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Abstract 

The dilemma with learning curves and actual costs is "fitting square pegs into 

round holes." Alternative regression techniques or further modifications to 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏 may 

address discrepancies in modeling observed data with learning curves. Adequate data 

permits further analysis of the constants, variables, and factors that make up a learning 

curve model. The analysis involves trying a nonlinear solver on the traditional learning 

curve models (i.e., Wright's cumulative average theory and Crawford's unit learning 

curve theory) and changing the theoretical first unit cost (T1) to the actual first unit cost 

(A1). Mergers and acquisitions in the aircraft industry may have reduced certainty in 

learning curve models since human resources were dispersed to manufacturing facilities 

worldwide. The results indicated no significant differences between using a nonlinear 

solver over ordinary least squares. However, the nonlinear solver propagated more 

uncertainty into the learning curve models. The actual first unit cost (A1) almost rids 

cumulative average theory models' statistical advantage over unit learning curve theory 

models. Conversely, mergers and acquisitions reduced uncertainty in learning curve 

models. Research on program attributes should continue when the appropriate data is 

available. Cost analysts should request missing data from contractors. 
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AN ANALYSIS OF UNCERTAINTY IN LEARNING CURVE MODELS 
 

I.  Introduction 

Motivation 

Uncertainty in cost estimates coincides with phrases such as "one million dollars, 

plus or minus ten percent." Cost analysts try to quantify the precision (or more likely 

imprecision) of their cost estimates using uncertainty (ICEAA Module 9, 2014). 

Uncertainty is a critical component of decision analysis. Cost growth in Department of 

Defense (DOD) weapon system programs compels cost analysts to quantify uncertainty 

accurately to support decision-making. 

Extrapolation of actual past or current costs introduces uncertainty into cost 

analysis. The expected costs for new programs may be based on information a decade or 

even half-century old. Cost data is based on a contractor’s best estimate of direct labor 

hours used in production (Alchian, 1963). The DOD's cost estimation field also 

encounters small sample sizes. Cost analysts are lucky to have more than ten historical 

programs to choose from to increase reliability and credibility in their estimates (Mislick 

& Nussbaum, 2015). Cost estimation is the art and science of making meaningful 

estimates based on imperfect and insufficient data. 

Background 

A learning curve is a popular method of extrapolating actual cost data to estimate 

the production cost of future end-items. An end-item is the final production product for 

an intended use (DAU Glossary, 2021). Learning is based on the fact that workers will 

gain efficiencies as they build more of the same end item over time. Table 1 lists a 
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description of four learning curve models that predict the unit cost of an end item given 

the item’s sequential unit number. 

 

Table 1: Learning Curve Models 

Wright's Cumulative Average (CUMAV) (1936) is the most popular learning 

curve model used in DOD cost estimation (ICEAA Module 7, 2014). Wright's CUMAV 

is much easier to use than Crawford's Unit Learning Curve (ULC) (1944) when working 

with lot data. Often a program's costs are only accounted for in lot data instead of unit 

data (ICEAA Module 7, 2014). Lot data only has the first and last unit numbers and 

hence the total number of units and total cost of each batch (i.e., lot) of units. The 

cumulative number of units produced (CUP) is the independent variable in Wright's 

CUMAV. The dependent variable in Wright's CUMAV is the cumulative average cost 

of X units, also known as the cumulative average unit cost (CAUC). CAUC is the 

summation of unit costs divided by the total units (ICEAA Module 7, 2014). Crawford's 

ULC uses lot midpoint (LMP) as its independent variable with lot data. LMP is the unit at 

which the lot's average cost occurs (ICEAA Module 7, 2014). The average unit cost 
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(AUC) corresponds to the cost at the lot midpoint. Figure 1 illustrates Wright's CUMAV 

modeling actual (i.e., observed) costs in the C-17A aircraft production program.  

 

Figure 1: Wright's CUMAV in C-17A Aircraft Production 

Wright’s CUMAV has a “smoother” better fit than Crawford’s ULC using lot 

data. Figure 2 depicts Crawford’s ULC modeling actual costs for the same program. 

 

Figure 2: Crawford's ULC in C-17A Aircraft Production 

Boone’s Cumulative Average (CUMAV) is typically more accurate at modeling 

actual data than other learning curve models. Figure 3 shows how Boone’s CUMAV 

compares to Wright’s CUMAV in the T-1A aircraft production program. 

$250,000,000

$350,000,000

$450,000,000

$550,000,000

$650,000,000

$750,000,000

0 20 40 60 80 100 120

Cu
m

ul
at

iv
e A

ve
ra

ge
 U

ni
t C

os
t 

(C
A

U
C)

Cumulative Units Produced (CUP)

Observed Data

Wright's CUMAV

$150,000,000

$250,000,000

$350,000,000

$450,000,000

$550,000,000

$650,000,000

$750,000,000

0 20 40 60 80 100 120

A
ve

ra
ge

 U
ni

t C
os

t (
A

U
C)

Lot Midpoint (LMP)

Observed Data

Crawford's ULC



4 

 

Figure 3: Wright's v. Boone's CUMAV in T-1A Aircraft Production 

Boone’s Unit Learning Curve (ULC) is usually more accurate than Crawford’s 

ULC but not as accurate as Wright’s CUMAV and Boone’s CUMAV. Figure 4 shows 

how Boone’s ULC compares to Crawford’s ULC for the same program. 

 

Figure 4: Crawford's v. Boone's ULC in T-1A Aircraft Production 
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confidence intervals (ICEAA Module 2, 2014). A confidence interval (CI) suggests the 

range that contains the estimated mean cost. A significance level, characterized by an 

alpha α, indicates the confidence level of an estimate. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  (1−∝) ∗ 100% 

The most common confidence interval used in DOD cost estimation is 95%, 

which corresponds to α = 0.05 (ICEAA Module 8, 2014). The Weapon Systems 

Acquisition Reform Act of 2009 established a requirement to justify selecting any 

confidence level less than 80% in establishing a baseline cost estimate for major defense 

acquisition programs or major automated information system programs (Public Law 111-

23, 2009). A consistent and appropriate application of confidence intervals improves a 

cost estimate's overall quality. 

Research Questions 

Ordinary least squares (OLS) is the standard regression technique used to obtain 

the optimal values for a and b of the traditional learning curve models (i.e., Wright’s 

CUMAV and Crawford’s ULC). Although 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏  is a nonlinear function, it can be 

transformed into a linear function via logarithms:  

𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏  

ln𝑌𝑌 = ln𝑎𝑎 + 𝑏𝑏ln𝑋𝑋 

A nonlinear solver (NLS) is a regression technique that can determine optimal 

values for a and b without a logarithmic transformation of 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏 . The traditional 

learning curve models may fit observed data better with NLS than OLS. 



6 

1. How does the applied regression technique (i.e., OLS or NLS) affect the 

accuracy of Wright’s CUMAV and Crawford’s ULC?  

The theoretical first unit cost (T1) is a in 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏. T1 can vary depending on the 

optimal value that a regression technique assigns to a. The actual first unit cost (A1) may 

minimize any statistical advantage CUMAV theory learning curve models have over 

ULC theory learning curve models using lot data. Regression techniques would only 

solve for b (b and c in the case of Boone’s learning curve models). 

2. How does the parameter a affect a learning curve model’s accuracy? 

A major defense contractor (i.e., Boeing, Lockheed-Martin, McDonnell-Douglas, 

etc.) does not have all of its skilled workers and manufacturing facilities located in one 

region of the world (Boeing.com, 2020). Acquisitions and mergers in the aircraft industry 

spread skilled labor across manufacturing facilities. The methods of estimating direct 

labor hours varied among manufacturing facilities of the same production program 

(Alchian, 1963). The learning curve models may be less accurate at modeling learning in 

production programs completed by a contractor after an acquisition or merger. 

3. How does an acquisition or merger affect a learning curve model’s accuracy?  

Summary 

Chapter I introduced the importance of providing confidence intervals to gauge 

uncertainty in cost estimates. Cost data is usually inconsistent and insufficient. Cost 

analysts should recognize the limitations and advantages of one learning curve model 

over another. Chapter II reviews relevant literature in learning curve theory. 
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II. Literature Review 

Cost Estimating Relationships (CERs) 

Four established cost estimating techniques discern patterns in historical data. 

One technique, parametric, has an advantage over other cost estimating techniques for 

capturing uncertainty using statistics (ICEAA Module 2, 2014). A parametric technique 

is based on the concept of using a statistical relationship, called a cost estimating 

relationship (CER). Regression analysis constructs CERs by providing a best-fit equation 

and measures of statistical significance and uncertainty (ICEAA Module 8, 2014).  

 

Figure 5: Regression Analysis (ICEAA Module 8, 2014) 

Cost analysts use regression-based CERs to estimate the future costs of new 

systems. The regression equation's intercept and slope propagate uncertainty in a CER. A 

confidence interval quantifies uncertainty and expresses the degree of precision (or 

imprecision) in the intercept and slope or y value at a given x. For example, if adding 

more data points changes the intercept’s value significantly, the intercept likely has a 

wide confidence interval.  

Learning Curve Theory 

A learning curve is a regression-based cost estimating relationship that uses actual 

costs from a past or current end item to predict future costs for the same end item 
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(ICEAA Module 2, 2014). T.P. Wright (1936) and J.R. Crawford (1944) expressed the 

learning curve effect in a simple power function: 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏  

Y represents the cumulative average cost of X units in Wright's CUMAV and 

the Xth unit's cost in Crawford's ULC. Performing ordinary least squares (OLS) 

regression obtains the learning curve's parameters a and b. OLS regression requires 

transforming the learning curve’s power function logarithmically to a linear function in 

log-space before determining the regression's best-fit equation. 

𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏  

ln𝑌𝑌 = ln𝑎𝑎 + 𝑏𝑏ln𝑋𝑋 

OLS regression acquires values for the intercept and slope, which provide the 

values of a and b. Euler's number e raised to the intercept defines a. b's value remains 

unchanged from log-space to unit-space. 

𝑎𝑎 =  𝑒𝑒lna 

𝑏𝑏 =  𝑙𝑙𝑙𝑙𝑙𝑙2𝐿𝐿𝐿𝐿𝐿𝐿 

a is the theoretical first unit cost (T1), which should not be confused with the 

actual first unit cost (ICEAA Module 7, 2014). When fitting historical data in regression 

analysis, the regression’s best-fit line will likely not pass through any data points. The 

learning rate is the complement of the learning curve slope (LCS). The learning curve 

slope is 2 raised to b.  

𝐿𝐿𝐿𝐿𝐿𝐿 = 2𝑏𝑏 

𝑏𝑏 =  𝑙𝑙𝑙𝑙𝑙𝑙2𝐿𝐿𝐿𝐿𝐿𝐿 =  
ln (𝐿𝐿𝐿𝐿𝐿𝐿)

ln (2)  
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The learning curve slope is a fraction between 0 and 1. If LCS = 1, a 100% 

learning curve slope, a worker would spend as much time manufacturing or assembling 

their 100th unit as the 1st unit. The base 2 logarithm of a fraction between 0 and 1 is a 

negative number. Often 𝑏𝑏 will vary from -6.644 to -0.0144, corresponding to a 1% to 

99% decrease in the cost or labor hours every time 𝑋𝑋 doubles.1 The learning curve slope 

garners more attention than the theoretical first unit cost in learning curve analysis. A 

projected learning curve slope often has the biggest effect on the production portion of a 

life cycle cost estimate (ICEAA Module 7, 2014). Cost analysts need to be confident 

when justifying a learning curve slope. 

Post-World War II Aircraft Production 

Alchian (1950) observed learning rates across different mission-types (i.e., 

bomber, fighter, trainer, and transport) in airframe manufacturing. After World War II, 

learning curves in the aircraft production industry expressed a relationship between the 

labor hours required to produce an airframe and the Xth airframe produced with a weight 

factor. The weight factor was the labor hours expended per pound of an airframe for 

the Xth airframe. Learning curves were more accurate at predicting labor requirements 

for lighter airframes (i.e., fighters and trainers) than heavier airframes (i.e., bombers and 

transports). However, learning curves varied across manufacturing facilities producing 

the same airframe. Alchian noticed nonconstant, diminishing learning rates by convexity 

in log-space graphs of labor hours used and units produced in airframe production. Log-

space makes it easier to detect nonconstant learning rates than unit-space since the 

 
1 Program costs are often reported in labor hours as opposed to dollars. 
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relationship between labor hours (or costs) and units produced should be linear in log-

space. Different methods of calculating labor hours across manufacturing facilities may 

have contributed to the diminishing learning rates. 

Asher (1956) proposed causes of diminishing learning rates in his study of post-

World War II fighter aircraft. The U.S. Air Force contracted him to investigate why some 

programs were being underestimated at the end of production. He explained how 

aggregated learning curves relate to diminishing learning rates by examining learning 

curves in log-space. Non-aggregated learning curves were linear, but a combination of 

two learning curves could cause convexity in log-space. 

Learning curves are aggregated at different levels. A culmination of several 

constituent learning curves is present in an aggregated learning curve. At the lowest level 

of aggregation is the factory worker, who has their own learning curve. One level higher 

is a team of workers. The next level might be the department. The highest level is the 

learning curve for an entire organization across all departments. Diminishing learning 

stems from an aggregation of learning curves. All workers, teams, and departments will 

have different learning rates that will produce different learning curves. 

Asher showed how combining different learning curves into an aggregated 

learning curve will result in an asymptote or diminishing learning rate at some point in 

the learning curve. He found diminishing learning rates to be common near the end of 

production after many units. However, he could not find a common value for the number 

of units where diminishing learning occurs for most departments. The point at which 

diminishing learning occurred depended on the complexity of the line of work. The 

welding department may have reached an asymptote at 500 units while sheet metal 
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reached their asymptote at 1000 units. He concluded that constant learning rates are 

inaccurate, especially when a program has produced many units. 

Boone’s Learning Curve 

Boone (2018) proposed a more complex power function that utilizes Wright's 

CUMAV and Crawford's ULC. Boone’s power function is 𝑌𝑌 = 𝑎𝑎𝑋𝑋
𝑏𝑏

�1+𝑥𝑥𝑐𝑐� and it is 

intrinsically nonlinear. Unlike the simple power function, 𝑌𝑌 = 𝑎𝑎𝑋𝑋𝑏𝑏, no transformation 

will make Boone’s function linear. c is impossible to obtain using OLS regression. Boone 

incorporated c in an attempt to account for diminishing learning rates. c only varies 

between 0 to 5000 because any value greater than 5000 did not significantly impact error 

reduction, and 5000 was a binding constraint in the nonlinear solver for several data 

observations (Boone, 2018). 

Boone (2018) only compared his model to Wright's CUMAV. Hogan (2020) 

compared Boone's ULC to Crawford's ULC. He researched what proportion of 

observations were more accurately explained by Boone's learning curve than the 

traditional learning curves (i.e., Wright's CUMAV and Crawford's ULC). He defined 

percentage error differences that showed significant error reductions using Boone's 

learning curve. 93% of observations had about the same error or significant error 

reductions using Boone's learning curve over the traditional learning curves. Therefore, 

Boone's learning curve performs as well as if not better than the traditional learning 

curves for 93% of observations. 42% of observations were significantly better explained 

by Boone's learning curve, while 51% of observations had an approximately equal error. 

Boone's learning curve was less accurate than the traditional learning curves for only 7% 
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of observations.2 The amount of error reduction one can expect from Boone's learning 

curve was unknown because the descriptive statistics indicated a highly variable error 

reduction from Boone's learning curve. As a result, Hogan investigated program 

attributes (i.e., how many units the program produced, aggregated learning curves, and 

the production rate) to predict the degree of error improvement one can expect from 

Boone's learning curve. He tried to discern which program attributes contributed to 

Boone’s learning curve model explaining diminishing learning rates. However, he did not 

find any statistically significant relationships but noted program attributes as an area of 

future research. 

Summary 

Chapter II provided a brief explanation of how cost analysts extrapolate historical 

costs and create a regression-based CER, such as a learning curve. The discovery of 

nonconstant, diminishing learning rates in post-World War II defense aircraft production 

programs led to analysts creating alternative learning curves. Boone (2018) amended the 

traditional learning curves' general form (i.e., Wright's CUMAV and Crawford's ULC) to 

account for diminishing learning rates. Chapter III outlines the methodology for further 

analysis of Wright's CUMAV, Crawford's ULC, Boone's CUMAV, and Boone's ULC. 

 
2 The nonlinear solver (NLS) used to determine Boone's learning curve parameters may have contributed to 
Boone's learning curve being less accurate than the traditional learning curves for 7% of observations. 
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III. Methodology 

Data Collection 

Air Force Life Cycle Management Center (AFLCMC) extracted quantitative data 

from CADE-DCMS and cost reports 1921 and 1921-1. AFLCMC transferred relevant 

data for learning curve analysis to a spreadsheet. The data included direct recurring costs 

in constant year (CY) dollars at the flyaway and prime mission equipment work 

breakdown structure (WBS) levels. When developing cost estimating relationships, a cost 

analyst must represent historical costs in constant year dollars to normalize inflation 

(ICEAA Module 5, 2014). The spreadsheet had included all appropriate calculations of 

lot midpoint and average unit cost. However, it required additional calculations for 

cumulative units produced and cumulative average unit cost calculations for lot data. 

Data Characteristics 

The data included two WBS levels: Total Recurring Flyaway Costs Less Engine 

and Total Recurring Hardware (Prime Mission Equipment) Costs. Flyaway costs contain 

the “cost of the air vehicle, including the airframe, installed engines, electronics, airborne 

armament, fire control systems, engineering changes, and a prorata share of fabrication 

tooling and other production startup costs” (ICEAA CEBoK Glossary, 2013). 

Engineering changes may indicate indirect costs that cannot be modeled with learning 

curve theory. Only direct costs from manufacturing or assembling physical end items 

experience learning (Wright, 1936). Prime mission equipment is equipment intended to 

perform the mission of a program but not “test equipment, spares, or test articles” 

(ICEAA CEBoK Glossary, 2013). Flyaway costs contain hardware costs, but the 
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hardware costs may represent a greater proportion of recurring costs directly attributable 

to the end item.  

The original spreadsheet from AFLCMC included lot data of 138 DOD weapon 

system production programs of complex end-items. Lot data does not include the detailed 

costs of producing each unit of a program. However, learning curve analysis is possible 

with an appropriate sample of lot data. The following criteria limited the sample to 49 of 

the initial 138 production programs: 

1) Program must have 5 or more consecutive lots.  

2) Program must have data for its first lot. 

Criterion 1 is consistent with previous learning curve analyses and prevents 

overfitting of the data (Boone, 2018).3 A requirement of 6 or more consecutive lots 

would decrease the sample size to 40 programs and limit the diversity of programs 

attributes (i.e., mission type or contractor) available to the analysis. Criterion 2 is 

required based on the nature of Wright’s CUMAV. The cumulative average unit cost is a 

function of previous lots’ costs and quantities.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿 1 =
𝐿𝐿𝐿𝐿𝐿𝐿 1′𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐿𝐿𝐿𝐿𝐿𝐿 1′𝑠𝑠 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿 2 =
𝐿𝐿𝐿𝐿𝐿𝐿 1′𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐿𝐿𝐿𝐿 2′𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐿𝐿𝐿𝐿𝐿𝐿 1′𝑠𝑠 𝑄𝑄𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐿𝐿𝐿𝐿𝐿𝐿 2′𝑠𝑠 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  

The sampled 49 programs had 8 lots on average. Fighter aircraft represented 

nearly a third of the sample. Fighter aircraft had an average of 10 lots. Tables 2 lists the 

number of programs by mission type. 

 
3 Boone (2018) and Hogan (2020) used the same criterion. 
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Table 2:  Sample Programs by Mission Type 

Boeing represented the largest share of programs in the sample. Boeing merged 

with McDonnell-Douglas in 1997 (Amir &Weiss, 2020). McDonnell Aircraft acquired 

Douglas Aircraft in 1967 (Britannica, 2020). 18/49 of the sampled programs were 

completed by a contractor that merged or acquired another major contractor in the aircraft 

manufacturing industry. 

 

Table 3:  Sample Programs by Contractor 



16 

Research Design 

The Python programming language hosts various libraries of functions for 

scientific analysis. SciPy is an extensive library of functions in Python. curve_fit is a 

simple nonlinear solver (NLS) function from SciPy that fits models to data and 

determines a model’s parameters. The first step to determine the slope and intercept of 

the best-fit line in the sample data is to define the learning curve functions. The 

traditional learning curve function: 

def func(fx,a,b): 

    return a*fx**b 

 Boone’s learning curve function: 

def func(fx,a,b,c): 

    return a*fx**(b/(1+(fx/c))) 

 The second step is to call curve_fit to find the best-fit parameters using a least-

squares fit. curve_fit returns two variables, popt and pcov. popt contains the best-fit 

parameters for a and b (b and c in the case of Boone’s learning curve). pcov contains the 

covariance matrix, which indicates the uncertainties and correlations between parameters.  

popt, pcov = curve_fit(func, x, y) 

 curve_fit required additional arguments to optimize Boone’s learning curve 

function. maxfev set a limit to the number of calls to curve_fit performing “trial-and-

error” to obtain the optimal parameter values. Bounds provided necessary constraints to 

guide curve_fit to valid parameter values. The largest actual first unit cost (A1) of the 

sampled programs was just under $1B. The sample’s cost data was in dollars (thousands). 

$2,000,000 (thousands) provided a reasonable upper bound for curve_fit to determine the 



17 

theoretical first unit cost’s (T1) parameter. The learning curve slope (LCS) for any 

sampled program would be greater than 1% but less than 99%. Thus, b was allowed to 

vary between -6.644 and -0.0144, corresponding to 1% and 99% LCS, respectively. 

Lastly, Boone’s decay variable needed bounds defined from 0 to 5000. 

popt, pcov = curve_fit(func, x, y,  

maxfev=50000, bounds=([0,-6.644,0],[2000000,-0.0144,5000])) 

 A logarithmic transformation to the traditional learning curve function allows an 

ordinary least squares (OLS) to find the best-fit parameters using a least-squares fit.  

def logfunc(fx,a,b):                      

    return np.log(func(fx,a,b)) 

 OLS regression returns an intercept and coefficient value, which provide the 

values of a and b. 

df = pd.DataFrame({'x':func(x, *popt), 'y':y}) 

fit_lm = smf.ols('y~x', data=df).fit() 

 The last step was the calculation of relative errors. The relative error is used to 

compare estimation methods on data sets of widely differing sizes. For example, the C-

17A aircraft production program’s costs ranged from $150M - $750M, but the T-1A 

aircraft production program’s costs ranged from $4M - $15M. The T-1A’s costs were a 

small ratio of the C-17A’s costs. Therefore, the costs were on a ratio scale. The relative 

error is used in measurements that have an absolute zero. $0 is the absolute zero in costs. 

relerr and avgrel are arbitrarily-named variables representing the calculations of relative 

errors at each data point of a program modeled by the learning curves and the relative 

errors’ mean.  
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relerr = abs(1 - y / func(x, *popt))     

print("Relative Errors:", relerr * 100) 

avgrel = sum(relerr) / len(y) * 100          

print("Mean Relative Error:", avgrel) 

The mean relative error for Wright’s CUMAV, Crawford’s ULC, Boone’s 

CUMAV, and Boone’s ULC were recorded for later use in statistical analysis. 

Summary 

Chapter III described the data's population and sample used for an adequate 

learning curve analysis. Python allowed for a nonlinear solver (NLS) and an ordinary 

least squares (OLS) regression technique to obtain parameter values and the learning 

curve models' relative errors. Chapter IV answers research questions from Chapter I by 

examining confidence intervals and determining statistically significant differences. 
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IV. Analysis and Results 

Analysis 

The statistical analysis consisted of determining mean relative error confidence 

intervals for each learning curve model and regression technique to answer the research 

questions. Any overlap between mean relative error confidence intervals suggested a lack 

of sufficient evidence that statistically significant differences exist in a direct comparison 

of two or more learning curve models. The mean relative error confidence intervals used 

the Student's t-distribution because the sample size was small (ICEAA Module 10, 2014). 

The margin of error is a calculation for the upper and lower bounds of a 

confidence interval.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑧𝑧 ∗  
𝜎𝜎
√𝑛𝑛

           𝑧𝑧 = 1.96         𝑛𝑛 = 49 

z represents the z-value determined by the confidence interval. σ represents the 

standard deviation of each sampling distribution for the sample mean. n represents the 

sample size of 49 production programs.  

Results 

Tables 4 and 5 list results that answered the first research question: 

1. How does the applied regression technique (i.e., OLS or NLS) affect the 

modeling accuracy of Wright’s CUMAV and Crawford’s ULC?  

Tables 4 and 5 list mean relative error descriptive statistics for each learning 

curve model and regression technique. Each table represents data from a separate work 

breakdown structure (WBS) level.  
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Table 4:  Mean Relative Errors (Flyaway WBS) 

 

Table 5:  Mean Relative Errors (Hardware WBS) 

 CUMAV theory learning curve models were statistically more accurate than ULC 

theory models. Figures 6 and 7 illustrate the statistically significant differences between 

CUMAV and ULC theory models. 

 

Figure 6: Mean Relative Error Confidence Intervals (Flyaway WBS) 
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Figure 7: Mean Relative Error Confidence Intervals (Hardware WBS) 

As shown in Tables 4 and 5 and Figures 6 and 7, the mean relative errors are not 

statistically different between OLS and NLS regression techniques. Moreover, the 

confidence intervals are wider with NLS, which indicates more uncertainty. 

Tables 6 and 7 list results that answered the second research question:  

2. How does the parameter a affect a learning curve model’s accuracy? 

Tables 6 and 7 list mean relative error descriptive statistics for each learning 

curve model and regression technique with a as the actual first unit cost (A1) instead of 

the theoretical first unit cost (T1). Each table represents data from a separate work 

breakdown structure (WBS) level.  

 

Table 6:  Mean Relative Errors with a = A1 (Flyaway WBS) 

0%

2%

4%

6%

8%

10%

12%

14%

CUMAV (NLS) CUMAV (OLS) Boone CUMAV
(NLS)

ULC (NLS) ULC (OLS) Boone ULC
(NLS)



22 

 

Table 7:  Mean Relative Errors with a = A1 (Hardware WBS) 

 For flyaway and hardware (PME) WBS levels, every learning curve model except 

for Crawford’s ULC with OLS was statistically less accurate at modeling actual data 

when a was the actual first unit cost (A1). CUMAV theory models did not have 

statistically significant different mean relative errors with ULC theory models when a 

was the actual first unit cost. Figures 8 and 9 show an overlap between the upper bounds 

of CUMAV theory model confidence intervals and the lower bounds of ULC theory 

model confidence intervals. The wider confidence intervals when a was the actual first 

unit cost could be a technical artifact of the regression techniques constrained to 

optimizing only b (b and c in the case of Boone’s learning curve models). 

 

Figure 8: Mean Relative Error Confidence Intervals with a = A1 (Flyaway WBS) 
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Figure 9: Mean Relative Error Confidence Intervals with a = A1 (Hardware WBS) 

Tables 8-11 list results that answered research question III: 

3. How does an acquisition or merger affect a learning curve model’s accuracy?  

Table 8 lists mean relative error descriptive statistics for each learning curve 

model and regression technique for production programs completed by a contractor 

before an acquisition or merger (or never had an acquisition or merger) at the flyaway 

WBS level. 

 

Table 8: Mean Relative Errors Before/Never Merger or Acquisition (Flyaway WBS) 

Table 9 lists mean relative error descriptive statistics for each learning curve 

model and regression technique for production programs completed by a contractor after 

an acquisition or merger at the flyaway WBS level. 
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Table 9: Mean Relative Errors After Merger or Acquisition (Flyaway WBS) 

Table 10 lists mean relative error descriptive statistics for each learning curve 

model and regression technique for production programs completed by a contactor before 

an acquisition or merger (or never had an acquisition or merger) at the hardware (PME) 

WBS level. 

 

Table 10: Mean Relative Errors Before/Never Merger or Acquisition  

(Hardware WBS) 

Table 11 lists mean relative error descriptive statistics for each learning curve 

model and regression technique for production programs completed by a contractor after 

an acquisition or merger at the hardware (PME) WBS level. 

 

Table 11: Mean Relative Errors After Merger or Acquisition (Hardware WBS) 
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Tables 8-11 and Figures 10-13 indicate no statistically significant mean relative 

error differences before and after a merger or acquisition. 

 

Figure 10: Mean Relative Error Confidence Intervals Before/Never Merger or 

Acquisition (Flyaway WBS) 

Dispersing resources and labor should increase uncertainty. However, every 

confidence interval is narrower after a merger or acquisition, indicating less uncertainty.  

 

Figure 11: Mean Relative Error Confidence Intervals After Merger or Acquisition 

(Flyaway WBS) 
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The results for the hardware (PME) WBS level are almost identical to the flyaway 

WBS level. 

 

Figure 11: Mean Relative Error Confidence Intervals Before/Never Merger or 

Acquisition (Hardware WBS) 

 

Figure 11: Mean Relative Error Confidence Intervals After Merger or Acquisition 

(Hardware WBS) 
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Summary 

Chapter IV reviewed the results of the analysis. Mean relative error measured 

differences between learning curve model estimates and actual (i.e., observed) data. 95% 

confidence intervals determined whether the results were statistically significant. 

Theories from research questions I and III have no statistically significant impact on 

learning curve models, but the analysis provided statistical evidence that research 

question II’s theory affects learning curve models. Chapter V recapitulates the research 

goals and provides recommendations for future research. 
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V.  Conclusions and Recommendations 

Conclusions 

The traditional learning curve models have approximately the same accuracy with 

either regression technique. Despite a regression technique specifically designed for 

nonlinear functions, NLS appears to propagate more uncertainty than OLS into the 

learning curve models. Cost analysts should remain using ordinary least squares (OLS) 

with the traditional learning curve models. 

 The actual first unit cost (A1) caused statistically significant decreases in every 

learning curve model’s accuracy except Crawford’s ULC with OLS. CUMAV theory 

models were no longer statistically significantly more accurate than ULC theory models 

when a was the actual first unit cost. The cost estimation field should look further into the 

impacts of using the actual first unit cost instead of the theoretical first unit cost to clear 

doubts about the CUMAV theory's unfair statistical advantage over the ULC theory 

(ICEAA Module 7, 2014). 

A merger or acquisition did not significantly impact a learning curve model's 

accuracy. However, the results do not suggest accumulating and spreading resources and 

labor to various manufacturing facilities increases uncertainty in predicting labor 

requirements. Every learning curve model’s mean relative error confidence interval was 

narrower for a contractor's production program after a merger or acquisition. In a time of 

unprecedented speed and innovation in the Air Force acquisition process, the results 

indicate improved certainty for cost estimates. 
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Limitations 

The traditional learning curve models may be more accurate than Boone’s 

learning curve models for production programs that took less time. Boone's learning 

curve models might exaggerate cost inefficiencies in shorter production programs that did 

not occur because of its decay variable c. Without an industry-wide average for number 

of lots for aircraft production programs, the analysis did not investigate the impact of a 

production program’s length on a learning curve model’s accuracy. The literature did not 

mention an average number of lots in the aircraft industry. AFLCMC provided lot data of 

production programs that ranged from Lot 1 to Lot 19. Nearly half of the programs in the 

sample (25/49) had 7 or fewer lots, while the other half (24/49) had 9 or more lots.  

Recommendations 

The mission dictates the complexity of systems integrated into an aircraft. 

Learning rates in the airframe production of a strategic bomber with stealth technology 

would likely be more difficult to estimate than in a cargo aircraft's airframe production. 

Future research could expand on Alchian's (1963) research on predicting labor 

requirements using a learning curve that incorporates an airframe weight factor. 

The learning curve in Alchian's (1963) research aggregated onsite and offsite 

direct labor hours. Onsite direct labor hours are the labor hours recorded from work at the 

main assembly plant, such as Boeing's primary plant in Puget Sound, WA. Offsite direct 

labor hours are an estimation of work outside of the plant or "plants of the reporting 

facility" (Alchian, 1963). Future research could compare the learning curve models using 

onsite versus offsite direct labor hours. 
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Appendix 

Python Analysis 

1) Import the following packages into your Python coding environment (i.e., Jupyter, 
Spyder, etc.) 

 
import pandas as pd 
import seaborn as sns 
import numpy 
import numpy as np 
import sympy as sym 
import math 
import matplotlib.pyplot as plt 
from matplotlib.pylab import figure, show 
from scipy.stats import shapiro, bartlett, kruskal, friedmanchisquare, mannwhitneyu, 
boxcox 
import statsmodels.api as sm 
import statsmodels.formula.api as smf 
import statsmodels.stats.api as sms 
from statsmodels.formula.api import ols 
from statsmodels.graphics.factorplots import interaction_plot 
from statsmodels.stats.diagnostic import het_breuschpagan 
from statsmodels.stats.stattools import durbin_watson 
from statsmodels.sandbox.stats.runs import runstest_1samp 
from statsmodels.stats.diagnostic import kstest_normal 
from statsmodels.stats.outliers_influence import summary_table 
from statsmodels.sandbox.regression.predstd import wls_prediction_std 
import scipy.optimize as optimize 
from scipy.optimize import curve_fit 
%matplotlib inline 
 

2) Create a data frame (df) that reads the .csv files containing flyaway and hardware 
(PME) WBS level costs 

 
rate_df = pd.read_csv("Flyaway.csv") 
 

3) Either create an iterative algorithm to automatically select subsets of the .csv file 
for each production program or use the code below and manually update the data 
frame each time with two letters. The first letter was arbitrarily chosen to 
designate the mission type. 

 
Aa_df=rate_df.query('Program=="A-10A Aircraft Production"') 
Ab_df=rate_df.query('Program=="A-4C Aircraft Production"') 
Ac_df=rate_df.query('Program=="A-4E Aircraft Production"') 
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Ad_df=rate_df.query('Program=="A-6E Aircraft Production"') 
Ae_df=rate_df.query('Program=="A-7D Aircraft Production"') 
Af_df=rate_df.query('Program=="AH-64E Apache (Formerly AB3) Production"') 
Ag_df=rate_df.query('Program=="AV-8B Aircraft Production"') 
Ba_df=rate_df.query('Program=="B-1B Aircraft Production"') 
BRa_df=rate_df.query('Program=="B-52A/B/C/D/E/F Aircraft Production"') 
Bb_df=rate_df.query('Program=="B-52D/E/G/H Aircraft Production (Wichita)"') 
Ca_df=rate_df.query('Program=="C-130J Aircraft System w/Engine Production"') 
Cb_df=rate_df.query('Program=="C-17A Aircraft Production"') 
Cc_df=rate_df.query('Program=="C-5 Reliability Enhancement & Reengineering (RERP) Production"') 
Cd_df=rate_df.query('Program=="C-5 Wing Modification Production"') 
Ce_df=rate_df.query('Program=="C-5B Aircraft Production"') 
EWa_df=rate_df.query('Program=="AEA - E/A-18G - Electronic Variant of the F/A-18 Aircraft Production"') 
EWb_df=rate_df.query('Program=="AEA - Prime - E/A-18G - Electronic Variant of the F/A-18 Aircraft Production"') 
EWc_df=rate_df.query('Program=="AWACS Blk40/45 Upgrade Production"') 
EWd_df=rate_df.query('Program=="E-3A Aircraft Production"') 
EWe_df=rate_df.query('Program=="EA-18G Aircraft Production"') 
EWf_df=rate_df.query('Program=="EA-6B Aircraft Production"') 
EWg_df=rate_df.query('Program=="JSTARS Radar Subsystem (E-8C) Production"') 
Fa_df=rate_df.query('Program=="AN/APG-79 Production"') 
Fb_df=rate_df.query('Program=="F/A-18A/B Aircraft Production"') 
Fc_df=rate_df.query('Program=="F/A-18C/D Aircraft Production"') 
Fd_df=rate_df.query('Program=="F/A-18E/F Aircraft Production"') 
Fe_df=rate_df.query('Program=="F-117A Aircraft Production"') 
Ff_df=rate_df.query('Program=="F-14A Aircraft Production"') 
Fg_df=rate_df.query('Program=="F-15A/B Aircraft Production"') 
Fh_df=rate_df.query('Program=="F-15C/D Aircraft Production"') 
Fi_df=rate_df.query('Program=="F-16A/B Aircraft Production"') 
Fj_df=rate_df.query('Program=="F-22A Aircraft Production"') 
Fk_df=rate_df.query('Program=="F-35A - Joint Strike Fighter (JSF) Aircraft Production Program"') 
Fl_df=rate_df.query('Program=="F-35B - Joint Strike Fighter (JSF) Aircraft Production Program"') 
Fm_df=rate_df.query('Program=="F-4B Aircraft Production"') 
Fn_df=rate_df.query('Program=="F4D-1 Aircraft Production"') 
Fo_df=rate_df.query('Program=="F-4E Aircraft Production"') 
MPa_df=rate_df.query('Program=="P-3C Aircraft Production"') 
MPb_df=rate_df.query('Program=="P-8A Multi-Mission Maritime Aircraft (MMA) Aircraft Production"') 
Ra_df=rate_df.query('Program=="RF-4C Aircraft Production"') 
Rb_df=rate_df.query('Program=="RQ-4A/B Aircraft Production"') 
SPa_df=rate_df.query('Program=="HD/TLA MTS-B (AN/DAS-1) Production"') 
SPb_df=rate_df.query('Program=="MH-60R Avionics Production"') 
SPc_df=rate_df.query('Program=="MH-60R Naval Hawk Helicopter Production"') 
Ka_df=rate_df.query('Program=="KC-135A Aircraft Production"') 
Ta_df=rate_df.query('Program=="T-1A Aircraft Production"') 
Tb_df=rate_df.query('Program=="T-38A Aircraft Production"') 
Tc_df=rate_df.query('Program=="TA-4J Aircraft Production"') 
Ua_df=rate_df.query('Program=="H1 UPGRADE Production Program - UH-1Y"') 
 

4) Manually update the program by changing ?? to Aa, Ab, etc. 
 
mastertest = ??_df 
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Wright’s CUMAV (Nonlinear Solver) 

test = mastertest 
 
#references the named columns on the .csv 
x = test['CUP']  
y = test['CAUC']  
 
#changes the data in the referenced columns to arrays 
x = np.array(x, dtype=float)  
y = np.array(y, dtype=float)  
 
#plots the actual cost data points 
plt.plot(x, y, 'ko',label="Actual Data") 
plt.xlabel('Cumulative Units Produced') 
plt.ylabel('Cumulative Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nCUMAV\n") 
 
#defines the traditional learning curve model function 
def func(fx,a,b): 
    return a*fx**b 
 
#obtains the parameters 
popt, pcov = curve_fit(func, x, y) 
print("Parameters a and b:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x, func(x, *popt), 'r--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y / func(x, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y) * 100          
print("Mean Relative Error:", avgrel) 
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Crawford’s ULC (Nonlinear Solver) 

test = mastertest 
 
#references the named columns on the .csv 
x2 = test['LMP'] 
y2 = test['AUC'] 
 
#changes the data in the referenced columns to arrays 
x2 = np.array(x2, dtype=float)  
y2 = np.array(y2, dtype=float)  
 
#plots the actual cost data points 
plt.plot(x2, y2, 'ko',label="Actual Data") 
plt.xlabel('Lot Midpoint') 
plt.ylabel('Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nULC\n") 
 
#defines the traditional learning curve model function 
def func(fx,a,b): 
    return a*fx**b 
 
#obtains the parameters 
popt, pcov = curve_fit(func, x2, y2) 
print("Parameters a and b:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x2, func(x2, *popt), 'b--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y2 / func(x2, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y2) * 100          
print("Mean Relative Error:", avgrel) 
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Boone’s CUMAV (Nonlinear Solver) 

test = mastertest 
 
#references the named columns on the .csv 
x3 = test['CUP'] 
y3 = test['CAUC'] 
   
#changes the data in the referenced columns to arrays 
x3 = np.array(x3, dtype=float)  
y3 = np.array(y3, dtype=float) 
 
#plots the actual cost data points 
plt.plot(x3, y3, 'ko',label="Actual Data") 
plt.xlabel('Cumulative Units Produced') 
plt.ylabel('Cumulative Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nBOONE CUMAV\n") 
 
#defines Boone’s learning curve model function 
def func(fx,a,b,c): 
    return a*fx**(b/(1+(fx/c))) 
 
#obtains the parameters 
#the maxfev allows the nonlinear solver to try 50000 times to obtain the optimal 
parameters while the bounds were necessary to guide the nonlinear solver 
#often b will vary from -6.644 to -0.0144, corresponding to a 1% to 99% decrease in cost 
or labor hours every time X doubles, respectively 
#Boone's decay variable ranges from 0 to 5000 
popt, pcov = curve_fit(func, x3, y3, maxfev=50000, bounds=([0,-6.644,0],[2000000,-
0.0144,5000])) 
print("Parameters a, b, and c:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x3, func(x3, *popt), 'm--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y3 / func(x3, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y3) * 100          
print("Mean Relative Error:", avgrel) 
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Boone’s ULC (Nonlinear Solver) 

test = mastertest 
 
#references the named columns on the .csv 
x4 = test['LMP'] 
y4 = test['AUC'] 
   
#changes the data in the referenced columns to arrays 
x4 = np.array(x4, dtype=float)  
y4 = np.array(y4, dtype=float) 
 
#plots the actual cost data points 
plt.plot(x4, y4, 'ko',label="Actual Data") 
plt.xlabel('Lot Midpoint') 
plt.ylabel('Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nBOONE ULC\n") 
 
#defines Boone’s learning curve model function 
def func(fx,a,b,c): 
    return a*fx**(b/(1+(fx/c))) 
 
#obtains the parameters 
#the maxfev allows the nonlinear solver to try 50000 times to obtain the optimal 
parameters while the bounds were necessary to guide the nonlinear solver 
#often b will vary from -6.644 to -0.0144, corresponding to a 1% to 99% decrease in cost 
or labor hours every time X doubles, respectively 
#Boone's decay variable ranges from 0 to 5000 
popt, pcov = curve_fit(func, x4, y4, maxfev=50000, bounds=([0,-6.644,0],[2000000,-
0.0144,5000])) 
print("Parameters a, b, and c:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x4, func(x4, *popt), 'c--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y4 / func(x4, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y4) * 100          
print("Mean Relative Error:", avgrel) 
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Wright’s CUMAV (Ordinary Least Squares) 

test = mastertest 
 
#references the named columns on the .csv 
x = test['CUP']  
y = test['CAUC']  
 
#changes the data in the referenced columns to arrays 
x = np.array(x, dtype=float)  
y = np.array(y, dtype=float)  
 
#plots the actual cost data points 
plt.plot(x, y, 'ko',label="Actual Data") 
plt.xlabel('Cumulative Units Produced') 
plt.ylabel('Cumulative Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nCUMAV\n") 
 
#defines the traditional learning curve model function 
def func(fx,a,b): 
    return a*fx**b 
#defines the log of the traditional learning curve model function 
def logfunc(fx,a,b):                      
    return np.log(func(fx,a,b)) 
 
#obtains the parameters 
popt, pcov = curve_fit(logfunc, x, np.log(y)) 
print("Parameters a and b:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x, func(x, *popt), 'r--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y / func(x, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y) * 100          
print("Mean Relative Error:", avgrel) 
 
#defines a data frame to use OLS 
df = pd.DataFrame({'x':func(x, *popt), 'y':y}) 
 
#performs OLS 
wrightfit_lm = smf.ols('y~x', data=df).fit() 
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Crawford’s ULC (Ordinary Least Squares) 

test = mastertest 
 
#references the named columns on the .csv 
x2 = test['LMP'] 
y2 = test['AUC'] 
 
#changes the data in the referenced columns to arrays 
x2 = np.array(x2, dtype=float)  
y2 = np.array(y2, dtype=float)  
 
#plots the actual cost data points 
plt.plot(x2, y2, 'ko',label="Actual Data") 
plt.xlabel('Lot Midpoint') 
plt.ylabel('Average Unit Cost') 
plt.legend(loc='upper right') 
 
#prints the title of the learning curve model 
print("\nULC\n") 
 
#defines the traditional learning curve model function 
def func(fx,a,b): 
    return a*fx**b 
#defines the log of the traditional learning curve model function 
def logfunc(fx,a,b):                      
    return np.log(func(fx,a,b)) 
 
#obtains the parameters 
popt, pcov = curve_fit(func, x2, y2) 
print("Parameters a and b:") 
print(*popt, sep='\n') 
 
#plots a graph of the function 
plt.plot(x2, func(x2, *popt), 'b--') 
 
#calculates the relative errors and mean relative error 
relerr = abs(1 - y2 / func(x2, *popt))     
np.set_printoptions(suppress=True)               
print("Relative Errors:", relerr * 100) 
avgrel = sum(relerr) / len(y2) * 100          
print("Mean Relative Error:", avgrel) 
 
#defines a data frame to use OLS 
df = pd.DataFrame({'x':func(x2, *popt), 'y':y2}) 
 
#performs OLS 
crawfordfit_lm = smf.ols('y~x', data=df).fit() 
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