
MATTHEW WALSH, LANCE MENTHE, EDWARD GEIST,
ERIC HASTINGS, JOSHUA KERRIGAN, JASMIN LÉVEILLÉ,
JOSHUA MARGOLIS, NICHOLAS MARTIN, BRIAN P. DONNELLY

Exploring the Feasibility and Utility of

Machine Learning-
Assisted Command
and Control
Volume 2, Supporting Technical Analysis

C O R P O R A T I O N

https://www.rand.org/pubs/research_reports/RRA263-2.html
https://www.rand.org/

For more information on this publication, visit www.rand.org/t/RRA263-2.

About RAND
The RAND Corporation is a research organization that develops solutions to public policy
challenges to help make communities throughout the world safer and more secure, healthier
and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. To
learn more about RAND, visit www.rand.org.

Research Integrity
Our mission to help improve policy and decisionmaking through research and analysis is
enabled through our core values of quality and objectivity and our unwavering commitment
to the highest level of integrity and ethical behavior. To help ensure our research and analysis
are rigorous, objective, and nonpartisan, we subject our research publications to a robust and
exacting quality-assurance process; avoid both the appearance and reality of financial and
other conflicts of interest through staff training, project screening, and a policy of mandatory
disclosure; and pursue transparency in our research engagements through our commitment to
the open publication of our research findings and recommendations, disclosure of the source
of funding of published research, and policies to ensure intellectual independence. For more
information, visit www.rand.org/about/principles.

RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors.

Published by the RAND Corporation, Santa Monica, Calif.
© 2021 RAND Corporation

 is a registered trademark.

Library of Congress Cataloging-in-Publication Data is available for this publication.
ISBN: 978-1-9774-0710-8

Cover: Tech. Sgt. R.J. Biermann/U.S. Air Force; Siarhei/Adobe Stock.

Limited Print and Electronic Distribution Rights
This document and trademark(s) contained herein are protected by law. This representation
of RAND intellectual property is provided for noncommercial use only. Unauthorized posting
of this publication online is prohibited. Permission is given to duplicate this document for
personal use only, as long as it is unaltered and complete. Permission is required from RAND
to reproduce, or reuse in another form, any of its research documents for commercial use. For
information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.

http://www.rand.org/t/RRA263-2
http://www.rand.org
http://www.rand.org/about/principles
http://www.rand.org/pubs/permissions

iii

Preface

Recent high-profile demonstrations of artificial intelligence (AI) sys-
tems achieving superhuman performance on increasingly complex
games along with successful commercial applications of related tech-
nology raise the questions of whether and how the U.S. Air Force can
use AI for military planning and command and control (C2). The
potential benefits of applying AI to C2 include greater decision speed,
increased capacity to deal with the heterogeneity and volume of data,
enhanced planning and execution dynamism, improved ability to syn-
chronize multimodal effects, and more efficient use of human capital.
Together, the technology push prompted by recent breakthroughs in
AI and the market pull arising from emerging C2 needs have prompted
the Air Force and the Department of Defense (DoD) to identify AI as
a strategic asset.

In 2019, the Air Force Research Laboratory, Information Direc-
torate (AFRL/RI) asked RAND Project AIR FORCE (PAF) to exam-
ine and recommend opportunities for applying AI to Air Force C2.
The research project Exploring the Near-Term Feasibility and Utility
of Machine Learning-Assisted Operational Planning was conducted in
PAF’s Force Modernization program to address this question. A second
project was conducted in parallel to examine the separate but related
topic of complexity imposition. This report presents the primary result
of the study on AI: an analytical framework for understanding the suit-
ability of a particular AI system for a given C2 problem and for evaluat-
ing the AI system when applied to the problem. We demonstrate the ana-
lytical framework with three technical case studies focused on master
air attack planning, sensor management, and personnel recovery (PR).

iv Machine Learning-Assisted Command and Control: Technical Analysis

The C2 processes examined in these case studies are central to current
and future C2 concepts of operation, and they exemplify the range of
characteristics that make C2 problems so challenging.

RAND Project AIR FORCE

RAND Project AIR FORCE (PAF), a division of the RAND Corpo-
ration, is the Department of the Air Force’s (DAF’s) federally funded
research and development center for studies and analyses, supporting
both the United States Air Force and the United States Space Force.
PAF provides DAF with independent analyses of policy alternatives
affecting the development, employment, combat readiness, and sup-
port of current and future air, space, and cyber forces. Research is con-
ducted in four programs: Strategy and Doctrine; Force Modernization
and Employment; Manpower, Personnel, and Training; and Resource
Management. The research reported here was prepared under contract
FA7014-16-D-1000.

Additional information about PAF is available on our website:
www.rand.org/paf/

This report documents work originally shared with DAF on
March 11, 2020. The draft report, issued on April 14, 2020, was reviewed
by formal peer reviewers and DAF subject-matter experts.

http://www.rand.org/paf/

v

Contents

Preface . iii
Figures . vii
Tables . ix
Acknowledgments . xi
Abbreviations . xiii

CHAPTER ONE

Analysis of Problem Characteristics . 1
Definitions . 1
Structured Interview Protocols . 3
Application to Specific Games and Command and Control Processes 4

CHAPTER TWO

Analysis of Solution Capabilities . 11
Definitions . 11
Structured Interview Protocols . 13
Application to Specific Artificial Intelligence Systems and Methods 14

CHAPTER THREE

Expert Panel Design, Implementation, and Additional Results 23
Panel Design and Implementation . 23
Data Analysis . 26
Limitations . 27
Results . 27

vi Machine Learning-Assisted Command and Control: Technical Analysis

CHAPTER FOUR

Metrics for Evaluating Artificial Intelligence Solutions 41
Review of Strategic Guidance . 41
Analysis of Metric Categorization . 45
Metrics Scorecard . 48

CHAPTER FIVE

Case Study 1: Master Air Attack Planning . 51
Problem Overview . 51
System Architecture . 54
Test Cases . 54
Results . 55

CHAPTER SIX

Case Study 2: Automatic Target Recognition with Learning 61
Environment . 62
System Architectures . 63
Test Cases . 67
Results . 69

CHAPTER SEVEN

Case Study 3: Human-Machine Teaming for Personnel Recovery 73
System Architecture . 74
Test Case . 80
Results . 82
Discussion . 84

APPENDIX A

Artificial Intelligence History . 87

APPENDIX B

Mathematical Details for Closed-Loop Automatic Target Recognition . . . 91

References . 95

vii

Figures

 3.1. Sample Round 1 and Round 3 Response Section Interfaces . . . 24
 3.2. Sample Round 2 Response Summary . 25
 3.3. Distributions of Ratings by Problem-Solution Pair at

Conclusion of Round 3 . 28
 4.1. Classification of Defense Advanced Research Projects

Agency Metrics by Algorithm/System. 47
 4.2. Metrics Scorecard Example for Master Air Attack Planning . . . 49
 5.1. Master Air Attack Planning Problem Overview 53
 5.2. Notional Utilities of Missions in Planning Problem 55
 5.3. Solution Optimality (top) and Time (bottom) for Mixed

Integer Program and Greedy Heuristic Approaches 56
 5.4. Optimality Gap as a Function of Solve Time for Mixed

Integer Program and Greedy Heuristic Approaches 57
 5.5. Trade-Off Between Cumulative Mission Risk and Value 60
 6.1. Noisy Sensor Classification Accuracy Profile . 63
 6.2. Closed-Loop Automatic Target

Recognition Implementation . 64
 6.3. Single Worker Instance in Asynchronous Advantage

Actor-Critic Architecture . 66
 6.4. Initial Setup of StarCraft II Observing Platform and

Targets with Patrols . 68
 6.5. Comparison Between Training Cases Under Ideal and

Noisy Sensor Conditions . 69
 7.1. Generic Multistage Game . 75
 A.1. Timeline of Progress in Computer Chess . 88
 A.2. Timeline of Progress in StarCraft II . 89

ix

Tables

 1.1. Sample Rating Scale for Operational Tempo . 5
 1.2. Description of Games . 6
 1.3. Description of Command and Control Processes 7
 1.4. Problem Characteristics in Chess . 9
 1.5. Problem Characteristics in Sensor Management 10
 2.1. Sample Rating Scale for Computational Efficiency 13
 2.2. Description of Artificial Intelligence Systems . 15
 2.3. Solution Capabilities of Deep Q-Learning and

Iterated-Width Planning . 17
 2.4. Solution Capabilities of AlphaZero and

Alpha-Beta Pruning . 19
 2.5. Solution Capabilities of Mixed-Integer Program and

Greedy Heuristic . 21
 3.1. Experts’ Rationale for Ratings in Round 1 . 30
 3.2. Pairing Solution Capabilities to Problem Complexity in

Round 1 . 31
 3.3. Pairing Solution Capabilities to Reducibility in Round 1 32
 3.4. Pairing Solution Capabilities to Rate of Environment

Change in Round 1. 33
 3.5. Pairing Solution Capabilities to Operational Tempo in

Round 1 . 34
 3.6. Pairing Solution Capabilities to Data Availability in

Round 1 . 35
 3.7. Pairing Solution Capabilities to Environmental Clutter in

Round 1 . 36
 3.8. Pairing Solution Capabilities to Clarity of Utility/Goals in

Round 1 . 37

x Machine Learning-Assisted Command and Control: Technical Analysis

 3.9. Pairing Solution Capabilities to Stochasticity of Action
Outcomes in Round 1 . 38

 3.10. Pairing Solution Capabilities to Incomplete Information in
Round 1 . 39

 3.11. Pairing Solution Capabilities to Operational Risks and
Benefits in Round 1 . 40

 4.1. Implementation Issues Highlighted in Strategic Guidance
Documents . 44

 4.2. Defense Advanced Research Projects Agency Broad Agency
Announcements Retained for Analysis . 46

 4.3. Importance of Artificial Intelligence Solution Capabilities
and Measures of Performance . 47

 5.1. Base Utilization in Standard and Penalized Mixed Integer
Program Model . 58

 6.1. Potential Extensions of Asynchronous Advantage Actor-
Critic with Closed-Loop Automatic Target Recognition for
Air Surveillance Officer Sensor Management . 71

 7.1. Game Theory and Course of Action Development Terms
of Reference . 74

 7.2. Round 1 Strength of Causation and Negation Matrices on
Action Success . 77

 7.3. Round 1 Strength of Causation and Negation Matrices on
State Values . 77

 7.4. Round 2 Strength of Causation and Negation Matrices on
Action Success . 78

 7.5. Round 2 Strength of Causation and Negation Matrices on
State Values . 78

 7.6. Personnel Recovery Actions . 81
 7.7. Personnel Recovery States. 81
 7.8. Alternate Personnel Recovery Test Cases . 83
 7.9. Suitability of a Human and Mixed Architecture for

Personnel Recovery . 85
 B.1. Asynchronous Advantage Actor-Critic Hyperparameters. 93

xi

Acknowledgments

We would like to thank our sponsor, Jack Blackhurst (Air Force
Research Laboratory executive director), and our action officers, Nate
Gemelli and Lee Seversky (Air Force Research Laboratory, Information
Directorate [AFRL/RI]), for their help in shaping and performing this
study. We would also like to thank Mark Linderman, Julie Brichacek,
and Rick Metzger (AFRL/RI) for their valuable input during the study.

We are deeply appreciative of the assistance with data collection we
received from many personnel, including Lt Col Dennis Borrman and
Lt Col Jason Chambers (2020 RAND Air Force Fellows Program), LTC
David Spencer and MAJ Ian Fleischmann (2020 Arroyo Army Fellows
Program). We are also appreciative of the time that so many analysts and
other personnel dedicated to participating in the expert panel.

Finally, we thank the many RAND colleagues who helped us
with work. Principally, but not exclusively, we thank Michael Bohnert,
Jim Chow, Henry Hargrove, Libby May, and Yuliya Shokh.

xiii

Abbreviations

A3C Asynchronous Advantage Actor-Critic

AI artificial intelligence

API application programming interface

ASO Air Surveillance Officer

ATO Air Tasking Order

AWACS Airborne Warning and Control System

C2 command and control

CL-ATR closed-loop automatic target recognition

COA course of action

COI Critical Operational Issues

DARPA Defense Advanced Research Projects Agency

DNN deep neural network

DoD Department of Defense

DRL deep reinforcement learning

GH greedy heuristic

IP Isolated Personnel

ISR intelligence, surveillance, and reconnaissance

xiv Machine Learning-Assisted Command and Control: Technical Analysis

IW iterated-width

MAAP master air attack plan

MCTS Monte Carlo tree search

MIP mixed integer program

ML machine learning

MoE measures of effectiveness

MoP measures of performance

MoS measures of suitability

NSTC National Science and Technology Council

PAF Project AIR FORCE

PR personnel recovery

RL reinforcement learning

SME subject-matter expert

T&E test and evaluation

TOS time on station

V&V verification and validation

1

CHAPTER ONE

Analysis of Problem Characteristics

Definitions

In Volume 1, we defined a taxonomy of ten command and control (C2)
problem characteristics grouped into four categories. The temporality
grouping comprises characteristics related to time. The first of these,
operational tempo, is defined as the rate at which operations must be
planned, replanned, and executed. This is not a generalized descriptor,
such as “low” or “high,” but rather a rate, such as “once every few days”
or “within four hours or less.” For example, an operation might require
12 hours to plan and an additional 24 hours to execute. The second
characteristic, rate of environment change, is defined as how long it
takes for the context to evolve from those previously encountered, ren-
dering past tactics and learning outdated. While in many cases we can
only know this imperfectly at best in advance, reasonable guesses as to
low and high estimates can be made and used to guide planning. For
instance, we could expect knowledge about the environmental context
to remain valid for at least two weeks but probably not for more than a
month with a high degree of confidence.

The complexity grouping includes two characteristics related to
how difficult a problem is to solve, as well as the possible means of solv-
ing it.1 The first of these, problem complexity, is meant to be analogous

1 The notion of complexity here is distinct from complexity imposition through the use
of multidomain effects—a C2 process that takes place in one domain can nonetheless have
high complexity. Operating in multiple domains would tend to increase problem complexity,
however.

2 Machine Learning-Assisted Command and Control: Technical Analysis

to—and in rare cases equivalent to—computational complexity as
studied in theoretical computer science. While computer scientists
most commonly study the worst-case complexity of rigorously speci-
fied problems, in defense applications we tend to care more about the
average-case complexity of problems. The problem complexity char-
acteristic, therefore, tries to capture the resources required, in the
abstract, to solve the problem in the average case to ensure the neces-
sary degree of performance. This defines a limit bounding the perfor-
mance of any algorithm or architecture on that problem. In many cases
this limit will be specified relative to the size of the problem instance,
for example, the available number of states and actions. The reducibil-
ity characteristic, by contrast, is the degree to which a problem can be
decomposed into independent subproblems. For instance, if a task can
be broken into two or more subtasks that can be solved by the same
number of people or computers working in isolation from one another,
then it is reducible.

The five characteristics included in the quality of information
grouping aim to capture knowledge-related aspects of the problem.
The first of these, data availability, describes the quantity, quality,
and representativeness of data available for training and testing. Here,
quantity, quality, and representativeness can be independent of each
other. For instance, it is conceivable that one might have a simulator
that can create an unlimited quantity of high-quality samples that
represent only a small part of the possibility space or a limited quan-
tity of low-quality samples that form a representative sample of the
real-world distribution. Environmental clutter/noise aims to capture
whether signals of interest are contaminated by signals from other
potentially unknown and random processes. This characteristic is
broadly analogous to the concepts of signal-to-noise ratio and false-
alarm detection rate, although in some instances it cannot be mea-
sured in these terms. Stochasticity of action outcomes describes whether,
and to what degree, the immediate effects of actions are predictable. If
actions have randomized effects, even taking what is perceived to be
the “optimal” move can sometimes result in an unfavorable outcome.
Clarity of goals and utility is the extent to which the values of outcomes

Analysis of Problem Characteristics 3

delivered during and at the end of a task are known and quantifi-
able. If payoffs include a randomized element that follows a known
probability distribution, this characteristic is less than it would have
been if those payoffs were deterministic and perfectly known. The
critical incompleteness of information characteristic embodies many
types of knowledge-quality problems that are difficult to quantify, for
example, how much is known about the state of the environment and
about the adversary’s goals and intent. If the full extent of the environ-
ment is unknown and unexplored and the adversary’s preferences are
unknown, then only incomplete information is available, and many
standard artificial intelligence (AI) methods for planning and game
play will be inapplicable.

The importance grouping includes just a single problem
characteristic—operational risks and benefits. This characteristic encom-
passes value judgments and is defined as the potential for the out-
come to include the loss of something of value, or the advantage or
profit gained. The operational risks and benefits characteristic can also
encompass more than just straightforward utility calculations: in mili-
tary use cases, the trade-offs are often between dissimilar and difficult-
to-compare commodities, such as blood and treasure. There are also
occasions when certain outcomes or choices must be excluded for rea-
sons of law, custom, ethics, or decency. Responsible officials need to
make these types of judgment calls about the “trade space” between
operational risks and benefits; these judgment calls then enable analy-
sis of whether potential solutions should be considered and how prom-
ising they appear.

Structured Interview Protocols

While the problem characteristics may seem intuitive, determining
whether they are present in a problem may be challenging. Some
characteristics can be formally defined, but others are of indetermi-
nate formality. Of those that can be formally defined, some, such as
operational tempo, may require only a single value for a well-defined

4 Machine Learning-Assisted Command and Control: Technical Analysis

task (e.g., blitz play in chess) but a dynamic range of values for a real-
world task. Though the problem characteristics have technical defi-
nitions, Air Force operators will be more familiar with their everyday
meanings.

To assist in this process, we created a structured interview proto-
col to enable scoring of problem characteristics for C2 processes with
subject-matter experts (SMEs). The protocol is rooted in cognitive task
analysis—a set of tools for identifying task demands and the cogni-
tive skills needed to perform a task.2 For each problem characteristic,
SMEs were asked to reflect on their assigned C2 role and to provide
examples.3 SMEs were then shown a response scale with numerical
ratings ranging from 0 (not present) to 4 (present to a large extent). The
response scale contained definitions and examples for each rating that
were specific to the problem characteristic. Based on the given defini-
tions, SMEs were asked to assign a numerical rating to the problem
characteristic for their assigned C2 role. Rating scales were developed
for each characteristic. As an example, Table 1.1 presents the rating
scale for one problem characteristic, operational tempo.4

Application to Specific Games and Command and
Control Processes

Using the problem taxonomy and the structured interview protocol,
we analyzed ten games and ten C2 processes. The results are sum-
marized in Volume 1. The games are representative of those used for

2 B. Crandall, G. Klein, and R. R. Hoffman, Working Minds: A Practitioner’s Guide to Cog-
nitive Task Analysis, Cambridge, Mass.: MIT Press, 2006.
3 The use of examples relates to the critical decision method, in which a subject-matter
expert retrieves past challenging experiences. Robert R. Hoffman, Beth Crandall, and Nigel
Shadbolt, “Use of the Critical Decision Method to Elicit Expert Knowledge: A Case Study
in the Methodology of Cognitive Task Analysis,” Human Factors, Vol. 40, No. 2, 1998.
4 The highest level of operational tempo also encompasses processes that take place on the
timescale of microseconds and that would require machine-to-machine actions, like cyber
attack, detection, and mitigation.

Analysis of Problem Characteristics 5

AI test beds; the C2 processes, in turn, are representative of the mili-
tary targets of transition for AI. The C2 problems were selected to
achieve breadth of coverage across services, across command echelons,
and across stages of the air tasking cycle (and joint operation planning
more generally). The games are described in Table 1.2; the C2 prob-
lems, in Table 1.3.

To increase the validity and reliability of ratings, the structured
interview protocol and analyses used the set of anchored scales devel-
oped for the ten problem characteristics. Members of the project
team had experience with each of the games and AI test beds listed
in Table 1.2. For each game, two members of the project team rated
the ten problem characteristics based on experience and a review of
available documentation. All ratings given by team members matched
or were adjacent to one another. Disagreements were discussed and
resolved.

Table 1.1
Sample Rating Scale for Operational Tempo

Operational Tempo
The rate at which operations must be planned, replanned, and executed

Rating Definition Example

0 Responses are needed on
the timescale of weeks or
longer.

The division is planning routine resupply
missions that occur on a biweekly basis.

1 Responses are needed on
the timescale of days.

The planning cycle used to create an Air
Tasking Order (ATO) takes several days to
complete.

2 Responses are needed on
the timescale of hours.

The cell is planning a rescue mission. The
mission must be ready within hours.

3 Responses are needed on
the timescale of minutes.

The planner is responsible for air and
missile defense. He must coordinate and
execute a defensive response within
minutes of threat detection.

4 Responses are needed on
the timescale of seconds
or less.

The pilot is maneuvering an aircraft. He
needs to respond to the moment-by-
moment behaviors of the adversary.

6 Machine Learning-Assisted Command and Control: Technical Analysis

Table 1.2
Description of Games

Example Type Description

Tic-tac-toe Two-player turn-based
game

Game is played on a three-by-three
board. Goal is to place marks on
three adjacent cells.

Tetris Single-player real-time
strategy game

Tile-matching puzzle game that
involves fitting pieces to form
complete rows.

Checkers Two-player turn-based
game

Game is played on an eight-by-eight
board. Goal is to capture all of
opponent’s pieces by jumping over
them.

Chess Two-player turn-based
game

Game is played on an eight-by-eight
board. Goal is to place opponent’s
king under inescapable threat of
capture (i.e., checkmate).

Go Two-player turn-based
game

Game is played on a nineteen-
by-nineteen board. Goal is to
surround more territory (cells) than
opponent.

Texas Hold’em Multiplayer turn-based
game

Card game that involves forming
strongest five-card hand from two
hold cards and five community
cards.

CartPole-v1 AI test bed Continuous control task that
involves keeping pole attached to an
unactuated joint on a cart upright by
moving the cart along a frictionless
track.

HalfCheetah-v2 AI test bed Continuous control task that
involves teaching a physics-based
two-legged agent (HalfCheetah) to
run.

Bridge Multiplayer turn-based
game

Four-player game in which two
teams of two players attempt to
predict and win a set number of
tricks.

StarCraft II Single- or multiplayer
real-time strategy
game

Real-time strategy game that
involves gathering resources,
building units, and attacking
competing players.

Analysis of Problem Characteristics 7

Table 1.3
Description of Command and Control Processes

Example Service Description

Intelligence preparation
of the battlefield

Army Method for collecting, organizing,
and processing intelligence to
provide timely, accurate, and relevant
intelligence to military decisionmaking
process.

Master air attack plan
(MAAP)

Air Force Create time-phased air and space
scheme of maneuver for a given ATO
period.

Nuclear retargeting Air Force Conduct adaptive planning to destroy
as many adversary offensive nuclear
forces as possible before they can be
launched.

Operational assessment Air Force Evaluate the effectiveness of daily air,
space, and information/nonkinetic
operation planning and execution.

Personnel recovery:
locate and authenticate

Air Force Determine location of isolated
personnel and authenticate their
identity.

Reallocating intelligence,
surveillance, and
reconnaissance (ISR)
assets

Air Force Receiving requests for new ISR and
dynamically replanning for and servicing
requests.

Sensor management Air Force Process of controlling sensors aboard an
Airborne Warning and Control System
(AWACS) to detect, track, and identify
airborne vehicles that may affect
friendly operations.

Military decisionmaking
process

Army Multistep planning process for military
decisionmaking at echelons with a
command staff.

Tomahawk planning Navy Planning process surrounding launch
of Tomahawk Land Attack Missile to
ensure that it reaches its target at the
prescribed time.

Troop leading
procedures

Army Multistep planning process for military
decisionmaking at lower echelons.

8 Machine Learning-Assisted Command and Control: Technical Analysis

For each of the C2 examples listed in Table 1.2, a member of
the project team interviewed an active-duty or retired servicemember
with two or more years’ experience performing that function. Based
on the servicemember’s experience and a review of available docu-
mentation, the servicemember rated the ten problem characteristics.
Servicemembers came from the Army, Air Force, and Navy, and all
were officers. Because only a single servicemember completed ratings
for each C2 example, it was not possible to assess interrater reliability.
The accompanying free responses that SMEs gave to justify the ratings
establish their face validity. However, additional research is needed to
determine interrater reliability and other psychometric properties of
the rating scales.

Chess

To demonstrate the problem taxonomy, we first apply it to the game of
chess before turning to C2 examples. The goal of chess is to place the
opponent’s king under the inescapable threat of capture (checkmate).
The game is played on an eight-by-eight grid with six different types of
pieces, each of which is allowed to move in different ways. Game play
is turn-based.

For chess, six problem characteristics are entirely absent, and four
are present to a moderate extent (Table 1.4). The primary challenges
arise from the size of the state space (i.e., problem complexity) and the
inability to reduce complexity by dividing the board into separate sub-
games (i.e., reducibility). The difficulty of chess for humans and com-
puter programs alike can be further increased by imposing response
deadlines.

Sensor Management

To demonstrate the problem taxonomy and the structured interview
protocol for a C2 problem, we then applied them to sensor manage-
ment as performed by an air battle manager aboard an AWACS. The
purpose of sensor management is to detect, track, and identify airborne
vehicles that may affect friendly operations. Task inputs include guid-
ance for positive identification, rules of engagement, communication
with other tactical and operational C2 nodes, and sensor signals.

Analysis of Problem Characteristics 9

For sensor management, all but two problem characteristics were
present to a moderate or large extent (Table 1.5). The primary chal-
lenges arise from the relatively high operational tempo, the nonstation-
ary environment, the presence of naturally occurring and adversary-
induced environmental clutter, and the substantial operational risks
and benefits. Numerous secondary and tertiary challenges exist as well.

Table 1.4
Problem Characteristics in Chess

Problem Characteristic Rating Comment

High operational
tempo

3 Reponses are limited to 5 minutes in blitz chess,
15 minutes in quick chess, and 30 minutes in
action chess. Outside tournament play, slower
responses are legal but not socially acceptable.

High rate of
environment change

0 The board, pieces, and rules of the game never
change.

High problem
complexity

2 Chess has approximately 1050 reachable board
states. However, many are not effectively unique.
A limited number of moves is available from any
state.

Low reducibility 3 Spatial decomposability is limited—one
policy is played across the full board. Temporal
decomposability is possible. Minimax, alpha-beta
pruning, and Monte Carlo tree search (MCTS)
work by enumerating and solving for multiple
possible future states and can be parallelized.

Low data availability 0 A virtually limitless number of games can be
simulated.

High environmental
clutter/noise

0 The game does not involve perceptual noise.

Stochasticity of
action outcomes

0 The game does not involve stochastic actions.

Low clarity of goals
and utility

0 The objective of the game (avoid being
checkmated while checkmating the opponent) is
clearly defined.

Incompleteness of
information

0 The board is fully visible.

High operational
risks and benefits

0 Nothing of material value is at stake.

10 Machine Learning-Assisted Command and Control: Technical Analysis

Table 1.5
Problem Characteristics in Sensor Management

Problem Characteristic Rating Comment

High operational
tempo

3 The latency of the AWACS radar limits the
timescale of responses. Additionally, signals
must be correlated across multiple returns to
identify a track.

High rate of
environment change

3 Weather, enemy order of battle, and friendly
rules of engagement and special instructions
may frequently change.

High problem
complexity

2 The multitude of actors creates a large state
space. The action set consists of multiple radar
modes, azimuths, and orientations, which may
be interleaved.

Low reducibility 2 Sensor management is composed of multiple
subtasks, including selecting radar modes,
interpreting radar returns, and identifying and
tracking aircraft. Communication with each
tactical and operational C2 node constitutes
additional subtasks.

Low data availability 2 Vast amounts of data are recorded during
missions. Additionally, sensor performance
characteristics can be demonstrated on test
ranges. Ability to simulate adversary electronic
warfare countermeasures is more limited.

High environmental
clutter/noise

3 Weather conditions affect sensor performance.
Adversaries employ stealth modes and
electronic warfare countermeasures to further
complicate positive identification and tracking.

Stochasticity of
action outcomes

1 Aircraft limiting factors exist, and sensors
occasionally malfunction.

Low clarity of goals
and utility

1 Clarity of air picture can be quantified in terms
of track quality, which depends on latency,
resolution, and registration error.

Incompleteness of
information

2 A large amount of information is concealed,
although a large number of airborne and
multidomain assets can improve the air picture.

High operational
risks and benefits

3 Poor task performance will likely result in loss
of life and aircraft.

11

CHAPTER TWO

Analysis of Solution Capabilities

Definitions

In Volume 1, we defined a taxonomy of eight AI system capabilities
grouped into four categories. The first grouping, complexity, which
includes a single solution characteristic, computational efficiency,
describes how the amount of time/memory that a system needs scales with
the size of the problem. This is roughly analogous to the Big-O notation
used by computer scientists to denote the processor and memory effi-
ciency of algorithms. For instance, if a problem uses exponentially more
clock cycles or memory as the size of the problem instance increases, its
computational efficiency may prove unfavorable. But sometimes a solu-
tion method that appears dubious on this account may prove attractive
in practice: for example, the problem instances for the cases of interest
may all be small, rendering the intractability of the technique on large
instances irrelevant. This is yet another reason why problem character-
ization ought to proceed with exploring potential solutions: overly broad
problem definitions can result in the premature rejection of solutions
that ought to have been considered.

The performance grouping includes three solution characteristics
that aim to capture how well the potential solution is expected to per-
form. The first of these, data efficiency, is primarily for machine learn-
ing (ML) methods, and it describes the number of samples required to
train a model for adequate performance. Obviously, the implications
of this metric depend on one of the problem characteristics included
in the previous taxonomy—data availability. If large quantities of data
are available, poor performance on this metric may prove tolerable. The

12 Machine Learning-Assisted Command and Control: Technical Analysis

other two characteristics in the taxonomy, soundness and optimality,
are related but distinct, particularly in practice. Soundness describes
whether a system will ever output a wrong answer: if it is sound, it
never will. Optimality describes the extent to which the output of the
system is expected to deviate from the best possible answer, as scored
by the objective function of interest. Obviously, a fully optimal system
will be sound, but a sound system does not need to be optimal. For
most difficult real-world problems, globally optimal solutions are either
unavailable or demand prohibitive resources. In many cases, however,
we can find solutions that are locally optimal.

The third grouping comprises two solution characteristics that
describe the flexibility of the potential solution in the face of real-world
complexities, such as novel situations and malformed inputs. The first
of these, robustness, is defined as the ability to produce reasonable out-
puts and/or fail gracefully under unanticipated circumstances. This is
distinguished from soundness in that robustness includes the ability
to process malformed inputs sensibly, for example, by rejecting them.
A system could be sound, because it always outputs a correct answer
on a well-formed input, but not robust, because it outputs an incorrect
answer (which might look well formed on casual inspection) to a mal-
formed input. The other characteristic, learning, captures the system’s
ability to improve performance through training and/or experience.

The final grouping, practicality, includes two characteristics that
seek to capture the extent to which the potential solution can address
human needs. The first of these, explainability, describes the ability of
an expert human to understand why the system produces the outputs
it does. A system with good explainability can output an account of its
reasoning that a human can make sense of, even if that line of reason-
ing was not necessarily one that a human ever would have employed.
This is distinct from the ability to find a high-quality solution: the
system may have made the same kind of reasoning mistakes that a
human nonexpert might make and may have provided the same kind
of explanation of that reasoning as that nonexpert. The assuredness
characteristic describes the ability of an expert human to determine
that the system operates as intended. The intended mode of operation
is defined relative to the problem characteristics, particularly opera-
tional risks and benefits. In practice, this characteristic will often need

Analysis of Solution Capabilities 13

to account for legal or regulatory requirements that may not have been
designed to account for nonhuman decisionmakers.

Structured Interview Protocols

As we did for C2 problem characteristics, we created a structured proto-
col to enable valid and reliable scoring of solution capabilities for a given
AI system. The goal of the protocol was to determine the extent to
which each characteristic was present in the selected system. To facilitate
scoring, we created rating scales with values ranging from 0 (not pres-
ent) to 4 (present to a large extent). The scales contained definitions and
examples corresponding with each of the five levels. Table 2.1 contains
the rating scale for one solution capability, computational efficiency.

Table 2.1
Sample Rating Scale for Computational Efficiency

Computational Efficiency
How the amount of time/memory that a system needs scales with the size of the
problem

Rating Definition Example

0 The computational
time/memory needed
increases exponentially
with problem size.

The planners are testing a tanker planning
algorithm. It requires 8 seconds for two tankers,
54 seconds for four tankers, and 2000 seconds
for eight tankers.

1 The computational
time/memory needed
increases as a polynomial
of problem size.

The planners are testing a tanker planning
algorithm. It requires 4 seconds for two tankers,
16 seconds for four tankers, and 64 seconds for
eight tankers.

2 The computational
time/memory needed
increases linearly with
problem size.

The planners are testing a tanker planning
algorithm. It requires 4 seconds for two tankers,
8 seconds for four tankers, and 16 seconds for
eight tankers.

3 The computational
time/memory needed
increases logarithmically
with problem size.

The planners are testing a tanker planning
algorithm. It requires 4 seconds for two tankers,
6 seconds for four tankers, and 8 seconds for
eight tankers.

4 The computational time/
memory needed remains
constant as the problem
size increases.

The planners are testing a tanker planning
algorithm. No matter the number of tankers,
the algorithm finishes in the same amount of
time.

14 Machine Learning-Assisted Command and Control: Technical Analysis

Application to Specific Artificial Intelligence Systems and
Methods

Using the solution taxonomy and the structured interview protocol,
we analyzed ten AI systems. The results are summarized in Volume 1.
The systems are representative of classic and contemporary approaches
in AI. Some of the systems involve learning, and others involve sub-
stantial upfront knowledge engineering. Additionally, the systems vary
in terms of their suitability for reactive-, planning-, and classification-
type tasks. In total, the sample contains an extremely diverse set of
AI approaches reflective of those being pursued by the Department of
Defense (DoD). The systems are described in Table 2.2.

Next we look in detail at three pairwise combinations of AI
systems or methods: Deep Q-Learning versus iterated-width (IW)
planning, alpha-beta pruning versus AlphaZero, and a mixed-integer
program (MIP) versus a greedy heuristic (GH). These analyses help
illustrate how the taxonomy may be used as a tool for comparison.

Comparison of Deep Q-Learning to Iterated-Width Planning

Two AI approaches, Deep Q-Learning and IW planning, have been
applied to numerous real-time strategy games and, given their high
levels of demonstrated play, have been suggested to be relevant to DoD
missions.1 These approaches have very different origins: Deep Q-Learning
arose from work on learning systems and reflects the convergence of
deep neural network (DNN) and reinforcement learning (RL). In Deep
Q-Learning, a DNN is applied as the subfunction to estimate the value
(or “Q”) function in a model-free RL framework. Unlike some other
forms of RL (such as AlphaZero, described below), model-free RL does
not exploit specified or learned models or structured exploration to

1 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller, Playing Atari with Deep Reinforcement Learning,
Ithaca, N.Y.: Cornell University, 2013; Wilmer Bandres, Blai Bonet, and Hector Geffner,
“Planning with Pixels in (Almost) Real Time,” Thirty-Second AAAI Conference on Artificial
Intelligence, Palo Alto, Calif: AAAI Press, April 2018; U.S. Air Force Scientific Advisory
Board, Technologies for Enabling Resilient Command and Control MDC2 Overview, Washing-
ton, D.C., 2018; G. Zacharias, Autonomous Horizons: The Way Forward, Maxwell Air Force
Base, Ala.: Air University Press, Curtis E. LeMay Center for Doctrine Development and
Education, 2019.

Analysis of Solution Capabilities 15

Table 2.2
Description of Artificial Intelligence Systems

AI System Description

Deep Q-learning An algorithm that uses a DNN to learn a subfunction
that approximates the values (or “Q”) of actions
available to an agent in a model-free RL framework.

IW planning An automated planner that chooses which branches
to explore based on their novelty, as embodied in the
concept of “width.” Branches are only explored if they
contain features or combinations of features that have
not yet been seen.

AlphaZero A general RL algorithm for game play that combines
two components: a DNN that encodes the approximate
values of board states and an MCTS algorithm that
simulates games forward from their current state until
an end state is reached.

Alpha-beta pruning An adversarial search algorithm that stops evaluating
lines of play that could be exploited by a rational
opponent.

MIP A mathematical optimization program in which some or
all variables are restricted to be integers. When solved
using branch and bound, only those branches of the
potential solution space that could possibly produce
a solution better than the best one yet found are
explored.

GH A domain-specific heuristic for MAAP that allocates
resources to targets in order of their priority until all
resources are exhausted.

Instance-based
learning

An approach from cognitive science that retrieves
previous experiences stored in memory based on
the time since they were encoded and the similarity
between the current context and the context in which
they were encoded.

Recurrent neural
network

A class of neural networks that allow previous outputs
to be used as inputs to exhibit temporal dynamic
behavior.

Influence network A probabilistic model of causality that uses Bayesian
updates to predict the probabilities of different
outcomes given different actions and to select actions.

Genetic algorithm A search heuristic inspired by natural selection in which
a population of candidate solutions are evaluated
by a fitness function. The best performing solutions
are retained and combined to produce subsequent
generations of solutions.

16 Machine Learning-Assisted Command and Control: Technical Analysis

find good-quality moves. Instead, all knowledge is learned from expe-
rience and stored in the learned value function.

IW planning arose from research on automated planners. His-
torically, most automated planners worked by selecting promising
branches to explore based on their “distance” from the goal state, as
approximated by domain-specific heuristics. IW planning, in contrast,
chooses branches based on their novelty, as embodied in the concept of
“width.”2 Branches are only explored if they contain features or com-
binations of features that have never been seen before. Nir Lipovetzky
and Hector Geffner empirically demonstrated that IW planning com-
pares favorably to classical planners, despite its simplicity. Moreover, a
variant of the approach called rollout-based IW can plan with a simu-
lator as opposed to an explicit model. This means that IW planning
can be applied to many of the same tasks as Deep Q-Learning, such as
Atari games.3 Table 2.3 compares the two methods.

Deep Q-Learning and IW planning have very different capabilities:

• Computational complexity. For planning tasks, the computational
complexity of Deep Q-Learning for finding an optimal solution
is polynomial in practice given suitable priors and/or task rep-
resentations.4 For reactive tasks, the computational complexity
of Deep Q-Learning is far lower given that the learned policy
essentially encodes stimulus-response mappings. The complexity
of IW planning is dependent on the complexity of the goal rather
than the action or state spaces and is the same for deliberate and
reactive tasks.5

• Data Efficiency. One of the major limitations of Deep Q-Learning is
its poor sample efficiency: enormous amounts of data and train-

2 Nir Lipovetzky and Hector Geffner, “Width and Serialization of Classical Planning
Problems,” ECAI ’12: Proceedings of the 20th European Conference on Artificial Intelligence,
Amsterdam: IOS Press, August 2012.
3 Bandres, Bonet, and Geffner, 2018.
4 Sven Koenig and Reid G. Simmons, Complexity Analysis of Real-Time Reinforcement Learn-
ing, Pittsburgh, Pa.: School of Computer Science Carnegie Mellon University, 1993, pp. 99–107.
5 Lipovetzky and Geffner, 2012.

Analysis of Solution Capabilities 17

ing time are often required for good performance. IW planning,
by contrast, is not a learning method and does not require train-
ing data at all, but it does demand the availability of an accurate
simulator or state transition model.

• Soundness. Model-free RL methods such as Deep Q-Learning can
be unsound: for instance, in some cases they can suggest moves
that are not available in a particular state. IW planners, by con-
trast, are guaranteed to find sound solutions so long as the simula-
tor or state transition model they employ is sound.

• Optimality. Neither method offers optimality guarantees, yet both
have demonstrated levels of performance commensurate with the
most skilled humans.

• Robustness. When encountering novel situations, Deep Q-Learn-
ing can break or recommend nonsensical actions. IW planning,
meanwhile, is as robust as its simulator or state transition model.
Moreover, it is sometimes possible to flag situations that break
the simulator used by IW planning to allow for countermeasures,
such as requesting human advice.

• Learning. RL, by definition, is able to learn. Moreover, some
forms of RL offer performance guarantees—given enough data
and training time, the agent is guaranteed to discover a nearly

Table 2.3
Solution Capabilities of Deep Q-Learning and Iterated-Width Planning

Solution Capability Deep Q-Learning IW Planning

Computational efficiency 1/4a 1

Data efficiency 0 4

Soundness 1 4

Optimality 3 3

Robustness 0 3

Learning 3 0

Explainability 0 3

Assuredness 0 3

a Exponential for planning tasks and logarithmic for reactive tasks.

18 Machine Learning-Assisted Command and Control: Technical Analysis

optimal policy. IW planning does not learn, and therefore its per-
formance does not improve with experience.

• Explainability. The policies and state values learned by Deep
Q-Learning are typically difficult for humans to interpret. The
DNN representing the value function can be queried for its
response to particular inputs, but for a nontrivial problem, the
input space is too large for comprehensive exploration to be prac-
tical. In contrast, the reasoning process used by IW planning to
find a solution is comprehensible by humans (even if it is not nec-
essarily one that a human would ever use). Further, the history of
state exploration by the IW planner can be used to reconstruct
how it recommended a decision.

• Assuredness. A major shortcoming of model-free RL methods, such
as Deep Q-Learning, is the difficulty of verification and valida-
tion (V&V). With IW planners, if the simulator or state transi-
tion model is valid, the planner is valid as well.

Comparison of AlphaZero to Alpha-Beta Pruning

As another example of using the solution taxonomy to compare AI sys-
tems, the AlphaZero deep reinforcement learning (DRL) system has
recently overtaken alpha-beta pruning as the most effective algorithm
for playing chess. The respective approaches of AlphaZero and alpha-
beta pruning are technically very different. AlphaZero combines two
components: a DNN that encodes the approximate values of board
states and an MCTS algorithm that simulates games forward from
their current state until an end state is reached.6 The DNN is learned
off-line through self-play, and the MCTS is implemented online with
self-play. Alpha-beta pruning, in contrast, is a classic search algorithm
that prospectively expands potential game states, assuming that for
each game state both agents will select optimal moves.7 The agent then

6 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabi, “A General Reinforcement Learning Algo-
rithm that Masters Chess, Shogi, and Go Through Self-Play,” Science, Vol. 362, No. 6419,
December 2018.
7 S. Russell and P. Norvig, Introduction to Artificial Intelligence: A Modern Approach, New
Delhi: Prentice-Hall of India, 1995.

Analysis of Solution Capabilities 19

chooses the move for the current game state that is expected to pro-
duce the most attractive future state. Because it is not computationally
feasible to fully expand the game tree, search terminates at a specified
depth, at which point a heuristic is used to estimate the values of dif-
ferent intermediate game states that have been reached.

AlphaZero and alpha-beta pruning also have very different capa-
bilities (Table 2.4). To summarize some key distinctions: AlphaZero

Table 2.4
Solution Capabilities of AlphaZero and Alpha-Beta Pruning

Solution
Capability AlphaZero

Alpha-Beta
Pruning Rationale

Computational
efficiency

3 3 Heavy rollouts in AlphaZero require a
large amount of simulated online play.
The number of branches that alpha-beta
pruning explores increases in polynomial
time with search depth.

Data efficiency 0 4 AlphaZero approximates game values based
on hundreds of centuries of simulated self-
play. Alpha-beta pruning does not need
training data.

Soundness 4 4 Both approaches can only recommend legal
board moves.

Optimality 3 2 Though not provably optimal, AlphaZero
outperforms all other known chess players.
Though optimal in the limit, alpha-beta
pruning is exploitable on the basis of its
finite search depth and the heuristics it
employs.

Robustness 0 2 Although AlphaZero can be trained for
different games, it does not generalize
knowledge from one game to another.
Alpha-beta pruning is as general as the
model and heuristics that it employs.

Learning 3 0 AlphaZero is a learning architecture, although
it is infeasible to train it online. Alpha-beta
pruning is not capable of learning.

Explainability 0 4 AlphaZero’s policy cannot be explained
to humans. The alpha-beta search rule is
explainable, and the heuristics are often
modeled after human decision processes.

Assuredness 0 4 AlphaZero cannot be formally verified.
Alpha-beta pruning can be verified by
checking the model and heuristics.

20 Machine Learning-Assisted Command and Control: Technical Analysis

is trained using hundreds of centuries of self-play, whereas alpha-beta
pruning requires expert knowledge but no training data. AlphaZero
is near optimal in that no other human or AI system outperforms it.
However, the manner in which AlphaZero achieves such a high level
of play complicates V&V and also limits explainability. Alpha-beta
pruning is suboptimal, but it can be verified and validated, and its
moves can be explained. Finally, AlphaZero can learn lines of play
that do not require—or that go beyond—expert knowledge. Yet
AlphaZero’s data-intensive learning methods limit the possibility of
online learning. Alpha-beta pruning is only as capable as the heuris-
tics provided to it by human experts and does not improve further
with experience.

Comparison of a Mixed Integer Program and a Greedy Heuristic

Finally, the solution taxonomy can be used to compare AI systems
intended for use with C2 process. For example, the MAAP is the time-
phased air and space scheme of maneuver for a given ATO period.
Among other things, the MAAP assigns aircraft to packages and pack-
ages to targets to achieve the effects specified on the joint integrated
prioritized target list. The scheduling problem can be specified as a
set of constraints and solved using MIP techniques. Alternatively, the
scheduling problem can be solved using a simple GH—for example,
“schedule missions in order of priority until all resources have been
exhausted.”8

The MIP and the GH have very different capabilities (Table 2.5).
Both methods begin from the root of valid solutions and so are guar-
anteed to provide sound schedules. Neither method uses training data
nor improves further with experience. Given sufficient computational
resources, the MIP will reduce the optimality gap to an arbitrary
degree. Yet, relative to the GH, the MIP’s optimality comes at the
expense of computational efficiency and explainability.

8 Kevin. J. Rossillon, Optimized Air Asset Scheduling Within a Joint Aerospace Operations
Center, Cambridge, Mass.: MIT Press, 2015. Additional details about the MIP and the heu-
ristic are provided in Chapter 5.

Analysis of Solution Capabilities 21

Table 2.5
Solution Capabilities of Mixed-Integer Program and Greedy Heuristic

Solution
Capability MIP GH Rationale

Computational
efficiency

0 4 MIP time complexity increases in polynomial
time with number of variables. GH increases
in linear time or less with number of variables.

Data efficiency 4 4 Neither method uses training data.

Soundness 4 4 Both methods begin from the root of valid
solutions.

Optimality 4 1 Given sufficient run time, the MIP will return
a solution within the desired optimality gap.
No guarantees can be provided about the
quality of the GH solution.

Robustness 2 2 Changes to the problem can affect the MIP
solve time or the GH’s solution quality.

Learning 0 0 Neither method learns.

Explainability 3 4 Although the rationale behind the MIP
can be explained, the manner in which it
improves solutions is difficult to track and
intuit. The GH is based on how a human
performs the task.

Assuredness 4 4 The MIP can be verified by checking the
potentially large number of constraints. The
GH can be formally verified.

23

CHAPTER THREE

Expert Panel Design, Implementation, and
Additional Results

This chapter contains additional details about the design, implementa-
tion, and results of the expert panel. The panel followed a structured
approach whereby individuals answered questions during two rounds.
Between rounds, they reviewed summaries of one another’s responses.
This approach, called a Delphi panel, can be used to collect and share
informed judgments and to build consensus among experts. As of yet,
the literature does not contain an agreed on mapping from problem
characteristics to required solution capabilities. The purpose of con-
ducting a Delphi panel was to build such a mapping from the informed
judgments of AI experts.

Panel Design and Implementation

The panel was conducted using ExpertLens—an online, modified-
Delphi platform. Each round of the panel took place over about ten
days. Round 1 was open from November 18 to November 27, Round 2
was open from December 3 to December 12, and Round 3 was open
from December 13 to December 23.

In Rounds 1 and 3, experts were asked to rate the importance
of solution capabilities for the different problem characteristics. The
rounds contained ten study pages. One problem characteristic was pre-
sented at the top of each page. The eight solution capabilities were dis-
played below the problem characteristic (Figure 3.1). Experts selected

24 Machine Learning-Assisted Command and Control: Technical Analysis

a radio button to rate the importance of each solution capability for
the problem characteristic, and they provided explanations in a text
box below the rating scale. The order of problem characteristics across
pages and the sequence of solution capabilities within pages were ran-
domized across experts.

In Round 2, experts viewed a bar chart with the distribution
of ratings for each problem-solution pair (Figure 3.2). The bar chart
marked the expert’s Round 1 response with a red point and the median
response with a vertical blue line. A table appeared beside the bar chart.
The table contained thematic groupings of responses given by experts
for ratings of low, moderate, and high importance.

Not important Extremely important

Problem characteristic: Operational tempo

Operational tempo is the amount of time the problem allows for actors to sense,
decide, and act.

Example: Along extended timescales, Air Force planning processes may take from
12 to 24 hours. Along moderate timescales, agents in turn-based games like Chess may
be given from minutes to hours per move. Along brief timescales, agents playing games
like Starcraft make hundreds of moves per minute.

How important is each of the following systems capabilities for a problem with a high
operational tempo?

Data efficiency

Definition: Data efficiency is the amount of data (samples) that a system needs to
produce acceptable-quality solutions.

Example: DeepMind’s AlphaZero plays Chess and other games far better than any
human player. But to attain this level of mastery, the system plays more games than
a human could in hundreds of lifetimes. At the opposite extreme, “one-shot learning”
aims to learn generalizable models, most typically for a category of objects in image
recognition, from the observation of a single example.

1 2 3 4 5 6 7 8 9

Please briefly explain your response. What factor(s) influenced your rating
the most?

Figure 3.1
Sample Round 1 and Round 3 Response Section Interfaces

Expert Panel Design, Implementation, and Additional Results 25

Problem characteristic: Operational tempo

Data efficiency

Definition: Data efficiency is the amount of data (samples) that a system needs to
produce acceptable-quality solutions.

Example: DeepMind’s AlphaZero plays Chess and other games far better than any
human player. But to attain this level of mastery, the system plays more games
than a human could in hundreds of lifetimes. At the opposite extreme, “one-shot
learning” aims to learn generalizable models, most typically for a category of
objects in image recognition, from the observation of a single example.

Group responses from 44 participants

Pe
rc

en
ta

g
e

Not important Extremely important

80

60

40

20

0
81 2 3 4 5 6 7 9

Reasons For Comment Summary

Low ratings
(1–3)

High ratings
(7–9)

• Data efficiency is the direct approach for dealing with
low data availability

Uncertain
ratings
(4–6)

View Participants’ Round One Comments

Round Two discussion

New discussion topic

Figure 3.2
Sample Round 2 Response Summary

26 Machine Learning-Assisted Command and Control: Technical Analysis

Data Analysis

Because of the bounded nature of the response scale, we used median
values to measure central tendencies. To determine whether partici-
pants agreed for each problem-solution pair, we followed the method
described by D. Khodyakov and his colleagues.1 We first calculated the
interpercentile range:

Interpercentile Range = 70th percentile − 30th percentile.

We then calculated the interpercentile range adjusted for symmetry:

Interpercentile Range Adjusted for Asymmetry =
2.35 + (Asymmetry Index × 1.5).

The asymmetry index equals the magnitude of the difference between
the median importance rating and the center of the response scale.
When the interpercentile range of responses exceeds the interpercen-
tile range adjusted for asymmetry, it indicates that the distribution of
ratings is bimodal and that disagreement exists. In the case of no dis-
agreement, we looked to the value of the median response to determine
whether the group rated the pair as “Not Important” (lower tertile),
“Moderately Important” (middle tertile), or “Extremely Important”
(upper tertile).

To better explain importance ratings, we thematically analyzed
free responses. As in previous ExpertLens panels, we grouped rationale
comments for each problem-solution pair based on the tertiles of the cor-
responding numerical responses. Two researchers, trained by the prin-
cipal investigator, reviewed and coded all qualitative comments to iden-
tify emergent themes. All coding results were reviewed by the principal
investigator, and coding disagreements were discussed and resolved.

1 D. Khodyakov, S. Grant, B. Denger, K. Kinnett, A. Martin, M. Booth, C. Armstrong,
E. Dao, C. Chen, I. Coulter, H. Peay, G. Hazlewood, and N. Street, “Using an Online,
Modified Delphi Approach to Engage Patients and Caregivers in Determining the Patient-
Centeredness of Duchenne Muscular Dystrophy Care Considerations,” Medical Decision
Making, Vol. 39, No. 8, 2019.

Expert Panel Design, Implementation, and Additional Results 27

Limitations

The selection of participants was nonrandom, as is typical for expert
panels. In addition to being experts in AI, most participants worked
in military settings. As such, although the problem characteristics and
solution capabilities are general in nature, the results of the expert panel
are most applicable to the case of AI in military contexts.

Results

Out of 60 invited individuals, 49 (82 percent) participated in at least
one panel round. Out of these 49 individuals, all participated in the
first round, 38 participated in the second round (78 percent), and
25 participated in the third round (51 percent). Aggregating across the
first and third rounds, experts provided a total of 5,270 numerical rat-
ings and 2,009 written responses.

Expert Ratings

After the first round, the group rated 36 of the 80 problem-solution
pairs as “extremely important” (i.e., median rating > 6.5). Disagree-
ment existed for 8 of the 80 pairs. After the third round, group ratings
scarcely changed, but disagreement remained for only 3 of the 80 pairs,
reflecting increased consensus.

Figure 3.3 shows the median values and ranges of values for each
of the 80 problem-solution pairs after Round 3. Stars denote problem-
solution pairs where disagreement existed. Vertical lines denote cutoffs
between the three categories of responses: “Not Important,” “Moder-
ately Important,” and “Extremely Important.”

To identify potentially redundant problem characteristics, we con-
sidered the importance of the eight solution capabilities to each. The
correlation was strongest between stochastic action effects and envi-
ronmental clutter (r 2 = 0.89), meaning those problem characteristics
called for similar solution capabilities. This is sensible given that both
involve dealing with uncertainty. Overall, problem characteristics were
only modestly correlated with one another (mean r 2 = 0.32), indicating
their distinctiveness.

Likewise, to detect potentially redundant solution capabilities, we
considered the importance of each to the ten problem characteristics. The

28 Machine Learning-Assisted Command and Control: Technical Analysis

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

Data availability

Stochastic action effect

Nonstationary

Incomplete information

Complexity

Operational risks/benefits

Environmental clutter

Operational tempo

Clarity of goal/utility

Reducibility

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

1 3 5 7 9

Optimal
Sound

Comp efficient
Explainable

Data efficient
Learning
Assured
Robust

Figure 3.3
Distributions of Ratings by Problem-Solution Pair at Conclusion of Round 3

Expert Panel Design, Implementation, and Additional Results 29

correlation was strongest between soundness and assured (r 2 = 0.69),
meaning those solution capabilities were called for by similar problem
characteristics. This is sensible given that both involve ensuring safe
and reasonable performance. Overall, solution capabilities were only
modestly correlated with one another (mean r 2 = 0.22), indicating
their distinctiveness.

Expert Free Responses

To illustrate the types of free responses given by experts, Table 3.1 con-
tains individual expert’s responses from nine problem-solution pairs in
Round 1. The first three pairs were rated “Extremely Important” by
the group. The explanations given are intuitive; consequential prob-
lems require assured solutions; data efficiency is needed to deal with
low data availability; and robustness is essential for handling noisy
environment inputs.

The next three pairs were rated as “Not Important” by the group.
Interestingly, all involve one solution capability: optimality. The expla-
nations given address the impossibility of finding optimal solutions
and the importance of satisfying other performance criteria, such as
speed of response.

The final three pairs were rated as “Moderately Important” by the
group but contained a wide range of individual expert responses. In
these cases, explanations convey meaningful differences in how experts
perceived and rated the importance of a given solution capability for a
problem characteristic. For example, some experts considered learning
to be extremely important for complex problems because of the infea-
sibility of hand-coding solutions for such problems. Others considered
it too hard to train an agent to perform complex tasks. Some experts
considered explainability to be extremely important when operational
tempo was high to allow humans to comprehend and accept AI solu-
tions. Others saw explainability as less important due to the limited
time humans have to consider how the AI system had arrived at its solu-
tion. Finally, some experts considered explainability to be extremely
important for irreducible problems to allow humans to accept answers
without needing to check all subproblems. Others considered it less
important due to the inherent difficulty of explaining and understand-
ing solutions to irreducible problems.

30 Machine Learning-Assisted Command and Control: Technical Analysis

The following set of tables (Tables 3.2‒3.11) contain groups of
themes reported for all problem-solution pairs. The number of experts
giving the response is contained in the parentheses along with the
importance rating assigned (“Not Important,” “Moderately Impor-
tant,” “Extremely Important”). These give insights into the reasons
behind the pairings that the expert panel created.

Table 3.1
Experts’ Rationale for Ratings in Round 1

Problem
Characteristic

Solution
Capability Importance Quotation

High risks/
benefits

Assured Extremely “By definition, it’s very important to
get the right answer in high-stakes
situations.”

Low data
availability

Data efficient Extremely “Given low data availability, the
algorithm needs high data efficiency.”

Environmental
clutter

Robust Extremely “Robustness is all-important for
dealing with noisy environments.”

Low goal/
utility clarity

Optimal Not “If goals aren’t well defined, optimality
is an essentially meaningless concept.”

Incomplete
information

Optimal Not “It is impossible to say something is
optimal given many unknowns.”

High tempo Optimal Not “If speed is crucial, then you don’t
have time to find the exactly optimal
solution.”

Problem
complexity

Learning Not “Learning likely to be harder in larger
problems.”

Extremely “Difficult to hard code a solution to a
complex problem.”

Operational
tempo

Explainability Not “Useful in hindsight, but not usually
feasible when a decision needs to be
made quickly.”

Extremely “Need to be able to be quickly
summarize for the decisionmaker to
trust the system.”

Reducibility Explainability Not “If we can’t understand irreducible
systems, we can’t expect AI to explain
it to us simply.”

Extremely “Useful for irreducible problems since
it will be harder to check substeps of
the solution along the way.”

Expert Panel Design, Implementation, and Additional Results 31

Table 3.2
Pairing Solution Capabilities to Problem Complexity in Round 1

Solution
Capability Thematic Response

Computational
efficiency

• Factors besides algorithm complexity may mitigate run-time
constraints. (n = 4, Moderately Important)

• Complex problems have huge input sizes, so you must be able to
process them efficiently. (n = 13, Extremely Important)

Data efficiency • The more complex the problem, the more data needed to
learn about it, rendering data efficiency. (n = 7, Moderately
Important)

• If the state space is huge, it is inherently difficult to gather
exhaustive training data. This necessitates making the most of
the limited training data on hand. (n = 7, Extremely Important)

• Data efficiency is important to reduce training time for
complex problems. (n = 4, Extremely Important)

Soundness • Soundness is compromised for complex problems because it
depends on how accurately the system developer captures
the constraints of the task/environment. (n = 5, Moderately
Important)

• Soundness is needed to ensure that results are valid across the
large input and output spaces. (n = 6, Extremely Important)

• As complexity increases, it becomes harder for humans to check
solutions and determine their soundness. (n = 2, Extremely
Important)

Optimality • Optimality is likely unobtainable for complex real-world
problems. (n = 22, Not Important)

Robustness • Complex problems may present unanticipated circumstances,
warranting robustness. (n = 12, Extremely Important)

Learning • Learning is likely to be harder for large problems. (n = 3,
Moderately Important)

• Hard to audit the performance of a learning system on a
complex task. (n = 2, Moderately Important)

• Too difficult to hard code a solution to a complex problem.
(n = 6, Extremely Important)

Explainability • Results of complex problems may be too hard to explain to a
human. (n = 3, Moderately Important)

• Humans have greater difficulty understanding complex
problems, which calls for greater explainability. (n = 12,
Extremely Important)

Assuredness • Assumes that expert familiar with the problem space can identify
what appropriate behavior is, which may be compromised for
complex problems. (n = 4, Moderately Important)

• More important for highly complex problems because such
problems allow for a wide range of outcomes and points of
failure. (n = 9, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

32 Machine Learning-Assisted Command and Control: Technical Analysis

Table 3.3
Pairing Solution Capabilities to Reducibility in Round 1

Solution
Capability Thematic Response

Computational
efficiency

• Solutions to irreducible problems cannot be parallelized, and so the
algorithmic efficiency is important. (n = 16, Extremely Important)

Data efficiency • Models for complex problems require large amounts of data
anyways, and so data efficiency does not matter. (n = 3, Not
Important)

• The size of irreducible problems argues for data efficient
models, since the effective size of training data—relative to
problem size—may be quite small. (n = 8, Extremely Important)

Soundness • Since it may be more difficult to find optimal solutions to complex
problems, soundness may suffice. (n = 7, Extremely Important)

Optimality • If the goal is to respond faster than the adversary, speed is more
important than optimality. (n = 2, Not Important)

• High complexity makes optimality unobtainable in most cases.
(n = 10, Moderately Important)

Robustness • Significantly more difficult to maintain stable behavior when
problem factors are tightly coupled. (n = 8, Extremely Important)

• Solutions must be robust to error and model misspecification,
which may be more likely for complex problems. (n = 1, Extremely
Important)

• A complex problem is likely to cause unusual (n = bad) solutions.
(n = 2, Extremely Important)

Learning • Learning against an irreducible problem is infeasible/inefficient.
(n = 2, Not Important)

• The difficulty of representing a problem and knowledge
motivates learning methods. (n = 9, Extremely Important)

Explainability • If we cannot understand irreducible systems, how can we expect
AI to explain them to us simply. (n = 4, Moderately Important)

• Useful for irreducible problems because it is not possible to
check substeps of the solution along the way. (n = 8, Extremely
Important)

• Since irreducible problems’ solutions are more opaque, users need
more information to trust results. (n = 2, Extremely Important)

Assuredness • Challenging and possibly infeasible for irreducible problems.
(n = 2, Moderately Important)

• Necessary to ensure model is functioning properly, especially
since output may be more sensitive to inputs in an irreducible
system. (n = 8, Extremely Important)

• Since irreducible problems’ solutions are more opaque, more
information is needed to verify and validate the solution. (n = 3,
Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

Expert Panel Design, Implementation, and Additional Results 33

Table 3.4
Pairing Solution Capabilities to Rate of Environment Change in Round 1

Solution
Capability Thematic Response

Computational
efficiency

• Dynamic environments may drive frequent need to recalculate and
to adapt. (n = 8, Extremely Important)

• Models may need to relearn parameters relatively quickly. (n = 6,
Extremely Important)

• You may need real-time dynamic planning capabilities. Speed
and low complexity are important for such systems. (n = 3,
Extremely Important)

Data efficiency • Data efficiency governs how quickly a system can adapt to a
changing task/environment. (n = 18, Extremely Important)

• Data efficiency is important because older data will be less rel-
evant, effectively reducing the training sample. (n = 7, Extremely
Important)

Soundness • With the conditions changing, soundness is less important as any
new solution could be rendered obsolete at any moment. (n = 2,
Not Important)

• Must be able to show that solutions remain valid even as envi-
ronment changes. (n = 12, Extremely Important)

Optimality • Hard to effectively compute optimal solutions in nonstationary
environments since they change over time. (n = 15, Not Important)

• If the goal is to respond faster than the adversary, speed is more
important than optimality. (n = 5, Not Important)

Robustness • Adaptation to change is a key factor driving need for robustness.
(n = 15, Extremely Important)

Learning • Learning may be a liability in a nonstationary environment, due
to overweighting stale data. (n = 3, Not Important)

• Knowledge transfer, concept discovery, and analogous reasoning
may be more important than online learning in a rapidly evolving
environment. (n = 4, Moderately Important)

• Learning enables adaptation to changing environment. (n = 19,
Extremely Important)

Explainability • Explaining behavior is not as relevant when explanations can
quickly become irrelevant. (n = 7, Not Important)

• Must know how the system is thinking under dynamic conditions to
judge if it is “behind the power curve.” (n = 11, Extremely Important)

• Explainability is even more important to engender trust in a
dynamic environment. (n = 2, Extremely Important)

Assuredness • More difficult to verify and validate when environment is nonsta-
tionary. (n = 4, Moderately Important)

• Important to recertify a model or algorithm for a changed envi-
ronment and to determine when it should be discarded.
(n = 5, Extremely Important)

• Important that the users understand how well the system
responds to changes and what happens while the system is
adapting. (n = 2, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

34 Machine Learning-Assisted Command and Control: Technical Analysis

Table 3.5
Pairing Solution Capabilities to Operational Tempo in Round 1

Solution
Capability Thematic Response

Computational
efficiency

• With high operational tempo, the algorithm must solve problems
quickly. (n = 24, Extremely Important)

Data efficiency • Training is almost always done off-line, in which case data
efficiency does not relate to operational tempo. (n = 14,
Moderately Important)

• Data efficiency, in terms of amount of data needed to reach
a solution, may be important if there is limited time to gather
data. (n = 5, Extremely Important)

Soundness • Assuring soundness may take more compute and decision time.
(n = 1, Not Important)

• Approximation is more important to deliver incremental
solutions quickly. (n = 4, Moderately Important)

• Soundness is critical since speed minimizes a human’s ability
to verify the AI’s solution. (n = 8, Extremely Important)

Optimality • If speed is critical, there may not be time to find optimal
solutions. (n = 20, Not Important)

Robustness • High operational tempo may imply a narrowly defined
task, making robustness less important. (n = 4, Moderately
Important)

• In a high-tempo setting, there may not be time for a human to
double-check the AI output. (n = 8, Extremely Important)

• In a high-tempo setting, there may not be time to fix a brittle
system and to debug. (n = 2, Extremely Important)

Learning • Likely not time for learning with high operational tempo. (n = 8,
Not Important)

• Learning-based algorithms, once trained, are typically
much quicker for inference and prediction. (n = 3, Extremely
Important)

Explainability • Useful but possibly infeasible when a decision needs to be
made quickly. (n = 13, Not Important)

• Explanation might be costly algorithmically. (n = 2, Moderately
Important)

• Explainability engenders trust, which is important if it reduces
time the human spends checking the AI. (n = 3, Extremely
Important)

Assuredness • V&V desirable because there is less time for a human to check
outputs. (n = 9, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

Expert Panel Design, Implementation, and Additional Results 35

Table 3.6
Pairing Solution Capabilities to Data Availability in Round 1

Solution
Capability Thematic Response

Computational
efficiency

• If training data is the limiting factor, a sophisticated
algorithm may be needed to overcome that. (n = 8, Not
Important)

• Greater algorithm complexity is tolerable since it only has
a small amount of data to run on. (n = 4, Not Important)

Data efficiency • Data efficiency is the direct approach for dealing with low
data availability. (n = 25, Extremely Important)

Soundness • Ensuring soundness may be impossible with low data
availability. (n = 4, Not Important)

• Important to have soundness when working with sparse
data to avoid overfitting. (n = 4, Moderately Important)

• Because the variable space is undersampled, soundness is
more important. (n = 2, Extremely Important)

Optimality • Without sufficient training data, it is inherently difficult to
optimize the objective function. (n = 12, Not Important)

Robustness • It is not feasible to produce robust models when there is
little data for training. (n = 4, Moderately Important)

• Robustness is necessary with limited data, as there
are likely gaps in coverage of possible inputs. (n = 11,
Extremely Important)

Learning • In general, learning is hampered by low data, motivating
the use of alternate model-based methods. (n = 3, Not
Important)

• Given little prior data, it is important to continue adapting
and learning online. (n = 12, Extremely Important)

Explainability • Complexity of mathematical solutions to small data problems
will make them hard to explain. (n = 1, Not Important)

• Given less data, it may be easier to explain a decision.
(n = 2, Moderately Important)

• If there is not much data to use, you must be sure that the
system is appropriately using the data it does have. (n = 9,
Extremely Important)

Assuredness • Difficult to verify and validate if little data is available for
testing. (n = 2, Moderately Important)

• V&V needed to characterize and bound error, determining
when an algorithm does not have enough data to be
effective. (n = 4, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

36 Machine Learning-Assisted Command and Control: Technical Analysis

Table 3.7
Pairing Solution Capabilities to Environmental Clutter in Round 1

Capability Thematic Response

Computational
efficiency

• More computational resources must be dedicated to
preprocessing noisy data. (n = 9, Moderately Important)

• If computation requirements are more taxed in a noisy
environment, low algorithmic complexity may be desirable.
(n = 4, Moderately Important)

• With more noise, iteration will be important—an algorithm
should propose a solution and allow humans to interact with
the solution. (n = 1, Extremely Important)

Data efficiency • Data efficiency can be a liability in a noisy data set—an
algorithm that converges quickly on a good solution in a clean
data set can converge quickly on a bad solution in a noisy one.
(n = 3, Not Important)

• Data containing systematic/environment noise will typically
require more data collection to overcome noise. (n = 14,
Moderately Important)

• Data efficiency can, in a supervised setting, enable the
development of practical noise filters. (n = 2, Extremely Important)

Soundness • In a noisy environment, formal soundness is too strict of a
standard. (n = 6, Not Important)

• Rectifying noise and providing a sound solution is critical in a
noisy environment. (n = 7, Extremely Important)

Optimality • With lots of noise, optimality is not possible. (n = 12, Not Important)
• A system may be designed to optimally cope with clutter/noise.

(n = 2, Moderately Important)

Robustness • Robustness is all-important for dealing with noisy environments.
(n = 19, Extremely Important)

Learning • Learning in cluttered environment may be risky due to overfitting
and/or inefficiency. (n = 5, Not Important)

• Both learning and nonlearning systems can be designed to
handle noise. (n = 2, Moderately Important)

• The ability to learn statistical regularities seems especially useful
in a noisy environment. (n = 14, Extremely Important)

• It may be impossible to anticipate noise encountered in an
operational environment, making online learning critical.
(n = 2, Extremely Important)

Explainability • Explainability is even harder in case of noisy inputs and may not
be worth the effort. (n = 8, Not Important)

• With noisy inputs, it is important to know why the algorithm
makes a particular choice. (n = 11, Extremely Important)

Assuredness • Infeasible in noisy environments—the system may work as
intended but produce bad results because of noisy inputs.
(n = 3, Moderately Important)

• Effective V&V can ensure an approach is suitable given different
models of noise. (n = 15, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

Expert Panel Design, Implementation, and Additional Results 37

Table 3.8
Pairing Solution Capabilities to Clarity of Utility/Goals in Round 1

Capability Thematic Response

Computational
efficiency

• If goals are unclear, the algorithm must explore multiple
possible solutions, which is enabled by low complexity. (n = 13,
Extremely Important)

Data efficiency • Data efficiency can be a liability in a noisy data set—an
algorithm that converges quickly on a good solution in a clean
data set can converge quickly on a bad solution in a noisy one.
(n = 3, Not Important)

• Data containing systematic/environment noise will typically
require more data collection to overcome noise. (n = 14,
Moderately Important)

• Data efficiency can, in a supervised setting, enable the
development of practical noise filters. (n = 2, Extremely
Important)

Soundness • Without clarity about the goals/utility of end states, it may not
be possible to evaluate soundness. (n = 2, Not Important)

• Since optimal solutions are not definable, soundness is
relatively more important. (n = 14, Extremely Important)

Optimality • If goals are not well defined, optimality is a meaningless
concept. (n = 19, Not Important)

Robustness • The model should perform robustly across a range of possible
goals. (n = 10, Extremely Important)

Learning • Many types of learning are critically dependent on clearly
stated goals and objectives. (n = 8, Moderately Important)

• Algorithms can learn even weakly favored preference. (n = 12,
Extremely Important)

• Learning may be important to adapt to changing preferences.
(n = 3, Extremely Important)

Explainability • Explanations of AI outputs may help humans gain clarity on
goals and utility. (n = 10, Extremely Important)

• When goals/utility functions are ill defined, it is more
important to understand how the system works since it is
not optimizing against a known criterion. (n = 10, Extremely
Important)

Assuredness • V&V is ill defined if the intended purpose of the system is not
clear. (n = 10, Moderately Important)

• Because objective performance measures are lacking, V&V is
needed to give confidence in the system. (n = 3, Extremely
Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

38 Machine Learning-Assisted Command and Control: Technical Analysis

Table 3.9
Pairing Solution Capabilities to Stochasticity of Action Outcomes in Round 1

Capability Thematic Response

Computational
efficiency

• If outcomes appear stochastic because of the complexity of
the problem, a complex model may be needed to account for
that. (n = 4, Not Important)

• Problems with stochastic action outcomes require more
training/sampling, so lower complexity is important.
(n = 11, Moderately Important)

Data efficiency • Data efficiency is less important because, given stochastic
outcomes, more data are needed anyway to make accurate
predictions. (n = 17, Moderately Important)

• Incorporating model-based methods of effector outcomes
can provide significant gains without requiring additional
samples. (n = 2, Moderately Important)

Soundness • Not feasible with stochastic outputs. (n = 5, Moderately
Important)

• The inherent uncertainty of stochastic problems makes
it important to ensure that solutions are sound. (n = 9,
Extremely Important)

Optimality • The stochastic nature of action outcomes means that
optimality is effectively impossible. (n = 13, Not Important)

• A system may be designed to optimally cope with stochastic
action outputs. (n = 5, Extremely Important)

Robustness • Stochastic actions entail unexpected outcomes, which call for
robustness. (n = 15, Extremely Important)

Learning • Stochasticity and learning might be diametrically opposed due
to the risk of learning false patterns and the inefficiency of
learning. (n = 5, Moderately Important)

• Building probabilistic action models may require sampling
and learning. (n = 6, Extremely Important)

• Because stochastic outcomes can produce states not
experienced in the training set, the system will need to
continue to learn online. (n = 5, Extremely Important)

Explainability • Explainability is inherently difficult in a stochastic system.
(n = 4, Not Important)

• Explanation may help to make sense of unexpected outputs
and to properly attribute failure to the stochastic environment.
(n = 10, Extremely Important)

Assuredness • V&V in a stochastic system is difficult and may require
unrealistic amounts of test data. (n = 4, Not Important)

• Given inevitable errors due to stochastic nature of action
outcomes, V&V is needed to ensure that failures are not
attributable to the system. (n = 6, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

Expert Panel Design, Implementation, and Additional Results 39

Table 3.10
Pairing Solution Capabilities to Incomplete Information in Round 1

Capability Thematic Response

Computational
efficiency

• A complex algorithm may be needed to resolve imperfect
information. (n = 5, Not Important)

• With incomplete information, an algorithm may need to
explore enormous numbers of combinations of plausible data
sets, making efficiency important. (n = 8, Extremely Important)

Data efficiency • If compensating for incomplete information with learning,
data efficiency becomes important. (n = 5, Moderately
Important)

• Data demands are larger with incomplete information, so we
need a more efficient learner. (n = 9, Extremely Important)

Soundness • Concept of soundness is less important if we have limited
faith in our assumptions about the problem to begin with.
(n = 8, Not Important)

• Soundness is essential despite gaps in knowledge. (n = 4,
Extremely Important)

Optimality • Impossible to say something is optimal given many unknowns.
(n = 19, Not Important)

Robustness • Robustness is central to dealing with unknowns in problems
of uncertain information. (n = 18, Extremely Important)

Learning • Learning is important for systems to improve at generalizing
over incomplete information. (n = 13, Extremely Important)

• Online learning is particularly important in cases where
additional information is gained during task performance.
(n = 9, Extremely Important)

Explainability • Relatively less important since the model is building in lots of
assumptions anyway. (n = 5, Moderately Important)

Assuredness • V&V is only possible to the extent that information about the
problem is available. (n = 2, Not Important)

• Particularly important given that the AI’s performance may
be questionable when given incomplete information. (n = 6,
Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

40 Machine Learning-Assisted Command and Control: Technical Analysis

Table 3.11
Pairing Solution Capabilities to Operational Risks and Benefits in Round 1

Capability Thematic Response

Computational
efficiency

• Whether algorithm works, irrespective of complexity, is all that
matters. (n = 8, Not Important)

• If operational risks are time sensitive, low complexity becomes
essential. (n = 6, Extremely Important)

• High-risk situations are more likely to involve humans. Models
are only useful if they can integrate with human planners
frequently. (n = 2, Extremely Important)

Data efficiency • Given high stakes, extra data may be collected if needed to
produce quality outputs. (n = 5, Not Important)

Soundness • Given the criticality of the application, the output must be
sound. (n = 16, Extremely Important)

Optimality • Optimality is unobtainable for most real-world problems. (n = 3,
Not Important)

• Good/useful outputs need not be optimal. (n = 6, Moderately
Important)

• In a high-stakes situation, optimizing performance is important.
(n = 8, Extremely Important)

Robustness • High-risk situations are more likely to involve humans, reducing
the need for robust algorithmic solutions. (n = 1, Moderately
Important)

• Robustness is important to ensure that a system does not break
down during critical tasks. (n = 1, Moderately Important)

• Catastrophic failure is unacceptable when critical decisions
must be made. (n = 15, Extremely Important)

Learning • A preprogrammed system may be preferred if the risks
associated with it are better understood. (n = 2, Not Important)

• Due to their trial-and-error nature, learning systems may
commit mistakes that must be avoided in highly consequential
settings. (n = 6, Moderately Important)

Explainability • Given the need for human support for highly consequential
decisions, explainability provides trust and insight into the
solution process. (n = 16, Extremely Important)

• It may be unethical to make life-affecting decisions based on
unexplained algorithms. (n = 2, Extremely Important)

Assuredness • High risk/reward scenarios require assured components. (n = 9,
Extremely Important)

• V&V needed to ensure that users understand model strengths,
weaknesses, and credible uses. (n = 2, Extremely Important)

NOTE: Values in parentheses show number of observations per thematic response
and corresponding importance rating.

41

CHAPTER FOUR

Metrics for Evaluating Artificial Intelligence
Solutions

This chapter provides additional detail on the development of the
three categories of metrics. There is additional analysis and, finally, a
notional “scorecard” for operationalizing these measures.

Review of Strategic Guidance

In 2012, DoD published DoD Directive 3000.09, Autonomy in Weapon
Systems. This document described the challenges associated with V&V
and test and evaluation (T&E) of autonomous systems. The direc-
tive required that “plans [be] in place for V&V and T&E to establish
system reliability, effectiveness, and suitability under realistic condi-
tions, including possible adversary actions.” While not explicitly writ-
ten for AI solutions, these requirements clearly apply to AI in many
cases, especially for autonomous systems that are run by AI. The Joint
Artificial Intelligence Center expects to update this directive, along
with other policy recommendations, in 2020.1

In response to the growing interest in AI and ML over the past
few years, many other national- and DoD-level strategy documents
have recognized the complexity of the assessment process for AI algo-
rithms and, accordingly, have highlighted the need for better metrics
and testing environments. While this list is not meant to be exhaustive,

1 Justin Doubleday, “Pentagon Reviewing Policy on Autonomy in Weapon Systems amid
Advances in Artificial Intelligence,” Inside Defense, February 28, 2020.

42 Machine Learning-Assisted Command and Control: Technical Analysis

the set of major reports and directives certainly includes the following
(in alphabetical order):

• Defense Innovation Board, AI Principles: Recommendations on the
Ethical Use of Artificial Intelligence by the Department of Defense,
2019

• Defense Science Board, Summer Study on Autonomy, 2016
• DoD, Artificial Intelligence Strategy, 2018
• National Science and Technology Council (NSTC) Committee

on AI, The National Artificial Intelligence Research and Develop-
ment Strategic Plan: 2019 Update, White House Office of Science
and Technology Policy (OSTP), 2019

• NSTC Committee on Science and Technology Enterprise, Fed-
eral Cybersecurity Research and Development Strategic Plan, White
House OSTP, 2019

• NSTC Committee on Technology, Preparing for the Future of
Artificial Intelligence, White House OSTP, 2016

• National Security Commission on Artificial Intelligence, Interim
Report, 2019

• National Institute of Standards and Technology, U.S. Leadership
in AI: A Plan for Federal Engagement in Developing Technical Stan-
dards and Related Tools, 2019

• President Trump, Executive Order on Maintaining American Lead-
ership in Artificial Intelligence, 2019.

In addition to the strategic guidance on AI solutions, we also
reviewed several documents on C2 problems and C2 assessment. These
documents include the following (in alphabetical order):

• Air Force Doctrine, Annex 3-30, Command and Control, 2020a
• Army Doctrine Publication 6-0, Mission Command, Command

and Control of Army Forces, 2019
• Joint Publication 3-0, Joint Operations, 2017
• Marine Corps Doctrinal Publication 6, Command and Control,

2018
• North Atlantic Treaty Organization Research and Technology

Organization, Code of Best Practice for C2 Assessment, 2002.

Metrics for Evaluating Artificial Intelligence Solutions 43

Several common themes emerged from our review of these docu-
ments. The first concerns the importance of T&E/V&V for AI in gen-
eral. We find broad agreement that T&E is complicated and that new
methods are needed to assess software that can learn and adapt. As the
Defense Innovation Board explains,2

For legacy systems, robust Test and Evaluation (T&E) and Verifi-
cation and Validation (V&V) processes are well established, both
mathematically as well as institutionally. However, for newer
forms of ML, for example, T&E and V&V face serious challenges
because there are open research questions within the field of AI
about how best to achieve these. Additionally, for ML systems
that learn over their lifetime, challenges remain for continual
certification that these systems do not learn behaviors outside of
their intended use and parameters. For multiple agent systems, as
well as for interacting AI systems, the ability to model complexity
and emergent behaviors is not well understood.

We also find four key implementation issues: explainability/
credibility, human-machine teaming, safety and security, and reli-
ability.3 While not unique to AI solutions, these issues are particularly
important for them. For example, a strategic priority of NSTC’s strate-
gic plan is to “ensure the safety and security of AI systems [and] advance
knowledge of how to design AI systems that are reliable, dependable,
safe, and trustworthy.”4 In Table 4.1, we summarize which of these
issues are mentioned in which document.

In addition to the strategic guidance on AI solutions, we also
reviewed several documents on C2 problems and C2 assessment in general
from the Army, Marines, North Atlantic Treaty Organization, and joint
doctrine. We discuss these in more detail when we discuss effectiveness.

2 Defense Innovation Board, AI Principles: Recommendations on the Ethical Use of Artificial
Intelligence by the Department of Defense, Arlington, Va., 2019.
3 We define these terms later in this section when we define their associated metrics categories.
4 Select Committee on Artificial Intelligence, The National Artificial Intelligence Research
and Development Strategic Plan: 2019 Update, Washington, D.C.: National Science and
Technology Council, June 2019.

44 Machine Learning-Assisted Command and Control: Technical Analysis

Table 4.1
Implementation Issues Highlighted in Strategic Guidance Documents

Document
Explainability/

Credibility
Safety and

Security

Human-
Machine
Teaming Reliability

Defense Innovation Board,
AI Principles: Recommendations
on the Ethical Use of Artificial
Intelligence by the Department
of Defense, 2019

✓ ✓ ✓

Defense Science Board, Summer
Study on Autonomy, 2016

✓ ✓ ✓

DoD, Artificial Intelligence
Strategy, 2018

✓ ✓ ✓ ✓

NSTC Committee on Artificial
Intelligence, The National
Artificial Intelligence Research
and Development Strategic
Plan: 2019 Update, 2019

✓ ✓ ✓ ✓

NSTC Committee on Science
and Technology Enterprise,
Federal Cybersecurity Research
and Development Strategic
Plan, 2019

✓ ✓

NSTC Committee on
Technology, Preparing for
the Future of Artificial
Intelligence, 2016

✓ ✓

National Security Commission
on Artificial Intelligence,
Interim Report, 2019

✓ ✓ ✓ ✓

National Institute of
Standards and Technology,
U.S. Leadership in AI: A Plan
for Federal Engagement
in Developing Technical
Standards and Related Tools,
2019

✓ ✓ ✓

President Trump, Executive
Order on Maintaining
American Leadership in
Artificial Intelligence, 2019

✓ ✓

Metrics for Evaluating Artificial Intelligence Solutions 45

Analysis of Metric Categorization

As described in Volume 1, we collected 241 metrics from 30 different
Defense Advanced Research Projects Agency (DARPA) Broad Agency
Announcements (BAA), during the period 2014–2020, and assessed
which category each metric belonged to, if any.5 Table 4.2 shows DARPA
programs included in our analysis.

In addition to the analysis in Volume 1, we also compared find-
ings from the expert panel on the relative importance of the solution
characteristics with the results of our analysis of DARPA metric clas-
sifications to see if they were in accord. As shown in Table 4.3, the
measures of performance (MoP) appearing in the greatest number of
DARPA programs (i.e., soundness and optimality) differ from the solu-
tion capabilities emerging as most critical from the expert panel (i.e.,
robustness).

There are at least two reasons for this discrepancy. First, much of
the work on AI arises from an academic tradition where accuracy met-
rics are used to compare the performance of systems to one another.
Our category definitions of soundness and optimality (the two cat-
egories labeled as least important by the expert panel) capture most
accuracy metrics from the DARPA BAAs. Second, robustness requires
testing a system across a range of conditions. It is more common to dem-
onstrate system performance in more limited cases first, which implies
measures of soundness and optimality before measures of robustness.

Finally, we categorized the wording of the metrics according to
whether they referred to the AI algorithm itself or to the complete
system in which it was embedded. We expected MoP to predomi-
nantly apply to the AI algorithms, measures of effectiveness (MoE) to
apply to both algorithms and complete systems, and measures of suit-
ability (MoS) to predominantly apply to complete systems. As shown
in Figure 4.1, this was the case.

5 Originally we considered 53 BAAs, but we narrowed it to 30 that were relevant to AI. Of
the 258 metrics in these programs, 17 were judged not to be associated with AI, leaving 241
metrics. Two team members categorized all metrics separately and then reconciled their lists.
There was initially a wide discrepancy in coding between the two members, which under-
scores the importance of clear definitions.

46 Machine Learning-Assisted Command and Control: Technical Analysis

Table 4.2
Defense Advanced Research Projects Agency Broad Agency
Announcements Retained for Analysis

Program Element DARPA Program

Information integration
systems

Composable Logistics and Information Omniscience
(LogX)

Math and computer
sciences

Guaranteeing AI Robustness Against Deception (GARD)

Machine Common Sense (MCS)

World Modelers

AI and human-machine
symbiosis

Active Interpretation of Disparate Alternatives (AIDA)

Assured Autonomy

Explainable AI (XAI)

Knowledge-Directed AI Reasoning over Schemas (KAIROS)

Low Resource Languages for Emergent Incidents (LORELEI)

Robust Automatic Transcription of Speech (RATS)

Joint warfare systems Air Combat Evolution (ACE)

Prototype Resilient Operations Testbed for Expeditionary
Urban Scenarios (PROTEUS)

Resilient Synchronized Planning and Assessment for the
Contested Environment (RSPACE)

Maritime systems Cross Domain Maritime Surveillance and Targeting (CDMaST)

Ocean of Things

Naval warfare technology Angler

Advanced land systems
technology

Squad X

Urban Reconnaissance through Supervised Autonomy
(URSA)

Aeronautics technology OFFensive Swarm-Enabled Tactics (OFFSET)

Information analytics
technology

Adapting Cross-Domain Kill-Webs (ACK)

Causal Exploration of Complex Operational Environments

Data-Driven Discovery of Models (D3M)

Distributed Battle Management (DBM)

Media Forensics (MediFor)

Warfighter Analytics Using Smartphones for Health (WASH)

Other Context Reasoning for Autonomous Teaming (CREATE)

Hyper-Dimensional Data Enabled Neural Networks
(HyDDENN)

Real Time Machine Learning (RTML)

Symbiotic Design for Cyber Physical Systems

Semantic Forensics (SemaFor)

Metrics for Evaluating Artificial Intelligence Solutions 47

C
la

ss
if
ic

at
io

n

Observations (n)

100 75 50 25 250 50 75 100

MoS

MoE

MoP
Algorithm

System

Figure 4.1
Classification of Defense Advanced Research Projects Agency Metrics by
Algorithm/System

Table 4.3
Importance of Artificial Intelligence Solution Capabilities and Measures of
Performance

Ranking Solution Capability
Percentage of

MoP

Percentage of DARPA
Programs with At Least

One MoP in this Category

1 Robustness 10 33

2 Assureda – –

3 Learning 8 23

4 Explainability/credibilitya – –

5 Data efficiency 6 17

6 Computational efficiency 14 30

7 Soundness 44 50

8 Optimality 18 53

a These were considered as measures of suitability (MoS).

48 Machine Learning-Assisted Command and Control: Technical Analysis

From this analysis, we see that the proposed categories of mea-
sures cover the vast majority of current metrics and appear to be rea-
sonably well aligned to their use.

Metrics Scorecard

To aid in the development and evaluation of these three categories of
measure, we offer a “scorecard” template. It is a matrix that maps mea-
sure categories to critical operational issues (COI), which are defined
as follows:

COIs are key operational effectiveness or suitability issues that
must be examined . . . to determine the system’s capability to
perform its mission. COIs must be relevant to the required capa-
bilities and of key importance to the system being operationally
effective, operationally suitable and survivable, and represent a
significant risk if not satisfactorily resolved.6

Figure 4.2 provides an example for an AI solution to improving
the MAAP process. Here we show COI for the MAAP process and all
associated metrics. Note that not all COI are associated with a metric
in each category.

6 DoD, Glossary of Defense Acquisition Acronyms and Terms, Fort Belvoir, Va.: Defense
Acquisition University, 2017.

Metrics for Evaluating Artificial Intelligence Solutions 49

Objective(s): MAAP matches available resources to the prioritized target list and accounts for air
refueling requirements, suppression of enemy air defenses requirements, air defense, ISR, and other
factors affecting the plan.

Measure Category

COI 1: How well does
the solution allocate
available resources to

the target list?

COI 2: How well
does the solution
improve overall

fleet effectiveness?

COI 3: How well does the
solution operate within the

existing C2 structure?

MoP Computational
efficiency

Time to generate
allocation. System
memory requirements.

– –

Data efficiency Training dataset
requirements

– –

Soundness Percentage of invalid
assignments

– –

Optimality Comparison with
best assignment
(mathematical or
expert judgment)

Improvement of
outcomes based
on modeling and
simulation

–

Robustness Domain of algorithm
(distance, time,
resources)

Appropriateness
of domain of
algorithm to real
conditions

Ability to use at different
echelons, different centers

Learning Improvement
of soundness/
optimality with
additional data

– –

MoE Mission success Effectiveness of
allocation

Force advantage
gained due to
improved MAAP

–

Survivable/
lethality

Percentage targets
destroyed

Force exchange
ratio

–

Situational
awareness

Additional targets
detected by allocated
aircraft

Decisionmaker
rating of situational
awareness
improvement (if any)

Improvements in situational
awareness at other
echelons (if any)

Timeliness – – Time for larger MAAP
 process to be completed

Resource
management

Efficiency of allocation – Availability of slots for
ad hoc targeting

MoS Reducibility Uptime – –

Maintainability/
sustainability

– – Availability of trained
personnel to fix errors

Interoperability – – Integration of solution with
existing Air Operations
Center systems

Scalability Maximum number of
resources or targets
solution can handle

– Ability to expand
human-machine
team as use grows

Cybersecurity – – Appropriate controls for
required classification level

Human systems
integration

– – User rating

Explainability/
credibility

User rating Decisionmaker
trust in assessment

Decisionmaker understanding
of classification

Figure 4.2
Metrics Scorecard Example for Master Air Attack Planning

51

CHAPTER FIVE

Case Study 1: Master Air Attack Planning

In Chapter 2, we compared two computational solutions for develop-
ing the MAAP—a MIP technique and a GH. Based on the critical
problem-solution mappings identified by the expert panel, the heuris-
tic’s capabilities appear more closely aligned with MAAP’s characteris-
tics than the mixed-integer technique. In this first technical case study,
we implement both solutions to conduct a more rigorous evaluation of
their suitability for MAAP.

Problem Overview

Master air attack planning is the process used to create the daily time-
phased air and space scheme of maneuver—the MAAP.1 The process
involves assigning a nonhomogeneous fleet of aircraft (e.g., strike,
suppression of enemy air defense, escort, tankers) stationed at various
bases to flight packages (combination of aircraft working together) to
execute a variety of missions. The objective is to maximize the cumu-
lative value of completed missions by scheduling the highest priority
missions and the greatest number of missions possible given the set of
constrained resources.2

At present, master air attack planning is an extremely manpower-
intensive and largely manual process. Two shifts of planners in the

1 U.S. Air Force, Operational Employment: Air Operations Center, AFTTP 3-3 AOC, Wash-
ington, D.C., March 31, 2016. Not available to the general public.
2 In practice, MAAP takes other objectives into account, such as maximizing aircraft sur-
vivability and conserving enough aircraft to respond to contingencies.

52 Machine Learning-Assisted Command and Control: Technical Analysis

MAAP team work for 24 hours to develop a MAAP for each ATO cycle.
The process of generating the MAAP is not particularly algorithmic—
it involves gathering and discussing component priorities and leverag-
ing human expertise to determine the best employment of air power
and all-domain effects. The application of computational methods to
master air attack planning could reduce planning time, increase plan
quality, and free up human capital to allow planners to consider more
courses of action (COAs).

Figure 5.1 shows a stylized depiction of the planning problem.
Specific aircraft (i.e., tails) are stationed at different bases. A set of
50 partially planned missions are provided as inputs. These could
originate from missions planned against the joint integrated prioritized
target list. Planned details include mission start points and ending
points, mission durations, and the package composition required for
the mission. During MAAP planning, tails are assigned to packages
and missions.3 Mission packages, in turn, are assigned to anchor tracks
for refueling requirements. In the model, the package marshals at the
anchor, refuels if necessary, and initiates the mission. Upon complet-
ing its assigned objectives, the package egresses from the target area.
We make several assumptions to increase the tractability of the model:
(1) all aircraft and tankers are available for the entire time horizon;
(2) tankers are assigned to one anchor track per deployment; (3) tank-
ers can refuel any aircraft; and (4) the time required to refuel an aircraft
is negligible.

A solution to the planning problem consists of the following:

1. The set of missions to execute. The number of potential missions
may exceed the number that can be executed given limited
resources.

2. Temporal windows for each mission. All missions must be initi-
ated and completed within the 24-hour ATO period (for this
model, though not always in reality).

3 A single aircraft can complete additional missions in one ATO period but only after
returning to its home station and remaining grounded for long enough to allow for mainte-
nance, refueling, and rearming.

Case Study 1: Master Air Attack Planning 53

3. The assignment of aircraft to packages. Package compositions, in
terms of the numbers and types of aircraft, are provided, but
tails must be assigned to packages.

4. The assignment of packages and tankers to tanker orbits (i.e.,
anchors). Anchors are fixed, but the assignments of packages
and tankers to those anchors are flexible.

Solutions must satisfy a set of mission constraints (e.g., the pack-
age must include all required aircraft), refueling constraints (e.g., tank-
ers must have enough off-load capacity and aircraft must have enough
fuel to complete missions and return to bases), and scheduling con-
straints (e.g., aircraft may be reused only after they have returned to
base for maintenance, fuel, and rearming).

In sum, MAAP is a complex optimization problem (with many
constraints) that is currently approached in an almost entirely manual
fashion. An AI system that enabled MAAP would greatly accelerate
the planning process, improve plan quality, and free up significant
human capital.

Bases Anchor tracksPackages Missions

Figure 5.1
Master Air Attack Planning Problem Overview

54 Machine Learning-Assisted Command and Control: Technical Analysis

System Architecture

We formulate the MAAP problem as a deterministic, mixed-integer linear
program. Each mission has a value notionally derived from strategy-to-
task methodology, where mission prioritization corresponds to mission
criticality.4 The quality of a plan is determined simply as the sum of
the values of all scheduled missions. Mission schedules and aircraft
assignments are constrained by mission execution parameters, aircraft
capabilities, and aircraft utilization rates and turn times.

We looked at two different solution methods. The first is an off-
the-shelf commercial solver (i.e., Gurobi) that uses integer program-
ming theory. We refer to this method as the MIP. The second solution
is the GH as described by Kevin Rossillon.5 The GH simply schedules
missions in descending order of importance (when possible) until all
resources have been used or the duration of the execution window has
elapsed. The MIP will always find an optimal solution (if one exists)
given enough computational resources and time. The heuristic is not
guaranteed to find an optimal solution or even a good one—but it will
find a solution quickly.

Test Cases

We compared the two solutions using a test case described by Rossillon
that involves 20 aircraft, of five different types, and four tankers.6 Aircraft
are stationed across eight bases. A list of 50 prioritized, partially planned
missions, each requiring from 1 to 7 aircraft, are provided for the 24-hour
ATO period. We first examined the performances of the solutions on 100
problems formed by randomly sampling ten missions from the complete
test instance. We then compared the solutions on the full test instance.7

4 U.S. Air Force, 2016.
5 Rossillon, 2015.
6 Rossillon, 2015.
7 Computations were performed on a RAND computer with Intel Core i7 2.5 GHz proces-
sors and 16 GB of RAM. Gurobi 8.1.1 was utilized as the commercial solver and implement
with Python 2.7.

Case Study 1: Master Air Attack Planning 55

The full problem instance included 50 missions. Each mission
had an associated value. Values were divided among three roughly log-
arithmically spaced tiers (Alpha, Bravo, and Charlie), and the values of
missions within tiers varied at a more granular level (Figure 5.2).

Results

Figure 5.3 compares the solution quality and time of both the MIP
and the GH based on the 100 smaller test cases. The MIP solved all
instances to optimality, while the heuristic only solved 46 percent of
the instances to optimality (Figure 5.3, top panel).8 Although the MIP
solved each instance to optimality, it did so at great computational
cost (Figure 5.3, bottom panel). Across the 100 small test cases, the

8 The MIP is needed to benchmark an optimal solution; without the MIP, it is not possible
to determine the quality of the heuristic’s solution.

Lo
g

10
 (

m
is

si
o

n
 v

al
u

e)

Mission number

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 405 10 15 20 25 30 35 5045

Alpha (A)
Bravo (B)
Charlie (C)

Figure 5.2
Notional Utilities of Missions in Planning Problem

56 Machine Learning-Assisted Command and Control: Technical Analysis

GH finds feasible (if not optimal) solutions in orders-of-magnitude less
time than the MIP.

For the full test instance, the heuristic finds a feasible solution
that comes within 17 percent of optimality after two seconds. Con-
versely, the MIP finds a feasible solution that comes within 2 percent
of optimality after ten hours. Figure 5.4 shows the optimality gap—

Pe
rc

en
ta

g
e

in
st

an
ce

s

Optimality gap (percentage)

100

80

60

40

20

0

0
0 t

o 5

5 t
o 10

10
 to

 15

20
 to

 25

25
 to

 30

30
 to

 35

35
 to

 40

40
 to

 45

45
 to

 50

50
 to

 55

55
 to

 60

60
 to

 65

65
 to

 70

70
 to

 75

15
 to

 20

Greedy

MIP

Pe
rc

en
ta

g
e

in
st

an
ce

s

Solve time (s)

100

80

60

40

20

0

0 t
o 1

1 t
o 2

2 t
o 3

4 t
o 5

5 t
o 6

6 t
o 7

7 t
o 8

8 t
o 9

9 t
o 10

10
 to

 11

11
 to

 12

12
 to

 13

13
 to

 14

14
 to

 15
3 t

o 4

Greedy

MIP

Figure 5.3
Solution Optimality (top) and Time (bottom) for Mixed Integer Program
and Greedy Heuristic Approaches

Case Study 1: Master Air Attack Planning 57

which is based on the difference between the value of the best solution
yet found and the best possible value—as a function of run time. The
MIP improves dramatically over the first several minutes, and it sur-
passes the heuristic’s solution after ten minutes. Over the remaining
nine-plus hours, the MIP gradually reduces the optimality gap by an
additional 15 percent.

Other measures besides total operational utility are also impor-
tant, for example, the number and priority of scheduled missions. Given
the full set of 50 potential missions, the GH and the MIP managed
to schedule a similar number of missions (GH = 31, MIP = 32). The
difference in optimality gap, therefore, arose from the MIP’s ability to
bypass certain high-priority targets in order to service a larger number
of lower-priority targets, which had greater cumulative value. Indeed,
the distribution of scheduled missions across the high-, medium-, and
low-priority tiers for the MIP equaled 21-7-3, whereas the distribution
for the heuristic equaled 19-6-6. Even though the heuristic schedules
missions in order of importance, it does not consider the resources they
will use. This may lead to allocating a large percentage of resources to

O
p

ti
m

al
it

y
g

ap
 (

p
er

ce
n

ta
g

e)

Solve time (hours)

400

300

200

100

0

Greedy

MIP

0 1 2 3 4 5 6 7 8 9 10

Figure 5.4
Optimality Gap as a Function of Solve Time for Mixed Integer Program and
Greedy Heuristic Approaches

58 Machine Learning-Assisted Command and Control: Technical Analysis

a mission that is only marginally more important and far more costly
than others. The MIP, on the other hand, implicitly trades off mission
value and cost by comparing the cumulative value of all scheduled mis-
sions rather than by prioritizing any one mission.

Another important operational outcome is tanker utilization.
Although the heuristic and the MIP scheduled similar numbers of
missions, the MIP utilized tankers more efficiently. On average, each
tanker flight refueled 2.6 missions in the heuristic’s solution versus
7.5 missions in the MIP’s solution. This is because the MIP aligns
the start times of missions in the same geographical regions to allow
a tanker at a single anchor to refuel multiple missions. The difference
in tanker utilization translates to monetary savings or, alternately,
increased capacity to support additional missions.

The MIP is somewhat extensible—the same commercial solver is
applicable to problem instances that include additional constraints. For
example, in a communications-degraded environment, it may be pref-
erable to create mission packages made up entirely of aircraft from one
or a small number of bases. We incorporated this detail into a variant
of the model as a soft constraint that penalized the objective for form-
ing mission packages with aircraft from different bases. As shown in
Table 5.1, this produced a solution that, although equivalent in value to
the nonpenalized model, reduced the average number of different bases
tasked per mission.

This case study demonstrates a framework for determining opti-
mal aircraft assignments for mission scheduling subject to time, fuel,
and fleet constraints. Quality solutions can be obtained using the MIP
and associated commercial solver by terminating the solver after (1) a
predefined amount of time is reached or (2) an optimality threshold

Table 5.1
Base Utilization in Standard and Penalized Mixed Integer Program Model

Metric Standard Model Penalized Model

Cumulative mission value 35,111 35,111

Average bases per mission 1.9 1.4

Case Study 1: Master Air Attack Planning 59

is achieved. Notwithstanding the high quality of its solutions, the
MIP entails significant time complexity. Even for moderately sized
inputs, the MIP takes hours to converge to a near-optimal solution. In
theory, this time complexity is acceptable—Air Force doctrine calls for
a 24-hour period for MAAP planning.9 In practice, new inputs may
become available during the 24-hour period, triggering the need for
rapid replanning. Additionally, problem instances may include vastly
more targets and effects, resulting in prohibitively long times for the
MIP to converge.10 An alternative approach, the GH, finds a solution
of indeterminant quality, but it does so nearly instantaneously.

Given the problem characteristics embodied in MAAP, the capa-
bilities of the MIP and the heuristic produce suitability scores of 176
and 199, respectively. In other words, the heuristic is preferred. A third
possibility exists: the heuristic’s solution (or the solution generated by
some other intelligent system, human or artificial) can be provided to
the MIP as a warm start. Such a hybrid architecture would give a rapid
initial solution, and it would refine the solution as time allowed. The
suitability score for the hybrid option is 200. In other words, by com-
bining the computational efficiency of the heuristic with the optimal-
ity of the MIP, the hybrid solution is more suitable for MAAP than
either of its constituent parts.

Extension of Mixed Integer Program to Multiobjective Optimization

Mission scheduling is a multiobjective optimization problem. In addi-
tion to the value of missions accomplished, planners must consider air-
craft survivability, or risk. The MIP can be extended to account for
risk. Specifically, we may impose predefined levels of risk for missions
based on their proximity to enemy defenses or sensors. The MIP may
then be constrained to find a solution that optimizes mission value
subject to a specified level of risk.

9 U.S. Air Force, 2016.
10 In terms of the taxonomy of problem characteristics, simplifications in the first case study
can be seen as limiting the problem complexity dimension. As the problem becomes more
complex, the simpler heuristic might be favored to an even greater extent.

60 Machine Learning-Assisted Command and Control: Technical Analysis

We propose a bi-objective MIP that is identical to the one imple-
mented here save for the inclusion of a secondary objective—to opti-
mize total mission value while minimizing total mission risk. To do
so, we assign risk values to each of the 50 missions in the full set, and
we use multiobjective optimization techniques (i.e., the ε-constraint
method) to reformulate the secondary objective as a constraint of the
model. This enables us to solve for the set of nondominated solutions
along the trade-off curve. That is, we can determine the set of solutions
for which neither objective (risk nor value) can be improved without
degrading the other.

In this scenario, there is no single “best” solution but rather a set
of solutions that are optimal given different risk limits. To solve for
these points, we introduce the constraint that cumulative risk across
scheduled missions remains within the specified bound. Once solved,
we increase the bound on risk by a small amount ε and re-solve. To
determine the entire set of nondominated solutions, we need to set ε
appropriately so that no solution exists with risk level between R and
R + ε . A potential trade-off curve is shown in Figure 5.5.

M
is

si
o

n
 r

is
k

Mission value

90

80

70

60

50

40

30

20

10

0
0 25050 100 150 200

Figure 5.5
Trade-Off Between Cumulative Mission Risk and Value

61

CHAPTER SIX

Case Study 2: Automatic Target Recognition with
Learning

Our comparison of games and C2 processes in Volume 1 showed that
more problem characteristics were present—and more pronounced—
in C2 processes than in games. In particular, all C2 processes involve
environmental clutter/noise and incomplete information. Results from
the expert panel established that these problem characteristics jointly
call for two solution capabilities: robustness and learning. Yet this com-
bination of capabilities, robustness (against sensory noise) and learn-
ing, may be difficult to achieve in practice: RL agents have empirically
been shown to require extensive training to master even simple behav-
iors in noisy environments.1 Given that noise is a pervasive character-
istic of C2 processes, RL approaches that can handle noise are of great
interest.

In this second technical case study, we explore the use of a closed-
loop sensing algorithm to mitigate the effects of noise on a learning
agent using an artificial environment, StarCraft II. In the system archi-
tecture we propose, the closed-loop sensing algorithm acts as a modu-
lar processing tool that an RL agent can learn to use. We demonstrate
the architecture using a notional example of sensor management.

1 Mark Pendrith, On Reinforcement Learning of Control Actions in Noisy and Non-Markovian
Domains, University of New South Wales, Sydney, UNSW-CSE TR-9410, 1994.

62 Machine Learning-Assisted Command and Control: Technical Analysis

Environment

StarCraft II is a real-time strategy game in which a player controls
futuristic military and support units for harvesting resources and
attacking enemy forces. A single game involves multiple human players
and constructive agents. The action space is exceptionally large and,
compared with other games, rich with hierarchical structure.2 This
makes StarCraft II more comparable to real C2 processes than other
games, such as chess and Texas Hold’em. Yet the default StarCraft II
environment remains limited in two ways:

1. In the default environment, rewards are given for destroying an
enemy player or for collecting resources. Active sensing could
contribute to the attainment of these goals, but we were inter-
ested in studying sensing behavior in isolation.

2. The default StarCraft II environment does not include substan-
tial environmental noise.

To overcome these limitations, we made two changes to the
default StarCraft II environment. First, we defined a new function
that rewarded the agent for making five or more consecutive correct
classifications of a ground unit. This encouraged sustained tracking
behavior. After the agent reached more than ten consecutive correct
classifications of one ground unit, a larger reward became available for
exploring other ground units. Second, we introduced the notion of a
range-dependent sensor aboard an airborne platform. As distance from
ground units increased, the sensor’s accuracy decreased, according to
a half-Gaussian distribution. This introduced the need for the agent
to learn where to position the airborne unit to improve classification
accuracy.

To model environmental noise in StarCraft II, we assumed that
the performance of the sensor aboard the observing platform is range
dependent—in effect, range becomes the relevant performance param-

2 Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian
Schrittwieser et al., “StarCraft II: A New Challenge for Reinforcement Learning,” Ithaca,
N.Y.: Cornell University, eprint arxiv:1708.04782, August 2017.

Case Study 2: Automatic Target Recognition with Learning 63

eter that drives the selection of actions in closed-loop automatic target
recognition (CL-ATR). The range dependence, r, is modeled with a
half-Gaussian distribution as shown in Figure 6.1, where a correct clas-
sification is provided with a 50 percent probability at large in-game
pixel distances.3 Additionally, unit ownership (friend, foe, or neutral),
a default tag provided by the StarCraft II application programming
interface (API), was masked to force the agent to base classifications on
sensor inputs only.

Additional mathematical details about the reward function may
be found in Appendix B.

System Architectures

Closed-Loop Automatic Target Recognition

CL-ATR is a form of automatic target recognition in which an agent
attempts to improve the quality of the information provided to a

3 The sensor abstraction used in the simulation could be replaced by a high-fidelity model
of a physical sensor along with its relative performance parameters.

Se
n

so
r

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

Target range (px)

Improved sensor
reliability

1.0

0.8

0.6

0.4

0.2

0
0 r

Figure 6.1
Noisy Sensor Classification Accuracy Profile

64 Machine Learning-Assisted Command and Control: Technical Analysis

classification algorithm by optimally adjusting such parameters as
sensor placement. CL-ATR may also be understood as a version of
active vision, except that it is not limited to the visual modality, and,
conversely, it only aims to solve an automatic target recognition prob-
lem.4 One implementation of CL-ATR is shown in Figure 6.2.5

The algorithm assumes a pretrained classifier whose performance
profile with respect to parameters of interest is known in advance and
is represented as a set of confusion matrices. A typical parameter con-
figuration might include the pose of a sensor—range, azimuth, and
elevation—relative to a detected target whose class is to be ascertained.
In the case of an image sensor, other parameters might include zoom

At each timestep . . .

Precompute sensor error model as confusion
matrices parametrized by dimensions

Determine set of candidate actions

For each candidate action, predict next outcome

Based on predicted outcomes, calculate expected reward for each action

Select and perform the action that maximizes expected reward

Figure 6.2
Closed-Loop Automatic Target Recognition Implementation

4 Dana H. Ballard, “Animate Vision,” Artificial Intelligence, Vol. 48, No. 1, 1991.
5 Ssu-Hsin Yu, Pat McLaughlin, Aleksandar Zatezalo, Kai-yuh Hsiao, and J. Boskovic,
“Integrate Knowledge Acquisition with Target Recognition Through Closed-Loop ATR,”
Proceedings of Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV,
Vol. 9474, 2015.

Case Study 2: Automatic Target Recognition with Learning 65

level, image brightness and contrast, and spectral band. Confusion
matrices are computed from empirical measurements at a fixed number
of points in the parameter configuration space—for example, at differ-
ent ranges, azimuths, and elevations to the target. Simple interpolation
is used to extend the confusion matrix to points not included in the
sampled configuration space.

At run time, CL-ATR cycles through the steps in Figure 6.2. The
algorithm begins by identifying all potential actions. Next, it uses the
confusion matrices to predict the observations expected for each poten-
tial action. Based on the predicted observations, the algorithm calcu-
lates the expected reward for each potential action. Reward is quanti-
fied in terms of the decrease in entropy or, alternatively, the information
gain associated with the expected observation. Finally, the algorithm
selects and implements the action with the highest expected reward.

Despite its simplicity, CL-ATR performs well compared with more
complex Bayesian filtering approaches.6 CL-ATR is also extremely
flexible; for example, it can be extended to multiple-step look-ahead
planning with multiple agents, as well as target detection prior to target
recognition. Finally, CL-ATR can be used as part of a larger AI system
architecture.

Asynchronous Advantage Actor-Critic

The Asynchronous Advantage Actor-Critic (A3C) algorithm is a
model-free, on-policy RL algorithm, in which the agent does not
attempt to model the transition function between states or the reward
function associated with the environment (Figure 6.3).7 Rather, A3C
learns an action policy (an actor) that is scored by a value prediction
(a critic). The term advantage refers to an estimate of the value func-
tion that provides critic feedback (δ) to the actor. The asynchronous
aspect of A3C relates to the parallel nature of the algorithm, where

6 T. Arbel and F. P. Ferrie, “On the Sequential Accumulation of Evidence,” International
Journal of Computer Vision, Vol. 43, 2001.
7 V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,” Proceedings
of the 33rd International Conference on Machine Learning, Vol. 48, 2016.

66 Machine Learning-Assisted Command and Control: Technical Analysis

several agent workers are dispatched simultaneously to explore, sample,
and train locally. The pool of workers asynchronously contributes their
learned experiences to a global policy. This allows the global policy to
benefit from the diversity of the ensemble of workers.

We trained the A3C agent in a modified StarCraft II game envi-
ronment. The environment provides spatial and nonspatial inputs
to the agent. When applied to StarCraft II, the A3C architecture is
structured to accept spatial information through several successive
two-dimensional convolutional layers, while nonspatial information is
introduced into the network through several dense layers. Ultimately,
information is reduced and combined into additional dense layers that
output a value estimate for the current state (i.e., the critic) and a prob-
abilistic decision for nonspatial and spatial actions (i.e., the actor). The
training in the StarCraft II environment is performed using 20 workers
on an Amazon Web Services instance.8

8 The parameters used for training the A3C agent across all cases in this analysis are shown
in Appendix B.

Critic

Actor

p(s, a)

V(s)

Reward

Environment

σSt
at

e
A

ctio
n

Figure 6.3
Single Worker Instance in Asynchronous Advantage Actor-Critic Architecture

Case Study 2: Automatic Target Recognition with Learning 67

Closed-Loop Automatic Target Recognition as an Expert in a
Reinforcement Learning System

This work explores the integration of CL-ATR with an RL paradigm.
To do so, we treated CL-ATR as a type of expert that recommends
optimal sensing actions (i.e., ship positions) to the A3C agent at each
time step. The A3C agent then decides whether to follow CL-ATR rec-
ommendations versus selecting from other spatial actions. Effectively,
this shifts the target of learning from a low-level sensing policy (which
is now provided by CL-ATR) to a high-level control policy. Because
CL-ATR incorporates prior knowledge about sensor performance in
its model, the integration of CL-ATR with A3C in this way may accel-
erate learning. Additionally, the A3C agent can generalize the learned
high-level control policy to different sensors by merely changing the
confusion matrices given to CL-ATR. Finally, the design pattern can
be repurposed by incorporating other modular, model-based experts
into the system architecture (e.g., an evasive-maneuver recommender)
and by training the A3C agent to learn which experts to listen to and
in which circumstances.

Test Cases

In this environment, the agent controls an airborne platform. Its task
is to position itself so as to assign friend or foe classifications to two
mobile ground units (Figure 6.4). The agent is evaluated using a two-
by-two factorial design. The first factor is whether sensor noise was
present. The second factor is whether the A3C agent was given access
to the CL-ATR positional recommendations.

Agent performance is measured in terms of time on station
(TOS)—that is, the number of consecutive game frames (up to a maxi-
mum of 10) assigning the correct label to a ground target. Each episode
included two ground targets, so the maximum score for TOS was 20.

In the absence of sensor noise, we hypothesized that CL-ATR
would not produce a significant advantage. In the presence of sensor
noise, we hypothesized that the agent would require more training, but
this could be mitigated by the inclusion of CL-ATR.

68 Machine Learning-Assisted Command and Control: Technical Analysis

We trained the A3C agent in four scenarios corresponding to the
cross of sensor noise (absent, present) and CL-ATR (absent, present).
All four cases were run with 20 workers given a maximum number
of 100 time steps. This corresponds to 4.8 minutes of game play. The
screen was repositioned to center the observing platform every 10 time
steps, and the agent made in-game steps after every eight frames.

The StarCraft II Python API returns the screen and minimap
for every environment agent time step both with image sizes of 32 by
32 pixels. Training episodes were performed on StarCraft II map con-
taining no terrain obstacles and two targets, one friendly and one foe.
The two targets performed deterministic circular overlapping patrols.
At the start of each episode, the observing platform was spawned
between the two targets.

In the noisy sensor training, the sensor profile uses a range dis-
tance of r = 5 pixels to set the threshold where targets have a classifica-
tion accuracy of 50 percent for r ≥ 5 and 50‒100 percent for r < 5.

Figure 6.4
Initial Setup of StarCraft II Observing Platform and Targets with Patrols

SOURCE: Blizzard STARCRAFT II Map Editor.

Case Study 2: Automatic Target Recognition with Learning 69

Results

Experiment results are shown in Figure 6.5. When sensor noise was
absent, pure A3C (blue) and A3C with CL-ATR (red) performed
equally well.9 Both agents approached near maximum performance
(i.e., TOS = 20) after about 50 hours of training. When sensor noise
was present, pure A3C (orange) failed to learn to observe both tar-
gets after 200 hours of training (i.e., TOS < 10). A3C with CL-ATR
(green), in contrast, learned to observe both targets, albeit at a slower
rate than with a noiseless sensor (i.e., TOS > 10).

This case study explores the use of CL-ATR to deal with envi-
ronmental clutter/noise and incomplete information, two pervasive
characteristics of C2 problems. We used CL-ATR to provide expert

9 Pure A3C achieves the maximum level of performance somewhat sooner because the size of
its input space is smaller due to the omission of the CL-ATR component, facilitating training.
This is beneficial in the noiseless environment but not the noisy environment.

Ti
m

e
o

n
 s

ta
ti

o
n

 c
o

u
n

t

In-game training time (hours)

20

16

12

8

4

0

0 20025 50 75 100 125 150 175

Noisy sensor
Ideal sensor
Ideal CL-ATR assisted
Noisy CL-ATR assisted

Figure 6.5
Comparison Between Training Cases Under Ideal and Noisy Sensor Conditions

70 Machine Learning-Assisted Command and Control: Technical Analysis

recommendations, which the A3C agent learned to use. This proved
necessary for learning in the noisy environment.

Extension to Air Battle Manager Sensor Management

Our test case involved an airborne unit sensing two ground units, but
the AI system could be used to sense other airborne units as well. To
define this potential extension, we describe the sensor management
task performed by an Air Surveillance Officer (ASO) aboard an E-3
AWACS, and we briefly consider the potential for applying A3C with
CL-ATR to that task. This technical approach is also applicable else-
where, for example, to sensor brokering in the Advanced Battle Man-
agement System.

The E-3 AWACS is an element of the tactical air control system,
the Air Force’s mechanism for commanding and controlling airpower.10
Responsibility as the region or sector air defense commander may be
decentralized to AWACS, which acts as the primary integration point
for air defense fighters and fire control in its assigned area.

The E-3’s ASO manages a team to detect, identify, monitor, and
report friendly, hostile, and potentially hostile airborne and maritime
tracks; the ASO also coordinates with other surveillance teams through-
out the theater, to ensure a common operational picture. The surveil-
lance team operates and manages active and passive sensors and tactical
data links and performs identification functions. The three primary
concerns for the ASO and surveillance team are (1) getting optimum
performance from both active and passive sensors, (2) communicating
onboard and off-board tracks with other surveillance stations in the
assigned area of responsibility for an optimum common picture, and
(3) meeting mission requirements by handling tactical issues that force
deviations from the planned mission. To optimize sensor performance,
the ASO and surveillance team may select from a wide range of actions
involving which sensors, modes, orientations, and azimuths to employ.
Additionally, the ASO and surveillance team can make recommenda-
tions regarding tactical orbits to optimize sensor performance.

10 U.S. Air Force Doctrine, “Appendix D: Theater Air Control System,” in Annex 3-30:
Command and Control, Maxwell Air Force Base, Ala.: Lemay Center for Doctrine, 2020c.

Case Study 2: Automatic Target Recognition with Learning 71

Table 6.1
Potential Extensions of Asynchronous Advantage Actor-Critic with Closed-
Loop Automatic Target Recognition for Air Surveillance Officer Sensor
Management

ASO Sensor Management Extension to CL-ATR

AWACS is equipped with a multitude of
sensors with different modes. Sensor
performance is affected by a multitude
of environmental and employment
parameters.

Generate confusion matrices for all
sensors, modes, and parameters.

Sensors and modes may be employed in
sequences.

Extend CL-ATR to multistep look-ahead
and action selection.

AWACS is in communication with other
partially independent airborne and
ground-based sensing nodes.

Extend CL-ATR to multiagent planning.

Certain actions, such as orbit selection,
must take into account other constraints
beyond sensor returns (i.e., fuel
consumption, range, threat avoidance).

Extend the evaluative function used in
CL-ATR for action selection.

The ASO receives an intelligence
briefing prior to mission execution. This
includes information about adversary
order of battle and disposition.

Include information priors (i.e.,
expectations) in CL-ATR corresponding
to expected adversary locations and
identities.

The battle space includes complex
terrain and effects.

Extend the StarCraft II environment to
represent the features and their effects
on sensor and task performance.

After identifying a track, the ASO must
monitor its behavior.

Extend the AI system to include memory
of labeled tracks and to periodically
shift attention back to each.

The ASO must communicate relevant
information to consumers.

Extend the AI system to infer the
importance of track labels and
behaviors to different agents and to
minimize extraneous communications.

The StarCraft II example, though much simpler than the ASO’s
sensor management task, nonetheless shares several functional features
of that task, namely, the real-time selection of sensing actions to maxi-
mize information gain. Table 6.1 enumerates additional features of the
ASO task, along with suggestions for how the AI system presented in
this case study could be expanded to accommodate them.

73

CHAPTER SEVEN

Case Study 3: Human-Machine Teaming for
Personnel Recovery

The previous two case studies focused on “pure” AI and computa-
tional architectures. Yet DoD reports and directives repeatedly empha-
size that AI will not supplant humans. Rather, humans will remain an
integral part of human-machine teams.1 In this technical case study,
we consider a mixed-initiative system for personnel recovery (PR).
This is exceptionally demanding in many ways: PR has high opera-
tional tempo, high operational risks and benefits, a large percentage
of incomplete information, and a near absence of historical data for
training. Given this constellation of problem characteristics, a hybrid
architecture with human and machine intelligence may be most suit-
able for PR planning.

The AI component of the mixed-initiative system involves a game
theory construct. Properties of game theory models are well established,
and components of this framework can be mapped onto components
of C2 processes. For example, Table 7.1 presents standard game theory
terms alongside an archetypal example for studying game theory models
(Texas Hold’em) and a C2 process (joint operational planning).2,3

1 John Shanahan, “Artificial Intelligence Initiatives,” statement to the Senate Armed Ser-
vices Committee Subcommittee on Emerging Threats and Capabilities, Washington, D.C.,
U.S. Senate, March 12, 2019; Zacharias, 2019.
2 E. Rasmusen, Games and Information: An Introduction to Game Theory, Oxford: Black-
well, 1989.
3 Joint Publication 5-0, Joint Operation Planning, Washington, D.C.: U.S. Joint Chiefs of
Staff, 2017.

74 Machine Learning-Assisted Command and Control: Technical Analysis

The mixed-initiative system we explore takes into consideration a
noncooperative adversary, it integrates topical subject-matter expertise
with AI, and it efficiently explores a complex solution space.

System Architecture

Every game that is composed of a finite number of moves, players, and
possible actions has at least one Nash equilibrium. A Nash equilibrium
represents a set of strategies, one for each player, from which no ratio-
nal player could deviate to improve their outcome, assuming all players
are rational.

Even with this information in mind, multistage games with many
potential actions per player are difficult to resolve conventionally (using
backward induction, whereby the best outcome for the last decision is
determined, followed in succession by all preceding decisions by each
player, back to the first). The difficulty stems from two challenges.
First, the strategy solution space grows exponentially with the number
of players, stages, and actions. Second, in real-world problems, some or
all players may have incomplete information. In that case, the rational

Table 7.1
Game Theory and Course of Action Development Terms of Reference

Game Theory Terms Texas Hold’em Poker COA Development Terms

Players Players Forces/capabilities required,
adversary

Payout /utility Winning hands, prize
money

Objectives, purpose

Actions Bidding, raising, calling Key tasks

Static /dynamic game Sequential play Sequencing, decision points

Perfect /imperfect
information

Displayed cards, “hole”
cards

Intel prep of the operating
environment

Player types Purposes for not folding Friendly/adversary objectives
and purpose

Strategy (pure or
mixed)

Bluffing COA, decisive point(s)

Case Study 3: Human-Machine Teaming for Personnel Recovery 75

player must consider all possible values of concealed variables when
choosing an action.

An alternate approach to an exponentially expanding decision tree
is the use of influence networks. This is a probabilistic model of cau-
sality, applicable in complex situations, that relies on Bayesian updates
to the probability of a given action at each step in a dynamic model or
game.4 One such model is depicted in Figure 7.1.

In this game model,5 three variables describe the state of the world
at the start of the game. These variables each influence the potential
actions taken by Red and Blue in the first round. These actions are
resource limited, in that not every combination may be feasible. Exam-
ples of resource limitations are personnel, consumables, or money. Three

4 Bayesian probability is also called conditional probability. This is the probability of some
future action or state of the world taking place given that some preceding event or state of the
world has occurred.
5 For this model, we adapted the dynamic game of complete information established by
Zhengjun Du, Chao Chen and Defeng Kong. See Zhengjun Du, Chao Chen, and Defeng
Kong, “Modeling and Development of Course of Action by Considering Uncertainty and
Antagonism,” Military Operations Research, Vol. 19, No. 2, 2014.

State
variables

State
variables

Potential
actions,
round 1

Potential
actions,
round 2

End state
variables

s1

s2
R4

s3

s1

s2

s3

es1

es2

R1

R2

R3

R1

R2

B1

B2

B3

B1

B2

B3

Figure 7.1
Generic Multistage Game

76 Machine Learning-Assisted Command and Control: Technical Analysis

additional variables describe the state of the world at the start of the
second round, which influence the potential actions taken by Red and
Blue in that round. The actions taken by Red and Blue in the second
round influence the game’s end states.

The interaction between each element of the initial state vector {s1,
s2, s3} and each potential first round action {R1, R2, R3, R4, B1, B2, B3}
is quantified in two measures: strength of causality (h) and strength of
negation (g). These measures are represented by the directional arrows
connecting states and actions in Figure 7.1. In brief, causal strengths
are used to determine the probability that certain actions for Red
and Blue, given current state values, will be successfully completed if
selected. Additionally, causal strengths are used to determine the prob-
ability that future states will take certain values given the set of actions
that are successfully completed by Red and Blue.

Determining Causal Strength

Strength of causality (h) is the extent to which the occurrence of a
node A results in another node B subsequently occurring. Relatedly,
strength of negation (g) is the extent to which the absence of a node A
results in another node B subsequently occurring. Strength of negation
and causality are bounded by ‒1 and 1. If h = 1, the presence of A leads
to B’s occurrence with 100 percent certainty. If h = ‒1, the absence of
A leads to B’s occurrence with 100 percent certainty. If h = 0, A has no
effect on B. Similarly, if g = 1, the presence of A leads to B’s nonoccur-
rence with 100 percent certainty. If g = ‒1, the absence of A leads to
B’s nonoccurrence with 100 percent certainty. If g = 0, the absence of
A has no effect on B.

In the absence of historical or simulator data, causal strength values
are estimated by SMEs. To simplify determination of causal strength,
the following semantically anchored definitions were provided: low =
0.3, medium = 0.6, and high = 0.9. For strength of causation, a posi-
tive value indicated that the occurrence of A enables B. For strength
of negation, a positive value indicated that the absence of A enables B.

The complete set of causal strength values generated during an
interview with a PR SME are displayed in Tables 7.2 through 7.5. The
value at the intersection of a row and column is the likelihood of the

Case Study 3: Human-Machine Teaming for Personnel Recovery 77

Table 7.2
Round 1 Strength of Causation and Negation Matrices on Action Success

Directionality States

Actions

R1 R2 R3 R4 B1 B2 B3

Causation s1 –0.9 0 0 –0.9 0.6 0 0

Causation s2 0 0.9 0.3 0.6 –0.3 0.9 0

Causation s3 0 0.3 0.3 0.9 0.9 0.9 0.9

Negation s1 0.9 –0.9 0 0.9 –0.6 0.3 0

Negation s2 0.9 –0.9 0.6 0.9 –0.6 0.9 0

Negation s3 0 0 0 0 0.9 0.6 –0.9

Table 7.3
Round 1 Strength of Causation and Negation Matrices on State Values

Directionality Actions

States

s1 s2 s3

Causation R1 –0.9 0 0.3

Causation R2 0 0.9 0

Causation R3 0 0 0.3

Causation R4 –0.6 0 –0.3

Causation B1 0 0 0.6

Causation B2 0 0 0

Causation B3 0 0 0.9

Negation R1 0.9 0.3 0.3

Negation R2 0 –0.9 0

Negation R3 0 –0.6 0

Negation R4 0.9 0.9 0

Negation B1 0 0.3 0

Negation B2 0 0 0

Negation B3 0 0 –0.9

78 Machine Learning-Assisted Command and Control: Technical Analysis

Table 7.4
Round 2 Strength of Causation and Negation Matrices on Action Success

Directionality States

Actions

R1 R2 B1 B2 B3

Causation s1 0.3 0.6 0.9 0.6 0.9

Causation s2 –0.9 –0.9 0.3 –0.9 –0.3

Causation s3 0 0.3 0.9 0.9 0.9

Negation s1 0 0 –0.6 –0.3 –0.3

Negation s2 0.6 0.6 –0.3 0.6 0.9

Negation s3 –0.9 –0.9 –0.6 –0.6 0

Table 7.5
Round 2 Strength of Causation and Negation Matrices on State Values

Directionality Actions es1 es2

Causation R1 –0.6 –0.9

Causation R2 –0.6 0

Causation B1 0.3 0

Causation B2 0.9 0

Causation B3 0 0.9

Negation R1 0.3 0.3

Negation R2 0.9 0

Negation B1 –0.6 0

Negation B2 –0.9 0

Negation B3 0 –0.9

column variable occurring given that the row variable occurs. For
example, the upper left element of the first matrix in Round 1 below
corresponds to the statement “Red is highly unlikely [‒0.9] to success-
fully deploy CAPs near the site [R1], given Blue has air superiority over
the JOA [s1].”

Case Study 3: Human-Machine Teaming for Personnel Recovery 79

To determine the probability of any node’s successful occur-
rence, the strengths of negation and causality from each predeces-
sor are aggregated mathematically to update the previously expected
probability using Bayes’s theorem.6 By replicating this update mul-
tiple times, the probability of achieving some end state can be calcu-
lated. In our example game above, the first round of actions updates
the state elements, which in turn influence the second round of
actions (again, as available, subject to resource constraints). Finally,
the second round of actions influences the two-element end state
{es1, es2}. A payoff, or utility value, can be defined as a function of the
end state, and these payoffs can be compared for all feasible resource-
constrained strategies.

When payoffs for all end states, and by extension for all strategies,
are known, game theory analysis can identify the Nash equilibrium
strategies for Red and Blue players. If a single equilibrium point for
Red and/or Blue gives the best payoff, this is a pure strategy. If mul-
tiple Nash equilibria exist, the best approach for that player is a mixed
strategy. If a mixed strategy equilibrium exists, that player must choose
among the options in a way that makes the opposing player indifferent
to their own strategy.

Assessing the strengths of causality and negation between pairs
of elements in a game model is an art—and the crux of this ana-
lytic approach. Each arrow in Figure 7.1 represents where values for
strength of causation and negation are required. These values may be
determined from historical data, stochastic modeling, or some other
method. Of relevance here, we can rely on the judgment of SMEs to
compile a table of values for future use. In this way, human subject-
matter expertise is inserted into an AI system.

6 For a more rigorous mathematical discussion of influence networks, see Julie A. Rosen
and Wayne L. Smith, “Influence Net Modeling with Causal Strengths: An Evolutionary
Approach,” Military Operations Research Society, Vol. 33, No. 4, December 2000; and Abbas K.
Zaidi, Faisal Mansoor, and Titsa P. Papantoni-Kazakos, “Theory of Influence Networks,”
Journal of Intelligent and Robotic Systems, Vol. 60, No. 3‒4, 2010.

80 Machine Learning-Assisted Command and Control: Technical Analysis

Test Case

To provide a concrete example of this method, we use PR as the object
of an operational planning event, and we focus on the planning and
execution functions of PR.7

In this scenario, a friendly (Blue) aircrew has not checked in
with C2 elements after flying a routine signals intelligence patrol over
sparsely populated nonfriendly (Red) territory. Space-based infrared
satellites spot a brief spike in energy in the vicinity of the patrol, then
no further returns. The joint force commander has declared an isolated
personnel (IP) event and directs the PR coordination cell to prescribe
COAs. As the planning team comes together, national technical means
verify an intermittent but verified locator beacon signal from the loca-
tion of the infrared event. While the Red leadership are not happy with
the intrusion, they have privately signaled they will not interfere with
search-and-rescue air operations. The joint forces commander wants
PR to remain the highest priority but also wants the sensitive signals
intelligence equipment, which was on board, to be either destroyed or
secured as a secondary objective. Tables 7.6 and 7.7 assign action and
state definitions to nodes in the network.

For the scenario described above, we can assign the initial state
values as such: {s1 = 1, s2 = 1, and s3 = 1}. Given these variables, a strat-
egy for Red across two rounds of play might be represented in short-
hand as: {r1,1 = 0, r1,2 = 0, r1,3 = 1, r1,4 = 1; r2,1 = 1, r2,2 = 0}. A 0 means
the action is not selected, and a 1 means the action is chosen. The
implication is that Red and Blue both have 26 (64) potential strategies
available to them.

Because even the highest priority real-world missions are almost
always constrained by resource availability, these model strategies are
resource constrained as well. This is done in two steps. First, all actions
are assigned a required number of units of consumable resources cor-
responding to personnel, fuel, and equipment. Second, each player has
been allotted a budget of resources to apply against potential actions.
This results in a final subset of viable strategies composed of only those

7 U.S. Air Force Doctrine, Annex 3-50, Personnel Recovery, Maxwell Air Force Base, Ala.:
Lemay Center for Doctrine, 2020b.

Case Study 3: Human-Machine Teaming for Personnel Recovery 81

Table 7.6
Personnel Recovery Actions

Round Actor Action Variables

1 Red R1: Deploy CAPs near site

1 Red R2: Negotiate with Blue for IP return

1 Red R3: Alert Red citizens in vicinity

1 Red R4: Create no-fly zone near IP site

1 Blue B1: Deploy ISR unmanned aerial vehicles

1 Blue B2: Mobilize recovery teams

1 Blue B3: Establish regular comm with IP

2 Red R1: Degrade GPS signals near IP

2 Red R2: Degrade communication near IP

2 Blue B1: Resupply IP as necessary

2 Blue B2: Neutralize threats to IP

2 Blue B3: Secure/destroy sensitive hardware

Table 7.7
Personnel Recovery States

Elements State Variables

Battlefield state s1: Blue side has air superiority over Joint Operational Area

Battlefield state s2: Red country is cooperative

Battlefield state s3: IP is broadcasting position

End state es1: IP is secured

End state es2: Sensitive hardware/equipment secured

provisioned actions. Applying an arbitrary initial set of resource con-
straints, Red has 27 viable strategies, and Blue has 30.

The most unique element of this game theory approach is also the
most difficult to produce. As noted earlier, the strength of causation
and of negation for every pairing of state and action variables (Red and

82 Machine Learning-Assisted Command and Control: Technical Analysis

Blue) is needed to ultimately resolve the end states. Example sources
of these strength values are historical data, intelligence collection, or
aggregated input from SMEs. To facilitate this notional example, a
simplified formula was used to build the matrices of causal strengths.
The formula rules and full set of values in matrix form are provided in
Tables 7.2 through 7.4. The essential role of the human analyst in this
hybrid architecture is to complete these values.

Finally, to attribute a payoff for each potential strategy combina-
tion, we define the Blue (friendly) utility function as: Utility = 0.8 ×
es1 + 0.2 × es2 . This can be interpreted to mean “returning the IP is
4 times as important as securing the sensitive hardware on the aircraft.”

Results

Using all this information, we resolve the game to determine Nash
equilibria strategies for Red and Blue. The result for the baseline sce-
nario is that a mixed strategy is optimal for both players. In the case of
COA selection, the probabilities associated with a mixed strategy can
be interpreted as the distribution among multiple viable options. For
Red, the strategy mix is 66.3 percent for one strategy and 33.7 percent
for another. These strategies translate as follows:

• In the first round, create a no-fly zone near the IP site. In the
second round, degrade satellite communication in the vicinity of
the IP (66.3 percent).

• In the first round, negotiate with Blue to return IP and alert Red
citizens in the vicinity. In the second round, degrade satellite
communication in the vicinity of the IP (33.7 percent).

For Blue, the strategy mix is 33.2 percent for one strategy and
66.8 percent for another. These strategies translate as follows:

• In the first round, mobilize recovery teams. In the second round,
neutralize threats to the IP (33.2 percent).

• In the first round, deploy ISR unmanned aerial vehicles and estab-
lish regular communication with the IP. In the second round,
secure or destroy sensitive hardware (66.8 percent).

Case Study 3: Human-Machine Teaming for Personnel Recovery 83

Variations on Baseline Scenario and Results

We also considered variations on the baseline scenario that manipu-
lated the resources available to Red and Blue or that included uncon-
tested actions. Table 7.8 summarizes the variations and their results.

Table 7.8
Alternate Personnel Recovery Test Cases

Data Set Red Strategies Blue Strategies Notes

Baseline 0001-10 66.3%
0110-10 33.7%

010-010 33.2%
101-001 66.8%

Resource constraints
resulted in 27 Red and
30 Blue viable strategies.

Reduced resource 0001-10 67.5%
0100-01 32.5%

001-001 68.5%
010-010 31.5%

Reduced a single Blue
resource 57% in Round 1;
Reduced a single Red
resource 38% in Round 2.
All other conditions
unchanged.

(Red reduced to 18 viable
strategies and Blue
reduced to 15 viable
strategies)

Unconstrained
resources
(Red and Blue)

0001-10 19.8%
0110-10 80.2%

010-010 33.1%
101-001 33.5%
111-001 33.5%

Red and Blue not resource
constrained.

Red had 45 viable
strategies.

Blue had 49 viable
strategies.

For realism and to reduce
computational complexity,
no strategies included
where either player made
no actions in either round
(0000-xx, xxxx-00, 000-xxx,
xxx-000).

Blue uncontested
w/ unconstrained
resources
(Red unresourced)

0000-00 100% 001-001 33.3%
010-001 33.3%
011-001 33.3%

Represents Blue
uncontested strategy.

Unconstrained
Blue resources
(Red unresourced
and no strength
of causality/
negation)

0000-00 100% 010-100 100% A refinement to previous
data set, removing
influence of “choosing to
do nothing.”

84 Machine Learning-Assisted Command and Control: Technical Analysis

Discussion

This third technical case study presents a mixed-initiative system archi-
tecture. PR instances, because of their relative rareness, are unique.
The lack of historical or simulator data, the case-specific definitions of
states and actions, and the multidimensional and subjective nature of
outcomes resist a “pure” AI solution. The approach we present leverages
multiple sources of human knowledge for (1) defining problem states,
(2) defining actions, (3) assigning causal strengths between states and
actions, (4) defining end states, and (5) assigning relative importance
to different end states. The approach also leverages AI to apply a Bayes-
ian updating procedure along with a method for identifying equilibria
points to determine the optimal actions, given the problem specifica-
tion provided by the human SME.

Table 7.9 compares the two candidate solution architectures:
human alone and human plus AI. The suitability of the hybrid archi-
tecture exceeds the suitability of the human alone (192 versus 138).

The difference in suitability scores can be traced to the capabili-
ties of the potential systems:

• Computational efficiency. Given time constraints, human plan-
ners can consider, at most, a very limited number of COAs. The
causal network efficiently considers all COAs, increasing compu-
tational efficiency. Yet the specification of network parameters is
time consuming.

• Soundness and optimality. The causal network will find sound and
optimal solutions subject to the quality of the human experts’
specification of the PR problem.

• Robustness. A small change to model assumptions may greatly reduce
the quality of human-generated COAs. Given its computational
efficiency, an approach like a causal network can generate solutions
conditional on sources of uncertainty in model specification.

A limitation of the computational architecture is that it treats the
adversary as being perfectly rational. Future work could replace this
assumption with one of bounded rationality by using approaches like
quantal response equilibrium or cognitive models to represent subopti-
mal adversary decisionmaking.

Case Study 3: Human-Machine Teaming for Personnel Recovery 85

Table 7.9
Suitability of a Human and Mixed Architecture for Personnel Recovery

Problem Characteristic

So
lu

ti
o

n
 C

ap
ab

ili
ty

C
o

m
p

u
ta

ti
o

n
al

 E
ff

ic
ie

n
cy

D
at

a
Ef

fi
ci

en
cy

So
u

n
d

n
es

s

O
p

ti
m

al
it

y

R
o

b
u

st
n

es
s

Le
ar

n
in

g

Ex
p

la
in

ab
ili

ty

A
ss

u
re

d
n

es
s

Rating 0, 1 3, 3 2, 4 2, 4 2, 2 0, 0 3, 3 2, 4

Operational tempo 3 0, 3 6, 12 6, 6 6, 12

Rate of environment change 1 0, 1 3, 3 2, 2 0, 0

Problem complexity 2 0, 2 6, 6 4, 4 0, 0 6, 6 4, 8

Reducibility 1 2, 4

Data availability 4 12, 12 8, 8 0, 0 8, 16

Environmental clutter/noise 2 4, 4 0, 0 4, 8

Stochasticity of action outcomes 0 0, 0 0, 0

Clarity of goals and utility 0 0, 0 0, 0 0, 0

Incompleteness of information 3 9, 9 6, 6 0, 0 9, 9

Operational risks and benefits 3 6, 12 6, 12 6, 6 9, 9 6, 12

Human total 0 30 12 6 36 0 24 30 138

Human + AI total 6 30 24 12 36 0 24 60 192

NOTE: The first value in each cell is for human, and the second value in each cell is for
human plus AI.

87

APPENDIX A

Artificial Intelligence History

The seemingly sudden leaps in AI are a result of the steady accumu-
lation of progress in multiple areas and, at times, relatively modest
changes to algorithms and system architectures. Take, for instance, the
growth of capability evident in computer chess (Figure A.1). Claude
Shannon’s classic paper of 1950 proposed an implementable algorithm—
minimax—that was the basis of the earliest chess programs.1 Minimax
used brute-force search to a certain depth along with a heuristic to
select the best considered move. In the mid-1950s, several research-
ers independently discovered alpha-beta pruning, a variant on the
minimax algorithm that terminated the search of exploitable lines of
play, allowing for a deeper exploration of stronger lines. For the next
50 years, alpha-beta pruning remained at the heart of the most power-
ful chess programs. During that time, increasingly powerful comput-
ers elevated the play of chess programs from amateur to grandmaster
levels. IBM’s chess-playing computer Deep Blue, which defeated Gary
Kasparov in 1997, worked basically the same way as the programs of
the 1950s, albeit with more sophisticated heuristics and the opportu-
nity to exploit much greater computation.

In the 2010s, research on the game of Go inspired the develop-
ment of a search algorithm called AlphaZero that combined DRL and
MCTS. This approach depended on two things: independent research

1 C. E. Shannon, “Programming a Computer for Playing Chess,” Philosophical Magazine,
Vol. 41, 1950.

88 Machine Learning-Assisted Command and Control: Technical Analysis

in architectures for deep learning and the advent of graphical pro-
cessing units (GPUs), which made it feasible to train DNNs. While
this new approach required immense numbers of simulated games
for training, it proved capable of outperforming alpha-beta pruning
in numerous games, including chess. In 2018, DeepMind’s AlphaZ-
ero bested the most powerful previous chess engine, Stockfish, and an
open-source DRL+MCTS chess engine, Leela Chess Zero, exceeded
Stockfish’s performance in mid-2019.2

The growth of capability and manner of progress is also evident
in real-time video games like StarCraft II (Figure A.2). Early chess
programs used a search algorithm specialized for two-player games
(alpha-beta pruning) and heuristics developed specifically for chess. In
contrast, StarCraft II research has leveraged domain-general learning
mechanisms, which ultimately also produced the highest levels of play
in computer chess.

Together, the history of development in computer chess and Star-
Craft II illustrates common sources of innovation in AI research:

1. Hardware. Neural network implementations on GPUs are essen-
tial to implement large architectures and to train on large data

2 Silver et al., 2018.

Alpha-beta
pruning

Minimax

Los Alamos
chess partial

game

Kotok-McCarthy
complete game

USSR’s Kaissa wins
computer chess

world championship

DeepBlue
defeats

Kasparov

AlphaZero defeats
all other computer

chess programs

Deep learning and
Monte Carlo
tree search

Graphical
processing

units

Deep
learning

Neural networks

Bit boards and
opening book

20202010200019901980197019601950

Figure A.1
Timeline of Progress in Computer Chess

Artificial Intelligence History 89

sets.3 Additionally, the performance of computationally com-
plex algorithms—for example, the minimax search algorithm—
increases linearly with processing power.

2. Algorithms and architectures. Many algorithm advances are
general. The discovery of techniques to address the problem
of vanishing and exploding gradients enabled all manners
of DNNs to be trained by gradient descent.4 Other compo-
nents in learning architectures—for example, convolutions,
long short-term memory, and attention—have proven broadly
useful. These components are now used in many different
applications (e.g., computer vision, natural language pro-
cessing, game play). Additionally, these components can be

3 K. S. Oh and K. Jung, “GPU Implementation of Neural Networks,” Pattern Recognition,
Vol. 37, No. 6, 2004; D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, High Performance Convolutional Neural Networks for Image Classifica-
tion,” Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence,
Barcelona: AAAI Press, June 2011.
4 Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jurgen Schmidhuber, “Gradient
Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies,” in John F.
Kolen and Stefan C. Kremer, eds., A Field Guide to Dynamical Recurrent Neural Networks,
Hoboken, N.J.: Wiley-IEEE Press, 2001.

AlphaStar

Multiagent
counterfactual

training,
self-attentionResidual nets,

pointer nets

Policy
distillation

Convolutional neural
networks, long

short-term memory

Self-imitation,
population

training, IMPALA,
relational networks

201820172016201519901980 2019

Figure A.2
Timeline of Progress in StarCraft II

90 Machine Learning-Assisted Command and Control: Technical Analysis

combined into a single end-to-end system, as with DeepMind’s
AlphaStar.5

3. Software toolboxes. The need for open-source software imple-
mentations of neural networks to foster collaboration among
researchers was recognized early on.6 Popular software frame-
works such as TensorFlow and PyTorch provide optimized imple-
mentations, which allow researchers to experiment with larger,
more complex architectures.

4. Data availability. DNNs typically contain millions of tunable
parameters and hence require large amounts of training data.
The growth of the internet, the deployment of large database
systems, crowdsourcing platforms, and the development of high-
fidelity simulators have increased the availability of large data
sets required to train DNNs.

5 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev
et al., “Grandmaster Level in Starcraft II Using Multi-Agent Reinforcement Learning,”
Nature, Vol. 575, No. 7782, 2019.
6 Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou,
Geoffrey Holmes, Yann LeCun, Klaus Robert Müller, Fernando Pereira, Carl Edward
Rasmussen et al., “The Need for Open Source Software in Machine Learning,” Journal
of Machine Learning Research, Vol. 8, October 2007.

91

APPENDIX B

Mathematical Details for Closed-Loop Automatic
Target Recognition

Closed-Loop Automatic Target Recognition

Defining xt as the belief (confidence) at time t in the target class, the
algorithm from Ssu-Hsin Yu and his colleagues’ work proceeds as
follows:1

1. Propagation of state x from time t to time t + 1 according to

P(xt +1|a, a1...t , y1...t) =∑ P(xt +1|a, xt)P(xt |a1...t , y1...t),

x

t
(1)

where a is a candidate action to be taken, and a1...t and y1...t

represent actions and observations up to time t.

2. Prediction of the next observation based on the candidate action a:

P(yt +1|a, a1...t , y1...t) =∑ P(yt +1|a, xt +1)P(xt +1|a, a1...t, y1...t),

x

t +1
(2)

where predictions are based on the confusion matrices and
state information at time t + 1. The observation probabilities,
P(yt +1|a, xt +1), are read in as rows in the confusion matrices.

1 Yu et al., 2015.

92 Machine Learning-Assisted Command and Control: Technical Analysis

3. Calculation of the expected reward for candidate action a,
E(R(a)|a1...t , y1...t), following

E(R(a)|a1...t , y1...t) =∑ (R(a)P(yt +1|a, a1...t , y1...t),

y

t +1
(3)

where R(a) = –∑xt +1 P(xt +1|a, a1...t , y1...t +1)ln P(xt +1|a, a1...t, y1...t +1)
and P(xt +1|a, a1...t , y1...t +1) ∝ P(yt +1|a, xt +1)P(xt +1|a,a1...t, y1...t).
R(a) corresponds to the entropy of xt +1 conditional on all actions
and observations up to time t.

4. The action with the highest expected reward is selected.
5. The posterior probability of the class confidence is then updated

with the new observation yt +1:

P(xt +1|a1...t +1, y1...t +1) ∝ P(yt +1|at +1, xt +1) ∑ P(xt +1|at +1, xt)P(xt|a1...t, y1...t).

x

t
(4)

The resulting coefficients are then normalized to 1.

Asynchronous Advantage Actor-Critic

An A3C agent learns by interacting with an environment and attempt-
ing to optimize its loss function, which can be broken down into three
distinct elements: a policy loss, a value loss, and an entropy loss. The
policy loss, £π = log π (at |st)A(st , at ; θ, θυ), is dependent on the policy
performing an action a2 in the state st at time step t, multiplied by the
advantage A(st , at ; θ, θυ), with policy parameters θ, θ′ and value esti-
mator parameters θυ. The critics loss, £υ = (Rt – V(st ; θ′υ))2, is simply the
mean squared error between Rt , which is the accumulated return as
discounted by some factor and V(st ; θ′υ), which is the critic estimate
of the value. To promote exploration of the agent’s decisions, we also
include an entropy regularization term H(π(st ; θ′)). When we combine
these terms, our loss function for optimizing becomes

 £tot = £π + α£υ – βH, (5)

Mathematical Details for Closed-Loop Automatic Target Recognition 93

which includes a scaling factor of α that can be used to reduce the
potential for early convergence by the critic and β, which sets the con-
tribution from entropy regularization.

The parameters used for training the A3C algorithm across all
cases in this analysis are shown in Table B.1.

Modified StarCraft II Environment

In this technical case study, we used the StarCraft II Python API
provided by DeepMind called Py StarCraft II. We developed a new
method for scoring target observation and classification to modify
the default environment. This method considers the total time spent
observing a target, while rewarding exploration of other targets after
reaching a critical duration. For example, the system gives the agent a
reward of +1 once it correctly classifies a target (friend or foe) for five
consecutive time steps and an addition reward of +1 for every cor-
rect consecutive classification thereafter. Once the agent has tracked
a single target for ten consecutive time steps, a larger reward becomes
available for switching to and tracking the second target. Formally, the
scoring-penalty system is defined as

R = {+1.1,
+1, if 1st target, for TOS ≤ 10

nth target, n ≥ 2, for TOS ≤ 10
otherwise.–0.1,

(6)

Table B.1
Asynchronous Advantage Actor-Critic
Hyperparameters

Parameter Value

γ (discount) 0.99

Learning rate 5 × 10–4

α 0.5

β 10–4

95

References

Arbel, T., and F. P. Ferrie, “On the Sequential Accumulation of Evidence,”
International Journal of Computer Vision, Vol. 43, 2001, pp. 205‒230.

Ballard, Dana H., “Animate Vision,” Artificial Intelligence, Vol. 48, No. 1, 1991,
pp. 57‒86.

Bandres, Wilmer, Blai Bonet, and Hector Geffner, “Planning with Pixels in (Almost)
Real Time,” Thirty-Second AAAI Conference on Artificial Intelligence, Palo Alto,
Calif: AAAI Press, April 2018, pp. 6102‒6109.

Ciresan, D. C., U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Flexible,
High Performance Convolutional Neural Networks for Image Classification,”
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence, Barcelona: AAAI Press, June 2011, pp. 1237‒1242.

Crandall, B., G. Klein, and R. R. Hoffman, Working Minds: A Practitioner’s
Guide to Cognitive Task Analysis, Cambridge, Mass.: MIT Press, 2006.

Defense Innovation Board, AI Principles: Recommendations on the Ethical Use of
Artificial Intelligence by the Department of Defense, Arlington, Va., 2019.

Defense Science Board, Summer Study on Autonomy, Washington, D.C.: Office
of the Under Secretary of Defense, June 2016.

DoD—See U.S. Department of Defense.

Doubleday, Justin, “Pentagon Reviewing Policy on Autonomy in Weapon
Systems amid Advances in Artificial Intelligence,” Inside Defense, February 28,
2020. As of March 25, 2020:
https://insidedefense.com/daily-news/pentagon-reviewing-policy-autonomy
-weapon-systems-amid-advances-artificial-intelligence

Du, Zhengjun, Chao Chen, and Defeng Kong, “Modeling and Development
of Course of Action by Considering Uncertainty and Antagonism,” Military
Operations Research, Vol. 19, No. 2, 2014, pp. 35‒58.

https://insidedefense.com/daily-news/pentagon-reviewing-policy-autonomy-weapon-systems-amid-advances-artificial-intelligence

96 Machine Learning-Assisted Command and Control: Technical Analysis

Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi, and Jurgen Schmidhuber,
“Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term
Dependencies,” in John F. Kolen and Stefan C. Kremer, eds., A Field Guide to
Dynamical Recurrent Neural Networks, Hoboken, N.J.: Wiley-IEEE Press, 2001,
pp. 237‒243.

Hoffman, Robert R., Beth Crandall, and Nigel Shadbolt. “Use of the Critical
Decision Method to Elicit Expert Knowledge: A Case Study in the Methodology
of Cognitive Task Analysis,” Human Factors, Vol. 40, No. 2, 1998, pp. 254‒276.

Joint Publication 5-0, Joint Operation Planning, Washington, D.C.: U.S. Joint
Chiefs of Staff, 2017.

Khodyakov, D., S. Grant, B. Denger, K. Kinnett, A. Martin, M. Booth, C. Armstrong,
E. Dao, C. Chen, I. Coulter, H. Peay, G. Hazlewood, and N. Street, “Using
an Online, Modified Delphi Approach to Engage Patients and Caregivers in
Determining the Patient-Centeredness of Duchenne Muscular Dystrophy Care
Considerations,” Medical Decision Making, Vol. 39, No. 8, 2019, pp. 1019‒1031.

Koenig, Sven, and Reid G. Simmons, Complexity Analysis of Real-Time Reinforcement
Learning, Pittsburgh, Pa.: School of Computer Science Carnegie Mellon University,
1993, pp. 99–107.

Lipovetzky, Nir, and Hector Geffner, “Width and Serialization of Classical
Planning Problems,” ECAI ’12: Proceedings of the 20th European Conference on
Artificial Intelligence, Amsterdam: IOS Press, August 2012, pp. 540–545.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,”
Proceedings of the 33rd International Conference on Machine Learning, Vol. 48,
2016, pp. 1928‒1937.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller, Playing Atari with Deep
Reinforcement Learning, Ithaca, N.Y.: Cornell University, 2013.

National Science and Technology Council Committee on Science and
Technology Enterprise, Federal Cybersecurity Research and Development Strategic
Plan, Washington, D.C.: Executive Office of the President of the United States,
2019.

National Science and Technology Council Committee on Technology, Preparing
for the Future of Artificial Intelligence, Washington, D.C.: Executive Office of the
President, October 2016.

National Security Commission on Artificial Intelligence, Interim Report, Arlington, Va.,
2019.

North Atlantic Treaty Organization, Code of Best Practice for C2 Assessment, Brussels:
Research and Technology Organization, 2002.

NSTC—See National Science and Technology Council.

References 97

Oh, K. S., and K. Jung, “GPU Implementation of Neural Networks,” Pattern
Recognition, Vol. 37, No. 6, 2004, pp. 1311‒1314.

Pendrith, Mark, On Reinforcement Learning of Control Actions in Noisy and Non-
Markovian Domains, University of New South Wales, Sydney, UNSW-CSE
TR-9410, 1994.

Rasmusen, E., Games and Information: An Introduction to Game Theory, Oxford:
Blackwell, 1989.

Rosen, Julie A., and Wayne L. Smith, “Influence Net Modeling with Causal
Strengths: An Evolutionary Approach,” Military Operations Research Society,
Vol. 33, No. 4, December 2000, pp. 6‒7, 37‒39.

Rossillon, Kevin. J., Optimized Air Asset Scheduling Within a Joint Aerospace
Operations Center, Cambridge, Mass.: MIT Press, 2015.

Russell, S., and P. Norvig, Introduction to Artificial Intelligence: A Modern Approach,
New Delhi: Prentice-Hall of India, 1995.

Select Committee on Artificial Intelligence, The National Artificial Intelligence
Research and Development Strategic Plan: 2019 Update, Washington, D.C.: National
Science and Technology Council, June 2019.

Shanahan, John, “Artificial Intelligence Initiatives,” statement to the Senate Armed
Services Committee Subcommittee on Emerging Threats and Capabilities,
Washington, D.C., U.S. Senate, March 12, 2019.

Shannon, C. E., “Programming a Computer for Playing Chess,” Philosophical
Magazine, Vol. 41, 1950, pp. 256‒275.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabi, “A
General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go
Through Self-Play,” Science, Vol. 362, No. 6419, December 2018, pp. 1‒32. As of
March 23, 2020:
https://science.sciencemag.org/content/362/6419/1140

Sonnenburg, Sören, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon
Bottou, Geoffrey Holmes, Yann LeCun, Klaus Robert Müller, Fernando Pereira,
Carl Edward Rasmussen, Gunnar Ratsch, Bernhard Scholkopf, Alexander Smola,
Pascal Vincent, Jason Weston, and Robert C. Williamson, “The Need for Open
Source Software in Machine Learning,” Journal of Machine Learning Research,
Vol. 8, October 2007, pp. 2443‒2466.

U.S. Air Force, Operational Employment: Air Operations Center, AFTTP 3-3 AOC,
Washington, D.C., March 31, 2016. Not available to the general public.

U.S. Air Force Doctrine, Annex 3-30, Command and Control, Maxwell Air Force
Base, Ala.: Lemay Center for Doctrine, 2020a.

https://science.sciencemag.org/content/362/6419/1140

98 Machine Learning-Assisted Command and Control: Technical Analysis

———, Annex 3-50, Personnel Recovery, Maxwell Air Force Base, Ala.: Lemay Center
for Doctrine, 2020b.

———, “Appendix D: Theater Air Control System,” in Annex 3-30: Command
and Control, Maxwell Air Force Base, Ala.: Lemay Center for Doctrine, 2020c.

U.S. Air Force Scientific Advisory Board, Technologies for Enabling Resilient Command
and Control MDC2 Overview, Washington, D.C., 2018.

U.S. Department of Defense, Glossary of Defense Acquisition Acronyms and Terms,
Fort Belvoir, Va.: Defense Acquisition University, 2017.

———, Artificial Intelligence Strategy, Washington, D.C., 2018.

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Remi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury
Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wunsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver, “Grandmaster Level in Starcraft II Using Multi-Agent
Reinforcement Learning,” Nature, Vol. 575, No. 7782, 2019, pp. 350‒354.

Vinyals, Oriol, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan,
Tom Schaul, Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone,
Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp,
and Rodney Tsing, “StarCraft II: A New Challenge for Reinforcement Learning,”
Ithaca, N.Y.: Cornell University, eprint arxiv:1708.04782, August 2017. As of
December 30, 2020:
https://arxiv.org/abs/1708.04782

Yu, Ssu-Hsin, Pat McLaughlin, Aleksandar Zatezalo, Kai-yuh Hsiao, and J. Boskovic,
“Integrate Knowledge Acquisition with Target Recognition Through Closed-Loop
ATR,” Proceedings of Signal Processing, Sensor /Information Fusion, and Target
Recognition XXIV, Vol. 9474, 2015, pp. 1‒12.

Zacharias, G., Autonomous Horizons: The Way Forward, Maxwell Air Force Base,
Ala.: Air University Press, Curtis E. LeMay Center for Doctrine Development and
Education, 2019.

Zaidi, Abbas K., Faisal Mansoor, and Titsa P. Papantoni-Kazakos, “Theory of
Influence Networks,” Journal of Intelligent and Robotic Systems, Vol. 60, No. 3‒4,
2010, pp. 457‒491.

https://arxiv.org/abs/1708.04782

T
his volume serves as the technical analysis to a report concerning

the potential for artificial intelligence (AI) systems to assist in

Air Force command and control (C2) from a technical perspective.

The authors detail the taxonomy of ten C2 problem characteristics.

They present the results of a structured interview protocol that

enabled scoring of problem characteristics for C2 processes with subject-

matter experts (SMEs). Using the problem taxonomy and the structured

interview protocol, they analyzed ten games and ten C2 processes. To

demonstrate the problem taxonomy and the structured interview protocol for a

C2 problem, they then applied them to sensor management as performed by

an air battle manager.

The authors then turn to eight AI system solution capabilities. As for the C2

problem characteristics, they created a structured protocol to enable valid and

reliable scoring of solution capabilities for a given AI system. Using the solution

taxonomy and the structured interview protocol, they analyzed ten AI systems.

The authors present additional details about the design, implementation,

and results of the expert panel that was used to determine which of the

eight solution capabilities are needed to address each of the ten problem

characteristics. Finally, they present three technical case studies that

demonstrate a wide range of computational, AI, and human solutions to various

C2 problems.

RR-A263-2

www.rand.org

$26.50

9 7 8 1 9 7 7 4 0 7 1 0 8

ISBN-13 978-1-9774-0710-8
ISBN-10 1-9774-0710-2

52650

PROJECT AIR FORCE

http://www.rand.org

