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1. Introduction 

In a traditional computer, an operating system manages computer system resources. 

Current microprocessors execute or run instructions without any verification or 

authentication. There is no difference between safe instructions, coding errors, and 

malicious instructions. Complete mediation is a computer security principle from 

Saltzer and Schroeder (1975) meaning to verify access rights and authority for 

every operation. For the Aberdeen Architecture, we are proposing to move 

complete mediation down to the instruction level and check and verify permissions 

for each executing instruction—in other words, an “operating system” or hardware 

monitor to manage the instruction execution pipeline (executing microprocessor 

instructions).  

Multiple state machine monitors implement hardware-level security policies. For 

example, the instruction execution state machine monitor provides complete 

mediation for instruction execution. The state machine monitors are at security 

level 0 and are completely isolated from the execution pipeline located at security 

level 1 (one level above the state machine monitors). More details on the state 

machine architectures will be provided in later sections.  

The Aberdeen Architecture is specifically designed to prevent information leakage 

from shared computer resources. Shared hardware computer resources can be 

modulated (or manipulated) to leak information. In 1975, Saltzer found that covert 

channels in Multics operating systems can leak information (Lipner 1975). 

Bernstein (2005), Acıiçmez et al. (2007), Jiang and Fei (2017), Karimi et al. (2018), 

and Jungwirth and Hahs (2019) all illustrate how shared resources leak information. 

Complete time and space isolation is essential to prevent information leakage.  

Saltzer [11] has reported several attempts to build and measure covert channels on 

Multics [6]. These attempts involved processes "banging on the walls" of the 

confined environment via a combination of timing and paging rate. A channel of 

the order of a bit per second has been demonstrated, and channels of the order of 

tens of bits per second hypothesized. (Lipner 1975) 

1.1 Some Current Architecture Challenges 

In the early 1970s, Feustel considered the merits of new architectures not based on 

the von Neumann machine (1973). Today, tagged architectures have a renewed 

interest for computer security applications.  

In the von Neumann machine, program and data are equivalent in the sense that 

data which the program operates on may be the program itself. The loop which 



 

2 

modifies its own addresses or changes its own instructions is an example of this. 

While this practice may be permissible in a minicomputer with a single user, it 

constitutes gross negligence in the case of multi-user machine where sharing of 

code and/or data is to be encouraged. (Feustel 1973)  

Future architectures will be fundamentally different from the current von Neumann 

architecture (also called the Princeton architecture) (Nair 2015). Future 

architectures will need to protect the entire computer system (Jungwirth et al. 

2019a). Current and future design engineers need to revisit security principles 

pioneered in the 1970s. 

This paper provides a historical perspective on the evolution of memory 

architecture, and suggests that the requirements of new problems and new 

applications are likely to fundamentally change processor and system architecture 

away from the currently established von Neumann model. (Nair 2015) 

Sharing computer resources at the same time leads to information leakage (Lipner 

1975; Jungwirth et al. 2019a). In addition, it correlates processes and hardware 

behavior. Correlated information flows leak information. There are several 

information flows in a microprocessor: instruction flow, memory access [flow], 

control flow, and data flow. With the exception of not-so-interesting programs, 

instruction flow, memory access, and control flow are all data flow dependent. A 

branch predictor is a hardware resource used to predict the destination address for 

branch instructions. A rogue process can modulate a branch predictor to leak 

information. To prevent information leakage, branch predictor coefficients should 

be unique for each process.  

Speculative execution pipelines need to have a process ID tag field to enforce least 

privilege and privilege separation. Current cache banks have multiple cache lines 

that are used by multiple concurrently running processes. Current cache banks also 

allow for an attack process to flush a cache line used by another process. Current 

cache banks violate complete mediation, separation, and least privilege.  

High-performance timers are shared across multiple processes. Many attacks utilize 

timing to steal sensitive information. Virtual timers have been proposed to decouple 

timing. Each process uses a virtual timer that only runs while the process is 

executing. Current microprocessor architectures are not taking advantage of control 

flow integrity. Control flow integrity ensures that an executing program is 

following an allowed path through its control flow diagram (Burow et al. 2017). 

Security and integrity ensure that data processing does not violate a security policy 

or data integrity policy (Denning 1976). The Aberdeen Architecture applies control 

flow integrity concepts to create a data flow integrity policy. 
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1.2 Aberdeen Architecture Hardware Security Policy Summary 

Aberdeen Architecture uses state machines to enforce security policies. There are 

four main hardware-enforced security policies: (1) instruction execution, (2) page 

memory access, (3) control flow integrity, and (4) data flow integrity. State 

machines implement the security policies and are completely isolated from the 

execution pipeline. The Aberdeen Architecture is based on the research work found 

in Lipner (1975), Jungwirth et al. (2017, 2018a, 2018b, 2019b, 2020), Jungwirth 

and Ross (2019), Jungwirth (2020a), and Jungwirth and La Fratta (2015, 2016, 

2017). 

Current tagged computer architectures use a bit array to enforce security properties. 

This leads to a one-size-fits-all tagged architecture for computer security policies. 

The Aberdeen Architecture uses a two-level tagged architecture to simplify the 

security policy. The “global” policy establishes the sandbox (or fence) limit for 

each process. The “local” policy sets stricter limits for individual instructions. 

Exceeding the global bounds could potentially interfere with another process. 

Exceeding a local bound would normally only affect the process itself. 

1.3 Microprocessor Architecture Information Flows 

Information flow has focused on data and data processing steps. A wider view of 

information flows are needed to better secure microprocessor architectures. Table 1 

lists four microprocessor information flows used to execute instructions. Future 

architectures need to take into account the data flow dependencies for information 

flows. The Aberdeen Architecture uses the information flows in Table 1 to create a 

high-assurance architecture. Space and time isolation is essential to prevent 

correlations (correlated behavior(s) cause information leakage) across multiple 

concurrently running processes.  

Table 1 Aberdeen architecture information flows 

Information Flow Dependencies 

Program instruction flow (integrity) Data flow dependent 

Control flow integrity Data flow dependent 

Memory access [flow] integrity Data flow dependent 

Data flow integrity Data flow dependent 
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2. Historical Review 

During a 2018 interview discussing Spectre and Meltdown attacks, distinguished 

cybersecurity researcher Bruce Schneier described the current state of the 

cybersecurity world (2018): “The security of pretty much every computer on the 

planet has just gotten a lot worse, and the only real solution – which, of course, is 

not a solution – is to throw them all away and buy new ones that may be available 

in a few years.” 

New software attacks by Spectre, Meltdown, and others (see Kovacs [2018] and 

Zurkus [2018]) exploit hardware design flaws and oversights. Now that the door 

has been opened, more software attacks are being launched against naïve hardware. 

There is hope for new, more secure architectures. The Defense Advanced Research 

Projects Agency’s (DARPA’s) System Security Integration Through Hardware and 

Firmware (SSITH) program goals are to develop new microprocessor architectures 

to counter software attacks against current inadequate security measures (DARPA 

2017; Keller 2017; Hruska 2017; Blinde 2018; Rebello n.d.). In a 2017 DARPA 

article, SSITH program manager Linton Salmon stated, “This race against ever 

more clever cyber-intruders is never going to end if we keep designing our systems 

around gullible hardware that can be fooled in countless ways by software” 

(2017b). 

2.1 Future Architectures 

The only real long-term solution is to throw all of the current designs away and start 

over. We are living in a world where many, if not all, of the secure computing 

concepts were researched decades ago. Major operating system concepts were 

pioneered in Multics (Adleman et al. 1976; Karger and Schnell 2002) during the 

1970s. Hardware-based operating systems were being considered in the 1970s 

(Sockut 1975; Brown et al. 1977; Higher Order Software, Inc. 1977). The i432 

(Witten et al. 1983) microprocessor pioneered protected objects in the 1980s.  

The foundational computer security philosophy is encapsulated in Saltzer and 

Schroeder’s 1975 security principles (Saltzer and Schroeder 1975; Smith 2012). 

Security-tagged architectures have their roots in the late 1950’s mainframe 

computers (Rice University 1962; Burroughs 1969; AEG Telefunken 1970; Feustel 

1972, 1973). Up to the 1970s, tag bits were being used for reliability (Rice 

University 1962). In 1989, Bondi and Branstad researched security tag bits and flow 

control integrity (1989). There has been a renewed interest in applying tag bits for 

computer security (Alves-Foss et al. 2014). It is time to go back to the drawing 

board and develop new architectures based on sound security principles from the 



 

5 

ground up. Current and future engineers need an all-encompassing design 

philosophy: “Future Cyber Defenses Must Protect the Entire Architecture” 

(Jungwirth et al. 2019a). 

There are three system parameters in computer architectures: cost, performance, 

and security. Cost is a function of performance and security. Performance is a 

function of cost and security. Current commodity computing has settled on high 

performance and low cost, while security is left out of the equation. With the end 

of Moore’s law on the horizon, and processor speeds stuck in the low gigahertz 

range, parallelism is the new path forward for higher performance. Parallelism also 

offers a path forward for high-performance and high-assurance computing.  

2.2 Principles and Challenges for Future Architectures  

In current computer architecture terms, “bare metal” refers to the execution 

pipeline. Security policies need to have complete control over the execution 

pipeline and be implemented at a layer below the execution pipeline. The design 

goal is to make the execution pipeline security conscious. De Clercq and 

Verbauwhede (2017) emphasize the importance of placing the trusted computing 

base in hardware: 

The Trusted Computing Base (TCB) is the set of hardware and software components 

which are critical to the security of the system. … a TCB should be as small as 

possible in order to guarantee its correctness … To enforce a strong security policy, 

we recommend that the TCB consists of as little as possible software, while placing 

as much as possible security-critical functionality in hardware. 

The proposed Aberdeen Architecture uses state machines to implement security 

policies in hardware below the execution pipeline. State machine security policies 

are isolated and not accessible from software. Aberdeen Architecture’s state 

machines are the trusted computing base. Current execution pipelines run 

instructions without any authentication. Current execution pipelines violate Saltzer 

and Schroeder’s principles of complete mediation, privilege separation, and least 

privilege principles. In other words, a confused deputy would provide better 

security (Hardy 1988; “Confused deputy problem” July 17, 2020).  

Following a philosophy of the exokernel (Engler et al. 1995), the Aberdeen 

Architecture enforces basic security policies. Higher-level layers can implement 

specific algorithms, objects (library OS functions in [Engler et al. 1995]), 

hypervisors, unikernels, and so on.  

In separating protection from management, an exokernel performs three important 

tasks: (1) tracking ownership of resources, (2) ensuring protection by guarding all 
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resource usage or binding points, and (3) revoking access to resources. 

(Engler et al. 1995)  

Program shepherding (Kiriansky et al. 2002) is a software sandbox technique to 

enforce execution and control flow properties. Program shepherding implements a 

software-based control flow integrity technique. For the Aberdeen Architecture, a 

hardware state machine uses security tag bits to enforce the control flow integrity 

policy. The Aberdeen Architecture also adds a state machine to enforce the data 

flow integrity policy.  

Program shepherding prevents execution of data or modified code and ensures that 

libraries are entered only through exported entry points. Instead of focusing on 

preventing memory corruption, we prevent the final step of an attack, the transfer 

of control to malevolent code. This allows thwarting a broad range of security 

exploits with a simple central system that can itself be easily made secure. 

(Kiriansky et al. 2002) 

The Aberdeen Architecture includes several state machines: instruction execution 

(integrity) monitor, memory page monitor, control flow monitor, data flow monitor, 

exception monitor, scheduler monitor, and interrupt monitor. The proposed state 

machines implement a foundational-level hardware security policy following 

Saltzer and Schroeder’s security principles. Architecture objects are categorized by 

allowed operations. Aberdeen Architecture uses the Redstone Architecture’s (OS 

Friendly Microprocessor Architecture’s) security features (Jungwirth and LaFratta 

2015) for the 0.1 and 0.2 security architecture layers. 

One of Saltzer and Schroeder’s guiding principles is “open design”; a secure system 

should only depend on a secret key, not on a confidential design (1975): 

Open design: The design should not be secret. The mechanisms should not depend 

on the ignorance of potential attackers, but rather on the possession of specific, 

more easily protected, keys or passwords.  

In 1883, Kerchoffs wrote that the design of a cryptography system falling into an 

adversary’s hands should not compromise messages (1883). Mann (2002) extends 

Kerckhoffs’s principle to modern systems. Today, algorithms, like advanced 

encryption standard (AES), are widely published. The security of AES does not 

depend on a confidential algorithm—it depends on a secret key. 

Kerckhoffs’s principle applies beyond codes and ciphers to security systems in 

general; every secret creates a potential failure point. Secrecy, in other words, is a 

prime cause of brittleness – and therefore something likely to make a system prone 

to catastrophic collapse. Conversely, openness provides ductility. (Mann 2002) 
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For example, two papers published in 1954 (Weaver and Newall 1954) and 1960 

(Breen and Dahlbom 1960) contained the details for an “in-band” telephone 

network signaling system. In-band signaling combines data and control information 

on the same cable, but it provided no authentication for control information. In-

band signaling was a “confidential” design published in two papers. In-band 

signaling violates several of Saltzer and Schroeder’s security principles. For in-

band signaling, the control signaling system was so simple, even an amateur could 

build one. A “blue box” (“Blue box” July 17, 2020) generated the control codes for 

the telephone network. Long distance phone calls were now free—until free 

became illegal. On display at the Computer History Museum is a blue box (Bell 

1972) built by Steve Wozniak. In-band telephone network signaling suffered a 

catastrophic system collapse; it was replaced by out-of-band signaling. Similar to 

in-band signaling, the von Neumann architecture combines program instructions 

(control) with data. On a von Neumann machine, a simple buffer overflow can 

change “data” into program instructions. 

The Sony BMG copy protection scandal was quickly identified as a rootkit 

(Russinovich 2005; Halderman and Felten 2006; “Sony BMG” [July 13, 2020]). 

Without an end-user agreement, the copy protection rootkit installed itself and left 

backdoors for hackers. Halderman and Felten of Princeton University labeled the 

copy protection as spyware (2006). The record label faced huge company image 

damages and class action lawsuits. The rootkit copy protection flagrantly violates 

Saltzer and Schroeder’s “psychological acceptability principle”: ease of use, simple 

to understand, and agree to use. No user would voluntarily install a copy protection 

scheme that phones usage information to a record label and installs additional 

vulnerabilities. It was a poor IP protection implementation that ruined a product.  

Software exists at the execution pipeline level. Cyber protection software and 

malicious applications reside at the same security layer. Protection software does 

not have any advantage over a malicious application. The new class of attacks 

represented by Spectre (Kocher et al. 2018), Meltdown (Lipp et al. 2018), and 

related attacks (Kovacs 2018; Zurkus 2018) prove that malicious software and zero-

day vulnerabilities have an advantage. The copy protection scandal is a case study 

for why software cannot protect software in a computer system. Future protection 

mechanisms (trusted computing base) must be rooted in hardware, completely 

isolated from software. 

Another area of concern is information leakage and shared resources. As early as 

1975, Saltzer and Lipner (Lipner 1975) pointed out that covert channels in Multics 

leak information. Many of these covert channels are from shared system resources. 

Bernstein (2005) illustrates how AES software’s key bit-dependent execution times 

leak key bit information. A malicious program only needs to passively sense 
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execution timing to steal information. In 2007, Acıiçmez et al. demonstrated how a 

malicious program can modulate a hardware branch predictor (shared hardware 

resource) to leak information (2007). For a simple information leakage process, 

Jungwirth and Hahs (2019) illustrate how transfer entropy can be used to quantify 

information leakage. 

The Spectre attack exploits information leakage during speculative execution. 

There are no security mechanisms to prevent information leakage. The Meltdown 

attack also takes advantage of the lack of protection to leak sensitive information. 

Timing attacks take advantage of high-precision timers to monitor execution times. 

Even if an architecture had no timers, the adversary could still use known execution 

times for the attack software to steal information leaking from another process. 

Timing is essential for GPS and process control. It is more than likely not practical 

to build a system without timers. Cache banks are another shared resource offering 

adversaries ample attack vectors (Jiang and Fei 2017; Karimi et al. 2018).  

3. Motivation for Aberdeen Architecture 

To truly implement Saltzer and Schroeder’s security principles (Saltzer and 

Schroeder 1975; Smith 2012), the security policy must be enforced from the 

hardware system architecture’s lowest level. Instruction execution must be at least 

one level above the security policy level (e.g., software cannot override any aspect 

of the security policy). In the TIARA architecture, Shrobe et al. (2009) points out 

the potential for security tag bits for high-assurance computer architectures: 

“Metadata-driven hardware interlocks make it practical to take the security 

principles of Saltzer and Schroeder seriously.” Current computer architectures have 

not extended Saltzer and Schroeder’s security principles down to instruction 

execution level, or below the instruction execution pipeline. The Aberdeen 

Architecture extends Saltzer and Schroeder’s concepts to below the execution 

pipeline level. 

The 1940 bridge over the Tacoma River opened on July 1, 1940, only to collapse 

on November 7, 1940. The bridge incorporated new design features that had 

unknown failure modes. The bridge collapsed during a helical oscillation caused by 

a 40 mi/h wind (64 km/h).  

The Tacoma Narrows bridge failure has given us invaluable information … It has 

shown every new structure [that] projects [or enters] into new fields of magnitude 

involves new problems for the solution of which neither theory nor practical 

experience furnish an adequate guide. (Ammann et al. 1941) 
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Speculative execution, cache bank operations, and branch predictors share 

hardware resources across multiple processes providing attack vectors. Spectre and 

Meltdown attacks were discovered in 2018. Both attacks were from unknown 

design oversights. Current and 20-plus-year-old microprocessors are vulnerable to 

Spectre and Meltdown attacks. For the Aberdeen Architecture, we want to use a 

simple design, avoid shared resources, and provide additional protection features. 

We do not want to find an enormous design flaw 20-plus years later. 

3.1 Review of Saltzer and Schroeder’s Security Principles 

In this section, we review Saltzer and Schroeder’s eight security principles and 

apply them to the Aberdeen Architecture. The Aberdeen Architecture’s security 

policy provides for complete verification or complete mediation (verify authority 

and permissions) (Smith 2012) for instruction execution. The state machines’ 

security policies provide for complete virtualization of the microprocessor 

execution pipeline. A virtual machine (Popek and Goldberg 1974) executes 

software using a “software based” virtual microprocessor. Virtual machines 

provide a property called introspection (Garfinkel and Rosenblum 2003). 

Introspection allows for verification and forensic analysis of software running on a 

virtual machine. The Aberdeen Architecture provides complete hardware support 

for full hardware-based virtualization. Current architectures mix hardware 

hypervisor features with the microprocessor architecture. An improved 

“hypervisor” that exists below the execution pipeline and is completely isolated 

from the execution pipeline is needed. 

3.1.1 Economy of Mechanism 

High-assurance operating systems can cost $10,000 per line of code (NICTA & 

UNSW 2009). The seL4 operating system used a computer-generated proof-of-

correctness to significantly reduce the cost of verification and validation to around 

$1,000 per line of code. For the Aberdeen Architecture, we want a simple design 

that makes demonstrating high assurance significantly less expensive. Instead of a 

large monolithic operating system, we are proposing several small state machines 

to implement the security policy. The design goal is to reduce high test and 

evaluation costs for high-assurance certification. Eight small state machines are 

much less complex than a traditional operating system. Aberdeen Architecture 

provides another system architecture benefit: the state machine–based security 

policies will reduce the complexity of high-assurance microkernels. For example, 

we envision a seL4-like microkernel taking advantage of hardware security policies 

to reduce the number of lines of assembly and C codes. We would also like to be 

able to test the state machines in parallel, reducing the time required for verification. 
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The state machines are small compared to a microkernel. Small code sizes greatly 

simplify formal verification. 

3.1.2 Fail-Safe Default 

For fail safe default cases, Smith stated, “In computing systems, the safe default is 

generally ‘no access’; the system must specifically grant access to resources” 

(2012). Aberdeen Architecture uses “no access” by default. Each application is only 

allowed to access resources granted by the state machines’ security policies. Access 

for required library functions is registered during installation. No other library 

functions may be called. A von Neumann machine mixes instructions and data. A 

no-execute tag helps limit changing data into instructions. A better solution is found 

in a Harvard architecture, which completely isolates instructions and data. 

Complete isolation provides a much higher assurance for “fail-safe default” than a 

no-execute tag. 

3.1.3 Complete Mediation 

Complete mediation is defined as, “Access rights are completely validated every 

time an access occurs.” (Smith 2012). The Aberdeen Architecture provides 

complete mediation for instruction execution, memory page accesses, stack 

operations, control flow, and data flow. Aberdeen Architecture’s security policies 

are enforced by state machines and security tags. The architecture verifies each 

instruction execution, data processing operation, and memory page operation.  

3.1.4 Open Design 

Open design principle enforces high assurance by design: “The design should not 

be secret” (Saltzer and Schroeder 1975). From a test engineer’s point of view, how 

do you verify a system requirement if you do not know what the design is? Can a 

confidential design containing proprietary components ever be verified? “Security 

through obscurity” is the commonly used phrase for a confidential design. In-band 

telephone network signaling and rootkit copy protection illustrate flawed 

“confidential” designs with catastrophic endings. To truly evaluate a computer 

system, the test engineer needs full system knowledge, including all hardware and 

software. Otherwise, security is left to the hidden flaw. The algorithm for AES is a 

published open source document and it has been verified by the open source 

community. Spectre, Meltdown, and related attacks take advantage of hardware 

design oversights. 
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3.1.5 Separation of Privilege 

A security system with several overlapping sensors is more effective than a system 

with a single point failure. Multiple security systems are preferred to a monolithic 

implementation. Dual keys on a safe deposit box and two-factor authentication are 

examples of good systems with separation of privilege. The Aberdeen Architecture 

uses multiple state machines instead of a single protection mechanism.  

3.1.6 Least Privilege 

The classic flawed example of privilege concentration (all rights in one place at the 

same time) is the monolithic kernel. All kernel routines have all rights to the system. 

Subverting one kernel routine gives the attacker all system access rights. This is 

often summarized as the “got root?” bumper sticker. Least privilege limits kernel 

routines, and application software to the minimum privileges required and no more 

privileges. 

3.1.7 Least Common Mechanism 

All shared resources result in covert channels leaking information. As early as 

1975, Saltzer and Lipner (Lipner 1975) pointed out that covert channels in Multics 

leak information. In 2005, Bernstein (2005) showed how timing information leaks 

AES key bit information. In 2007, Acıiçmez et al. (2007) illustrated how a branch 

predictor (a shared hardware resource) can be manipulated or modulated to leak 

key bit information. Jungwirth and Hahs (2019) published a transfer entropy model 

to quantify information leakage.  

3.1.8 Psychological Acceptability 

Smith (2012) describes user acceptability of security mechanisms: “This principle 

essentially requires the policy interface to reflect the user’s mental model of 

protection, and notes that users won’t use protections correctly if the mechanics 

don’t make sense to them.” For the Aberdeen Architecture, we define psychological 

acceptability as a protection system that emphasizes security and balances trade-

offs. We require simple protection mechanisms where the software developers can 

easily understand the design and performance trade-offs, and can easily write 

secure software for the architecture. We envision a high-assurance software 

compiler that intelligently manages secure information flow for the Aberdeen 

Architecture.
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3.1.9 Work Factor 

Smith (2012) describes the amount of effort to successfully attack a system. Work 

factor is the cost in time, resources, technology, and money to attack a system. The 

work factor for an in-band signaling telephone system was near zero. Systems with 

higher levels of assurance require more work and more money to attack. High-

assurance systems avoid single point failures. A high-assurance system uses 

effective and simple isolation techniques. For example, a von Neumann 

architecture combines program instructions and data. A simple buffer overflow 

allows for data to become a malicious program. A Harvard architecture uses two 

separate busses and memories for instructions and data; therefore, a Harvard 

architecture provides simple and effective isolation between program instructions 

and data. 

3.1.10 Compromise Recording 

Smith (2012) describes the challenge with recording a system attack: “Saltzer and 

Schroeder were skeptical about the benefit of such [compromise] recordings. If the 

system couldn’t prevent an attack that modified data, then the compromise 

recording itself might be modified or destroyed.” In other words, would you trust a 

calculator that you knew was broken? 

3.2 Trusted Computing Base Challenge 

How do we completely isolate the trusted computer base from software 

applications? The simple answer is, to completely isolate the security primitives 

from software. A significant problem with current microprocessors is that hardware 

resources are shared across multiple processes. A better co-design approach is 

required for hardware security primitives to reduce the complexity of hypervisors 

and operating systems. Ideally, we would like a simple set of hardware security 

primitives that are easy to verify and significantly reduce the complexity of critical 

operating system security routines. 

The von Neumann machine shares program instructions and data. Both instructions 

and data are integers. The execution pipeline in a von Neumann machine will 

simply execute the integers. It has no way of knowing the difference between the 

labels “data” and “program instruction”. This is a fundamental flaw. A Harvard 

architecture completely separates program instructions from data using two 

separate busses and memories. Harvard architectures are commonly used in digital 

signal processing integrated circuits. The von Neumann machine does not isolate 

resources. It violates several of Saltzer and Schroeder’s security principles. 
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Saltzer and Lipner (Lipner 1975), Bernstein (2005), Acıiçmez et al. (2007), Jiang 

and Fei (2017), and Karimi et al. (2018), Jungwirth and Hahs (2019) all illustrate 

how shared resources leak information. We need complete time and space isolation. 

From Acıiçmez et al.’s branch predictor attack, we cannot share branch predictor 

coefficients across multiple processes; each process must have its own set of branch 

predictor coefficients. For the cache bank attacks in Jiang and Fei (2017) and 

Karimi et al. (2018), we cannot allow a process (attack process) to manipulate or 

modulate cache bank lines of another process to leak information. The Spectre 

attack uses speculative execution to run malicious code before the hardware realizes 

the wrong execution path was taken. Hardware vulnerable to Spectre attacks 

violates complete mediation, least privilege, separation of privilege, and least 

common mechanism principles. A simple solution is to tag every micro-op pipeline 

operation with a process ID. If the operation accesses a resource with a different 

process ID, then raise a hardware exception.  

In summary, the Aberdeen Architecture strictly enforces space and time partitions. 

No hardware unit, for example, a branch predictor, contains values from multiple 

processes. Each process has its own set of branch prediction coefficients. The cache 

bank memory pipeline from the OS Friendly Microprocessor Architecture 

(Redstone Architecture) provides the key technology to enforce complete time and 

space partitioning. It is time to consider new architectures. 

We have computer system-of-systems composed of interconnected layers of 

hardware and software. What matters for the end user is the performance of the 

complete system. We need to improve the system performance, not just the 

operating system.  

We want a simple and sound security policy that is easy for the software 

development engineer to understand. Complexity, and especially hidden 

complexity (proprietary, and/or confidential design), is the antithesis of good 

security. If you need a doctorate to understand the implementation, it is far too 

complex for the real world. Right now, commodity microprocessors cannot 

distinguish between good software, coding errors, and malicious software. A 

confused deputy provides better security. This is a fundamental flaw with current 

microprocessors. Future execution pipelines need a hardware monitor (e.g., a nano-

kernel “operating system”) to enforce a security policy for executing instructions.  

Current microprocessors suffer from a “performance at all costs” mentality. 

Advance techniques, like speculative execution, branch prediction, cache line 

operations, high accuracy timing, and so on, are open doors for attackers. All are 

resources shared across multiple processes. We need much better space and time 

isolation. 
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The Aberdeen Architecture uses state machine monitors (nano-OS) for the trusted 

computing base. The state machine monitors provide complete mediation for 

instruction execution and memory page operations. The cache bank memory 

pipeline architecture from the OS Friendly Microprocessor Architecture provides 

the required space and time isolation in hardware. 

3.3 Aberdeen Architecture Design Considerations 

The Aberdeen Architecture is microprocessor instruction set architecture (ISA) 

agnostic and could support either a complex instruction set computer (CISC) or a 

reduced instruction set computer (RISC). For this report, we have chosen to focus 

on the RISC-V ISA. RISC-V is an open ISA with strong academic research support 

and support from computer industry captains: nVidia, Hitachi, Cadence, and 

Western Digital (RISC-V 2020). The architecture design goals are to create a high-

assurance architecture using hardware security primitives to reduce OS complexity. 

We envision a more streamlined version of seL4 to take advantage of the hardware 

security primitives. We want the additional overhead for security to be negligible. 

Clock speeds for an equivalent reference architecture without security primitives 

will be similar to protected architecture. We picture a computer system composed 

of hardware and software, where the hardware security primitives reduce OS 

complexity and provide better system performance than a comparable architecture 

running a traditional OS. We believe the system performance for state machine 

security policies + execution pipeline + guest OS will be significantly better than a 

traditional computer system.  

In the real world, physics and geometry bound solutions. For example, x2 = 9 has 

two potential solutions, x = +3 and x = –3. Physics and geometry place limits on 

which solution is allowed. If something cannot be proved consistent according to 

theory or logic, physics or geometry can help rule out extreme cases that are 

unreasonable. We do not need to know if a program will run forever. We are not 

concerned with whether or not a halting program will ever stop. We need to show 

that a program cannot ever violate the system’s security policy. 

3.4 Aberdeen Architecture Security Policies  

The primary function of the state machine hardware monitors is to provide 

complete mediation of instruction execution and only allow authorized information 

flow. Denning (1976) defines security as no unauthorized information flow is 

allowed: “‘Secure information flow,’ or simply ‘security,’ means here that no 

unauthorized flow of information is possible.” The state machine monitors are 

completely isolated from the instruction execution pipeline. In a traditional 
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microprocessor, the execution pipeline exists at the bare metal security layer. For 

the Aberdeen Architecture, the state machine monitors reside at security layer 0 

(one level below) and the execution pipeline at security layer 1. The state machine 

monitors verify the following operations for each machine code instruction in real 

time: 

 Is this operation allowed for the instruction class? 

 Is this memory operation safe? 

 Is this control flow valid? 

 Is data flow valid? 

 

Valid information flow is maintained through instruction execution, memory 

access, control flow integrity, and data flow integrity. Data flow integrity provides 

complete mediation for information flow as a program is running. Complete 

mediation is enforced by only allowing valid information flows during program 

execution. In 1981, Landwehr stated a set of rules for managing information flow 

(1981). The model tracks information flow from input information sources through 

data processing to output information sinks. Landwehr’s five rules for managing 

information flow are as follows (Landwehr 1981): 

(1) A set of objects, representing information receptacles (e.g., files, program 

variables, bits), 

(2) A set of processes, representing the active agents responsible for information flow, 

(3) A set of security classes, corresponding to disjoint classes of information, 

(4) An associative and commutative class combining operator that specifies the class 

of the information generated by any binary operation on information from two 

classes, and  

(5) A flow relation that, for any pair of security classes, determines whether 

information is allowed to flow from one to the other. 

 

The state machine monitors use security tag fields (3), control flow integrity tags 

(3), and data flow integrity tags (3) to manage information flow from information 

source (1) to information sink (5). The state machine monitors are the active agents 

responsible (2) for complete mediation of information flow. The security tag bits 

contain the set of security information classes (3). The state machine monitors 

ensure information flow for associative and commutative data operations (4 and 5) 

and input information flows, data processing, and output information flows for each 

machine code instruction are valid (complete mediation of instruction execution).  

Instruction execution (integrity) is a “streaming information flow”. Control flow 

integrity security tags ensure program execution is along a valid control flow path. 
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Data flow integrity is similar to control flow integrity. Data flow integrity provides 

complete mediation from the data source through data processing and to a data sink.  

The goal of data flow control is to prevent information leakage. The following 

example assumes security tags have been altered and other security settings 

changed to allow installing and running malware. An accounting program has a 

malicious subroutine. The malicious program is given access rights to sensitive 

data. Data flow integrity prevents the malicious subroutine from sending sensitive 

information to a non-allowed information sink. The state machine monitors enforce 

a data flow policy that prevents data leakage as described in the confinement 

problem (Lipner 1975). 

3.5 Attack Model 

For our attack model, we assume the hardware state machine monitors are 

completely isolated from the execution pipeline and all running software. We 

assume the state machine monitors have been semi-formally proven to formally 

proven correct. We assume the security tag bits are not accessible by the execution 

pipeline and running software. We assume the Aberdeen Architecture software 

installation tool correctly turns a binary execution file into a security-instrumented 

software application for the Aberdeen Architecture.  

For our attack model, we assume a rogue software binary has been parsed by the 

Aberdeen Architecture installation tool, and the security policy properly 

configured. The Aberdeen Architecture will allow rogue software to run as long as 

it does not violate any state machine security policies. As an example, assume a 

malicious program has been given another process’s pointer to an I/O port. A 

library function call to export a memory page would raise a hardware exception. 

The process ID for the attack process would not match the pointer’s owner. I/O 

pointers cannot be read or modified by application software. If the rogue software 

attempted to read the address of a pointer, another hardware exception would occur.  

3.6 Common Weakness Enumerations for Software-Facilitated 
Hardware Vulnerabilities  

DARPA’s System Security Integrated Through Hardware (SSITH) and firmware 

call for proposals (DARPA 2017) used seven Common Weakness Enumerations 

(CWEs) (DARPA 2017, Attachment 3 CWE Glossary) as security requirements. 

The Aberdeen Architecture provides protections against all seven CWEs by 

providing complete mediation for instruction execution, control flow integrity, and 

data flow integrity. Data flow integrity covers data security level, data integrity, 

and other data flow restrictions.  
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State machine monitors in the Aberdeen Architecture provide complete mediation 

for instruction execution, control flow verification, and data flow verification. 

Complete mediation provides a high-assurance sandbox environment to “interpret” 

instructions in hardware similar to a software virtual machine. By providing 

complete mediation at the lowest level, instruction execution, the architecture 

achieves high assurance. We review the seven CWEs (DARPA 2017, Attachment 

3 CWE Glossary) and briefly describe the protection measures provided by the 

Aberdeen Architecture for each CWE. 

1) Buffer Errors  

This vulnerability allows inappropriate read and/or write access to locations within 

memory associated with variables, data structures or internal program data. 

Inappropriate access to memory is exploited to subvert the normal hardware 

operations creating security vulnerability in the hardware. (DARPA 2017, 

Attachment 3 CWE Glossary) 

 

RISC-V Instruction Operation 
{1} 

READ:  LW R1,10(R2) 
rd = mem_read(addr = (rs1 + Offset) ) 
R1 = mem_read(R2 + 10) 

 

Common architectures, including RISC-V, use a von Neumann architecture. A 

fundamental problem with current microprocessors is the lack of isolation provided 

by a von Neumann machine. The first line of defense against buffer overflows 

needs to be at the hardware level. A true Harvard architecture is required to enforce 

hardware isolation between program instructions and data. Software isolation 

provided by current isolation kernels, hypervisors, and so on, are inadequate. 

Spectre, Meltdown, and related attacks illustrate how unknown hardware 

vulnerabilities can be exploited. Full memory protection requires complete 

mediation of instruction execution. All operations within an instruction {1} need to 

be validated before allowing the instruction to complete. In this report, {1} notation 

refers to short blocks of computer code similar to (1) notation used for equations. 

For complete instruction mediation, we would need to check the items listed in 

Table 2.
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Table 2 Complete mediation for LW R1,10(R2) 

Instruction Execution Complete Mediation Tests 

0x00ABCD04  READ: LW R1,10(R2) Is the address 0x00ABCD04 valid for the 

running process? 

Is the memory page valid for the running 

process? 

Is the memory page executable code? 

Is the memory page Process ID valid? 

0x00ABCD04  READ: LW R1,10(R2) Are the control flow security tags valid? 

LW Is LW tag set? 

R2 Is register R2 a valid pointer? 

R2 + offset Is the memory page pointed to by R2 + offset 

valid? 

Is the memory address pointed to by R2 + 

offset valid? 

mem_addr = R2 + offset Do the security tags for mem_addr allow for 

read access by process? 

R1 Are the data flow integrity tags valid? 

R1 Do register tags allow write access to R1? 

 If all mediation tests pass, then → R1 = READ(mem_addr = R2 + offset) 

 

2) Permission, Privileges, and Access Control  

This vulnerability allows execution of unauthorized operations in a system. A 

privilege vulnerability can allow inappropriate access to system privileges. A 

permission vulnerability can allow inappropriate permission to perform functions. 

An access vulnerability can allow inappropriate control of the authorizing policies 

for the hardware. (DARPA 2017, Attachment 3 CWE Glossary) 

All resources are by default not allowed. All privileged operations are handled by 

the hardware state machines. For privilege escalation to occur, the state machine 

monitors would need to be directly subverted. 

3) Resource Management  

This vulnerability allows improper use of the hardware resources that in turn allow 

external takeover of hardware resources. This includes improper access to 

hardware resources such as memory, CPU, and communication and/or preventing 

valid users from gaining access to these resources. (DARPA 2017, Attachment 3 

CWE Glossary) 

All requests for resources are managed by state machine monitors. The state 

machine monitors are completely isolated from the execution pipeline. Software 

has no access to state machine monitors. Side channels may leak information; 

however, the architecture isolates all resources. For example, branch predictors 

have a coefficient table for each process. A rogue process cannot modulate the 
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branch predictor to steal information from another process. Caches are isolated 

based on process IDs. A rogue process cannot modulate a cache bank or line to leak 

(steal) information from another process. 

4) Code Injection  

This vulnerability allows inappropriate code to be injected into the hardware due 

to an inherent vulnerability in the hardware. This vulnerability allows introduction 

of malicious code to change the course of execution on the hardware. (DARPA 

2017, Attachment 3 CWE Glossary) 

There are two possible code injection attacks: an outside attacker or an inside 

operative with access to the software configuration and install tools. Our attack 

model assumes the configuration and install process is trusted. There are also two 

possible outsider system attacks: attacker has the system in hand or the attacker is 

attacking remotely. We will only consider noninvasive network cyber-attacks. We 

do not consider invasive system attacks in our attack model.  

We assume the attacker has already succeeded in loading the attack “executable” 

payload and the executable is running. Complete mediation of instruction execution 

prevents malicious code from performing any illegal operations. We illustrated 

complete mediation for a load instruction in Section 3.4. The malicious code 

payload does not conform to the installed program’s control flow graph and data 

flow graphs. A control flow violation would occur when the malicious program 

diverged from the control flow graph. A data flow integrity exception would occur 

if security and/or integrity policies are violated. A hardware exception would occur 

if an illegal instruction operation were attempted. 

5) Information Leakage (also known as Information Exposure)  

This vulnerability allows inappropriate access to privileged information in the 

hardware through intentional or unintentional information sharing. This 

vulnerability includes inappropriate data transfers, caching mechanisms, and error 

handling but are not limited to these areas. (DARPA 2017, Attachment 3 CWE 

Glossary) 

The combination of complete mediation for instruction execution and time-space 

isolation prevents processes from being correlated. Shared resources are completely 

space and time isolated. Aberdeen Architecture provides high-assurance space and 

time isolation to block information leakage.  

6) Crypto Errors  

This vulnerability allows inappropriate use and execution of cryptography in 

hardware. This vulnerability includes inappropriate access to cryptographic keys 
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and inappropriate use of these keys to exfiltrate information or allow inappropriate 

access to hardware. (DARPA 2017, Attachment 3 CWE Glossary) 

The current Aberdeen Architecture is a base architecture. A cryptographic engine 

can be connected through a DMA channel. Cryptographic keys are stored in 

protected memory blocks. Software does not have direct access to crypto keys. 

Figure 1 illustrates a protected I/O pointer for the OSFA architecture. Crypto keys 

can be protected using the same protected pointer type. A protected pointer points 

to a crypto key. As illustrated in the OSFA tech report, software knows the crypto-

pointer is linked to a crypto key. Software does not have access to read/write to the 

crypto-pointer or the crypto key. Software can pass a protected crypto-pointer to a 

hardware cryptographic unit. The cryptographic core uses the crypto-pointer to 

access the cryptographic key. A hardware state machine can manage cryptographic 

operations and has read access to the crypto key.  

 

Fig. 1 OS friendly microprocessor architecture protected pointers (Jungwirth and 

LaFratta 2017) 

7) Numeric Errors  

This vulnerability allows exploitation of improper calculation or conversion of 

numbers and numeric types. Improper/incorrect calculations can allow subversion 

of security critical operational decisions and/or resource management. (DARPA 

2017, Attachment 3 CWE Glossary) 

Improper calculations or data conversion attacks are blocked by control flow 

integrity protections and data flow integrity protections. Data flow integrity in the 

Aberdeen Architecture provides security tags for secrecy levels, integrity, and data 

types. A gadget is a short block of code found in a common library function. A 

series of gadgets are called in an attacker predetermined order to craft an attack 

program. Control flow integrity provides specific entry and exit points for library 

functions. Code entry and exit points drastically limit opportunities for calling 

useful attack gadgets. The security tags also ensure that the secrecy level, integrity, 

and data types are compatible.
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3.7 Data-Dependent Information Flows 

Figure 2 illustrates simple data-dependent information flows. Program instruction 

flow is data dependent. The C code condition if( arr[j] > arr[j+1]) results in 

data-dependent instruction execution. System state behavior must not be correlated 

with data-dependent program execution. The Aberdeen Architecture uses the four 

information flows in Table 1 to build a high-assurance architecture. 

//  C code bubble sort routing   
 
//  swap variables   
void swap(int a, int b)  {   
    int temp = a;   
    a = b;   
    b = a;   
}   
   
//  bubble sort function  
int bubbleSort(int arr[], int n)  {   
   int i, j;   
 
 
   for (i = 0; i < n-1; i++)       
 
 
      for (j = 0; j < n-i-1; j++)   
 
 
         if (arr[j] > arr[j+1])   
           swap(arr[j], arr[j+1]);   
 
   return 0 
}   

   
Fig. 2 Bubble sort 

 

3.8 Architecture Summary 

The Aberdeen Architecture’s goal is to provide complete mediation down to the 

instruction execution level (instruction execution integrity). All information flows 

are verified from information source to information sink. The state machine 

monitors are completely isolated from the execution pipeline and all running 

software. The state machines are the managers (controllers) for the execution 

pipeline. Multiple security policies are running simultaneously. In order to subvert 

the system, most if not all of the security monitors would need to be defeated.  

Bubble Sort 

Data Flow Dependent Program 

Execution 
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As with the Tacoma Narrows Bridge, lessons learned need to be applied to new, 

more secure architectures. More complexity results in a higher probability of an 

unknown attack vector. Engineers can only make it more expensive to attempt to 

break in. Keep in mind, an un-hackable system cannot be built and it can never be 

fully tested. 

4. Aberdeen Architecture 

Podebrad et al. (2009) and Tiwari et al. (2011) point out that current computers are 

only designed for speed; security issues are completely ignored. It is time to 

develop new, more secure architectures. Resource sharing across concurrently 

running processes cannot be allowed. For example, the branch coefficients in a 

branch predictor are shared across multiple running processes. Allowing processes 

to manipulate cache lines or banks across multiple concurrent processes should not 

be allowed. The execution pipeline needs to support complete mediation for 

instruction execution.  

The analysis of currently available computer architectures has shown that such 

systems offer a lot of security gaps. This is due to the fact that in the past hardware 

has only been optimized for speed - never for security. (Podebrad et al. 2009) 

 

Almost every recent microarchitectural technique is built around the notion of 

optimizing the common case, an end achieved in large part through the addition of 

caches, status bits, exceptions, predictors, and other behaviors that modify the state 

of the machine. The problem is that, if one is protecting a secret or handling 

untrusted data, every operation performed on that secret will affect those internal 

states in one way or another. Non-interference requires that those affected internal 

states are then in no way visible to the other components, including either directly 

through the ISA, or indirectly through the resulting differences in behavior or 

timing. (Tiwari et al. 2011) 

Figure 3 shows the classic 5-stage RISC execution pipeline. The classic RISC 

execution pipeline cannot distinguish between safe instructions, coding errors, and 

malicious instructions. Recent research demonstrates that security tag bits provide 

security awareness. The DARPA CRASH program, the DARPA SSITH program, 

and the Redstone Architecture (OS friendly microprocessor architecture) use 

security tag bits. The Redstone Architecture uses two levels of security tag bits. The 

Aberdeen Architecture uses the Redstone Architecture's execution pipeline for 

security level 1. Level 0, hardware-based state machine monitors, provides the 

foundational level security policy and complete mediation for instruction 

execution. 
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Fig. 3 Classic 5-stage RISC execution pipeline (Jungwirth 2020b) 

The Aberdeen Architecture uses state machine monitors completely isolated from 

the execution pipeline to enforce hardware-based security policies. There are four 

main hardware-enforced security policies: (1) instruction execution [integrity], (2) 

page memory access control [memory integrity], (3) control flow integrity, and (4) 

data flow integrity. The Aberdeen Architecture extends the research work found in 

Lipner (1975), Jungwirth et al. (2017, 2018a, 2018b, 2019b, 2020), Jungwirth and 

Ross (2019), Jungwirth (2020a), and Jungwirth and La Fratta (2015, 2016, 2017). 

The Aberdeen Architecture enforces Saltzer and Schroeder’s security principles 

(1975) at the instruction execution level. Shared hardware resources leak 

information. Attack processes will maliciously modulate shared resources to 

maximize information leakage (Lipner 1975; Bernstein 2005; Acıiçmez et al. 2007; 

Jungwirth and Hahs 2019). The Aberdeen Architecture does not allow resource 

sharing across multiple, concurrent, running processes.  

The Aberdeen Architecture’s hardware-level security policy consists of several 

hardware monitors (nano-kernels). In Section 4.1, we present a historical review 

covering the development of hardware-based operating systems. In Sections 4.2–

4.5, the Aberdeen Architecture is introduced and presented in detail. 

4.1 Historical Review 

In 1968, Dijkstra wrote the foundational paper for the modern operating system 

“The structure of the 'THE' - multiprogramming system” (1968). From the 1970s 

through the early 1990s, microprogramming was used to implement operating 

system primitives in hardware. Microprogramming was the first step toward a 

hardware-based operating system. In 1973, Goldberg was researching direct 

hardware execution for a virtual machine: 
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An HVM [Hybrid Virtual Machine] is functional equivalent to a real machine. All 

instructions issued within the most privileged layer of the HVM are software 

interpreted while all non-privileged-layer instructions execute directly. 

In 1975, Sockut (1975) published research on firmware/hardware support for 

operating systems. Brown et al. (1977) researched microprogramming to improve 

operating systems in 1977. Foster (1978) considered hardware enhancement for 

operating systems in 1978. In 1982, Kamibayashi et al. (1982) researched 

microcoded OS’s and the “advantages of the efficiency which may be gained from 

microcoded operating system primitives.” In the early 1990s, microprogramming 

was still being researched for operating systems (Papachristou and Gambhir 1991). 

Around that same time, Nakano et al. developed the first practical hardware-based 

operating system (1995, 1997, 1999). During the 2000–present time frame, 

hardware operating systems have reached the commercial world (Hardin 2001; 

Murtaza et al. 2006; Song et al. 2007; Vetromille et al. 2006; Yan et al. 2010; 

Oliveira et al. 2011; Ong et al. 2013; Moisuc et al. 2014; Stenquist 2014; Renesas 

2021a, 2021b). In 2014, Renesas released the R-IN32M3 microcontroller with a 

hardware-based operating system (Renesas 2014; Renesas 2021a). 

Tagged security computer architectures originated in the 1970s. In 1973, Feustel 

proposed using a tagged architecture to overcome limitations present in the von 

Neumann machine. 

Taken together, the arguments we have advanced provide a powerful incentive for 

further investigation and exploitation of tagged architecture. Such a machine may 

soon well be a replacement for today's widely accepted von Neumann architecture.  

(Feusel 1973) 

In 1975, Saltzer and Schroeder proposed using tagged architectures for securing 

protected operations.   

Suppose, for example, that every location in memory were tagged with an extra 

bit. If the bit is OFF, the word in that location is an ordinary data or instruction 

word. If the bit is ON, the word is taken to contain a value suitable for loading into 

a protection descriptor register. … This kind of scheme is a particular example of 

what is called a tagged architecture. (Saltzer and Schroeder 1975) 

In 1989, Bondi and Branstad researched a tagged architecture to simplify high-

assurance certification: 

The architecture's hardware-enforced fine-grained mediation will …   

• permit sufficient simplification of security kernel and other associated trusted 
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software to bring certification at TCSEC [Trusted Computer System 

Evaluation Criteria] level A1 (and beyond) within reach;  

 • support highly secure data flow control. …  

In the early 1980s, hardware optimizations like caches, execution pipelines, and 

speculative execution where not used in commercial microprocessors. In 1985, one 

paper (Gehringer and Keedy 1985) pointed out that tagged architectures were an 

‘unnecessary’ complexity compared to software. Today, tagged architectures offer 

numerous computer security benefits for high-assurance architectures. DARPA’s 

Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) 2011 program 

led to significant research into new tagged architectures for better computer security 

(Kenyon 2012; Smith n.d.). The website, www.crash-safe.org, hosts a number of 

CRASH architecture research papers (de Amorim et al. 2017; Chiricescu et al. 

2013; Dhawan et al. 2017).  

The DARPA System Security Integration Through Hardware and Firmware 

(SSITH) Program (Rebello n.d.; Chirgwin 2017; DARPA Microsystems 

Technology Office 2017; Hruska 2017; Keller 2017; Blinde 2018) promoted the 

development of new architectures to remove software initiated attacks against 

vulnerable hardware. The Register.com announced “DARPA seeks SSITH lords to 

keep hardware from the Dark Side” (Chirgwin 2017). SSITH architecture research 

papers, covering secure speculative execution (Jiang et al. 2018), information flow 

enforcement (Tarma et al. 2019), and cryptographic accelerators (Jiang et al. 2019), 

and defending against data oriented programming (DOP) attacks (Aga and Austin 

2019) were recently published. Significant research efforts in the 2010s have led to 

renewed interest in tagged architectures for computer security (Aga and Austin 

2019; Zeldovich et al. 2008; Shrobe et al. 2009; Shioya et al. 2009; Dhawan et al. 

2012; Song and Alves-Foss 2013; and Song 2014).  

Security techniques should be simple to understand and provide high assurance. 

Abadi et al. (2005) recommend for high-assurance systems: 

In order to be trustworthy, mitigation techniques should — given the ingenuity of 

would-be attackers and the wealth of current and undiscovered software 

vulnerabilities — be simple to comprehend and to enforce, yet provide strong 

guarantees against powerful adversaries. On the other hand, in order to be 

deployable in practice, mitigation techniques should be applicable to existing code 

(preferably even to legacy binaries) and incur low overhead. 

The Redstone Architecture (OS Friendly Microprocessor Architecture [OSFA]) 

uses a tagged cache bank memory pipeline for high assurance and high performance 

(Jungwirth et al. 2017, 2018a, 2018b, 2019b, 2020; Jungwirth and Ross 2019; 

Jungwirth 2020a; Jungwirth and La Fratta, 2015, 2016, 2017). The Redstone 

http://www.crash-safe.org/
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Architecture was patented, US9122610, in 2015. A security framework for the 

Redstone Architecture was patented, US10572687, in 2020. The Aberdeen 

Architecture uses the Redstone Architecture for security layer 1. Aberdeen 

Architecture is currently patent pending. 

4.2 Aberdeen Architecture Philosophy and Goals  

The Aberdeen Architecture manages objects (instructions, data and memory pages) 

by classes. The research Aberdeen Architecture uses the RISC-V instruction set. 

There are four instruction classes: (1) arithmetic/logic sequential, (2) load/store 

sequential, (3) conditional branch, and (4) jump. Each instruction class has a set of 

security properties enforced by state machine monitors. The instruction execution 

[integrity] state machine monitor provides complete mediation for instruction 

execution.  

High assurance systems of the future need a bottom-up, hardware and software co-

design approach to security [5] and a hardware level root of trust [6]-[7]. We 

should also consider the high assurance levels achieved by state machines for 

safety critical applications where rigorous system verification is required. 

(Jungwirth et al. 2018b) 

There are several memory page classes. Each class has a set of security properties 

enforced by state machine monitors. The memory page state machine monitor 

(MPSM) enforces security properties for several different memory page types. For 

example, the I/O_Page_Mem class provides for page-level input and output 

operations. No data operations may be performed on an I/O_Page_Mem class. This 

restriction enforces least privilege, privilege separation, and complete mediation 

for I/O. Data and math operations are restricted to “data” contained in a memory 

page type = Data_Page_Mem class. There are conversion instructions provided to 

convert memory pages between I/O_Page_Mem and Data_Page_Mem classes.  

The memory state machine monitor provides complete mediation for load and store 

memory operations. The stack machine monitor provides complete mediation for 

all stack operations. The Aberdeen Architecture uses multiple stacks to provide 

least privilege and privilege separation for different stack types. For example, return 

addresses and call arguments are not placed on the same stack.  

There may appear to be a large number of memory page types; however, we are 

balancing security policy, flexibility, OS complexity, and performance. Memory 

page classes provide least privilege, privilege separation, and complete mediation 

for each memory class. This simplifies OS complexity, provides higher 

performance, and provides a better security policy. 
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Aberdeen Architecture uses state machine monitors to enforce security polices 

based on Saltzer and Schroeder’s security principles, and Landwehr’s information 

flow control rules. The Aberdeen Architecture protects against all seven CWEs 

(DARPA 2017, Attachment 3 CWE Glossary) by providing complete mediation for 

instruction execution integrity, page memory access integrity, control flow 

integrity, and data flow integrity. Data flow integrity covers data security level, data 

integrity, and other data flow restrictions.  

Aberdeen Architecture limits a rogue program to benign behavior. The goal of the 

Aberdeen Architecture is to limit a rogue program to only harm itself. As long as 

the architecture protects all programs, memory spaces, and so on, from a rogue 

program, damage is limited to only the rogue process. Complete mediation provides 

high assurance.  

The Aberdeen Architecture provides complete mediation for instruction execution 

and memory operations. Control flow integrity verifies that program execution 

follows its control flow graph. Data flow integrity verifies information flow during 

program execution. The trusted computing base needs to be completely 

implemented in hardware and completely isolated from software. Aberdeen 

Architecture’s security policy is enforced by several state machine monitors. The 

proposed state machines implement a foundational-level hardware security policy.  

The Aberdeen Architecture includes several state machines: instruction execution 

monitor, memory page monitor, control flow monitor, data flow monitor, exception 

monitor, scheduler monitor, and interrupt monitor. Architecture objects are 

categorized by allowed operations. Aberdeen Architecture uses the Redstone 

Architecture’s (OS Friendly Microprocessor Architecture) (Jungwirth and LaFratta 

2015) pipeline and security features for the security layer 1.  

Software is mutable, generally buggier than hardware, might have coverage holes 

due to heterogeneity and layering, and might implement incorrect privacy notions. 

Hardware, however, is immutable and can sit between data sources (sensors) and 

data consumers (software accessing the data), guaranteeing coverage and a 

universal, minimum notion of privacy. (Sethumadhavan 2016) 

De Clercq and Verbauwhede (2017) and Sethumadhavan (2016) recommended 

placing the trusted computing base in hardware. Complete mediation for instruction 

execution and memory operations has the potential of overcoming the limited 

success of previous memory protections focused on specific attack vectors (Suh 

et al. 2004). 

Unfortunately, it is very difficult to protect programs by stopping the first step of 

an attack, namely, exploiting program vulnerabilities to overwrite memory 
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locations. There can be as many, if not more, types of exploits as there are program 

bugs. Moreover, malicious overwrites cannot be easily identified since vulnerable 

programs themselves perform the writes. Conventional access controls do not 

work in this case. As a result, protection schemes which target detection of 

malicious overwrites have only had limited success – they block only the specific 

types of exploits they are designed for. (Suh et al. 2004) 

4.3 Aberdeen Architecture 

We begin by describing the software design philosophy for the Aberdeen 

Architecture. This provides a foundation to describe protections provided by the 

Aberdeen Architecture. The software design philosophy describes how programs 

are structured to take advantage of the protection features provided by the Aberdeen 

Architecture. The next sections introduce the major features of the Aberdeen 

Architecture: ISA, memory architecture, tag protection bits, control flow integrity 

(CFI), and data flow integrity (DFI). Tag protection bits are the basis for instruction 

execution integrity, control flow integrity, and data flow integrity. For the Aberdeen 

Architecture, we consider the instruction execution flow as an information flow. 

Malicious manipulation of the instruction flow execution leaks information. We 

need to secure instruction execution just like securing data information flow using 

security and integrity parameters. For the Aberdeen Architecture, we group ‘data’ 

information flow into a single class called data flow integrity. We now have four 

subclasses of information flow: instruction execution, page memory access, control 

flow integrity, and data flow integrity. High-assurance information security policies 

manage instruction execution, page memory access, control flow, and data flow.  

In terms of a virtual machine, the security tag fields enable complete virtualization 

of the execution pipeline. The register security tags also virtualize the register file 

(registers R0, R1, R2, ∙∙∙ R31). The security tag fields are “interpreted” in real time 

by the hardware state machine monitors. The monitors enforce the hardware-level 

security policies providing complete instruction execution mediation. 

Aberdeen Architecture adds hardware-level nano-kernel state machine monitors to 

the Redstone Architecture. Figure 4 illustrates how the state machine enforces 

security policies for the execution pipeline. Redstone Architecture uses two-level 

security tag fields and cache bank memory pipeline architecture to provide high 

performance. The Aberdeen Architecture enforces complete mediation for 

instruction execution. The Aberdeen Architecture’s state machines enforce high-

assurance hardware-level security policies from architecture level 0 (most secure 

layer). Execution pipeline (security level 1) runs software at security levels 2 and/or 

higher. In terms of a virtual machine, the state machine monitors provide full 

virtualization for the execution pipeline. The hardware security policy enforces 
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allowed instruction behavior for each instruction class. The Aberdeen Architecture 

uses security policies to enforce allowed operations for the four information flow 

classes. Instruction execution is considered an information flow class that is 

dependent on the data flow class. The Aberdeen Architecture uses multiple security 

policies to enforce allowed instruction execution. For example, a control flow 

monitor ensures that the executing program is following a valid control flow path. 

The next sections present a detailed description of the Aberdeen Architecture. 
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Fig. 4 State machine security policies 

4.3.1 Aberdeen Architecture’s Information Flow Classes 

Aberdeen Architecture uses four information flow classes. Information flow has 

focused on data and data processing information flows. The current view of basing 

information flow only on data needs to be extended. A wider view of information 

flow is needed to better secure microprocessor architectures. Table 1 lists the four 

information flow classes. All information flows are data flow dependent. Data flow 

determines the path taken for program instruction flow (integrity), control flow 

graph (control flow integrity), and memory access flow (integrity). Data flow 

integrity covers integrity, secrecy, and other data characteristics (measurement 

units, and data type [record, float, integer, etc.]). Data flow dependencies need to 

be fully understood to create a secure architecture. As pointed out in Abadi et al. 

(2005), stack operations are not taken into account in a control flow graph. Stack 

operations can be data dependent or not. Stack memory access operations need to 

be secured. Control flow integrity needs to be supplemented with stack and memory 

protections. Data flow can drive stack and function call paths. We need to build up 
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a sound security policy starting from data flow, covering memory access, control 

flow, and program instruction flow.  

4.3.2 Software Design Philosophy Introduction 

A microprocessor is designed to run software. We introduce the software design 

philosophy for the Aberdeen Architecture to build up the architecture a step at a 

time. We will use the Sieve of Eratosthenes C program in Fig. 5 as a code example. 

Software for the Aberdeen Architecture is configured with a block structure. Single 

CALL entry and RETURN exit points restrict function entry and exit points 

(Kiriansky et al. 2002). We will build upon this code example to explain the 

operation of the Aberdeen Architecture. 

Another process, or the function itself, is not allowed to CALL an instruction inside 

a function or code block. The block code structure is to prevent gadget attacks 

typically used against library functions (or dynamically linked library [DLL] 

functions). The block code structure is to enforce least privilege, privilege 

separation, and complete mediation principles from Saltzer and Schroeder. Tag bits 

are used to define the entry and exit code points. Tag bits can also be applied to 

exception handlers to ensure code execution follows an allowed path (control flow 

integrity). Figure 5 shows a C code version of the Sieve of Eratosthenes algorithm. 

Figure 6 illustrates the code block formed by the entry point (CALL to function) and 

exit point (RETURN from function). We will expand upon this code block structure 

for the Aberdeen Architecture.  

The sieve code uses a packed bit array of consecutive 32-bit words to hold bits 

representing prime or not prime. In order to remove the square root function from 

the algorithm, we define two parameters, R and LAST = R2 - 1. This removes the 

square root function from the while loop: while (base < R). Figure 7 shows an 

example list of prime numbers for R = 37 and LAST = 372 – 1 = 1368. Figure 8 

shows the RISC-V assembly and machine codes for the Sieve of Eratosthenes 

routine. We will use the RISC-V Sieve of Eratosthenes program to describe the 

operation of the Aberdeen Architecture.  
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// Sieve of Eratosthenes 
// uses packed bit array to store prime / not prime result 
// pb[ ] = packed bit array, word aligned, e.g. addr = 0x100 
// J. Ross and P. Jungwirth, Army Research Lab, October 2019 
// C code is based on rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada 
// Algorithm see https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 
 
#include <stdio.h> 
#define R 37 
#define LAST (R * R) 
#define LWORD (LAST / 32) 
int pb[LWORD + 1]; // = { [0 ... LWORD] = 0xffffffff } -- packed bit array 
 
void setbits() { 
   for (int i = 0; i < LWORD + 1; i++) pb[i] = 0xffffffff; } 
 
void display() { 
   int bit = 0; int word = 0; int shift = 0; 
   printf("Prime Numbers are \n"); 
   for (int i = 1; i < LAST - 1; i++)  
   {  word = i >> 5; shift = i & 0x1f; 
      bit = (pb[word] >> shift) & 1; 
      if (bit == 1) printf(" %d", i); } 
} 
 
void sieve() { 
   int base = 2; int pbit = 0; int cnt = 0; 
   int base_bit = 0; int base_word = 0; int base_shift = 0; 
   int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0; 
   while (base < R) { 
      base_word = base >> 5; base_shift = base & 0x1f; 
      base_bit = (pb[base_word] >> base_shift) & 1; 
      if (base_bit)  
      {  cnt = base << 1; // base + base; 
         while (cnt < LAST)  
         {  cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f; 
            cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask; 
            pbit = pb[cnt_word] & bit_mask; 
            pb[cnt_word] = pbit; 
            cnt = cnt + base; } 
      } 
      base = base + 1; 
   } 
} 
 
int main() { 
   setbits();  // set array of bits = 1's 
   sieve();    // Call Sieve of Eratosthenes 
   display();  // display prime number 
   return 0; 
} 

Fig. 5 Sieve of Eratosthenes in C code 

Sieve of Eratosthenes Code 

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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Fig. 6 Block code structure 

 

 

Fig. 7 Sieve of Eratosthenes results for R = 37 
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void sieve() { 
   int base = 2; int pbit = 0; int cnt = 0; 
   int base_bit = 0; int base_word = 0; int base_shift = 0; 
   int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0; 
   while (base < R) { 
      base_word = base >> 5; base_shift = base & 0x1f; 
      base_bit = (pb[base_word] >> base_shift) & 1; 
      if (base_bit)  
      {  cnt = base << 1; // base + base; 
         while (cnt < LAST)  
         {  cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f; 
            cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask; 
            pbit = pb[cnt_word] & bit_mask; 
            pb[cnt_word] = pbit; 
            cnt = cnt + base; } 
      } 
      base = base + 1; 
   } 
} 

Single Entry Point
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// Sieve of Eratosthenes – RISC-V Assembly Language 
 

Memory Address          Machine Code     Assembly Code            Code Description 
 0x0000 0008: <sieve>    0x00200613      li    a2, 2              # base = a2 = 2 
 0x0000 000c:            0x10000513      li    a0, 0x100          # pb[0] = 0x100 
 0x0000 0010:            0x00100893      li    a7, 1              # a7 = 1 
 0x0000 0014:            0x06300813      li    a6, 0x63           # LAST = R^2 -1 = 100 - 1 
 0x0000 0018:            0x00a00313      li    t1, 0x10           # t1 = R = 16 
 0x0000 001c:            0x00c0006f      j     28 <L1>            # jump to <L1> 
 0x0000 0020: <L3>       0x00160613      addi  a2, a2, 1          # a2 = base = base +1 
 

 0x0000 0024:            0x04660a63      beq   a2, t1, 78 <L2>    # if base = R then <L2> Done 
 

 0x0000 0028: <L1>       0x40565793      srai  a5, a2 ,0x5        # a5 = word offset 
 0x0000 002c:            0x00279793      slli  a5, a5, 0x2        # a5 = byte offset [note 1] 
 0x0000 0030:            0x00f507b3      add   a5, a0, a5         # a5 = pb[0] + byte offset 
 0x0000 0034:            0x0007a783      lw    a5, 0(a5)          # a5 = LW(addr = a5) 
 0x0000 0038:            0x40c7d7b3      sra   a5, a5, a2         # a5 = a5 >> a2 [note 2] 
 0x0000 003c:            0x0017f793      andi  a5, a5, 1          # a5 = pb[word, bit number] 
 0x0000 0040:            0xfe0780e3      beqz  a5, 20 <L3>        # if a5 = bit = 0 the <L3> 
 0x0000 0044:            0x00161693      slli  a3, a2 ,0x1        # a3 = cnt = base + base 
 0x0000 0048: <L4>       0x4056d793      srai  a5, a3, 0x5        # a5 = word offset from a3 
 0x0000 004c:            0x00279793      slli  a5, a5, 0x2        # a5 = byte offset 
 0x0000 0050:            0x00f507b3      add   a5, a0, a5         # a5 = pb[0] + byte offset 
 0x0000 0054:            0x0007a583      lw    a1, 0(a5)          # a1 = LW(addr = a5 + 0) 
 0x0000 0058:            0x00d89733      sll   a4, a7, a3         # a4 = 1 << cnt = 0••010••00 
 0x0000 005c:            0xfff74713      not   a4, a4             # a4 = 1•••0•••11 
 0x0000 0060:            0x00b77733      and   a4, a4, a1         # clear bit 
 0x0000 0064:            0x00e7a023      sw    a4, 0(a5)          # update word 
 0x0000 0068:            0x00c686b3      add   a3, a3, a2         # cnt = cnt + base 
 0x0000 006c:            0xfcd85ee3      ble   a3, a6, 48 <L4>    # if less then <L4> 
 0x0000 0070:            0x00160613      addi  a2, a2, 1          # base = base + 1 
 0x0000 0074:            0xfa661ae3      bne   a2, t1, 28 <L1>    # if base != R then <L1> 
 

 0x0000 0078: <L2>       0x00000513      li    a0, 0              # clear a0  
 

 0x0000 007c: <return>                   ret 

Fig. 8 RISC-V Sieve of Eratosthenes 
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The Aberdeen Architecture is instruction-set agnostic; however, to describe the 

architecture’s operations, we need a specific instruction set. For this technical 

report, we will use the RISC-V 32-bit integer instruction set. Code fragment {2} 

shows the first line of the RISC-V code for the Sieve of Eratosthenes. We will add 

tag bits to the machine code instructions for control flow integrity, data flow 

integrity, memory access integrity, and instruction execution integrity. Memory 

integrity is enforced by instruction execution integrity, control flow integrity, and 

data flow integrity. For example, Aberdeen Architecture uses separate stacks for 

“data” and return addresses. Mixing stack classes violates Saltzer and Schroeder’s 

principles of least privilege, privilege separation, and complete mediation. More 

details about memory architecture will be presented in Section 4.3.3. 

Memory 
Address 

Instruction 
Machine Code 

RISC-V  
Assembly Language 

{2} 
 

0x0000 0008 
 

0x0020 0613 
 

<sieve>  li  a2, 2   # base = a2 

4.3.3 Instruction Set Architecture (ISA) 

The Aberdeen Architecture is ISA agnostic. Both complex instruction set computer 

and reduce instruction set computer ISAs can be used for the Aberdeen 

Architecture. For this technical report, we have chosen to use the RISC-V reduce 

instruction set computer ISA. The open source and extendable RISC-V ISA has an 

established user community and software development ecosystem. Current 

proprietary microprocessor ISAs were never designed to be extended. RISC-V 

promotes its open design philosophy by creating an architecture that is designed to 

be extended by the user community. We take advantage of this design philosophy 

to create the Aberdeen Architecture. In addition, the small number of instruction 

classes simplifies the design and simplifies establishing high assurance. 

Table 3 lists the four classes of RISC-V instructions: (1) arithmetic/logic sequential, 

(2) load and store sequential, (3) conditional branch, and (4) jump. A sequential 

instruction increments the program counter register (PCR) by one instruction 

(4 bytes for RISC-V). RISC-V arithmetic and logic instructions are sequential. An 

example sequential class instruction is shown in Table 3 and Fig. 9. Load/store 

instructions are sequential and read or write to memory. Figure 10 illustrates load 

and store class instructions. The conditional branch instruction class is shown in 

Fig. 11. A conditional branch instruction has two possible next instructions. If the 

branch condition is false, the program counter is incremented by one instruction 

(4 bytes). If the branch condition is true, the program counter is loaded with the 

address for the destination instruction. Figure 12 describes the jump instruction 

class. The jump instruction class has only one destination address. A jump 
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instruction loads the program counter with the destination address contained in the 

jump instruction. The four instruction class definitions provide for least privilege 

execution for each type of instruction. The Aberdeen Architecture uses the four 

classes of instructions for instruction execution integrity.  

Table 3 Aberdeen Architecture instruction classes 

Instruction Class RISC-V Instruction Instruction Operation Next Instruction 

(1) Sequential add R1,R2,R3 R1 = R2 + R3 PCR = PCR + 4 

(2a) Load Sequential lw  R1, 0(R2) R1 = read_mem(0 + R2) PCR = PCR + 4 

(2b) Store Sequential sw  R4, 0(R5) write_mem(0 + R5) = R4 PCR = PCR + 4 

(3) Conditional Branch ble R3, R6, 48  

Branch if less than 

if( R3 < R6) then 48 

else next instruction 

PCR = 48 (true) 

PCR = PCR + 4 

(false) 

(4) Jump j   28  Jump to address = 28 PCR = 28 

 
 

 

Fig. 9 Sequential instruction class 

 

 

Fig. 10 Load and store instruction class (same as sequential with memory access) 

Sequential 
Instruction

Executing Instruction 
at Address = Instr_Addr
PC = Instr_Addr = 0x30 

PC = Instr_Addr + 1 (instruction)
= 0x34

Next 
Instruction

0x30:  add   a5, a0, a5 # a5 = pb[0] + byte offset

0x34:  lw a5, 0(a5)  # a5 = LW(addr = a5)

RISC-V Sieve of Eratosthenes Example

0x38:  sra a5, a5, a2 # a5 = a5 >> a2

Load or Store 
Instruction

Executing Instruction 
at Address = Instr_Addr
PC = Instr_Addr = 0x34 

PC = Instr_Addr + 1 (instruction)
= 0x38

Next 
Instruction

Access 
Memory

0x34:  lw a5, 0(a5) # a5 = LW(addr = a5)

Load Word from Mem_Addr = register a5

RISC-V Sieve of Eratosthenes Example



 

36 

 

Fig. 11 Conditional branch instruction class 

 

 

Fig. 12 Jump instruction class 

The instruction execution monitor provides a hardware virtual machine for 

instruction execution. The execution of the instruction must pass all of the state 

machine monitors’ verifications in order for the instruction to complete execution. 

If a state machine monitor’s verification fails, a hardware-level exception is raised.  

4.3.4 Memory Page Background 

The Aberdeen Architecture uses the memory classes defined in Fig. 13. The classes 

extend the memory classes described in the research paper “Hardware Security 

Kernel for Cyber Defense” (Jungwirth et al. 2019b). A von Neumann machine 

mixes program instructions and data. There is no difference between program 

instructions and data; both are integers. In a von Neumann machine, a simple buffer 

overflow “converts data” into program instructions. The von Neumann 

architecture violates several of Saltzer and Schroeder’s security principles. The 

Aberdeen Architecture’s memory classes restrict permitted operations to provide 

least privilege and privilege separation for each memory class.  

Executing Instruction 
at Address = Instr_Addr
PC = Instr_Addr = 0x40 

PC = Instr_Addr + 1 (instruction) = 0x44Next 
Instruction

Destination
Address

PC = Destination Address = 0x20

Conditional
Branch

0x40: beqz a5, 20 <L3> # if a5 = bit = 0 then <L3>

0x44:   slli a3, a2 ,0x1  # a3 = cnt = base + base

0x20: <L3> addi a2, a2, 1  # a2 = base = base +1

RISC-V Sieve of Eratosthenes Example

0x28: <L1> srai a5, a2 ,0x5 # a5 = word offset

Executing Instruction 
at Address = Instr_Addr
PC = Instr_Addr = 0x1c

Destination
Address

PC = Destination Address
= 0x28

Jump 0x1c:      j 28 <L1>     # jump to <L1>

RISC-V Sieve of Eratosthenes Example
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Fig. 13 Memory classes. Each class supports least privilege, privilege separation, and 

complete mediation. 

Process_Config_Page contains the start-up or boot parameters for the process. 

Only the state machine monitors may read a Process_Config_Page memory 

page. The Process_Config_Page contains the global security settings for a 

process. For a more secure environment, encryption and a digital signature can be 

used to protect the integrity of the Process_Config_Page.  

The classic stack mixes data, function call parameters, return addresses, and so on. 

Data, function call parameters, and return addresses are different object classes. 

Each class has a set of authorized and unauthorized operations. Mixing stack classes 

violates Saltzer and Schroeder’s security principles. On the surface, more stack 

classes may seem like an increase in complexity; however, we are restricting each 

stack class to least privilege. The multiple stack classes provided for the same 

functionality as the conventional mixed class stack with significantly better 

computer security.  

The Exe_Page memory page class is execute only (unless page is being loaded). 

Exe_Stack_Page provides function call and return stack operations for a running 

process. We seek to completely isolate Exe_Stack from data. DLL_Data and 

DLL_Stack memory pages support function calls to library functions. DLL_Data 

and DLL_Stack memory pages restrict operations to those limited to support 

function calls.  

The Shared_Data memory page supports shared memory between two processes. 

Shared memory operations are restricted to operations permitted for sharing 

memory between two or more running processes. 

The I/O_Page is the only memory page class that supports input and output. The 

I/O_Page class limits input and output to a single memory class. I/O_Page 

supports least privilege and privilege separation for input and output operations. No 

other memory page class may be used for I/O. This is not as flexibles as C-pointer 

arithmetic operations; however, it is much more secure. The I/O_Page class 

supports complete mediation for all input and output operations. 

Process Configuration Page

Exe Page

Exe Page

Exe Page Data Page

Data Page

Data Page

Data Page

Data Stack

Data Stack

I/O PageSharedData

SharedDataExe Stack

Exe Stack DLL Data

DLL Data

DLL Data

DLL Stack

DLL Stack
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4.3.5 Tag Protection Bits 

Saltzer and Schroeder promoted tagged memory for computer security back in 

1975:  
 

Suppose, for example, that every location in memory were tagged with an extra 

bit. If the bit is OFF, the word in that location is an ordinary data or instruction 

word. If the bit is ON, the word is taken to contain a value suitable for loading into 

a protection descriptor register. … This kind of scheme is a particular example of 

what is called a tagged architecture.   

With the DARPA CRASH (DARPA 2010) and DARPA SSITH (Salmon 2017a) 

programs, there has been a renewed interest in tag bits for high-assurance computer 

systems. There is an underlying assumption for tag bits. Software cannot access tag 

security bits. Software cannot force the architecture to leak information about the 

tag security bits. Without complete isolation, tag security bits are not able to protect 

a system. 

The Aberdeen Architecture uses the security tag field architecture from the OS 

Friendly Microprocessor Architecture (Redstone Architecture). A brief 

introduction to tag fields for the Aberdeen Architecture is presented next. More 

details will be provided in later sections.  

Table 4 illustrates the instruction word tag protection bit fields for the Aberdeen 

Architecture. The tag bits are “attached” to the instruction; however, only the 

hardware state machines can access the tag bits. Tag bits are assumed to be created 

by a trusted authority and/or trusted process. The tag bits allow the state machine 

security policies to verify instruction execution (complete mediation). The tag bits 

are completely isolated from all software and the execution pipeline.  

Table 4 Aberdeen Architecture instruction format 

Memory Address RISC-V Machine Code  Local Tag Fields 

0x0000 0034 0x0007a783  Exe Tags CFI Tags DFI Tags 

 

The Process_Mem_Page is shown in Table 5. The memory page contains process 

start, resource information, and process shutdown information. For better security, 

the Process_Mem_Page should be encrypted and digitally signed. Table 6 shows 

the local security tag bits for the register file. There are four categories of tag bits: 

(1) register read / write / modify / stack operations / protected register, (2) register 

load/store, (3) control flow integrity, and (4) data flow integrity.  
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Table 5 Aberdeen Architecture process configuration memory page 

Configuration Information 

••• 

Configuration Information 

Table 6 Aberdeen Architecture register file format 

Aberdeen Architecture  Local Tag Fields 

Register Number  RWM LD/ST CFI Tags DFI Tags 
R0     
R1     
•••     
R31     

 

In Table 7, the Mem_Page contains global and local security tag fields. The global 

tags set the security sandbox (fence) limit for the memory page. The local security 

tag fields can further restrict the bounds on allowed memory accesses. 

Table 7 Aberdeen Architecture memory page format 

Global Tags 
  Local Tag Fields 

Memory Address (4096 bytes)  Load/Store CFI Tags DFI Tags 
0x0000     
0x0004     
•••     

0x0ffc     

4.3.6 Harvard Machine Architecture 

A von Neumann architecture is compared to a Harvard architecture in Fig. 14. In a 

von Neumann machine, there is no difference between data and instructions. This 

is a fundamental security flaw. A simple buffer overflow can convert “data” into 

program instructions. A Harvard architecture has complete hardware isolation 

between data and program instructions. A return-oriented programming attack 

requires malicious control of a stack and access to gadgets to implement the steps 

required for the attack (Abadi et al. 2005). On x86 architectures, instructions have 

variable byte lengths that offer more possibilities to find useful instructions for 

malicious operations. Göktaş et al. (2014) show how von Neumann machine stack 

and gadget attacks are becoming more sophisticated:  

ROP [return-oriented programming] exploitation is based on an attacker 

controlling the stack of a program. After corrupting the stack and controlling the 

return address of an executing function, when the function returns, control is 

diverted to a gadget specified by the attacker’s payload. Since gadgets are small 

sequences of code that end with a ret [return instruction], similar to the return-
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oriented gadget shown in Fig. 3a, the attacker can carefully position data on the 

stack to make the program jump from gadget to gadget, chaining together the final 

code.  

 

Fig. 14 Harvard machine compared to von Neumann machine (Jungwirth 2020b) 

New architectures need better stack isolation and security tags to block gadget 

attacks. Function single entry and exit points could potentially eliminate most 

gadget attacks. Single entry and exit points would reduce the number of gadgets 

available from greater than 100,000 (Göktaş et al. 2014) to a relatively small 

number. Instruction words should all have the same length (one instruction per 

memory word). Note, the RISC-V architecture allows for byte, half-word, and word 

memory accesses. For security, a simpler architecture only offering word memory 

accesses would be a better architecture.  

4.3.7 Aberdeen Machine Architecture 

Aberdeen Architecture adds hardware-level state machine security policies to the 

Redstone Architecture. The core features for the Redstone Architecture’s software 

security framework is the basis for the state machine security policies. The 

Redstone Architecture uses an extended Harvard architecture. The cache bank 

memory pipeline is illustrated in Fig. 15. A technical report covering the Redstone 

Architecture is found in Appendix A. The next section presents an introduction to 

the state machine security policies. 
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Fig. 15 Instruction execution pipeline: state machine controller 

4.3.8 State Machine Security Policy Introduction 

An introduction to the Instruction Execution Pipeline State Machine Controller is 

presented in Fig. 15. State machines verify security policies for instruction 

execution. Aberdeen Architecture considers instruction execution as an information 

flow. Security policies verify information flow properties during instruction 

execution. In terms of a virtual machine, the state machines’ security policies create 

a virtual machine–based execution pipeline. Instruction execution policies are 

verified during instruction execution. If one of the security policies fails, a 

hardware-level exception is issued.  

IF ID EXE MA WB

Memory Page 
State Machine

Instruction Exe 
State Machine

Exe

Mem

Exe Check

Control Flow Integrity Check

Page Mem Check

DATA

INSTR

Execution Pipeline  Architecture

IF ID EXE MA WB

Redstone
Architecture

Data Flow Integrity Check
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During instruction execution, control flow integrity is verified; data flow integrity 

is verified; memory and memory page operations are verified; and instruction 

execution is verified. Figure 15 summarizes the main state machine security 

policies. The paper “Security Tag Computation and Propagation in OSFA” 

describes data flow integrity for the Redstone Architecture (Jungwirth et al. 2018b).  

A high-precision control flow implementation uses unique labels for each branch 

in the control flow graph. Each node (code block) has entry and exit links (graph 

edges). The destination address for jump/branch instruction is the entry point for a 

code block. A jump or branch instruction forms the exit point for a code block. For 

the high-precision case (Abadi et al. 2005), each edge (branch/jump control flow 

change) in the control flow graph can be exactly identified by its unique label. Less 

precise implementations reuse labels (labels are not unique).  

High-precision implementation requires considerably more resources (memory) 

than the low-precision implementation. For the Aberdeen Architecture, the labels 

are scalable. Higher precision requires more bits for the edge labels. For the basic 

implementation, we consider a small number of labels combined with function 

single entry and exit points. Single entry and exit points significantly reduce gadget-

based attacks. A malicious program uses function CALL instructions to gadgets 

(short sequence of useful hacking instructions followed by a return statement). 

Several gadgets are called in sequence to launch an attack. Low-precision control 

flow graphs provide less protection against gadget attacks. The Aberdeen 

Architecture uses single point function call entry and exit points to significantly 

reduce (best case would be to completely prohibit gadget attacks). The single point 

entry and exit code block tags strengthen the protections provided by lower-

precision control flow protections.  

Figure 16 presents an introduction to the instruction execution state machine 

controller. The four classes of instruction execution control flows are highlighted 

in blue. Sections 4.3.2 and 4.3.3 describe the control flow properties of the four 

instruction classes. Figure 16 also introduces memory operations: stack operations, 

memory page allocate, and memory page deallocate. The state machine for stack 

operations is introduced in Fig. 17. Stack and memory page security policies will 

be considered later in Section 4.4. We begin be looking at control flow integrity for 

instruction execution next. 
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Fig. 16 Instruction execution state machine 
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Fig. 17 Stack machine state machine
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4.3.9 Control Flow Integrity 

Abadi et al.’s paper (2005) reviewed control flow integrity methods and renewed 

interest in control flow integrity for software security. Alves-Foss et al. (2014) 

researched security tagging bits for high assurance: “Metadata-driven hardware 

interlocks make it practical to take the security principles of Saltzer and Schroeder 

[59] seriously.” For static programs, a control flow graph shows all possible 

execution paths for the program. In general, a control flow graph is undecidable 

when considering self-modifying programs, dynamic dispatch, and just-in-time 

compiling (dynamic re-compilation). For simplicity, we will consider static control 

flow graphs. The Aberdeen Architecture’s control flow integrity methods extend 

the research concepts described in “Security Tag Fields and Control Flow 

Management,” (Jungwirth and Ross 2019), “Hardware Security Kernel for Cyber 

Defense,” (Jungwirth et al. 2019b), and “Hardware Security Kernel for Managing 

Memory and Instruction Execution” (Jungwirth et al. 2020).  

CFI [control flow integrity] enforcement is effective against a wide range of 

common attacks, since abnormal control-flow modification is an essential step in 

many exploits — independently of whether buffer overflows and other 

vulnerabilities are being exploited. … We have examined many concrete attacks 

and found that CFI enforcement prevents most of them. … Of course, CFI 

enforcement is not a panacea: exploits within the bounds of the allowed CFG 

[control flow graph] (e.g., Chen et al. [2005]) are not prevented. (Abade et al. 2009) 

Figure 18 presents the control flow graph for the Sieve of Eratosthenes code in 

Fig. 8. Aberdeen Architecture adds single entry and exit points for function calls, 

exception handlers, and interrupt requests. The single entry and exit points provide 

for Saltzer and Schroeder’s security principles: least privilege, privilege separation, 

and complete mediation. The single entry and exit points are to help block gadget 

attacks and improve precision for control flow integrity.  

 

Fig. 18 Control flow graph for Sieve of Eratosthenes 

08: <sieve> 00200613   li    a2, 2
0c:        08000513   li    a0, 0x80
10:        00100893   li    a7, 1
14:        55800813   li    a6, 1368
18:       02500313   li    t1, 37 
1c:        00c0006f   j <L1>

44:        00161693   slli a3, a2 ,0x1

48: <L4> 4056d793   srai a5, a3, 0x5 
4c:        00279793   slli a5, a5, 0x2
50:        00f507b3   add   a5, a0, a5
54:        0007a583   lw a1, 0(a5)
58:        00d89733   sll a4, a7, a3 
5c:        fff74713   not   a4, a4
60:        00b77733   and   a4, a4, a1
64:        00e7a023   sw a4, 0(a5)
68:        00c686b3   add   a3, a3, a2
6c:        fcd85ee3   ble a3, a6, <L4> 

70:        00160613   addi a2, a2, 1
74:        fa661ae3   bne a2, t1, <L1>

28: <L1> 40565793   srai a5, a2 ,0x5
2c:        00279793   slli a5, a5, 0x2
30:        00f507b3   add   a5, a0, a5 
34:        0007a783   lw a5, 0(a5) 
38:        40c7d7b3   sra a5, a5, a2
3c:        0017f793   andi a5, a5, 1
40:       fe0780e3   beqz a5, <L3>

78: <L2> 00000513   li    a0, 0 
7c: <return> 00008067   ret

20: <L3> 00160613   addi a2, a2, 1         
24:        04660a63   beq a2, t1, <L2>
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Control flow integrity techniques have trade-offs between protection level, 

overhead, and implementation difficulty. Software control flow integrity techniques 

typically have a high overhead; however, some methods offer very high levels of 

precision (fine grain protection control). The Aberdeen Architecture considers a 

hardware implementation of a simple set of rules to enforce CFI. The proposed 

methods do have limitations; however, we believe the protection offered, 

complexity, and ease of implementation are well balanced.  

Undoubtedly, even loose forms of CFI harden binaries against attacks. Normally, 

control-hijacking exploits are able to redirect execution to any instruction in the 

binary. On x86 architectures, which use variable-length instructions and have no 

alignment requirements, an attacker can redirect control to virtually any executable 

byte of the program. If we consider every executable byte as a potential control-

flow target, then CFI blocks more than 98% of these targets [17]. But, is the 

remainder 2% enough for attackers exploiting a program? (Göktaş et al. 2014) 

Figure 19 compares high-precision control flow tags to low-precision tags. The 

high-precision tag uses a large (for example, 32 bit) random integer to link the 

conditional branch to its destination address. With 232 = 4,294,967,296 ≈ 4.3∙10 

9 

possible tag combinations, each branch can have a unique tag. Low-precision tags 

use only a few tag values and have to reuse tag values for other branches.  

Address  Label  Machine Code   Assembly Language 

 

Tag Fields 

0020:   <L3>  0x00160613   addi  a2, a2, 1 
CFI Tag = 0xFC66BC28  
(32 bit random integer) 

▪▪▪ ▪▪▪ 
▪▪▪ ▪▪▪ 

0040:         0xfe0780e3   beqz  a5, 20 <L3>  
CFI Tag = 0xFC66BC28  
(32 bit random integer) 

 

 

Address  Label  Machine Code  Assembly Language 

 

Tag Fields 

 0020:   <L3>  0x00160613   addi  a2, a2, 1 
CFI Tag = 0x28  

(8 bit random integer) 
▪▪▪ ▪▪▪ 
▪▪▪ ▪▪▪ 

0040:         0xfe0780e3   beqz  a5, 20 <L3> 
 CFI Tag = 0x28  

(8 bit random integer) 

Fig. 19 High- and low-precision CFI tags 

To address stack flow integrity issues, the Aberdeen Architecture uses several 

stacks to separate program execution (CALL and RETURN) from program data flow. 

More on stack and data control flow will be presented in later sections. Kiriansky 

et al. (2002) describes the problems with mixing data, CALL/RETURN, etc. on a 

stack: 
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Many entities participate in transferring control in a program execution. 

Compilers, linkers, loaders, runtime systems, and hand-crafted assembly code all 

have legitimate reasons to transfer control. Program addresses are credibly 

manipulated by most of these entities, e.g., dynamic loaders patch shared object 

functions; dynamic linkers update relocation tables; and language runtime systems 

modify dynamic dispatch tables. Generally, these program addresses are 

intermingled with and indistinguishable from data. In such an environment, 

preventing a control transfer to malicious code by stopping illegitimate memory 

writes is next to impossible. It requires the cooperation of numerous trusted and 

untrusted entities that need to check many different conditions and understand 

high-level semantics in a complex environment.  

Abadi et al. (2005) describe how stack operations reduce the precision of a control 

flow graph: “In particular, a finite CFG [control flow graph] does not capture the 

dynamic execution call stack ...” Göktaş et al. [2014] point out the importance of 

control flow to counter modern attacks: “As existing defenses like ASLR, DEP, 

and stack cookies are not sufficient to stop determined attackers … In its ideal form, 

CFI prevents flows of control that were not intended by the original program …”  

A mixed stack violates several of Saltzer and Schroeder’s security principles. The 

Aberdeen Architecture incorporates a data flow integrity policy to provide 

additional protections for better control flow graph precision. In other words, 

control flow integrity is a function of data flow integrity. 

Buffers can be used to keep track of the last NI instructions, last NB branches, and 

last NPC program counter values. Unfortunately, finite buffers lack control flow 

graph precision. Arbitrarily large buffers are required to track large software 

programs and data-driven function calls like recursion. CFI buffer lengths are 

briefly discussed in (Jungwirth and Ross 2019). Aberdeen Architecture uses block 

entry tags to ensure the current instruction has a valid control flow path back to the 

block entry point. When the corresponding block exit point is reached, the path 

from start to end can be deleted since control flow from block start to block end has 

completed. 

Figures 20–23 illustrate single point entry and exit points for exception handlers 

and interrupt request and return handlers. This is to ensure that exception handlers 

and return from interrupt requests cannot jump to a maliciously selected return 

address to enable a gadget attack. 

The single point entry and exit points are to provide specific fixed entry and exit 

points. The fixed entry and exit points limit rogue behavior by reducing to 

eliminating gadget code start points. There is some lost flexibility and additional 

code required; however, the additional protection is well worth the single entry and 



 

47 

exit point cost. Figure 22 illustrates an exception occurring in the array pb[ ▪ ] in 

{3}. The exception is handled by a single exit point, then either a local routine or a 

function call occurs to handle the exception. Return from exception in {3} is 

handled by a single routine. The exception handlers provide single entry and exit 

points and prohibit “spaghetti code” exception handlers enabling gadget attacks. 

pbit = pb[cnt_word] & bit_mask;

Exception
Occurs Here

 

 {3} 

Figure 23 covers interrupt requests following the same idea for exception handlers. 

An interrupt occurs during the while loop in {4}. Single point entry and exit points 

cover a local interrupt handler and a function call to handle the interrupt request. 

Again, more code is required; however, the security benefits of single entry and 

exit points far out way the cost. 

Interrupt Request
Occurs Here

while (cnt < LAST)

 

 {4} 

 

Instruction Class CFI Link Type CFI Tag Type 

Arithmetic/Logic Instruction  Sequential Sequential Tag 

Load/Store Load/Store Sequential Load/Store Sequential Tag 

Conditional Branch Conditional Branch Conditional Branch Tag 

Jump Jump Jump Tag 

CALL Function Call CALL Tag 

RETURN Function Return RETURN Tag 

   

EXCEPTION Exception Link EXCEPTION Tag 

EXCEPTION Return Exception Return Link Exception Return Tag 

EXCEPTION Process Terminate Exception Terminate Link Exception Terminate Tag 

   

INTERRUPT  INTERRUPT Handler Link Interrupt Handler Tag 

INTERRUPT RETURN Interrupt Return Link Interrupt Return Tag 

INTERRUPT EXCEPTION  
Process Terminate 

INTERRUPT EXCEPTION  
Process Terminate 

INTERRUPT EXCEPTION  
Process Terminate Tag 

Fig. 20 Aberdeen Architecture CFI link types 
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// Sieve of Eratosthenes 
// C code is based on https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada 
// Algorithm see https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 
 
 

void sieve() { 
   int base = 2; int pbit = 0; int cnt = 0; 
   int base_bit = 0; int base_word = 0; int base_shift = 0; 
   int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int 
bit_mask = 0; 
   while (base < R) { 
      base_word = base >> 5; base_shift = base & 0x1f; 
      base_bit = (pb[base_word] >> base_shift) & 1; 
      if (base_bit)  
      {  cnt = base << 1; // base + base; 
         while (cnt < LAST)  
         {  cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f; 
            cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask; 
            pbit = pb[cnt_word] & bit_mask; 
            pb[cnt_word] = pbit; 
            cnt = cnt + base; } 
      } 
      base = base + 1; 
   } 
} 
 
 
// Sieve Exception Handlers 
EXCEPTION HANDLER // C code placeholder 
// HANDLE EXCEPTION HERE (LOCAL) 
   int local_exception_handler(  ◙  ) 
// CALL EXCEPTION HANDLER (USING FUNCTION CALL) 
   int call_exception_handler(  ◙  ) 
// EXCEPTION HANDLERS MUST ALL RETURN HERE 
   int handle_return_to_local_code(  ◙  ) 
   int single_point_exception_handler_return(  ◙  ) 
 
 
 
// Sieve Exception IRQ Handlers 
IRQ HANDLER // C code placeholder 
// HANDLE EXCEPTION HERE (LOCAL) 
   int local_IRQ_handler(  ◙  ) 
// CALL IRQ HANDLER (USING FUNCTION CALL) 
   int call_IRQ_handler(  ◙  ) 
// IRQ RETURNS MUST ALL RETURN HERE 
   int single_point_IRQ_handler_return(  ◙  ) 
 
 

Fig. 21 Exception and IRQ handlers exit and return points 

Sieve of Eratosthenes Code 

Single Point Exit and Return 
Points for Exceptions 

IRQ Handler Single Exit and 
Return Points 

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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Single Entry and Exit Points for 
Exception Handlers

Function Call
Single Point Entry

Single Point 
Function Return

Exception
Return

Exception
Occurs Here

void sieve() { 
   int base = 2; int pbit = 0; int cnt = 0; 
   int base_bit = 0; int base_word = 0; int base_shift = 0; 
   int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0; 
   while (base < R) { 
      base_word = base >> 5; base_shift = base & 0x1f; 
      base_bit = (pb[base_word] >> base_shift) & 1; 
      if (base_bit)  
      {  cnt = base << 1; // base + base; 
         while (cnt < LAST)  
         {  cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f; 
            cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask; 
            pbit = pb[cnt_word] & bit_mask; 
            pb[cnt_word] = pbit; 
            cnt = cnt + base; } 
      } 
      base = base + 1; 
   } 
} 
 
// Sieve Exception Handlers 
EXCEPTION HANDLER // C code placeholder 
// HANDLE EXCEPTION HERE (LOCAL) 
   int local_exception_handler(  ◙  ) 
// CALL EXCEPTION HANDLER (USING FUNCTION CALL) 
   int call_exception_handler(  ◙  ) 
// EXCEPTION HANDLERS MUST ALL RETURN HERE 
   int handle_return_to_local_code(  ◙  ) 
   int single_point_exception_handler_return(  ◙  ) 

 

Fig. 22 Single point entry and exit exception handlers 

 

Function Call
Single Point Entry

Single Point 
Function Return

Interrupt
Return

Interrupt Request
Occurs Here

void sieve() { 
   int base = 2; int pbit = 0; int cnt = 0; 
   int base_bit = 0; int base_word = 0; int base_shift = 0; 
   int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0; 
   while (base < R) { 
      base_word = base >> 5; base_shift = base & 0x1f; 
      base_bit = (pb[base_word] >> base_shift) & 1; 
      if (base_bit)  
      {  cnt = base << 1; // base + base; 
         while (cnt < LAST)  
         {  cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f; 
            cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask; 
            pbit = pb[cnt_word] & bit_mask; 
            pb[cnt_word] = pbit; 
            cnt = cnt + base; } 
      } 
      base = base + 1; 
   } 
} 
 
// Sieve Exception IRQ Handlers 
IRQ HANDLER // C code placeholder 
// HANDLE EXCEPTION HERE (LOCAL) 
   int local_IRQ_handler(  ◙  ) 
// CALL IRQ HANDLER (USING FUNCTION CALL) 
   int call_IRQ_handler(  ◙  ) 
// IRQ RETURNS MUST ALL RETURN HERE 
   int single_point_IRQ_handler_return(  ◙  ) 

Single Entry and Exit Points for 
Interrupt Requests

 

Fig. 23 Single point interrupt request entry and exit points
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4.3.9.1 Sequential Control Flow Integrity Class Instructions 

Sieve of Eratosthenes control flow graph has single point function entry and exit 

points shown in Fig. 24. Figure 24 shows the code blocks consisting of sequential 

instructions with branch and jump instructions connecting the blocks together. The 

tags NEXT, JUMP_To, and JUMP_Rec illustrate how the code blocks form a linked 

list. Function calls are only allowed to the CALL_ENTRY point: <sieve>. The single 

point function return is <return>. Function calls, jump instructions, branch 

instructions, and so on, from another code block to internal code in Fig. 24 are not 

allowed. The single point entry and exit points are to prevent gadget code attacks. 

The single point code entry and exit points provide better control flow graph 

precision for a limited number of tags (or labels).  

Figure 25 shows how arithmetic and logic sequential instructions and LOAD/STORE 

sequential instructions form a linked list A sequential instruction simply advances 

the program counter by one instruction in (1). For RISC-V, a single instruction is 

4 bytes in length. LOAD and STORE instructions are sequential instructions that 

access memory. LOAD/STORE control flow tags are required to access memory. 

Figure 26 shows a load instruction with control flow integrity tag = LOAD.  

Sequential Instruction Control Flow Integrity Class Property 

PCR(n + 1) = PCR(n) + 4 bytes 1 instruction is 4 bytes long (1) 
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Fig. 24 Control flow graph for Sieve of Eratosthenes 

08: <sieve> 00200613   li    a2, 2
0c:        08000513   li    a0, 0x80
10:        00100893   li    a7, 1
14:        55800813   li    a6, 1368
18:       02500313   li    t1, 37 
1c:        00c0006f   j <L1>

44:        00161693   slli a3, a2 ,0x1

48: <L4> 4056d793   srai a5, a3, 0x5 
4c:        00279793   slli a5, a5, 0x2
50:        00f507b3   add   a5, a0, a5
54:        0007a583   lw a1, 0(a5)
58:        00d89733   sll a4, a7, a3 
5c:        fff74713   not   a4, a4
60:        00b77733   and   a4, a4, a1
64:        00e7a023   sw a4, 0(a5)
68:        00c686b3   add   a3, a3, a2
6c:        fcd85ee3   ble a3, a6, <L4> 

70:        00160613   addi a2, a2, 1
74:        fa661ae3   bne a2, t1, <L1>

28: <L1> 40565793   srai a5, a2 ,0x5
2c:        00279793   slli a5, a5, 0x2
30:        00f507b3   add   a5, a0, a5 
34:        0007a783   lw a5, 0(a5) 
38:        40c7d7b3   sra a5, a5, a2
3c:        0017f793   andi a5, a5, 1
40:       fe0780e3   beqz a5, <L3>

78: <L2> 00000513   li    a0, 0 
7c: <return> 00008067   ret

20: <L3> 00160613   addi a2, a2, 1         
24:        04660a63   beq a2, t1, <L2>

CALL_ENTRY

CALL_EXIT

NEXT

Jump_Rec

NEXT
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Fig. 25 Control flow graph for arithmetic and logic sequential instructions 

 

 

Fig. 26 Control flow graph for LOAD sequential instruction 

  

28: <L1> 40565793   srai a5, a2 ,0x5
2c:        00279793   slli a5, a5, 0x2
30:        00f507b3   add   a5, a0, a5 
34:        0007a783   lw a5, 0(a5) 
38:        40c7d7b3   sra a5, a5, a2
3c:        0017f793   andi a5, a5, 1
40:       fe0780e3   beqz a5, <L3>

NEXT

Ju
m

p
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ec

Jump_To
NEXT

Se
q

u
en

ti
al
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34:  0007a783   lw a5, 0(a5)

38:  40c7d7b3   sra a5, a5, a2

Sequential 

LOAD Tag

Executing Instruction
Previous Instruction Tag = Sequential
Current Instruction = Sequential/Load

PCR(n + 1) = PCR(n) + 4 bytes 

PCR(n) 
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4.3.9.2 Jump Instruction Control Flow Graph 

Figure 27 illustrates the control flow properties for a JUMP instruction. There is 

only one next address: the destination address. Equation (2) shows the next PCR 

value, PCR(n + 1), is simply the destination address. 

 

Fig. 27 Control flow graph for JUMP instruction 

JUMP Instruction Control Flow Integrity Class Property 

PCR(n + 1) = Destination Address  (2) 

4.3.9.3 Branch Instruction Control Flow Graph 

The control flow graph properties for a branch instruction are illustrated in Fig. 28. 

There are two possible next instruction addresses. If the branch condition is true, 

the next address is the destination address. Else (condition is false), the next 

address is the same as a sequential instruction; next address is the next sequential 

instruction. Equation (3) describes the PCR values for a branch instruction. 

 

Fig. 28 Control flow graph for branch instruction 

1c:        00c0006f   j <L1>

Executing Instruction

Jump Instruction has one possible destination address

Previous Instruction Tag = Sequential
Current Instruction = JUMP

28: <L1> 40565793   srai a5, a2 ,0x5

PCR(n + 1) = Destination Address = <L1> 

PCR(n) 

40:  fe0780e3   beqz a5, <L3>

44: 00161693  slli a3,a2,0x1

20: <L3> 00160613  addi a2,a2,1 

Executing Instruction

Conditional Branch has two possible next instructions:
sequential, and branch destination address

Previous Instruction Tag = Sequential
Current Instruction = Branch

Previous Instruction Tag = Branch
Current Instruction = Sequential

Previous Instruction Tag = Branch
Current Instruction = Sequential

PCR(n + 1) = PCR(n) + 4 bytes 

PCR(n + 1) = Destination Address = <L3>
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Branch Instruction Control Flow Integrity Class Property 

if( condition == TRUE ) 
   PCR(n + 1) = Destination Address  
 

else // condition == FALSE 

   PCR(n + 1) = PCR(n) + 4 bytes  // (same as sequential instruction) 

 (3) 

4.3.9.4 Sieve of Eratosthenes RISC-V Code with Control Flow Integrity Tags 

Figure 29 illustrates control flow integrity tags for the Sieve of Eratosthenes 

RISC-V code. The instruction START field tag is the END tag from the previous 

instruction. The EXE tag is the instruction execution tag. There are four execution 

classes of instructions: arithmetic and logical sequential, LOAD/STORE sequential, 

jump, and conditional branch. Figure 30 shows the single entry and exit points for 

the Sieve of Eratosthenes code. The EXE tags place limits on the RISC-V 

instructions behavior: SEQ = sequential instruction, LOAD = load sequential 

instruction, STORE = store sequential instruction, BR = conditional branch, and  

JMP = jump. For example, a conditional branch instruction (as illustrated in Fig 28) 

has two possible next instructions, either sequential or destination address.  
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// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22] 
 
Memory Address       Machine Code       Assembly Code     Tag Fields     
                                                            Instruction Start    Instruction Exe  Instruction End 
0x0000 0008: <sieve>  0x00200613   li    a2, 2                 START = CALL;       EXE = LOAD;      END = SEQ  
0x0000 000c: 0x10000513      li    a0, 0x100                   START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 0010: 0x00100893      li    a7, 1                       START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 0014: 0x06300813      li    a6, 0x63                    START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 0018: 0x00a00313      li    t1, 0x8                     START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 001c: 0x00c0006f      j     28 <L1>                     START = SEQ;        EXE = JMP;       END = JMP 
0x0000 0020: 0x00160613 <L3> addi  a2, a2, 1                   START = BR;         EXE = SEQ;       END = SEQ 
0x0000 0024: 0x04660a63      beq   a2, t1, 78 <L2>             START = SEQ;        EXE = BR;        END = BR|SEQ 
0x0000 0028: 0x40565793 <L1> srai  a5, a2 ,0x5                 START = SEQ|BR|JMP; EXE = SEQ;       END = SEQ 
0x0000 002c: 0x00279793      slli  a5, a5, 0x2                 START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0030: 0x00f507b3      add   a5, a0, a5                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0034: 0x0007a783      lw    a5, 0(a5)                   START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 0038: 0x40c7d7b3      sra   a5, a5, a2                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 003c: 0x0017f793      andi  a5, a5, 1                   START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0040: 0xfe0780e3      beqz  a5, 20 <L3>                 START = SEQ;        EXE = BR;        END = SEQ|BR 
0x0000 0044: 0x00161693      slli  a3, a2 ,0x1                 START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0048: 0x4056d793 <L4> srai  a5, a3, 0x5                 START = SEQ|BR;     EXE = SEQ;       END = SEQ 
0x0000 004c: 0x00279793      slli  a5, a5, 0x2                 START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0050: 0x00f507b3      add   a5, a0, a5                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0054: 0x0007a583      lw    a1, 0(a5)                   START = SEQ;        EXE = LOAD;      END = SEQ 
0x0000 0058: 0x00d89733      sll   a4, a7, a3                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 005c: 0xfff74713      not   a4, a4                      START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0060: 0x00b77733      and   a4, a4, a1                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0064: 0x00e7a023      sw    a4, 0(a5)                   START = SEQ;        EXE = STORE;     END = SEQ 
0x0000 0068: 0x00c686b3      add   a3, a3, a2                  START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 006c: 0xfcd85ee3      ble   a3, a6, 48 <L4>             START = SEQ;        EXE = BR;        END = SEQ|BR 
0x0000 0070: 0x00160613      addi  a2, a2, 1                   START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 0074: 0xfa661ae3      bne   a2, t1, 28 <L1>             START = SEQ;        EXE = BR;        END = SEQ|BR 
0x0000 0078: 0x00000513 <L2> li    a0, 0                       START = SEQ;        EXE = SEQ;       END = SEQ 
0x0000 007c: <return>                 ret                      START = SEQ;        EXE = RTN;       END = RTN 

 

Fig. 29 Sieve of Eratosthenes RISC-V code and control flow integrity tags 

 = 
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Single Point Function Call Entry Point

0x0000 0008: <sieve>  0x00200613   li   a2, 2     START = CALL;    EXE = LOAD;    END = SEQ  
 

∙∙∙ 
 
0x0000 007c: <return>             ret             START = SEQ;     EXE = RT;       END = RTN 

Single Point Exit RETURN

 

Fig. 30 Single point function entry and exit points 

In Fig. 31, multiple control flow paths can lead to instruction <L1>. The START 

tags show that the previous instructions can be either sequential, conditional branch, 

or jump. As shown in Abadi et al. (2005), large random integers can provide higher 

levels of control flow graph precision. The low precision provided by a handful of 

control flow tags limits the control flow behavior; however, it does not limit the 

control flow behavior as much as unique tags used for high-precision control flow. 

For a practical application (Göktaş et al. 2014), control flow precision requires a 

balancing act: How much precision is enough given a limited amount of resources? 

We believe control flow tags combined with instruction execution tags, memory 

integrity, and data flow integrity tags provides ‘the whole is greater than the sum 

of the parts’ level of protection. Abadi et al. (2009) considers how dynamic stack 

behavior is not captured in the control flow graph. The Aberdeen Architecture uses 

stack state machines, stack isolation, and the separation provided by a Harvard 

architecture to enforce least privilege for stacks (see Section 3.1 in Jungwirth et al. 

[2019b] and Section 4.3.10 covering data flow integrity state machine monitors).  

Preferably, control-flow enforcement should be as precise as possible. However, 

even the reliance of CFI on a finite CFG implies a lack of precision. In particular, 

a finite CFG does not capture the dynamic execution call stack; we address this 

limitation in Section 5.4. Furthermore, without some care, schemes based on IDs 

and ID-checks may be more permissive than necessary. (Abadi et al. 2009) 

 

0x0000 0028: <L1> srai  a5, a2 ,0x5     START = SEQ|BR|JMP;   EXE = SEQ;  END = SEQ 

Previous Instruction can be either SEQ = sequantial, 
BR = conditional Branch, or JMP = jump

Next Instruction must be a 
sequential instruction

 

Fig. 31 START and END instruction execution control flow tags 
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4.3.10  Data Flow Integrity 

Information integrity is defined as dependability and trustworthiness of information 

(Mandke and Nayar 2000). A sound security policy only allows authorized 

information flows. Denning 1976 formalized secure information flow. 

Unfortunately, current commodity microprocessors still do not provide protections 

against unauthorized information flow.  

The security mechanisms of most computer systems make no attempt to guarantee 

secure information flow. "Secure information flow," or simply "security," means 

here that no unauthorized flow of information is possible. (Denning 1976) 

Taint analysis (Venkataramani et al. 2008; Schwartz et al. 2010; Chen et al. 2011; 

Kim et al. 2014; Prakash et al. 2015) typically implements a small number of 

security tags to isolate two classes of data. Taint status is used to monitor data flow 

integrity. Safe or trusted data is untainted. When trusted data is mixed with 

untrusted data, the taint status is changed to untrusted or tainted (Schwartz et al. 

2010): “Data from trusted sources starts out as untainted … Taints are then 

propagated as values are copied or used in computation. To detect potential attacks, 

a tainting scheme looks for unsafe uses of tainted values.” Venkataramani et al. 

(2008) extends taint propagation to control flow integrity applications using a 

tainted jump policy to catch control flow hijacking attacks:  

A prototypical application of dynamic taint analysis is attack detection. Table III 

shows a typical attack detection policy which we call the tainted jump policy. … 

The goal of the tainted jump policy is to protect a potentially vulnerable program 

from control flow hijacking attacks. …. A control flow exploit, however, will 

overwrite jump targets (e.g., return addresses) with input-derived values. The 

tainted jump policy ensures safety against such attacks by making sure tainted 

jump targets are never used. 

Castro et al. (2006) illustrate the connections between control-flow integrity and 

data flow integrity. A control flow graph shows all possible comparison (control 

flow if-then-else, et al.) software execution paths. During program execution, a data 

flow graph shows how data types interact as data flows from a data source to a data 

sink. Castro et al. (2006) describe the three process steps to monitor data flow 

integrity:  

Data-flow integrity enforcement has three phases. The first phase uses static 

analysis to compute a data-flow graph for the vulnerable program. The second 

instruments the program to ensure that the data-flow at runtime is allowed by this 

graph. The last one runs the instrumented program and raises an exception if data-

flow integrity is violated. 
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Song et al. (2016) researched hardware-assisted data flow isolation. Data flow 

integrity ensures data flow follows an allowed path in a data flow integrity graph. 

Data flow integrity provides integrity and confidentiality guarantees. Song et al. 

explain:  

For example, to protect the integrity of sensitive data, we can enforce the Biba 

Integrity Model [6]. In particular, we can use the tag to indicate integrity level (IL) 

of the corresponding data: sensitive data has IL1 and normal data has IL0. Next, 

we assign IL to write operations based on the data-flow. That is, we use static 

analysis to identify write operations that can manipulate sensitive data, and allow 

them to set the memory tag to IL1; all other write operations will assign to the tag 

to IL0. Finally, when loading sensitive data from memory, we check if the tag is 

IL1 … HDFI [Hardware-Assisted Data-Flow Isolation] can also be used to enforce 

confidentiality, i.e., the Bell–LaPadula Model [5]. For instance, to protect sensitive 

data like encryption keys, we can set their tag to SL1 (secret level 1), and enforce 

that all untrusted read operations (e.g., when copy data to an output buffer) can 

only read data with tag SL0.  

Control flow [monitoring] precision describes how well a control flow protection 

algorithm detects malicious control flow behavior. Current control flow techniques 

do not take into account stack behavior (Abadi et al. 2005). Göktaş et al. (2014) 

described return-oriented program attacks against a program’s stack. Stack and 

memory protections are required to strengthen control flow and data flow integrity 

protections. 

ROP [return-oriented program] exploitation is based on an attacker controlling the 

stack of a program. After corrupting the stack and controlling the return address of 

an executing function, when the function returns, control is diverted to a gadget 

specified by the attacker’s payload. (Göktaş et al. 2014) 

Aberdeen Architecture uses state machines to enforce security policies. There are 

four main hardware-enforced security policies: (1) instruction execution [integrity], 

(2) page memory access [integrity], (3) control flow integrity, and (4) data flow 

integrity. Aberdeen Architecture focuses on the whole is greater than the sum of 

the parts security policy. By using simple rules for information flows (1)–(4), 

Aberdeen Architecture implements a high-assurance security policy in hardware. 

Aberdeen Architecture provides complete mediation for instruction execution. 

State machines implement the security policies and are completely isolated from 

the execution pipeline.  

Control flow integrity ensures a program follows a valid execution path on a control 

flow graph. During program execution, data flow integrity verifies that (1) the data-

driven control flow path is valid; and (2) data flow properties of security, integrity, 
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and accuracy are valid. For example, for eight levels for security and integrity, 

security level 0 = most secure level and integrity level 0 = highest integrity. 

Pressure transducer data source, Pt, outputs a current proportional to pressure,  

Pt = k∙P. Pt has security = 3 and integrity = 2. The conversion constant, 

C = 1 Torr/mA has security = 7 and integrity = 0. Pressure result, R, is found in (4) 

and C code in {5}. For (4), the security and integrity values (5) are found using the 

upper bound in (6). Security can be up-converted; however, security cannot be 

down-converted. We cannot take sensitive information and change it to open source 

information. A constant value, like 𝜋, has a high integrity because it is an exact 

value. If we approximate 𝜋 as 3.14, it has a lower integrity than the exact value. 

Integrity is calculated as a lower bound. An hourglass has integrity = 7 (lowest 

integrity), whereas an atomic clock has integrity = 0 (highest integrity). Fake news 

has integrity = 7. 

𝑅[Torr] =  𝑃𝑡[mA] ∗ 𝐶 [
Torr

mA
] Sensor conversion equation (4) 

 

RTorr = P_Transducer*C_Torr_per_mA; C Code  {5} 

 

 

𝑃𝑡 . 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =  3, 

𝑃𝑡 . 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 =  2 

 

𝐶. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =  7, 

𝐶. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 =  0 

Security and Integrity Properties: 

( 0 = most secure; 7 = least secure ) 

( 0 = highest integrity; 7 = lowest integrity ) 

(5) 

 

 

𝑅. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (3,7) = 3 

 

𝑅. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 =
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (2,0) = 2 

Security and Integrity Properties: 

(0 = most secure; 7 = least secure ) 

(0 = highest integrity; 7 = lowest integrity ) 

(6) 

 
 

We can also place restrictions on the security and integrities values R is allowed to 

have.  Equation (7) illustrates.  
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𝑅. 𝑚𝑎𝑥_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 4 ,      

𝑅. 𝑚𝑖𝑛_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 5  

 

𝑅. 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 0  , 
  𝑅. 𝑚𝑖𝑛_𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 4 

If the integrity and 

security values are 

outside the ranges, then 

an exception occurs. 

(7) 

 

Data flow drives the execution of software. Conditional branches determine the 

execution path taken in a control flow graph. As pointed out by Abadi et al. (2005), 

stack operations are not captured in a control flow graph. For example, given two 

classes of information—open source and company proprietary—the lattice security 

model illustrates allowed information flows. Open source information can be 

upgraded to company proprietary; however, company proprietary cannot be 

downgraded to open source.  

The simple data flow example in {5} does not block all potential information leaks. 

Denning (1976) illustrates how a simple if statement can leak information. In {5}, 

RTorr leaks information to Low_Pressure. Practically speaking, the information 

leak shown in {6} is only a problem if the information flows to a data sink that is 

accessible by a malicious program. We must block this potential attack vector.  

The primary difficulty with guaranteeing security lies in detecting (and 

monitoring) all flow causing operations. This is because all such operations in a 

program are not explicitly specified – or indeed even executed!  As an example, 

consider the statement if a = 0 then b := 0; if b ≠ 0 initially, testing b = 0 on 

termination of this statement is tantamount to knowing whether a = 0 or not. In 

other words, information flows from a to b regardless of whether or not the then 

clause is executed. (Denning 1976) 

 

RTorr = P_Transducer * C_Torr_per_mA; 
 
Low_Pressure = FALSE; 
if(RTorr < 100) { 
   // Information leaks from RTorr to Low_Pressure 
   Low_Pressure = TRUE; }  

Example: C Code 

Information Leakage  
{6} 

 

To block the information leakage in {6}, we need to reconsider single point code 

block entry and single point code block exit points. Figure 32 illustrates the control 

flow graph for the code in {6}. The true and false condition paths leak information 

from RTorr to Low_Pressure. For the code block defined by the if statement, 

we need to set the security tags for Low_Pressure equal to the security tags for 

RTorr. This ensures that the data flow from information source, RTorr, to 

information sink, Low_Pressure, follows a valid data flow integrity “path.”   
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RTorr = P_Transducer * C_Torr_per_mA;

if(RTorr < 100)

Low_Pressure = TRUE; Low_Pressure = FALSE; 

RTorr = P_Transducer * C_Torr_per_mA;

Low_Pressure = FALSE;

if(RTorr < 100)
{
   // Information leaks from RTorr
   // to Low_Pressure
   Low_Pressure = TRUE; 
} 

// Information Leakage:
// Need to set security and integrity 
// tags for Low_Pressure
SET TAGS for Low_Pressure

Tags.Low_Pressure = Tags.RTorr

 

Fig. 32 Control flow graph and data flow integrity (security and integrity tags) 

Figure 33 illustrates a data flow leakage path in the RISC-V Sieve of Eratosthenes 

code. Figure 34 shows a partial data flow integrity graph for the first half of the 

Sieve of Eratosthenes RISC-V program. Figure 34 also shows how integrity and 

security tags for data flow from information source (point where data originates) to 

data sink (point where data is no longer used). Data flow integrity verifies the 

security and integrity tags during instruction execution. Aberdeen Architecture 

verifies instruction execution by checking (1) instruction execution tags, (2) control 

flow graph integrity tags, (3) data flow integrity tags, and (4) memory access tags. 

Hardware state machines monitor the (1)–(4) tags. By using four simple state 

machines to provide overlapping security policy coverage, the Aberdeen 

Architecture is able to use low-moderate precision tags to provide high assurance 

and complete mediation of instruction execution. The paper “Security Tag 

Computation and Propagation in OSFA” (Jungwirth et al. 2018b) describes security 

tag propagation for the Redstone or OS Friendly Microprocessor Architecture. 

Aberdeen Architecture can also support integrity tags for accuracy and 

measurement units. We could specify accuracy tags of 0 = 64 bit, 1 = 32 bit, 

2 = 16 bit, 3 = 8 bit. For measurement units, we could define tags for 0 = volt,  

1 = ampere, 2 = ohm, and 3 = power. 
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<sieve>  li    a2, 2           # base = a2 
                               a2.security = constant.security = 7 
                               a2.integrity = constant.integrity = 0 
 

// create buffer a0 with start address = a0, end address = a1 
         li    a0, 0x100       # buffer pb[0] = address = 0x100 
                               a0.Security = 7, a0.integrity = 0 
         li    a1, 0x200: a1.Security = 7, a1.integrity = 0 
// create buffer a0            # Aberdeen Architecture Instruction 
      AA.cb    a0,a0,a1        a1.security = 7, a1.integrity = 0 
                               a0.security = 7, a0.Integrity = 0 
                               a0.security  = Upper_Bound( 7 , 7 ) = 7 
                               a0.integrity = Lower_Bound( 0 , 0 ) = 0 
 

         li    a7, 1           # a7 = 1 
                               a7.Security = 7, a7.Integrity = 0 
 

         li    a6, 0x63        # LAST = R^2 -1 = 100 - 1 
                               Tags Security = 7, Integrity = 0 
 

         li    t1, 0x8         # t1 = R = 10 
                               Tags Security = 7, Integrity = 0 
 

          j      <L1>          # jump to <L1> 
                               Tags Security = 7, Integrity = 0 
 

<L3>     addi  a2, a2, 1       # a2 = base = base +1 
Data Flow Integrity            constant.security = 7, constant.integrity = 0 
Information Leak               a5.security = 7, a5.integrity = 0 (if a5 = bit = 0) 
                               a2.security = 7, a2.integrity = 0 
                               a2.security  = Upper_Bound( 7 , 7, a5) = 7 
                               a2.integrity = Lower_Bound( 0 , 0, a5 ) = 0 
 

<L1>     srai  a5, a2 ,0x5     # a5 = word offset 
                               a5.security  = Upper_Bound( a2 , 7 ) = 7 
                               a5.integrity = Lower_Bound( a2 , 0 ) = 0 
 

         slli  a5, a5, 0x2     # a5 = byte offset [note 1] 
                               a5.security  = Upper_Bound( a5 , 7 ) = 7 
                               a5.integrity = Lower_Bound( a5 , 0 ) = 0 
 

         add   a5, a0, a5      # a5 = pb[0] + byte offset 
                               a5.security  = Upper_Bound( a0 , 7 ) = 7 
                               a5.integrity = Lower_Bound( a0 , 0 ) = 0 
 

         lw    a5, 0(a5)       # a5 = LW(addr = a5) 
                               constant.security = 7, constant.integrity = 0 
                               Read_Mem(0+a5).security = tag.security = 7 
                               Read_Mem(0+a5).integrity = tag.integrity = 0 
                               a5.security  = Read_Mem(0+a5).security) = 7 
                               a5.integrity = Read_Mem(0+a5).integrity) = 0 
 

         sra   a5, a5, a2      # a5 = a5 >> a2 [note 2] 
                               a5.security  = Upper_Bound( a5 , a2 ) = 7 
                               a5.integrity = Lower_Bound( a5 , a2 ) = 0 
 

         andi  a5, a5, 1      # a5 = pb[word, bit number] 
                              a5.security  = Upper_Bound( a5 , 7 ) = 7 
                              a5.integrity = Lower_Bound( a5 , 0 ) = 0 
 

         beqz  a5, <L3>       # if a5 = bit = 0 the <L3> 
                              Tags Security = 7, Integrity = 0 

Fig. 33 Sieve of Eratosthenes data flow integrity

In
fo

rm
a
ti

o
n

 L
ea

k
 



 

63 

<sieve>  li    a2, 2           # base = a2
                               a2.security = constant.security = 7
                               a2.integrity = constant.integrity = 0

// create buffer a0 with start address = a0, end address = a1
         li    a0, 0x100       # buffer pb[0] = address = 0x100
                               a0.Security = 7, a0.integrity = 0
         li    a1, 0x200:      a1.Security = 7, a1.integrity = 0
// create buffer a0            # Aberdeen Architecture Instruction
      AA.cb    a0,a0,a1        a1.security = 7, a1.integrity = 0
                               a0.security = 7, a0.Integrity = 0
                               a0.security  = Upper_Bound( 7 , 7 ) = 7
                               a0.integrity = Lower_Bound( 0 , 0 ) = 0

         li    a7, 1           # a7 = 1
                               a7.Security = 7, a7.Integrity = 0

         li    a6, 0x63        # LAST = R^2 -1 = 100 - 1
                               Tags Security = 7, Integrity = 0

         li    t1, 0x8         # t1 = R = 10
                               Tags Security = 7, Integrity = 0

          j      <L1>          # jump to <L1>
                               Tags Security = 7, Integrity = 0

<L3>     addi  a2, a2, 1       # a2 = base = base +1
Data Flow Integrity            constant.security = 7, constant.integrity = 0
Information Leak               a5.security = 7, a5.integrity = 0 (if a5 = bit = 0)
                               a2.security = 7, a2.integrity = 0
                               a2.security  = Upper_Bound( 7 , 7, a5) = 7
                               a2.integrity = Lower_Bound( 0 , 0, a5 ) = 0

<L1>     srai  a5, a2 ,0x5     # a5 = word offset
                               a5.security  = Upper_Bound( a2 , 7 ) = 7
                               a5.integrity = Lower_Bound( a2 , 0 ) = 0

         slli  a5, a5, 0x2     # a5 = byte offset [note 1]
                               a5.security  = Upper_Bound( a5 , 7 ) = 7
                               a5.integrity = Lower_Bound( a5 , 0 ) = 0

         add   a5, a0, a5      # a5 = pb[0] + byte offset
                               a5.security  = Upper_Bound( a0 , 7 ) = 7
                               a5.integrity = Lower_Bound( a0 , 0 ) = 0

         lw    a5, 0(a5)       # a5 = LW(addr = a5)
                               constant.security = 7, constant.integrity = 0
                               Read_Mem(0+a5).security = tag.security = 7
                               Read_Mem(0+a5).integrity = tag.integrity = 0
                               a5.security  = Read_Mem(0+a5).security) = 7
                               a5.integrity = Read_Mem(0+a5).integrity) = 0

         sra   a5, a5, a2      # a5 = a5 >> a2 [note 2]
                               a5.security  = Upper_Bound( a5 , a2 ) = 7
                               a5.integrity = Lower_Bound( a5 , a2 ) = 0

         andi  a5, a5, 1      # a5 = pb[word, bit number]
                              a5.security  = Upper_Bound( a5 , 7 ) = 7
                              a5.integrity = Lower_Bound( a5 , 0 ) = 0

         beqz  a5, <L3>       # if a5 = bit = 0 the <L3>
                              Tags Security = 7, Integrity = 0

a2.si = constant

a0.si = constant

a1.si = constant

a0.si = buffer(a0, a1)

a7.si = constant

a6.si = constant

t1.si = constant

a2.si = dataflow(a2, const)

a5.si = dataflow(a5, a2, const)

a5.si = dataflow(a5, a2, const)

a5.si = dataflow(a0, a5)

a5.si = dataflow(Read_Mem(0 + a5) )

jump

a5.si = dataflow(a2, a5)

a5.si = dataflow(a5, const)

a2.si = dataflow(a5)

To store word

while loop

Data Flow Diagram
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Fig. 34 Partial data flow diagram for Sieve of Eratosthenes 
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4.3.11 System Architecture 

The Aberdeen Architecture provides complete mediation for instruction execution. 

Hardware-level security policies are enforced by state machine monitors in Fig. 35. 

Data flow integrity, control flow integrity, and memory access policies are verified 

during instruction execution. Memory access policy verifies load/store and stack 

memory operations. Aberdeen Architecture uses multiple stacks to isolate control 

information (CALL, RETURN, etc.) from “data”. Data and control information stack 

mixing is not allowed. The state machine security policies located at security level 

0 (most secure) are the trusted computing base. Memory integrity is more secure 

than executing code. A memory access violation will raise a hardware-level 

exception.  

Instruction execution monitor relies on the data flow integrity monitor, control flow 

integrity monitor, and memory access monitor. Memory access monitor manages 

load/store operations, stack operations, and memory page operations. More OS 

relevant functions, process context switch, interrupt handler, and exception handler 

are included for instruction execution. 

Hardware-level security policies are defined for levels 0–0.9. Instruction execution 

occurs at security level 1. Guest operating systems reside at security level 2. 

Application software is placed at security levels 3 and above. 

Level 0 is the hardware state machine monitors. We could use a configuration file 

at policy level 0.1 to configure some of the state machine settings. Policy level 0.2 

could define scratchpad memory for the state machines. Level 0.5 defines the 

memory access policies. Memory access integrity is more important than 

instruction execution. Numerous cyber researchers point to memory manipulation 

as a common attack vector. A hardware hypervisor could be placed at security level 

0.7. 
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Fig. 35 Aberdeen architecture security levels. Hardware state machine monitors enforce 

security policies. Memory access policy is below the execution pipeline. Execution Pipeline 

cannot change memory policy. Execution Pipeline sits at security level 1. Guest OS and 

Applications software are at less secure levels.  

4.4 Aberdeen Architecture State Machine Monitors 

In this section, instruction execution is explained in several steps. The control flow 

graph forms the global structure for a running process. The data flow graph 

describes navigating the control flow graph and local level of information flow. The 

data flow subgraphs describe local information flows covering information sources, 

data processing, and information sinks. Instruction execution follows allowed 

control flow graph paths and data flow graph paths. As described in Section 4.3.3, 

there are four classes of instructions. The four instruction classes each have a set of 

allowed operations. The instruction classes allow Saltzer and Schroeder’s security 

principles to be applied to instruction execution. We begin by describing basic 

instruction execution and build our way up to the complete Aberdeen Architecture.  

4.4.1 Instruction Execution 

In a conventional microprocessor, the number of combinations of instructions 

makes formal statements difficult (exponential growth). For the Aberdeen 

Architecture, a framework for formal proofs limits the number of combinations to 

a practical number. For the Aberdeen Architecture, there are four possible 

instruction classes for the previous instruction, four classes for the current 

instruction, and four classes for the next instruction. The Aberdeen Architecture 
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has a total of 4
3
 = 64 cases to consider. As illustrated in Table 1, data flow 

determines the instruction execution path on a control flow graph.  

4.4.1.1 Sequential Instruction Execution Classes 

Figure 36 illustrates sequential instruction class execution. If the previous 

instruction was a sequential or load/store sequential instruction, the program 

counter is advanced by one instruction to the currently executing instruction. If the 

previous instruction was a conditional branch, there are two possible paths to reach 

the currently executing sequential instruction. If the branch condition evaluates to 

true, the next instruction is found at the branch destination address (program 

counter is loaded with the branch destination address). If the branch condition 

evaluates to false, the next instruction is found by advancing the program counter 

by one instruction (PC = PC + 1 instruction, just like the sequential instruction 

class). If the previous instruction was a jump instruction, the next instruction is the 

jump destination address (PC = jump destination address).  

Sequential

Sequential
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Branch Jump

Any class

Previous Instruction Classes
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Fig. 36 Sequential and load/store sequential instruction execution 

The instruction flow in Fig. 36 can be used to develop a proof-by-induction. For a 

proof-by-induction, we show the instruction execution properties hold for n = 2 

instructions, and then show the instruction execution properties hold for n = k + 1 

instructions. For a more complete proof of high assurance, several protection 

properties need to be demonstrated: data flow integrity, stack and memory 

behavior, and register behavior. 
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Figure 37 shows part of the Sieve of Eratosthenes <L1> code block. There are 

several sequential class instructions in a row. The instruction execution tag maps to 

the EXE field found in Fig. 29. The bottom part of the figure illustrates some of the 

properties verified during execution of lw a5, 0(a5) instruction. Memory access 

flow tag is set to LOAD. This tag allows memory read operation. Data flow integrity 

checks are completed during instruction execution (see Instruction Execution 

block). Each memory address also has data flow integrity tags that are completely 

isolated from data.  

34:  0007a783   lw  a5, 0(a5)      

  Memory Access Flow = LOAD Sequential
a5 = pointer ?

Data Flow Integrity Checks
constant.security = 7, constant.integrity = 0
Read_Mem(0+a5).security = tag.security = 7
Read_Mem(0+a5).integrity = tag.integrity = 0
a5.security  = Read_Mem(0+a5).security) = 7
a5.integrity = Read_Mem(0+a5).integrity) = 0

Instruction Start Instruction Execution End

Control Flow = 
Sequential

Control Flow = 
Sequential

0x0000 0034:    0x0007a783   lw   a5, 0(a5)   START = SEQ;     EXE = LOAD;       END = SEQ

      Sieve of Eratosthenes Code            Execution Tag

 28: <L1>   40565793   srai  a5, a2 ,0x5  CFT = Sequential
 2c:        00279793   slli  a5, a5, 0x2    CFT = Sequential 
 30:        00f507b3   add   a5, a0, a5     CFT = Sequential 
 34:        0007a783   lw    a5, 0(a5)      CFT = Load Sequential  
 38:        40c7d7b3   sra   a5, a5, a2     CFT = Sequential 
 3c:        0017f793   andi  a5, a5, 1      CFT = Sequential  

From Figure 4.29

 

Fig. 37 LOAD sequential instruction execution 

4.4.1.2 Branch Instruction Execution Class 

The branch instruction execution class is illustrated in Fig. 38. For the previous 

instruction, there are four possible instruction classes. The branch instruction has 

two possible next instructions. For condition = TRUE, the next instruction is located 

at the branch destination address (PC = destination address). For condition = FALSE, 

the next instruction is the same as the sequential execution class (PC = PC + 1 

instruction). Figure 39 shows a code block for beqz    a5, 20 <L3> from Fig. 29 

and control flow links for begz branch instruction class. The START control flow 

tags shows the previous instruction class was sequential. The execution tag shows 

the instruction class is branch. The END tag control flow links show that the two 

possible next instruction classes are sequential or branch. 



 

68 

Branch

Sequential
Load/Store

Branch Jump

Any class

Previous Instruction Clases

Program Counter Currently Executing Instruction

Next Instruction

P
C

 = P
C

 + 4
 b

ytes

P
C

 = D
e

stin
atio

n
 A

d
d

r

Any class
Program Counter

PC = PC + 1 Instruction
PC = PC + 4 bytes

Next Instruction

Program Counter
PC = Destination Address

 

Fig. 38 Branch instruction execution 

 

# Sieve of Eratosthenes RISC-V Code         
0020: <L3> 0x00160613   addi  a2, a2, 1    START = BR    EXE = SEQ    END = SEQ

003c:      0x0017f793   andi  a5, a5, 1    START = SEQ   EXE = SEQ    END = SEQ

0040:      0xfe0780e3   beqz  a5, 20 <L3>  START = SEQ   EXE = BR     END = SEQ|BR

0044:      0x00161693   slli  a3, a2 ,0x1  START = SEQ   EXE = SEQ;   END = SEQ

Sequential

Condition = False

Condition = True

Previous CF Link

Instruction Execution Class

Condition = False

Condition = True
Next CF Links

From Figure 4.29 Instruction
Start

Instruction
Execute

Instruction
End

Executing 
Instruction

 

Fig. 39 Branch instruction execution example 

4.4.1.3 Jump Instruction Execution Class 

The jump instruction execution class is similar to the branch instruction. As shown 

in Fig. 40, the jump instruction class only has one next instruction: the destination 

address. Figure 41 shows the control flow link tags and instruction execution tag 

for a jump instruction.  
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Fig. 40 Jump instruction execution 

0018:     0x00a00313    li    t1, 0x8     START = SEQ;        EXE = LOAD  END = SEQ

001c:     0x00c0006f    j     28 <L1>     START = SEQ;        EXE = JMP   END = JMP

0028: <L1> 0x40565793  srai  a5, a2 ,0x5  START = SEQ|BR|JMP  EXE = SEQ   END = SEQ

Instruction
Start

Instruction
Execute

Instruction
End

Sequential

Previous CF Link

Instruction Execution Class Next CF Link

From Figure 4.29

# Sieve of Eratosthenes RISC-V Code

Executing 
Instruction

 

Fig. 41 Jump instruction execution example 

4.4.1.5 Stack Operations  

Stack and memory protections are required to strengthen control flow and data flow 

integrity protections. A control flow graph does not consider stack behavior (Abadi 

et al. 2005). Control flow and stack both must be protected. Abadi et al. note, “Of 

course, CFI enforcement is not a panacea: exploits within the bounds of the allowed 

CFG (e.g., Chen et al. [2005]) are not prevented.” Return-oriented programming 

(ROP) is a common stack attack, and CFI fails to block it. An ROP attack corrupts 

the stack and maliciously modifies the return address for an executing function 

(Göktaş, et al. 2014). Current software architectures combine data and control 

information on the same stack. This design philosophy violates Saltzer and 
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Schroeder’s security principles of least privilege, privilege separation, and 

complete mediation. Current stack implementations suffer the same isolation issues 

found in a von Neumann machine. All control information must be completely 

isolated from data. To isolate control and data, separate stacks are required similar 

to instruction and data isolation provided by a Harvard architecture.  

Figure 42 illustrates stack state machine operations (Jungwirth 2020b). Control 

flow operations are saved on the EXE_STACK. Data is placed on DATA_STACK. The 

two stacks completely isolate control information from data. A malicious data stack 

operation cannot overwrite or modify control flow information on the control flow 

stack. A process ID (PID) provides a second level of isolation. Each process has its 

own EXE_STACK and DATA_STACK. This provides a second level of isolation for 

stack information. 
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Fig. 42 Stack push and pull operations 

4.4.1.6 Memory Page Operations 

Memory access and page operations are presented in Sections 4.3.4, 4.3.5, 4.3.8, 

and 4.3.9; and Jungwirth et al. (2019b) and Jungwirth and Ross (2019). I/O and 

data page operations are presented in Jungwirth et al. (2019b). 

4.4.2 State Machine Monitors Introduction 

The Aberdeen Architecture’s state machine monitors are the trusted computing 

base. State machine monitors interpret the security tag bits during instruction 

execution. Each instruction class has a set of allowed and prohibited operations. 

The security tag bits define the boundaries between allowed and prohibited 
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operations. As each instruction is executed, the security tags define the limits for 

control flow behavior, memory access operations, data flow behavior, and 

instruction execution. Instructions that violate one or more of the security properties 

will raise a hardware-level exception. Section 4.5 describes the hardware-level 

security policies enforced by the state machine monitors in detail. 

Additional information covering control flow integrity is found in the paper 

“Security Tag Fields and Control Flow Management” (Jungwirth and Ross 2019). 

Data flow integrity for the Redstone Architecture is covered in the paper “Security 

Tag Computation and Propagation in OSFA” (Jungwirth et al. 2018b). Redstone 

Architecture’s instruction execution and page memory management is covered in 

"Hardware Security Kernel for Cyber-Defense” (Jungwirth et al. 2019b) and 

“Cyber Defense through Hardware Security” (Jungwirth et al. 2018a). Aberdeen 

Architecture builds on the control flow and data flow integrity ideas for the 

Redstone Architecture. 

4.5 State Machine Monitors 

Aberdeen Architecture’s state machine monitors are the trusted computing base. 

Aberdeen Architecture’s data flow integrity was presented in section 4.3.10, 

Figs. 33 and 34. Control flow integrity is presented in Section 4.3.9. Both data flow 

integrity and control flow integrity are scalable. More field labels for control flow 

integrity and data flow integrity provide higher levels of precision. Memory page 

integrity monitor is covered in Section 4.3.4. Instruction execution integrity is 

found in Sections 4.3 and 4.4. Following the software description philosophy in 

Section 4.3.2, we present the RISC-V Aberdeen Architecture version of the Sieve 

of Eratosthenes in Section 4.5.1.  

Monitors are presented in reverse order (Data Flow Integrity, Control Flow 

Integrity, Memory Page Monitor, and Instruction Execution Monitor) to build up 

to instruction execution class. Instruction execution is a function of all information 

flow classes. Section 4.5 finishes up with an introduction to “OS” support function 

monitors: scheduler, interrupt handler, and exception handler. 

4.5.1 RISC-V Aberdeen Architecture version of the Sieve of Eratosthenes 

Figure 43 introduces instruction execution for the Aberdeen Architecture. The 

control flow diagram for the Sieve of Eratosthenes code is found in Fig. 24. Control 

flow integrity is validated by verifying the execution path that follows the control 

flow security tags. Figure 29 shows the instruction execution tags. The previous 

instruction’s END tag is the same as the current instruction’s START tag. The EXE 

tags ensure that the proper control flow path is followed.  
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In Fig. 43, the load immediate instruction, li   a7, 1, is a sequential class 

instruction (see Fig. 36). The instruction loads the constant 1 into register a7. The 

data memory access type is load immediate. The data integrity flow tags for a 

constant are security = 7 (lowest security) and integrity = 0 (highest integrity). The 

Aberdeen Architecture uses the register tags from the Redstone Architecture to 

track data flow integrity through register calculations, and memory read and write 

operations. When a value is read into a register, the memory word tag fields are 

assigned to the register. When a value is stored to memory, the register tag values 

are saved with the memory word.  

Single point entry and exit points are shown in Fig. 44. The single entry and exit 

points significantly reduce the chances of a gadget attack against code inside the 

single entry and exit points. The control flow tags for code inside the single entry 

and single exit blocks also block function calls. The two simple control flow 

mechanisms, single entry/exit points, and control flow tags provide a high degree 

of protection without a high cost (memory and chip area). Control flow protections 

are known to lack coverage for stack operations. Aberdeen Architecture also 

includes memory protections for stacks, data, executable code, and I/O. The 

overlapping state machines’ protections provide the whole is greater than the sum 

of the parts level of protection. 

Instruction execution in Fig. 43 shows the interaction of all the state machines to 

implement Saltzer and Schroeder’s complete mediation principle (verification of 

operations and authority) for instruction execution. Complete mediation for 

instruction execution requires high precision for protections. The Aberdeen 

Architecture takes advantage of the overlapping protections provided by lower 

precision protection mechanisms. Partial complete mediation is a practical level of 

mediation suitable for an actual implementation. The precision level is scalable; 

more security tags provide greater precision. Here we are interested in a balance 

between protection cost (memory and circuits) and protection level. Figure 45 

presents the ranges for mediation. Complete mediation verifies operations and 

authorities without any ambiguities (highest level of precision). Complete 

mediation is not practical for all applications. In addition, when using multiple 

protection mechanisms with moderate levels of precision, an approximation to 

complete mediation is possible. Near complete mediation reduces the ambiguities 

to a small level where the available attack vectors are difficult to nearly impossible 

to exploit. For computer code running on the Aberdeen Architecture, the multiple 

overlapping protection mechanism for near-complete mediation can be greater than 

the sum of the parts and provide a practical implementation for complete instruction 

mediation.
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10:            li    a7, 1 
# a7 = 1            

START = SEQ 
EXE = LOAD IMM SEQ  
END = SEQ

a7 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a7.security = 7 
a7.integrity = 0

a7 = READ

Aberdeen Architeture 
Instruction

Execute Tags

Data Mem Access

Data Flow 
Integrity Tags

Figure 29.  Sieve of Eratosthenes RISC-V Code and Control Flow Integrity Tags

<sieve>  li    a2, 2           # base = a2
                               a2.security = constant.security = 7
                               a2.integrity = constant.integrity = 0

         
  li    a7, 1           # a7 = 1

                               a7.Security = 7, a7.Integrity = 0

a7.si = constant

Figure 34.  Partial Data Flow Diagram for Sieve of Eratosthenes

Register 
Permissions

Register Tag
Result

Redstone Architecture
Register Tags

Data Flow Protection

08: <sieve> 00200613   li    a2, 2
0c:        08000513   li    a0, 0x80
10:        00100893   li    a7, 1
14:        55800813   li    a6, 1368
18:        02500313   li    t1, 37 
1c:        00c0006f   j     <L1>

CALL_ENTRY

NEXT
Jump_To

Figure 28.  Control Flow Graph for Sieve of Eratosthenes

Control Flow 
Integrity

 

Fig. 43 Aberdeen Architecture RISC-V Sieve of Eratosthenes code instruction execution example 
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08: <sieve>  li    a2, 2
(function CALL single entry point) 
# base = a2 = 2   

START = CALL; 
EXE = LOAD IMM SEQ; 
END = SEQ

a2 = RWM
Is END tag from prev 
instruction = CALL?

LOAD IMMEDIATE
a2.security = 7
a2.integrity = 0

a2 = RWM

Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
IntegrityData Mem Access

Data Flow 
Integrity Tags

Register Tag
Result

Function CALL Single Entry Point

7c: <return> ret 
function single exit point)

# return from function CALL 

START = SEQ;  
EXE = RET; 
END = RET

N/A

Function CALL Single Exit Point

Function CALLs to inside this code 
block are not allowed

Is END tag from prev 
instruction = SEQ?
Is next instruction tag = RET 

(instruction following CALL)

A9 = function call 
stack.  RET uses A9 
for return.

A9 = Call Stack
A9 = protected 
stack

A9 = Call Stack
A9 = protected 
stack

 

Fig. 44 Sieve of Eratosthenes single entry and exit code points 
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Fig. 45 Partial, near-complete, and complete mediation ranges 
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The Aberdeen Architecture uses the register and memory tags from the Redstone 

Architecture to implement protected buffers. In Fig. 46, Aberdeen Architecture 

protected state machine “monitor call” instruction AA.Create_Buffer creates a 

protected pointer to a buffer. An example of a protected pointer was introduced in 

Fig. 44. A memory state machine controller creates the protected pointer. The 

register tags are set to an array pointer. An array pointer cannot be “read” by the 

running program. A pointer may be copied to other registers; however, the new 

registers are upgraded to an array pointer. A register without the register tag “array 

pointer” cannot be used to read or write to memory. Section 4.3.4 presented an 

introduction to the Aberdeen Architecture memory map.  

An Aberdeen Architecture JUMP instruction is illustrated in Fig. 47. The control 

flow path from the previous instruction is shown. The JUMP instruction has one 

possible next instruction: the jump destination address. The control flow graph for 

the <L1> instruction can accept control flow tags SEQUENTIAL, BRANCH, and 

JUMP. A larger number of control flow labels can improve control flow precision. 

The Aberdeen Architecture conditional branch instruction is shown in Fig. 48. 

LOAD and STORE memory instructions for the Aberdeen Architecture are presented 

in Fig. 49. The LOAD instruction reads and STORE instruction writes a memory word 

pointed to by a register tag = pointer register. For arrays or memory words, a 

protected register prevents misuse of read and write operations. To read or write to 

memory, the running process ID must match the process ID tag for the memory 

page. Shared memory pages support multiple processes sharing memory. Each 

memory address has memory tags. A read operation sets the register tags to the 

stored memory tags. A write operation saves the memory word and register tags. 

The memory tags provide for data flow integrity. 

The complete Sieve of Eratosthenes RISC-V program for the Aberdeen 

Architecture is presented in Fig. 50. Control flow, data flow, memory access flow, 

and instruction execution are presented. Security tag fields are completely isolated 

from the executing program. Security tag fields are created by parsing a binary or 

high-level language to generate control flow, data flow, and memory access 

patterns.  
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Buffer Length = 0x200 bytes

##:          AA.cb a0, a1  
# buffer = a0 => array of integers
# a1 = buffer length       

START = SEQ;  
EXE = AA SEQ; 
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev 
instruction = SEQ?

NONE
a0.security = 7  
a0.integrity = 0

a0 = ARRAY POINTER

Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
IntegrityData Mem Access

Data Flow 
Integrity Tags

Register Tag
Result

0c:          li    a1, 0x200  
# buffer length = 0x200       

START = SEQ; 
EXE = LOAD IMM SEQ; 
END = SEQ

a1 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7  
a1.integrity = 0

a1 = READ

Register a0 is protected

Memory State Machine function call to create 
a pointer with 0x200 bytes in length.

Pointer is a protected type that cannot be  accessed  by a running program.  
Aberdeen Architecture uses the register tags from the Redstone Architecture 
to implement protected pointers

 

Fig. 46 Aberdeen Architecture creates protected buffer 
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18:          li    t1, 0x0A 
# t1 = R = 10           

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

1c:          j     28 <L1>   
# jump to <L1>  

START = SEQ
EXE = JMP
END = JMP

t1 = READ

N/A

Is END tag from prev 
instruction = SEQ?

Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

LOAD IMMEDIATE

NONE

t1.security = 7 
t1.integrity = 0

t1 = READ

N/A

28: <L1>     srai  a5, a2 ,0x5
# a5 = word offset

START = SEQ|BR|JMP; 
EXE = SEQ;       
END = SEQ

NONE
Is END tag from prev 
instruction=SEQ|BR|JMP?

a5.dfi = a2.dfi 
       = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
IntegrityData Mem Access

Data Flow 
Integrity Tags

Register Tag
Result

Previous CF Link

Instruction Execution ClassNext CF Link
Jump Destination Address

Previous Instruction can be 
SEQUENTIAL, BRANCH, or JUMP

Executing Instruction

Sequential

 

Fig. 47 Aberdeen Architecture JUMP instruction execution 
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68:          add   a3, a3, a2
# cnt = cnt + base

6c:          ble   a3, a6, 48 <L4>    
# if less then <L4>

070:         addi  a2, a2, 1          
# base = base + 1

START = SEQ;  
EXE = SEQ; 
END = SEQ

Is END tag from prev 
instruction = SEQ?

NONE

START = SEQ  
EXE = SEQ
END = SEQ

Is END tag from prev 
instruction = SEQ?

NONE

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a3 = RWM
a6 = READ

N/A
START = SEQ;  
EXE = BR 
END = BR

a3.dfi = a3.dfi   
a2.dfi 

a2 = RWM
a3 = RWM

a3 = RWM

a2.dfi = a2.dfi a2 = RWM A2 = RWM

Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
Integrity

Data Flow 
Integrity Tags

Register Tag
ResultData Mem Access

48: <L4>     srai  a5, a3, 0x5        
# a5 = word offset from a3

START = SEQ|BR;     
EXE = SEQ;       
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi
       = (7, 0)

a5 = RWM
a3 = RWM

a5 = RWM

Previous CF Link

Instruction Execution ClassSequential

Branch Destination 
Address

Executing Instruction

Sequential

 

Fig. 48 Aberdeen Architecture conditional branch 
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Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
Integrity

Data Flow 
Integrity Tags

Register Tag
Result

34:          lw    a5, 0(a5)          
# a5 = LW(addr = a5)

START = SEQ;        
EXE = LOAD;      
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0 )

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointer

Data Mem Access

Register a5 is protected

64:          sw    a4, 0(a5)
# update word

START = SEQ;        
EXE = STORE;     
END = SEQ;

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

Register a5 is protected

LOAD and STORE 
EXE tags

Verify Memory Access Operation

Pointer is 
Protected Type

Since a5=MemRead(0+a5),
a5 pointer is overwritten and

a5.dfi = MemRead(0+a5).dfi tags

MemWrite(a5+0) = a4
Mem(a5+0) = a4.tags = RWM

Pointer is 
Protected Type

Register a5 is protected

 

Fig. 49 Aberdeen Architecture LOAD and STORE memory instructions 
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08: <sieve>  li    a2, 2
(function CALL single entry point) 
# base = a2 = 2   

START = CALL; 
EXE = LOAD IMM SEQ; 
END = SEQ

10:          li    a7, 1 
# a7 = 1            

START = SEQ 
EXE = LOAD IMM SEQ  
END = SEQ

14:          li    a6, 0x63
# LAST = R^2 - 1 = 100 - 1           

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

18:          li    t1, 0x0A 
# t1 = R = 10           

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

1c:          j     28 <L1>   
# jump to <L1>  

START = SEQ
EXE = JMP
END = JMP

##:          AA.cb a0, a1  
# buffer = a0 => array of integers
# a1 = buffer length       

START = SEQ;  
EXE = AA SEQ; 
END = SEQ

a2 = RWM

a0 = RWM
a1 = READ

a7 = READ

a6 = READ

t1 = READ

N/A

Is END tag from prev 
instruction = CALL?

Is END tag from prev 
instruction = SEQ?

Is END tag from prev 
instruction = SEQ?

Is END tag from prev 
instruction = SEQ?

Is END tag from prev 
instruction = SEQ?

Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

LOAD IMMEDIATE

NONE

LOAD IMMEDIATE

LOAD IMMEDIATE

LOAD IMMEDIATE

NONE

a2.security = 7
a2.integrity = 0

a0.security = 7  
a0.integrity = 0

a7.security = 7 
a7.integrity = 0

a6.security = 7 
a6.integrity = 0

t1.security = 7 
t1.integrity = 0

20: <L3>     addi  a2, a2, 1 
# a2 = base = base +1         

START = BR;  
EXE = SEQ;  
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi   
       = (7, 0)

Is END tag from prev 
instruction = BR?

a2 = RWM

a0 = ARRAY POINTER

a7 = READ

a6 = READ

t1 = READ

N/A

a2 = RWM

24:          beq   a2, t1, 78 <L2>
# if base = R then <L2> Done

START= SEQ; 
EXE = BR; 
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a2 = READ
t1 = READ

N/A

28: <L1>     srai  a5, a2 ,0x5
# a5 = word offset

START = SEQ|BR|JMP; 
EXE = SEQ;       
END = SEQ

NONE
Is END tag from prev 
instruction=SEQ|BR|JMP?

a5.dfi = a2.dfi 
       = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

2c:          slli  a5, a5, 0x2
# a5 = byte offset [note 1]

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi
       = (7, 0)

a5 = RWM a5 = RWM

Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
IntegrityData Mem Access

Data Flow 
Integrity Tags

Register Tag
Result

0c:          li    a1, 0x200  
# buffer length = 0x200       

START = SEQ; 
EXE = LOAD IMM SEQ; 
END = SEQ

a1 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7  
a1.integrity = 0

a1 = READ

Register a0 is protected

Function CALL Single Entry Point

 

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code  
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30:          add   a5, a0, a5
# a5 = pb[0] + byte offset

START = SEQ;        
EXE = SEQ;       
END = SEQ

Aberdeen Architeture 
Instruction

Execute Tags

a5 = RWM
a0 = array pointer

Register 
Permissions

Control Flow 
Integrity

none
a5.dfi = a0.dfi 
       = (7, 0)

Data Flow 
Integrity Tags

a5 = Array Pointer
(protected register)

Register Tag
Result

34:          lw    a5, 0(a5)          
# a5 = LW(addr = a5)

38:          sra   a5, a5, a2         
# a5 = a5 >> a2 [note 2]

3c:          andi  a5, a5, 1          
# a5 = pb[word, bit number]

40:          beqz  a5, 20 <L3>        
# if a5 = bit = 0 the <L3>

44:          slli  a3, a2 ,0x1        
# a3 = cnt = base + base

48: <L4>     srai  a5, a3, 0x5        
# a5 = word offset from a3

4c:          slli  a5, a5, 0x2        
# a5 = byte offset

50:          add   a5, a0, a5         
# a5 = pb[0] + byte offset

54:          lw    a1, 0(a5)          
# a1 = LW(addr = a5 + 0)

Is SEQUENTIAL Execution 
Valid?

START = SEQ;        
EXE = LOAD;      
END = SEQ

START = SEQ|BR;     
EXE = SEQ;       
END = SEQ

START = SEQ;        
EXE = SEQ;       
END = SEQ

START = SEQ;        
EXE = SEQ;       
END = SEQ

START = SEQ;        
EXE = LOAD MEM;      
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0 )

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointer

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi  
           a2.dfi
       = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi  
       = (7, 0)

a5 = RWM a5 = RWM
START = SEQ;  
EXE = SEQ
END = SEQ

START= SEQ; 
EXE = BR; 
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a5 = RWM N/A

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a3.dfi = a2.dfi
       = (7, 0)

a3 = RWM
a2 = RWM

a3 = RWM

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi
       = (7, 0)

a5 = RWM
a3 = RWM

a5 = RWM

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi
       = (7, 0)

a5 = RWM a5 = RWM

NONE
Is END tag from prev 
instruction = SEQ?

a5.dfi = a5.dfi 
           a0.dfi
       = (7, 0)

a5 = RWM
a0 = Array Pointer

a5 = Array Pointer
(protected register)

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid?

a1 = RWM
a5 = ARRAY POINTER

a1 = ReadMem(0+a5)
a5 = Array Pointer

Data Mem Access

Register a5 is protected

Register a5 is protected

Register a5 is protected

Register a0 is protected

Register a0 is protected

Register a5 is protected Register a5 is protected
 

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code (continued) 
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Aberdeen Architeture 
Instruction

Execute Tags Register 
Permissions

Control Flow 
Integrity

Data Flow 
Integrity Tags

Register Tag
Result

58:          sll   a4, a7, a3 
# a4 = 1 << cnt = 00   1   000

5c:          not   a4, a4  
# a4 = 11   0   111

60:          and   a4, a4, a1 
# clear bit

64:          sw    a4, 0(a5)
# update word

68:          add   a3, a3, a2
# cnt = cnt + base

6c:          ble   a3, a6, 48 <L4>    
# if less then <L4>

070:         addi  a2, a2, 1          
# base = base + 1

74:          bne   a2, t1, 28 <L1>
# if base != R then <L1>

7c: <return> ret 
function single exit point)

# return from function CALL 

START = SEQ;  
EXE = SEQ; 
END = SEQ

Is END tag from prev 
instruction = SEQ?

NONE

START = SEQ;  
EXE = SEQ; 
END = SEQ

Is END tag from prev 
instruction = SEQ?

NONE

START = SEQ;        
EXE = STORE;     
END = SEQ

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a3 = RWM
a6 = READ

N/A
START = SEQ;  
EXE = BR; 
END = BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a2 = RWM
t1 = READ

N/A
START = SEQ;  
EXE = BR; 
END = BR

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a4.dfi = a7.dfi   
a3.dfi 

a4 = RWM
a7 = RWM
a3 = RWM

a4 = RWM

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a4.dfi = a4.dfi a4 = RWM a4 = RWM

START = SEQ;  
EXE = SEQ
END = SEQ

NONE
Is END tag from prev 
instruction = SEQ?

a4.dfi = a4.dfi   
a1.dfi 

a4 = RWM
a1 = READ

a4 = RWM

Data Mem Access

Register a5 is protected

a3.dfi = a3.dfi   
a2.dfi 

a2 = RWM
a3 = RWM

a3 = RWM

a2.dfi = a2.dfi a2 = RWM A2 = RWM

78: <L2>     AA.dp  a0, 0  
# deallocated memory 

START = SEQ;  
EXE = SEQ; 
END = SEQ

Is END tag from prev 
instruction = SEQ?

Deallocate memory 
pointed to by a0

a0.dfi = (7, 0) 
a0 = POINTER a0 = READ

Register a0 is protected

START = SEQ;  
EXE = RET; 
END = RET

Is END tag from prev 
instruction = SEQ?
Is next instruction tag = RET 

(instruction following CALL)

N/A
A9 = function call 
stack.  RET uses A9 
for return.

 

Function CALL Single Exit Point

 
Register A9 is 

protected CALL stack
Register A9 is 

protected CALL stack

 

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code (continued) 
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4.5.2 Data Flow Integrity Monitor 

Table 8 summarizes Aberdeen Architecture’s data flow integrity policies. The Data 

Flow Integrity Monitor performs data integrity and data security tag checks listed 

in Fig. 44. Instruction execution integrity monitor, described in Section 4.4.5, 

demonstrates the behavior of all of the state machines. Data integrity and data 

security use lattice operators to compute the resultant integrity level and security 

level. For arithmetic and logic calculations in (8), registers rd = destination register, 

rs1 = source register 1, and rs2 = source register 2. For arithmetic and logic 

calculations, the resultant security tag in (9) is the highest-level tag in the 

calculation. For the integrity tags in (10), rd.tag.integrity is equal to the least 

integrity level for rs1 and rs2. Global register tags in (11) can be used to define 

minimum and maximum values for integrity and security. 

Table 8 Data flow integrity policies summary 

𝑟𝑑 = 𝑟𝑠1 ⨀ 𝑟𝑠2 
where ⨀ is the arithmetic or logic operation for RISC-V  

arithmetic or logic instruction. For example, rd = rs1 + rs2 
(8) 

𝑟𝑑. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = max(𝑟𝑠1. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 , 𝑟𝑠2. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦) 
arithmetic and logic 

security tag result 
(9) 

𝑟𝑑. 𝑡𝑎𝑔. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = min(𝑟𝑠1. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 , 𝑟𝑠2. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦) 
arithmetic and logic 

integrity tag result 
(10) 

𝑟𝑑. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦. 𝑟𝑎𝑛𝑔𝑒  = (2 , 7) 

𝑟𝑑. 𝑡𝑎𝑔. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦. 𝑟𝑎𝑛𝑔𝑒 = (0 , 5) 

Global register tags can be used to define 

security and integrity ranges 
(11) 

 

Data integrity verification checks data integrity tags in (10) and data security tags 

in (9) for the information flow in (8). The memory access tag for LOAD and STORE 

instructions provides data flow verification for memory accesses.  

4.5.3 Control Flow Integrity Monitor 

In Table 9, control flow integrity supports (1) code block labels, block start, block 

end, (2) CALL, RETURN single point entry and exit points, (3) exception single point 

entry/exit points, (4) interrupt request single point entry/exit points, and (5) control 

flow instruction labels and links (instruction linked list). Control flow integrity 

operations are illustrated in Fig. 44. Control flow integrity was discussed in 

Section 4.3.9. Instruction execution integrity routine, described in Section 4.4.5, 

demonstrates the behavior of all of the state machines.



 

85 

Table 9 Control flow label summary 

Control Flow Label Control Flow Description Figures 

CALL Function Call Single Entry Point 24, 29, 30, 44 

RETURN Function Return Single Exit Point 24, 29, 30, 44 

EXCEPTION_CALL Exception Single Entry Point 21 

EXCEPTION_RET Exception Single Entry Return 21, 22 

IRQ_CALL Interrupt Single Entry Point 21, 23 

IRQ_RETURN Interrupt Single Entry Return 21, 23 

AL_SEQUENTIAL Arithmetic/Logic Sequential Instruction 9, 25, 36 

LOAD_IMM_SEQ Load immediate sequential Instruction 43, 46 

LOAD_SEQUENTIAL Load from memory sequential instruction 10, 26, 37, 49 

STORE_SEQUENTIAL Store to memory sequential instruction 10, 49 

AA.SEQUENTIAL Aberdeen Architecture Sequential 

Class Privileged Instructions 
46, 50 

BRANCH Branch instruction  11, 38, 39, 48, 50 

JUMP Jump instruction 12, 27, 40, 41, 47, 50 

4.5.4 Memory Page Monitor 

Section 4.3.4 and Fig. 13 introduce page memory classes. Figure 17 describes the 

operation of the stack state machine. The memory classes extend the memory 

classes described in the paper “Hardware Security Kernel for Cyber Defense” 

(Jungwirth et al. 2019b). Memory Page Monitor Supports: memory page classes, 

Exe Mem Page, Exe Stack Mem Page, Data Stack Mem Page, Create Stack Pointer 

and Deallocate Stack Pointer; Virtual Page Table Mem Page, OS Table Mem Page; 

LOAD/STORE memory access; I/O Page Class; Data Page Class; Data Stack Page; 

conversions between allowed classes; and Process Configuration Page (protected 

page class).  

Each memory page class provides least privilege, complete mediation, and 

privilege separation. Memory pointers, stack, IO_Page, buffers, and so on, also 

have a set of allowed memory operations to support least privilege, complete 

mediation, and privilege separation. For a process’s data stack to be used by a DLL, 

the data stack memory page must be converted to DLL_Stack using an Aberdeen 

Architecture protected instruction. Once memory page class = DLL_Stack, the 

running process cannot access the stack space. When the DLL completes, it sets the 

page class back to Data Stack for the running process. 

4.5.5 Instruction Execution Monitor 

The Aberdeen Architecture’s instruction execution monitor verifies four instruction 

classes shown in Table 10. AA_Protected instructions are sequential class 

instructions that call state machine monitor operations. For an example state 
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machine operation, see AA.Create_Buffer. Instruction classes are based on the 

behavior of the PCR. Sequential instruction classes AL_SEQUENTIAL, 

IMM_SEQUENTIAL, LS_SEQUENTIAL, and AA_Protected advance the PCR to 

the next instruction. CALL and RETURN instructions are a protected “jump”-like 

instruction. BRANCH instruction class has two next instruction addresses: PCR = 

next instruction (same as sequential class) and PCR = branch destination address. 

The JUMP instruction simply jumps to the jump destination address (PCR = 

destination address).  

Table 10 Instruction class summary 

Instruction Class Control Flow Description Figures 

(1.1) AL_SEQUENTIAL Arithmetic and Logic Sequential Instruction Class 9, 25, 36 

(1.2) IM_SEQUENTIAL Load immediate sequential Instruction 43, 46 

(1.3) LS_SEQUENTIAL LOAD/STORE Sequential Instruction 10, 26, 37, 49 

(2) AA_Protected Aberdeen Architecture Protected Instructions 46, 50 

(3) BRANCH Branch instruction  11, 38, 39, 48, 50 

(4) JUMP Jump instruction 12, 27, 40, 41, 47, 50 

 

As listed in Table 10, sequential instructions cover (1.1) register-to-register 

arithmetic and logic instructions; (1.2) load immediate, and (1.3) LOAD and STORE 

instructions. The sequential class instructions advance the program counter to the 

next instruction. Aberdeen Architecture instructions are protected instructions 

directly executed by the Aberdeen Architecture state machine controllers. For 

example, an operating system or user program can call an Aberdeen Architecture 

instruction to create a buffer. The buffer is managed and protected by state 

machines. Aberdeen Architecture instructions also include stack operations, I/O 

operations, and memory page operations. Section 4.5.6 presents a pseudo-code 

implementation for the instruction execution monitor.  

4.5.6 Instruction Execution State Machine Monitor 

A simplified state machine instruction execution monitor is presented in Fig. 51. 

Section 4.5.6 and Fig. 52 present a pseudo-code implementation for the instruction 

execution monitor. The instruction execution state machine uses (1) data flow 

control state machine monitor, (2) control flow state machine monitor, and (3) 

memory access state machine. Together the four state machines provide high-

assurance instruction execution for the Aberdeen Architecture. The instruction 

execution monitor operation is described for the Sieve of Eratosthenes RISC-V 

code in Fig. 44. Each instruction class uses a line of code from Fig. 44 to explain 

the operation of the instruction execution state machine. For example, code {7} 

handles the arithmetic and logic sequential instruction class. Code {8} shows an 
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example of a protected instruction, AA.create_buffer. Protected instructions are 

executed by state machine controllers. 

 

 
case Arithmetic_Logic_SEQUENTIAL: {7} 
20: <L3>     addi  a2, a2, 1 
# a2 = base = base +1         

START = BR;  
EXE = SEQ;  
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi   
       = (7, 0)

Is END tag from prev 
instruction = BR?

a2 = RWM

 
 
// Aberdeen Architecture Protected Instructions 
// Executed by State Machine Controllers 
case AA.Create_Buffer: 

{8} 

##:          AA.cb a0, a1  
# buffer = a0 => array of integers
# a1 = buffer length       

START = SEQ;  
EXE = AA SEQ; 
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev 
instruction = SEQ?

NONE
a0.security = 7  
a0.integrity = 0

a0 = ARRAY POINTER

0c:          li    a1, 0x200  
# buffer length = 0x200       

START = SEQ; 
EXE = LOAD IMM SEQ; 
END = SEQ

a1 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7  
a1.integrity = 0

a1 = READ

Register a0 is protected

 
 
 
 

 

Fig. 51 Simplified execution monitor state machine 
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int Instruction_Exe_Monitor(int PID, int instruction_class, reg_type registers, 
data_mem_type &data) 
{ 

switch(instruction_class){ 

20: <L3>     addi  a2, a2, 1 
# a2 = base = base +1         

START = BR;  
EXE = SEQ;  
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi   
       = (7, 0)

Is END tag from prev 
instruction = BR?

a2 = RWM

 
case Arithmetic_Logic_SEQUENTIAL: 
   if( ( Control_Flow (PCR-1, PCR) == ALLOWED)   &&  

    ( Mem_Access_Tag == NONE   )               && 
    ( Exe_Page.Tag == EXE )                    && 

        ( Exe_Page.PID == Running_Process_ID )  )  &&  
        ( Register_Tags[rd] != PROTECTED)    )     && 
        ( Register_Tags[rd] == at least WRITE)    ) 

{ 
   if (Register[rd].dfi.bounds ALLOWED for Register[rs1].dfi ◊  
       Register[rs2].df) 
   { 
// ◊ = data flow integrity lattice operator 
      Register[rd].dfi  = Register[rs1].dfi ◊ Register[rs2].dfi; 
      Register[rd].tags = Register[rs1].tags ◊ Register[rs2].tags; 
 

    // RISC-V Core executes 
// rd = rs1 ⊙ rs2; where ⊙ = arithmetic/logic 
   } 
   else  
      throw Register_Bounds_EXCEPTION; 
}  
else 
   throw AL_SEQ_EXCEPTION; 

break; 
 

10:            li    a7, 1 
# a7 = 1            

START = SEQ 
EXE = LOAD IMM SEQ  
END = SEQ

a7 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a7.security = 7 
a7.integrity = 0

a7 = READ

 
case LOAD_IMM_SEQUENTIAL: // LOAD CONSTANT 
   if( ( Control_Flow (PCR-1, PCR) == ALLOWED)  && 
       ( Mem_Access_Tag == NONE   )             && 

   ( Exe_Page.Tag == EXE )                  && 
   ( Exe_Page.PID == Running_Process_ID )   && 

       ( Register_Tag[rd] != PROTECTED)    )    && 
       ( Register_Tag[rd] == at least WRITE)    ) 
      { 
         Register[rd].security  = 7;   // lowest security 
         Register[rd].integrity = 0;  // highest integrity 
         Register[rd].tags = Register[rd].tags; 
      // RISC-V Core executes 
      // Register[rd] = immediate value 
      } 
   else 
      throw LOAD_IMM_EXCEPTION; 
break; 
 

Fig. 52 Instruction execution state machine monitor   
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34:          lw    a5, 0(a5)          
# a5 = LW(addr = a5)

START = SEQ;        
EXE = LOAD;      
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0 )

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointerRegister a5 is protected

 
case LOAD_WORD_SEQUENTIAL: 
   addr = register[rs] + offset; 
   if( ( Control_Flow (PCR-1, PCR) == ALLOWED)  && 

   ( Exe_Page.Tag == EXE )                  && 
   ( Exe_Page.PID == Running_Process_ID )   && 

       ( Mem_Access_Tag == LOAD   )             && 
       ( Mem_Page.PID == Process.PID            && 
       ( Mem_Addr == VALID                      && 
       ( Mem_Page.tag == at least READ)      )  && 
       ( Register[rd] == at least WRITE)      )  && 
   { 
      if (Register[rd].dfi.bounds ALLOWED for Register[rs1].dfi ◊  
             Register[rs2].df) 
      { 
         Register[rd].dfi  = Mem(addr = rs + offset).dfi; 
         Register[rd].tags = Mem(addr = rs + offset).register_tags; 
         // RISC-V core executes 
        // Register[rd] = Mem(addr = rs + offset); 
      } 
      else  
        throw Register_Bounds_EXCEPTION; 
   } 
   else 
      throw LOAD_IMM_EXCEPTION(); 
break; 

 

64:          sw    a4, 0(a5)
# update word

START = SEQ;        
EXE = STORE;     
END = SEQ

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and 
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

Register a5 is protected
 

case STORE_WORD_SEQ  
   addr = register[rs] + offset; 
   if( ( Control_Flow (PCR-1, PCR) == ALLOWED)  && 

   ( Exe_Page.Tag == EXE )                  && 
   ( Exe_Page.PID == Running_Process_ID )   && 

       ( Mem_Access_Tag == STORE   )            && 
       ( Mem_Page.PID == Process.PID            && 
       ( Mem_Addr == VALID                      && 
       ( Mem_Page.tag == at least WRITE)     )  && 
       ( Register[rd].tag == at least READ)  )  && 
       ( Register[rs1].tag == POINTER ) 
      { 
         Mem(addr = rs + offset).dfi = Register[rd].dfi; 
         Mem(addr = rs + offset).register_tags = Register[rd].tags; 
      // Mem(addr = rs + offset = Register[rd]; 
      } 
   else 
      throw STORE_EXCEPTION; 
   break; 

 

Fig. 52 Instruction execution state machine monitor (continued) 
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##:          AA.cb a0, a1  
# buffer = a0 => array of integers
# a1 = buffer length       

START = SEQ;  
EXE = AA SEQ; 
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev 
instruction = SEQ?

NONE
a0.security = 7  
a0.integrity = 0

a0 = ARRAY POINTER

0c:          li    a1, 0x200  
# buffer length = 0x200       

START = SEQ; 
EXE = LOAD IMM SEQ; 
END = SEQ

a1 = READ
Is END tag from prev 
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7  
a1.integrity = 0

a1 = READ

Register a0 is protected

 
 
// Aberdeen Architecture Protected Instructions 
// Executed by State Machine Controllers 
   case AA.Create_Buffer: 
       if(rd.tag != BUFFER|STACK|PROTECTED) 
          rd.tag == BUFFER; 
          ALLOCATE_MEM_PAGE(); 
       else 
          throw Create_Buffer_ERROR; 
   break; 
 
   case AA.CALL: // similar to jump with stack operation 
      if( CALL Destination Address  == VALID)   &&  

    ( Exe_Page.Tag == EXECUTE )                                    && 
    ( Exe_Page.PID == Running_Process_ID )                     && 

        ( Exe_Mem_Page.PID == Process.PID                          && 
        ( Destination_Addr == VALID                                ) 
      { // State Machine Executes Protected Instruction 
         PCR = DESTINATION ADDRESS; 
         PUSH_Exe_Stack(); 
      } 
      else 
         throw CALL_EXCEPTION; 
   break; 
 
   case AA.RETURN: 
      if( (PCR(n) == RET instruction) && 
          (PCR(n+1) == ACCEPT_RETURN) 
         { 
            PCR = PCR + 1; 
            Update_Exe_Stack(); 
         } 
       else 
          throw RETURN_EXCEPTION; 
   break; 
 
 
   case AA.Data_Stack: 
      Update_Data_Stack(); 
   break; 
 
   case AA.Data_Stack_to_DLL_Stack: 
      if(rd.tag == DATA_STACK) 
          rd.tag == DLL_STACK; 
      else 
         throw STACK_TYPE_ERROR; 
   break; 

Fig. 52 Instruction execution state machine monitor (continued)  
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   case AA.DLL_Stack_to_Data_Stack: 
       if(rd.tag == DLL_STACK) 
          rd.tag == Data_STACK; 
       else 
          throw STACK_TYPE_ERROR; 
   break; 
 
   case AA.IO_Page_to_Data: 
       if(rd.tag == IO_PAGE) 
          rd.tag == Data_PAGE; 
       else 
          throw IO_PAGE_TYPE_ERROR; 
   break; 
 
   case AA.Data_to_IO_Page: 
       if(rd.tag == DATA_PAGE) 
          rd.tag == IO_PAGE; 
       else 
          throw DATA_PAGE_TYPE_ERROR; 
   break; 
 
   case AA.Open_IO_Port: 
        rd.tag = IO_Port; 
        rd = Port_Controller_Address(create, rd); 
        if Port_Controller_Address == NULL then 
        { 
           rd.tag = NULL; 
           throw Open_Port_Exception; 
       } 
       Clear_IO_Page(rd); 
   break; 
 
   case AA.Close_IO_Port: 
        Clear_IO_Page(rd); 
        Port_Controller_Address(free, rd); 
        if Port_Controller_Address != 0 then Close_Port_Exception; 
   break; 
 
   default: 
     throw SEQUENTIAL_INSTRUCTION_EXCEPTION; 
   break; 

24:          beq   a2, t1, 78 <L2>
# if base = R then <L2> Done

START= SEQ; 
EXE = BR; 
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential 
next instruction valid? 

a2 = READ
t1 = READ

N/A

 
case BRANCH: 
   if( ( Control_Flow (PCR(n-1), Destination_Addr, SEQ ) == ALLOWED)   &&  

   ( Exe_Page.Tag == EXECUTE )                                && 
   ( Exe_Page.PID == Running_Process_ID )                     && 

       ( Destination_Addr == VALID                                && 
       ( Sequential_Addr  == VALID                                && ) 
   { 
       Register.PCR.tags = ??? 
      // PCR = Destination Address or Next Sequential Address 
   } 
   else 
      throw BRANCH_EXCEPTION; 
break; 

Fig. 52 Instruction execution state machine monitor (continued) 
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1c:          j     28 <L1>   
# jump to <L1>  

START = SEQ
EXE = JMP
END = JMP

N/A
Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

NONE N/A

 
case JUMP: 
 if( ( Control_Flow (PCR(n-1), Destination_Addr ) == ALLOWED)     &&  

   ( Exe_Page.Tag == EXECUTE )                                && 
   ( Exe_Page.PID == Running_Process_ID )                     && 

       ( Exe_Mem_Page.PID == Process.PID                          && 
       ( Destination_Addr == VALID                                ) 
   { 
       Register.PCR.tags = ??? 
      // Jump to Destination Address, PCR = Destination Addres 
   } 
   else 
      throw JUMP_EXCEPTION; 

break; 
 

// invalid instruction type 
   default: 
      throw Instruction_Type_Exception } 
   break; 

 

Fig. 52 Instruction execution state machine monitor (continued) 
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4.6 Aberdeen Architecture Two-State Machine Simulation 

C code for a limited prototype RISC-V-based Aberdeen Architecture simulation is 

found in Appendix B. The prototype only simulates (1) simple control flow 

integrity, and (2) simple page memory verification. A fully functional prototype 

would require several more protection features to be implemented and additional 

functionality to fuse the outputs from the multiple state machine monitors.  

Figure 53 illustrates a simple control flow violation (see Appendix C). Executing 

instruction is a JUMP instruction. Control flow tags are set for BRANCH instruction. 

Since the executing instruction violates the control flow tags, a control flow 

violation occurs. The case BRANCH in Fig. 52 raises a BRANCH_EXCEPTION as 

illustrated in Fig. 53. 

 

Fig. 53 Control flow state machine simple control flow graph exception 

 

  

mts[0x09].mem = 0x04660a63;    //        beq a2, t1, 78 <L2>    // 
mts[0x09].exe_tag = JUMP; // CHANGED TAG TO JUMP
mts[0x09].link_tag = 32;

PCR = 3c Byte Address
opcode = AL_IMM_OPCODE

check Link = 1
opcode = AL_IMM_exe

PCR = 40 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

PCR = 20 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 24 Byte Address 
opcode = BRANCH_OPCODE

opcode = Branch

Branch Control Flow Violation.

Word Address = 0x09

link_tag = 32 is for a branch

instruction. With Instruction

set to JUMP, a branch control

flow violation occurs.
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Fig. 54 Memory page state machine simple memory page exception 

 

Figure 54 illustrates simulating a simple page memory boundary for the sieve array 

of bits. For each bit, 0 = not prime, and 1 = prime. Accessing memory outside the 

memory page (0x100 through 0x10c) will raise a simulated hardware exception. 

 
  

int lw(int32_t addr, mts_t& mems, int32_t& word)
{

int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;

if(byte_addr >= 0x100 && byte_addr <= 0x10c)
word = mems[word_addr].mem;

else
{

printf("Invalid memory page \n");
exit(1);

}

return 0;
}

Memory Page 

Boundary 

12 bytes are required to store 100 

bits (prime numbers 1..100)
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4.7 Summary of Aberdeen Architecture State Machine Monitors  

A brief summary of the Aberdeen Architecture is presented in Fig. 55. The 

Aberdeen Architecture adds state machine monitor protection mechanisms to the 

Redstone Architecture presented in Appendix A.  

 

 1. Aberdeen Architecture -- State Machine Monitors  

1.1. Aberdeen Architecture Protection Mechanisms  

1.1.1. Data Flow Integrity Monitor 

1.1.2. Control Flow Integrity Monitor 

1.1.3. Memory Access Page Monitor 

1.1.4. Instruction Execution Monitor 

1.2. Data Flow Integrity Monitor (Table 8) 

1.3. Control Flow Integrity Monitor (Table 9) 

1.3.1. Control Flow Tags (SEQUENTIAL, BRANCH, JUMP) 

1.3.2. Control Flow Code Blocks 

1.3.3. CALL/RETURN Instructions 

1.3.4. IRQ/RETURN Code Blocks 

1.3.5. EXCEPTION/RETURN Code Blocks 

1.4. Memory Page Monitor (§ 4.3.4) 

1.4.1. Memory Page Classes 

1.4.1.1. Exe Mem Page 

1.4.1.2. Stack Mem Page 

1.4.1.3. Exe Stack Mem Page 

1.4.1.4. Create Stack Pointer // Deallocate Stack Pointer 

1.4.1.5. Virtual Page Table Mem Page 

1.4.1.6. OS Table Mem Page 

1.5. Instruction Monitor (§ 4.3.1) 

1.5.1. RISC-V instruction set architecture (§ 4.3.3) 

1.5.2. Classes of RISC instructions (§ 4.4.1) 

1.5.2.1. Sequential Execution 

1.5.2.1.1. Register-to-Register 

1.5.2.1.2. Load Immediate 

1.5.2.1.3. Load/Store 

1.5.2.2. Direct Jump 

1.5.2.3. Branch  

1.5.2.4. Aberdeen Architecture Protected Instructions. (§ 4.4, and § 4.5) 

1.5.2.4.1. Buffer, IO, Memory Page, et al. Pointers 

1.5.2.4.2. Stack Pointers 

1.5.2.4.3. Allocate/Deallocate Memory Pages 

1.5.2.4.4. CALL/RETURN Instructions 

2. Redstone Architecture 

2.1. Aberdeen Architecture uses high assurance features in Redstone Architecture 

2.1.1. Tag Files 

2.1.2. Register Tag Fields 

2.1.3. Local and Global Tag Fields 

2.2. Aberdeen Architecture uses cache bank memory pipeline from Redstone 

Architecture 

2.2.1. Round Robin scheduler uses cache bank memory pipeline for context 

switches 

 

Fig. 55 Aberdeen Architecture summary 
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5. Conclusions 

This technical report describes a high-assurance computer architecture that 

achieves complete mediation (Saltzer and Schroeder 1975, Smith 2012) for 

instruction execution. The Aberdeen Architecture uses hardware-level state 

machine monitors for the trusted computing base. The state machine monitors 

provide security policies enforcing multiple information flow properties. The state 

machines provide complete mediation for instruction execution based on four 

information flow classes. The Aberdeen Architecture combines several protection 

methods to create a system security policy where the whole is greater than the 

individual security policies. The multiple security policies provide overlapping 

coverage preventing brittleness and single-point security policy failures. The 

Aberdeen Architecture fully virtualizes the execution pipeline and register file, 

providing complete time and space separation between software and the security 

policies. 

The Aberdeen Architecture is currently patent pending. 

6. Future Research Areas 

The Aberdeen Architecture requires a high-assurance compiler to take advantage 

of the security tag features and state machine controllers. A high-level language is 

required for software developers. The compiler for the high-level language needs 

to determine and implement the security details for the programmers.  

The high-assurance security features from the Aberdeen Architecture can simplify 

the implementation of high-assurance microkernels. We envision using the security 

features from the Aberdeen Architecture to develop a streamlined version of seL4. 

The AA-seL4 would run as a guest OS using the nano-kernel OS features provided 

by the hardware-level state machines. 

An out-of-order instruction execution architecture is possible. Each execution 

thread requires a PID to isolate threads, processes, and hardware states. 
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1. Introduction


The Operating System (OS) Friendly Microprocessor Architecture’s (OSFA’s) 
goals are to provide a high-performance microprocessor and reduce the code 
complexity of an operating system. We have developed a computer architecture 
that reduces the high cost of a context switch and provides hardware-based 
computer security. A context switch can be as fast as 1 central processing unit 
(CPU) cycle. 


Figure 1 introduces the OSFA.1–2 The processor memory and bus architecture is an 
extended Harvard architecture. The OSFA1 uses pipeline memory controllers to 
rapidly background switch cache memory pages. The pipeline memory architecture 
supports hardware-based OS context switches. Context switches for lightweight 
threads can be as fast as 1 CPU cycle. 
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Fig. 1 OS friendly microprocessor architecture 


OS information assurance is implemented in hardware. By extending the traditional 
Unix file permissions bits down to each memory cell, each cache line, and each 
cache memory bank, the OSFA processor provides hardware-based computer 
security. 
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1.1 OS Friendly Microprocessor Architecture Permission Bits 


A unique feature of the OSFA is the permission bit Index_Register_I/O 
(IRegIO). IRegIO allows the OS to provide an index register pointing to an 
input/output (I/O) port or I/O memory address. The IRegIO bit “locks out” the 
memory address pointer (index register) from being read, written to, or modified. The 
running process is prevented from accessing the contents of the register; however, the 
process can use the index register (pointer) to read/write to I/O (registers, ports, or 
addresses).  


The hardware permission bits can be set to allow real-time software debugging. 
Program debugging can use the R W M permission bits (Read = allowed, Write = 
not allowed, and Modify = not allowed) to trap all writes made to a memory address 
or register. This allows for hardware level debugging with zero performance 
overhead at the software level until a write occurs. 


Library function protection is provided by extending the principal of least privilege 
to library function calls. For each software application, a table sets limits (white 
list) for all OS function calls required by the application. The library function call 
table sets limits for typical load, moderate load, and maximum load. Exceeding the 
limits for typical load, moderate load, and/or maximum load can be set to generate 
an exception or require higher than user level privileges. 


Sections 2 through 5 cover the OSFA. Section 6 covers computer security, 
information assurance, and permission bits. 


1.2 Bus Architectures 


There are 2 commonly used microprocessor bus architectures. The von Neumann 
architecture consists of a unified instruction (program) and data memory. The 
combined memory contains both data and instructions. Newer microprocessors 
incorporate a no-execute bit in cache memory tables to prevent data from being 
executed. A Harvard bus architecture has separate instruction (program) memory 
and data memory. A modified Harvard architecture has internal separate caches for 
instructions (program) and data with a combined (unified) external memory. 
Figure 2 compares von Neumann and Harvard bus architectures. Note, the Harvard 
architecture allows for parallel memory operations over the 2 busses and memories. 
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Fig. 2 von Neumann and Harvard bus architectures 


Figure 3 compares computer memory types and approximate memory sizes for 
2013. Register memory is the fastest memory inside a computer. Register memory 
typically is small. Level 1 (L1) and level 2 (L2) memory caching are contained on-
chip inside the microprocessor. Level 3 (L3) memory caching can be on or off chip. 
Main memory is present on the main or system computer board. Hard drives and 
tape backups represent mass storage memory. The memory types from register to 
mass storage span a range of approximately 1011 or more. 
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Fig. 3 Computer memory types and sizes 


2. In-Band Signaling, the Open Front Door  


In-band signaling is an open front door. There is no user authentication for control 
information. A black hat or prankster only needs the tools to provide the in-band 
control signals to the network system. 


Telephone in-band signaling combines voice (data) and control information on a 
telephone line. The papers by Weaver and Newell3 and Breen and Dahlbom4 
provided the technical details for controlling the telephone network. In-band 
signaling provides the open front door to send control information over the phone 
line. Back in the 1970s, before the telephone companies switched to out-of-band 







Approved for public release; distribution is unlimited. 
4 


signaling, a blue box generated the control tones (codes) to control the telephone 
network. A “blue box”5 built by Steve Wozniak is on display at the Computer 
History Museum.6 The average electronics hobbyist could easily build a blue box. 
Blue box phone calls were free. It did not take long for “free” blue box phone calls 
to become illegal.   


The classic buffer overflow error, unfortunately all too common in modern 
programming, presents an opportunity for a black hat to place control information 
inside and gain control of a computer. The control information could be a line of 
code to jump to a computer virus or other malware application. 


Caller ID does not have any authentication. A prank caller can easily spoof Caller 
ID. Caller ID uses a 1200 Hz frequency shift keying, Bell 202 modem7 to send 
caller ID information. An “orange box” generates the spoofed Caller ID string8 for 
the telephone network. In-band signaling is an open front door for controlling, 
spoofing, and/or hacking a system. 


The OSFA’s information assurance goal is to completely separate control and data 
at the hardware level. The objective is to raise the difficulty level to hack a computer 
system. Keep in mind that claiming a system is unhackable is like creating an 
unsinkable ship. Current computer security best practices are based on a risk 
analysis and cost/benefit analysis. 


3. OS Friendly Microprocessor Architecture


This section describes the OSFA’s cache bank architecture. Section 5 covers the 
cache bank and memory cell hardware permission bits. 


The OSFA uses an extended Harvard architecture as illustrated in Fig. 4. In a 
Harvard architecture (see Fig. 2), there are separate busses and memories for 
instructions (programs) and data. The OSFA uses 4 separate busses and memories 
for high-speed context switching and hardware-level information assurance. A 
modified extended Harvard architecture has a unified external memory with 
separate internal caches. A context switch only requires cache banks to be 
connected and disconnected to the execution pipeline. Cache bank contents are 
background copied to and from L1 caching while the execution pipeline is running 
another process or thread.  
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Fig. 4 OS friendly microprocessor architecture 


3.1 DMA/Cache Bank Controller Architecture 


The OSFA in Fig. 5 consists of 4 DMA/cache controller banks (Instruction, Data, 
Register, and Pipeline State), connected to a microprocessor execution pipeline. 
The OSFA is a set of memory blocks (stages) in a pipeline configuration. The 
DMA/cache controller banks (instruction, data, register, and pipeline state) connect 
to internal level 1/level 2, and such, caching through busses. Internal caches connect 
to external caches and external memories. The OSFA can also use a unified external 
memory architecture similar to a modified Harvard architecture (internal separate 
caches for instructions and data, and a unified external memory). 
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Fig. 5 OS friendly DMA controller and cache bank controller pipeline architecture 


The instruction, data, and register cache bank controllers are configured to only 
write one block at a time from/to the processor pipeline. There is a tradeoff between 
cache bank size and writing data in parallel. The DMA/cache bank controllers use 
a parallel bus to copy to (L1 and L2 caches, internal/external L3 caches, and main 
memory) memory. The pipeline caching structure also allows the execution 
pipeline to run at full speed while hardware controllers provide background cache 
to memory (L1 and L2 caches, internal/external L3 caches, and main memory) copy 
operations in parallel.  


In version 1 of the OSFA,1 the pipeline state controller and cache bank is fully 
parallel. For instruction, data, and register DMA/cache controller banks, cache 
memory size is more important than a fully parallel memory copy. Version 2 of the 
OSFA 2 merges the pipeline state cache banks with the execution pipeline. A 
parallel memory copy is not required in Version 2 2 since the cache banks are 
already stored in the execution pipeline stages. 


3.2 Context Switch 


A typical process is allowed to run for milliseconds before context switching to the 
next process. As long as the instruction, data, register, and pipeline state DMA 
controller/cache memory banks in Fig. 5 can complete background copy operations 
on the order of milliseconds, the processor does not “see” any of the background 
operations. Since instruction, data, register, and pipeline state memory for L1, L2, 
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L3 caching, and external main memory can now run at a lower clock frequency, 
significant power savings results without decreasing processor performance.  


Figure 6 illustrates the OSFA Version 11 write (copy) and read (load) cache bank 
operations for processes n – 1, n, and n + 1. OSFA Version 2 2 removes the parallel 
memory copy (see Section 4.3.2). We use sequential numbers to simplify Fig. 6. In 
an actual system, the process identification (PID) numbers would be arbitrary. The 
load (read) and write (copy) cycles for each cache bank (instruction, data, register, 
and pipeline state) are shown. This is a worst-case example showing cache writes 
and loads for each context switch. Data locality would limit the number of writes 
and loads resulting in more time to copy memory, allowing for more power savings. 
Fully parallel memory copy operations, for the pipeline state cache bank, are shown 
(OSFA Version 1). The “Bank(m)” notation refers to cache bank number (m) or a 
set of bank numbers (m)’s. The instruction, data, register, and pipeline state cache 
controller banks consist of cache banks in 1)  active use by the execution pipeline: 
instruction.act, data.act, register.act, and pipeline_state.act; 2) swapping set cache 
banks (instruction.swp, data.swp, register.swp, pipeline_state.swp) in use by 
instruction, data, register, and pipeline state DMA controllers as illustrated in 
Figs. 5 and 6; and 3) inactive cache banks: instruction.ina, data.ina register.ina, 
and pipeline_state.ina not in use by execution pipeline and not in use by DMA 
controllers in Fig. 5. 


 


Fig. 6 OS friendly microprocessor architecture context switch timing diagram 
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At process n’s start, the active pipeline state cache bank (pipeline_state.act) is 
copied in parallel (OSFA Version 1) into the execution pipeline latches. At the end 
of context for process n, the pipeline state latches (OSFA Version 1) are copied in 
parallel to the active pipeline state cache bank (pipeline_state.act). During context 
time for process n, the inactive cache banks instruction.ina, data.ina, register.ina, 
and pipeline_state.ina are idle. For process n – 1, the swapping set cache banks 
instruction.swp, data.swp, register.swp, and pipeline_state.swp are copied to L1 
level caching as shown in Figs. 5 and 6. The swapping set cache banks currently in 
L1 cache memory, instruction, data, register, and pipeline_state, for process n + 1 
are loaded into cache banks instruction.swp(n + 1), data.swp(n + 1), 
register.swp(n + 1), and pipeline_state.swp(n + 1), to prepare to execute process 
n + 1 during the next context time.  


At end of context for process n, the active process n cache banks are set to swapping 
set cache banks: instruction.swp(n) = instruction.act, data.swp(n) = data.act, 
register.swp(n) = register.act, and pipeline_state.swp(n) = pipeline_state.act. After 
context switching from process n to process n + 1, the swapping set cache banks 
for process n + 1 are set to active: instruction.act = instruction.swp(n + 1), 
data.act = data.swp(n + 1), register.act = register.swp(n + 1), pipeline_state.act = 
 pipeline_state.swp(n + 1). The cache banks instruction.act, data.act, register.act, 
and pipeline_state.act and now in use by execution pipeline. Figures 5 and 6 
illustrate how the instruction, data, register, and pipeline_state DMA controllers 
run in parallel with the execution pipeline.  


3.3 Cache Bank Architecture 


The instruction, data, and register cache bank controllers and cache banks only need 
to write one word (n bits) at a time. Conventional microprocessors have a small 
number of registers: on the order of 16–128. The OSFA envisions a much larger 
number of registers. We envision instruction and data cache banks on the order of 
128,000 or larger and register cache banks on the order of 1000 or larger. The 
pipeline state cache bank is on the order of 128–1000. Figure 3 compares the sizes 
of memories and caches for conventional architectures. 


3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank 


For OSFA Version 1, the pipeline state cache controller and cache banks need to 
be able to read or write to all of the pipeline stage latches in parallel. Figure 6 
illustrates, the parallel load (read) and write operations for the pipeline state cache 
controller and cache banks. OSFA Version 2, in Section 4.3.2, removes the parallel 
read/write required for Version 1. 
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Figure 7 shows the cache controller and cache bank architecture for the instruction, 
data, and register banks for OSFA Versions 1 and 2. The bank selection controller 
provides arbitration to prevent the DMA controller and microprocessor execution 
pipeline from accessing the same cache bank at the same time. This separation 
allows the DMA to transfer cache memory pages to L1 caching in the background 
while the microprocessor pipeline is executing instructions. The bank address 
controller sets the cache bank memory addresses for the swapping set cache banks 
(instruction.swp, data.swp, and register.swp) and the active cache banks 
(instruction.act, data.act, register.act and pipeline_state.act). The read/write 
controllers set the data direction for the swapping set cache banks and the active 
cache banks.  
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Fig. 7 Data, instruction, and register cache controller banks 


Figure 8 shows the pipeline state cache controller and cache banks for OSFA 
Version 1. The pipeline state cache bank controller and DMA cache bank controller 
provide arbitration preventing the DMA controller and pipeline state (pipeline stage 
latches) from using the same cache bank at the same time. This separation allows 
the DMA to transfer a pipeline state cache memory bank to L1 caching in the 
background while the microprocessor pipeline is executing instructions. At the start 
of a context, as shown in Fig. 6, the active pipeline state cache bank 
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(pipeline_state.act) is copied into the pipeline state (pipeline stage latches) in 
parallel in a single CPU clock cycle. At the end of a context, the pipeline state is 
copied in parallel in a single CPU clock cycle to the active pipeline state cache bank 
(pipeline_state.act). 
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Fig. 8 Pipeline state parallel cache controller banks 


3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State 
Cache Bank 


For the OSFA Version 2, the 8 memory latches are included in each pipeline stage 
as shown in Fig. 9. For example, for process n, Latch4 is currently in use. To switch 
to process n + 1, Latch4 is disconnected from the pipeline stage, and another latch, 
for example Latch2, is connected. The latches used by process n may now be 
background copied to L1 cache sequentially from stage 0 through stage (m – 1) (all 
of the pipeline latches) during context n + 1. The Version 2 pipeline state 
DMA/cache controller pipeline offers the same processor performance as Version 1 
while requiring less power.  
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Fig. 9 OS friendly microprocessor architecture version 2 pipeline state cache banks 


3.4 OS Friendly Microprocessor Architecture Performance 
Modeling 


The OSFA1 offers new opportunities for increased performance and decreased 
power consumption by providing hardware features to reduce the OSs cost for 
managing resources. Sections 4.4.1–4.4.3 develop a first-order approximation of 
the potential improvements in OS Friendly Microprocessor Architecture’s context 
switch performance. Conventional microprocessor performance models are based 
on the research from Vangal et. al.9 and Mudge.10 


3.4.1 Conventional and OS Friendly Microprocessor Architecture 
Context Switch Modeling 


Sections 4.4.2 and 4.4.3 estimate the context switch time required for a 
conventional architecture and the new OSFA. The OSFA significantly improves 
the context switch time and uses less power. The high-level representations for 
conventional and improved OSFA architectures are shown in Figs. 10 and 11. 
These figures assume the following architectural characteristics. First, the internal 
designs of the execution pipelines in the 2 architectures are the same. The model 
for the OSFA execution pipeline in Fig. 11 uses the same execution pipeline as the 
conventional architecture in Fig. 10. The labels inside the pipeline stages (labeled 
“PS”) refer to the stages to which the following sections reference (EX: Execution 
Stage, MEM: Memory Access Stage, and WB: Writeback Stage). Next, it is 
assumed that the pipelines in both architectures, OSFA and conventional, operate 
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at a fixed voltage VP_H with clock period tS. The Register File Set (RFS), active 
register cache bank (register.act), and the active pipeline state cache bank 
(pipeline_state.act) normally operate at voltage VR_H with clock period tS. For 
power improvements, the OSFA can dynamically scale down both the voltages and 
clock rates of the inactive and swapping cache controllers and cache banks. The 
voltage of inactive and swapping cache controllers and cache banks can be reduced 
to some value VL, while the clock frequency (clock period) of these components 
can be reduced (clock period increased) to some value, clock frequency fL, or clock 
period  tL. 
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Fig. 10 Conventional processor architecture model 
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Fig. 11 OS friendly microprocessor architecture model 


3.4.2 Conventional Architecture Context Switch Modeling 


This section presents the steps taken by conventional processor architecture in 
Fig. 10 to perform a context switch. Each step requires a certain period of time, 
which is determined by the amount of work required by the step, the clock rate of 
the components involved, and the parallelism exploited by these components. All 
components of the conventional architecture operate with the short clock period ts. 
The steps involved in a context switch for the conventional processor are shown in 
Table 1. 
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Table 1 Conventional architecture context switch steps 


Step Description 


Step 1 Flush the pipeline state out to the register file. 


Step 2 Write out each register value to memory. 


Step 3 Bring the OS register state back into the register file. 


Step 4 Refill the pipeline with the OSs pipeline state. 


Step 5 Execute the standard OS operations. 


Step 6 Flush the OS pipeline state to the register file. 


Step 7 Write out each register value to memory. 


Step 8 Bring the register state of another process, p, back into the register file. 


Step 9 Refill the pipeline with p’s state. 


Assuming the conventional pipeline in Fig. 10 has s stages, step 1 will require s 
clock ticks, and hence s·tS time. Step 2, writing each register file out to memory, 
requires reading each register value into the EX stage, moving it into the MEM 
stage, and then flushing it out to memory. There are 3 clock ticks for each register 
value, but since the operations can be performed in a pipelined fashion, we 
approximate this as r·tS time total for all r registers. Step 3 requires filling up the 
pipeline to retrieve register values from memory, requiring s ticks, then writing 
each value back to the register file in the writeback stage for a total of (s + r)·tS 
time. Step 4 is filling the pipeline back up with values from the register file, but this 
can be pipelined with the register file refill and hence is already accounted for. 
Step 5 takes some unknown amount of time, tOS_NORMAL, that is dependent on the 
OS design. Steps 6 and 7 are similar to steps 1 and 2, which again require s·tS time 
and r·tS time, respectively. Step 8 is like step 3, which requires (s + r)·tS time, and 
step 9 is like step 4, which is accounted for in this time. Hence, an expression that 
approximates this entire process is given by Eq. 1 and simplified in Eq. 2. 


𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑡𝑡𝑆𝑆 +  𝑟𝑟𝑡𝑡𝑆𝑆 +  (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑠𝑠𝑡𝑡𝑆𝑆 +  𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆. (1) 


𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 4𝑡𝑡𝑆𝑆(𝑟𝑟 + 𝑠𝑠) + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁      (Conventional Architecture’s Context Switch Time) (2) 


3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling 
(Version 1) 


Figure 6 presents a worst-case timing diagram for the OSFA Version 1 assuming 
swapping set cache banks (instruction.swp, data.swp, register.swp, and 
pipeline_state.swp) must be loaded and written for every context switch. Data 
locality will significantly reduce the number of cache bank memory copy 
operations. The model for OSFA’s execution pipeline in Fig. 11 is same as the 
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conventional architecture described in Section 4.4.2 and Fig. 10. A more optimized 
pipeline would provide higher performance. 


The OSFA pipeline model also operates with clock period tS. In the determination 
of the clock frequency of the OSFA’s other components, the cache banks are 
divided into 3 sets: active, inactive, and swapping set. One of the register cache 
banks, register.act, is active and one of the pipeline state caches, pipeline_state.act, 
is active. These active cache banks are those that are in use by the OSFA pipeline 
in Fig. 4 and the modeled pipeline in Fig. 11. There is then a set of the other cache 
banks, instruction.bank(m)’s, data.bank(m)’s, register.bank(m)’s and 
pipeline_state.bank(m)’s, that are either flushing state out to the DMA controllers 
(instruction DMA, data DMA, register DMA, pipeline state DMA) or bring state 
back from the DMA controllers (instruction DMA, data DMA, register DMA, 
pipeline state DMA). These sets are designated as the swapping sets where  


instruction.swp = set of instruction.bank(m)’s cache memory banks, 


data.swp = set of data.bank(m)’s cache memory banks, 


register.swp = set of register.bank(m)’s cache memory banks, and  


pipeline_state.swp = set of pipeline_state.bank(m)’s cache memory 
banks. 


The cache banks not in use by the execution pipeline or DMA controllers are 
inactive or idle. 


The active components instruction.act, data.act, register.act and pipeline_state.act 
operate with clock period tS, the swapping components instruction.swp, data.swp, 
register.swp and pipeline_state.swp operate with the longer clock period tL , and the 
inactive components instruction.ina, data.ina, register.ina and pipeline_state.ina are 
idle (for static memory, clock frequency could be set to 0 Hz). 


The modeled OSFA Version 1 in Fig. 11 performs the following steps in Table 2 
during a context switch. The key feature of the OSFA is that parallelism takes place 
at various levels to reduce execution time. In step 1, all pipeline stages flush state 
to the active pipeline state cache simultaneously (see Figs. 5, 6, and 11), and hence 
this requires only one tick at the high clock rate for a time of tS.  
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Table 2 OS friendly microprocessor architecture version 1 context switch steps 


Step Description 


Step 1 Flush the pipeline state (pipeline stage latches) out to the active pipeline state cache. 


Step 2 Switch the active cache banks to the OS state 


Step 3 
If necessary (if free slots in the pipeline_state cache bank and register cache bank 
are needed), flush the contents of the previous process’ state cache banks for the 
previous process ID (PID) as described in Figure 6 . 


Step 4 Bring the OSs pipeline state back into the pipeline from the pipeline state cache. 


Step 5 Execute the standard OS operations. 


Step 6 Flush the pipeline state out to the active pipeline state cache pipeline_stage.act. 


Step 7 If necessary, fetch the state of the next process for execution from memory into the 
next process’ cache banks. 


Step 8 


Switch the active cache banks to the caches containing new (next) process (for 
example, next PID):  pipeline_state.act = pipeline_state(next PID), register.act = 
register(next PID), instruction.act = instruction(next PID), and data.act = 
data(next PID). 


Step 9 
Parallel copy the contents of the active pipeline state cache back into the pipeline 
stage latches. Section 4.4.3 describes the parallel copy for pipeline state cache 
controller and pipeline state cache banks. 


 
Step 2 also takes a single tick to switch to the set of active cache banks for the next 
PID: instruction.act = instruction(next PID), register.act = register(next PID), 
data.act = data(next PID), and pipeline_state.act = pipeline_state (next PID).  


Step 3 takes s ticks for the pipeline state cache and r ticks for the register file. 
However, these steps can be completed at the same time as steps 4–6, so as long as 
they are completed in at most the time for those steps, the pipeline will not see 
them. It is reasonable to assume that step 3 can be completed in less time (if, for 
the time being, we ignore cache misses and contention), as the pipeline state and 
register file are relatively small, while the OS must generally perform several 
system operations before switching back to a user-level process.  


Step 4 is the reverse of step 1, so it requires only a single tick.  


Step 5 still takes tOS_NORMAL as with the conventional architecture, and step 6 takes 
a single tick like step 1. Step 7 is the reverse of step 3 and requires the same amount 
of time. Again, these steps can be performed in parallel with those of steps 4–6.  


Step 8 is the same as step 2, and step 9 is the same as step 4. Each of these takes 
one tick. Hence, the total time for the OSFA context switch, 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂, is found in 
Eq. 3 and simplified in Eq. 4. 
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 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 +  𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆. (3) 


 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 6𝑡𝑡𝑆𝑆 +   𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁. (4) 


We will ignore the tOS_NORMAL term by assuming it is the same for conventional and 
OSFA. The speedup offered by the OSFA for context switching is estimated to be 
𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 in Eq. 5. For example, for a 5-stage pipeline, s = 5, and 32 
general-purpose registers, r = 32, this translates to an estimated theoretical speedup 
of 25 found in Eq. 5 for OSFA. This is a significant order of magnitude speedup 
improvement for the OSFA compared with the conventional processor architecture. 


𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 ≈
4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆


6𝑡𝑡𝑆𝑆
≈ 2


3
(𝑠𝑠 + 𝑟𝑟) = 2


3
(5 + 32) = 25 For OSFA Context Switch. (5) 


In Eq. 6 for a large number of registers, 𝑟𝑟 ≫ 𝑠𝑠, and for 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 ≫ 6𝑡𝑡𝑆𝑆 , with 
𝑡𝑡𝑆𝑆 ≲ 1


100 MHz , the speedup is order the number of registers, 𝒪𝒪(𝑟𝑟).  


𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
6𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁


≈ 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁


≈ 4𝑟𝑟
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁


≈ 𝒪𝒪(𝑟𝑟). (6) 


3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling 
(Version 2) 


OSFA Version 2 pipeline state cache bank in Fig. 9 has the same context switch 
speedup found in Eq. 5. The parallel memory copy for version 1 was replaced by a 
background serial memory copy as described in Section 4.3.2. The serial memory 
copy only requires a low-speed clock. Power requirements for the serial memory 
copy are less than the full parallel memory copy used in version 1 described in 
Section 4.4.3. 


4. OS Friendly Microprocessor Architecture Hardware 
Computer Security 


OS information assurance for “data” (instruction cache banks, data cache banks, 
register cache banks, pipeline state cache banks, and memory cells) is implemented 
in hardware. By extending the traditional Unix file permissions bits11–13 down to 
each memory cell, memory cache line, and cache memory bank, the OSFA provides 
hardware-level information assurance. Figure 12 illustrates hardware-level 
information assurance hierarchy and permission bits.1  
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Fig. 12 Cache bank and memory cell hardware information assurance 


4.1 Cache Bank and Memory Cell Permission Bits 


The instruction, data, register, and pipeline state cache banks have a set of OS level 
permission bits. The cache bank memory type field is used to define data types 
(e.g., data space, stack space, heap space, integer, floating point). Only the OS has 
permission to access and modify cache banks’ permission bits. OS level access to 
cache controller banks is divided into access layers (layer_0, layer_1, layer_2, etc.). 
Example permission bits are shown in Fig. 12. Each cache memory bank has 
permission bits for each memory cell. Each cache bank memory cell has permission 
bits for the OS layers and software (user level, and applications, etc.). The OS 
permission bits are further divided in OS layers (layer_0, layer_1, etc.). Additional 
permission bits can easily be added to Fig. 12. 


4.2 Instruction Permission Bits 


The OSFA also includes permission bits for additional OS level control over 
instructions and hardware. In Fig. 12, permission bit JMP provides OS level control 
of jump or branch on index register instructions. Permission bit IRegIO allows OS 
to provide an index register pointing to an I/O port or I/O memory address. The 
IRegIO bit locks out the index register (pointer). The running process is prevented 
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from accessing the contents of the register/cache bank; however, the process can 
use the index register (pointer) to read/write to I/O (registers, ports, or addresses). 
Registers can be used to define data types using 2 registers for minimum value and 
maximum value. For example, the type IOMemAddressType could be defined as 
minimum = 0, and maximum = 15. If a register of type IOMemAddressType is 
outside the minimum/maximum range, then the processor will generate an out-of-
range exception.  


4.3 Library Call Permissions 


The library function call table in Fig. 13 extends the principal of least privilege to 
the library function call level. A table listing all possible library function calls a 
software program may use is created. Each possible library function call is listed 
with typical moderate load and maximum load lower and upper limits. More limits 
could be used for finer grain control as in the example of the OpenFile( • ) library 
function call privilege limits. If the minimum number of open files is 0, the lower 
limits for cases typical, moderate, and maximum is 0. If the typically user will only 
have 5 files open at a time, the upper limit for typical is 5. Maximum load upper 
limit specifies the maximum number of files that may be open at a time. Exceeding 
the upper limits can be set to 1) require higher than user level privileges or to 2) 
generate an exception. The digital signature provides authentication of the library 
function call table and its permission settings. 


CreateWindow( •,•,• )


Typical Values Moderate Load Maximum LoadAll Library Functions


are Listed.


Digital Signature


OpenFile( •,•,• )


LibraryCall01( •,•,• )


LibraryCall02( •,•,• )


LibraryCall03( •,•,• )


OpenComPort( •,•,• )


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit


 


Fig. 13 Library function call table information assurance 
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5. OS Friendly Microprocessor Architecture Access Layers 


Figure 12 introduces the cache bank permission bits for the OSFA. The instruction, 
data, register, and pipeline state cache banks all use the same block of permission 
bits. Figure 14 focuses on the cache bank permission bits. Each cache bank contains 
a memory type field. The memory type field can be used to define stack space, heap 
space, user memory, shared memory and the like. Each cache bank contains a list 
of permission bits for the OS rings or OS layers. One possible hierarchy for the OS 
Layers is found in Table 3. The secure microkernel and microkernel drivers control 
all permission bits and manage I/O and memory allocation. 


Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits


Cache Bank


Permissions


Cache Bank (m)


Cache Bank OS Permissions
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Fig. 14 OS friendly microprocessor architecture cache bank permission bits 


Table 3 Example OS friendly microprocessor architecture layer hierarchy 


Layer Number Trust Level OS Access Level 


Layer_0 Complete Secure Microkernel 
Layer_1  Microkernel Drivers 
Layer_2  Hypervisor 
Layer_3  Thick OS 
Layer_4  Dynamic Link Libraries 
Layer_5  OS Drivers 
Layer_6  • • • 
Layer_7 Untrusted Applications Software 


 
As illustrated in Fig. 5, all memory, and I/O is managed as direct memory access. 
For example, an application writes a block of data to a hard drive. The application 
executes file.create( • ). The OS level file operation calls the secure 
microkernel for an I/O port. The secure microkernel passes a pointer to an I/O port. 
The pointer to the port address is marked R W M IRegIO (read, write, and modify 
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are not allowed, IRegIO specifies pointer to I/O port). We will use the notation 
R W M for read, write, and modify are allowed. The OS cannot read, write, or 
modify the value of the pointer. The application then calls file.write( • ) using 
the pointer. The OS can only use the file pointer for I/O for the file.write( • ) 
OS library function call. Microkernel can manage (run) multiple OSs and programs 
at the same time. 


5.1 Instruction, Data, Register, and Pipeline State Memory 
Partitions 


The instruction, data, register, and pipeline state cache banks all use the same 
permission bits. The memory type field in Fig. 14 restricts the information that can 
be placed in the cache bank. For example, if the cache bank type is set to application 
data, the running task or thread cannot use the cache bank as stack space. For a 
cache bank to be used for stack space, the stack space permission bit must be set. 
For a push or pull stack operation to read or write to a stack cache bank, an index 
pointer must have stack permission bit set. Stack registers will also be marked as 
R W M (read, write, modify are not allowed), so the running task cannot modify 
the contents of the stack pointer (register). 


Instructions and data have their own stack space (cache banks). For example, an 
array of data is placed on the stack to call an OS library function. The return address 
is not data and is placed on a separate stack contained in the instruction cache bank. 
The stack spaces are not unified. The data stack does not contain any return 
addresses. The instruction stack is managed by the microkernel, so the OS and 
application do not have any direct access to the return address pointer. The return 
address pointer can also be set to R W M (read, write, modify are not allowed).  


The next section looks at permission bits for different OS access levels covered in 
Table 3. 


5.2 Permission Bits: Microkernel, Thick OS, Drivers, and 
Applications 


Figures 15–17 provide example permission bit settings. Figure 15 shows 
permission bit settings for the secure microkernel, the most secure layer. The 
microkernel has complete access. Microkernel drivers have read and write access. 
In Fig. 16, the full feature OS and dynamic link libraries are set to access layers 3 
(OS) or 4 (DLL) through n – 1. OS hardware drivers are set to read and write access 
only. The application’s permission bits are shown in Fig. 17. The multiple levels of 
permission bits allow for restricting the OS from writing to applications’ areas of 
memory. Keep in mind that each cache bank memory can have different permission 
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bit settings. The OS could have full control over one application’s cache memory 
bank and have no control or visibility to a second application’s cache memory bank. 
The large number of permission bits allows for fine grain memory access control. 
We could set the permission bits to allow a trusted application to run under an 
untrusted OS. The permission bits allow for hardware sandbox execution of 
unknown, untrusted code. The hardware permission bits require that we at least 
completely trust the secure microkernel. A formal proof of correctness or a very 
high assurance level microkernel is recommended. 
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Fig. 15 Secure microkernel cache banks and permission bits 
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Fig. 16 Thick OS cache banks and permission bits 
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Fig. 17 Application’s permission bits 


5.3 I/O Implementation 


The OSFA uses cache banks and direct memory access controllers for I/O. The 
cache bank architecture allows all I/O to have a uniform structure. In a high-level 
programming language, we use file operations like file.open( • ), 
file.write( • ), and file.read( • ). The file function calls provide a uniform 
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structure abstracting the low-level details away from the programmer. By using 
cache banks and direct memory access for all input and output, all I/O operations 
at the hardware level are the same. As illustrated in Fig. 18, a USB controller 
interfaces to a direct memory access controller. This allows cache banks to be the 
basic block for all input and output operations. We could replace the USB controller 
with a disk drive controller or a video graphics card. The cache bank and direct 
memory access controller provide a universal interface between the OSFA and 
other devices. 


 
Fig. 18 OS friendly microprocessor architecture I/O example 


In Fig. 18, the software applications calls the OS library function 
OS.Create.I/O_Port( • ). The OS calls the microkernel function 
MK.Create.I/O_Port( • ) to create a pointer to a cache bank. The pointer has 
permission bits set to R W M IRegIO. The OS and applications software cannot 
read, write, modify, or access the contents of the index register (pointer). All the 
OS and application know is that the index register, for example register 10 (R10), 
contains a pointer to the I/O port. Figure 19 gives a real-world example for 
comparison. The junior engineer knows the project plan is contained in the safe; 
however, he does not have access to the project plan. 


Junior engineer knows the project plan is in the safe; 
however, he does not have access to the plan.


Junior EngineerChief Engineer


Thanks.


The CEO left the 2015-16 project 
plan for you to review in the safe.


 


Fig. 19 Real-world example of OS friendly microprocessor architecture’s permission 
architecture 
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The permission bits guarantee that the pointer can be trusted by the microkernel. 
Here trust refers to software level. Only the microkernel has access to the actual 
address for the pointer to the I/O Port. The software applications in Figs. 18 and 20 
know the register number containing the I/O pointer; however, the software 
applications cannot access the contents of the register (memory address contained 
in the register).  


 


Fig. 20 For the I/O port, the application software knows the register number; however, the 
application cannot access the contents of the register 


The application places data inside the cache bank pointed to by the pointer Port. 
The application calls OS.Write.I/O_Port( • ), which simply passes the pointer 
to the hardware DMA controller to transmit the cache bank contents. In Fig. 18, the 
direct memory access controller sends the contents of the cache bank to a USB 
controller. We have several options for the lifetime of the I/O Port pointer: 1 context 
time, single read/write operation, or forever for the microkernel.  


In summary, the IRegIO permission bit restricts access to only the microkernel. 
The permission bits allow the microkernel to trust the pointer. An application passes 
the pointer to a hardware direct memory access controller to send or receive a cache 
bank size block of data. If a black hat had control of a process and could guess the 
address of a cache bank, he still would have to bypass the microkernel to set the 
IRegIO permission bit for the cache bank. The permission bits and cache bank 
architecture provide for efficient, high speed, low overhead I/O. 


5.4 Exception Handling 


Two example exceptions are illustrated in Fig. 21. A simple divide by zero error in 
the application software raises an exception handled by the OS. If the software 
application has provided an exception handler, it is called by the OS; else, the OS 
terminates the running application.  
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Fig. 21 Permission bits and hardware exception handling 


With the permission bits set to R W M (read, write, and modify are not allowed), if 
the application software attempts to read the Array pointer’s address, a memory 
access violation exception is raised. The OSFA hardware detects a memory access 
violation and calls microkernel to handle the exception. The system developer 
could include a microkernel driver to handle the memory exception and even allow 
reading the address contained in the pointer Array. This would be considered poor 
coding style, violate the security layer hierarchy and be an open door for hacking. 


For example, a high-performance algorithm cannot be proved to be absolutely 
numerically stable. A second moderate performance algorithm is known to be 
numerically stable is also running. If the high-performance algorithm raises an 
exception, the second algorithm is already running and can take over immediately. 


5.5 Practical Permission Bit Architecture 


Some possible OSFA access levels are shown in Table 4. The access levels are set 
by cache permission bits. Access levels are specific to the OSFA. OS rings are 
similar; however, OS rings already have an accepted definition and functions. If we 
have a trusted application, we can give the application higher-level privileges than 
an untrusted OS as illustrated in the right-hand column. The secure microkernel in 
access layers 0 and 1 has exclusive access to the hardware permission bits. No other 
layers can access the file permission bits. 
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Table 4 Some possible OS friendly microprocessor architecture access levels 


Object OS friendly microprocessor architecture access levels 
Microkernel (boot) 0 1 n/a n/a 0 
Microkernel 0 0 0 0 0, 1 
Microkernel drivers 1 1 1, 2 1, 2 2, 3 
Hypervisor n/a 2 3, 4 3  4, 5 
Thick OS 2 3 5, 6, 7 4, 5, 6, 7 7, 8, 9 
OS libraries (DLLs) 2 3 7 7, 8 10, 11 
OS drivers 2 4 8 8, 9 12, 13 
Applications 3 5 9 10, 11 6 


 


Trust Level Complete     Untrusted 
 
To illustrate some simple computer security examples, we limit the number of 
access levels to 4. We can easily increase to 8 or more for a full-featured 
architecture. The memory cost for the permission bits can be significant. For 
example, with 8 access levels, 8 permission bits, and 16 bits for the memory type, 
we would need an additional 96 bits for each cache block. For a 1-kiloword cache 
bank, this is not significant; however, for each memory cell an additional 96 bits is 
large. The OSFA Version 2 uses a 1-kiloword permission bit lookup table in a cache 
bank, which only requires 10 bits. Each memory cell would require 8 bits for 
layer_0, 8 bits for layer_1, and 10 bits for the cache lookup table (26 bits total), 
which is much more practical. Layer_0 and layer_1 permission bits are included 
for each memory cell for high-speed microkernel access. A larger cache bank is 
possible; however, at some point becomes unpractical like the 96 bits per cell 
described previously. 


The access level for mobile code is set by a trusted certificate authority and verified 
by the microkernel. Mobile code with an unverified (untrusted) certificate is 
deleted. 


An example, 4-layer permission bit architecture for the OSFA, is illustrated in 
Fig. 22. To reduce the complexity for describing the architecture’s features, we 
have limited the access layers to 4. As shown in Table 4, more access layers are 
easy to define. We consider 4 layers the minimum number of access layers for the 
OSFA. A practical number of access layers is around 8. Section 6 covers some 
computer security examples for the example architecture described in Fig. 22. 







 


Approved for public release; distribution is unlimited. 
27 


Secure Microkernel


Boot Drivers


Cache Bank Management


Bank


 • Boot


• Cache Bank Memory 


Management


• Hardware Exceptions


 • Thick OS


• DLL


• OS Library Functions


Standard OS


DLL File APIs OS Srv


    Application


      Software


Bank Bank Bank


OS Services 


Calls


Cache Bank, 


Input/Output


Drivers


Layer 0 
(Trusted)


Layers 


1, 2


Layer 3
(Untrusted)


OS


Friendly


 Processor 


Architecture


Hardware
Level


Hardware


Configuration,


Exception 


Handling


 


Fig. 22 Example 4-layer architecture 


5.6 OS Friendly Microprocessor Architecture Version 2: 
Practical Cache Bank Architecture 


An example practical cache bank and permission bit architecture is described in 
Fig. 23. A possible 256-bit cache bank header with 5 defined fields is shown. A 
larger, more complex cache bank header would be easy to define. A memory type 
field describes the type of memory contained in the cache bank. The PID field 
describes the “owner” of the cache bank. A microkernel field is defined for 
additional microkernel control over the cache bank. The undefined field may 
contain additional microkernel settings, or the OS may call the microkernel to 
include OS-related cache bank information in the undefined field. Each cache bank 
contains 256 bits (cache bank header), 64 bits per memory cell, and 32 permission 
bits per memory cell. For a 1-kiloword (8-KB) memory cache bank, 12 KB of 
memory are required. For a 4-kiloword (32-KB) cache bank, 48 KB of memory are 
required. For the example processor, we use 1 kiloword (8 KB) for the cache size. 
A good compromise for an actual microprocessor would be around 8–64 kilowords.  
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Fig. 23 Practical permission bit and cache bank architecture 


5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit 
Limitations 


The memory required for OSFA Version 1 permission bits is large. Most processes 
(tasks) will only require a few different permission bit settings. For the OSFA 
Version 2, we implement a cache bank lookup table with 10–16 address bits. This 
provides a lookup table with 1024–65,536 entries. With a 10-bit lookup table, we 
can get by with only 32 bits per memory cell to hold the permission bits. Without 
the lookup table, 64–96 bits per memory cell or more would be required. 


5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit 
Cache Bank Architecture 


Figure 24 shows the OSFA Version 2 permission bit cache bank look up table. A 
10-bit lookup table provides for 1024 different permission bit settings. Version 1 
without the lookup table would require 64–96 bits per memory cell. A 16-bit 
permission bit cache bank lookup table would provide for 64k of unique permission 
bit settings. As illustrated in Fig. 23, a 64k cache bank lookup table would only 
require 38 bits per memory cell for the cache bank permission bits. 
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Fig. 24 Cache bank permission bit lookup table 


5.7 Microkernel, OS, and Application Cache Banks Organization 


The OSFA cache bank organization, for the 4-layer model introduced in Figs. 22 
and 23, is described in Fig. 25. There are 3 groups of cache banks:  microkernel 
(layer 0), OS (layers 1 and 2), and application software (layer 3). The microkernel 
controls and configures all cache bank permission bits. The microkernel has full 
access to the OSFA’s permission bits and it is completely trusted. At the hardware 
level, all cache banks are the same. Only the instructions in the instruction cache 
banks are executed. The data, register, and pipeline state cache banks are not 
connected to the instruction decode block in the execution pipeline and cannot be 
executed.  
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Fig. 25 OS friendly microprocessor architecture cache bank organization 


5.8 Process Level Cache Bank Operations 


Figure 26 presents a simplified example of microkernel cache banks and cache bank 
contents. Figure 26 does not present the details for a complete microkernel. The 4 
cache bank pipelines, instruction, data, register, and pipeline state, are completely 
separated. The contents from one cache bank type cannot be copied to another 
cache bank type. For example, data placed on the data stack cannot be accessed by 
the instruction cache bank pipeline. Two threads, thread_0 and thread_1, are 
contained in the instruction cache bank set. Only the instruction cache bank pipeline 
connects to the OSFA’s instruction decode stage in execution pipeline. A third 
cache bank is used as a return function call stack for the microkernel.  
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Fig. 26 Microkernel cache bank organization 


Data cache banks contain data in use by thread_0 and thread_1. Each thread may 
be assigned its own stack space in the set of data cache banks. The separation of 
thread stack areas also enforces isolation between threads. Each thread, thread_0 
and thread_1, has its own set of registers in the set of register cache banks. The 
pipeline state cache banks contain the latch states from the microprocessor’s 
execution pipeline in Fig. 5. The pipeline state cache banks allow for very rapid 
context switching. Section 4.2 and Fig. 6 describe cache banks and context 
switches. Context switches for threads can be as fast as 1 CPU cycle using the 
OSFA.1 


The instruction, data, register, and pipeline state cache banks in Fig. 27 for the OS 
and applications software have the same hierarchy as the microkernel. The 
microkernel configures all cache banks and permission settings. The OS and 
applications software are “clients” to the microkernel. The microkernel manages 
all permission bit settings, hardware exceptions, I/O, memory management, and 
DMA settings for the OSFA. The cache bank architecture provides high-speed 
context switches, and very efficient I/O. 
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Fig. 27 OS and application cache bank organization 
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5.9 Cache Bank I/O Example 


We present an example in Fig. 28 showing the interaction between microkernel, 
OS, and applications software for the USB I/O example discussed in Fig. 18. We 
follow the cache bank organization and discussion found in Sections 5.7 and 5.8. 
The software application in Application Bank_0 is executing the machine code 
equivalent of the high-level instruction Port = OS.Create_I/O.Port(  ●  ). The 
OS transfers the call to the microkernel by OSPort = MK.Create_I/O.Port(  ●  ). 
The microkernel creates a pointer to a data cache bank. The application program 
has permission to write data into the cache bank; however, it cannot access the 
contents of the pointer (register). The pointer (register) contains the memory 
address of the cache bank. 


Once the data have been placed in the I/O bank for App_0, the application calls the 
OS. The OS calls the microkernel, which simply enables a direct memory access 
controller starting at the address found in the pointer Port. 
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Fig. 28 Application writes a cache bank block of data to USB controller 
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6. Computer Security Examples


To improve system performance, the OSFA implements context switching, cache 
memory management, and resource permission bits in hardware. This architecture 
requires a secure boot to properly set up the permission hierarchy. 


The goal is to have each task run in its own hardware “sandbox”. All access points 
to control operations are managed by the hardware permission bits. All tasks are 
running in an environment without any software level access to a control or 
management level resources. In the 1970s blue box terms, we are hopefully 
blocking all paths to an in-band signaling channel.  


6.1 Buffer Overflow 


Buffer overflow attacks are described in Cowan et al.14 In telephone in-band 
signaling,3–4 a blue box5–6 was the tool needed to control the telephone network. 
Back in the 1970s, there was no authentication to prevent a prankster from using a 
blue box. In a buffer overflow attack, the attacker follows a set of steps avoiding 
any authentication to reach the goal of administrator privileges. A buffer overflow 
attack is in the same class as in-band signaling—an open door. 


All of these methods seek to alter the program’s control flow so that the program will 
jump to the attack code. The basic method is to overflow a buffer that has weak or 
non-existent bounds checking on its input with a goal of corrupting the state of an 
adjacent part of the program’s state, e.g. adjacent pointers, etc. By overflowing the 
buffer, the attacker can overwrite the adjacent program state with a near-arbitrary[15] 
sequence of bytes, resulting in an arbitrary bypass of C’s type system[16] and the victim 
program’s logic.14 


In Fig. 29, a running process executes the machine code equivalent of 
printf(“ABCDEFGHIJKLMNO”);. The string is placed on the stack and the OS function 
printf(  ) is called. The return address is placed on an instruction stack. The 
executing process can only place data on the “data stack”. The process does not 
have any access to the instruction stack. The return address is not contained on the 
“data stack”. Overwriting the data stack cannot modify the return pointer on the 
instruction stack. The OS library call will need to check the length of the string. If 
the stack was overwritten, the printf(  ) call would continue printing characters 
until a null string character was found or when the printf(  ) library function call 
tries to access memory out-of-bounds, a memory access violation error would 
occur. The process does not have access to the return address and cannot 
maliciously modify the return address.  
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0x41424344
0x45464748
0x494A4B4C
0x4D4E4F00


0x123456


Data Stack Instruction Stack


Process and OS Cannot 


Access Instruction Stack


ABCD
EFGH
IJKL


MNO-Pointer
Pointer Return Address


Process and OS


have access to stack


Printf(“ABCDEFGHIJKLMNO”);
// Place “ABCDEFGHIJKLMNO” On stack and Call OS Function //


 


Fig. 29 Process stack example 


6.2 Data Execution Exploitation 


The OSFA maintains a strong separation between instructions and data. The OSFA 
(Fig. 5) cache bank memory pipelines (instruction, data, register, and 
pipeline_state) are not unified. The pipelines are completely separated at the 
hardware level. The cache bank permission bits (Fig. 12) maintain separation of 
access layers and permission bits as described in Section 5.2. A practical cache 
bank permission bit structure is described in Fig. 23. A process level description of 
permission bits is presented in Section 5.8. Figures 26 and 27 show the strong 
separation of access layers, cache banks, and processes.  


Assume a running malware application has created a data block containing the 
machine code for a computer virus. To take control of the computer, the malware 
needs to find an open door to a microkernel level resource and attack the 
vulnerability. Assume the application, Application Bank_0, running in Fig. 27 is 
malware. The malware does not have any access to its running code in the 
instruction cache bank pipeline. The malware could create an executable virus in 
data memory. Assume Data Bank App_0 contains the machine code instructions for 
malware. The following paragraphs describe the actions malware would need to 
take to attack the architecture. 


• The malware would need to move, copy, or transfer the data cache bank into 
an instruction cache bank. Second, the malware would need to access the 
cache bank permission bits and set the “data” type to executable. The 
microprocessor architecture shown in Figs. 1 and 5 does not have any 
logical connection between data and instruction cache bank memory 
pipelines.  


• The malware could place the computer virus in Application Bank_2 cache 
bank. The cache bank permission settings set the access level for the 
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malware “application” to level 3 (untrusted). The hardware will not allow 
an access level 3 application to modify a cache bank, or I/O port. Attempting 
to write to a privileged resource would instantly raise a hardware memory 
access violation. As illustrated in Fig. 28, the malware could call the OS 
and request an I/O port. The port address is contained in a register (for 
example R10). R10 has access permission bits set to R W M IRegIO. As 
illustrated in Fig. 21, any attempt to read the address contained in Register 
R10 results in a hardware-level exception. 


The architecture’s permission bits, cache bank memory type, and cache bank 
permission bits enforce a strong separation between access levels. The conventional 
von Neumann computer architectures present numerous opportunities for malware 
to take control of what should be a trusted resource. Avoid allowing the malware 
any in-band signaling channels to exploit an attack. 


6.3 “Low-Level Driver” Protection 


We present a low-level driver example for an Ethernet interface. This example 
follows the USB and open port example found in Fig. 28. A high-level description 
of an Ethernet frame17 is found in Fig. 30. The Ethernet frame has a maximum 
length of about 1518 bytes. One Ethernet frame would fit in an OSFA 512-word 
(2 KB) cache bank.  


“Source”


Computer


Destination MAC


Address


Source MAC


Address
Ethernet Type Packet Message


6 bytes 6 bytes 2 Bytes 46 to 1500 Bytes in Length


Packet


“Destination”


Computer


Ethernet Frame


Destination MAC


Address


Source MAC


Address
Ethernet Type Packet Message


Ethernet Frame


Packet


 


Fig. 30 Ethernet frame 


Figure 31 illustrates an OSFA cache bank configured to hold an Ethernet packet. 
The application software calls the OS, which calls the microkernel to create a 
pointer to a cache bank. The application then calls OS and microkernel to configure 
the cache bank memory type as Ethernet. The application calls to set the source and 
destination MAC addresses; the microkernel then checks to see if the MAC 
addresses are valid. The source and destination MAC addresses are stored in the 
cache bank as R W M (not allowed by the application and OS). The source and 
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destination addresses are trusted because the permission bits block access to the 
application and OS. The microkernel checks the packet length and then configures 
the DMA controller to transfer the packet to the Ethernet controller. The cache bank 
architecture and permission bits provide a general interface for all I/O operations 
for the OSFA. 
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Fig. 31 Cache bank and Ethernet frame example 


R W M RegIO 


R W M RegIO 


OSFA Cache Bank  
see Figure 24. 
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6.4 Control Information Protection 


Computer security examples in Section 6 describe how control information is 
isolated from OS and application software access levels. All system resources are 
managed by the microkernel. The microkernel can give the OS access to system 
resources like memory; however, the OS is limited to only the resources isolated 
from the microkernel. If an application is trusted more than the OS, the microkernel 
could be configured to isolated the trusted application from an untrusted OS. 


6.5 Debugging Traps 


Program debugging at the register level can use the R W M permission bits (Read 
= allowed, Write = not allowed, and Modify = not allowed) to trap all writes made 
to a memory address or register (Fig. 32). This allows for hardware-level debugging 
with no performance overhead at the software level until a write occurs.  


 


Fig. 32 Real-time debugging trap example 


6.6 Hardware Features for Hypervisor 


Recent research work has suggested that a fully hardware level (level 0) hypervisor 
might be possible. A Lynx Technologies white paper 18 states that a level 0, chip 
level hypervisor would not require OS support. All required OS features are 
implemented at the hardware level. The goal of creating a type 0 hypervisor may 
not be possible.18–20  


R01


R02


R03


R04


R W M •••


R W M •••


R W M •••


R W M •••


R(n-1) R W M •••


When a write occurs to Register 
R4, a hardware exception is raised.  


This illustrates how the permission 
bits provide for real-time hardware 
level debugging.


Register Permission Bits
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The OSFA offers features that would help develop a future level 0 hypervisor. The 
cache bank and permission bit hierarchy offers hardware-level features needed to 
create a sublevel 1 hypervisor. For interrupt driven threads, zero overhead context 
switching is possible with the current OSFA architecture. More hardware features 
are required to come closer to a level 0 hypervisor.  


6.7 Architecture Issues 


Proprietary OS uses digitally signed drivers to reduce the chances of malware 
having easy access to protected OS resources. The OSFA has more complex 
requirements for digitally signed files. There are computer security trade-offs 
between a unified external memory (combining instructions, register, data, and 
pipeline state cache banks) and separate internal cache memories. The same issues 
are present with unified external mass storage and separate mass storage for the 4 
memory pipelines. Figure 33 presents an OSFA system based on Figs. 22–32.  
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Fig. 33 OS friendly microprocessor architecture: software and hardware hierarchy 


7. Conclusion 


We have presented an introduction to the hardware and software hierarchy for the 
OSFA and described hardware-level computer security features. The cache bank 
memory pipeline architecture and permission bits provide features to balance the 
complexities of hardware, software, and computer security. 
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List of Symbols, Abbreviations, and Acronyms 


ARL US Army Research Laboratory 


CPU central processing unit 


I/O  input/output 


ID identification 


IRegIO  Index_Register_I/O 


OS operating system 


OSFA Operating System Friendly Microprocessor Architecture 


PID process identification 


RFS Register File Set 


USB Universal Serial Bus 
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// AA Sim (2.2).cpp : This file contains the 'main' function. Program execution begins and ends there.


// RISCV simple simulator


#include "rv_base.h"


#include "rv_imm.h"
#include "rv_decode.h"


#include "rv_ldstr.h"
#include "rv_jal.h"
#include "rv_branch.h"
#include "rv_al.h"
#include "rv_fence.h"
#include "rv_call.h"
#include "rv_csr.h"


// int instr_exe(int32_t instr, int32_t& PC, mst_t & mem, reg_t& rf, csrmem_t& csr)


int instr_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf, csrmem_t& csr)
{


char opcode = 0;
char rd = 0, rs1 = 0, rs2 = 0;
// char code3bit = 0;
int32_t pctemp = 0;


int32_t imm = 0;
int32_t addr = 0;


int32_t sign_ext_byte = 0;


int32_t word_addr = PC >> 2;


int32_t instr = mems[word_addr].mem;


op_decode(instr, opcode);


Disclaimer:


• Aberdeen Architecture Limited Experimental Research and Development Prototype.
• Code is provided AS IS. 
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switch (opcode)
{


// control flow check added
case JAL_OPCODE:


printf("JAL opcode \n");
JAL_exe(prev_PC, PC, mems, rf);  // JAL_OPCODE = 0x6f;  // Jump and Link
break;


// control flow check added
case JALR_OPCODE:    // JALR_OPCODE = 0x67;  // Jump and Link Register


JALR_exe(prev_PC, PC, mems, rf);
break;


// *****  Load Unsigned Immediate Instructions  ***** //   


case LUI_OPCODE:   // imm[31:12] rd[11:7] [011 0111] = 0x37(6:0) LUI


LUI_exe(prev_PC, PC, mems, rf); // LUI_OPCODE = 0x37 Load upper immediate 
break;


case AUIPC_OPCODE: // imm[31:12] rd[11:7] [001 0111] = 0x37(6:0) AUIPC


AUIPC_exe(prev_PC, PC, mems, rf);   //  AUIPC_OPCODE = 0x17;  // Add  upper immediate to PC 
break;


case LOAD_OPCODE:


LOAD_exe(prev_PC, PC, mems, rf);      //const char LOAD_OPCODE = 0x03;
break;


case BRANCH_OPCODE:


Branch_exe(prev_PC, PC, mems, rf);
break;


case STORE_OPCODE:
Store_exe(prev_PC, PC, mems, rf);
break;
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case AL_IMM_OPCODE:


AL_IMM_exe(prev_PC, PC, mems, rf);
break;


case AL_OPCODE:
AL_exe(prev_PC, PC, mems, rf);
break;


case FENCE_OPCODE:
Fence_exe(prev_PC, PC, mems, rf);
break;


case CALL_OPCODE:
CALL_exe(prev_PC, PC, mems, rf);
break;


case CSR_OPCODE:
CSRRW_exe(prev_PC, PC, mems, rf, csr);
break;


default:
printf("Error  illegal opcode \n\n");
break;


}


rf[0] = 0; // clear register r0
return 0;


}


int main()
{


csrmem_t csr;
mem_st mems;


reg_t regfile;
int32_t PCR = 0;
int32_t prev_PCR = 0;
int32_t word_addr = 0;
int32_t instr_addr = 0;
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char reg = 0;
char rs2 = 0;
char rs1 = 0;
char rd = 0;


mts_t mts_mem;


init_rf(regfile);
print_rf(regfile);


// init_mem(mems);
init_mts(mts_mem);


mts_t mts;
init_mts(mts);


/*


// Sieve of Eratosthenes
// uses packed bit array to store prime / not prime result
// pb[ ] = packed bit array, word aligned, addr = 0x100
// J. Ross and P. Jungwirth, Army Research Lab
// October 2019
// reference:  https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada


#ifndef __riscv
#include <stdio.h>
#endif


#define R 37
#define LAST (R * R)
#define LWORD (LAST / 32)
int pb[LWORD + 1]; // = { [0 ... LWORD] = 0xffffffff };


int main()
{


int base = 2; int pbit = 0; int cnt = 0;
int base_bit = 0; int base_word = 0; int base_shift = 0;
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int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;


for (int i = 0; i < LWORD + 1; i++)
  pb[i] = 0xffffffff;


while (base < R)
{
  base_word  = base >> 5;
  base_shift = base & 0x1f;
  base_bit = ( pb[base_word] >> base_shift ) & 1;


  if (base_bit)
  {


 cnt = base << 1; // base + base;


 while (cnt < LAST)
  {


 cnt_word = cnt >> 5;
 cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift);
 bit_mask = ~cnt_mask;


 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;


 cnt = cnt + base;
  }


  }
  base = base + 1;
}


#ifndef __riscv
int bit = 0;  int word = 0;  int shift = 0;


for (int i = 1; i < LAST; i++)
{
  word = i >> 5;
  shift = i & 0x1f;


  bit = (pb[word] >> shift) & 1;
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  if (bit == 1)
 printf("Prime Number = %d \n", i);


}
#endif


}


*/


// RISCV I32 Assembly Language for Sieve of Eratosthenes


mts[0x00].mem = 0;
mts[0x00].prev_instr_tag = 0;
mts[0x00].exe_tag = 0;
mts[0x00].exe_type_tag = 0;
mts[0x00].next_instr_tag = 0;


mts[0x00].link_tag = 1;


mts[0x01].mem = 0;
mts[0x01].prev_instr_tag = REC_NEXT;
mts[0x01].exe_tag = NEXT;
mts[0x01].exe_type_tag = IMMEDIATE;
mts[0x01].next_instr_tag = TO_NEXT;


mts[0x01].link_tag = 1;


mts[0x02].mem = 0x00200613;    //<main>  li    a2, 2     // base = a2
mts[0x02].prev_instr_tag = REC_NEXT;
mts[0x02].exe_tag = NEXT;
mts[0x02].exe_type_tag = IMMEDIATE;
mts[0x02].next_instr_tag = TO_NEXT;


mts[0x02].link_tag = 1;


mts[0x03].mem = 0x10000513;    //        li    a0, 0x100  // pb[0] = 0x100
mts[0x03].prev_instr_tag = REC_NEXT;
mts[0x03].exe_tag = NEXT;
mts[0x03].exe_type_tag = IMMEDIATE;
mts[0x03].next_instr_tag = TO_NEXT;


mts[0x03].link_tag = 1;
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mts[0x04].mem = 0x00100893;    //        li    a7, 1  // a7 = 1
mts[0x04].prev_instr_tag = REC_NEXT;
mts[0x04].exe_tag = NEXT;
mts[0x04].exe_type_tag = IMMEDIATE;
mts[0x04].next_instr_tag = TO_NEXT;


mts[0x04].link_tag = 1;


mts[0x05].mem = 0x06300813;    //        li    a6, 63        // LAST = R^2 1 = 100  1 = 0x63
mts[0x05].prev_instr_tag = REC_NEXT;
mts[0x05].exe_tag = NEXT;
mts[0x05].exe_type_tag = IMMEDIATE;
mts[0x05].next_instr_tag = TO_NEXT;


mts[0x05].link_tag = 1;


mts[0x06].mem = 0x00a00313;    //        li    t1, 8     // t1 = R = 10
mts[0x06].prev_instr_tag = REC_NEXT;
mts[0x06].exe_tag = NEXT;
mts[0x06].exe_type_tag = IMMEDIATE;
mts[0x06].next_instr_tag = TO_NEXT;


mts[0x06].link_tag = 1;


mts[0x07].mem = 0x00c0006f;    //        j     28 < L1 >  // jump to <L1>
mts[0x07].prev_instr_tag = REC_NEXT;
mts[0x07].exe_tag = JUMP;
mts[0x07].exe_type_tag = JUMP;
mts[0x07].next_instr_tag = JUMP_TO;


mts[0x07].link_tag = 16;


mts[0x08].mem = 0x00160613;    //<L3>    addi  a2, a2, 1  // a2 = base = base + 1
mts[0x08].prev_instr_tag = BRANCH_REC;
mts[0x08].exe_tag = NEXT;
mts[0x08].exe_type_tag = IMMEDIATE;
mts[0x08].next_instr_tag = TO_NEXT;


mts[0x08].link_tag = 2;
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mts[0x09].mem = 0x04660a63;    //     beq   a2, t1, 78 <L2>    // if base = R then <L2> Done  //0x4660C63
mts[0x09].prev_instr_tag = REC_NEXT;
mts[0x09].exe_tag = BRANCH;  // CHANGED TAG
mts[0x09].exe_type_tag = 0;
mts[0x09].next_instr_tag = BRANCH_TO | TO_NEXT;


mts[0x09].link_tag = 32;


mts[0x0a].mem = 0x40565793;    //<L1>    srai  a5, a2, 0x5    // a5 = word offset
mts[0x0a].prev_instr_tag = JUMP_REC | BRANCH_REC | REC_NEXT;
mts[0x0a].exe_tag = NEXT;
mts[0x0a].exe_type_tag = REGISTER;
mts[0x0a].next_instr_tag = TO_NEXT;


mts[0x0a].link_tag = 7;


mts[0x0b].mem = 0x00279793;    //        slli  a5, a5, 0x2    // a5 = byte offset [note 1]
mts[0x0b].prev_instr_tag = REC_NEXT;
mts[0x0b].exe_tag = NEXT;
mts[0x0b].exe_type_tag = IMMEDIATE;
mts[0x0b].next_instr_tag = TO_NEXT;


mts[0x0b].link_tag = 1;


mts[0x0c].mem = 0x00f507b3;    //        add   a5, a0, a5     // a5 = pb[0] + byte offset
mts[0x0c].prev_instr_tag = REC_NEXT;
mts[0x0c].exe_tag = NEXT;
mts[0x0c].exe_type_tag = REGISTER;
mts[0x0c].next_instr_tag = TO_NEXT;


mts[0x0c].link_tag = 1;


mts[0x0d].mem = 0x0007a783;    //        lw    a5, 0(a5)  // a5 = LW(addr = a5)
mts[0x0d].prev_instr_tag = REC_NEXT;
mts[0x0d].exe_tag = NEXT;
mts[0x0d].exe_type_tag = LOAD;
mts[0x0d].next_instr_tag = TO_NEXT;


mts[0x0d].link_tag = 1;
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mts[0x0e].mem = 0x40c7d7b3;    //        sra   a5, a5, a2      // a5 = a5 >> a2 [note 2]
mts[0x0e].prev_instr_tag = REC_NEXT;
mts[0x0e].exe_tag = NEXT;
mts[0x0e].exe_type_tag = REGISTER;
mts[0x0e].next_instr_tag = TO_NEXT;


mts[0x0e].link_tag = 1;


mts[0x0f].mem = 0x0017f793;    //        andi  a5, a5, 1   // a5 = pb[word, bit number]
mts[0x0f].prev_instr_tag = REC_NEXT;
mts[0x0f].exe_tag = NEXT;
mts[0x0f].exe_type_tag = IMMEDIATE;
mts[0x0f].next_instr_tag = TO_NEXT;


mts[0x0f].link_tag = 1;


mts[0x10].mem = 0xfe0780e3;    //      beqz  a5, 20 <L3>     // if a5 = bit = 0 the <L3>
mts[0x10].prev_instr_tag = REC_NEXT;
mts[0x10].exe_tag = BRANCH;
mts[0x10].exe_type_tag = BRANCH;
mts[0x10].next_instr_tag = TO_NEXT | BRANCH_TO;


mts[0x10].link_tag = 32;


mts[0x11].mem = 0x00161693;    //        slli  a3, a2, 0x1     // a3 = cnt = base + base
mts[0x11].prev_instr_tag = REC_NEXT;
mts[0x11].exe_tag = NEXT;
mts[0x11].exe_type_tag = IMMEDIATE;
mts[0x11].next_instr_tag = TO_NEXT;


mts[0x11].link_tag = 2;


mts[0x12].mem = 0x4056d793;    //<L4>    srai  a5, a3, 0x5     // a5 = word offset from a3
mts[0x12].prev_instr_tag = REC_NEXT | BRANCH_REC;
mts[0x12].exe_tag = NEXT;
mts[0x12].exe_type_tag = IMMEDIATE;
mts[0x12].next_instr_tag = TO_NEXT;
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mts[0x12].link_tag = 4;


mts[0x13].mem = 0x00279793;    //        slli  a5, a5, 0x2     // a5 = byte offset
mts[0x13].prev_instr_tag = REC_NEXT;
mts[0x13].exe_tag = NEXT;
mts[0x13].exe_type_tag = IMMEDIATE;
mts[0x13].next_instr_tag = TO_NEXT;


mts[0x13].link_tag = 1;


mts[0x14].mem = 0x00f507b3;    //        add   a5, a0, a5      // a5 = pb[0] + byte offset
mts[0x14].prev_instr_tag = REC_NEXT;
mts[0x14].exe_tag = NEXT;
mts[0x14].exe_type_tag = REGISTER;
mts[0x14].next_instr_tag = TO_NEXT;


mts[0x14].link_tag = 1;


mts[0x15].mem = 0x0007a583;    //        lw    a1, 0(a5)   // a1 = LW(addr = a5 + 0)
mts[0x15].prev_instr_tag = REC_NEXT;
mts[0x15].exe_tag = NEXT;
mts[0x15].exe_type_tag = LOAD;
mts[0x15].next_instr_tag = TO_NEXT;


mts[0x15].link_tag = 1;


mts[0x16].mem = 0x00d89733;    //        sll   a4, a7, a3      // a4 = 1 << cnt 
mts[0x16].prev_instr_tag = REC_NEXT;
mts[0x16].exe_tag = NEXT;
mts[0x16].exe_type_tag = REGISTER;
mts[0x16].next_instr_tag = TO_NEXT;


mts[0x16].link_tag = 1;


mts[0x17].mem = 0xfff74713;    //        not   a4, a4      // a4 = 1•••0•••11
mts[0x17].prev_instr_tag = REC_NEXT;
mts[0x17].exe_tag = NEXT;
mts[0x17].exe_type_tag = IMMEDIATE;
mts[0x17].next_instr_tag = TO_NEXT;
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mts[0x17].link_tag = 1;


mts[0x18].mem = 0x00b77733;    //        and   a4, a4, a1      // clear bit;
mts[0x18].prev_instr_tag = REC_NEXT;
mts[0x18].exe_tag = NEXT;
mts[0x18].exe_type_tag = REGISTER;
mts[0x18].next_instr_tag = TO_NEXT;


mts[0x18].link_tag = 1;


mts[0x19].mem = 0x00e7a023;    //        sw    a4, 0(a5)   // update word
mts[0x19].prev_instr_tag = REC_NEXT;
mts[0x19].exe_tag = NEXT;
mts[0x19].exe_type_tag = STORE;
mts[0x19].next_instr_tag = TO_NEXT;


mts[0x19].link_tag = 1;


mts[0x1a].mem = 0x00c686b3;    //        add   a3, a3, a2      // cnt = cnt + base
mts[0x1a].prev_instr_tag = REC_NEXT;
mts[0x1a].exe_tag = NEXT;
mts[0x1a].exe_type_tag = REGISTER;
mts[0x1a].next_instr_tag = TO_NEXT;


mts[0x1a].link_tag = 1;


mts[0x1b].mem = 0xfcd85ee3;    //      ble   a3, a6, 48 <L4>    // if less then <L4>
mts[0x1b].prev_instr_tag = REC_NEXT;
mts[0x1b].exe_tag = BRANCH;
mts[0x1b].exe_type_tag = BRANCH;
mts[0x1b].next_instr_tag = TO_NEXT | BRANCH_TO;


mts[0x1b].link_tag = 32;


mts[0x1c].mem = 0x00160613;    //        addi  a2, a2, 1   // base = base + 1
mts[0x1c].prev_instr_tag = REC_NEXT;
mts[0x1c].exe_tag = NEXT;
mts[0x1c].exe_type_tag = IMMEDIATE;
mts[0x1c].next_instr_tag = TO_NEXT;
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mts[0x1c].link_tag = 2;


mts[0x1d].mem = 0xfa661ae3;    //      bne   a2, t1, 28 <L1>  // if base != R then <L1>
mts[0x1d].prev_instr_tag = REC_NEXT;
mts[0x1d].exe_tag = BRANCH;
mts[0x1d].exe_type_tag = BRANCH;
mts[0x1d].next_instr_tag = TO_NEXT | BRANCH_TO;


mts[0x1d].link_tag = 32;


mts[0x1e].mem = 0x00000513;    //<L2>    li    a0, 0   // clear a0, 
mts[0x1e].prev_instr_tag = REC_NEXT;
mts[0x1e].exe_tag = NEXT;
mts[0x1e].exe_type_tag = IMMEDIATE;
mts[0x1e].next_instr_tag = TO_NEXT;


mts[0x1e].link_tag = 4;


mts[0x1f].mem = 0x00;


mts[0x20].mem = 0x00;


for (int i = 0x40; i < MAX_MEM; i = i++)
mts[i].mem = 0xffffffff;


// print_mem(mem);


init_csrmem(csr);


PCR = 0x08;        // program start address
prev_PCR = PCR  4;


printf(" sim start \n\n");


while (PCR <= 0x78)
{


printf("PCR = %x Byte Address \n", PCR);
instr_exe(prev_PCR, PCR, mts, regfile, csr);
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}


// printf("\nPC Register = 0x%x \n", PCR);


// print_rf(regfile);


// print_mem(mem);


// print_mts(mts);


// print out prime numbers
int word = 0;
int shift = 0;
int bit = 0;
int bitnum = 0;


for (bitnum = 1; bitnum <= 99; bitnum++)
{


word = (bitnum >> 5) + 0x40;
shift = bitnum & 0x1f;


int bit = (mts[word].mem >> bitnum) & 1;


if (bit == 1)
printf("Prime Number = %d \n", bitnum);


}


return 0;


}
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#pragma once


#include "rv_base.h"


#include "rv_imm.h"
#include "rv_decode.h"


#include "rv_chk_link.h"


//**********************************************************************************************************
//*****  Arithmetic and Logic Instructions *****//
const char AL_IMM_OPCODE = 0x13; // OPCode for Arithmetic and Logic Immediate Instructions


//  Arithmetic and Logic Immediate Instructions Format
// imm[11:0](31:20) rs1(19:15) 000(14:12) rd(11:7) [001 0011]=0x13(6:0) ADDI
// imm[11:0](31:20) rs1(19:15) 010(14:12) rd(11:7) [001 0011]=0x13(6:0) SLTI
// imm[11:0](31:20) rs1(19:15) 011(14:12) rd(11:7) [001 0011]=0x13(6:0) SLTIU
// imm[11:0](31:20) rs1(19:15) 100(14:12) rd(11:7) [001 0011]=0x13(6:0) XORI
// imm[11:0](31:20) rs1(19:15) 110(14:12) rd(11:7) [001 0011]=0x13(6:0) ORI
// imm[11:0](31:20) rs1(19:15) 111(14:12) rd(11:7) [001 0011]=0x13(6:0) ANDI


// Arithmetic and Logic Immediate FUNCTION CODES 
const char ADDI_CODE = 0x00;  // Add Immediate
const char SLTI_CODE = 0x02;  // Set if less than (signed) Immediate
const char SLTIU_CODE = 0x03; // Set if less than Immediate (Unsigned)
const char XORI_CODE = 0x04;  // Exclusive OR immediate
const char ORI_CODE = 0x06;   // OR immediate
const char ANDI_CODE = 0x07;  // And Immediate


// Logical and Arithmetic Shift Instructions Format (shamt = shift amount in bits 0 .. 31)
// [000 0000]=0x00(31:25) shamt(24:20)    rs1(19:15) [001](14:12) rd(11:7)  [001 0011]=0x13(6:0) SLLI
// [000 0000]=0x00(31:25) shamt(24:20)    rs1(19:15) [101](14:12) rd(11:7)  [001 0011]=0x13(6:0) SRLI
// [010 0000]=0x20(31:25) shamt(24:20)    rs1(19:15) [101](14:12) rd(11:7)  [001 0011]=0x13(6:0) SRAI


// Logical and Arithmetic Shift FUNCTION CODES  
const char SLLI_CODE = 0x01; // Shift left logical immediate
const char SRLI_CODE = 0x05; // shift right logical immediate    (*** see sign flags ***)
const char SRAI_CODE = 0x05; // shift right arithmetic immediate (*** see sign flags ***)
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const char AL_OPCODE = 0x33; // OPCodes for Arithmetic and Logic Instructions
// Arithmetic and Logic Instructions 
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 000(14:12) rd(11:7)  [011 0011]=0x33(6:0) ADD
// [010 0000]=0x20(31:25)  rs2(24:20)  rs1(19:15) 000(14:12) rd(11:7)  [011 0011]=0x33(6:0) SUB
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 001(14:12) rd(11:7)  [011 0011]=0x33(6:0) SLL
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 010(14:12) rd(11:7)  [011 0011]=0x33(6:0) SLT
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 011(14:12) rd(11:7)  [011 0011]=0x33(6:0) SLTU
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 100(14:12) rd(11:7)  [011 0011]=0x33(6:0) XOR
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 101(14:12) rd(11:7)  [011 0011]=0x33(6:0) SRL
// [010 0000]=0x20(31:25)  rs2(24:20)  rs1(19:15) 101(14:12) rd(11:7)  [011 0011]=0x33(6:0) SRA 
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 110(14:12) rd(11:7)  [011 0011]=0x33(6:0) OR
// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 111(14:12) rd(11:7)  [011 0011]=0x33(6:0) AND


// Logical and Arithmetic FUNCTION CODES   
const char ADD_CODE = 0x00;  // Add  (*** see sign flag ***)
const char SUB_CODE = 0x00;  // Subtract (*** see sign flag ***)
const char SLL_CODE = 0x01;  // Shift left logical
const char SLT_CODE = 0x02;  // Set if less than
const char SLTU_CODE = 0x03;  // Set if less than unsigned
const char XOR_CODE = 0x04;  // Exclusive OR
const char SRL_CODE = 0x05;  // Shift right logical
const char SRA_CODE = 0x05;  // Shift right arithmetic (*** see sign flag ***)
const char OR_CODE = 0x06;  // OR
const char AND_CODE = 0x07;  // AND


// Sign Flags  SIGN Flags For Logical and Arithmetic Shift  
const char SIGN_FLAG = 0x20;   // [000 0000]=0x00(31:25)
const char USIGN_FLAG = 0x00;  // [010 0000]=0x20(31:25)


// 
int AL_flag(uint32_t instr, char& flag)
{


flag = 0x00;
uint32_t temp = instr & 0x40000000;
flag = char(temp >> 25);
return 0;


}
//  END Arithmetic and Logic Instructions 


int AL_IMM_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{
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printf("opcode = AL_IMM_OPCODE \n\n");


int32_t AL_IMM_imm = 0;
int32_t temp = 0;
uint32_t temp_u = 0;
int32_t sign_bit = 0x80000000;


int64_t l_temp = 0;
int64_t rv = 0;
int64_t imm = 0;
int32_t shamt = 0;


char rd = 0;
char opcode = 0;
char AL_IMM_code = 0;
char rs1 = 0;
char flag = 0;
char bits = 0;


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


   mem_st p_instr_st = mems[p_addr];
mem_st instr_st   = mems[w_addr];


int32_t instr = instr_st.mem;


// Checked linked list instructions. //


int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


printf("Check Link = %d \n", instr_link_valid);
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printf("opcode = AL_IMM_exe \n\n");


if (instr_link_valid)
{


I_type(instr, AL_IMM_imm, rs1, AL_IMM_code, rd, opcode);


//  ******************** Need to correct shift code *********************  
//
// Shifts by a constant are encoded as a specialization of the Itype format. The operand to be shifted
// is in rs1, and the shift amount is encoded in the lower 5 bits of the I  immediate ♀eld.The right
// shift type is encoded in a high bit of the I  immediate.SLLI is a logical left shift(zeros are shifted
// into the lower bits); SRLI is a logical right shift(zeros are shifted into the upper bits);and SRAI
// is an arithmetic right shift(the original sign bit is copied into the vacated upper bits).
switch (AL_IMM_code)
{


// Arithmetic and Logic Immediate FUNCTION CODES 
case ADDI_CODE:     // ADDI_CODE  = 0x00;  // Add Immediate


rf[rd] = rf[rs1] + AL_IMM_imm;
break;


case SLTI_CODE:     // SLTI_CODE  = 0x02;  // Set if less than (signed) Immediate
rf[rd] = 0;
if (rf[rs1] < AL_IMM_imm)


rf[rd] = 1;
break;


case SLTIU_CODE:  // SLTIU_CODE = 0x03;  // Set if less than Immediate (Unsigned)


imm = int64_t(AL_IMM_imm);       // convert 32 bit integer immediate to 64 bit int
imm = imm & 0x00000000ffffffff;  // Remove top 32 bits.  Lower 32 bits is "unsigned"   


rv = int64_t(rf[rs1]);       // convert 32 bit integer immediate to 64 bit int
rv = rv & 0x00000000ffffffff;    // Remove top 32 bits.  Lower 32 bits is "unsigned" 


rf[rd] = 0;     // destination register to rd = 0


if (rv < imm)
{


rf[rd] = 1;  // if less than, rd = 1
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}
break;


case XORI_CODE:  // XORI_CODE  = 0x04;  // Exclusive OR immediate
rf[rd] = rf[rs1] ^ AL_IMM_imm;
break;


case ORI_CODE:      // ORI_CODE   = 0x06;  // OR immediate
rf[rd] = rf[rs1] | AL_IMM_imm;
break;


case ANDI_CODE:     // ANDI_CODE  = 0x07;  // And Immediate
rf[rd] = rf[rs1] & AL_IMM_imm;
break;


// Register  Immediate logical and arithmetic shifts
case SLLI_CODE: // SLLI_CODE  = 0x01; // Shift left logical immediate


shamt = AL_IMM_imm & 0x1F;    // shift amount (in bits) is found in Function 7 bit field
rf[rd] = rf[rs1] << shamt;
break;


case SRLI_CODE: // SRLI_CODE  = 0x05; // shift right logical immediate    (*** see sign flags ***)
// SRAI_CODE  = 0x05; // shift right arithmetic immediate (*** see sign flags ***)
// same as SRAI_CODE, need to check sign flag field


shamt = AL_IMM_imm & 0x1F;  // Number of bits to shift is found in Function 7 bit field
AL_flag(instr, flag);       // Arithmetic Logical Shift Flag
switch (flag)
{
case SIGN_FLAG:   // SRAI_CODE // SIGN_FLAG = 0x20;   // [000 0000]=0x00(31:25)


rf[rd] = rf[rs1] >> shamt;
break;


case USIGN_FLAG:  // SRLI_CODE // USIGN_FLAG = 0x00;  // [010 0000]=0x20(31:25) 
temp_u = uint32_t(rf[rs1]);
temp_u = temp_u >> shamt;
rf[rd] = int32_t(temp_u);
break;


default:      // Error  SLLI / SRLI instruction code
printf("Error  SLLI / SRLI instruction code \n");
break;
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}
break;


default:  // switch (AL_IMM_code)
printf("Error  Illegal Arithmetic/Logic Function Code \n\n");
break;


}
}
else
{


printf("Arithmetic / Logic Instruction control flow violation. \n");
// exit(0);


}


prev_PC = PC;   // added 2/4/20


PC = PC + 4;  // increment PC register by 4 bytes (1 word, 32 bits)
return 0;


}


int AL_exe(int32_t& prev_PC, int32_t & PC, mts_t& mems, reg_t rf)
{


//  Logical and Arithmetic FUNCTION CODES   
// const char ADD_CODE  = 0x00;  // Add      (*** see sign flag ***)
// const char SUB_CODE  = 0x00;  // Subtract (*** see sign flag ***)
// const char SLL_CODE  = 0x01;  // Shift left logical
// const char SLT_CODE  = 0x02;  // Set if less than
// const char SLTU_CODE = 0x03;  // Set if less than unsigned
// const char XOR_CODE  = 0x04;  // Exclusive OR
// const char SRL_CODE  = 0x05;  // Shift right logical
// const char SRA_CODE  = 0x05;  // Shift right arithmetic (*** see sign flag ***)
// const char OR_CODE   = 0x06;  // OR
// const char AND_CODE  = 0x07;  // AND


   // Sign Flags  SIGN Flags For Logical and Arithmetic Shift  
// const char SIGN_FLAG = 0x20;   // [000 0000]=0x00(31:25)
// const char USIGN_FLAG = 0x00;  // [010 0000]=0x20(31:25)
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char opcode = 0;
char reg7_code = 0;
char rs1 = 0;
char rs2 = 0;
char AL_code = 0;
char rd = 0;
int32_t temp = 0;
uint32_t temp_u = 0;
char flag = 0;


int64_t u_rs1 = 0;
int64_t u_rs2 = 0;
int64_t u_temp = 0;


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


printf("opcode = AL_exe \n\n");


if (instr_link_valid)
{


R_type(instr, reg7_code, rs2, rs1, AL_code, rd, opcode);


switch (AL_code)  // changed opcode to AL_code
{
case ADD_CODE:   // and SUB_CODE


// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 000(14:12) rd(11:7)  [011 0011]=0x33(6:0) ADD
// [010 0000]=0x20(31:25)  rs2(24:20)  rs1(19:15) 000(14:12) rd(11:7)  [011 0011]=0x33(6:0) SUB
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// ADD_CODE = 0x00;  // Add      (*** see sign flag ***)
// SUB_CODE = 0x00;  // Subtract (*** see sign flag ***)


switch (reg7_code)
{
case SIGN_FLAG:  // SUB_CODE = 0x00;  // Subtract (*** see sign flag ***)


rf[rd] = rf[rs1]  rf[rs2];
break;


case USIGN_FLAG: // ADD_CODE = 0x00;  // Add      (*** see sign flag ***)
rf[rd] = rf[rs1] + rf[rs2];
break;


default:
printf("Illegal Sign Flag code for ADD/SUB \n");
break;


}
break;  // End_Case ADD_CODE


case SLL_CODE:  // SLL_CODE = 0x01;  // Shift left logical


rf[rd] = rf[rs1] << rf[rs2];
break;  // End_Case SLL_CODE


case SLT_CODE: // const char SLT_CODE = 0x02;  // Set if less than


rf[rd] = 0;
if (rf[rs1] < rf[rs2])


rf[rd] = 1;
break;  // End_Case SLT_CODE


case SLTU_CODE: // SLTU_CODE = 0x03;  // Set if less than unsigned


u_rs1 = int64_t(rf[rs1]);
u_rs1 = u_rs1 & 0x00000000ffffffff;  // create 32 bit unsigned int


u_rs2 = int64_t(rf[rs2]);
u_rs2 = u_rs2 & 0x00000000ffffffff;  // create 32 bit unsigned int


u_temp = u_rs1  u_rs2;


rf[rd] = 0;     // destination register to rd = 0


if (u_temp < 0)
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{
rf[rd] = 1;  // if less than, rd = 1


}
break; // End_Case SLTU_CODE


case XOR_CODE: // const char XOR_CODE = 0x04;  // Exclusive OR
rf[rd] = rf[rs1] ^ rf[rs2];
break;  // End_Case XOR_CODE


// [000 0000]=0x00(31:25)  rs2(24:20)  rs1(19:15) 101(14:12) rd(11:7)  [011 0011]=0x33(6:0) SRL
// [010 0000]=0x20(31:25)  rs2(24:20)  rs1(19:15) 101(14:12) rd(11:7)  [011 0011]=0x33(6:0) SRA 
// const char SRL_CODE = 0x05;  // Shift right logical    (*** see sign flag ***)
// const char SRA_CODE = 0x05;  // Shift right arithmetic (*** see sign flag ***)


case SRL_CODE:  // const char SRL_CODE = 0x05;  // Shift right logical


AL_flag(instr, flag);


switch (flag)


//  ********************* Need to Correct Code *********************** 


// SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in
// register rs1 by the shift amount held in the lower 5 bits of register rs2.


{
case USIGN_FLAG:


temp_u = uint32_t(rf[rs1]);
rf[rd] = int32_t(temp_u >> rf[rs2]);
break;


case SIGN_FLAG:
rf[rd] = rf[rs1] >> rf[rs2];
break;


default:
printf("Illegal SRL/SRA function code. \n");
break;


}
break;  // End_Case SRL_CODE


case OR_CODE:  //  OR_CODE = 0x06;  // OR
rf[rd] = rf[rs1] | rf[rs2];
break;  // END_CASE OR_CODE
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case AND_CODE:  // AND_CODE = 0x07;  // AND
rf[rd] = rf[rs1] & rf[rs2];
break;  // END_CASE OR_CODE


default:
printf("Illegal Arithmetic Logic Function Code \n");
break;  // END_CASE Default


}


}
else
{


printf("AL control flow violation. \n");
exit(0);


}


prev_PC = PC;   // added 2/4/20


PC = PC + 4;   // Move PC to next instruction
return 0;


}
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#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>  // use 32 bit integer:  uint32_t


char     const MAX_REG = 32;      // RISCV has 32 registers
uint32_t const MAX_MEM = 0x100;      // Memory space for simulation.  [0.. MAX_MEM1]
uint32_t const MAX_CSR_MEM = 100;    // Control, Status Registor memory space for simulation.  [0.. MAX_CSR_MEM 1]


typedef int32_t reg_t[MAX_REG];      // register file type
typedef int32_t mem_t[MAX_MEM];      // maim memory type
typedef int32_t csrmem_t[MAX_CSR_MEM];  // Control and Status Register memory type


int32_t const NEXT = 1;        // sequential execution


int32_t const JUMP = 2;
int32_t const JUMP_TO = 4;      // jump or branch to instruction
int32_t const JUMP_REC = 8;     // JUMP_REC tag receives an instruction with JUMP_TO tag


int32_t const CALL = 16;
int32_t const CALL_TO =  32;     // Call subroutine
int32_t const CALL_REC = 64;    // Accept Subroutine call


int32_t const RET = 128;
int32_t const RET_TO = 256;     // Return from subroutine
int32_t const RET_REC = 512;    // Accept return from subroutine


int32_t const ST_BLK = 1024;      // Start of Code Block
int32_t const END_BLK = 2*1024;   // END of code block


int32_t const LOAD = 4*1024;
int32_t const STORE = 8*1024;
int32_t const REGISTER  = 16*1024;
int32_t const IMMEDIATE = 32*1024;


int32_t const BRANCH = 64*1024;
int32_t const BRANCH_TO = 128*1024;
int32_t const BRANCH_REC = 256*10124;


int32_t const TO_NEXT  = 512*1024;  
int32_t const REC_NEXT = 1024*1024;  
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int32_t const NO_TAG = 0x80000000;  // NO_TAG placeholder.


struct mem_st 
{


int32_t mem;     // instruction word


// added 2/3/2020
int32_t prev_instr_tag;     // NEXT_INSTR
int32_t exe_tag;        // IMMEDIATE
int32_t exe_type_tag;       // 0
int32_t next_instr_tag;     // NEXT_INSTR
int32_t link_tag;       // instruction linked list connection type tag
//


int32_t state;
int32_t pid;
int32_t page_num;
int32_t page_type;


};


typedef mem_st mts_t[MAX_MEM];


int init_mts(mts_t mem)
{


for (int i = 0; i < MAX_MEM; i++)
{


mem[i].mem = i;


// added 2/3/2020
mem[i].prev_instr_tag = i;
mem[i].exe_tag = i;
mem[i].exe_type_tag = i;
mem[i].next_instr_tag = i;
//


mem[i].state = i;
mem[i].pid = i;
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mem[i].page_num = i;
mem[i].page_type = i;


}
return 0;


}


int print_mts(mts_t mem)
{


for (int i = 0; i < MAX_MEM; i++)
{


printf(" mem[%d].mem = 0x%x \n",    i, mem[i].mem);


printf(" mem[%d].state = %d \n",    i, mem[i].state);
printf(" mem[%d].pid = %d \n",      i, mem[i].pid);
printf(" mem[%d].page_num = %d \n", i, mem[i].page_num);
printf(" mem[%d].page_type = %d \n \n", i, mem[i].page_type);


}
return 0;


}


// **********************************************************
// Open File RISCV binary contained in the file mem.txt
// Load RISCV instructions into the memory array mem[]
int init_mem(mem_t& mem)
{


FILE* fpmem;  // file pointer to RISCV instruction code file mem.txt


int read_int = 0;
int cnt = 0;


errno_t err = fopen_s(&fpmem, "C:/Users/patrick.w.jungwirth/Documents/2020/RISCVFile/mem.txt", "r");
if (err)


printf_s("File Error.  The file was not opened. \n");
else
{


while (!feof(fpmem) && cnt < MAX_MEM)
{


fscanf_s(fpmem, "%x", &read_int);
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mem[cnt] = read_int;
cnt = cnt + 1;


}
fclose(fpmem);


}
return 0;


}
// End.  init_mem(mem_t& mem) 


int print_mem(mem_t& mem)
{


for (int i = 0; i < MAX_MEM; i++)
printf("memory [0x%x] = 0x%x \n", i, mem[i]);


return 0;
}


int init_csrmem(csrmem_t & csrmem)
{


for (int i = 0; i < MAX_CSR_MEM; i++)
csrmem[i] = 0;


return 0;
}


int print_csrmem(csrmem_t & csrmem)
{


for (int i = 0; i < MAX_CSR_MEM; i++)
printf("CSR memory [%i] = %i \n", i, csrmem[i]);


return 0;
}


int init_rf(reg_t & rf)
{


for (int i = 0; i < MAX_REG; i++)
rf[i] = 0;


return 0;
}


int print_rf(reg_t & rf)
{


for (int i = 0; i < MAX_REG; i++)
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printf("register [%i] = hex %x => dec %i \n", i, rf[i], rf[i]);
return 0;


}


// ************************************************************************************************
// Get Register Numbers from Instruction Word for bits [24..20], [19..15], [11..7], 
//
// ****  Get Register Number from bits [24..20] *****//
int reg24_20(uint32_t inst, char& reg)
{


uint32_t mask = 0x1f00000;
uint32_t temp = inst & mask;
temp = temp >> 20;
temp = temp & 0x1f;
reg = char(temp);
return 0;


}
// ****  Get Register Number from bits [19..15] *****//
int reg19_15(uint32_t inst, char& reg)
{


uint32_t mask = 0xF8000;
uint32_t temp = inst & mask;
temp = temp >> 15;
temp = temp & 0x1f;
reg = char(temp);
return 0;


}
// ****  Get Register Number from bits [11..7] *****//
int reg11_7(uint32_t inst, char& reg)
{


uint32_t mask = 0xf80;
uint32_t temp = inst & mask;
temp = temp >> 7;
temp = temp & 0x1f;
reg = char(temp);
return 0;


}
// Source and Destination Registers
int rs2_reg(uint32_t inst, char& reg)
{


reg24_20(inst, reg);
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return 0;
}
int rs1_reg(uint32_t inst, char& reg)
{


reg19_15(inst, reg);
return 0;


}
int rd_reg(uint32_t inst, char& reg)
{


reg11_7(inst, reg);
return 0;


}
//  END Get Register Numbers 
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


#include "rv_decode.h"


#include "rv_chk_link.h"


// **********************************************************************************************************
// *****  Branch Instructions  *****//
const char BRANCH_OPCODE = 0x63;
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [001]=0x01(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BNE
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [100]=0x04(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BLT
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [101]=0x05(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BGE
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [110]=0x06(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BLTU
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [111]=0x07(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BGEU


// Branch Instructions FUNCTION CODES 
const char BEQ_CODE = 0x00;   // Branch if equal
const char BNE_CODE = 0x01;   // Branch if not equal
const char BLT_CODE = 0x04;   // Branch if less than
const char BGE_CODE = 0x05;   // Branch if greater than or equal
const char BLTU_CODE = 0x06;  // Branch if less than unsigned
const char BGEU_CODE = 0x07;  // Branch if greater than unsigned
//  END Branch Instructions  


int Branch_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t rf)
{


printf("opcode = BRANCH_OPCODE  \n\n");


char br_decode = 0;
int32_t br_imm = 0;


char rs2 = 0;
char rs1 = 0;
char br_code = 0;
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char opcode = 0;


int64_t l_rs1 = 0;
int64_t l_rs2 = 0;
int64_t l_temp = 0;


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


printf("opcode = Branch \n\n");


if (instr_link_valid)
{


// int instr_decode(uint32_t instr, char& instrdecode)
B_type(instr, br_imm, rs2, rs1, br_decode, opcode);


switch (br_decode)
{
case BEQ_CODE:  //  BEQ_CODE = 0x00;  // Branch if equal


prev_PC = PC;   // added 2/4/20


if (rf[rs1] == rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;


case BNE_CODE:  //  BNE_CODE = 0x01;  // Branch if not equal
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// BEQ and BNE take the branch if registers rs1 and rs2 
// are equal or unequal respectively.


prev_PC = PC;   // added 2/4/20


if (rf[rs1] != rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;


case BLT_CODE:  //  BLT_CODE = 0x04;  // Branch if less than


prev_PC = PC;   // added 2/4/20


if (rf[rs1] < rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;


case BGE_CODE:  //  BGE_CODE = 0x05;  // Branch if greater than or equal


prev_PC = PC;   // added 2/4/20


if (rf[rs1] >= rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;


case BLTU_CODE: //  BLTU_CODE = 0x06;  // Branch if less than unsigned


printf(" rs1 = %x    rs2 = %x \n", rf[rs1], rf[rs2]);
l_rs1 = (int64_t)(rf[rs1]);
l_rs2 = (int64_t)(rf[rs2]);


l_rs1 = l_rs1 & 0x00000000ffffffff; // created 32 bit unsigned number
l_rs2 = l_rs2 & 0x00000000ffffffff; // created 32 bit unsigned number


prev_PC = PC;   // added 2/4/20


if (l_rs1 < l_rs2)
{


PC = PC + br_imm;
}
else
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{
PC = PC + 4;


}
break;


case BGEU_CODE: //  BGEU_CODE = 0x07;  // Branch if greater than or equal unsigned


printf(" rs1 = %x    rs2 = %x \n", rf[rs1], rf[rs2]);
l_rs1 = (int64_t)(rf[rs1]);
l_rs2 = (int64_t)(rf[rs2]);


l_rs1 = l_rs1 & 0x00000000ffffffff; // created 32 bit unsigned number
l_rs2 = l_rs2 & 0x00000000ffffffff; // created 32 bit unsigned number


prev_PC = PC;   // added 2/4/20


if (l_rs1 >= l_rs2)
{


PC = PC + br_imm;
}
else
{


PC = PC + 4;
}
break;


default:
printf("Error  illegal branch code \n\n");
break;


}
}
else
{


printf("Branch Control Flow Violation. \n");
exit(0);


}


return 0;


}
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


#include "rv_decode.h"


// **************************************************************************************************************
// **** CALL instructions  *****//
const char CALL_OPCODE = 0x73;
// [0000 0000 0000](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) ECALL
// [0000 0000 0001](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) EBREAK


// CALL instructions FUNCTION CODES 
const char ECALL_CODE = 0x00;   // Environment Call
const char EBREAK_CODE = 0x00;  // Environment Breakpoint
// Enviroment Call Flags 
const char ECALL_FLAG = 0x00;    // [0000 0000 0000](31:20)
const char EBREAK_FLAG = 0x01;    // [0000 0000 0001](31:20)


int ecall_flag(uint32_t instr, char& flag)
{


uint32_t mask = 0x100000;
uint32_t temp = instr & mask;
temp = temp >> 20;
temp = temp & 0x7f;
flag = char(temp);
return 0;


}
//  END CALL instructions 


int CALL_exe(int32_t &prev_PC, int32_t PC, mts_t& mems, reg_t rf)
{


//const char CALL_OPCODE = 0x73;
// [0000 0000 0000](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) ECALL
// [0000 0000 0001](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) EBREAK


// CALL instructions FUNCTION CODES 
// const char ECALL_CODE = 0x00;   // Environment Call
// const char EBREAK_CODE = 0x00;  // Environment Breakpoint
// Enviroment Call Flags 
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// const char ECALL_FLAG  = 0x00;    // [0000 0000 0000](31:20)
// const char EBREAK_FLAG = 0x01;    // [0000 0000 0001](31:20)


int32_t imm = 0;
char rd = 0;
char opcode = 0;
char Call_flag = 0;


int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;


U_type(instr, imm, rd, opcode);
ecall_flag(instr, Call_flag);


switch (Call_flag)
{
case ECALL_FLAG:


printf("Print Environment Call  Exit \n");
exit(0);
break;


case EBREAK_FLAG:


printf("Print Environment Breakpoint  Exit \n");
exit(0);
break;


default:
printf("Call Flag Error \n");


}
return 0;


}
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


#include "rv_decode.h"


// *********************************************************************************************************
// ****  Control and Status Register Read and Write  *****//
const char CSR_OPCODE = 0x07;
// Control and Status Register Instruction Format
// csr(31:20) rs1(19:15)  001(14:12) rd(11:7)  [111 0011](6:0)  CSRRW
// csr(31:20) rs1(19:15)  010(14:12) rd(11:7)  [111 0011](6:0)  CSRRS
// csr(31:20) rs1(19:15)  011(14:12) rd(11:7)  [111 0011](6:0)  CSRRC
// csr(31:20) zimm(19:15) 101(14:12) rd(11:7)  [111 0011](6:0)  CSRRWI
// csr(31:20) zimm(19:15) 110(14:12) rd(11:7)  [111 0011](6:0)  CSRRSI
// csr(31:20) zimm(19:15) 111(14:12) rd(11:7)  [111 0011](6:0)  CSRRCI


// Control and Status Register FUNCTION CODES 
const char CSRRW_CODE  = 0x01;  // Control and Status Register Read and Write
const char CSRRS_CODE  = 0x02;  // Control and Status Register Read and Set
const char CSRRC_CODE  = 0x03;  // Control and Status Register Read and Clear
const char CSRRWI_CODE = 0x05;  // Control and Status Register Read and Write Immediate
const char CSRRSI_CODE = 0x06;  // Control and Status Register Read and Set Immediate
const char CSRRCI_CODE = 0x07;  // Control and Status Register Read and Clear Immediate


//  Code status register number
//  csr(31:20) rs1(19:15)  001(14:12) rd(11:7)  [111 0011](6:0)  CSRRW


int csr(uint32_t instr, int32_t& csr_num)
{


U_imm(instr, csr_num);
return 0;


}
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int csr_code(uint32_t instr, int32_t& code)
{


I_imm(instr, code);
return 0;


}


int csr_zimm(uint32_t instr, char& imm)
{


reg19_15(instr, imm);
return 0;


}


int CSRRW_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf, csrmem_t& csrmem)


{
int32_t imm = 0;
char rs1 = 0;
char CSR_code = 0;
char rd = 0;
char opcode = 0;
uint32_t csraddr = 0;
int32_t temp = 0;
char zimm = 0;


int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;


printf("opcode = CSR_OPCODE \n\n");


I_type(instr, imm, rs1, CSR_code, rd, opcode);
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csraddr = uint32_t(imm);
csraddr = csraddr >> 20;


switch (CSR_code)
{
case CSRRW_CODE:


temp = csrmem[csraddr];
csrmem[csraddr] = rf[rs1];
rf[rd] = temp;
break;


case CSRRS_CODE:
temp = csrmem[csraddr];
csrmem[csraddr] = temp | rf[rs1];
rf[rd] = temp;
break;


case CSRRC_CODE:
temp = csrmem[csraddr];
csrmem[csraddr] = temp & !rf[rs1];
rf[rd] = temp;
break;


case CSRRWI_CODE:


csr_zimm(instr, zimm);
csrmem[csraddr] = zimm;
break;


case CSRRSI_CODE:
csr_zimm(instr, zimm);
temp = csrmem[csraddr];
csrmem[csraddr] = temp | zimm;
rf[rd] = temp;
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break;


case CSRRCI_CODE:
csr_zimm(instr, zimm);
temp = csrmem[csraddr];
csrmem[csraddr] = temp & !zimm;
rf[rd] = temp;
break;


default:
printf("Illegal CSR Function Code \n");


}


prev_PC = PC;   // added 2/4/20


PC = PC + 4; //advance PC to next instruction


return 0;
}
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


// **********************************************************************************************************
// ****  OPCode Decode *****//
//
// int instr contains an int representing the RISCV instruction in binary
//
// This function takes an int and returns the lower 6 bits which contains the RISCV operation code
//
// for example for the instruction BEQ we have
//
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
//
// opcode_decode(int instr, int &op)  op returns the op code for above BEQ, op = 0x63;


int op_decode(uint32_t instr, char& op)
{


uint32_t mask = 0x7f;
op = char(instr & mask);
return 0;


}
//  END OPCode Decode 


// **********************************************************************************************************
// ****  instruction decode *****//
//
// int instr contains an int representing the RISCV instruction in binary
//
// This function takes an int and returns the instruction field bits 14..12 right shifted to bits 2..0
//
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
//
// instr_decode(int inst, int& in) reurns in  0x00 bits [14..14] from above.


int instr_decode(uint32_t instr, char& instrdecode)
{
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uint32_t mask = 0x7000; // bit mask for bits 14..12 set 0011 1000 0000 0000 = 0x3800
uint32_t temp = instr & mask;
instrdecode = char(temp >> 12);  // bit shift bits 14..12 to bits 2..0;
return 0;


}
//  END Instruction Decode 


int R_code(uint32_t instr, char& code)
{


uint32_t mask31_25 = 0xfe000000;


uint32_t temp = instr & mask31_25;


temp = temp >> 25;


temp = temp & 0x7f;


code = char(temp);


// printf("R_code => code = 0x0%x \n\n", code);


return 0;
}


int R_type(uint32_t instr, char& r_code, char& rs2, char& rs1, char& AL_code, char& rd, char& opcode)
{


rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
rd_reg(instr, rd);


instr_decode(instr, AL_code);
R_code(instr, r_code);
// printf("R_type => r_code = 0x%x \n\n", r_code);
op_decode(instr, opcode);


return 0;
}


int I_type(uint32_t instr, int32_t & imm, char& rs1, char& code3, char& rd, char& opcode)
{
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I_imm(instr, imm);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
rd_reg(instr, rd);
op_decode(instr, opcode);
return 0;


}


int S_type(uint32_t instr, int32_t & imm, char& rs2, char& rs1, char& code3, char& opcode)
{


S_imm(instr, imm);
rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
op_decode(instr, opcode);


return 0;
}


int B_type(uint32_t instr, int32_t & imm, char& rs2, char& rs1, char& code3, char& opcode)
{


B_imm(instr, imm);
rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
op_decode(instr, opcode);


return 0;
}


int U_type(uint32_t instr, int32_t & imm, char& rd, char& opcode)
{


U_imm(instr, imm);
rd_reg(instr, rd);
op_decode(instr, opcode);


return 0;
}


int J_type(uint32_t instr, int32_t & imm, char& rd, char& opcode)
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{
J_imm(instr, imm);
rd_reg(instr, rd);
op_decode(instr, opcode);


return 0;
}
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


#include "rv_decode.h"


// **********************************************************************************************************
// ****  Fence instructions   *****//
const char FENCE_OPCODE = 0x0f;
// [0000](31:28)   pred(27:24)   succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I


// Fence instructions FUNCTION CODES 
const char FENCE_CODE = 0x00;  // Fence Memory and I/O
const char FENCEI_CODE = 0x01;  // Fence Instruction Stream
//  END Fence instructions 


int Fence_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{


// const char FENCE_OPCODE = 0x0f;
// [0000](31:28)   pred(27:24)   succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I


// Fence instructions FUNCTION CODES 
// const char FENCE_CODE  = 0x00;  // Fence Memory and I/O
// const char FENCEI_CODE = 0x01;  // Fence Instruction Stream


char opcode = 0;
char fence_code = 0;
char pred = 0;
char succ = 0;


// const char FENCE_OPCODE = 0x0f;
// [0000](31:28)   pred(27:24)   succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I


// Fence instructions FUNCTION CODES 
// const char FENCE_CODE = 0x00;  // Fence Memory and I/O
// const char FENCEI_CODE = 0x01;  // Fence Instruction Stream
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int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;


uint32_t bits31_28 = uint32_t(instr) & 0xf0000000;
uint32_t bits27_24 = uint32_t(instr) & 0x0f000000;
uint32_t bits23_20 = uint32_t(instr) & 0x00f00000;
uint32_t bits19_15 = uint32_t(instr) & 0x000f8000;


char field3 = char(bits31_28 >> 28);
char field2 = char(bits27_24 >> 24);
char field1 = char(bits23_20 >> 20);
char field0 = char(bits19_15 >> 15);


pred = field2;
succ = field1;


if (1)
{


instr_decode(instr, fence_code);


switch (fence_code)
{
case FENCE_CODE: // FENCE_CODE = 0x00


printf("Fence instruction \n");
break;


case FENCEI_CODE: // FENCEI_CODE = 0x01; 
printf("Fence.I instruction \n");
break;


default:
printf("Illegal Fence Operation \n");


}
}
else
{
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printf(" Fence instruction control flow violation. \n");
exit(0);


}


prev_PC = PC;   // added 2/4/20


PC = PC + 4;
return 0;


}
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#pragma once
#include "rv_base.h"


// ********************************************************************************************************
//  I-immediate field (Figure 2.4)
//
// function int I_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int I_imm(uint32_t instr, int32_t& imm)
{


uint32_t mask31_20 = 0xFFF00000;   // mask for bits [31..20] 
uint32_t sign_mask = 0x800;    // sign bit for [11..0]
uint32_t sign_ext = 0xFFFFF000;  // sign extend [11..0] to [31..0]


uint32_t bit31_20 = instr & mask31_20;  // get immediate field [11..0] from instruction [31..20]
uint32_t imm11_0 = bit31_20 >> 20;    // right shift 20 bits so immediate is in bits [11..0]


uint32_t sign_bit = imm11_0 & sign_mask;  // get sign bit set


uint32_t temp = imm11_0;


if (sign_bit)  // if sign_bit then sign extend to 32 bits. 
{


temp = temp | sign_ext;  // extend sign if negative
}


imm = int32_t(temp);


return 0;
}
// -- END I-Immediate Field ------------------------------


// **********************************************************************************************************
//  S-immediate field (Figure 2.4)
//
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// function iint S_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int S_imm(uint32_t instr, int32_t& imm)
{


uint32_t mask31_25 = 0xFE000000;   // mask for bits [31..25]
uint32_t mask11_7 = 0x0f80;    // mask for bits [11..7]


uint32_t bit31_25 = instr & mask31_25;
uint32_t bit11_7 = instr & mask11_7;
uint32_t sign_bit = 0;
uint32_t sign_ext = 0xFFFFF000;    // sign extension for [11..0] to 32 bits


uint32_t imm10_5 = bit31_25 >> 20;
uint32_t imm4_0 = bit11_7 >> 7;


uint32_t temp = imm10_5 | imm4_0;  // immediate value without sign extension


sign_bit = temp & 0x800;  // get sign bit, b11 = ?


if (sign_bit) // if b11 = 1 then sign extend 
{


temp = temp | sign_ext;   // extend sign if negative (b11 = 1)
}


imm = int32_t(temp);


return 0;
}
// -- END S-Immediate Field ------------------------------


// **********************************************************************************************************
//  B-immediate field (Figure 2.4)
//
// function iint B_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
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// 


int B_imm(uint32_t instr, int32_t& imm)
{


uint32_t mask31 = 0x80000000;
uint32_t mask30_25 = 0x7E000000;
uint32_t mask11_8 = 0x0f00;
uint32_t mask7 = 0x80;
uint32_t sign_ext = 0xFFFFF000;
// bit0 = 0


uint32_t bit31 = instr & mask31;
uint32_t bit30_25 = instr & mask30_25;
uint32_t bit11_8 = instr & mask11_8;
uint32_t bit7 = instr & mask7;
// bit0 = 0


imm = 0;
uint32_t imm31_12 = 0;  // sign for positive number


if (bit31)
{


imm31_12 = sign_ext;  // if negative, sign extend to 32 bits
};


uint32_t imm11 = bit7 << 4;
uint32_t imm10_5 = bit30_25 >> 20;
uint32_t imm4_1 = bit11_8 >> 7;
// bit0 = 0
uint32_t temp = imm31_12 | imm11 | imm10_5 | imm4_1;
imm = int32_t(temp);
imm = imm & 0xfffffffe;  // make sure b0 = 0


return 0;
}
// -- END B-Immediate Field ------------------------------


// **********************************************************************************************************
//  U-immediate field (Figure 2.4)
//
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// function int U_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
// 
int U_imm(uint32_t instr, int32_t& imm)
{


uint32_t mask31_12 = 0xFFFFF000;
uint32_t imm31_12 = instr & mask31_12;
imm = int32_t(imm31_12);
return 0;


}
// -- END U-immediate field-------------------------------


// ***********************************************************************************************************
//  J-immediate field (Figure 2.4)
//
// function int J_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
// 
int J_imm(uint32_t instr, int32_t& imm)
{


uint32_t mask31 = 0x80000000;
uint32_t mask30_21 = 0x7FE00000;
uint32_t mask20 = 0x100000;
uint32_t mask19_12 = 0xFF000;


uint32_t sign_ext = 0xFFF00000;


uint32_t bit31 = instr & mask31;
uint32_t bit30_21 = instr & mask30_21;
uint32_t bit20 = instr & mask20;
uint32_t bit19_12 = instr & mask19_12;


uint32_t imm31_20 = 0;  //sign field for positive number


if (bit31 )
{
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imm31_20 = sign_ext;  // negative number sign extend
}


uint32_t imm19_12 = bit19_12;


uint32_t imm11 = bit20 >> 9;


uint32_t imm10_1 = bit30_21 >> 20;


uint32_t temp = imm31_20 | imm19_12 | imm11 | imm10_1;


imm = int32_t(temp);


// imm = imm & 0xfffffffe; // bit0 = 0
return 0;


}
// -- END J-immediate field ------------------------------
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"


#include "rv_chk_link.h"


// **********************************************************************************************************
// ***** Jump and Link Instructions *****//
// imm[20 | 10:1 | 11 | 19:12](31:12)                        rd(11:7) [110 1111] = 0x6f (6:0) JAL
// imm[11:0](31:20)                    rs1(19:15) 000(14:12) rd(11:7) [110 0111] = 0x67 (6:0) JALR
const char JAL_OPCODE  = 0x6f;  // Jump and Link
const char JALR_OPCODE = 0x67;  // Jump and Link Register


//// imm[11:0](31:20)      rs1(19:15) 000(14:12) rd(11:7) [110 0111] = 0x67 (6:0) JALR
int JALR_imm(uint32_t instr, int32_t& immvalue)
{


I_imm(instr, immvalue);
printf("immediate value = %x", immvalue);
return 0;


}
// END Jump and Link Instructions 


int JAL_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);
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if (instr_link_valid)
{


int32_t imm = 0;
char rd = 0;
char opcode = 0;
printf("opcode = JAL_OPCODE \n\n");
printf("Valid Control Flow Tags for JAL Instruction. \n");


J_type(instr, imm, rd, opcode);


printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);


prev_PC = PC;   // added 2/4/20
rf[rd] = PC + 4;
PC = PC + imm;
printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);


}
else
{


printf("JAL Control Flow Error at Word_Addr = %x \n\n", w_addr);
exit(0);


}


return 0;
}


int JALR_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{


int32_t imm = 0;
char rd = 0;
char opcode = 0;
char JALR_code = 0;
char rs1 = 0;
int32_t pctemp = 0;


int32_t w_addr = PC >> 2;
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int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


if (instr_link_valid)
{


printf("opcode = JALR_OPCODE \n\n");


I_type(instr, imm, rs1, JALR_code, rd, opcode);
// rf[14] = 0x5555;
printf("before exe rs1[%i] = %x \n", rs1, rf[rs1]);
printf("before exe rd[%i] = %x  \n", rd, rf[rd]);
printf("PC = %x  \n", PC);
printf("imm = %x  \n", imm);


prev_PC = PC;   // added 2/4/20


pctemp = PC + 4;
PC = rf[rs1] + imm;
PC = PC & 0xfffffffe;  // set b0 =  0;
rf[rd] = pctemp;


printf("after exe PC = %x  \n", PC);
printf("      rd[%i] = %x  \n", rd, rf[rd]);


}
else
{


printf("JALR Control Flow Error at Word_Addr = %x \n\n", w_addr);
exit(0);


}


return 0;
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#pragma once


#include "rv_base.h"
#include "rv_imm.h"
#include "rv_decode.h"


#include "rv_chk_link.h"


// **********************************************************************************************************
// *****  Load Unsigned Immediate Instructions  ***** //
// imm[31:12] rd[11:7] [011 0111] = 0x37(6:0) LUI
// imm[31:12] rd[11:7] [001 0111] = 0x17(6:0) AUIPC
const char LUI_OPCODE = 0x37;  // Load upper immediate       (20 bit offset, left shift 12 bits, sign extended)


int LUI_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
 {


int32_t imm = 0;
char rd = 0;
char opcode = 0;


int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


if (instr_link_valid)
{
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printf("opcode = LUI_OPCODE \n\n");
// const char LUI_OPCODE   = 0x37;  // Load upper immediate   (20 bit offset, left shift 12 bits, sign extended)
U_type(instr, imm, rd, opcode);


printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);


prev_PC = PC;   // added 2/4/20


PC = PC + 4;
rf[rd] = imm;


printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);


}
else
{


printf("Invalid control flow for LUI instruction. \n");
exit(0);


}


return 0;


}


//
const char AUIPC_OPCODE = 0x17;  // Add  upper immediate to PC (20 bit offset, left shift 12 bits, sign extended)


/*


int AUIPC_imm(uint32_t instr, int32_t& immvalue)
{
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U_imm(instr, immvalue);
return 0;


}


*/


int AUIPC_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{


int32_t imm = 0;
char rd = 0;
char opcode = 0;


int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


if (instr_link_valid)


{
// const char AUIPC_OPCODE = 0x17;  // Add  upper immediate to PC (20 bit offset, left shift 12 bits, sign extended)
printf("opcode = AUIPC_OPCODE \n\n");


U_type(instr, imm, rd, opcode);







4
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140


printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);


prev_PC = PC;   // added 2/4/20


PC = PC + imm;
rf[rd] = PC;


printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);


}
else
{


printf("Invalid control flow for AUIPC instruction. \n");
exit(0);


}


return 0;
}


//  END Load Unsigned Immediate Instructions 


// **********************************************************************************************************
// ****** Load Instructions  *****//
const char LOAD_OPCODE = 0x03;
// imm[11:0](31:20) rs1(19:15) [000]=0x00(14:12) rd(11:7) [000 0011]=0x03(6:0) LB
// imm[11:0](31:20) rs1(19:15) [001]=0x01(14:12) rd(11:7) [000 0011]=0x03(6:0) LH
// imm[11:0](31:20) rs1(19:15) [010]=0x02(14:12) rd(11:7) [000 0011]=0x03(6:0) LW
// imm[11:0](31:20) rs1(19:15) [100]=0x04(14:12) rd(11:7) [000 0011]=0x03(6:0) LBU
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// imm[11:0](31:20) rs1(19:15) [101]=0x05(14:12) rd(11:7) [000 0011]=0x03(6:0) LHU


// Load Instructions FUNCTION CODES 
const char LB_CODE  = 0x00;  // Load Byte
const char LH_CODE  = 0x01;  // Load Halfword (2 bytes)
const char LW_CODE  = 0x02;  // Load Word
const char LBU_CODE = 0x04;  // Load Byte Unsigned
const char LHU_CODE = 0x05;  // Load Halfword Unsigned
//  END Load Instructions 


// Subfunctions for LOAD_exe


int lbyte_u(int32_t byte_addr, mts_t& mems, char& byte_u)
{


char offset = byte_addr & 3;  // offset = 3, 2, 1, 0 for byte offset


char shift = offset * 8;  // number of bit shifts for byte offset


int32_t word_addr = byte_addr >> 2;


int32_t word = mems[word_addr].mem;


int32_t temp = word >> shift;


temp = temp & 0xff;  // unsigned byte;


byte_u = char(temp);


return 0;


}
int lbyte(int32_t addr, mts_t& mems, int32_t& sign_ext_byte)
{
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char temp = 0;
int32_t sign_ext = 0xffffff00;


lbyte_u(addr, mems, temp);


sign_ext_byte = int32_t(temp);


if (temp & 0x80)
{


sign_ext_byte = sign_ext | int32_t(temp);
}


return 0;
}


int lhw_u(int32_t byte_addr, mts_t& mems, uint32_t& hw_u)
 {


int32_t word_addr = byte_addr >> 2;
uint32_t word = 0;
uint32_t temp = 0;


char offset = byte_addr & 3;  // offset = 3, 2, 1, 0 for byte offset


// halfword for offset = 2 and offset = 0 in lower halfword
// hw_u is in lower 16 bits.


word = uint32_t (mems[word_addr].mem);


hw_u = word & 0xffff;    // hw_u = lower halfword
switch (offset)
{


printf("System Dependent Memory Access \n");
case 0:
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hw_u = word & 0xffff;  // word = bytes [0][1]
break;


case 1:                    // word = bytes [1][2]
hw_u = (word >> 8) & 0xffff;
break;


case 2:                    // word = bytes [2][3]
hw_u = (word >> 16) & 0xffff;
break;


case 3:    // word = bytes [3][4]    byte [4] is next mem word address
printf("Memory address across Word Boundary \n");
break;


default:
printf("Default case is not valid for halfword access. \n");
break;


}


printf("hw_u = 0x%x \n", hw_u);
return 0;


}


int lhw(int32_t byte_addr, mts_t& mems, int32_t& hw)
{


uint32_t temp = 0;
int32_t sign_ext = 0xffff0000;


lhw_u(byte_addr, mems, temp);


hw = int32_t(temp);
if (temp & 0x8000)
{


hw = sign_ext | hw;
}
printf("hw = 0x%x \n", hw);
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return 0;
}


int lw(int32_t addr, mts_t& mems, int32_t& word)
{


int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;
if (byte_addr & 0x03)


printf("Address is not word aligned \n");


if(byte_addr >= 0x100 && byte_addr <= 0x10c) // added 2102020 
   word = mems[word_addr].mem;
else
{


printf("Invalid memory page \n");
exit(1);


}


return 0;
}


int LOAD_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{


int32_t imm = 0;
char rd = 0;
char opcode = 0;
char code3bit = 0;
char rs1 = 0;
int32_t pctemp = 0;
int32_t byte = 0;
char byte_u = 0;
int32_t hw = 0;
uint32_t hw_u = 0;
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int32_t word = 0;
int32_t byte_addr = 0;
int32_t word_addr = 0;


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


// ******************************************************************************** //
if(instr_link_valid)


if (instr_st.exe_type_tag == LOAD)  // added 2/7/2020
{


//const char LOAD_OPCODE = 0x03;
// imm[11:0](31:20) rs1(19:15) [000]=0x00(14:12) rd(11:7) [000 0011]=0x03(6:0) LB
// imm[11:0](31:20) rs1(19:15) [001]=0x01(14:12) rd(11:7) [000 0011]=0x03(6:0) LH
// imm[11:0](31:20) rs1(19:15) [010]=0x02(14:12) rd(11:7) [000 0011]=0x03(6:0) LW
// imm[11:0](31:20) rs1(19:15) [100]=0x04(14:12) rd(11:7) [000 0011]=0x03(6:0) LBU
// imm[11:0](31:20) rs1(19:15) [101]=0x05(14:12) rd(11:7) [000 0011]=0x03(6:0) LHU


// Load Instructions FUNCTION CODES 
// const char LB_CODE = 0x00;   // Load Byte
// const char LH_CODE = 0x01;   // Load Halfword (2 bytes)
// const char LW_CODE = 0x02;   // Load Word
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// const char LBU_CODE = 0x04;  // Load Byte Unsigned
// const char LHU_CODE = 0x05;  // Load Halfword Unsigned


I_type(instr, imm, rs1, code3bit, rd, opcode);


byte_addr = rf[rs1] + imm;
word_addr = byte_addr >> 2;


switch (code3bit)
{


case LB_CODE: // Load Byte


lbyte(byte_addr, mems, byte);
rf[rd] = byte;


break;


case LH_CODE:    // LH_CODE = 0x01;   // Load Halfword (2 bytes)


lhw(byte_addr, mems, hw);
rf[rd] = hw;
break;


case LW_CODE:    // LW_CODE = 0x02;   // Load Word


lw(byte_addr, mems, word);
rf[rd] = word;


break;
case LBU_CODE:   // LBU_CODE = 0x04;  // Load Byte Unsigned


lbyte_u(byte_addr, mems, byte_u);
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rf[rd] = int32_t(byte_u);
break;


case LHU_CODE:   // Load Halfword Unsigned


lhw_u(byte_addr, mems, hw_u);
rf[rd] = hw_u;
break;


default:
printf("Error  illegal load code \n\n");
break;


}
}
else
{


printf("Load instruction tag does not equal LOAD /n");
}


else
{


printf("Load.exe  Control flow violation. \n");
exit(0);


}


prev_PC = PC; // save previous PC add
PC = PC + 4;  // advance to the next instruction
return 0;


}


// **********************************************************************************************************
// ****** Store Instructions *****//
const char STORE_OPCODE = 0x23;
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// imm[11:5](31:25) rs2(24:20)  rs1(19:15) 000=0x00(14:12) imm[4:0](11:7)  [010 0011]=0x23(6:0) SB
// imm[11:5](31:25) rs2(24:20)  rs1(19:15) 001=0x01(14:12) imm[4:0](11:7)  [010 0011]=0x23(6:0) SH
// imm[11:5](31:25) rs2(24:20)  rs1(19:15) 010=0x02(14:12) imm[4:0](11:7)  [010 0011]=0x23(6:0) SW


// Store Instructions FUNCTION CODES 
const char SB_CODE = 0x00;  // Store Byte
const char SH_CODE = 0x01;  // Store Halfword (2 bytes)
const char SW_CODE = 0x02;  // Store Word  (4 bytes)


// ****  store_imm *****//


int store_imm(uint32_t instr, int32_t& immvalue)
{


S_imm(instr, immvalue);
return 0;


}


int32_t Store_exe(int32_t& prev_PC, int32_t & PC, mts_t& mems, reg_t rf)
 {


// store word aligned, address = bbbb .... bbbb bb00;  last two bits must be zeroes.


int32_t st_imm = 0;
char rs1 = 0;
char rs2 = 0;
char st_code = 0;
char opcode = 0;


int32_t offset = 0;
int32_t word_mem = 0;
int32_t byte_addr = 0;
int32_t word_addr = 0;
int32_t shift = 0;


int32_t st_byte = 0;
int32_t st_hw = 0;
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int32_t mask8 = 0xff;


int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2;  // previous instruction word address


mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];


int32_t instr = instr_st.mem;


// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);


printf("opcode = STORE_OPCODE \n\n");


if (instr_link_valid)
if (instr_st.exe_type_tag == STORE)  // added 2/7/2020
{


S_type(instr, st_imm, rs2, rs1, st_code, opcode);


// The effective byte address is obtained by adding register
// rs1 to the sign  extended 12  bit o♂set.  Loads copy a value from memory to register rd.
// Stores copy the value in register rs2 to memory.


byte_addr = rf[rs1] + st_imm;
word_addr = byte_addr >> 2;


offset = byte_addr & 0x3;  //byte offset = 0, 1, 2, 3;


word_mem = mems[word_addr].mem;
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switch (st_code)
{
case SB_CODE:


switch (offset)
{
case 0:


st_byte = rf[rs2] & 0x000000FF;
word_mem = word_mem & 0xFFFFFF00;


word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;


break;
case 1:


st_byte = rf[rs2] & 0x0000FF00;
word_mem = word_mem & 0xFFFF00FF;


word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;
break;


case 2:
st_byte = rf[rs2] & 0x00FF0000;
word_mem = word_mem & 0xFF00FFFF;


word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;
break;


case 3:
st_byte = rf[rs2] & 0xFF000000;
word_mem = word_mem & 0x00FFFFFF;


word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;







15
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525


break;
default:


printf("Illegal store memory address operation. \n");
break;


}
break;


case SH_CODE:
switch (offset)
{
case 0:


word_mem = word_mem & 0xffff0000;  // clear lower halfword
st_hw = rf[rs2] & 0xffff;          // save lower halfword


word_mem = word_mem | st_hw;   // upper half word | lower halfword   
mems[word_addr].mem = word_mem;     // update memory


break;


case 2:
word_mem = word_mem & 0xffff;  // clear upper half word
st_hw = rf[rs2] & 0xffff0000;  // save upper half word
word_mem = word_mem | st_hw;
mems[word_addr].mem = word_mem;     // update memory
break;


default:
printf("HW memory address is not halfword aligned. \n");
break;


}
break;


case SW_CODE:
if (offset == 0)


mems[word_addr].mem = rf[rs2];
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else
printf("SW memory address is not word aligned. \n");


break;


default:
printf("Illegal Store Function 3 Code. \n");
break;


}
}
else 
{


printf("Store instruction does not contain STORE tag. /n");
}


else
{


printf("STORE control flow violation. \n");
exit(0);


}


prev_PC = PC;   // added 2/4/20


PC = PC + 4;  //advance to next instruction
return 0;


}


//  END Store Instructions  


Distribution Statement A:
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The cybersecurity world faces multiple attack vectors from
hardware level exploits like cache bank malicious operations,
rowhammer, Spectre, Meltdown, and Foreshadow attacks to
software based buffer overflow attacks.


Hardware level exploits bypass the protections provided by
software based separation kernels. Current microprocessor
execution pipelines are not designed to understand security.
Current microprocessor execution pipelines treat malicious
instructions, software bugs, and harmless code the same.


This presentation considers adding a hardware level security
monitor below the execution pipeline. [1], [2], [3]


PRESENTATION SUMMARY


[1] P. Jungwirth, et al.:  "Hardware security kernel for cyber-defense", Proc. SPIE 11013, Disruptive Technologies in Information Sciences II, 110130J, Baltimore 
10 May 2019); https://doi.org/10.1117/12.2513224
[2] P. Jungwirth, and J. Ross:  “Security Tag Fields and Control Flow Management,” IEEE SouthEastCon 2019, Huntsville, AL, April 2019.
[3] P. Jungwirth and D. Hahs:  “Transfer Entropy Quantifies Information Leakage,”  IEEE SouthEastCon 2019, Huntsville, AL, April 2019.
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PRESENTATION OUTLINE
• Introduction


– Trusted Computing Base
– Trusted Computing Base Challenge
– Recent Research Efforts


• Insecure Execution Pipeline


• Proposed More Secure Execution Pipeline 
– Move OS Features into Hardware based Monitor
– State Machine Monitors


• Control Flow Integrity State Machine Monitor
– Control Flow Tags
– Instruction Blocks
– Embedded Control Flow Protections


• Hardware State Machine Monitor
– Memory Pages
– Instruction Type
– Instruction Execution


• State Machine Monitor Simulation Results


• Conclusion
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TRUSTED COMPUTING BASE (TCB)


The Trusted Computing Base (TCB) is the set of hardware and
software components which are critical to the security of the
system. … a TCB should be as small as possible in order to
guarantee its correctness …


To enforce a strong security policy, we recommend that the TCB
consists of as little as possible software, while placing as much as
possible security-critical functionality in hardware.


[4] R. De Clercq and I. Verbauwhede: “A survey of Hardware-based Control Flow Integrity (CFI),” pp. 4-5, 31 Jul 2017. arxiv.org/ftp/arxiv/papers/1706/1706.07257.pdf
[5] P. Jungwirth, et al.: “Cyber Defense through Hardware Security”, Presentation, Disruptive Technologies in Information Sciences, Paper 10652-22, Orlando, FL,
April 2018. https://doi.org/10.1117/12.2302805


De Clercq and Verbauwhede 2017 [4]


The pursuit of error free software assumes bug free hardware! [5]
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TCB CHALLENGE


The security of pretty much every computer on the
planet has just gotten a lot worse, and the only real
solution – which, of course, is not a solution – is to
throw them all away …


But more [malwares] are coming, and they'll be worse.
2018 will be the year of microprocessor vulnerabilities,
and it's going to be a wild ride.


[6] B. Schneier:  “The security of pretty much every computer on the planet has just gotten a lot worse,” CNN.com, 5 Jan 18.  
http://www.cnn.com/2018/01/04/opinions/security-of-nearly-every-computer-has-just-gotten-a-lot-worse-opinion-schneier/index.html


B. Schneier, 2018 [6]
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DARPA SPONSORED RESEARCH


This race against ever more clever cyber-intruders is never going to
end if we keep designing our systems around gullible hardware that
can be fooled in countless ways by software. [7], [8]


DARPA System Security Integration Through Hardware 
and Firmware (SSITH) Program


[7] https://www.darpa.mil/news-events/2017-04-10
[8] https://www.darpa.mil/program/system-security-integration-through-hardware-and-firmware
[9] https://www.militaryaerospace.com/articles/2017/12/design-tools-cyber-security-trusted-computing.html
[10] https://www.extremetech.com/extreme/261052-darpa-university-michigan-team-build-unhackable-chip
[11] https://intelligencecommunitynews.com/galois-awarded-4-5m-darpa-contract-to-strengthen-hardware-security/


TA1 teams are developing SSITH technologies and TA2 team is providing V&V


· Lockheed Martin Corp. [9] (Technology Developer)
· The Charles Stark Draper Laboratory in Cambridge, Mass. [9] (Tech Developer)
· SRI International in Menlo Park, Calif [9] (Technology Developer)
· Cornell University in Ithaca, N.Y. [9] (Technology Developer)
· University of California-San Diego in La Jolla, Calif. [9] (Technology Developer)
· University of Michigan [10] (Technology Developer)
· Galois [11] (Security Test and Evaluation)
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INSECURE PIPELINE EXECUTION


• Execution pipeline only executes instructions.


• Pipeline has no concept of computer security.


Pipeline cannot determine if an 
instruction is safe or malicious


1011 0110 1110 1110 1111 0101 1110


Malicious Machine 
Code Instruction(s)


IF ID EXE MA


Instruction 
Fetch


Instruction 
Decode


Instruction 
Execute


Memory
Access


Register
Writeback


Classic 5 Stage RISC Pipeline
WB


1001 1110 1110 1010 1100 0111 0110


Coding Error(s)







APPROVED FOR PUBLIC RELEASE


APPROVED FOR PUBLIC RELEASE


8


HARDWARE ISOLATION PROVIDES SECURITY


Harvard Machine
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Data Bus


Isolation provides better security


In the von Neumann machine, program and data are equivalent in the sense that
data which the program operates on may be the program itself. The loop which
modifies its own addresses or changes its own instructions is an example of this.
While this practice may be permissible in a minicomputer with a single user, it
constitutes gross negligence in the case of multi-user machine where sharing of
code and/or data is to be encouraged.


[12] E. Feustel:  “On The Advantages of Tagged Architecture,” IEEE Transactions on Computers, Vol. C-22, No. 7, July 1973.


Data Bus


Feustel 1973 [12]
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TAGGED ARCHITECTURES 


… [if] every location in memory were tagged with an extra bit. If the bit is
OFF, the word in that location is an ordinary data or instruction word. If the
bit is ON, the word is taken to contain a value suitable for loading into a
protection descriptor register. Saltzer and Schroeder, 1975 [13]


[13]  J. Saltzer and M. Schroeder:  “The protection of information in computer systems,” IEEE Proceedings Vol. 63, Issue 19, pp. 1278-1308, Sept. 1975.
[14] Burroughs: Burroughs B6500 Information Processing Systems Reference Manual, Burroughs Corp., Detroit MI, 1969.
[15] AEG Telefunken: TR441: Characteristics of the RD441, (German), AEG Telefunken Manual, DBS 180 0470 Konstanz, Germany, 1970.
[16] E. Feustel: “The Rice Research Computer – A tagged architecture*,” ACM AFIPS Proceedings of the spring joint computer conference, pp. 369–377, Atlantic 
City, New Jersey — May 16 - 18, 1972.
[17] J. Bondi and M. Branstad:   “Architectural Support of Fine-Grained Secure Computing,” pp. 121-130, Tucson, AZ, 4-8 Dec. 1989.
[18]  J. Alves-Foss, et al.: A New Operating System for Security Tagged Architecture Hardware In Support of Multiple Independent Levels of Security (MILS) 
Compliant Systems, University of Idaho, Center Secure and Dependable Systems, Air Force Research Lab Tech Report AFRL-RI-RS-TR-2014-088, APRIL 2014
[19] P. Jungwirth, and P. LaFratta:   “OS Friendly Microprocessor Architecture,” Technical Report ARL-SR-0370, April 2017.
[20] H. Shrobe, et al.:  “Trust-Management, Intrusion Tolerance, Accountability, and Reconstruction Architecture (TIARA),” MIT, AFRL Final Technical Report AFRL-
RI-RS-TR-2009-271, June 2009. 


… the arguments we have advanced provide a powerful incentive for further
investigation and exploitation of tagged architecture. Such a machine may
soon well be a replacement for today's widely accepted von Neumann
architecture. Feustel 1973 [12]


• Tagged architectures originated in the 1960’s [14]-[16]


• Today tagged architectures are being revisited for security [9], [10], [17]-[20]
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– Move OS Features into Hardware based Monitor
– Harvard Architecture to separate/isolate instructions and data
– Hardware State Machine Monitor


• Control Flow Integrity [2]
• State Machine Instruction Execution and Page Memory Management [1]


PROPOSED MORE SECURE PIPELINE EXECUTION


IF ID EXE MA WB
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CONTROL FLOW INTEGRITY


Control Flow Integrity (CFI) is a term used for
computer security techniques which prevent
CRAs [Code Reuse Attacks] by monitoring a
program’s flow of execution (control flow). CFI
techniques do not aim to prevent the sources of
attacks, but instead rely on monitoring a
program at runtime to catch deviations from the
normal behavior. R. De Clercq and I. Verbauwhede 2017 [4] 
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CONTROL FLOW INTEGRITY
For RISC-V sequential, branch and jump
instructions there are 3 possible control flows:


1) Most instructions are sequential.
Advance program counter to next
instruction.


2) Branch Instruction has two possible end
addresses: next instruction and branch
destination address.


3) Jump instruction has a single destination
address.


Other instruction types are CALL, and RETURN.
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• Steps to place control flow integrity protection codes 
inside an executable.


– Parse RISC-V machine code


– Create Linked List of Instructions


– Assign Link Codes for each instruction


– Link Codes embed control flow information into executable


EMBEDDED CONTROL FLOW CODES
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RISC-V PROGRAM
// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
8: <main> li    a2, 2              // base = a2
c: li    a0, 0x80           // pb[0] = 0x80


10: li    a7, 1              // a7 = 1
14: li    a6, 1368           // LAST = R^2 -1 = 1369 - 1
18: li    t1, 37             // t1 = R = 37
1c: j 28 <L1>            // jump to <L1>
20: <L3> addi a2, a2, 1          // a2 = base = base +1
24: beq a2, t1, 78 <L2>    // if base = R then <L2> Done
28: <L1> srai a5, a2 ,0x5        // a5 = word offset
2c: slli a5, a5, 0x2        // a5 = byte offset [note 1]
30: add   a5, a0, a5         // a5 = pb[0] + byte offset
34: lw a5, 0(a5)          // a5 = LW(addr = a5)
38: sra a5, a5, a2         // a5 = a5 >> a2 [note 2]
3c: andi a5, a5, 1          // a5 = pb[word, bit number]
40: beqz a5, 20 <L3>        // if a5 = bit = 0 the <L3>
44: slli a3, a2 ,0x1        // a3 = cnt = base + base
48: <L4> srai a5, a3, 0x5        // a5 = word offset from a3
4c: slli a5, a5, 0x2        // a5 = byte offset
50: add   a5, a0, a5         // a5 = pb[0] + byte offset
54: lw a1, 0(a5)          // a1 = LW(addr = a5 + 0)
58: sll a4, a7, a3         // a4 = 1 << cnt = 0••010••00
5c: not   a4, a4             // a4 = 1•••0•••11
60: and   a4, a4, a1         // clear bit
64: sw a4, 0(a5)          // update word
68: add   a3, a3, a2         // cnt = cnt + base
6c: ble a3, a6, 48 <L4>    // if less then <L4>
70: addi a2, a2, 1          // base = base + 1
74: bne a2, t1, 28 <L1>    // if base != R then <L1>
78: <L2> li    a0, 0              // clear a0, 
7c: ret


[21] https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada
[22] https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 
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main li    a2, 2 
li    a0, 0x80 
li    a7, 1 
li    a6, 1368 
li    t1, 37 
j 28, L1


L3 addi a2, a2, 1 
beq a2, t1, L2


L1 srai a5, a2 ,0x5 
slli a5, a5, 0x2 
add   a5, a0, a5 
lw a5, 0(a5) 
sra a5, a5, a2 
andi a5, a5, 1 
beqz a5, 20, L3


slli a3, a2 ,0x1


L4 srai a5, a3, 0x5 
slli a5, a5, 0x2 
add   a5, a0, a5 
lw a1, 0(a5) 
sll a4, a7, a3 
not   a4, a4 
and   a4, a4, a1 
sw a4, 0(a5) 
add   a3, a3, a2 
ble a3, a6, L4


addi a2, a2, 1 
bne a2, t1, L1


L2 li    a0, 0
ret


CONTROL FLOW GRAPH


• Control Flow Graph shows 
how the blocks of code are 
linked together [4].  


• Control flow graph forms an 
instruction linked list [4], [2]. 


• Control flow integrity verifies 
the control flow linked list at 
run-time [4], [2].


// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
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slli a3, a2 ,0x1


L4 srai a5, a3, 0x5 
slli a5, a5, 0x2 
add   a5, a0, a5 
lw a1, 0(a5) 
sll a4, a7, a3 
not   a4, a4 
and   a4, a4, a1 
sw a4, 0(a5) 
add   a3, a3, a2 
ble a3, a6, L4


addi a2, a2, 1 
bne a2, t1, L1


• Sequential Instruction Flow 
within code blocks [2].


• Program Counter (PC) 
advances by 1 instruction
o PC = PC + 4 bytes


CONTROL FLOW GRAPH
// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
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slli a3, a2 ,0x1


L4 srai a5, a3, 0x5 
slli a5, a5, 0x2 
add   a5, a0, a5 
lw a1, 0(a5) 
sll a4, a7, a3 
not   a4, a4 
and   a4, a4, a1 
sw a4, 0(a5) 
add   a3, a3, a2 
ble a3, a6, L4


addi a2, a2, 1 
bne a2, t1, L1


• Branch Instructions’ Control Flow 
is statically indeterminate.


• Data flow determines if the branch 
is taken or not taken


• There are two possible control 
flows:  
• Branch condition is false.


Branch is Not taken.
Go to Next instruction.
PC = PC + 4 bytes


• Branch condition is true.  
Branch is taken.
Branch to Destination Address.
PC = Destination Address


// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]


2
1


1
2


CONTROL FLOW GRAPH
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• Jump instruction simply jumps 
to the destination address. 


// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]


CONTROL FLOW GRAPH


main li    a2, 2 
li    a0, 0x80 
li    a7, 1 
li    a6, 1368 
li    t1, 37 
j 28, L1


L3 addi a2, a2, 1 
beq a2, t1, L2


L1 srai a5, a2 ,0x5 
slli a5, a5, 0x2 
add   a5, a0, a5 
lw a5, 0(a5) 
sra a5, a5, a2 
andi a5, a5, 1 
beqz a5, 20, L3
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NEXT


INSTR


NEXT


Link List Code = 1


Executing 
Instruction


Previous
Instruction


Example Code


<main> li   a2, 2
li   a0, 0x80


Example Code


li  t1, 37 
j <L1> 


Example Code


<L3>  addi a2, a2, 1 
beq a2, t1, <L2> 


JUMP


INSTR


NEXT


Link List Code = 16


BRANCH


INSTR


NEXT


Link List Code = 32


CONTROL FLOW LINK TYPES


• Some Example Control Flow Link Codes


• We are working with 21 different link codes.
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mts[0x06].mem = 0x00a00313;    // li    t1, LAST     // t1 = R = LAST


mts[0x06].exe_tag = NEXT;     // Sequential Instruction Tag


mts[0x06].link_tag = 1;        // Instruction Linked List Code


mts[0x07].mem = 0x00c0006f;    // j     28 <L1>        // jump to <L1>


mts[0x07].exe_tag = JUMP;


mts[0x07].link_tag = 16;


mts[0x09].mem = 0x04660a63;    // beq a2, t1, 78 <L2> // if base = R then <L2>


mts[0x09].exe_tag = BRANCH;


mts[0x09].link_tag = 32;


CONTROL FLOW GRAPH
RISC-V Simulation Code


JUMP Instruction and Link Tag


Branch Instruction and Link Tag


main li    a2, 2 
li    a0, 0x80 
li    a7, 1 
li    a6, 1368 
li    t1, 37 
j 28, L1


L3 addi a2, a2, 1 
beq a2, t1, L2


L1 srai a5, a2 ,0x5 


Instruction Linked List Mapping
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• Hardware State Machine Monitor (kernel) [1]
– Stack State Machine [1]


• Verify permissions to access Stack
• Manage creating and deleting stack memory pages


– Memory State Machine [1]
• Manage creating and deleting memory pages
• Verify memory access


– Instruction Execution State Machine [1]
• Manage execution of instructions
• Manages Stack State Machine and Memory State Machine


HARDWARE STATE MACHINES


SSM


MSM


ISM


SSM


MSM


ISM


Hardware State Machines Control Execution Pipeline


IF ID EXE MA


Instruction 
Fetch


Instruction 
Decode


Instruction 
Execute


Memory
Access


Register
Writeback


Classic 5 Stage RISC Pipeline
WB
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MEMORY PAGE TYPES


Process Info


Exe Page Data Page Data Stack I/O PageSharedDataExe Stack


Exe Page Data Page Data Stack I/O PageSharedDataExe Stack


Exe Page Data Page


Data Page


Data Stack


• Goal is to isolate memory page types [1]
• Exe stack is isolated from Data Stack
• Each memory page type provides for least 


privilege memory access operations.
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SIEVE OF ERATOSTHENES MEMORY MAP


Exe Page Data Page


// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
8: <main> li    a2, 2              // base = a2
c: li    a0, 0x80           // pb[0] = 0x80
10: li    a7, 1              // a7 = 1
14: li    a6, 1368           // LAST = R^2 -1 = 1369 - 1
18: li    t1, 37             // t1 = R = 37
1c: j 28 <L1>            // jump to <L1>
20: <L3> addi a2, a2, 1          // a2 = base = base +1
24: beq a2, t1, 78 <L2>    // if base = R then <L2> Done
28: <L1> srai a5, a2 ,0x5        // a5 = word offset
2c: slli a5, a5, 0x2        // a5 = byte offset [note 1]
30: add   a5, a0, a5         // a5 = pb[0] + byte offset
34: lw a5, 0(a5)          // a5 = LW(addr = a5)
38: sra a5, a5, a2         // a5 = a5 >> a2 [note 2]
3c: andi a5, a5, 1          // a5 = pb[word, bit number]
40: beqz a5, 20 <L3>        // if a5 = bit = 0 the <L3>
44: slli a3, a2 ,0x1        // a3 = cnt = base + base
48: <L4> srai a5, a3, 0x5        // a5 = word offset from a3
4c: slli a5, a5, 0x2        // a5 = byte offset
50: add   a5, a0, a5         // a5 = pb[0] + byte offset
54: lw a1, 0(a5)          // a1 = LW(addr = a5 + 0)
58: sll a4, a7, a3         // a4 = 1 << cnt = 0••010••00
5c: not   a4, a4             // a4 = 1•••0•••11
60: and   a4, a4, a1         // clear bit
64: sw a4, 0(a5)          // update word
68: add   a3, a3, a2         // cnt = cnt + base
6c: ble a3, a6, 48 <L4>    // if less then <L4>
70: addi a2, a2, 1          // base = base + 1
74: bne a2, t1, 28 <L1>    // if base != R then <L1>
78: <L2> li    a0, 0              // clear a0, 
7c: ret


1010 1010 1010 1000 1010 0010 0010 1010
0000 1000 1010 0010 0010 1000 1010 1000
0010 0010 1000 0010 0010 0010 1010 0000


• PID has read and 
write permissions


• PID has execute only permissions
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Execute
Instruction


STACK
OPERATION


LOAD


STOREARITHMETIC
LOGIC


RAISE
EXCEPTION


Invalid 
Mem 
Page


ALLOW
MEM OP


DESTINATION 
ADDRESS


RAISE
EXCEPTION


Invalid 
Mem 
Page


ALLOW
MEM OP


Instruction
Completed


EXECUTE STATE MACHINE MONITOR


Simplified Execution State Machine – See [1] for a more detailed description
[1] P. Jungwirth, et al.:  "Hardware security kernel for cyber-defense", Proc. SPIE 11013, Disruptive Technologies in Information Sciences II, 110130J, Baltimore 
10 May 2019); https://doi.org/10.1117/12.2513224
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• State Machine Monitors 
– Control Flow Integrity


• Supports branch, jump, load, store, and arithmetic and logic instructions


– Execution and Memory State Machine
• Supports valid memory pages for load instructions
• Future research work will add more features to State Machines


STATE MACHINE MONITOR SIMULATION
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• State Machine Monitor Simulation 
– Control Flow Integrity


• Simulated Sieve of Eratosthenes with Control Flow Protection.
• Simulated Branch Instruction Control Flow Violation.


– Execution and Memory State Machine
• Simulated Sieve of Eratosthenes
• Simulated Load Instruction Memory Page Operations.


STATE MACHINE MONITOR SIMULATION RESULTS
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PCR = 8 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = c Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 10 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 14 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 18 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 1c Byte Address 
JAL opcode 
opcode = JAL_OPCODE 
 
Valid Control Flow Tags for JAL Instruction. 
before exe rd[0] = 0 
imm = 0xc = decimal 12 
PCR = 0x1c 
after exe rd[0] = 0x20 
PCR = 0x28 
 
PCR = 28 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 2c Byte Address 


opcode = AL_IMM_exe 
 
PCR = 40 Byte Address 
opcode = BRANCH_OPCODE 
 
opcode = Branch 
 
PCR = 20 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 
 
PCR = 24 Byte Address 
opcode = BRANCH_OPCODE 
 
opcode = Branch 
 
PCR = 78 Byte Address 
opcode = AL_IMM_OPCODE 
 
Check Link = 1 
opcode = AL_IMM_exe 


Prime Number = 1 
Prime Number = 2 
Prime Number = 3 
Prime Number = 5 
Prime Number = 7 
Prime Number = 11 
Prime Number = 13 
Prime Number = 17 
Prime Number = 19 
Prime Number = 23 
Prime Number = 29 
Prime Number = 31 
Prime Number = 37 
Prime Number = 41 
Prime Number = 43 
Prime Number = 47 
Prime Number = 53 
Prime Number = 59 
Prime Number = 61 
Prime Number = 67 
Prime Number = 71 
Prime Number = 73 
Prime Number = 79 
Prime Number = 83 
Prime Number = 89 
Prime Number = 97 


SIMULATION EXECUTION


Text Output Showing Execution 
Steps (100 pages) Output – Prime Numbers


1 through 100





Prime Number = 1


Prime Number = 2


Prime Number = 3


Prime Number = 5


Prime Number = 7


Prime Number = 11


Prime Number = 13


Prime Number = 17


Prime Number = 19


Prime Number = 23


Prime Number = 29


Prime Number = 31


Prime Number = 37


Prime Number = 41


Prime Number = 43


Prime Number = 47


Prime Number = 53


Prime Number = 59


Prime Number = 61


Prime Number = 67


Prime Number = 71


Prime Number = 73


Prime Number = 79


Prime Number = 83


Prime Number = 89


Prime Number = 97
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BRANCH INSTRUCTION VIOLATION


mts[0x09].mem = 0x04660a63;    //        beq a2, t1, 78 <L2>    // 
mts[0x09].exe_tag = JUMP; // CHANGED TAG TO JUMP
mts[0x09].link_tag = 32;


PCR = 3c Byte Address
opcode = AL_IMM_OPCODE


check Link = 1
opcode = AL_IMM_exe


PCR = 40 Byte Address
opcode = BRANCH_OPCODE


opcode = Branch


PCR = 20 Byte Address
opcode = AL_IMM_OPCODE


Check Link = 1
opcode = AL_IMM_exe


PCR = 24 Byte Address 
opcode = BRANCH_OPCODE


opcode = Branch


Branch Control Flow Violation.


Word Address = 0x09


link_tag = 32 is for a branch
instruction. With Instruction
set to JUMP, a branch control
flow violation occurs.
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VALID MEMORY PAGE ACCESS


int lw(int32_t addr, mts_t& mems, int32_t& word)
{


int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;


if(byte_addr >= 0x100 && byte_addr <= 0x10c)
word = mems[word_addr].mem;


else
{


printf("Invalid memory page \n");
exit(1);


}


return 0;
}


Memory Page 
Boundary 


12 bytes are required to store 100 
bits (prime numbers 1..100)
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MEMORY PAGE ACCESS VIOLATION


int lw(int32_t addr, mts_t& mems, int32_t& word)
{


int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;


if(byte_addr >= 0x100 && byte_addr <= 0x10b)
word = mems[word_addr].mem;


else
{


printf("Invalid memory page \n");
exit(1);


}


return 0;
}


Memory Page 
Boundary 


11 bytes is not 
enough memory


PCR = 54 Byte Address
Invalid memory page


54: lw a1, 0(a5)  // a1 = LW(addr = a5 + 0)


Memory Page Error Occurs at 0x54 LoadWord
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• Complete State Machine Monitor Simulation


• Add more control flow features including:  CALL and RETURN tags


FUTURE RESEARCH WORK
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• Simulated Sieve of Eratosthenes Prime Number Algorithm on RISC-V
32 bit Architecture


• Simulated Control Flow Protections


• Simulated LOAD instruction memory page protections


• Future operating systems need to take advantage of hardware
security monitors.


CONCLUSION
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