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Preface

Recent high-profile demonstrations of artificial intelligence (AI) sys-
tems achieving superhuman performance on increasingly complex 
games along with successful commercial applications of related tech-
nology raise the questions of whether and how the U.S. Air Force can 
use AI for military planning and command and control (C2). The 
potential benefits of applying AI to C2 include greater decision speed, 
increased capacity to deal with the heterogeneity and volume of data, 
enhanced planning and execution dynamism, improved ability to syn-
chronize multimodal effects, and more efficient use of human capital. 
Together, the technology push prompted by recent breakthroughs in 
AI and the market pull arising from emerging C2 needs have prompted 
the Air Force and the Department of Defense (DoD) to identify AI as 
a strategic asset.

In 2019, the Air Force Research Laboratory, Information Direc-
torate (AFRL/RI) asked RAND Project AIR FORCE (PAF) to exam-
ine and recommend opportunities for applying AI to Air Force C2. 
The research project Exploring the Near-Term Feasibility and Utility 
of Machine Learning-Assisted Operational Planning was conducted in 
PAF’s Force Modernization program to address this question. A second 
project was conducted in parallel to examine the separate but related 
topic of complexity imposition. This report presents the primary result 
of the study on AI: an analytical framework for understanding the suit-
ability of a particular AI system for a given C2 problem and for evaluat-
ing the AI system when applied to the problem. We demonstrate the ana-
lytical framework with three technical case studies focused on master 
air attack planning, sensor management, and personnel recovery (PR). 
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The C2 processes examined in these case studies are central to current 
and future C2 concepts of operation, and they exemplify the range of 
characteristics that make C2 problems so challenging.

RAND Project AIR FORCE

RAND Project AIR FORCE (PAF), a division of the RAND Corpo-
ration, is the Department of the Air Force’s (DAF’s) federally funded 
research and development center for studies and analyses, supporting 
both the United States Air Force and the United States Space Force. 
PAF provides DAF with independent analyses of policy alternatives 
affecting the development, employment, combat readiness, and sup-
port of current and future air, space, and cyber forces. Research is con-
ducted in four programs: Strategy and Doctrine; Force Modernization 
and Employment; Manpower, Personnel, and Training; and Resource 
Management. The research reported here was prepared under contract 
FA7014-16-D-1000.

Additional information about PAF is available on our website:  
www.rand.org/paf/

This report documents work originally shared with DAF on 
March 11, 2020. The draft report, issued on April 14, 2020, was reviewed 
by formal peer reviewers and DAF subject-matter experts.

http://www.rand.org/paf/
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CHAPTER ONE

Analysis of Problem Characteristics

Definitions

In Volume 1, we defined a taxonomy of ten command and control (C2) 
problem characteristics grouped into four categories. The temporality 
grouping comprises characteristics related to time. The first of these, 
operational tempo, is defined as the rate at which operations must be 
planned, replanned, and executed. This is not a generalized descriptor, 
such as “low” or “high,” but rather a rate, such as “once every few days” 
or “within four hours or less.” For example, an operation might require 
12 hours to plan and an additional 24 hours to execute. The second 
characteristic, rate of environment change, is defined as how long it 
takes for the context to evolve from those previously encountered, ren-
dering past tactics and learning outdated. While in many cases we can 
only know this imperfectly at best in advance, reasonable guesses as to 
low and high estimates can be made and used to guide planning. For 
instance, we could expect knowledge about the environmental context 
to remain valid for at least two weeks but probably not for more than a 
month with a high degree of confidence.

The complexity grouping includes two characteristics related to 
how difficult a problem is to solve, as well as the possible means of solv-
ing it.1 The first of these, problem complexity, is meant to be analogous 

1 The notion of complexity here is distinct from complexity imposition through the use 
of multidomain effects—a C2 process that takes place in one domain can nonetheless have 
high complexity. Operating in multiple domains would tend to increase problem complexity, 
however.
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to—and in rare cases equivalent to—computational complexity as 
studied in theoretical computer science. While computer scientists 
most commonly study the worst-case complexity of rigorously speci-
fied problems, in defense applications we tend to care more about the 
average-case complexity of problems. The problem complexity char-
acteristic, therefore, tries to capture the resources required, in the 
abstract, to solve the problem in the average case to ensure the neces-
sary degree of performance. This defines a limit bounding the perfor-
mance of any algorithm or architecture on that problem. In many cases 
this limit will be specified relative to the size of the problem instance, 
for example, the available number of states and actions. The reducibil-
ity characteristic, by contrast, is the degree to which a problem can be 
decomposed into independent subproblems. For instance, if a task can 
be broken into two or more subtasks that can be solved by the same 
number of people or computers working in isolation from one another, 
then it is reducible.

The five characteristics included in the quality of information 
grouping aim to capture knowledge-related aspects of the problem. 
The first of these, data availability, describes the quantity, quality, 
and representativeness of data available for training and testing. Here, 
quantity, quality, and representativeness can be independent of each 
other. For instance, it is conceivable that one might have a simulator 
that can create an unlimited quantity of high-quality samples that 
represent only a small part of the possibility space or a limited quan-
tity of low-quality samples that form a representative sample of the 
real-world distribution. Environmental clutter/noise aims to capture 
whether signals of interest are contaminated by signals from other 
potentially unknown and random processes. This characteristic is 
broadly analogous to the concepts of signal-to-noise ratio and false-
alarm detection rate, although in some instances it cannot be mea-
sured in these terms. Stochasticity of action outcomes describes whether, 
and to what degree, the immediate effects of actions are predictable. If 
actions have randomized effects, even taking what is perceived to be 
the “optimal” move can sometimes result in an unfavorable outcome. 
Clarity of goals and utility is the extent to which the values of outcomes 
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delivered during and at the end of a task are known and quantifi-
able. If payoffs include a randomized element that follows a known 
probability distribution, this characteristic is less than it would have 
been if those payoffs were deterministic and perfectly known. The 
critical incompleteness of information characteristic embodies many 
types of knowledge-quality problems that are difficult to quantify, for 
example, how much is known about the state of the environment and 
about the adversary’s goals and intent. If the full extent of the environ-
ment is unknown and unexplored and the adversary’s preferences are 
unknown, then only incomplete information is available, and many 
standard artificial intelligence (AI) methods for planning and game 
play will be inapplicable.

The importance grouping includes just a single problem  
characteristic—operational risks and benefits. This characteristic encom-
passes value judgments and is defined as the potential for the out-
come to include the loss of something of value, or the advantage or 
profit gained. The operational risks and benefits characteristic can also 
encompass more than just straightforward utility calculations: in mili-
tary use cases, the trade-offs are often between dissimilar and difficult-
to-compare commodities, such as blood and treasure. There are also 
occasions when certain outcomes or choices must be excluded for rea-
sons of law, custom, ethics, or decency. Responsible officials need to 
make these types of judgment calls about the “trade space” between 
operational risks and benefits; these judgment calls then enable analy-
sis of whether potential solutions should be considered and how prom-
ising they appear.

Structured Interview Protocols

While the problem characteristics may seem intuitive, determining 
whether they are present in a problem may be challenging. Some 
characteristics can be formally defined, but others are of indetermi-
nate formality. Of those that can be formally defined, some, such as 
operational tempo, may require only a single value for a well-defined 
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task (e.g., blitz play in chess) but a dynamic range of values for a real-
world task. Though the problem characteristics have technical defi-
nitions, Air Force operators will be more familiar with their everyday 
meanings.

To assist in this process, we created a structured interview proto-
col to enable scoring of problem characteristics for C2 processes with 
subject-matter experts (SMEs). The protocol is rooted in cognitive task 
analysis—a set of tools for identifying task demands and the cogni-
tive skills needed to perform a task.2 For each problem characteristic, 
SMEs were asked to reflect on their assigned C2 role and to provide 
examples.3 SMEs were then shown a response scale with numerical 
ratings ranging from 0 (not present) to 4 (present to a large extent). The 
response scale contained definitions and examples for each rating that 
were specific to the problem characteristic. Based on the given defini-
tions, SMEs were asked to assign a numerical rating to the problem 
characteristic for their assigned C2 role. Rating scales were developed 
for each characteristic. As an example, Table 1.1 presents the rating 
scale for one problem characteristic, operational tempo.4

Application to Specific Games and Command and 
Control Processes

Using the problem taxonomy and the structured interview protocol, 
we analyzed ten games and ten C2 processes. The results are sum-
marized in Volume 1. The games are representative of those used for 

2 B. Crandall, G. Klein, and R. R. Hoffman, Working Minds: A Practitioner’s Guide to Cog-
nitive Task Analysis, Cambridge, Mass.: MIT Press, 2006.
3 The use of examples relates to the critical decision method, in which a subject-matter 
expert retrieves past challenging experiences. Robert R. Hoffman, Beth Crandall, and Nigel 
Shadbolt, “Use of the Critical Decision Method to Elicit Expert Knowledge: A Case Study 
in the Methodology of Cognitive Task Analysis,” Human Factors, Vol. 40, No. 2, 1998.
4 The highest level of operational tempo also encompasses processes that take place on the 
timescale of microseconds and that would require machine-to-machine actions, like cyber 
attack, detection, and mitigation.
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AI test beds; the C2 processes, in turn, are representative of the mili-
tary targets of transition for AI. The C2 problems were selected to 
achieve breadth of coverage across services, across command echelons, 
and across stages of the air tasking cycle (and joint operation planning 
more generally). The games are described in Table 1.2; the C2 prob-
lems, in Table 1.3.

To increase the validity and reliability of ratings, the structured 
interview protocol and analyses used the set of anchored scales devel-
oped for the ten problem characteristics. Members of the project 
team had experience with each of the games and AI test beds listed 
in Table 1.2. For each game, two members of the project team rated 
the ten problem characteristics based on experience and a review of 
available documentation. All ratings given by team members matched 
or were adjacent to one another. Disagreements were discussed and 
resolved.

Table 1.1
Sample Rating Scale for Operational Tempo

Operational Tempo
The rate at which operations must be planned, replanned, and executed

Rating Definition Example

0 Responses are needed on 
the timescale of weeks or 
longer.

The division is planning routine resupply 
missions that occur on a biweekly basis.

1 Responses are needed on 
the timescale of days.

The planning cycle used to create an Air 
Tasking Order (ATO) takes several days to 
complete.

2 Responses are needed on 
the timescale of hours.

The cell is planning a rescue mission. The 
mission must be ready within hours.

3 Responses are needed on 
the timescale of minutes.

The planner is responsible for air and 
missile defense. He must coordinate and 
execute a defensive response within 
minutes of threat detection.

4 Responses are needed on 
the timescale of seconds 
or less.

The pilot is maneuvering an aircraft. He 
needs to respond to the moment-by-
moment behaviors of the adversary. 
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Table 1.2
Description of Games

Example Type Description

Tic-tac-toe Two-player turn-based 
game

Game is played on a three-by-three 
board. Goal is to place marks on 
three adjacent cells.

Tetris Single-player real-time 
strategy game

Tile-matching puzzle game that 
involves fitting pieces to form 
complete rows.

Checkers Two-player turn-based 
game

Game is played on an eight-by-eight  
board. Goal is to capture all of 
opponent’s pieces by jumping over 
them.

Chess Two-player turn-based 
game

Game is played on an eight-by-eight 
board. Goal is to place opponent’s 
king under inescapable threat of 
capture (i.e., checkmate).

Go Two-player turn-based 
game

Game is played on a nineteen-
by-nineteen board. Goal is to 
surround more territory (cells) than 
opponent.

Texas Hold’em Multiplayer turn-based 
game

Card game that involves forming 
strongest five-card hand from two 
hold cards and five community 
cards.

CartPole-v1 AI test bed Continuous control task that 
involves keeping pole attached to an 
unactuated joint on a cart upright by 
moving the cart along a frictionless 
track.

HalfCheetah-v2 AI test bed Continuous control task that 
involves teaching a physics-based 
two-legged agent (HalfCheetah) to 
run. 

Bridge Multiplayer turn-based 
game

Four-player game in which two 
teams of two players attempt to 
predict and win a set number of 
tricks.

StarCraft II Single- or multiplayer 
real-time strategy 
game

Real-time strategy game that 
involves gathering resources, 
building units, and attacking 
competing players.
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Table 1.3
Description of Command and Control Processes

Example Service Description

Intelligence preparation 
of the battlefield

Army Method for collecting, organizing, 
and processing intelligence to 
provide timely, accurate, and relevant 
intelligence to military decisionmaking 
process.

Master air attack plan 
(MAAP)

Air Force Create time-phased air and space 
scheme of maneuver for a given ATO 
period.

Nuclear retargeting Air Force Conduct adaptive planning to destroy 
as many adversary offensive nuclear 
forces as possible before they can be 
launched.

Operational assessment Air Force Evaluate the effectiveness of daily air, 
space, and information/nonkinetic 
operation planning and execution.

Personnel recovery: 
locate and authenticate

Air Force Determine location of isolated 
personnel and authenticate their 
identity.

Reallocating intelligence, 
surveillance, and 
reconnaissance (ISR) 
assets

Air Force Receiving requests for new ISR and 
dynamically replanning for and servicing 
requests.

Sensor management Air Force Process of controlling sensors aboard an 
Airborne Warning and Control System 
(AWACS) to detect, track, and identify 
airborne vehicles that may affect 
friendly operations.

Military decisionmaking 
process 

Army Multistep planning process for military 
decisionmaking at echelons with a 
command staff.

Tomahawk planning Navy Planning process surrounding launch 
of Tomahawk Land Attack Missile to 
ensure that it reaches its target at the 
prescribed time.

Troop leading 
procedures

Army Multistep planning process for military 
decisionmaking at lower echelons.
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For each of the C2 examples listed in Table  1.2, a member of 
the project team interviewed an active-duty or retired servicemember 
with two or more years’ experience performing that function. Based 
on the servicemember’s experience and a review of available docu-
mentation, the servicemember rated the ten problem characteristics. 
Servicemembers came from the Army, Air Force, and Navy, and all 
were officers. Because only a single servicemember completed ratings 
for each C2 example, it was not possible to assess interrater reliability. 
The accompanying free responses that SMEs gave to justify the ratings 
establish their face validity. However, additional research is needed to 
determine interrater reliability and other psychometric properties of 
the rating scales.

Chess

To demonstrate the problem taxonomy, we first apply it to the game of 
chess before turning to C2 examples. The goal of chess is to place the 
opponent’s king under the inescapable threat of capture (checkmate). 
The game is played on an eight-by-eight grid with six different types of 
pieces, each of which is allowed to move in different ways. Game play 
is turn-based.

For chess, six problem characteristics are entirely absent, and four 
are present to a moderate extent (Table 1.4). The primary challenges 
arise from the size of the state space (i.e., problem complexity) and the 
inability to reduce complexity by dividing the board into separate sub-
games (i.e., reducibility). The difficulty of chess for humans and com-
puter programs alike can be further increased by imposing response 
deadlines.

Sensor Management

To demonstrate the problem taxonomy and the structured interview 
protocol for a C2 problem, we then applied them to sensor manage-
ment as performed by an air battle manager aboard an AWACS. The 
purpose of sensor management is to detect, track, and identify airborne 
vehicles that may affect friendly operations. Task inputs include guid-
ance for positive identification, rules of engagement, communication 
with other tactical and operational C2 nodes, and sensor signals.
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For sensor management, all but two problem characteristics were 
present to a moderate or large extent (Table 1.5). The primary chal-
lenges arise from the relatively high operational tempo, the nonstation-
ary environment, the presence of naturally occurring and adversary-
induced environmental clutter, and the substantial operational risks 
and benefits. Numerous secondary and tertiary challenges exist as well.

Table 1.4
Problem Characteristics in Chess

Problem Characteristic Rating Comment

High operational 
tempo

3 Reponses are limited to 5 minutes in blitz chess, 
15 minutes in quick chess, and 30 minutes in 
action chess. Outside tournament play, slower 
responses are legal but not socially acceptable.

High rate of 
environment change

0 The board, pieces, and rules of the game never 
change.

High problem 
complexity

2 Chess has approximately 1050 reachable board 
states. However, many are not effectively unique. 
A limited number of moves is available from any 
state.

Low reducibility 3 Spatial decomposability is limited—one 
policy is played across the full board. Temporal 
decomposability is possible. Minimax, alpha-beta 
pruning, and Monte Carlo tree search (MCTS) 
work by enumerating and solving for multiple 
possible future states and can be parallelized.

Low data availability 0 A virtually limitless number of games can be 
simulated.

High environmental 
clutter/noise

0 The game does not involve perceptual noise.

Stochasticity of 
action outcomes

0 The game does not involve stochastic actions.

Low clarity of goals 
and utility

0 The objective of the game (avoid being 
checkmated while checkmating the opponent) is 
clearly defined.

Incompleteness of 
information

0 The board is fully visible.

High operational 
risks and benefits

0 Nothing of material value is at stake.
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Table 1.5
Problem Characteristics in Sensor Management

Problem Characteristic Rating Comment

High operational 
tempo

3 The latency of the AWACS radar limits the 
timescale of responses. Additionally, signals 
must be correlated across multiple returns to 
identify a track.

High rate of 
environment change

3 Weather, enemy order of battle, and friendly 
rules of engagement and special instructions 
may frequently change.

High problem 
complexity

2 The multitude of actors creates a large state 
space. The action set consists of multiple radar 
modes, azimuths, and orientations, which may 
be interleaved.

Low reducibility 2 Sensor management is composed of multiple 
subtasks, including selecting radar modes, 
interpreting radar returns, and identifying and 
tracking aircraft. Communication with each 
tactical and operational C2 node constitutes 
additional subtasks. 

Low data availability 2 Vast amounts of data are recorded during 
missions. Additionally, sensor performance 
characteristics can be demonstrated on test 
ranges. Ability to simulate adversary electronic 
warfare countermeasures is more limited.

High environmental 
clutter/noise

3 Weather conditions affect sensor performance. 
Adversaries employ stealth modes and 
electronic warfare countermeasures to further 
complicate positive identification and tracking.

Stochasticity of 
action outcomes

1 Aircraft limiting factors exist, and sensors 
occasionally malfunction.

Low clarity of goals 
and utility

1 Clarity of air picture can be quantified in terms 
of track quality, which depends on latency, 
resolution, and registration error.

Incompleteness of 
information

2 A large amount of information is concealed, 
although a large number of airborne and 
multidomain assets can improve the air picture.

High operational 
risks and benefits

3 Poor task performance will likely result in loss 
of life and aircraft.
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CHAPTER TWO

Analysis of Solution Capabilities

Definitions

In Volume 1, we defined a taxonomy of eight AI system capabilities 
grouped into four categories. The first grouping, complexity, which 
includes a single solution characteristic, computational efficiency, 
describes how the amount of time/memory that a system needs scales with 
the size of the problem. This is roughly analogous to the Big-O notation 
used by computer scientists to denote the processor and memory effi-
ciency of algorithms. For instance, if a problem uses exponentially more 
clock cycles or memory as the size of the problem instance increases, its 
computational efficiency may prove unfavorable. But sometimes a solu-
tion method that appears dubious on this account may prove attractive 
in practice: for example, the problem instances for the cases of interest 
may all be small, rendering the intractability of the technique on large 
instances irrelevant. This is yet another reason why problem character-
ization ought to proceed with exploring potential solutions: overly broad 
problem definitions can result in the premature rejection of solutions 
that ought to have been considered.

The performance grouping includes three solution characteristics 
that aim to capture how well the potential solution is expected to per-
form. The first of these, data efficiency, is primarily for machine learn-
ing (ML) methods, and it describes the number of samples required to 
train a model for adequate performance. Obviously, the implications 
of this metric depend on one of the problem characteristics included 
in the previous taxonomy—data availability. If large quantities of data 
are available, poor performance on this metric may prove tolerable. The 
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other two characteristics in the taxonomy, soundness and optimality, 
are related but distinct, particularly in practice. Soundness describes 
whether a system will ever output a wrong answer: if it is sound, it 
never will. Optimality describes the extent to which the output of the 
system is expected to deviate from the best possible answer, as scored 
by the objective function of interest. Obviously, a fully optimal system 
will be sound, but a sound system does not need to be optimal. For 
most difficult real-world problems, globally optimal solutions are either 
unavailable or demand prohibitive resources. In many cases, however, 
we can find solutions that are locally optimal.

The third grouping comprises two solution characteristics that 
describe the flexibility of the potential solution in the face of real-world 
complexities, such as novel situations and malformed inputs. The first 
of these, robustness, is defined as the ability to produce reasonable out-
puts and/or fail gracefully under unanticipated circumstances. This is 
distinguished from soundness in that robustness includes the ability 
to process malformed inputs sensibly, for example, by rejecting them. 
A system could be sound, because it always outputs a correct answer 
on a well-formed input, but not robust, because it outputs an incorrect 
answer (which might look well formed on casual inspection) to a mal-
formed input. The other characteristic, learning, captures the system’s 
ability to improve performance through training and/or experience.

The final grouping, practicality, includes two characteristics that 
seek to capture the extent to which the potential solution can address 
human needs. The first of these, explainability, describes the ability of 
an expert human to understand why the system produces the outputs 
it does. A system with good explainability can output an account of its 
reasoning that a human can make sense of, even if that line of reason-
ing was not necessarily one that a human ever would have employed. 
This is distinct from the ability to find a high-quality solution: the 
system may have made the same kind of reasoning mistakes that a 
human nonexpert might make and may have provided the same kind 
of explanation of that reasoning as that nonexpert. The assuredness 
characteristic describes the ability of an expert human to determine 
that the system operates as intended. The intended mode of operation 
is defined relative to the problem characteristics, particularly opera-
tional risks and benefits. In practice, this characteristic will often need 
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to account for legal or regulatory requirements that may not have been 
designed to account for nonhuman decisionmakers.

Structured Interview Protocols

As we did for C2 problem characteristics, we created a structured proto-
col to enable valid and reliable scoring of solution capabilities for a given 
AI system. The goal of the protocol was to determine the extent to 
which each characteristic was present in the selected system. To facilitate 
scoring, we created rating scales with values ranging from 0 (not pres-
ent) to 4 (present to a large extent). The scales contained definitions and 
examples corresponding with each of the five levels. Table 2.1 contains 
the rating scale for one solution capability, computational efficiency.

Table 2.1
Sample Rating Scale for Computational Efficiency

Computational Efficiency
How the amount of time/memory that a system needs scales with the size of the 
problem

Rating Definition Example

0 The computational 
time/memory needed 
increases exponentially 
with problem size.

The planners are testing a tanker planning 
algorithm. It requires 8 seconds for two tankers, 
54 seconds for four tankers, and 2000 seconds 
for eight tankers.

1 The computational 
time/memory needed 
increases as a polynomial 
of problem size.

The planners are testing a tanker planning 
algorithm. It requires 4 seconds for two tankers, 
16 seconds for four tankers, and 64 seconds for 
eight tankers.

2 The computational 
time/memory needed 
increases linearly with 
problem size.

The planners are testing a tanker planning 
algorithm. It requires 4 seconds for two tankers, 
8 seconds for four tankers, and 16 seconds for 
eight tankers.

3 The computational 
time/memory needed 
increases logarithmically 
with problem size.

The planners are testing a tanker planning 
algorithm. It requires 4 seconds for two tankers, 
6 seconds for four tankers, and 8 seconds for 
eight tankers.

4 The computational time/
memory needed remains 
constant as the problem 
size increases.

The planners are testing a tanker planning 
algorithm. No matter the number of tankers, 
the algorithm finishes in the same amount of 
time.
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Application to Specific Artificial Intelligence Systems and 
Methods

Using the solution taxonomy and the structured interview protocol, 
we analyzed ten AI systems. The results are summarized in Volume 1. 
The systems are representative of classic and contemporary approaches 
in AI. Some of the systems involve learning, and others involve sub-
stantial upfront knowledge engineering. Additionally, the systems vary 
in terms of their suitability for reactive-, planning-, and classification-
type tasks. In total, the sample contains an extremely diverse set of 
AI approaches reflective of those being pursued by the Department of 
Defense (DoD). The systems are described in Table 2.2.

Next we look in detail at three pairwise combinations of AI 
systems or methods: Deep Q-Learning versus iterated-width (IW) 
planning, alpha-beta pruning versus AlphaZero, and a mixed-integer 
program (MIP) versus a greedy heuristic (GH). These analyses help 
illustrate how the taxonomy may be used as a tool for comparison.

Comparison of Deep Q-Learning to Iterated-Width Planning

Two AI approaches, Deep Q-Learning and IW planning, have been 
applied to numerous real-time strategy games and, given their high 
levels of demonstrated play, have been suggested to be relevant to DoD 
missions.1 These approaches have very different origins: Deep Q-Learning 
arose from work on learning systems and reflects the convergence of 
deep neural network (DNN) and reinforcement learning (RL). In Deep 
Q-Learning, a DNN is applied as the subfunction to estimate the value 
(or “Q”) function in a model-free RL framework. Unlike some other 
forms of RL (such as AlphaZero, described below), model-free RL does 
not exploit specified or learned models or structured exploration to 

1 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, 
Daan Wierstra, and Martin Riedmiller, Playing Atari with Deep Reinforcement Learning, 
Ithaca, N.Y.: Cornell University, 2013; Wilmer Bandres, Blai Bonet, and Hector Geffner, 
“Planning with Pixels in (Almost) Real Time,” Thirty-Second AAAI Conference on Artificial 
Intelligence, Palo Alto, Calif: AAAI Press, April  2018; U.S. Air Force Scientific Advisory 
Board, Technologies for Enabling Resilient Command and Control MDC2 Overview, Washing-
ton, D.C., 2018; G. Zacharias, Autonomous Horizons: The Way Forward, Maxwell Air Force 
Base, Ala.: Air University Press, Curtis E. LeMay Center for Doctrine Development and 
Education, 2019.
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Table 2.2
Description of Artificial Intelligence Systems

AI System Description

Deep Q-learning An algorithm that uses a DNN to learn a subfunction 
that approximates the values (or “Q”) of actions 
available to an agent in a model-free RL framework.

IW planning An automated planner that chooses which branches 
to explore based on their novelty, as embodied in the 
concept of “width.” Branches are only explored if they 
contain features or combinations of features that have 
not yet been seen.

AlphaZero A general RL algorithm for game play that combines 
two components: a DNN that encodes the approximate 
values of board states and an MCTS algorithm that 
simulates games forward from their current state until 
an end state is reached.

Alpha-beta pruning An adversarial search algorithm that stops evaluating 
lines of play that could be exploited by a rational 
opponent. 

MIP A mathematical optimization program in which some or 
all variables are restricted to be integers. When solved 
using branch and bound, only those branches of the 
potential solution space that could possibly produce 
a solution better than the best one yet found are 
explored.

GH A domain-specific heuristic for MAAP that allocates 
resources to targets in order of their priority until all 
resources are exhausted.

Instance-based 
learning

An approach from cognitive science that retrieves 
previous experiences stored in memory based on 
the time since they were encoded and the similarity 
between the current context and the context in which 
they were encoded.

Recurrent neural 
network

A class of neural networks that allow previous outputs 
to be used as inputs to exhibit temporal dynamic 
behavior.

Influence network A probabilistic model of causality that uses Bayesian 
updates to predict the probabilities of different 
outcomes given different actions and to select actions.

Genetic algorithm A search heuristic inspired by natural selection in which 
a population of candidate solutions are evaluated 
by a fitness function. The best performing solutions 
are retained and combined to produce subsequent 
generations of solutions. 
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find good-quality moves. Instead, all knowledge is learned from expe-
rience and stored in the learned value function.

IW planning arose from research on automated planners. His-
torically, most automated planners worked by selecting promising 
branches to explore based on their “distance” from the goal state, as 
approximated by domain-specific heuristics. IW planning, in contrast, 
chooses branches based on their novelty, as embodied in the concept of 
“width.”2 Branches are only explored if they contain features or com-
binations of features that have never been seen before. Nir Lipovetzky 
and Hector Geffner empirically demonstrated that IW planning com-
pares favorably to classical planners, despite its simplicity. Moreover, a 
variant of the approach called rollout-based IW can plan with a simu-
lator as opposed to an explicit model. This means that IW planning 
can be applied to many of the same tasks as Deep Q-Learning, such as 
Atari games.3 Table 2.3 compares the two methods.

Deep Q-Learning and IW planning have very different capabilities:

• Computational complexity. For planning tasks, the computational 
complexity of Deep Q-Learning for finding an optimal solution 
is polynomial in practice given suitable  priors and/or task rep-
resentations.4 For reactive tasks, the computational complexity 
of Deep Q-Learning is far lower given that the learned policy 
essentially encodes stimulus-response mappings. The complexity 
of IW planning is dependent on the complexity of the goal rather 
than the action or state spaces and is the same for deliberate and 
reactive tasks.5

• Data Efficiency. One of the major limitations of Deep Q-Learning is 
its poor sample efficiency: enormous amounts of data and train-

2 Nir Lipovetzky and Hector Geffner, “Width and Serialization of Classical Planning 
Problems,” ECAI ’12: Proceedings of the 20th European Conference on Artificial Intelligence, 
Amsterdam: IOS Press, August 2012.
3 Bandres, Bonet, and Geffner, 2018.
4 Sven Koenig and Reid G. Simmons, Complexity Analysis of Real-Time Reinforcement Learn-
ing, Pittsburgh, Pa.: School of Computer Science Carnegie Mellon University, 1993, pp. 99–107.
5 Lipovetzky and Geffner, 2012.
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ing time are often required for good performance. IW planning, 
by contrast, is not a learning method and does not require train-
ing data at all, but it does demand the availability of an accurate 
simulator or state transition model.

• Soundness. Model-free RL methods such as Deep Q-Learning can 
be unsound: for instance, in some cases they can suggest moves 
that are not available in a particular state. IW planners, by con-
trast, are guaranteed to find sound solutions so long as the simula-
tor or state transition model they employ is sound.

• Optimality. Neither method offers optimality guarantees, yet both 
have demonstrated levels of performance commensurate with the 
most skilled humans.

• Robustness. When encountering novel situations, Deep Q-Learn-
ing can break or recommend nonsensical actions. IW planning, 
meanwhile, is as robust as its simulator or state transition model. 
Moreover, it is sometimes possible to flag situations that break 
the simulator used by IW planning to allow for countermeasures, 
such as requesting human advice.

• Learning. RL, by definition, is able to learn. Moreover, some 
forms of RL offer performance guarantees—given enough data 
and training time, the agent is guaranteed to discover a nearly 

Table 2.3
Solution Capabilities of Deep Q-Learning and Iterated-Width Planning

Solution Capability Deep Q-Learning IW Planning

Computational efficiency 1/4a 1

Data efficiency 0 4

Soundness 1 4

Optimality 3 3

Robustness 0 3

Learning 3 0

Explainability 0 3

Assuredness 0 3

a Exponential for planning tasks and logarithmic for reactive tasks.
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optimal policy. IW planning does not learn, and therefore its per-
formance does not improve with experience.

• Explainability. The policies and state values learned by Deep 
Q-Learning are typically difficult for humans to interpret. The 
DNN representing the value function can be queried for its 
response to particular inputs, but for a nontrivial problem, the 
input space is too large for comprehensive exploration to be prac-
tical. In contrast, the reasoning process used by IW planning to 
find a solution is comprehensible by humans (even if it is not nec-
essarily one that a human would ever use). Further, the history of 
state exploration by the IW planner can be used to reconstruct 
how it recommended a decision.

• Assuredness. A major shortcoming of model-free RL methods, such 
as Deep Q-Learning, is the difficulty of verification and valida-
tion (V&V). With IW planners, if the simulator or state transi-
tion model is valid, the planner is valid as well.

Comparison of AlphaZero to Alpha-Beta Pruning

As another example of using the solution taxonomy to compare AI sys-
tems, the AlphaZero deep reinforcement learning (DRL) system has 
recently overtaken alpha-beta pruning as the most effective algorithm 
for playing chess. The respective approaches of AlphaZero and alpha-
beta pruning are technically very different. AlphaZero combines two 
components: a DNN that encodes the approximate values of board 
states and an MCTS algorithm that simulates games forward from 
their current state until an end state is reached.6 The DNN is learned 
off-line through self-play, and the MCTS is implemented online with 
self-play. Alpha-beta pruning, in contrast, is a classic search algorithm 
that prospectively expands potential game states, assuming that for 
each game state both agents will select optimal moves.7 The agent then 

6 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, 
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy 
Lillicrap, Karen Simonyan, and Demis Hassabi, “A General Reinforcement Learning Algo-
rithm that Masters Chess, Shogi, and Go Through Self-Play,” Science, Vol. 362, No. 6419, 
December 2018.
7 S. Russell and P. Norvig, Introduction to Artificial Intelligence: A Modern Approach, New 
Delhi: Prentice-Hall of India, 1995.
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chooses the move for the current game state that is expected to pro-
duce the most attractive future state. Because it is not computationally 
feasible to fully expand the game tree, search terminates at a specified 
depth, at which point a heuristic is used to estimate the values of dif-
ferent intermediate game states that have been reached.

AlphaZero and alpha-beta pruning also have very different capa-
bilities (Table 2.4). To summarize some key distinctions: AlphaZero 

Table 2.4
Solution Capabilities of AlphaZero and Alpha-Beta Pruning

Solution 
Capability AlphaZero

Alpha-Beta 
Pruning Rationale

Computational 
efficiency

3 3 Heavy rollouts in AlphaZero require a 
large amount of simulated online play. 
The number of branches that alpha-beta 
pruning explores increases in polynomial 
time with search depth.

Data efficiency 0 4 AlphaZero approximates game values based 
on hundreds of centuries of simulated self-
play. Alpha-beta pruning does not need 
training data.

Soundness 4 4 Both approaches can only recommend legal 
board moves.

Optimality 3 2 Though not provably optimal, AlphaZero 
outperforms all other known chess players. 
Though optimal in the limit, alpha-beta 
pruning is exploitable on the basis of its 
finite search depth and the heuristics it 
employs.

Robustness 0 2 Although AlphaZero can be trained for 
different games, it does not generalize 
knowledge from one game to another. 
Alpha-beta pruning is as general as the 
model and heuristics that it employs.

Learning 3 0 AlphaZero is a learning architecture, although 
it is infeasible to train it online. Alpha-beta 
pruning is not capable of learning.

Explainability 0 4 AlphaZero’s policy cannot be explained 
to humans. The alpha-beta search rule is 
explainable, and the heuristics are often 
modeled after human decision processes.

Assuredness 0 4 AlphaZero cannot be formally verified. 
Alpha-beta pruning can be verified by 
checking the model and heuristics. 
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is trained using hundreds of centuries of self-play, whereas alpha-beta 
pruning requires expert knowledge but no training data. AlphaZero 
is near optimal in that no other human or AI system outperforms it. 
However, the manner in which AlphaZero achieves such a high level 
of play complicates V&V and also limits explainability. Alpha-beta 
pruning is suboptimal, but it can be verified and validated, and its 
moves can be explained. Finally, AlphaZero can learn lines of play 
that do not require—or that go beyond—expert knowledge. Yet 
AlphaZero’s data-intensive learning methods limit the possibility of 
online learning. Alpha-beta pruning is only as capable as the heuris-
tics provided to it by human experts and does not improve further 
with experience.

Comparison of a Mixed Integer Program and a Greedy Heuristic

Finally, the solution taxonomy can be used to compare AI systems 
intended for use with C2 process. For example, the MAAP is the time-
phased air and space scheme of maneuver for a given ATO period. 
Among other things, the MAAP assigns aircraft to packages and pack-
ages to targets to achieve the effects specified on the joint integrated 
prioritized target list. The scheduling problem can be specified as a 
set of constraints and solved using MIP techniques. Alternatively, the 
scheduling problem can be solved using a simple GH—for example, 
“schedule missions in order of priority until all resources have been 
exhausted.”8

The MIP and the GH have very different capabilities (Table 2.5). 
Both methods begin from the root of valid solutions and so are guar-
anteed to provide sound schedules. Neither method uses training data 
nor improves further with experience. Given sufficient computational 
resources, the MIP will reduce the optimality gap to an arbitrary 
degree. Yet, relative to the GH, the MIP’s optimality comes at the 
expense of computational efficiency and explainability.

8 Kevin. J. Rossillon, Optimized Air Asset Scheduling Within a Joint Aerospace Operations 
Center, Cambridge, Mass.: MIT Press, 2015. Additional details about the MIP and the heu-
ristic are provided in Chapter 5.
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Table 2.5
Solution Capabilities of Mixed-Integer Program and Greedy Heuristic

Solution 
Capability MIP GH Rationale

Computational 
efficiency

0 4 MIP time complexity increases in polynomial 
time with number of variables. GH increases 
in linear time or less with number of variables.

Data efficiency 4 4 Neither method uses training data.

Soundness 4 4 Both methods begin from the root of valid 
solutions.

Optimality 4 1 Given sufficient run time, the MIP will return 
a solution within the desired optimality gap. 
No guarantees can be provided about the 
quality of the GH solution.

Robustness 2 2 Changes to the problem can affect the MIP 
solve time or the GH’s solution quality.

Learning 0 0 Neither method learns.

Explainability 3 4 Although the rationale behind the MIP 
can be explained, the manner in which it 
improves solutions is difficult to track and 
intuit. The GH is based on how a human 
performs the task.

Assuredness 4 4 The MIP can be verified by checking the 
potentially large number of constraints. The 
GH can be formally verified.
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CHAPTER THREE

Expert Panel Design, Implementation, and 
Additional Results

This chapter contains additional details about the design, implementa-
tion, and results of the expert panel. The panel followed a structured 
approach whereby individuals answered questions during two rounds. 
Between rounds, they reviewed summaries of one another’s responses. 
This approach, called a Delphi panel, can be used to collect and share 
informed judgments and to build consensus among experts. As of yet, 
the literature does not contain an agreed on mapping from problem 
characteristics to required solution capabilities. The purpose of con-
ducting a Delphi panel was to build such a mapping from the informed 
judgments of AI experts.

Panel Design and Implementation

The panel was conducted using ExpertLens—an online, modified-
Delphi platform. Each round of the panel took place over about ten 
days. Round 1 was open from November 18 to November 27, Round 2 
was open from December 3 to December 12, and Round 3 was open 
from December 13 to December 23.

In Rounds 1 and 3, experts were asked to rate the importance 
of solution capabilities for the different problem characteristics. The 
rounds contained ten study pages. One problem characteristic was pre-
sented at the top of each page. The eight solution capabilities were dis-
played below the problem characteristic (Figure 3.1). Experts selected 
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a radio button to rate the importance of each solution capability for 
the problem characteristic, and they provided explanations in a text 
box below the rating scale. The order of problem characteristics across 
pages and the sequence of solution capabilities within pages were ran-
domized across experts.

In Round 2, experts viewed a bar chart with the distribution 
of ratings for each problem-solution pair (Figure 3.2). The bar chart 
marked the expert’s Round 1 response with a red point and the median 
response with a vertical blue line. A table appeared beside the bar chart. 
The table contained thematic groupings of responses given by experts 
for ratings of low, moderate, and high importance.

Not important Extremely important

Problem characteristic: Operational tempo

Operational tempo is the amount of time the problem allows for actors to sense, 
decide, and act.

Example: Along extended timescales, Air Force planning processes may take from 
12 to 24 hours. Along moderate timescales, agents in turn-based games like Chess may 
be given from minutes to hours per move. Along brief timescales, agents playing games 
like Starcraft make hundreds of moves per minute.

How important is each of the following systems capabilities for a problem with a high 
operational tempo?

Data efficiency

Definition: Data efficiency is the amount of data (samples) that a system needs to 
produce acceptable-quality solutions.

Example: DeepMind’s AlphaZero plays Chess and other games far better than any 
human player. But to attain this level of mastery, the system plays more games than 
a human could in hundreds of lifetimes. At the opposite extreme, “one-shot learning” 
aims to learn generalizable models, most typically for a category of objects in image 
recognition, from the observation of a single example.

1  2  3  4  5  6  7  8  9

Please briefly explain your response. What factor(s) influenced your rating 
the most?

Figure 3.1
Sample Round 1 and Round 3 Response Section Interfaces
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Problem characteristic: Operational tempo

Data efficiency

Definition: Data efficiency is the amount of data (samples) that a system needs to 
produce acceptable-quality solutions.

Example: DeepMind’s AlphaZero plays Chess and other games far better than any 
human player. But to attain this level of mastery, the system plays more games 
than a human could in hundreds of lifetimes. At the opposite extreme, “one-shot 
learning” aims to learn generalizable models, most typically for a category of 
objects in image recognition, from the observation of a single example.

Group responses from 44 participants
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Not important Extremely important
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Reasons For Comment Summary

Low ratings
(1–3)

High ratings
(7–9)

• Data efficiency is the direct approach for dealing with 
low data availability

Uncertain
ratings
(4–6)

View Participants’ Round One Comments

Round Two discussion

New discussion topic

Figure 3.2
Sample Round 2 Response Summary
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Data Analysis

Because of the bounded nature of the response scale, we used median 
values to measure central tendencies. To determine whether partici-
pants agreed for each problem-solution pair, we followed the method 
described by D. Khodyakov and his colleagues.1 We first calculated the 
interpercentile range:

Interpercentile Range = 70th percentile − 30th percentile.

We then calculated the interpercentile range adjusted for symmetry:

Interpercentile Range Adjusted for Asymmetry =  
2.35 + (Asymmetry Index × 1.5).

The asymmetry index equals the magnitude of the difference between 
the median importance rating and the center of the response scale. 
When the interpercentile range of responses exceeds the interpercen-
tile range adjusted for asymmetry, it indicates that the distribution of 
ratings is bimodal and that disagreement exists. In the case of no dis-
agreement, we looked to the value of the median response to determine 
whether the group rated the pair as “Not Important” (lower tertile), 
“Moderately Important” (middle tertile), or “Extremely Important” 
(upper tertile).

To better explain importance ratings, we thematically analyzed 
free responses. As in previous ExpertLens panels, we grouped rationale 
comments for each problem-solution pair based on the tertiles of the cor-
responding numerical responses. Two researchers, trained by the prin-
cipal investigator, reviewed and coded all qualitative comments to iden-
tify emergent themes. All coding results were reviewed by the principal 
investigator, and coding disagreements were discussed and resolved.

1 D. Khodyakov, S. Grant, B. Denger, K. Kinnett, A. Martin, M. Booth, C. Armstrong, 
E. Dao, C. Chen, I. Coulter, H. Peay, G. Hazlewood, and N. Street, “Using an Online, 
Modified Delphi Approach to Engage Patients and Caregivers in Determining the Patient-
Centeredness of Duchenne Muscular Dystrophy Care Considerations,” Medical Decision 
Making, Vol. 39, No. 8, 2019.
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Limitations

The selection of participants was nonrandom, as is typical for expert 
panels. In addition to being experts in AI, most participants worked 
in military settings. As such, although the problem characteristics and 
solution capabilities are general in nature, the results of the expert panel 
are most applicable to the case of AI in military contexts.

Results

Out of 60 invited individuals, 49 (82 percent) participated in at least 
one panel round. Out of these 49 individuals, all participated in the 
first round, 38 participated in the second round (78  percent), and 
25 participated in the third round (51 percent). Aggregating across the 
first and third rounds, experts provided a total of 5,270 numerical rat-
ings and 2,009 written responses.

Expert Ratings

After the first round, the group rated 36 of the 80 problem-solution 
pairs as “extremely important” (i.e., median rating > 6.5). Disagree-
ment existed for 8 of the 80 pairs. After the third round, group ratings 
scarcely changed, but disagreement remained for only 3 of the 80 pairs, 
reflecting increased consensus.

Figure 3.3 shows the median values and ranges of values for each 
of the 80 problem-solution pairs after Round 3. Stars denote problem-
solution pairs where disagreement existed. Vertical lines denote cutoffs 
between the three categories of responses: “Not Important,” “Moder-
ately Important,” and “Extremely Important.”

To identify potentially redundant problem characteristics, we con-
sidered the importance of the eight solution capabilities to each. The 
correlation was strongest between stochastic action effects and envi-
ronmental clutter (r 2 = 0.89), meaning those problem characteristics 
called for similar solution capabilities. This is sensible given that both 
involve dealing with uncertainty. Overall, problem characteristics were 
only modestly correlated with one another (mean r 2 = 0.32), indicating 
their distinctiveness.

Likewise, to detect potentially redundant solution capabilities, we 
considered the importance of each to the ten problem characteristics. The  
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Figure 3.3
Distributions of Ratings by Problem-Solution Pair at Conclusion of Round 3
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correlation was strongest between soundness and assured (r 2 = 0.69), 
meaning those solution capabilities were called for by similar problem 
characteristics. This is sensible given that both involve ensuring safe 
and reasonable performance. Overall, solution capabilities were only 
modestly correlated with one another (mean r 2 = 0.22), indicating 
their distinctiveness.

Expert Free Responses

To illustrate the types of free responses given by experts, Table 3.1 con-
tains individual expert’s responses from nine problem-solution pairs in 
Round 1. The first three pairs were rated “Extremely Important” by 
the group. The explanations given are intuitive; consequential prob-
lems require assured solutions; data efficiency is needed to deal with 
low data availability; and robustness is essential for handling noisy 
environment inputs.

The next three pairs were rated as “Not Important” by the group. 
Interestingly, all involve one solution capability: optimality. The expla-
nations given address the impossibility of finding optimal solutions 
and the importance of satisfying other performance criteria, such as 
speed of response.

The final three pairs were rated as “Moderately Important” by the 
group but contained a wide range of individual expert responses. In 
these cases, explanations convey meaningful differences in how experts 
perceived and rated the importance of a given solution capability for a 
problem characteristic. For example, some experts considered learning 
to be extremely important for complex problems because of the infea-
sibility of hand-coding solutions for such problems. Others considered 
it too hard to train an agent to perform complex tasks. Some experts 
considered explainability to be extremely important when operational 
tempo was high to allow humans to comprehend and accept AI solu-
tions. Others saw explainability as less important due to the limited 
time humans have to consider how the AI system had arrived at its solu-
tion. Finally, some experts considered explainability to be extremely 
important for irreducible problems to allow humans to accept answers 
without needing to check all subproblems. Others considered it less 
important due to the inherent difficulty of explaining and understand-
ing solutions to irreducible problems.
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The following set of tables (Tables 3.2‒3.11) contain groups of 
themes reported for all problem-solution pairs. The number of experts 
giving the response is contained in the parentheses along with the 
importance rating assigned (“Not Important,” “Moderately Impor-
tant,” “Extremely Important”). These give insights into the reasons 
behind the pairings that the expert panel created.

Table 3.1
Experts’ Rationale for Ratings in Round 1

Problem 
Characteristic

Solution 
Capability Importance Quotation

High risks/
benefits

Assured Extremely “By definition, it’s very important to 
get the right answer in high-stakes 
situations.”

Low data 
availability

Data efficient Extremely “Given low data availability, the 
algorithm needs high data efficiency.”

Environmental 
clutter

Robust Extremely “Robustness is all-important for 
dealing with noisy environments.”

Low goal/
utility clarity

Optimal Not “If goals aren’t well defined, optimality 
is an essentially meaningless concept.”

Incomplete 
information

Optimal Not “It is impossible to say something is 
optimal given many unknowns.”

High tempo Optimal Not “If speed is crucial, then you don’t 
have time to find the exactly optimal 
solution.”

Problem 
complexity

Learning Not “Learning likely to be harder in larger 
problems.”

Extremely “Difficult to hard code a solution to a 
complex problem.”

Operational 
tempo

Explainability Not “Useful in hindsight, but not usually 
feasible when a decision needs to be 
made quickly.”

Extremely “Need to be able to be quickly 
summarize for the decisionmaker to 
trust the system.”

Reducibility Explainability Not “If we can’t understand irreducible 
systems, we can’t expect AI to explain 
it to us simply.”

Extremely “Useful for irreducible problems since 
it will be harder to check substeps of 
the solution along the way.”
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Table 3.2
Pairing Solution Capabilities to Problem Complexity in Round 1

Solution 
Capability Thematic Response

Computational 
efficiency

• Factors besides algorithm complexity may mitigate run-time 
constraints. (n = 4, Moderately Important)

• Complex problems have huge input sizes, so you must be able to 
process them efficiently. (n = 13, Extremely Important)

Data efficiency • The more complex the problem, the more data needed to 
learn about it, rendering data efficiency. (n = 7, Moderately 
Important)

• If the state space is huge, it is inherently difficult to gather 
exhaustive training data. This necessitates making the most of 
the limited training data on hand. (n = 7, Extremely Important)

• Data efficiency is important to reduce training time for 
complex problems. (n = 4, Extremely Important)

Soundness • Soundness is compromised for complex problems because it 
depends on how accurately the system developer captures 
the constraints of the task/environment. (n = 5, Moderately 
Important)

• Soundness is needed to ensure that results are valid across the 
large input and output spaces. (n = 6, Extremely Important)

• As complexity increases, it becomes harder for humans to check 
solutions and determine their soundness. (n = 2, Extremely 
Important)

Optimality • Optimality is likely unobtainable for complex real-world 
problems. (n = 22, Not Important)

Robustness • Complex problems may present unanticipated circumstances, 
warranting robustness. (n = 12, Extremely Important)

Learning • Learning is likely to be harder for large problems. (n = 3, 
Moderately Important)

• Hard to audit the performance of a learning system on a 
complex task. (n = 2, Moderately Important)

• Too difficult to hard code a solution to a complex problem.  
(n = 6, Extremely Important)

Explainability • Results of complex problems may be too hard to explain to a 
human. (n = 3, Moderately Important)

• Humans have greater difficulty understanding complex 
problems, which calls for greater explainability. (n = 12, 
Extremely Important)

Assuredness • Assumes that expert familiar with the problem space can identify 
what appropriate behavior is, which may be compromised for 
complex problems. (n = 4, Moderately Important)

• More important for highly complex problems because such 
problems allow for a wide range of outcomes and points of 
failure. (n = 9, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.3
Pairing Solution Capabilities to Reducibility in Round 1

Solution 
Capability Thematic Response

Computational 
efficiency

• Solutions to irreducible problems cannot be parallelized, and so the 
algorithmic efficiency is important. (n = 16, Extremely Important)

Data efficiency • Models for complex problems require large amounts of data 
anyways, and so data efficiency does not matter. (n = 3, Not 
Important)

• The size of irreducible problems argues for data efficient 
models, since the effective size of training data—relative to 
problem size—may be quite small. (n = 8, Extremely Important)

Soundness • Since it may be more difficult to find optimal solutions to complex 
problems, soundness may suffice. (n = 7, Extremely Important)

Optimality • If the goal is to respond faster than the adversary, speed is more 
important than optimality. (n = 2, Not Important)

• High complexity makes optimality unobtainable in most cases.  
(n = 10, Moderately Important)

Robustness • Significantly more difficult to maintain stable behavior when 
problem factors are tightly coupled. (n = 8, Extremely Important)

• Solutions must be robust to error and model misspecification, 
which may be more likely for complex problems. (n = 1, Extremely 
Important)

• A complex problem is likely to cause unusual (n = bad) solutions.  
(n = 2, Extremely Important)

Learning • Learning against an irreducible problem is infeasible/inefficient.  
(n = 2, Not Important)

• The difficulty of representing a problem and knowledge 
motivates learning methods. (n = 9, Extremely Important)

Explainability • If we cannot understand irreducible systems, how can we expect 
AI to explain them to us simply. (n = 4, Moderately Important)

• Useful for irreducible problems because it is not possible to 
check substeps of the solution along the way. (n = 8, Extremely 
Important)

• Since irreducible problems’ solutions are more opaque, users need 
more information to trust results. (n = 2, Extremely Important)

Assuredness • Challenging and possibly infeasible for irreducible problems.  
(n = 2, Moderately Important)

• Necessary to ensure model is functioning properly, especially 
since output may be more sensitive to inputs in an irreducible 
system. (n = 8, Extremely Important)

• Since irreducible problems’ solutions are more opaque, more 
information is needed to verify and validate the solution. (n = 3, 
Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.4
Pairing Solution Capabilities to Rate of Environment Change in Round 1

Solution 
Capability Thematic Response

Computational 
efficiency

• Dynamic environments may drive frequent need to recalculate and 
to adapt. (n = 8, Extremely Important)

• Models may need to relearn parameters relatively quickly. (n = 6, 
Extremely Important)

• You may need real-time dynamic planning capabilities. Speed 
and low complexity are important for such systems. (n = 3, 
Extremely Important)

Data efficiency • Data efficiency governs how quickly a system can adapt to a 
changing task/environment. (n = 18, Extremely Important)

• Data efficiency is important because older data will be less rel-
evant, effectively reducing the training sample. (n = 7, Extremely 
Important)

Soundness • With the conditions changing, soundness is less important as any 
new solution could be rendered obsolete at any moment. (n = 2, 
Not Important)

• Must be able to show that solutions remain valid even as envi-
ronment changes. (n = 12, Extremely Important)

Optimality • Hard to effectively compute optimal solutions in nonstationary 
environments since they change over time. (n = 15, Not Important)

• If the goal is to respond faster than the adversary, speed is more 
important than optimality. (n = 5, Not Important)

Robustness • Adaptation to change is a key factor driving need for robustness. 
(n = 15, Extremely Important)

Learning • Learning may be a liability in a nonstationary environment, due 
to overweighting stale data. (n = 3, Not Important)

• Knowledge transfer, concept discovery, and analogous reasoning 
may be more important than online learning in a rapidly evolving 
environment. (n = 4, Moderately Important)

• Learning enables adaptation to changing environment. (n = 19, 
Extremely Important)

Explainability • Explaining behavior is not as relevant when explanations can 
quickly become irrelevant. (n = 7, Not Important)

• Must know how the system is thinking under dynamic conditions to 
judge if it is “behind the power curve.” (n = 11, Extremely Important)

• Explainability is even more important to engender trust in a 
dynamic environment. (n = 2, Extremely Important)

Assuredness • More difficult to verify and validate when environment is nonsta-
tionary. (n = 4, Moderately Important)

• Important to recertify a model or algorithm for a changed envi-
ronment and to determine when it should be discarded.  
(n = 5, Extremely Important)

• Important that the users understand how well the system 
responds to changes and what happens while the system is 
adapting. (n = 2, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.5
Pairing Solution Capabilities to Operational Tempo in Round 1

Solution 
Capability Thematic Response

Computational 
efficiency

• With high operational tempo, the algorithm must solve problems 
quickly. (n = 24, Extremely Important)

Data efficiency • Training is almost always done off-line, in which case data 
efficiency does not relate to operational tempo. (n = 14, 
Moderately Important)

• Data efficiency, in terms of amount of data needed to reach 
a solution, may be important if there is limited time to gather 
data. (n = 5, Extremely Important)

Soundness • Assuring soundness may take more compute and decision time. 
(n = 1, Not Important)

• Approximation is more important to deliver incremental 
solutions quickly. (n = 4, Moderately Important)

• Soundness is critical since speed minimizes a human’s ability 
to verify the AI’s solution. (n = 8, Extremely Important)

Optimality • If speed is critical, there may not be time to find optimal 
solutions. (n = 20, Not Important)

Robustness • High operational tempo may imply a narrowly defined 
task, making robustness less important. (n = 4, Moderately 
Important)

• In a high-tempo setting, there may not be time for a human to 
double-check the AI output. (n = 8, Extremely Important)

• In a high-tempo setting, there may not be time to fix a brittle 
system and to debug. (n = 2, Extremely Important)

Learning • Likely not time for learning with high operational tempo. (n = 8, 
Not Important)

• Learning-based algorithms, once trained, are typically 
much quicker for inference and prediction. (n = 3, Extremely 
Important)

Explainability • Useful but possibly infeasible when a decision needs to be 
made quickly. (n = 13, Not Important)

• Explanation might be costly algorithmically. (n = 2, Moderately 
Important)

• Explainability engenders trust, which is important if it reduces 
time the human spends checking the AI. (n = 3, Extremely 
Important)

Assuredness • V&V desirable because there is less time for a human to check 
outputs. (n = 9, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.6
Pairing Solution Capabilities to Data Availability in Round 1

Solution  
Capability Thematic Response

Computational 
efficiency

• If training data is the limiting factor, a sophisticated 
algorithm may be needed to overcome that. (n = 8, Not 
Important)

• Greater algorithm complexity is tolerable since it only has 
a small amount of data to run on. (n = 4, Not Important)

Data efficiency • Data efficiency is the direct approach for dealing with low 
data availability. (n = 25, Extremely Important)

Soundness • Ensuring soundness may be impossible with low data 
availability. (n = 4, Not Important)

• Important to have soundness when working with sparse 
data to avoid overfitting. (n = 4, Moderately Important)

• Because the variable space is undersampled, soundness is 
more important. (n = 2, Extremely Important)

Optimality • Without sufficient training data, it is inherently difficult to 
optimize the objective function. (n = 12, Not Important)

Robustness • It is not feasible to produce robust models when there is 
little data for training. (n = 4, Moderately Important)

• Robustness is necessary with limited data, as there 
are likely gaps in coverage of possible inputs. (n = 11, 
Extremely Important)

Learning • In general, learning is hampered by low data, motivating 
the use of alternate model-based methods. (n = 3, Not 
Important)

• Given little prior data, it is important to continue adapting 
and learning online. (n = 12, Extremely Important)

Explainability • Complexity of mathematical solutions to small data problems 
will make them hard to explain. (n = 1, Not Important)

• Given less data, it may be easier to explain a decision.  
(n = 2, Moderately Important)

• If there is not much data to use, you must be sure that the 
system is appropriately using the data it does have. (n = 9, 
Extremely Important)

Assuredness • Difficult to verify and validate if little data is available for 
testing. (n = 2, Moderately Important)

• V&V needed to characterize and bound error, determining 
when an algorithm does not have enough data to be 
effective. (n = 4, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.7
Pairing Solution Capabilities to Environmental Clutter in Round 1

Capability Thematic Response

Computational 
efficiency

• More computational resources must be dedicated to 
preprocessing noisy data. (n = 9, Moderately Important)

• If computation requirements are more taxed in a noisy 
environment, low algorithmic complexity may be desirable.  
(n = 4, Moderately Important)

• With more noise, iteration will be important—an algorithm 
should propose a solution and allow humans to interact with 
the solution. (n = 1, Extremely Important)

Data efficiency • Data efficiency can be a liability in a noisy data set—an 
algorithm that converges quickly on a good solution in a clean 
data set can converge quickly on a bad solution in a noisy one.  
(n = 3, Not Important)

• Data containing systematic/environment noise will typically 
require more data collection to overcome noise. (n = 14, 
Moderately Important)

• Data efficiency can, in a supervised setting, enable the 
development of practical noise filters. (n = 2, Extremely Important)

Soundness • In a noisy environment, formal soundness is too strict of a 
standard. (n = 6, Not Important)

• Rectifying noise and providing a sound solution is critical in a 
noisy environment. (n = 7, Extremely Important)

Optimality • With lots of noise, optimality is not possible. (n = 12, Not Important)
• A system may be designed to optimally cope with clutter/noise. 

(n = 2, Moderately Important)

Robustness • Robustness is all-important for dealing with noisy environments. 
(n = 19, Extremely Important)

Learning • Learning in cluttered environment may be risky due to overfitting 
and/or inefficiency. (n = 5, Not Important)

• Both learning and nonlearning systems can be designed to 
handle noise. (n = 2, Moderately Important)

• The ability to learn statistical regularities seems especially useful 
in a noisy environment. (n = 14, Extremely Important)

• It may be impossible to anticipate noise encountered in an 
operational environment, making online learning critical.  
(n = 2, Extremely Important)

Explainability • Explainability is even harder in case of noisy inputs and may not 
be worth the effort. (n = 8, Not Important)

• With noisy inputs, it is important to know why the algorithm 
makes a particular choice. (n = 11, Extremely Important)

Assuredness • Infeasible in noisy environments—the system may work as 
intended but produce bad results because of noisy inputs.  
(n = 3, Moderately Important)

• Effective V&V can ensure an approach is suitable given different 
models of noise. (n = 15, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.8
Pairing Solution Capabilities to Clarity of Utility/Goals in Round 1

Capability Thematic Response

Computational 
efficiency

• If goals are unclear, the algorithm must explore multiple 
possible solutions, which is enabled by low complexity. (n = 13, 
Extremely Important)

Data efficiency • Data efficiency can be a liability in a noisy data set—an 
algorithm that converges quickly on a good solution in a clean 
data set can converge quickly on a bad solution in a noisy one. 
(n = 3, Not Important)

• Data containing systematic/environment noise will typically 
require more data collection to overcome noise. (n = 14, 
Moderately Important)

• Data efficiency can, in a supervised setting, enable the 
development of practical noise filters. (n = 2, Extremely 
Important)

Soundness • Without clarity about the goals/utility of end states, it may not 
be possible to evaluate soundness. (n = 2, Not Important)

• Since optimal solutions are not definable, soundness is 
relatively more important. (n = 14, Extremely Important)

Optimality • If goals are not well defined, optimality is a meaningless 
concept. (n = 19, Not Important)

Robustness • The model should perform robustly across a range of possible 
goals. (n = 10, Extremely Important)

Learning • Many types of learning are critically dependent on clearly 
stated goals and objectives. (n = 8, Moderately Important)

• Algorithms can learn even weakly favored preference. (n = 12, 
Extremely Important)

• Learning may be important to adapt to changing preferences. 
(n = 3, Extremely Important)

Explainability • Explanations of AI outputs may help humans gain clarity on 
goals and utility. (n = 10, Extremely Important)

• When goals/utility functions are ill defined, it is more 
important to understand how the system works since it is 
not optimizing against a known criterion. (n = 10, Extremely 
Important)

Assuredness • V&V is ill defined if the intended purpose of the system is not 
clear. (n = 10, Moderately Important)

• Because objective performance measures are lacking, V&V is 
needed to give confidence in the system. (n = 3, Extremely 
Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.9
Pairing Solution Capabilities to Stochasticity of Action Outcomes in Round 1

Capability Thematic Response

Computational 
efficiency

• If outcomes appear stochastic because of the complexity of 
the problem, a complex model may be needed to account for 
that. (n = 4, Not Important)

• Problems with stochastic action outcomes require more 
training/sampling, so lower complexity is important.  
(n = 11, Moderately Important)

Data efficiency • Data efficiency is less important because, given stochastic 
outcomes, more data are needed anyway to make accurate 
predictions. (n = 17, Moderately Important)

• Incorporating model-based methods of effector outcomes 
can provide significant gains without requiring additional 
samples. (n = 2, Moderately Important)

Soundness • Not feasible with stochastic outputs. (n = 5, Moderately 
Important)

• The inherent uncertainty of stochastic problems makes 
it important to ensure that solutions are sound. (n = 9, 
Extremely Important)

Optimality • The stochastic nature of action outcomes means that 
optimality is effectively impossible. (n = 13, Not Important)

• A system may be designed to optimally cope with stochastic 
action outputs. (n = 5, Extremely Important)

Robustness • Stochastic actions entail unexpected outcomes, which call for 
robustness. (n = 15, Extremely Important)

Learning • Stochasticity and learning might be diametrically opposed due 
to the risk of learning false patterns and the inefficiency of 
learning. (n = 5, Moderately Important)

• Building probabilistic action models may require sampling 
and learning. (n = 6, Extremely Important)

• Because stochastic outcomes can produce states not 
experienced in the training set, the system will need to 
continue to learn online. (n = 5, Extremely Important)

Explainability • Explainability is inherently difficult in a stochastic system.  
(n = 4, Not Important)

• Explanation may help to make sense of unexpected outputs 
and to properly attribute failure to the stochastic environment. 
(n = 10, Extremely Important)

Assuredness • V&V in a stochastic system is difficult and may require 
unrealistic amounts of test data. (n = 4, Not Important)

• Given inevitable errors due to stochastic nature of action 
outcomes, V&V is needed to ensure that failures are not 
attributable to the system. (n = 6, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.10
Pairing Solution Capabilities to Incomplete Information in Round 1

Capability Thematic Response

Computational 
efficiency

• A complex algorithm may be needed to resolve imperfect 
information. (n = 5, Not Important)

• With incomplete information, an algorithm may need to 
explore enormous numbers of combinations of plausible data 
sets, making efficiency important. (n = 8, Extremely Important)

Data efficiency • If compensating for incomplete information with learning, 
data efficiency becomes important. (n = 5, Moderately 
Important)

• Data demands are larger with incomplete information, so we 
need a more efficient learner. (n = 9, Extremely Important)

Soundness • Concept of soundness is less important if we have limited 
faith in our assumptions about the problem to begin with.  
(n = 8, Not Important)

• Soundness is essential despite gaps in knowledge. (n = 4, 
Extremely Important)

Optimality • Impossible to say something is optimal given many unknowns. 
(n = 19, Not Important)

Robustness • Robustness is central to dealing with unknowns in problems 
of uncertain information. (n = 18, Extremely Important)

Learning • Learning is important for systems to improve at generalizing 
over incomplete information. (n = 13, Extremely Important)

• Online learning is particularly important in cases where 
additional information is gained during task performance.  
(n = 9, Extremely Important)

Explainability • Relatively less important since the model is building in lots of 
assumptions anyway. (n = 5, Moderately Important)

Assuredness • V&V is only possible to the extent that information about the 
problem is available. (n = 2, Not Important)

• Particularly important given that the AI’s performance may 
be questionable when given incomplete information. (n = 6, 
Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.
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Table 3.11
Pairing Solution Capabilities to Operational Risks and Benefits in Round 1

Capability Thematic Response

Computational 
efficiency

• Whether algorithm works, irrespective of complexity, is all that 
matters. (n = 8, Not Important)

• If operational risks are time sensitive, low complexity becomes 
essential. (n = 6, Extremely Important)

• High-risk situations are more likely to involve humans. Models 
are only useful if they can integrate with human planners 
frequently. (n = 2, Extremely Important)

Data efficiency • Given high stakes, extra data may be collected if needed to 
produce quality outputs. (n = 5, Not Important)

Soundness • Given the criticality of the application, the output must be 
sound. (n = 16, Extremely Important)

Optimality • Optimality is unobtainable for most real-world problems. (n = 3, 
Not Important)

• Good/useful outputs need not be optimal. (n = 6, Moderately 
Important)

• In a high-stakes situation, optimizing performance is important. 
(n = 8, Extremely Important)

Robustness • High-risk situations are more likely to involve humans, reducing 
the need for robust algorithmic solutions. (n = 1, Moderately 
Important)

• Robustness is important to ensure that a system does not break 
down during critical tasks. (n = 1, Moderately Important)

• Catastrophic failure is unacceptable when critical decisions 
must be made. (n = 15, Extremely Important)

Learning • A preprogrammed system may be preferred if the risks 
associated with it are better understood. (n = 2, Not Important)

• Due to their trial-and-error nature, learning systems may 
commit mistakes that must be avoided in highly consequential 
settings. (n = 6, Moderately Important)

Explainability • Given the need for human support for highly consequential 
decisions, explainability provides trust and insight into the 
solution process. (n = 16, Extremely Important)

• It may be unethical to make life-affecting decisions based on 
unexplained algorithms. (n = 2, Extremely Important)

Assuredness • High risk/reward scenarios require assured components. (n = 9, 
Extremely Important)

• V&V needed to ensure that users understand model strengths, 
weaknesses, and credible uses. (n = 2, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response 
and corresponding importance rating.



41

CHAPTER FOUR

Metrics for Evaluating Artificial Intelligence 
Solutions

This chapter provides additional detail on the development of the 
three categories of metrics. There is additional analysis and, finally, a 
notional “scorecard” for operationalizing these measures.

Review of Strategic Guidance

In 2012, DoD published DoD Directive 3000.09, Autonomy in Weapon 
Systems. This document described the challenges associated with V&V 
and test and evaluation (T&E) of autonomous systems. The direc-
tive required that “plans [be] in place for V&V and T&E to establish 
system reliability, effectiveness, and suitability under realistic condi-
tions, including possible adversary actions.” While not explicitly writ-
ten for AI solutions, these requirements clearly apply to AI in many 
cases, especially for autonomous systems that are run by AI. The Joint 
Artificial Intelligence Center expects to update this directive, along 
with other policy recommendations, in 2020.1

In response to the growing interest in AI and ML over the past 
few years, many other national- and DoD-level strategy documents 
have recognized the complexity of the assessment process for AI algo-
rithms and, accordingly, have highlighted the need for better metrics 
and testing environments. While this list is not meant to be exhaustive, 

1 Justin Doubleday, “Pentagon Reviewing Policy on Autonomy in Weapon Systems amid 
Advances in Artificial Intelligence,” Inside Defense, February 28, 2020.
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the set of major reports and directives certainly includes the following 
(in alphabetical order):

• Defense Innovation Board, AI Principles: Recommendations on the
Ethical Use of Artificial Intelligence by the Department of Defense,
2019

• Defense Science Board, Summer Study on Autonomy, 2016
• DoD, Artificial Intelligence Strategy, 2018
• National Science and Technology Council (NSTC) Committee

on AI, The National Artificial Intelligence Research and Develop-
ment Strategic Plan: 2019 Update, White House Office of Science
and Technology Policy (OSTP), 2019

• NSTC Committee on Science and Technology Enterprise, Fed-
eral Cybersecurity Research and Development Strategic Plan, White
House OSTP, 2019

• NSTC Committee on Technology, Preparing for the Future of
Artificial Intelligence, White House OSTP, 2016

• National Security Commission on Artificial Intelligence, Interim
Report, 2019

• National Institute of Standards and Technology, U.S. Leadership
in AI: A Plan for Federal Engagement in Developing Technical Stan-
dards and Related Tools, 2019

• President Trump, Executive Order on Maintaining American Lead-
ership in Artificial Intelligence, 2019.

In addition to the strategic guidance on AI solutions, we also
reviewed several documents on C2 problems and C2 assessment. These 
documents include the following (in alphabetical order):

• Air Force Doctrine, Annex 3-30, Command and Control, 2020a
• Army Doctrine Publication 6-0, Mission Command, Command 

and Control of Army Forces, 2019
• Joint Publication 3-0, Joint Operations, 2017
• Marine Corps Doctrinal Publication 6, Command and Control, 

2018
• North Atlantic Treaty Organization Research and Technology 

Organization, Code of Best Practice for C2 Assessment, 2002.
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Several common themes emerged from our review of these docu-
ments. The first concerns the importance of T&E/V&V for AI in gen-
eral. We find broad agreement that T&E is complicated and that new 
methods are needed to assess software that can learn and adapt. As the 
Defense Innovation Board explains,2

For legacy systems, robust Test and Evaluation (T&E) and Verifi-
cation and Validation (V&V) processes are well established, both 
mathematically as well as institutionally. However, for newer 
forms of ML, for example, T&E and V&V face serious challenges 
because there are open research questions within the field of AI 
about how best to achieve these. Additionally, for ML systems 
that learn over their lifetime, challenges remain for continual 
certification that these systems do not learn behaviors outside of 
their intended use and parameters. For multiple agent systems, as 
well as for interacting AI systems, the ability to model complexity 
and emergent behaviors is not well understood.

We also find four key implementation issues: explainability/
credibility, human-machine teaming, safety and security, and reli-
ability.3 While not unique to AI solutions, these issues are particularly 
important for them. For example, a strategic priority of NSTC’s strate-
gic plan is to “ensure the safety and security of AI systems [and] advance 
knowledge of how to design AI systems that are reliable, dependable, 
safe, and trustworthy.”4 In Table 4.1, we summarize which of these 
issues are mentioned in which document.

In addition to the strategic guidance on AI solutions, we also 
reviewed several documents on C2 problems and C2 assessment in general 
from the Army, Marines, North Atlantic Treaty Organization, and joint 
doctrine. We discuss these in more detail when we discuss effectiveness.

2 Defense Innovation Board, AI Principles: Recommendations on the Ethical Use of Artificial 
Intelligence by the Department of Defense, Arlington, Va., 2019.
3 We define these terms later in this section when we define their associated metrics categories.
4 Select Committee on Artificial Intelligence, The National Artificial Intelligence Research 
and Development Strategic Plan: 2019 Update, Washington, D.C.: National Science and 
Technology Council, June 2019.
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Table 4.1
Implementation Issues Highlighted in Strategic Guidance Documents

Document
Explainability/

Credibility
Safety and 

Security

Human-
Machine 
Teaming Reliability

Defense Innovation Board,  
AI Principles: Recommendations 
on the Ethical Use of Artificial 
Intelligence by the Department 
of Defense, 2019

✓ ✓ ✓

Defense Science Board, Summer 
Study on Autonomy, 2016

✓ ✓ ✓

DoD, Artificial Intelligence 
Strategy, 2018

✓ ✓ ✓ ✓

NSTC Committee on Artificial 
Intelligence, The National 
Artificial Intelligence Research 
and Development Strategic 
Plan: 2019 Update, 2019

✓ ✓ ✓ ✓

NSTC Committee on Science 
and Technology Enterprise, 
Federal Cybersecurity Research 
and Development Strategic 
Plan, 2019

✓ ✓

NSTC Committee on 
Technology, Preparing for 
the Future of Artificial 
Intelligence, 2016

✓ ✓

National Security Commission 
on Artificial Intelligence, 
Interim Report, 2019

✓ ✓ ✓ ✓

National Institute of 
Standards and Technology, 
U.S. Leadership in AI: A Plan 
for Federal Engagement 
in Developing Technical 
Standards and Related Tools, 
2019

✓ ✓ ✓

President Trump, Executive 
Order on Maintaining 
American Leadership in 
Artificial Intelligence, 2019

✓ ✓
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Analysis of Metric Categorization

As described in Volume 1, we collected 241 metrics from 30 different 
Defense Advanced Research Projects Agency (DARPA) Broad Agency 
Announcements (BAA), during the period 2014–2020, and assessed 
which category each metric belonged to, if any.5 Table 4.2 shows DARPA 
programs included in our analysis.

In addition to the analysis in Volume 1, we also compared find-
ings from the expert panel on the relative importance of the solution 
characteristics with the results of our analysis of DARPA metric clas-
sifications to see if they were in accord. As shown in Table 4.3, the 
measures of performance (MoP) appearing in the greatest number of 
DARPA programs (i.e., soundness and optimality) differ from the solu-
tion capabilities emerging as most critical from the expert panel (i.e., 
robustness).

There are at least two reasons for this discrepancy. First, much of 
the work on AI arises from an academic tradition where accuracy met-
rics are used to compare the performance of systems to one another. 
Our category definitions of soundness and optimality (the two cat-
egories labeled as least important by the expert panel) capture most 
accuracy metrics from the DARPA BAAs. Second, robustness requires 
testing a system across a range of conditions. It is more common to dem-
onstrate system performance in more limited cases first, which implies 
measures of soundness and optimality before measures of robustness.

Finally, we categorized the wording of the metrics according to 
whether they referred to the AI algorithm itself or to the complete 
system in which it was embedded. We expected MoP to predomi-
nantly apply to the AI algorithms, measures of effectiveness (MoE) to 
apply to both algorithms and complete systems, and measures of suit-
ability (MoS) to predominantly apply to complete systems. As shown 
in Figure 4.1, this was the case.

5 Originally we considered 53 BAAs, but we narrowed it to 30 that were relevant to AI. Of 
the 258 metrics in these programs, 17 were judged not to be associated with AI, leaving 241 
metrics. Two team members categorized all metrics separately and then reconciled their lists. 
There was initially a wide discrepancy in coding between the two members, which under-
scores the importance of clear definitions.
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Table 4.2
Defense Advanced Research Projects Agency Broad Agency 
Announcements Retained for Analysis

Program Element DARPA Program

Information integration 
systems

Composable Logistics and Information Omniscience 
(LogX)

Math and computer 
sciences

Guaranteeing AI Robustness Against Deception (GARD)

Machine Common Sense (MCS)

World Modelers

AI and human-machine 
symbiosis

Active Interpretation of Disparate Alternatives (AIDA)

Assured Autonomy

Explainable AI (XAI)

Knowledge-Directed AI Reasoning over Schemas (KAIROS)

Low Resource Languages for Emergent Incidents (LORELEI)

Robust Automatic Transcription of Speech (RATS)

Joint warfare systems Air Combat Evolution (ACE)

Prototype Resilient Operations Testbed for Expeditionary 
Urban Scenarios (PROTEUS)

Resilient Synchronized Planning and Assessment for the 
Contested Environment (RSPACE)

Maritime systems Cross Domain Maritime Surveillance and Targeting (CDMaST)

Ocean of Things

Naval warfare technology Angler

Advanced land systems 
technology

Squad X

Urban Reconnaissance through Supervised Autonomy 
(URSA)

Aeronautics technology OFFensive Swarm-Enabled Tactics (OFFSET)

Information analytics 
technology

Adapting Cross-Domain Kill-Webs (ACK)

Causal Exploration of Complex Operational Environments

Data-Driven Discovery of Models (D3M)

Distributed Battle Management (DBM)

Media Forensics (MediFor)

Warfighter Analytics Using Smartphones for Health (WASH)

Other Context Reasoning for Autonomous Teaming (CREATE)

Hyper-Dimensional Data Enabled Neural Networks 
(HyDDENN)

Real Time Machine Learning (RTML)

Symbiotic Design for Cyber Physical Systems

Semantic Forensics (SemaFor)
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Figure 4.1
Classification of Defense Advanced Research Projects Agency Metrics by 
Algorithm/System

Table 4.3
Importance of Artificial Intelligence Solution Capabilities and Measures of 
Performance

Ranking Solution Capability
Percentage of 

MoP

Percentage of DARPA 
Programs with At Least 

One MoP in this Category

1 Robustness 10 33

2 Assureda – –

3 Learning 8 23

4 Explainability/credibilitya – –

5 Data efficiency 6 17

6 Computational efficiency 14 30

7 Soundness 44 50

8 Optimality 18 53

a These were considered as measures of suitability (MoS).
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From this analysis, we see that the proposed categories of mea-
sures cover the vast majority of current metrics and appear to be rea-
sonably well aligned to their use.

Metrics Scorecard

To aid in the development and evaluation of these three categories of 
measure, we offer a “scorecard” template. It is a matrix that maps mea-
sure categories to critical operational issues (COI), which are defined 
as follows:

COIs are key operational effectiveness or suitability issues that 
must be examined . . . to determine the system’s capability to 
perform its mission. COIs must be relevant to the required capa-
bilities and of key importance to the system being operationally 
effective, operationally suitable  and survivable, and represent a 
significant risk if not satisfactorily resolved.6

Figure 4.2 provides an example for an AI solution to improving 
the MAAP process. Here we show COI for the MAAP process and all 
associated metrics. Note that not all COI are associated with a metric 
in each category.

6 DoD, Glossary of Defense Acquisition Acronyms and Terms, Fort Belvoir, Va.: Defense 
Acquisition University, 2017.
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Objective(s): MAAP matches available resources to the prioritized target list and accounts for air 
refueling requirements, suppression of enemy air defenses requirements, air defense, ISR, and other 
factors affecting the plan.

Measure Category

COI 1: How well does 
the solution allocate 
available resources to 

the target list?

COI 2: How well 
does the solution 
improve overall 

fleet effectiveness?

COI 3: How well does the 
solution operate within the 

existing C2 structure?

MoP Computational
efficiency

Time to generate 
allocation. System 
memory requirements.

– –

Data efficiency Training dataset 
requirements

– –

Soundness Percentage of invalid
assignments

– –

Optimality Comparison with 
best assignment 
(mathematical or 
expert judgment)

Improvement of 
outcomes based 
on modeling and 
simulation

–

Robustness Domain of algorithm 
(distance, time, 
resources)

Appropriateness 
of domain of 
algorithm to real 
conditions

Ability to use at different 
echelons, different centers

Learning Improvement 
of soundness/
optimality with 
additional data

– –

MoE Mission success Effectiveness of 
allocation

Force advantage 
gained due to 
improved MAAP

–

Survivable/
lethality

Percentage targets 
destroyed

Force exchange 
ratio

–

Situational 
awareness

Additional targets 
detected by allocated 
aircraft

Decisionmaker 
rating of situational
awareness 
improvement (if any)

Improvements in situational 
awareness at other
echelons (if any)

Timeliness – – Time for larger MAAP  
 process to be completed 

Resource
management

Efficiency of allocation – Availability of slots for  
ad hoc targeting

MoS Reducibility Uptime – –

Maintainability/
sustainability

– – Availability of trained 
personnel to fix errors

Interoperability – – Integration of solution with 
existing Air Operations 
Center systems

Scalability Maximum number of 
resources or targets 
solution can handle

– Ability to expand 
human-machine
team as use grows

Cybersecurity – – Appropriate controls for 
required classification level

Human systems 
integration

– – User rating

Explainability/
credibility

User rating Decisionmaker 
trust in assessment

Decisionmaker understanding 
of classification

Figure 4.2
Metrics Scorecard Example for Master Air Attack Planning
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CHAPTER FIVE

Case Study 1: Master Air Attack Planning

In Chapter 2, we compared two computational solutions for develop-
ing the MAAP—a MIP technique and a GH. Based on the critical 
problem-solution mappings identified by the expert panel, the heuris-
tic’s capabilities appear more closely aligned with MAAP’s characteris-
tics than the mixed-integer technique. In this first technical case study, 
we implement both solutions to conduct a more rigorous evaluation of 
their suitability for MAAP.

Problem Overview

Master air attack planning is the process used to create the daily time-
phased air and space scheme of maneuver—the MAAP.1 The process 
involves assigning a nonhomogeneous fleet of aircraft (e.g., strike, 
suppression of enemy air defense, escort, tankers) stationed at various 
bases to flight packages (combination of aircraft working together) to 
execute a variety of missions. The objective is to maximize the cumu-
lative value of completed missions by scheduling the highest priority 
missions and the greatest number of missions possible given the set of 
constrained resources.2

At present, master air attack planning is an extremely manpower-
intensive and largely manual process. Two shifts of planners in the 

1 U.S. Air Force, Operational Employment: Air Operations Center, AFTTP 3-3 AOC, Wash-
ington, D.C., March 31, 2016. Not available to the general public.
2 In practice, MAAP takes other objectives into account, such as maximizing aircraft sur-
vivability and conserving enough aircraft to respond to contingencies.
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MAAP team work for 24 hours to develop a MAAP for each ATO cycle. 
The process of generating the MAAP is not particularly algorithmic—
it involves gathering and discussing component priorities and leverag-
ing human expertise to determine the best employment of air power 
and all-domain effects. The application of computational methods to 
master air attack planning could reduce planning time, increase plan 
quality, and free up human capital to allow planners to consider more 
courses of action (COAs).

Figure 5.1 shows a stylized depiction of the planning problem. 
Specific aircraft (i.e., tails) are stationed at different bases. A set of 
50  partially planned missions are provided as inputs. These could 
originate from missions planned against the joint integrated prioritized 
target list. Planned details include mission start points and ending 
points, mission durations, and the package composition required for 
the mission. During MAAP planning, tails are assigned to packages 
and missions.3 Mission packages, in turn, are assigned to anchor tracks 
for refueling requirements. In the model, the package marshals at the 
anchor, refuels if necessary, and initiates the mission. Upon complet-
ing its assigned objectives, the package egresses from the target area. 
We make several assumptions to increase the tractability of the model: 
(1)  all aircraft and tankers are available for the entire time horizon; 
(2) tankers are assigned to one anchor track per deployment; (3) tank-
ers can refuel any aircraft; and (4) the time required to refuel an aircraft 
is negligible.

A solution to the planning problem consists of the following:

1. The set of missions to execute. The number of potential missions 
may exceed the number that can be executed given limited 
resources.

2. Temporal windows for each mission. All missions must be initi-
ated and completed within the 24-hour ATO period (for this 
model, though not always in reality).

3 A single aircraft can complete additional missions in one ATO period but only after 
returning to its home station and remaining grounded for long enough to allow for mainte-
nance, refueling, and rearming.
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3. The assignment of aircraft to packages. Package compositions, in 
terms of the numbers and types of aircraft, are provided, but 
tails must be assigned to packages.

4. The assignment of packages and tankers to tanker orbits (i.e., 
anchors). Anchors are fixed, but the assignments of packages 
and tankers to those anchors are flexible.

Solutions must satisfy a set of mission constraints (e.g., the pack-
age must include all required aircraft), refueling constraints (e.g., tank-
ers must have enough off-load capacity and aircraft must have enough 
fuel to complete missions and return to bases), and scheduling con-
straints (e.g., aircraft may be reused only after they have returned to 
base for maintenance, fuel, and rearming).

In sum, MAAP is a complex optimization problem (with many 
constraints) that is currently approached in an almost entirely manual 
fashion. An AI system that enabled MAAP would greatly accelerate 
the planning process, improve plan quality, and free up significant 
human capital.

Bases Anchor tracksPackages Missions

Figure 5.1
Master Air Attack Planning Problem Overview
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System Architecture

We formulate the MAAP problem as a deterministic, mixed-integer linear 
program. Each mission has a value notionally derived from strategy-to-
task methodology, where mission prioritization corresponds to mission 
criticality.4 The quality of a plan is determined simply as the sum of 
the values of all scheduled missions. Mission schedules and aircraft 
assignments are constrained by mission execution parameters, aircraft 
capabilities, and aircraft utilization rates and turn times.

We looked at two different solution methods. The first is an off-
the-shelf commercial solver (i.e., Gurobi) that uses integer program-
ming theory. We refer to this method as the MIP. The second solution 
is the GH as described by Kevin Rossillon.5 The GH simply schedules 
missions in descending order of importance (when possible) until all 
resources have been used or the duration of the execution window has 
elapsed. The MIP will always find an optimal solution (if one exists) 
given enough computational resources and time. The heuristic is not 
guaranteed to find an optimal solution or even a good one—but it will 
find a solution quickly.

Test Cases

We compared the two solutions using a test case described by Rossillon 
that involves 20 aircraft, of five different types, and four tankers.6 Aircraft 
are stationed across eight bases. A list of 50 prioritized, partially planned 
missions, each requiring from 1 to 7 aircraft, are provided for the 24-hour 
ATO period. We first examined the performances of the solutions on 100 
problems formed by randomly sampling ten missions from the complete 
test instance. We then compared the solutions on the full test instance.7

4 U.S. Air Force, 2016.
5 Rossillon, 2015.
6 Rossillon, 2015.
7 Computations were performed on a RAND computer with Intel Core i7 2.5 GHz proces-
sors and 16 GB of RAM. Gurobi 8.1.1 was utilized as the commercial solver and implement 
with Python 2.7.
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The full problem instance included 50 missions. Each mission 
had an associated value. Values were divided among three roughly log-
arithmically spaced tiers (Alpha, Bravo, and Charlie), and the values of 
missions within tiers varied at a more granular level (Figure 5.2).

Results

Figure 5.3 compares the solution quality and time of both the MIP 
and the GH based on the 100 smaller test cases. The MIP solved all 
instances to optimality, while the heuristic only solved 46 percent of 
the instances to optimality (Figure 5.3, top panel).8 Although the MIP 
solved each instance to optimality, it did so at great computational 
cost (Figure 5.3, bottom panel). Across the 100 small test cases, the 

8 The MIP is needed to benchmark an optimal solution; without the MIP, it is not possible 
to determine the quality of the heuristic’s solution.
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GH finds feasible (if not optimal) solutions in orders-of-magnitude less 
time than the MIP.

For the full test instance, the heuristic finds a feasible solution 
that comes within 17 percent of optimality after two seconds. Con-
versely, the MIP finds a feasible solution that comes within 2 percent 
of optimality after ten hours. Figure 5.4 shows the optimality gap—
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which is based on the difference between the value of the best solution 
yet found and the best possible value—as a function of run time. The 
MIP improves dramatically over the first several minutes, and it sur-
passes the heuristic’s solution after ten minutes. Over the remaining 
nine-plus hours, the MIP gradually reduces the optimality gap by an 
additional 15 percent.

Other measures besides total operational utility are also impor-
tant, for example, the number and priority of scheduled missions. Given 
the full set of 50 potential missions, the GH and the MIP managed 
to schedule a similar number of missions (GH = 31, MIP = 32). The 
difference in optimality gap, therefore, arose from the MIP’s ability to 
bypass certain high-priority targets in order to service a larger number 
of lower-priority targets, which had greater cumulative value. Indeed, 
the distribution of scheduled missions across the high-, medium-, and 
low-priority tiers for the MIP equaled 21-7-3, whereas the distribution 
for the heuristic equaled 19-6-6. Even though the heuristic schedules 
missions in order of importance, it does not consider the resources they 
will use. This may lead to allocating a large percentage of resources to 
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a mission that is only marginally more important and far more costly 
than others. The MIP, on the other hand, implicitly trades off mission 
value and cost by comparing the cumulative value of all scheduled mis-
sions rather than by prioritizing any one mission.

Another important operational outcome is tanker utilization. 
Although the heuristic and the MIP scheduled similar numbers of 
missions, the MIP utilized tankers more efficiently. On average, each 
tanker flight refueled 2.6 missions in the heuristic’s solution versus 
7.5 missions in the MIP’s solution. This is because the MIP aligns 
the start times of missions in the same geographical regions to allow 
a tanker at a single anchor to refuel multiple missions. The difference 
in tanker utilization translates to monetary savings or, alternately, 
increased capacity to support additional missions.

The MIP is somewhat extensible—the same commercial solver is 
applicable to problem instances that include additional constraints. For 
example, in a communications-degraded environment, it may be pref-
erable to create mission packages made up entirely of aircraft from one 
or a small number of bases. We incorporated this detail into a variant 
of the model as a soft constraint that penalized the objective for form-
ing mission packages with aircraft from different bases. As shown in 
Table 5.1, this produced a solution that, although equivalent in value to 
the nonpenalized model, reduced the average number of different bases 
tasked per mission.

This case study demonstrates a framework for determining opti-
mal aircraft assignments for mission scheduling subject to time, fuel, 
and fleet constraints. Quality solutions can be obtained using the MIP 
and associated commercial solver by terminating the solver after (1) a 
predefined amount of time is reached or (2) an optimality threshold 

Table 5.1
Base Utilization in Standard and Penalized Mixed Integer Program Model

Metric Standard Model Penalized Model

Cumulative mission value 35,111 35,111

Average bases per mission 1.9 1.4
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is achieved. Notwithstanding the high quality of its solutions, the 
MIP entails significant time complexity. Even for moderately sized 
inputs, the MIP takes hours to converge to a near-optimal solution. In 
theory, this time complexity is acceptable—Air Force doctrine calls for 
a 24-hour period for MAAP planning.9 In practice, new inputs may 
become available during the 24-hour period, triggering the need for 
rapid replanning. Additionally, problem instances may include vastly 
more targets and effects, resulting in prohibitively long times for the 
MIP to converge.10 An alternative approach, the GH, finds a solution 
of indeterminant quality, but it does so nearly instantaneously.

Given the problem characteristics embodied in MAAP, the capa-
bilities of the MIP and the heuristic produce suitability scores of 176 
and 199, respectively. In other words, the heuristic is preferred. A third 
possibility exists: the heuristic’s solution (or the solution generated by 
some other intelligent system, human or artificial) can be provided to 
the MIP as a warm start. Such a hybrid architecture would give a rapid 
initial solution, and it would refine the solution as time allowed. The 
suitability score for the hybrid option is 200. In other words, by com-
bining the computational efficiency of the heuristic with the optimal-
ity of the MIP, the hybrid solution is more suitable for MAAP than 
either of its constituent parts.

Extension of Mixed Integer Program to Multiobjective Optimization

Mission scheduling is a multiobjective optimization problem. In addi-
tion to the value of missions accomplished, planners must consider air-
craft survivability, or risk. The MIP can be extended to account for 
risk. Specifically, we may impose predefined levels of risk for missions 
based on their proximity to enemy defenses or sensors. The MIP may 
then be constrained to find a solution that optimizes mission value 
subject to a specified level of risk.

9 U.S. Air Force, 2016.
10 In terms of the taxonomy of problem characteristics, simplifications in the first case study 
can be seen as limiting the problem complexity dimension. As the problem becomes more 
complex, the simpler heuristic might be favored to an even greater extent.
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We propose a bi-objective MIP that is identical to the one imple-
mented here save for the inclusion of a secondary objective—to opti-
mize total mission value while minimizing total mission risk. To do 
so, we assign risk values to each of the 50 missions in the full set, and 
we use multiobjective optimization techniques (i.e., the ε-constraint 
method) to reformulate the secondary objective as a constraint of the 
model. This enables us to solve for the set of nondominated solutions 
along the trade-off curve. That is, we can determine the set of solutions 
for which neither objective (risk nor value) can be improved without 
degrading the other.

In this scenario, there is no single “best” solution but rather a set 
of solutions that are optimal given different risk limits. To solve for 
these points, we introduce the constraint that cumulative risk across 
scheduled missions remains within the specified bound. Once solved, 
we increase the bound on risk by a small amount ε and re-solve. To 
determine the entire set of nondominated solutions, we need to set ε 
appropriately so that no solution exists with risk level between R and 
R + ε . A potential trade-off curve is shown in Figure 5.5.
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CHAPTER SIX

Case Study 2: Automatic Target Recognition with 
Learning

Our comparison of games and C2 processes in Volume 1 showed that 
more problem characteristics were present—and more pronounced—
in C2 processes than in games. In particular, all C2 processes involve 
environmental clutter/noise and incomplete information. Results from 
the expert panel established that these problem characteristics jointly 
call for two solution capabilities: robustness and learning. Yet this com-
bination of capabilities, robustness (against sensory noise) and learn-
ing, may be difficult to achieve in practice: RL agents have empirically 
been shown to require extensive training to master even simple behav-
iors in noisy environments.1 Given that noise is a pervasive character-
istic of C2 processes, RL approaches that can handle noise are of great 
interest.

In this second technical case study, we explore the use of a closed-
loop sensing algorithm to mitigate the effects of noise on a learning 
agent using an artificial environment, StarCraft II. In the system archi-
tecture we propose, the closed-loop sensing algorithm acts as a modu-
lar processing tool that an RL agent can learn to use. We demonstrate 
the architecture using a notional example of sensor management.

1 Mark Pendrith, On Reinforcement Learning of Control Actions in Noisy and Non-Markovian 
Domains, University of New South Wales, Sydney, UNSW-CSE TR-9410, 1994.
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Environment

StarCraft II is a real-time strategy game in which a player controls 
futuristic military and support units for harvesting resources and 
attacking enemy forces. A single game involves multiple human players 
and constructive agents. The action space is exceptionally large and, 
compared with other games, rich with hierarchical structure.2 This 
makes StarCraft II more comparable to real C2 processes than other 
games, such as chess and Texas Hold’em. Yet the default StarCraft II 
environment remains limited in two ways:

1. In the default environment, rewards are given for destroying an 
enemy player or for collecting resources. Active sensing could 
contribute to the attainment of these goals, but we were inter-
ested in studying sensing behavior in isolation.

2. The default StarCraft II environment does not include substan-
tial environmental noise.

To overcome these limitations, we made two changes to the 
default StarCraft II environment. First, we defined a new function 
that rewarded the agent for making five or more consecutive correct 
classifications of a ground unit. This encouraged sustained tracking 
behavior. After the agent reached more than ten consecutive correct 
classifications of one ground unit, a larger reward became available for 
exploring other ground units. Second, we introduced the notion of a 
range-dependent sensor aboard an airborne platform. As distance from 
ground units increased, the sensor’s accuracy decreased, according to 
a half-Gaussian distribution. This introduced the need for the agent 
to learn where to position the airborne unit to improve classification 
accuracy.

To model environmental noise in StarCraft II, we assumed that 
the performance of the sensor aboard the observing platform is range 
dependent—in effect, range becomes the relevant performance param-

2 Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha 
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian 
Schrittwieser et al., “StarCraft II: A New Challenge for Reinforcement Learning,” Ithaca, 
N.Y.: Cornell University, eprint arxiv:1708.04782, August 2017.
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eter that drives the selection of actions in closed-loop automatic target 
recognition (CL-ATR). The range dependence, r, is modeled with a 
half-Gaussian distribution as shown in Figure 6.1, where a correct clas-
sification is provided with a 50 percent probability at large in-game 
pixel distances.3 Additionally, unit ownership (friend, foe, or neutral), 
a default tag provided by the StarCraft II application programming 
interface (API), was masked to force the agent to base classifications on 
sensor inputs only.

Additional mathematical details about the reward function may 
be found in Appendix B.

System Architectures

Closed-Loop Automatic Target Recognition

CL-ATR is a form of automatic target recognition in which an agent
attempts to improve the quality of the information provided to a

3 The sensor abstraction used in the simulation could be replaced by a high-fidelity model 
of a physical sensor along with its relative performance parameters.
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classification algorithm by optimally adjusting such parameters as 
sensor placement. CL-ATR may also be understood as a version of 
active vision, except that it is not limited to the visual modality, and, 
conversely, it only aims to solve an automatic target recognition prob-
lem.4 One implementation of CL-ATR is shown in Figure 6.2.5

The algorithm assumes a pretrained classifier whose performance 
profile with respect to parameters of interest is known in advance and 
is represented as a set of confusion matrices. A typical parameter con-
figuration might include the pose of a sensor—range, azimuth, and 
elevation—relative to a detected target whose class is to be ascertained. 
In the case of an image sensor, other parameters might include zoom 

At each timestep . . .

Precompute sensor error model as confusion 
matrices parametrized by dimensions

Determine set of candidate actions

For each candidate action, predict next outcome

Based on predicted outcomes, calculate expected reward for each action

Select and perform the action that maximizes expected reward

Figure 6.2
Closed-Loop Automatic Target Recognition Implementation

4 Dana H. Ballard, “Animate Vision,” Artificial Intelligence, Vol. 48, No. 1, 1991.
5 Ssu-Hsin Yu, Pat McLaughlin, Aleksandar Zatezalo, Kai-yuh Hsiao, and J. Boskovic, 
“Integrate Knowledge Acquisition with Target Recognition Through Closed-Loop ATR,” 
Proceedings of Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV, 
Vol. 9474, 2015.
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level, image brightness and contrast, and spectral band. Confusion 
matrices are computed from empirical measurements at a fixed number 
of points in the parameter configuration space—for example, at differ-
ent ranges, azimuths, and elevations to the target. Simple interpolation 
is used to extend the confusion matrix to points not included in the 
sampled configuration space.

At run time, CL-ATR cycles through the steps in Figure 6.2. The 
algorithm begins by identifying all potential actions. Next, it uses the 
confusion matrices to predict the observations expected for each poten-
tial action. Based on the predicted observations, the algorithm calcu-
lates the expected reward for each potential action. Reward is quanti-
fied in terms of the decrease in entropy or, alternatively, the information 
gain associated with the expected observation. Finally, the algorithm 
selects and implements the action with the highest expected reward.

Despite its simplicity, CL-ATR performs well compared with more 
complex Bayesian filtering approaches.6 CL-ATR is also extremely 
flexible; for example, it can be extended to multiple-step look-ahead 
planning with multiple agents, as well as target detection prior to target 
recognition. Finally, CL-ATR can be used as part of a larger AI system 
architecture.

Asynchronous Advantage Actor-Critic

The Asynchronous Advantage Actor-Critic (A3C) algorithm is a  
model-free, on-policy RL algorithm, in which the agent does not 
attempt to model the transition function between states or the reward 
function associated with the environment (Figure 6.3).7 Rather, A3C 
learns an action policy (an actor) that is scored by a value prediction 
(a critic). The term advantage refers to an estimate of the value func-
tion that provides critic feedback (δ ) to the actor. The asynchronous 
aspect of A3C relates to the parallel nature of the algorithm, where 

6 T. Arbel and F. P. Ferrie, “On the Sequential Accumulation of Evidence,” International 
Journal of Computer Vision, Vol. 43, 2001.
7 V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and 
K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,” Proceedings 
of the 33rd International Conference on Machine Learning, Vol. 48, 2016.
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several agent workers are dispatched simultaneously to explore, sample, 
and train locally. The pool of workers asynchronously contributes their 
learned experiences to a global policy. This allows the global policy to 
benefit from the diversity of the ensemble of workers.

We trained the A3C agent in a modified StarCraft II game envi-
ronment. The environment provides spatial and nonspatial inputs 
to the agent. When applied to StarCraft II, the A3C architecture is 
structured to accept spatial information through several successive 
two-dimensional convolutional layers, while nonspatial information is 
introduced into the network through several dense layers. Ultimately, 
information is reduced and combined into additional dense layers that 
output a value estimate for the current state (i.e., the critic) and a prob-
abilistic decision for nonspatial and spatial actions (i.e., the actor). The 
training in the StarCraft II environment is performed using 20 workers 
on an Amazon Web Services instance.8

8 The parameters used for training the A3C agent across all cases in this analysis are shown 
in Appendix B.
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Closed-Loop Automatic Target Recognition as an Expert in a 
Reinforcement Learning System

This work explores the integration of CL-ATR with an RL paradigm. 
To do so, we treated CL-ATR as a type of expert that recommends 
optimal sensing actions (i.e., ship positions) to the A3C agent at each 
time step. The A3C agent then decides whether to follow CL-ATR rec-
ommendations versus selecting from other spatial actions. Effectively, 
this shifts the target of learning from a low-level sensing policy (which 
is now provided by CL-ATR) to a high-level control policy. Because 
CL-ATR incorporates prior knowledge about sensor performance in 
its model, the integration of CL-ATR with A3C in this way may accel-
erate learning. Additionally, the A3C agent can generalize the learned 
high-level control policy to different sensors by merely changing the 
confusion matrices given to CL-ATR. Finally, the design pattern can 
be repurposed by incorporating other modular, model-based experts 
into the system architecture (e.g., an evasive-maneuver recommender) 
and by training the A3C agent to learn which experts to listen to and 
in which circumstances.

Test Cases

In this environment, the agent controls an airborne platform. Its task 
is to position itself so as to assign friend or foe classifications to two 
mobile ground units (Figure 6.4). The agent is evaluated using a two-
by-two factorial design. The first factor is whether sensor noise was 
present. The second factor is whether the A3C agent was given access 
to the CL-ATR positional recommendations.

Agent performance is measured in terms of time on station 
(TOS)—that is, the number of consecutive game frames (up to a maxi-
mum of 10) assigning the correct label to a ground target. Each episode 
included two ground targets, so the maximum score for TOS was 20.

In the absence of sensor noise, we hypothesized that CL-ATR 
would not produce a significant advantage. In the presence of sensor 
noise, we hypothesized that the agent would require more training, but 
this could be mitigated by the inclusion of CL-ATR.
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We trained the A3C agent in four scenarios corresponding to the 
cross of sensor noise (absent, present) and CL-ATR (absent, present). 
All four cases were run with 20 workers given a maximum number 
of 100 time steps. This corresponds to 4.8 minutes of game play. The 
screen was repositioned to center the observing platform every 10 time 
steps, and the agent made in-game steps after every eight frames.

The StarCraft II Python API returns the screen and minimap 
for every environment agent time step both with image sizes of 32 by 
32 pixels. Training episodes were performed on StarCraft II map con-
taining no terrain obstacles and two targets, one friendly and one foe. 
The two targets performed deterministic circular overlapping patrols. 
At the start of each episode, the observing platform was spawned 
between the two targets.

In the noisy sensor training, the sensor profile uses a range dis-
tance of r = 5 pixels to set the threshold where targets have a classifica-
tion accuracy of 50 percent for r ≥ 5 and 50‒100 percent for r < 5.

Figure 6.4
Initial Setup of StarCraft II Observing Platform and Targets with Patrols

SOURCE: Blizzard STARCRAFT II Map Editor.



Case Study 2: Automatic Target Recognition with Learning    69

Results

Experiment results are shown in Figure 6.5. When sensor noise was 
absent, pure A3C (blue) and A3C with CL-ATR (red) performed 
equally well.9 Both agents approached near maximum performance 
(i.e., TOS = 20) after about 50 hours of training. When sensor noise 
was present, pure A3C (orange) failed to learn to observe both tar-
gets after 200 hours of training (i.e., TOS < 10). A3C with CL-ATR 
(green), in contrast, learned to observe both targets, albeit at a slower 
rate than with a noiseless sensor (i.e., TOS > 10).

This case study explores the use of CL-ATR to deal with envi-
ronmental clutter/noise and incomplete information, two pervasive 
characteristics of C2 problems. We used CL-ATR to provide expert 

9 Pure A3C achieves the maximum level of performance somewhat sooner because the size of 
its input space is smaller due to the omission of the CL-ATR component, facilitating training. 
This is beneficial in the noiseless environment but not the noisy environment.
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recommendations, which the A3C agent learned to use. This proved 
necessary for learning in the noisy environment.

Extension to Air Battle Manager Sensor Management

Our test case involved an airborne unit sensing two ground units, but 
the AI system could be used to sense other airborne units as well. To 
define this potential extension, we describe the sensor management 
task performed by an Air Surveillance Officer (ASO) aboard an E-3 
AWACS, and we briefly consider the potential for applying A3C with 
CL-ATR to that task. This technical approach is also applicable else-
where, for example, to sensor brokering in the Advanced Battle Man-
agement System.

The E-3 AWACS is an element of the tactical air control system, 
the Air Force’s mechanism for commanding and controlling airpower.10 
Responsibility as the region or sector air defense commander may be 
decentralized to AWACS, which acts as the primary integration point 
for air defense fighters and fire control in its assigned area.

The E-3’s ASO manages a team to detect, identify, monitor, and 
report friendly, hostile, and potentially hostile airborne and maritime 
tracks; the ASO also coordinates with other surveillance teams through-
out the theater, to ensure a common operational picture. The surveil-
lance team operates and manages active and passive sensors and tactical 
data links and performs identification functions. The three primary 
concerns for the ASO and surveillance team are (1) getting optimum 
performance from both active and passive sensors, (2) communicating 
onboard and off-board tracks with other surveillance stations in the 
assigned area of responsibility for an optimum common picture, and 
(3) meeting mission requirements by handling tactical issues that force 
deviations from the planned mission. To optimize sensor performance, 
the ASO and surveillance team may select from a wide range of actions 
involving which sensors, modes, orientations, and azimuths to employ. 
Additionally, the ASO and surveillance team can make recommenda-
tions regarding tactical orbits to optimize sensor performance.

10 U.S. Air Force Doctrine, “Appendix D: Theater Air Control System,” in Annex 3-30: 
Command and Control, Maxwell Air Force Base, Ala.: Lemay Center for Doctrine, 2020c.
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Table 6.1
Potential Extensions of Asynchronous Advantage Actor-Critic with Closed-
Loop Automatic Target Recognition for Air Surveillance Officer Sensor 
Management

ASO Sensor Management Extension to CL-ATR

AWACS is equipped with a multitude of 
sensors with different modes. Sensor 
performance is affected by a multitude 
of environmental and employment 
parameters.

Generate confusion matrices for all 
sensors, modes, and parameters.

Sensors and modes may be employed in 
sequences.

Extend CL-ATR to multistep look-ahead 
and action selection.

AWACS is in communication with other 
partially independent airborne and 
ground-based sensing nodes.

Extend CL-ATR to multiagent planning.

Certain actions, such as orbit selection, 
must take into account other constraints 
beyond sensor returns (i.e., fuel 
consumption, range, threat avoidance).

Extend the evaluative function used in 
CL-ATR for action selection.

The ASO receives an intelligence 
briefing prior to mission execution. This 
includes information about adversary 
order of battle and disposition.

Include information priors (i.e., 
expectations) in CL-ATR corresponding 
to expected adversary locations and 
identities.

The battle space includes complex 
terrain and effects.

Extend the StarCraft II environment to 
represent the features and their effects 
on sensor and task performance.

After identifying a track, the ASO must 
monitor its behavior.

Extend the AI system to include memory 
of labeled tracks and to periodically 
shift attention back to each.

The ASO must communicate relevant 
information to consumers.

Extend the AI system to infer the 
importance of track labels and 
behaviors to different agents and to 
minimize extraneous communications.

The StarCraft II example, though much simpler than the ASO’s 
sensor management task, nonetheless shares several functional features 
of that task, namely, the real-time selection of sensing actions to maxi-
mize information gain. Table 6.1 enumerates additional features of the 
ASO task, along with suggestions for how the AI system presented in 
this case study could be expanded to accommodate them.
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CHAPTER SEVEN

Case Study 3: Human-Machine Teaming for 
Personnel Recovery

The previous two case studies focused on “pure” AI and computa-
tional architectures. Yet DoD reports and directives repeatedly empha-
size that AI will not supplant humans. Rather, humans will remain an 
integral part of human-machine teams.1 In this technical case study, 
we consider a mixed-initiative system for personnel recovery (PR). 
This is exceptionally demanding in many ways: PR has high opera-
tional tempo, high operational risks and benefits, a large percentage 
of incomplete information, and a near absence of historical data for 
training. Given this constellation of problem characteristics, a hybrid 
architecture with human and machine intelligence may be most suit-
able for PR planning.

The AI component of the mixed-initiative system involves a game 
theory construct. Properties of game theory models are well established, 
and components of this framework can be mapped onto components 
of C2 processes. For example, Table 7.1 presents standard game theory 
terms alongside an archetypal example for studying game theory models 
(Texas Hold’em) and a C2 process (joint operational planning).2,3

1 John Shanahan, “Artificial Intelligence Initiatives,” statement to the Senate Armed Ser-
vices Committee Subcommittee on Emerging Threats and Capabilities, Washington, D.C., 
U.S. Senate, March 12, 2019; Zacharias, 2019.
2 E. Rasmusen, Games and Information: An Introduction to Game Theory, Oxford: Black-
well, 1989.
3 Joint Publication 5-0, Joint Operation Planning, Washington, D.C.: U.S. Joint Chiefs of 
Staff, 2017.



74    Machine Learning-Assisted Command and Control: Technical Analysis 

The mixed-initiative system we explore takes into consideration a 
noncooperative adversary, it integrates topical subject-matter expertise 
with AI, and it efficiently explores a complex solution space.

System Architecture

Every game that is composed of a finite number of moves, players, and 
possible actions has at least one Nash equilibrium. A Nash equilibrium 
represents a set of strategies, one for each player, from which no ratio-
nal player could deviate to improve their outcome, assuming all players 
are rational.

Even with this information in mind, multistage games with many 
potential actions per player are difficult to resolve conventionally (using 
backward induction, whereby the best outcome for the last decision is 
determined, followed in succession by all preceding decisions by each 
player, back to the first). The difficulty stems from two challenges. 
First, the strategy solution space grows exponentially with the number 
of players, stages, and actions. Second, in real-world problems, some or 
all players may have incomplete information. In that case, the rational 

Table 7.1
Game Theory and Course of Action Development Terms of Reference

Game Theory Terms Texas Hold’em Poker COA Development Terms

Players Players Forces/capabilities required, 
adversary

Payout /utility Winning hands, prize 
money

Objectives, purpose

Actions Bidding, raising, calling Key tasks

Static /dynamic game Sequential play Sequencing, decision points

Perfect /imperfect 
information

Displayed cards, “hole” 
cards

Intel prep of the operating 
environment

Player types Purposes for not folding Friendly/adversary objectives 
and purpose

Strategy (pure or 
mixed)

Bluffing COA, decisive point(s)
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player must consider all possible values of concealed variables when 
choosing an action.

An alternate approach to an exponentially expanding decision tree 
is the use of influence networks. This is a probabilistic model of cau-
sality, applicable in complex situations, that relies on Bayesian updates 
to the probability of a given action at each step in a dynamic model or 
game.4 One such model is depicted in Figure 7.1.

In this game model,5 three variables describe the state of the world 
at the start of the game. These variables each influence the potential 
actions taken by Red and Blue in the first round. These actions are 
resource limited, in that not every combination may be feasible. Exam-
ples of resource limitations are personnel, consumables, or money. Three 

4 Bayesian probability is also called conditional probability. This is the probability of some 
future action or state of the world taking place given that some preceding event or state of the 
world has occurred. 
5 For this model, we adapted the dynamic game of complete information established by 
Zhengjun Du, Chao Chen and Defeng Kong. See Zhengjun Du, Chao Chen, and Defeng 
Kong, “Modeling and Development of Course of Action by Considering Uncertainty and 
Antagonism,” Military Operations Research, Vol. 19, No. 2, 2014.

State
variables

State
variables

Potential
actions,
round 1

Potential
actions,
round 2

End state
variables

s1

s2
R4

s3

s1

s2

s3

es1

es2

R1

R2

R3

R1

R2

B1

B2

B3

B1

B2

B3

Figure 7.1
Generic Multistage Game



76    Machine Learning-Assisted Command and Control: Technical Analysis 

additional variables describe the state of the world at the start of the 
second round, which influence the potential actions taken by Red and 
Blue in that round. The actions taken by Red and Blue in the second 
round influence the game’s end states.

The interaction between each element of the initial state vector {s1, 
s2, s3} and each potential first round action {R1, R2, R3, R4, B1, B2, B3} 
is quantified in two measures: strength of causality (h) and strength of 
negation (g). These measures are represented by the directional arrows 
connecting states and actions in Figure 7.1. In brief, causal strengths 
are used to determine the probability that certain actions for Red 
and Blue, given current state values, will be successfully completed if 
selected. Additionally, causal strengths are used to determine the prob-
ability that future states will take certain values given the set of actions 
that are successfully completed by Red and Blue.

Determining Causal Strength

Strength of causality (h ) is the extent to which the occurrence of a 
node A results in another node B subsequently occurring. Relatedly, 
strength of negation (g) is the extent to which the absence of a node A 
results in another node B subsequently occurring. Strength of negation 
and causality are bounded by ‒1 and 1. If h = 1, the presence of A leads 
to B’s occurrence with 100 percent certainty. If h = ‒1, the absence of 
A leads to B’s occurrence with 100 percent certainty. If h = 0, A has no 
effect on B. Similarly, if g = 1, the presence of A leads to B’s nonoccur-
rence with 100 percent certainty. If g = ‒1, the absence of A leads to 
B’s nonoccurrence with 100 percent certainty. If g = 0, the absence of 
A has no effect on B.

In the absence of historical or simulator data, causal strength values 
are estimated by SMEs. To simplify determination of causal strength, 
the following semantically anchored definitions were provided: low = 
0.3, medium = 0.6, and high = 0.9. For strength of causation, a posi-
tive value indicated that the occurrence of A enables B. For strength 
of negation, a positive value indicated that the absence of A enables B.

The complete set of causal strength values generated during an 
interview with a PR SME are displayed in Tables 7.2 through 7.5. The 
value at the intersection of a row and column is the likelihood of the 
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Table 7.2
Round 1 Strength of Causation and Negation Matrices on Action Success

Directionality States

Actions

R1 R2 R3 R4 B1 B2 B3

Causation s1 –0.9 0 0 –0.9 0.6 0 0

Causation s2 0 0.9 0.3 0.6 –0.3 0.9 0

Causation s3 0 0.3 0.3 0.9 0.9 0.9 0.9

Negation s1 0.9 –0.9 0 0.9 –0.6 0.3 0

Negation s2 0.9 –0.9 0.6 0.9 –0.6 0.9 0

Negation s3 0 0 0 0 0.9 0.6 –0.9

Table 7.3
Round 1 Strength of Causation and Negation Matrices on State Values

Directionality Actions

States

s1 s2 s3

Causation R1 –0.9 0 0.3

Causation R2 0 0.9 0

Causation R3 0 0 0.3

Causation R4 –0.6 0 –0.3

Causation B1 0 0 0.6

Causation B2 0 0 0

Causation B3 0 0 0.9

Negation R1 0.9 0.3 0.3

Negation R2 0 –0.9 0

Negation R3 0 –0.6 0

Negation R4 0.9 0.9 0

Negation B1 0 0.3 0

Negation B2 0 0 0

Negation B3 0 0 –0.9
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Table 7.4
Round 2 Strength of Causation and Negation Matrices on Action Success

Directionality States

Actions

R1 R2 B1 B2 B3

Causation s1 0.3 0.6 0.9 0.6 0.9

Causation s2 –0.9 –0.9 0.3 –0.9 –0.3

Causation s3 0 0.3 0.9 0.9 0.9

Negation s1 0 0 –0.6 –0.3 –0.3

Negation s2 0.6 0.6 –0.3 0.6 0.9

Negation s3 –0.9 –0.9 –0.6 –0.6 0

Table 7.5
Round 2 Strength of Causation and Negation Matrices on State Values

Directionality Actions es1 es2

Causation R1 –0.6 –0.9

Causation R2 –0.6 0

Causation B1 0.3 0

Causation B2 0.9 0

Causation B3 0 0.9

Negation R1 0.3 0.3

Negation R2 0.9 0

Negation B1 –0.6 0

Negation B2 –0.9 0

Negation B3 0 –0.9

column variable occurring given that the row variable occurs. For 
example, the upper left element of the first matrix in Round 1 below 
corresponds to the statement “Red is highly unlikely [‒0.9] to success-
fully deploy CAPs near the site [R1], given Blue has air superiority over 
the JOA [s1].”



Case Study 3: Human-Machine Teaming for Personnel Recovery    79

To determine the probability of any node’s successful occur-
rence, the strengths of negation and causality from each predeces-
sor are aggregated mathematically to update the previously expected 
probability using Bayes’s theorem.6 By replicating this update mul-
tiple times, the probability of achieving some end state can be calcu-
lated. In our example game above, the first round of actions updates 
the state elements, which in turn influence the second round of 
actions (again, as available, subject to resource constraints). Finally, 
the second round of actions influences the two-element end state  
{es1, es2}. A payoff, or utility value, can be defined as a function of the 
end state, and these payoffs can be compared for all feasible resource-
constrained strategies.

When payoffs for all end states, and by extension for all strategies, 
are known, game theory analysis can identify the Nash equilibrium 
strategies for Red and Blue players. If a single equilibrium point for 
Red and/or Blue gives the best payoff, this is a pure strategy. If mul-
tiple Nash equilibria exist, the best approach for that player is a mixed 
strategy. If a mixed strategy equilibrium exists, that player must choose 
among the options in a way that makes the opposing player indifferent 
to their own strategy.

Assessing the strengths of causality and negation between pairs 
of elements in a game model is an art—and the crux of this ana-
lytic approach. Each arrow in Figure 7.1 represents where values for 
strength of causation and negation are required. These values may be 
determined from historical data, stochastic modeling, or some other 
method. Of relevance here, we can rely on the judgment of SMEs to 
compile a table of values for future use. In this way, human subject-
matter expertise is inserted into an AI system.

6 For a more rigorous mathematical discussion of influence networks, see Julie A. Rosen 
and Wayne L. Smith, “Influence Net Modeling with Causal Strengths: An Evolutionary 
Approach,” Military Operations Research Society, Vol. 33, No. 4, December 2000; and Abbas K. 
Zaidi, Faisal Mansoor, and Titsa P. Papantoni-Kazakos, “Theory of Influence Networks,” 
Journal of Intelligent and Robotic Systems, Vol. 60, No. 3‒4, 2010.
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Test Case

To provide a concrete example of this method, we use PR as the object 
of an operational planning event, and we focus on the planning and 
execution functions of PR.7

In this scenario, a friendly (Blue) aircrew has not checked in 
with C2 elements after flying a routine signals intelligence patrol over 
sparsely populated nonfriendly (Red) territory. Space-based infrared 
satellites spot a brief spike in energy in the vicinity of the patrol, then 
no further returns. The joint force commander has declared an isolated 
personnel (IP) event and directs the PR coordination cell to prescribe 
COAs. As the planning team comes together, national technical means 
verify an intermittent but verified locator beacon signal from the loca-
tion of the infrared event. While the Red leadership are not happy with 
the intrusion, they have privately signaled they will not interfere with 
search-and-rescue air operations. The joint forces commander wants 
PR to remain the highest priority but also wants the sensitive signals 
intelligence equipment, which was on board, to be either destroyed or 
secured as a secondary objective. Tables 7.6 and 7.7 assign action and 
state definitions to nodes in the network.

For the scenario described above, we can assign the initial state 
values as such: {s1 = 1, s2 = 1, and s3 = 1}. Given these variables, a strat-
egy for Red across two rounds of play might be represented in short-
hand as: {r1,1 = 0, r1,2 = 0, r1,3 = 1, r1,4 = 1; r2,1 = 1, r2,2 = 0}. A 0 means 
the action is not selected, and a 1 means the action is chosen. The 
implication is that Red and Blue both have 26 (64) potential strategies 
available to them.

Because even the highest priority real-world missions are almost 
always constrained by resource availability, these model strategies are 
resource constrained as well. This is done in two steps. First, all actions 
are assigned a required number of units of consumable resources cor-
responding to personnel, fuel, and equipment. Second, each player has 
been allotted a budget of resources to apply against potential actions. 
This results in a final subset of viable strategies composed of only those 

7 U.S. Air Force Doctrine, Annex 3-50, Personnel Recovery, Maxwell Air Force Base, Ala.: 
Lemay Center for Doctrine, 2020b.
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Table 7.6
Personnel Recovery Actions

Round Actor Action Variables

1 Red R1: Deploy CAPs near site

1 Red R2: Negotiate with Blue for IP return

1 Red R3: Alert Red citizens in vicinity

1 Red R4: Create no-fly zone near IP site

1 Blue B1: Deploy ISR unmanned aerial vehicles

1 Blue B2: Mobilize recovery teams

1 Blue B3: Establish regular comm with IP

2 Red R1: Degrade GPS signals near IP

2 Red R2: Degrade communication near IP

2 Blue B1: Resupply IP as necessary

2 Blue B2: Neutralize threats to IP

2 Blue B3: Secure/destroy sensitive hardware

Table 7.7
Personnel Recovery States

Elements State Variables

Battlefield state s1: Blue side has air superiority over Joint Operational Area

Battlefield state s2: Red country is cooperative

Battlefield state s3: IP is broadcasting position

End state es1: IP is secured

End state es2: Sensitive hardware/equipment secured

provisioned actions. Applying an arbitrary initial set of resource con-
straints, Red has 27 viable strategies, and Blue has 30.

The most unique element of this game theory approach is also the 
most difficult to produce. As noted earlier, the strength of causation 
and of negation for every pairing of state and action variables (Red and 
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Blue) is needed to ultimately resolve the end states. Example sources 
of these strength values are historical data, intelligence collection, or 
aggregated input from SMEs. To facilitate this notional example, a 
simplified formula was used to build the matrices of causal strengths. 
The formula rules and full set of values in matrix form are provided in 
Tables 7.2 through 7.4. The essential role of the human analyst in this 
hybrid architecture is to complete these values.

Finally, to attribute a payoff for each potential strategy combina-
tion, we define the Blue (friendly) utility function as: Utility = 0.8 × 
es1 + 0.2 × es2 . This can be interpreted to mean “returning the IP is 
4 times as important as securing the sensitive hardware on the aircraft.”

Results

Using all this information, we resolve the game to determine Nash 
equilibria strategies for Red and Blue. The result for the baseline sce-
nario is that a mixed strategy is optimal for both players. In the case of 
COA selection, the probabilities associated with a mixed strategy can 
be interpreted as the distribution among multiple viable options. For 
Red, the strategy mix is 66.3 percent for one strategy and 33.7 percent 
for another. These strategies translate as follows:

• In the first round, create a no-fly zone near the IP site. In the 
second round, degrade satellite communication in the vicinity of 
the IP (66.3 percent).

• In the first round, negotiate with Blue to return IP and alert Red 
citizens in the vicinity. In the second round, degrade satellite 
communication in the vicinity of the IP (33.7 percent).

For Blue, the strategy mix is 33.2 percent for one strategy and 
66.8 percent for another. These strategies translate as follows:

• In the first round, mobilize recovery teams. In the second round, 
neutralize threats to the IP (33.2 percent).

• In the first round, deploy ISR unmanned aerial vehicles and estab-
lish regular communication with the IP. In the second round, 
secure or destroy sensitive hardware (66.8 percent).
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Variations on Baseline Scenario and Results

We also considered variations on the baseline scenario that manipu-
lated the resources available to Red and Blue or that included uncon-
tested actions. Table 7.8 summarizes the variations and their results.

Table 7.8
Alternate Personnel Recovery Test Cases

Data Set Red Strategies Blue Strategies Notes

Baseline 0001-10  66.3%
0110-10  33.7%

010-010  33.2%
101-001  66.8%

Resource constraints 
resulted in 27 Red and  
30 Blue viable strategies.

Reduced resource 0001-10  67.5%
0100-01  32.5%

001-001  68.5%
010-010  31.5%

Reduced a single Blue 
resource 57% in Round 1; 
Reduced a single Red 
resource 38% in Round 2.  
All other conditions 
unchanged. 

(Red reduced to 18 viable 
strategies and Blue 
reduced to 15 viable 
strategies)

Unconstrained 
resources
(Red and Blue)

0001-10  19.8%
0110-10  80.2%

010-010  33.1%
101-001  33.5% 
111-001  33.5%

Red and Blue not resource 
constrained.

Red had 45 viable 
strategies.

Blue had 49 viable 
strategies. 

For realism and to reduce 
computational complexity, 
no strategies included 
where either player made 
no actions in either round 
(0000-xx, xxxx-00, 000-xxx, 
xxx-000).

Blue uncontested 
w/ unconstrained 
resources
(Red unresourced)

0000-00   100% 001-001  33.3%
010-001  33.3%
011-001  33.3%

Represents Blue 
uncontested strategy.

Unconstrained 
Blue resources
(Red unresourced 
and no strength 
of causality/
negation)

0000-00   100% 010-100  100% A refinement to previous 
data set, removing 
influence of “choosing to 
do nothing.”
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Discussion

This third technical case study presents a mixed-initiative system archi-
tecture. PR instances, because of their relative rareness, are unique. 
The lack of historical or simulator data, the case-specific definitions of 
states and actions, and the multidimensional and subjective nature of 
outcomes resist a “pure” AI solution. The approach we present leverages 
multiple sources of human knowledge for (1) defining problem states, 
(2) defining actions, (3) assigning causal strengths between states and 
actions, (4) defining end states, and (5) assigning relative importance 
to different end states. The approach also leverages AI to apply a Bayes-
ian updating procedure along with a method for identifying equilibria 
points to determine the optimal actions, given the problem specifica-
tion provided by the human SME.

Table  7.9 compares the two candidate solution architectures: 
human alone and human plus AI. The suitability of the hybrid archi-
tecture exceeds the suitability of the human alone (192 versus 138).

The difference in suitability scores can be traced to the capabili-
ties of the potential systems:

• Computational efficiency. Given time constraints, human plan-
ners can consider, at most, a very limited number of COAs. The 
causal network efficiently considers all COAs, increasing compu-
tational efficiency. Yet the specification of network parameters is 
time consuming.

• Soundness and optimality. The causal network will find sound and 
optimal solutions subject to the quality of the human experts’ 
specification of the PR problem.

• Robustness. A small change to model assumptions may greatly reduce 
the quality of human-generated COAs. Given its computational 
efficiency, an approach like a causal network can generate solutions 
conditional on sources of uncertainty in model specification.

A limitation of the computational architecture is that it treats the 
adversary as being perfectly rational. Future work could replace this 
assumption with one of bounded rationality by using approaches like 
quantal response equilibrium or cognitive models to represent subopti-
mal adversary decisionmaking.
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Table 7.9
Suitability of a Human and Mixed Architecture for Personnel Recovery

Problem Characteristic
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Rating 0, 1 3, 3 2, 4 2, 4 2, 2 0, 0 3, 3 2, 4

Operational tempo 3 0, 3 6, 12 6, 6 6, 12

Rate of environment change 1 0, 1 3, 3 2, 2 0, 0

Problem complexity 2 0, 2 6, 6 4, 4 0, 0 6, 6 4, 8

Reducibility 1 2, 4

Data availability 4 12, 12 8, 8 0, 0 8, 16

Environmental clutter/noise 2 4, 4 0, 0 4, 8

Stochasticity of action outcomes 0 0, 0 0, 0

Clarity of goals and utility 0 0, 0 0, 0 0, 0

Incompleteness of information 3 9, 9 6, 6 0, 0 9, 9

Operational risks and benefits 3 6, 12 6, 12 6, 6 9, 9 6, 12

Human total 0 30 12 6 36 0 24 30 138

Human + AI total 6 30 24 12 36 0 24 60 192

NOTE: The first value in each cell is for human, and the second value in each cell is for 
human plus AI.
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APPENDIX A

Artificial Intelligence History

The seemingly sudden leaps in AI are a result of the steady accumu-
lation of progress in multiple areas and, at times, relatively modest 
changes to algorithms and system architectures. Take, for instance, the 
growth of capability evident in computer chess (Figure A.1). Claude 
Shannon’s classic paper of 1950 proposed an implementable algorithm—
minimax—that was the basis of the earliest chess programs.1 Minimax 
used brute-force search to a certain depth along with a heuristic to 
select the best considered move. In the mid-1950s, several research-
ers independently discovered alpha-beta pruning, a variant on the 
minimax algorithm that terminated the search of exploitable lines of 
play, allowing for a deeper exploration of stronger lines. For the next 
50 years, alpha-beta pruning remained at the heart of the most power-
ful chess programs. During that time, increasingly powerful comput-
ers elevated the play of chess programs from amateur to grandmaster 
levels. IBM’s chess-playing computer Deep Blue, which defeated Gary 
Kasparov in 1997, worked basically the same way as the programs of 
the 1950s, albeit with more sophisticated heuristics and the opportu-
nity to exploit much greater computation.

In the 2010s, research on the game of Go inspired the develop-
ment of a search algorithm called AlphaZero that combined DRL and 
MCTS. This approach depended on two things: independent research 

1 C. E. Shannon, “Programming a Computer for Playing Chess,” Philosophical Magazine, 
Vol. 41, 1950.
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in architectures for deep learning and the advent of graphical pro-
cessing units (GPUs), which made it feasible to train DNNs. While 
this new approach required immense numbers of simulated games 
for training, it proved capable of outperforming alpha-beta pruning 
in numerous games, including chess. In 2018, DeepMind’s AlphaZ-
ero bested the most powerful previous chess engine, Stockfish, and an 
open-source DRL+MCTS chess engine, Leela Chess Zero, exceeded 
Stockfish’s performance in mid-2019.2

The growth of capability and manner of progress is also evident 
in real-time video games like StarCraft II (Figure A.2). Early chess 
programs used a search algorithm specialized for two-player games 
(alpha-beta pruning) and heuristics developed specifically for chess. In 
contrast, StarCraft II research has leveraged domain-general learning 
mechanisms, which ultimately also produced the highest levels of play 
in computer chess.

Together, the history of development in computer chess and Star-
Craft II illustrates common sources of innovation in AI research:

1. Hardware. Neural network implementations on GPUs are essen-
tial to implement large architectures and to train on large data 

2 Silver et al., 2018.
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sets.3 Additionally, the performance of computationally com-
plex algorithms—for example, the minimax search algorithm—
increases linearly with processing power.

2. Algorithms and architectures. Many algorithm advances are 
general. The discovery of techniques to address the problem 
of vanishing and exploding gradients enabled all manners 
of DNNs to be trained by gradient descent.4 Other compo-
nents in learning architectures—for example, convolutions, 
long short-term memory, and attention—have proven broadly 
useful. These components are now used in many different 
applications (e.g., computer vision, natural language pro-
cessing, game play). Additionally, these components can be  

3 K. S. Oh and K. Jung, “GPU Implementation of Neural Networks,” Pattern Recognition, 
Vol. 37, No. 6, 2004; D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, High Performance Convolutional Neural Networks for Image Classifica-
tion,” Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, 
Barcelona: AAAI Press, June 2011.
4 Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jurgen Schmidhuber, “Gradient 
Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies,” in John F. 
Kolen and Stefan C. Kremer, eds., A Field Guide to Dynamical Recurrent Neural Networks, 
Hoboken, N.J.: Wiley-IEEE Press, 2001.
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combined into a single end-to-end system, as with DeepMind’s 
AlphaStar.5

3. Software toolboxes. The need for open-source software imple-
mentations of neural networks to foster collaboration among 
researchers was recognized early on.6 Popular software frame-
works such as TensorFlow and PyTorch provide optimized imple-
mentations, which allow researchers to experiment with larger, 
more complex architectures.

4. Data availability. DNNs typically contain millions of tunable 
parameters and hence require large amounts of training data. 
The growth of the internet, the deployment of large database 
systems, crowdsourcing platforms, and the development of high-
fidelity simulators have increased the availability of large data 
sets required to train DNNs.

5 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew 
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev 
et al., “Grandmaster Level in Starcraft II Using Multi-Agent Reinforcement Learning,” 
Nature, Vol. 575, No. 7782, 2019.
6 Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, 
Geoffrey Holmes, Yann LeCun, Klaus Robert Müller, Fernando Pereira, Carl Edward 
Rasmussen et al., “The Need for Open Source Software in Machine Learning,” Journal 
of Machine Learning Research, Vol. 8, October 2007.
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APPENDIX B

Mathematical Details for Closed-Loop Automatic 
Target Recognition

Closed-Loop Automatic Target Recognition

Defining xt as the belief (confidence) at time t in the target class, the 
algorithm from Ssu-Hsin Yu and his colleagues’ work proceeds as 
follows:1

1. Propagation of state x from time t to time t + 1 according to

 
P(xt +1|a, a1...t , y1...t) =∑ P(xt +1|a, xt)P(xt |a1...t , y1...t),

x

t  
(1)

where a is a candidate action to be taken, and a1...t  and y1...t

represent actions and observations up to time t.

2. Prediction of the next observation based on the candidate action a:

 
P( yt +1|a, a1...t , y1...t) =∑  P( yt +1|a, xt +1)P(xt +1|a, a1...t, y1...t),

x

t +1  
(2)

where predictions are based on the confusion matrices and 
state information at time t + 1. The observation probabilities, 
P( yt +1|a, xt +1), are read in as rows in the confusion matrices.

1  Yu et al., 2015.
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3. Calculation of the expected reward for candidate action a, 
E(R(a)|a1...t , y1...t), following

 
E(R(a)|a1...t , y1...t) =∑ (R(a)P( yt +1|a, a1...t , y1...t),

y

t +1   
(3)

where R(a) = –∑xt +1 P(xt +1|a, a1...t , y1...t +1)ln P(xt +1|a, a1...t, y1...t +1)
and P(xt +1|a, a1...t , y1...t +1) ∝ P( yt +1|a, xt +1)P(xt +1|a,a1...t, y1...t).
R(a) corresponds to the entropy of xt +1 conditional on all actions 
and observations up to time t.

4. The action with the highest expected reward is selected.
5. The posterior probability of the class confidence is then updated 

with the new observation yt +1:

 
P(xt +1|a1...t +1, y1...t +1) ∝ P( yt +1|at +1, xt +1) ∑  P(xt +1|at +1, xt)P(xt|a1...t, y1...t).

x

t  
(4)

The resulting coefficients are then normalized to 1.

Asynchronous Advantage Actor-Critic

An A3C agent learns by interacting with an environment and attempt-
ing to optimize its loss function, which can be broken down into three 
distinct elements: a policy loss, a value loss, and an entropy loss. The 
policy loss, £π = log  π (at |st)A(st , at ; θ, θυ), is dependent on the policy 
performing an action a2 in the state st at time step t, multiplied by the 
advantage A(st , at ; θ, θυ), with policy parameters θ, θ′ and value esti-
mator parameters θυ. The critics loss, £υ = (Rt – V(st ; θ′υ))2, is simply the 
mean squared error between Rt , which is the accumulated return as 
discounted by some factor  and V(st ; θ′υ), which is the critic estimate 
of the value. To promote exploration of the agent’s decisions, we also 
include an entropy regularization term H(π(st ; θ′)). When we combine 
these terms, our loss function for optimizing becomes

 £tot = £π + α£υ – βH, (5)
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which includes a scaling factor of α  that can be used to reduce the 
potential for early convergence by the critic and β, which sets the con-
tribution from entropy regularization.

The parameters used for training the A3C algorithm across all 
cases in this analysis are shown in Table B.1.

Modified StarCraft II Environment

In this technical case study, we used the StarCraft II Python API 
provided by DeepMind called Py StarCraft II. We developed a new 
method for scoring target observation and classification to modify 
the default environment. This method considers the total time spent 
observing a target, while rewarding exploration of other targets after 
reaching a critical duration. For example, the system gives the agent a 
reward of +1 once it correctly classifies a target (friend or foe) for five 
consecutive time steps and an addition reward of +1 for every cor-
rect consecutive classification thereafter. Once the agent has tracked 
a single target for ten consecutive time steps, a larger reward becomes 
available for switching to and tracking the second target. Formally, the 
scoring-penalty system is defined as

 

R = {+1.1, 
+1, if 1st target, for TOS ≤ 10

nth target, n ≥ 2, for TOS ≤ 10
otherwise.–0.1,

 

(6)

Table B.1
Asynchronous Advantage Actor-Critic 
Hyperparameters

Parameter Value

γ (discount) 0.99

Learning rate 5 × 10–4

α 0.5

β 10–4
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They present the results of a structured interview protocol that 
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