld, Abbie Tingstad, Sherrill Lingel, 
Edward Geist, Donald Brunk, Amanda Wicker, Sarah Soliman, Balys Gintautas, Anne 
Stickells, and Amado Cordova, Technology Innovation and the Future of Air Force Intelligence 
Analysis, Vol. 1, Findings and Recommendations, Santa Monica, Calif.: RAND Corporation, 
RR-A341-1, 2021.
34	 DIB, 2019.
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CHAPTER SIX

Conclusion and Recommendations

To examine opportunities for applying AI to the military, we developed 
a structured method for (1) analyzing the characteristics of a given C2 
process, (2) analyzing the capabilities of one or more AI systems, and 
(3) determining the suitability of an AI system for a given C2 process 
(Figure 6.1). The method can help identify the most promising AI sys-
tems for a given C2 process and guide the T&E of those systems once 
implemented.

In addition to providing a methodology to determine alignment 
between C2 problems and AI solutions, this research supports several con-
clusions shown in Figure 6.1 along with associated recommendations.

Conclusion 1. Command and Control Processes Are Very 
Different From Many of the Games and Environments 
Used to Develop and Demonstrate Artificial Intelligence 
Systems

Games such as chess, go, and even StarCraft II are qualitatively differ-
ent from most real-world tasks. These games have well-defined rules 
(even if some of them are hidden from the player) that remain constant 
over time. Game-playing algorithms exploit this regularity to achieve 
superhuman performance. Unfortunately, nature and the adversary 
intervene to break this simplifying assumption in military tasks.

•	 Recommendation 1. Use the structured method described in this 
report to systematically analyze the characteristics of games, 
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problems, and C2 processes to determine where existing AI test 
beds are representative and nonrepresentative of C2 tasks.

• Recommendation 2. Develop new AI test beds with problem 
characteristics that are representative of C2 tasks in kind and 
in intensity.

• Characterizing and developing representative problems and envi-
ronments will enable research, development, test, and evaluation 
of AI systems under conditions representative of DoD problem 
sets, thereby increasing transferability to operational environ-
ments. Additionally, it will enable direct comparison of disparate 
AI systems to one another.

Conclusion 2. The Distinctive Nature of Command and 
Control Processes Calls For Artificial Intelligence Systems 
Different From Those Optimized For Game Play

Algorithms optimized for playing games, such as alpha-beta pruning 
and AlphaZero, are not easily adapted to most C2 tasks. Games and 

Figure 6.1
Artificial Intelligence System Capability Mapping and Command and 
Control Process Evaluation
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C2 problems are qualitatively different, and they demand qualitatively 
different algorithms. Fortunately, there are algorithms such as width-
based planners that appear to be a promising fit for at least some chal-
lenging C2 problems.

•	 Recommendation 3. Use the structured method described in this 
report to identify and invest in high-priority solution capabilities 
called for across a wide range of C2 processes and not currently 
available (e.g., robustness and assuredness).

•	 Recommendation 4. Use the structured method described in this 
report to evaluate alignment between the characteristics of poten-
tial AI systems and particular C2 processes to prioritize which 
systems to develop.

Understanding the capabilities and limitations of existing AI sys-
tems will allow the Air Force to identify systems that are suitable for 
different C2 processes a priori. Choosing the right approach at problem 
outset can substantially reduce application development time, increase 
solution quality, and decrease risk associated with transitioning the 
solution.

Conclusion 3. New Guidance, Infrastructure, and Metrics 
Are Needed to Evaluate Applications of Artificial 
Intelligence to Command and Control

AI systems are typically evaluated using a limited set of measures of 
performance, such as accuracy and optimality; however, other system 
capabilities like timeliness and robustness may be equally important. 
Additionally, because AI is intended as a component of larger C2 archi-
tectures, measures of performance alone do not enable comprehensive 
assessment. Additional measures of effectiveness and suitability are 
needed to evaluate the AI system in the context of the C2 architecture.

•	 Recommendation 5. Develop metrics for AI solutions that assess 
capabilities beyond algorithm soundness and optimality (e.g., 
robustness and explainability).
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•	 Recommendation 6. Use the structured method described in this 
report to identify key measures of performance, effectiveness, and 
suitability for a given C2 process.

•	 Recommendation 7. Perform a comprehensive assessment of AI 
systems for a given C2 process based on identified measures of 
merit.

Establishing and operationalizing measures of merit will enable 
the evaluation and comparison of potential AI systems. Additionally, 
measures of merit provide a way to communicate the return on invest-
ment of AI-enabled C2.

Conclusion 4. Hybrid Approaches Are Needed to Deal 
With the Multitude of Problem Characteristics Present In 
Command and Control Processes

Problem characteristics call for multiple solution capabilities, some of 
which are hard to achieve together. Volume 2 contains three technical 
case studies that demonstrate a wide range of computational, AI, and 
human solutions to various C2 problems.

The first case study compared two computational approaches 
for developing the MAAP—a MIP and a greedy heuristic. The MIP 
increased plan quality whereas the heuristic increased planning speed. 
Yet a hybrid solution that combined the heuristic and the MIP was 
more suitable for developing the MAAP than either of the parts alone.

The second case study compared two architectures for perform-
ing airborne target recognition—one that used reinforcement learn-
ing alone and one that used reinforcement learning along with recom-
mendations from an expert system. Of the two architectures, only the 
hybrid one was robust against sensor noise.

The third case study examined a mixed-initiative system for 
personnel recovery. The complexity of the state space resisted a com-
plete human solution whereas the shortage of historical or simulator 
data resisted a complete AI solution. A hybrid solution that combined 
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human knowledge with optimal Bayesian updating by a machine was 
most suitable for personnel recovery.

The main conclusion from these case studies is that hybrid 
approaches are often needed to deal with the range of characteristics 
present in C2 problems.

•	 Recommendation 8. Identify, reuse, and combine algorithmic 
solutions that confer critical AI system capabilities.

Throughout this report, we focused on AI for Air Force C2. How-
ever, given the generality of the analytical framework and the emer-
gence of JADC2, all these conclusions and recommendations extend 
to the pursuit of AI across DoD.
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