

 ARL-TR-9217 ● JUNE 2021

Aberdeen Architecture:
High-Assurance Hardware State Machine
Microprocessor Concept

by Patrick Jungwirth

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-9217 ● JUNE 2021

Aberdeen Architecture:
High-Assurance Hardware State Machine
Microprocessor Concept

Patrick Jungwirth
Computational and Information Sciences Directorate,
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2021

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

November 2019 – February 2021

4. TITLE AND SUBTITLE

Aberdeen Architecture: High-Assurance Hardware State Machine

Microprocessor Concept

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Patrick Jungwirth

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory

ATTN: FCDD-RLC-CA

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-9217

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In a traditional computer, an operating system manages computer system resources. Current microprocessors execute or run

instructions without any verification or authentication. There is no difference between safe instructions, coding errors, and

malicious instructions. Complete mediation is a computer security principle meaning to verify access rights and authority for

every operation. The Aberdeen Architecture achieves complete mediation for instruction execution. The Aberdeen

Architecture is also designed to block information leakage. It uses hardware-level state machine monitors for the trusted

computing base. The state machine monitors provide security policies enforcing multiple information flow properties. The

Aberdeen Architecture combines several protection methods to create a system security policy where the whole is greater than

the individual security policies. The multiple security policies provide overlapping coverage, preventing brittleness and single-

point security policy failures.

15. SUBJECT TERMS

computer architecture, high-assurance computing, state machine security policies, hardware kernel, RISC-V, Redstone

Architecture

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

123

19a. NAME OF RESPONSIBLE PERSON

Patrick Jungwirth
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-6174
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vi

List of Tables viii

1. Introduction 1

1.1 Some Current Architecture Challenges 1

1.2 Aberdeen Architecture Hardware Security Policy Summary 3

1.3 Microprocessor Architecture Information Flows 3

2. Historical Review 4

2.1 Future Architectures 4

2.2 Principles and Challenges for Future Architectures 5

3. Motivation for Aberdeen Architecture 8

3.1 Review of Saltzer and Schroeder’s Security Principles 9

3.1.1 Economy of Mechanism 9

3.1.2 Fail-Safe Default 10

3.1.3 Complete Mediation 10

3.1.4 Open Design 10

3.1.5 Separation of Privilege 11

3.1.6 Least Privilege 11

3.1.7 Least Common Mechanism 11

3.1.8 Psychological Acceptability 11

3.1.9 Work Factor 12

3.1.10 Compromise Recording 12

3.2 Trusted Computing Base Challenge 12

3.3 Aberdeen Architecture Design Considerations 14

3.4 Aberdeen Architecture Security Policies 14

3.5 Attack Model 16

3.6 Common Weakness Enumerations for Software-Facilitated Hardware
Vulnerabilities 16

3.7 Data-Dependent Information Flows 21

iv

3.8 Architecture Summary 21

4. Aberdeen Architecture 22

4.1 Historical Review 23

4.2 Aberdeen Architecture Philosophy and Goals 26

4.3 Aberdeen Architecture 28

4.3.1 Aberdeen Architecture’s Information Flow Classes 29

4.3.2 Software Design Philosophy Introduction 30

4.3.3 Instruction Set Architecture (ISA) 34

4.3.4 Memory Page Background 36

4.3.5 Tag Protection Bits 38

4.3.6 Harvard Machine Architecture 39

4.3.7 Aberdeen Machine Architecture 40

4.3.8 State Machine Security Policy Introduction 41

4.3.9 Control Flow Integrity 44

4.3.10 Data Flow Integrity 57

4.3.11 System Architecture 64

4.4 Aberdeen Architecture State Machine Monitors 65

4.4.1 Instruction Execution 65

4.4.2 State Machine Monitors Introduction 70

4.5 State Machine Monitors 71

4.5.1 RISC-V Aberdeen Architecture version of the Sieve of
Eratosthenes 71

4.5.2 Data Flow Integrity Monitor 84

4.5.3 Control Flow Integrity Monitor 84

4.5.4 Memory Page Monitor 85

4.5.5 Instruction Execution Monitor 85

4.5.6 Instruction Execution State Machine Monitor 86

4.6 Aberdeen Architecture Two-State Machine Simulation 93

4.7 Summary of Aberdeen Architecture State Machine Monitors 95

5. Conclusions 96

6. Future Research Areas 96

7. References 97

v

Appendix A. OS Friendly Microprocessor Architecture Tech Report
(Redstone Architecture) 108

Appendix B. In-Progress Prototype Aberdeen Architecture Simulation
Code 109

Appendix C. Limited Simulation Presentation 110

List of Symbols, Abbreviations, and Acronyms 111

Distribution List 113

vi

List of Figures

Fig. 1 OS friendly microprocessor architecture protected pointers (Jungwirth
and LaFratta 2017) .. 20

Fig. 2 Bubble sort .. 21

Fig. 3 Classic 5-stage RISC execution pipeline (Jungwirth 2020b) 23

Fig. 4 State machine security policies ... 29

Fig. 5 Sieve of Eratosthenes in C code .. 31

Fig. 6 Block code structure ... 32

Fig. 7 Sieve of Eratosthenes results for R = 37 ... 32

Fig. 8 RISC-V Sieve of Eratosthenes .. 33

Fig. 9 Sequential instruction class ... 35

Fig. 10 Load and store instruction class (same as sequential with memory
access) ... 35

Fig. 11 Conditional branch instruction class ... 36

Fig. 12 Jump instruction class ... 36

Fig. 13 Memory classes. Each class supports least privilege, privilege
separation, and complete mediation. ... 37

Fig. 14 Harvard machine compared to von Neumann machine (Jungwirth
2020b) ... 40

Fig. 15 Instruction execution pipeline: state machine controller 41

Fig. 16 Instruction execution state machine .. 43

Fig. 17 Stack machine state machine .. 43

Fig. 18 Control flow graph for Sieve of Eratosthenes 44

Fig. 19 High- and low-precision CFI tags ... 45

Fig. 20 Aberdeen Architecture CFI link types .. 47

Fig. 21 Exception and IRQ handlers exit and return points 48

Fig. 22 Single point entry and exit exception handlers 49

Fig. 23 Single point interrupt request entry and exit points 49

Fig. 24 Control flow graph for Sieve of Eratosthenes 51

Fig. 25 Control flow graph for arithmetic and logic sequential instructions .. 52

Fig. 26 Control flow graph for LOAD sequential instruction 52

Fig. 27 Control flow graph for JUMP instruction ... 53

Fig. 28 Control flow graph for branch instruction .. 53

Fig. 29 Sieve of Eratosthenes RISC-V code and control flow integrity tags .. 55

vii

Fig. 30 Single point function entry and exit points ... 56

Fig. 31 START and END instruction execution control flow tags 56

Fig. 32 Control flow graph and data flow integrity (security and integrity tags)
... 61

Fig. 33 Sieve of Eratosthenes data flow integrity ... 62

Fig. 34 Partial data flow diagram for Sieve of Eratosthenes 63

Fig. 35 Aberdeen architecture security levels. Hardware state machine
monitors enforce security policies. Memory access policy is below the
execution pipeline. Execution Pipeline cannot change memory policy.
Execution Pipeline sits at security level 1. Guest OS and Applications
software are at less secure levels. ... 65

Fig. 36 Sequential and load/store sequential instruction execution 66

Fig. 37 LOAD sequential instruction execution.. 67

Fig. 38 Branch instruction execution .. 68

Fig. 39 Branch instruction execution example .. 68

Fig. 40 Jump instruction execution ... 69

Fig. 41 Jump instruction execution example ... 69

Fig. 42 Stack push and pull operations ... 70

Fig. 43 Aberdeen Architecture RISC-V Sieve of Eratosthenes code instruction
execution example .. 73

Fig. 44 Sieve of Eratosthenes single entry and exit code points 74

Fig. 45 Partial, near-complete, and complete mediation ranges 75

Fig. 46 Aberdeen Architecture creates protected buffer 77

Fig. 47 Aberdeen Architecture JUMP instruction execution 78

Fig. 48 Aberdeen Architecture conditional branch ... 79

Fig. 49 Aberdeen Architecture LOAD and STORE memory instructions 80

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code 81

Fig. 51 Simplified execution monitor state machine 87

Fig. 52 Instruction execution state machine monitor 88

Fig. 52 Instruction execution state machine monitor (continued) 90

Fig. 52 Instruction execution state machine monitor (continued) 91

Fig. 52 Instruction execution state machine monitor (continued) 92

Fig. 53 Control flow state machine simple control flow graph exception 93

Fig. 54 Memory page state machine simple memory page exception 94

Fig. 55 Aberdeen Architecture summary .. 95

viii

List of Tables

Table 1 Aberdeen architecture information flows ... 3

Table 2 Complete mediation for LW R1,10(R2) ... 18

Table 3 Aberdeen Architecture instruction classes .. 35

Table 4 Aberdeen Architecture instruction format .. 38

Table 5 Aberdeen Architecture process configuration memory page 39

Table 6 Aberdeen Architecture register file format ... 39

Table 7 Aberdeen Architecture memory page format 39

Table 8 Data flow integrity policies summary ... 84

Table 9 Control flow label summary ... 85

Table 10 Instruction class summary ... 86

1

1. Introduction

In a traditional computer, an operating system manages computer system resources.

Current microprocessors execute or run instructions without any verification or

authentication. There is no difference between safe instructions, coding errors, and

malicious instructions. Complete mediation is a computer security principle from

Saltzer and Schroeder (1975) meaning to verify access rights and authority for

every operation. For the Aberdeen Architecture, we are proposing to move

complete mediation down to the instruction level and check and verify permissions

for each executing instruction—in other words, an “operating system” or hardware

monitor to manage the instruction execution pipeline (executing microprocessor

instructions).

Multiple state machine monitors implement hardware-level security policies. For

example, the instruction execution state machine monitor provides complete

mediation for instruction execution. The state machine monitors are at security

level 0 and are completely isolated from the execution pipeline located at security

level 1 (one level above the state machine monitors). More details on the state

machine architectures will be provided in later sections.

The Aberdeen Architecture is specifically designed to prevent information leakage

from shared computer resources. Shared hardware computer resources can be

modulated (or manipulated) to leak information. In 1975, Saltzer found that covert

channels in Multics operating systems can leak information (Lipner 1975).

Bernstein (2005), Acıiçmez et al. (2007), Jiang and Fei (2017), Karimi et al. (2018),

and Jungwirth and Hahs (2019) all illustrate how shared resources leak information.

Complete time and space isolation is essential to prevent information leakage.

Saltzer [11] has reported several attempts to build and measure covert channels on

Multics [6]. These attempts involved processes "banging on the walls" of the

confined environment via a combination of timing and paging rate. A channel of

the order of a bit per second has been demonstrated, and channels of the order of

tens of bits per second hypothesized. (Lipner 1975)

1.1 Some Current Architecture Challenges

In the early 1970s, Feustel considered the merits of new architectures not based on

the von Neumann machine (1973). Today, tagged architectures have a renewed

interest for computer security applications.

In the von Neumann machine, program and data are equivalent in the sense that

data which the program operates on may be the program itself. The loop which

2

modifies its own addresses or changes its own instructions is an example of this.

While this practice may be permissible in a minicomputer with a single user, it

constitutes gross negligence in the case of multi-user machine where sharing of

code and/or data is to be encouraged. (Feustel 1973)

Future architectures will be fundamentally different from the current von Neumann

architecture (also called the Princeton architecture) (Nair 2015). Future

architectures will need to protect the entire computer system (Jungwirth et al.

2019a). Current and future design engineers need to revisit security principles

pioneered in the 1970s.

This paper provides a historical perspective on the evolution of memory

architecture, and suggests that the requirements of new problems and new

applications are likely to fundamentally change processor and system architecture

away from the currently established von Neumann model. (Nair 2015)

Sharing computer resources at the same time leads to information leakage (Lipner

1975; Jungwirth et al. 2019a). In addition, it correlates processes and hardware

behavior. Correlated information flows leak information. There are several

information flows in a microprocessor: instruction flow, memory access [flow],

control flow, and data flow. With the exception of not-so-interesting programs,

instruction flow, memory access, and control flow are all data flow dependent. A

branch predictor is a hardware resource used to predict the destination address for

branch instructions. A rogue process can modulate a branch predictor to leak

information. To prevent information leakage, branch predictor coefficients should

be unique for each process.

Speculative execution pipelines need to have a process ID tag field to enforce least

privilege and privilege separation. Current cache banks have multiple cache lines

that are used by multiple concurrently running processes. Current cache banks also

allow for an attack process to flush a cache line used by another process. Current

cache banks violate complete mediation, separation, and least privilege.

High-performance timers are shared across multiple processes. Many attacks utilize

timing to steal sensitive information. Virtual timers have been proposed to decouple

timing. Each process uses a virtual timer that only runs while the process is

executing. Current microprocessor architectures are not taking advantage of control

flow integrity. Control flow integrity ensures that an executing program is

following an allowed path through its control flow diagram (Burow et al. 2017).

Security and integrity ensure that data processing does not violate a security policy

or data integrity policy (Denning 1976). The Aberdeen Architecture applies control

flow integrity concepts to create a data flow integrity policy.

3

1.2 Aberdeen Architecture Hardware Security Policy Summary

Aberdeen Architecture uses state machines to enforce security policies. There are

four main hardware-enforced security policies: (1) instruction execution, (2) page

memory access, (3) control flow integrity, and (4) data flow integrity. State

machines implement the security policies and are completely isolated from the

execution pipeline. The Aberdeen Architecture is based on the research work found

in Lipner (1975), Jungwirth et al. (2017, 2018a, 2018b, 2019b, 2020), Jungwirth

and Ross (2019), Jungwirth (2020a), and Jungwirth and La Fratta (2015, 2016,

2017).

Current tagged computer architectures use a bit array to enforce security properties.

This leads to a one-size-fits-all tagged architecture for computer security policies.

The Aberdeen Architecture uses a two-level tagged architecture to simplify the

security policy. The “global” policy establishes the sandbox (or fence) limit for

each process. The “local” policy sets stricter limits for individual instructions.

Exceeding the global bounds could potentially interfere with another process.

Exceeding a local bound would normally only affect the process itself.

1.3 Microprocessor Architecture Information Flows

Information flow has focused on data and data processing steps. A wider view of

information flows are needed to better secure microprocessor architectures. Table 1

lists four microprocessor information flows used to execute instructions. Future

architectures need to take into account the data flow dependencies for information

flows. The Aberdeen Architecture uses the information flows in Table 1 to create a

high-assurance architecture. Space and time isolation is essential to prevent

correlations (correlated behavior(s) cause information leakage) across multiple

concurrently running processes.

Table 1 Aberdeen architecture information flows

Information Flow Dependencies

Program instruction flow (integrity) Data flow dependent

Control flow integrity Data flow dependent

Memory access [flow] integrity Data flow dependent

Data flow integrity Data flow dependent

4

2. Historical Review

During a 2018 interview discussing Spectre and Meltdown attacks, distinguished

cybersecurity researcher Bruce Schneier described the current state of the

cybersecurity world (2018): “The security of pretty much every computer on the

planet has just gotten a lot worse, and the only real solution – which, of course, is

not a solution – is to throw them all away and buy new ones that may be available

in a few years.”

New software attacks by Spectre, Meltdown, and others (see Kovacs [2018] and

Zurkus [2018]) exploit hardware design flaws and oversights. Now that the door

has been opened, more software attacks are being launched against naïve hardware.

There is hope for new, more secure architectures. The Defense Advanced Research

Projects Agency’s (DARPA’s) System Security Integration Through Hardware and

Firmware (SSITH) program goals are to develop new microprocessor architectures

to counter software attacks against current inadequate security measures (DARPA

2017; Keller 2017; Hruska 2017; Blinde 2018; Rebello n.d.). In a 2017 DARPA

article, SSITH program manager Linton Salmon stated, “This race against ever

more clever cyber-intruders is never going to end if we keep designing our systems

around gullible hardware that can be fooled in countless ways by software”

(2017b).

2.1 Future Architectures

The only real long-term solution is to throw all of the current designs away and start

over. We are living in a world where many, if not all, of the secure computing

concepts were researched decades ago. Major operating system concepts were

pioneered in Multics (Adleman et al. 1976; Karger and Schnell 2002) during the

1970s. Hardware-based operating systems were being considered in the 1970s

(Sockut 1975; Brown et al. 1977; Higher Order Software, Inc. 1977). The i432

(Witten et al. 1983) microprocessor pioneered protected objects in the 1980s.

The foundational computer security philosophy is encapsulated in Saltzer and

Schroeder’s 1975 security principles (Saltzer and Schroeder 1975; Smith 2012).

Security-tagged architectures have their roots in the late 1950’s mainframe

computers (Rice University 1962; Burroughs 1969; AEG Telefunken 1970; Feustel

1972, 1973). Up to the 1970s, tag bits were being used for reliability (Rice

University 1962). In 1989, Bondi and Branstad researched security tag bits and flow

control integrity (1989). There has been a renewed interest in applying tag bits for

computer security (Alves-Foss et al. 2014). It is time to go back to the drawing

board and develop new architectures based on sound security principles from the

5

ground up. Current and future engineers need an all-encompassing design

philosophy: “Future Cyber Defenses Must Protect the Entire Architecture”

(Jungwirth et al. 2019a).

There are three system parameters in computer architectures: cost, performance,

and security. Cost is a function of performance and security. Performance is a

function of cost and security. Current commodity computing has settled on high

performance and low cost, while security is left out of the equation. With the end

of Moore’s law on the horizon, and processor speeds stuck in the low gigahertz

range, parallelism is the new path forward for higher performance. Parallelism also

offers a path forward for high-performance and high-assurance computing.

2.2 Principles and Challenges for Future Architectures

In current computer architecture terms, “bare metal” refers to the execution

pipeline. Security policies need to have complete control over the execution

pipeline and be implemented at a layer below the execution pipeline. The design

goal is to make the execution pipeline security conscious. De Clercq and

Verbauwhede (2017) emphasize the importance of placing the trusted computing

base in hardware:

The Trusted Computing Base (TCB) is the set of hardware and software components

which are critical to the security of the system. … a TCB should be as small as

possible in order to guarantee its correctness … To enforce a strong security policy,

we recommend that the TCB consists of as little as possible software, while placing

as much as possible security-critical functionality in hardware.

The proposed Aberdeen Architecture uses state machines to implement security

policies in hardware below the execution pipeline. State machine security policies

are isolated and not accessible from software. Aberdeen Architecture’s state

machines are the trusted computing base. Current execution pipelines run

instructions without any authentication. Current execution pipelines violate Saltzer

and Schroeder’s principles of complete mediation, privilege separation, and least

privilege principles. In other words, a confused deputy would provide better

security (Hardy 1988; “Confused deputy problem” July 17, 2020).

Following a philosophy of the exokernel (Engler et al. 1995), the Aberdeen

Architecture enforces basic security policies. Higher-level layers can implement

specific algorithms, objects (library OS functions in [Engler et al. 1995]),

hypervisors, unikernels, and so on.

In separating protection from management, an exokernel performs three important

tasks: (1) tracking ownership of resources, (2) ensuring protection by guarding all

6

resource usage or binding points, and (3) revoking access to resources.

(Engler et al. 1995)

Program shepherding (Kiriansky et al. 2002) is a software sandbox technique to

enforce execution and control flow properties. Program shepherding implements a

software-based control flow integrity technique. For the Aberdeen Architecture, a

hardware state machine uses security tag bits to enforce the control flow integrity

policy. The Aberdeen Architecture also adds a state machine to enforce the data

flow integrity policy.

Program shepherding prevents execution of data or modified code and ensures that

libraries are entered only through exported entry points. Instead of focusing on

preventing memory corruption, we prevent the final step of an attack, the transfer

of control to malevolent code. This allows thwarting a broad range of security

exploits with a simple central system that can itself be easily made secure.

(Kiriansky et al. 2002)

The Aberdeen Architecture includes several state machines: instruction execution

(integrity) monitor, memory page monitor, control flow monitor, data flow monitor,

exception monitor, scheduler monitor, and interrupt monitor. The proposed state

machines implement a foundational-level hardware security policy following

Saltzer and Schroeder’s security principles. Architecture objects are categorized by

allowed operations. Aberdeen Architecture uses the Redstone Architecture’s (OS

Friendly Microprocessor Architecture’s) security features (Jungwirth and LaFratta

2015) for the 0.1 and 0.2 security architecture layers.

One of Saltzer and Schroeder’s guiding principles is “open design”; a secure system

should only depend on a secret key, not on a confidential design (1975):

Open design: The design should not be secret. The mechanisms should not depend

on the ignorance of potential attackers, but rather on the possession of specific,

more easily protected, keys or passwords.

In 1883, Kerchoffs wrote that the design of a cryptography system falling into an

adversary’s hands should not compromise messages (1883). Mann (2002) extends

Kerckhoffs’s principle to modern systems. Today, algorithms, like advanced

encryption standard (AES), are widely published. The security of AES does not

depend on a confidential algorithm—it depends on a secret key.

Kerckhoffs’s principle applies beyond codes and ciphers to security systems in

general; every secret creates a potential failure point. Secrecy, in other words, is a

prime cause of brittleness – and therefore something likely to make a system prone

to catastrophic collapse. Conversely, openness provides ductility. (Mann 2002)

7

For example, two papers published in 1954 (Weaver and Newall 1954) and 1960

(Breen and Dahlbom 1960) contained the details for an “in-band” telephone

network signaling system. In-band signaling combines data and control information

on the same cable, but it provided no authentication for control information. In-

band signaling was a “confidential” design published in two papers. In-band

signaling violates several of Saltzer and Schroeder’s security principles. For in-

band signaling, the control signaling system was so simple, even an amateur could

build one. A “blue box” (“Blue box” July 17, 2020) generated the control codes for

the telephone network. Long distance phone calls were now free—until free

became illegal. On display at the Computer History Museum is a blue box (Bell

1972) built by Steve Wozniak. In-band telephone network signaling suffered a

catastrophic system collapse; it was replaced by out-of-band signaling. Similar to

in-band signaling, the von Neumann architecture combines program instructions

(control) with data. On a von Neumann machine, a simple buffer overflow can

change “data” into program instructions.

The Sony BMG copy protection scandal was quickly identified as a rootkit

(Russinovich 2005; Halderman and Felten 2006; “Sony BMG” [July 13, 2020]).

Without an end-user agreement, the copy protection rootkit installed itself and left

backdoors for hackers. Halderman and Felten of Princeton University labeled the

copy protection as spyware (2006). The record label faced huge company image

damages and class action lawsuits. The rootkit copy protection flagrantly violates

Saltzer and Schroeder’s “psychological acceptability principle”: ease of use, simple

to understand, and agree to use. No user would voluntarily install a copy protection

scheme that phones usage information to a record label and installs additional

vulnerabilities. It was a poor IP protection implementation that ruined a product.

Software exists at the execution pipeline level. Cyber protection software and

malicious applications reside at the same security layer. Protection software does

not have any advantage over a malicious application. The new class of attacks

represented by Spectre (Kocher et al. 2018), Meltdown (Lipp et al. 2018), and

related attacks (Kovacs 2018; Zurkus 2018) prove that malicious software and zero-

day vulnerabilities have an advantage. The copy protection scandal is a case study

for why software cannot protect software in a computer system. Future protection

mechanisms (trusted computing base) must be rooted in hardware, completely

isolated from software.

Another area of concern is information leakage and shared resources. As early as

1975, Saltzer and Lipner (Lipner 1975) pointed out that covert channels in Multics

leak information. Many of these covert channels are from shared system resources.

Bernstein (2005) illustrates how AES software’s key bit-dependent execution times

leak key bit information. A malicious program only needs to passively sense

8

execution timing to steal information. In 2007, Acıiçmez et al. demonstrated how a

malicious program can modulate a hardware branch predictor (shared hardware

resource) to leak information (2007). For a simple information leakage process,

Jungwirth and Hahs (2019) illustrate how transfer entropy can be used to quantify

information leakage.

The Spectre attack exploits information leakage during speculative execution.

There are no security mechanisms to prevent information leakage. The Meltdown

attack also takes advantage of the lack of protection to leak sensitive information.

Timing attacks take advantage of high-precision timers to monitor execution times.

Even if an architecture had no timers, the adversary could still use known execution

times for the attack software to steal information leaking from another process.

Timing is essential for GPS and process control. It is more than likely not practical

to build a system without timers. Cache banks are another shared resource offering

adversaries ample attack vectors (Jiang and Fei 2017; Karimi et al. 2018).

3. Motivation for Aberdeen Architecture

To truly implement Saltzer and Schroeder’s security principles (Saltzer and

Schroeder 1975; Smith 2012), the security policy must be enforced from the

hardware system architecture’s lowest level. Instruction execution must be at least

one level above the security policy level (e.g., software cannot override any aspect

of the security policy). In the TIARA architecture, Shrobe et al. (2009) points out

the potential for security tag bits for high-assurance computer architectures:

“Metadata-driven hardware interlocks make it practical to take the security

principles of Saltzer and Schroeder seriously.” Current computer architectures have

not extended Saltzer and Schroeder’s security principles down to instruction

execution level, or below the instruction execution pipeline. The Aberdeen

Architecture extends Saltzer and Schroeder’s concepts to below the execution

pipeline level.

The 1940 bridge over the Tacoma River opened on July 1, 1940, only to collapse

on November 7, 1940. The bridge incorporated new design features that had

unknown failure modes. The bridge collapsed during a helical oscillation caused by

a 40 mi/h wind (64 km/h).

The Tacoma Narrows bridge failure has given us invaluable information … It has

shown every new structure [that] projects [or enters] into new fields of magnitude

involves new problems for the solution of which neither theory nor practical

experience furnish an adequate guide. (Ammann et al. 1941)

9

Speculative execution, cache bank operations, and branch predictors share

hardware resources across multiple processes providing attack vectors. Spectre and

Meltdown attacks were discovered in 2018. Both attacks were from unknown

design oversights. Current and 20-plus-year-old microprocessors are vulnerable to

Spectre and Meltdown attacks. For the Aberdeen Architecture, we want to use a

simple design, avoid shared resources, and provide additional protection features.

We do not want to find an enormous design flaw 20-plus years later.

3.1 Review of Saltzer and Schroeder’s Security Principles

In this section, we review Saltzer and Schroeder’s eight security principles and

apply them to the Aberdeen Architecture. The Aberdeen Architecture’s security

policy provides for complete verification or complete mediation (verify authority

and permissions) (Smith 2012) for instruction execution. The state machines’

security policies provide for complete virtualization of the microprocessor

execution pipeline. A virtual machine (Popek and Goldberg 1974) executes

software using a “software based” virtual microprocessor. Virtual machines

provide a property called introspection (Garfinkel and Rosenblum 2003).

Introspection allows for verification and forensic analysis of software running on a

virtual machine. The Aberdeen Architecture provides complete hardware support

for full hardware-based virtualization. Current architectures mix hardware

hypervisor features with the microprocessor architecture. An improved

“hypervisor” that exists below the execution pipeline and is completely isolated

from the execution pipeline is needed.

3.1.1 Economy of Mechanism

High-assurance operating systems can cost $10,000 per line of code (NICTA &

UNSW 2009). The seL4 operating system used a computer-generated proof-of-

correctness to significantly reduce the cost of verification and validation to around

$1,000 per line of code. For the Aberdeen Architecture, we want a simple design

that makes demonstrating high assurance significantly less expensive. Instead of a

large monolithic operating system, we are proposing several small state machines

to implement the security policy. The design goal is to reduce high test and

evaluation costs for high-assurance certification. Eight small state machines are

much less complex than a traditional operating system. Aberdeen Architecture

provides another system architecture benefit: the state machine–based security

policies will reduce the complexity of high-assurance microkernels. For example,

we envision a seL4-like microkernel taking advantage of hardware security policies

to reduce the number of lines of assembly and C codes. We would also like to be

able to test the state machines in parallel, reducing the time required for verification.

10

The state machines are small compared to a microkernel. Small code sizes greatly

simplify formal verification.

3.1.2 Fail-Safe Default

For fail safe default cases, Smith stated, “In computing systems, the safe default is

generally ‘no access’; the system must specifically grant access to resources”

(2012). Aberdeen Architecture uses “no access” by default. Each application is only

allowed to access resources granted by the state machines’ security policies. Access

for required library functions is registered during installation. No other library

functions may be called. A von Neumann machine mixes instructions and data. A

no-execute tag helps limit changing data into instructions. A better solution is found

in a Harvard architecture, which completely isolates instructions and data.

Complete isolation provides a much higher assurance for “fail-safe default” than a

no-execute tag.

3.1.3 Complete Mediation

Complete mediation is defined as, “Access rights are completely validated every

time an access occurs.” (Smith 2012). The Aberdeen Architecture provides

complete mediation for instruction execution, memory page accesses, stack

operations, control flow, and data flow. Aberdeen Architecture’s security policies

are enforced by state machines and security tags. The architecture verifies each

instruction execution, data processing operation, and memory page operation.

3.1.4 Open Design

Open design principle enforces high assurance by design: “The design should not

be secret” (Saltzer and Schroeder 1975). From a test engineer’s point of view, how

do you verify a system requirement if you do not know what the design is? Can a

confidential design containing proprietary components ever be verified? “Security

through obscurity” is the commonly used phrase for a confidential design. In-band

telephone network signaling and rootkit copy protection illustrate flawed

“confidential” designs with catastrophic endings. To truly evaluate a computer

system, the test engineer needs full system knowledge, including all hardware and

software. Otherwise, security is left to the hidden flaw. The algorithm for AES is a

published open source document and it has been verified by the open source

community. Spectre, Meltdown, and related attacks take advantage of hardware

design oversights.

11

3.1.5 Separation of Privilege

A security system with several overlapping sensors is more effective than a system

with a single point failure. Multiple security systems are preferred to a monolithic

implementation. Dual keys on a safe deposit box and two-factor authentication are

examples of good systems with separation of privilege. The Aberdeen Architecture

uses multiple state machines instead of a single protection mechanism.

3.1.6 Least Privilege

The classic flawed example of privilege concentration (all rights in one place at the

same time) is the monolithic kernel. All kernel routines have all rights to the system.

Subverting one kernel routine gives the attacker all system access rights. This is

often summarized as the “got root?” bumper sticker. Least privilege limits kernel

routines, and application software to the minimum privileges required and no more

privileges.

3.1.7 Least Common Mechanism

All shared resources result in covert channels leaking information. As early as

1975, Saltzer and Lipner (Lipner 1975) pointed out that covert channels in Multics

leak information. In 2005, Bernstein (2005) showed how timing information leaks

AES key bit information. In 2007, Acıiçmez et al. (2007) illustrated how a branch

predictor (a shared hardware resource) can be manipulated or modulated to leak

key bit information. Jungwirth and Hahs (2019) published a transfer entropy model

to quantify information leakage.

3.1.8 Psychological Acceptability

Smith (2012) describes user acceptability of security mechanisms: “This principle

essentially requires the policy interface to reflect the user’s mental model of

protection, and notes that users won’t use protections correctly if the mechanics

don’t make sense to them.” For the Aberdeen Architecture, we define psychological

acceptability as a protection system that emphasizes security and balances trade-

offs. We require simple protection mechanisms where the software developers can

easily understand the design and performance trade-offs, and can easily write

secure software for the architecture. We envision a high-assurance software

compiler that intelligently manages secure information flow for the Aberdeen

Architecture.

12

3.1.9 Work Factor

Smith (2012) describes the amount of effort to successfully attack a system. Work

factor is the cost in time, resources, technology, and money to attack a system. The

work factor for an in-band signaling telephone system was near zero. Systems with

higher levels of assurance require more work and more money to attack. High-

assurance systems avoid single point failures. A high-assurance system uses

effective and simple isolation techniques. For example, a von Neumann

architecture combines program instructions and data. A simple buffer overflow

allows for data to become a malicious program. A Harvard architecture uses two

separate busses and memories for instructions and data; therefore, a Harvard

architecture provides simple and effective isolation between program instructions

and data.

3.1.10 Compromise Recording

Smith (2012) describes the challenge with recording a system attack: “Saltzer and

Schroeder were skeptical about the benefit of such [compromise] recordings. If the

system couldn’t prevent an attack that modified data, then the compromise

recording itself might be modified or destroyed.” In other words, would you trust a

calculator that you knew was broken?

3.2 Trusted Computing Base Challenge

How do we completely isolate the trusted computer base from software

applications? The simple answer is, to completely isolate the security primitives

from software. A significant problem with current microprocessors is that hardware

resources are shared across multiple processes. A better co-design approach is

required for hardware security primitives to reduce the complexity of hypervisors

and operating systems. Ideally, we would like a simple set of hardware security

primitives that are easy to verify and significantly reduce the complexity of critical

operating system security routines.

The von Neumann machine shares program instructions and data. Both instructions

and data are integers. The execution pipeline in a von Neumann machine will

simply execute the integers. It has no way of knowing the difference between the

labels “data” and “program instruction”. This is a fundamental flaw. A Harvard

architecture completely separates program instructions from data using two

separate busses and memories. Harvard architectures are commonly used in digital

signal processing integrated circuits. The von Neumann machine does not isolate

resources. It violates several of Saltzer and Schroeder’s security principles.

13

Saltzer and Lipner (Lipner 1975), Bernstein (2005), Acıiçmez et al. (2007), Jiang

and Fei (2017), and Karimi et al. (2018), Jungwirth and Hahs (2019) all illustrate

how shared resources leak information. We need complete time and space isolation.

From Acıiçmez et al.’s branch predictor attack, we cannot share branch predictor

coefficients across multiple processes; each process must have its own set of branch

predictor coefficients. For the cache bank attacks in Jiang and Fei (2017) and

Karimi et al. (2018), we cannot allow a process (attack process) to manipulate or

modulate cache bank lines of another process to leak information. The Spectre

attack uses speculative execution to run malicious code before the hardware realizes

the wrong execution path was taken. Hardware vulnerable to Spectre attacks

violates complete mediation, least privilege, separation of privilege, and least

common mechanism principles. A simple solution is to tag every micro-op pipeline

operation with a process ID. If the operation accesses a resource with a different

process ID, then raise a hardware exception.

In summary, the Aberdeen Architecture strictly enforces space and time partitions.

No hardware unit, for example, a branch predictor, contains values from multiple

processes. Each process has its own set of branch prediction coefficients. The cache

bank memory pipeline from the OS Friendly Microprocessor Architecture

(Redstone Architecture) provides the key technology to enforce complete time and

space partitioning. It is time to consider new architectures.

We have computer system-of-systems composed of interconnected layers of

hardware and software. What matters for the end user is the performance of the

complete system. We need to improve the system performance, not just the

operating system.

We want a simple and sound security policy that is easy for the software

development engineer to understand. Complexity, and especially hidden

complexity (proprietary, and/or confidential design), is the antithesis of good

security. If you need a doctorate to understand the implementation, it is far too

complex for the real world. Right now, commodity microprocessors cannot

distinguish between good software, coding errors, and malicious software. A

confused deputy provides better security. This is a fundamental flaw with current

microprocessors. Future execution pipelines need a hardware monitor (e.g., a nano-

kernel “operating system”) to enforce a security policy for executing instructions.

Current microprocessors suffer from a “performance at all costs” mentality.

Advance techniques, like speculative execution, branch prediction, cache line

operations, high accuracy timing, and so on, are open doors for attackers. All are

resources shared across multiple processes. We need much better space and time

isolation.

14

The Aberdeen Architecture uses state machine monitors (nano-OS) for the trusted

computing base. The state machine monitors provide complete mediation for

instruction execution and memory page operations. The cache bank memory

pipeline architecture from the OS Friendly Microprocessor Architecture provides

the required space and time isolation in hardware.

3.3 Aberdeen Architecture Design Considerations

The Aberdeen Architecture is microprocessor instruction set architecture (ISA)

agnostic and could support either a complex instruction set computer (CISC) or a

reduced instruction set computer (RISC). For this report, we have chosen to focus

on the RISC-V ISA. RISC-V is an open ISA with strong academic research support

and support from computer industry captains: nVidia, Hitachi, Cadence, and

Western Digital (RISC-V 2020). The architecture design goals are to create a high-

assurance architecture using hardware security primitives to reduce OS complexity.

We envision a more streamlined version of seL4 to take advantage of the hardware

security primitives. We want the additional overhead for security to be negligible.

Clock speeds for an equivalent reference architecture without security primitives

will be similar to protected architecture. We picture a computer system composed

of hardware and software, where the hardware security primitives reduce OS

complexity and provide better system performance than a comparable architecture

running a traditional OS. We believe the system performance for state machine

security policies + execution pipeline + guest OS will be significantly better than a

traditional computer system.

In the real world, physics and geometry bound solutions. For example, x2 = 9 has

two potential solutions, x = +3 and x = –3. Physics and geometry place limits on

which solution is allowed. If something cannot be proved consistent according to

theory or logic, physics or geometry can help rule out extreme cases that are

unreasonable. We do not need to know if a program will run forever. We are not

concerned with whether or not a halting program will ever stop. We need to show

that a program cannot ever violate the system’s security policy.

3.4 Aberdeen Architecture Security Policies

The primary function of the state machine hardware monitors is to provide

complete mediation of instruction execution and only allow authorized information

flow. Denning (1976) defines security as no unauthorized information flow is

allowed: “‘Secure information flow,’ or simply ‘security,’ means here that no

unauthorized flow of information is possible.” The state machine monitors are

completely isolated from the instruction execution pipeline. In a traditional

15

microprocessor, the execution pipeline exists at the bare metal security layer. For

the Aberdeen Architecture, the state machine monitors reside at security layer 0

(one level below) and the execution pipeline at security layer 1. The state machine

monitors verify the following operations for each machine code instruction in real

time:

 Is this operation allowed for the instruction class?

 Is this memory operation safe?

 Is this control flow valid?

 Is data flow valid?

Valid information flow is maintained through instruction execution, memory

access, control flow integrity, and data flow integrity. Data flow integrity provides

complete mediation for information flow as a program is running. Complete

mediation is enforced by only allowing valid information flows during program

execution. In 1981, Landwehr stated a set of rules for managing information flow

(1981). The model tracks information flow from input information sources through

data processing to output information sinks. Landwehr’s five rules for managing

information flow are as follows (Landwehr 1981):

(1) A set of objects, representing information receptacles (e.g., files, program

variables, bits),

(2) A set of processes, representing the active agents responsible for information flow,

(3) A set of security classes, corresponding to disjoint classes of information,

(4) An associative and commutative class combining operator that specifies the class

of the information generated by any binary operation on information from two

classes, and

(5) A flow relation that, for any pair of security classes, determines whether

information is allowed to flow from one to the other.

The state machine monitors use security tag fields (3), control flow integrity tags

(3), and data flow integrity tags (3) to manage information flow from information

source (1) to information sink (5). The state machine monitors are the active agents

responsible (2) for complete mediation of information flow. The security tag bits

contain the set of security information classes (3). The state machine monitors

ensure information flow for associative and commutative data operations (4 and 5)

and input information flows, data processing, and output information flows for each

machine code instruction are valid (complete mediation of instruction execution).

Instruction execution (integrity) is a “streaming information flow”. Control flow

integrity security tags ensure program execution is along a valid control flow path.

16

Data flow integrity is similar to control flow integrity. Data flow integrity provides

complete mediation from the data source through data processing and to a data sink.

The goal of data flow control is to prevent information leakage. The following

example assumes security tags have been altered and other security settings

changed to allow installing and running malware. An accounting program has a

malicious subroutine. The malicious program is given access rights to sensitive

data. Data flow integrity prevents the malicious subroutine from sending sensitive

information to a non-allowed information sink. The state machine monitors enforce

a data flow policy that prevents data leakage as described in the confinement

problem (Lipner 1975).

3.5 Attack Model

For our attack model, we assume the hardware state machine monitors are

completely isolated from the execution pipeline and all running software. We

assume the state machine monitors have been semi-formally proven to formally

proven correct. We assume the security tag bits are not accessible by the execution

pipeline and running software. We assume the Aberdeen Architecture software

installation tool correctly turns a binary execution file into a security-instrumented

software application for the Aberdeen Architecture.

For our attack model, we assume a rogue software binary has been parsed by the

Aberdeen Architecture installation tool, and the security policy properly

configured. The Aberdeen Architecture will allow rogue software to run as long as

it does not violate any state machine security policies. As an example, assume a

malicious program has been given another process’s pointer to an I/O port. A

library function call to export a memory page would raise a hardware exception.

The process ID for the attack process would not match the pointer’s owner. I/O

pointers cannot be read or modified by application software. If the rogue software

attempted to read the address of a pointer, another hardware exception would occur.

3.6 Common Weakness Enumerations for Software-Facilitated
Hardware Vulnerabilities

DARPA’s System Security Integrated Through Hardware (SSITH) and firmware

call for proposals (DARPA 2017) used seven Common Weakness Enumerations

(CWEs) (DARPA 2017, Attachment 3 CWE Glossary) as security requirements.

The Aberdeen Architecture provides protections against all seven CWEs by

providing complete mediation for instruction execution, control flow integrity, and

data flow integrity. Data flow integrity covers data security level, data integrity,

and other data flow restrictions.

17

State machine monitors in the Aberdeen Architecture provide complete mediation

for instruction execution, control flow verification, and data flow verification.

Complete mediation provides a high-assurance sandbox environment to “interpret”

instructions in hardware similar to a software virtual machine. By providing

complete mediation at the lowest level, instruction execution, the architecture

achieves high assurance. We review the seven CWEs (DARPA 2017, Attachment

3 CWE Glossary) and briefly describe the protection measures provided by the

Aberdeen Architecture for each CWE.

1) Buffer Errors

This vulnerability allows inappropriate read and/or write access to locations within

memory associated with variables, data structures or internal program data.

Inappropriate access to memory is exploited to subvert the normal hardware

operations creating security vulnerability in the hardware. (DARPA 2017,

Attachment 3 CWE Glossary)

RISC-V Instruction Operation
{1}

READ: LW R1,10(R2)
rd = mem_read(addr = (rs1 + Offset))
R1 = mem_read(R2 + 10)

Common architectures, including RISC-V, use a von Neumann architecture. A

fundamental problem with current microprocessors is the lack of isolation provided

by a von Neumann machine. The first line of defense against buffer overflows

needs to be at the hardware level. A true Harvard architecture is required to enforce

hardware isolation between program instructions and data. Software isolation

provided by current isolation kernels, hypervisors, and so on, are inadequate.

Spectre, Meltdown, and related attacks illustrate how unknown hardware

vulnerabilities can be exploited. Full memory protection requires complete

mediation of instruction execution. All operations within an instruction {1} need to

be validated before allowing the instruction to complete. In this report, {1} notation

refers to short blocks of computer code similar to (1) notation used for equations.

For complete instruction mediation, we would need to check the items listed in

Table 2.

18

Table 2 Complete mediation for LW R1,10(R2)

Instruction Execution Complete Mediation Tests

0x00ABCD04 READ: LW R1,10(R2) Is the address 0x00ABCD04 valid for the

running process?

Is the memory page valid for the running

process?

Is the memory page executable code?

Is the memory page Process ID valid?

0x00ABCD04 READ: LW R1,10(R2) Are the control flow security tags valid?

LW Is LW tag set?

R2 Is register R2 a valid pointer?

R2 + offset Is the memory page pointed to by R2 + offset

valid?

Is the memory address pointed to by R2 +

offset valid?

mem_addr = R2 + offset Do the security tags for mem_addr allow for

read access by process?

R1 Are the data flow integrity tags valid?

R1 Do register tags allow write access to R1?

 If all mediation tests pass, then → R1 = READ(mem_addr = R2 + offset)

2) Permission, Privileges, and Access Control

This vulnerability allows execution of unauthorized operations in a system. A

privilege vulnerability can allow inappropriate access to system privileges. A

permission vulnerability can allow inappropriate permission to perform functions.

An access vulnerability can allow inappropriate control of the authorizing policies

for the hardware. (DARPA 2017, Attachment 3 CWE Glossary)

All resources are by default not allowed. All privileged operations are handled by

the hardware state machines. For privilege escalation to occur, the state machine

monitors would need to be directly subverted.

3) Resource Management

This vulnerability allows improper use of the hardware resources that in turn allow

external takeover of hardware resources. This includes improper access to

hardware resources such as memory, CPU, and communication and/or preventing

valid users from gaining access to these resources. (DARPA 2017, Attachment 3

CWE Glossary)

All requests for resources are managed by state machine monitors. The state

machine monitors are completely isolated from the execution pipeline. Software

has no access to state machine monitors. Side channels may leak information;

however, the architecture isolates all resources. For example, branch predictors

have a coefficient table for each process. A rogue process cannot modulate the

19

branch predictor to steal information from another process. Caches are isolated

based on process IDs. A rogue process cannot modulate a cache bank or line to leak

(steal) information from another process.

4) Code Injection

This vulnerability allows inappropriate code to be injected into the hardware due

to an inherent vulnerability in the hardware. This vulnerability allows introduction

of malicious code to change the course of execution on the hardware. (DARPA

2017, Attachment 3 CWE Glossary)

There are two possible code injection attacks: an outside attacker or an inside

operative with access to the software configuration and install tools. Our attack

model assumes the configuration and install process is trusted. There are also two

possible outsider system attacks: attacker has the system in hand or the attacker is

attacking remotely. We will only consider noninvasive network cyber-attacks. We

do not consider invasive system attacks in our attack model.

We assume the attacker has already succeeded in loading the attack “executable”

payload and the executable is running. Complete mediation of instruction execution

prevents malicious code from performing any illegal operations. We illustrated

complete mediation for a load instruction in Section 3.4. The malicious code

payload does not conform to the installed program’s control flow graph and data

flow graphs. A control flow violation would occur when the malicious program

diverged from the control flow graph. A data flow integrity exception would occur

if security and/or integrity policies are violated. A hardware exception would occur

if an illegal instruction operation were attempted.

5) Information Leakage (also known as Information Exposure)

This vulnerability allows inappropriate access to privileged information in the

hardware through intentional or unintentional information sharing. This

vulnerability includes inappropriate data transfers, caching mechanisms, and error

handling but are not limited to these areas. (DARPA 2017, Attachment 3 CWE

Glossary)

The combination of complete mediation for instruction execution and time-space

isolation prevents processes from being correlated. Shared resources are completely

space and time isolated. Aberdeen Architecture provides high-assurance space and

time isolation to block information leakage.

6) Crypto Errors

This vulnerability allows inappropriate use and execution of cryptography in

hardware. This vulnerability includes inappropriate access to cryptographic keys

20

and inappropriate use of these keys to exfiltrate information or allow inappropriate

access to hardware. (DARPA 2017, Attachment 3 CWE Glossary)

The current Aberdeen Architecture is a base architecture. A cryptographic engine

can be connected through a DMA channel. Cryptographic keys are stored in

protected memory blocks. Software does not have direct access to crypto keys.

Figure 1 illustrates a protected I/O pointer for the OSFA architecture. Crypto keys

can be protected using the same protected pointer type. A protected pointer points

to a crypto key. As illustrated in the OSFA tech report, software knows the crypto-

pointer is linked to a crypto key. Software does not have access to read/write to the

crypto-pointer or the crypto key. Software can pass a protected crypto-pointer to a

hardware cryptographic unit. The cryptographic core uses the crypto-pointer to

access the cryptographic key. A hardware state machine can manage cryptographic

operations and has read access to the crypto key.

Fig. 1 OS friendly microprocessor architecture protected pointers (Jungwirth and

LaFratta 2017)

7) Numeric Errors

This vulnerability allows exploitation of improper calculation or conversion of

numbers and numeric types. Improper/incorrect calculations can allow subversion

of security critical operational decisions and/or resource management. (DARPA

2017, Attachment 3 CWE Glossary)

Improper calculations or data conversion attacks are blocked by control flow

integrity protections and data flow integrity protections. Data flow integrity in the

Aberdeen Architecture provides security tags for secrecy levels, integrity, and data

types. A gadget is a short block of code found in a common library function. A

series of gadgets are called in an attacker predetermined order to craft an attack

program. Control flow integrity provides specific entry and exit points for library

functions. Code entry and exit points drastically limit opportunities for calling

useful attack gadgets. The security tags also ensure that the secrecy level, integrity,

and data types are compatible.

21

3.7 Data-Dependent Information Flows

Figure 2 illustrates simple data-dependent information flows. Program instruction

flow is data dependent. The C code condition if(arr[j] > arr[j+1]) results in

data-dependent instruction execution. System state behavior must not be correlated

with data-dependent program execution. The Aberdeen Architecture uses the four

information flows in Table 1 to build a high-assurance architecture.

// C code bubble sort routing

// swap variables
void swap(int a, int b) {
 int temp = a;
 a = b;
 b = a;
}

// bubble sort function
int bubbleSort(int arr[], int n) {
 int i, j;

 for (i = 0; i < n-1; i++)

 for (j = 0; j < n-i-1; j++)

 if (arr[j] > arr[j+1])
 swap(arr[j], arr[j+1]);

 return 0
}

Fig. 2 Bubble sort

3.8 Architecture Summary

The Aberdeen Architecture’s goal is to provide complete mediation down to the

instruction execution level (instruction execution integrity). All information flows

are verified from information source to information sink. The state machine

monitors are completely isolated from the execution pipeline and all running

software. The state machines are the managers (controllers) for the execution

pipeline. Multiple security policies are running simultaneously. In order to subvert

the system, most if not all of the security monitors would need to be defeated.

Bubble Sort

Data Flow Dependent Program

Execution

22

As with the Tacoma Narrows Bridge, lessons learned need to be applied to new,

more secure architectures. More complexity results in a higher probability of an

unknown attack vector. Engineers can only make it more expensive to attempt to

break in. Keep in mind, an un-hackable system cannot be built and it can never be

fully tested.

4. Aberdeen Architecture

Podebrad et al. (2009) and Tiwari et al. (2011) point out that current computers are

only designed for speed; security issues are completely ignored. It is time to

develop new, more secure architectures. Resource sharing across concurrently

running processes cannot be allowed. For example, the branch coefficients in a

branch predictor are shared across multiple running processes. Allowing processes

to manipulate cache lines or banks across multiple concurrent processes should not

be allowed. The execution pipeline needs to support complete mediation for

instruction execution.

The analysis of currently available computer architectures has shown that such

systems offer a lot of security gaps. This is due to the fact that in the past hardware

has only been optimized for speed - never for security. (Podebrad et al. 2009)

Almost every recent microarchitectural technique is built around the notion of

optimizing the common case, an end achieved in large part through the addition of

caches, status bits, exceptions, predictors, and other behaviors that modify the state

of the machine. The problem is that, if one is protecting a secret or handling

untrusted data, every operation performed on that secret will affect those internal

states in one way or another. Non-interference requires that those affected internal

states are then in no way visible to the other components, including either directly

through the ISA, or indirectly through the resulting differences in behavior or

timing. (Tiwari et al. 2011)

Figure 3 shows the classic 5-stage RISC execution pipeline. The classic RISC

execution pipeline cannot distinguish between safe instructions, coding errors, and

malicious instructions. Recent research demonstrates that security tag bits provide

security awareness. The DARPA CRASH program, the DARPA SSITH program,

and the Redstone Architecture (OS friendly microprocessor architecture) use

security tag bits. The Redstone Architecture uses two levels of security tag bits. The

Aberdeen Architecture uses the Redstone Architecture's execution pipeline for

security level 1. Level 0, hardware-based state machine monitors, provides the

foundational level security policy and complete mediation for instruction

execution.

23

Fig. 3 Classic 5-stage RISC execution pipeline (Jungwirth 2020b)

The Aberdeen Architecture uses state machine monitors completely isolated from

the execution pipeline to enforce hardware-based security policies. There are four

main hardware-enforced security policies: (1) instruction execution [integrity], (2)

page memory access control [memory integrity], (3) control flow integrity, and (4)

data flow integrity. The Aberdeen Architecture extends the research work found in

Lipner (1975), Jungwirth et al. (2017, 2018a, 2018b, 2019b, 2020), Jungwirth and

Ross (2019), Jungwirth (2020a), and Jungwirth and La Fratta (2015, 2016, 2017).

The Aberdeen Architecture enforces Saltzer and Schroeder’s security principles

(1975) at the instruction execution level. Shared hardware resources leak

information. Attack processes will maliciously modulate shared resources to

maximize information leakage (Lipner 1975; Bernstein 2005; Acıiçmez et al. 2007;

Jungwirth and Hahs 2019). The Aberdeen Architecture does not allow resource

sharing across multiple, concurrent, running processes.

The Aberdeen Architecture’s hardware-level security policy consists of several

hardware monitors (nano-kernels). In Section 4.1, we present a historical review

covering the development of hardware-based operating systems. In Sections 4.2–

4.5, the Aberdeen Architecture is introduced and presented in detail.

4.1 Historical Review

In 1968, Dijkstra wrote the foundational paper for the modern operating system

“The structure of the 'THE' - multiprogramming system” (1968). From the 1970s

through the early 1990s, microprogramming was used to implement operating

system primitives in hardware. Microprogramming was the first step toward a

hardware-based operating system. In 1973, Goldberg was researching direct

hardware execution for a virtual machine:

Pipeline cannot determine if an

instruction is safe or malicious

1011 0110 1110 1110 1111 0101 1110

Malicious Machine

Code Instruction(s)

IF ID EXE MA

Instruction

Fetch

Instruction

Decode

Instruction

Execute

Memory

Access

Register

Writeback

Classic 5 Stage RISC Pipeline

WB

1001 1110 1110 1010 1100 0111 0110

Coding Error(s)

24

An HVM [Hybrid Virtual Machine] is functional equivalent to a real machine. All

instructions issued within the most privileged layer of the HVM are software

interpreted while all non-privileged-layer instructions execute directly.

In 1975, Sockut (1975) published research on firmware/hardware support for

operating systems. Brown et al. (1977) researched microprogramming to improve

operating systems in 1977. Foster (1978) considered hardware enhancement for

operating systems in 1978. In 1982, Kamibayashi et al. (1982) researched

microcoded OS’s and the “advantages of the efficiency which may be gained from

microcoded operating system primitives.” In the early 1990s, microprogramming

was still being researched for operating systems (Papachristou and Gambhir 1991).

Around that same time, Nakano et al. developed the first practical hardware-based

operating system (1995, 1997, 1999). During the 2000–present time frame,

hardware operating systems have reached the commercial world (Hardin 2001;

Murtaza et al. 2006; Song et al. 2007; Vetromille et al. 2006; Yan et al. 2010;

Oliveira et al. 2011; Ong et al. 2013; Moisuc et al. 2014; Stenquist 2014; Renesas

2021a, 2021b). In 2014, Renesas released the R-IN32M3 microcontroller with a

hardware-based operating system (Renesas 2014; Renesas 2021a).

Tagged security computer architectures originated in the 1970s. In 1973, Feustel

proposed using a tagged architecture to overcome limitations present in the von

Neumann machine.

Taken together, the arguments we have advanced provide a powerful incentive for

further investigation and exploitation of tagged architecture. Such a machine may

soon well be a replacement for today's widely accepted von Neumann architecture.

(Feusel 1973)

In 1975, Saltzer and Schroeder proposed using tagged architectures for securing

protected operations.

Suppose, for example, that every location in memory were tagged with an extra

bit. If the bit is OFF, the word in that location is an ordinary data or instruction

word. If the bit is ON, the word is taken to contain a value suitable for loading into

a protection descriptor register. … This kind of scheme is a particular example of

what is called a tagged architecture. (Saltzer and Schroeder 1975)

In 1989, Bondi and Branstad researched a tagged architecture to simplify high-

assurance certification:

The architecture's hardware-enforced fine-grained mediation will …

• permit sufficient simplification of security kernel and other associated trusted

25

software to bring certification at TCSEC [Trusted Computer System

Evaluation Criteria] level A1 (and beyond) within reach;

 • support highly secure data flow control. …

In the early 1980s, hardware optimizations like caches, execution pipelines, and

speculative execution where not used in commercial microprocessors. In 1985, one

paper (Gehringer and Keedy 1985) pointed out that tagged architectures were an

‘unnecessary’ complexity compared to software. Today, tagged architectures offer

numerous computer security benefits for high-assurance architectures. DARPA’s

Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) 2011 program

led to significant research into new tagged architectures for better computer security

(Kenyon 2012; Smith n.d.). The website, www.crash-safe.org, hosts a number of

CRASH architecture research papers (de Amorim et al. 2017; Chiricescu et al.

2013; Dhawan et al. 2017).

The DARPA System Security Integration Through Hardware and Firmware

(SSITH) Program (Rebello n.d.; Chirgwin 2017; DARPA Microsystems

Technology Office 2017; Hruska 2017; Keller 2017; Blinde 2018) promoted the

development of new architectures to remove software initiated attacks against

vulnerable hardware. The Register.com announced “DARPA seeks SSITH lords to

keep hardware from the Dark Side” (Chirgwin 2017). SSITH architecture research

papers, covering secure speculative execution (Jiang et al. 2018), information flow

enforcement (Tarma et al. 2019), and cryptographic accelerators (Jiang et al. 2019),

and defending against data oriented programming (DOP) attacks (Aga and Austin

2019) were recently published. Significant research efforts in the 2010s have led to

renewed interest in tagged architectures for computer security (Aga and Austin

2019; Zeldovich et al. 2008; Shrobe et al. 2009; Shioya et al. 2009; Dhawan et al.

2012; Song and Alves-Foss 2013; and Song 2014).

Security techniques should be simple to understand and provide high assurance.

Abadi et al. (2005) recommend for high-assurance systems:

In order to be trustworthy, mitigation techniques should — given the ingenuity of

would-be attackers and the wealth of current and undiscovered software

vulnerabilities — be simple to comprehend and to enforce, yet provide strong

guarantees against powerful adversaries. On the other hand, in order to be

deployable in practice, mitigation techniques should be applicable to existing code

(preferably even to legacy binaries) and incur low overhead.

The Redstone Architecture (OS Friendly Microprocessor Architecture [OSFA])

uses a tagged cache bank memory pipeline for high assurance and high performance

(Jungwirth et al. 2017, 2018a, 2018b, 2019b, 2020; Jungwirth and Ross 2019;

Jungwirth 2020a; Jungwirth and La Fratta, 2015, 2016, 2017). The Redstone

http://www.crash-safe.org/

26

Architecture was patented, US9122610, in 2015. A security framework for the

Redstone Architecture was patented, US10572687, in 2020. The Aberdeen

Architecture uses the Redstone Architecture for security layer 1. Aberdeen

Architecture is currently patent pending.

4.2 Aberdeen Architecture Philosophy and Goals

The Aberdeen Architecture manages objects (instructions, data and memory pages)

by classes. The research Aberdeen Architecture uses the RISC-V instruction set.

There are four instruction classes: (1) arithmetic/logic sequential, (2) load/store

sequential, (3) conditional branch, and (4) jump. Each instruction class has a set of

security properties enforced by state machine monitors. The instruction execution

[integrity] state machine monitor provides complete mediation for instruction

execution.

High assurance systems of the future need a bottom-up, hardware and software co-

design approach to security [5] and a hardware level root of trust [6]-[7]. We

should also consider the high assurance levels achieved by state machines for

safety critical applications where rigorous system verification is required.

(Jungwirth et al. 2018b)

There are several memory page classes. Each class has a set of security properties

enforced by state machine monitors. The memory page state machine monitor

(MPSM) enforces security properties for several different memory page types. For

example, the I/O_Page_Mem class provides for page-level input and output

operations. No data operations may be performed on an I/O_Page_Mem class. This

restriction enforces least privilege, privilege separation, and complete mediation

for I/O. Data and math operations are restricted to “data” contained in a memory

page type = Data_Page_Mem class. There are conversion instructions provided to

convert memory pages between I/O_Page_Mem and Data_Page_Mem classes.

The memory state machine monitor provides complete mediation for load and store

memory operations. The stack machine monitor provides complete mediation for

all stack operations. The Aberdeen Architecture uses multiple stacks to provide

least privilege and privilege separation for different stack types. For example, return

addresses and call arguments are not placed on the same stack.

There may appear to be a large number of memory page types; however, we are

balancing security policy, flexibility, OS complexity, and performance. Memory

page classes provide least privilege, privilege separation, and complete mediation

for each memory class. This simplifies OS complexity, provides higher

performance, and provides a better security policy.

27

Aberdeen Architecture uses state machine monitors to enforce security polices

based on Saltzer and Schroeder’s security principles, and Landwehr’s information

flow control rules. The Aberdeen Architecture protects against all seven CWEs

(DARPA 2017, Attachment 3 CWE Glossary) by providing complete mediation for

instruction execution integrity, page memory access integrity, control flow

integrity, and data flow integrity. Data flow integrity covers data security level, data

integrity, and other data flow restrictions.

Aberdeen Architecture limits a rogue program to benign behavior. The goal of the

Aberdeen Architecture is to limit a rogue program to only harm itself. As long as

the architecture protects all programs, memory spaces, and so on, from a rogue

program, damage is limited to only the rogue process. Complete mediation provides

high assurance.

The Aberdeen Architecture provides complete mediation for instruction execution

and memory operations. Control flow integrity verifies that program execution

follows its control flow graph. Data flow integrity verifies information flow during

program execution. The trusted computing base needs to be completely

implemented in hardware and completely isolated from software. Aberdeen

Architecture’s security policy is enforced by several state machine monitors. The

proposed state machines implement a foundational-level hardware security policy.

The Aberdeen Architecture includes several state machines: instruction execution

monitor, memory page monitor, control flow monitor, data flow monitor, exception

monitor, scheduler monitor, and interrupt monitor. Architecture objects are

categorized by allowed operations. Aberdeen Architecture uses the Redstone

Architecture’s (OS Friendly Microprocessor Architecture) (Jungwirth and LaFratta

2015) pipeline and security features for the security layer 1.

Software is mutable, generally buggier than hardware, might have coverage holes

due to heterogeneity and layering, and might implement incorrect privacy notions.

Hardware, however, is immutable and can sit between data sources (sensors) and

data consumers (software accessing the data), guaranteeing coverage and a

universal, minimum notion of privacy. (Sethumadhavan 2016)

De Clercq and Verbauwhede (2017) and Sethumadhavan (2016) recommended

placing the trusted computing base in hardware. Complete mediation for instruction

execution and memory operations has the potential of overcoming the limited

success of previous memory protections focused on specific attack vectors (Suh

et al. 2004).

Unfortunately, it is very difficult to protect programs by stopping the first step of

an attack, namely, exploiting program vulnerabilities to overwrite memory

28

locations. There can be as many, if not more, types of exploits as there are program

bugs. Moreover, malicious overwrites cannot be easily identified since vulnerable

programs themselves perform the writes. Conventional access controls do not

work in this case. As a result, protection schemes which target detection of

malicious overwrites have only had limited success – they block only the specific

types of exploits they are designed for. (Suh et al. 2004)

4.3 Aberdeen Architecture

We begin by describing the software design philosophy for the Aberdeen

Architecture. This provides a foundation to describe protections provided by the

Aberdeen Architecture. The software design philosophy describes how programs

are structured to take advantage of the protection features provided by the Aberdeen

Architecture. The next sections introduce the major features of the Aberdeen

Architecture: ISA, memory architecture, tag protection bits, control flow integrity

(CFI), and data flow integrity (DFI). Tag protection bits are the basis for instruction

execution integrity, control flow integrity, and data flow integrity. For the Aberdeen

Architecture, we consider the instruction execution flow as an information flow.

Malicious manipulation of the instruction flow execution leaks information. We

need to secure instruction execution just like securing data information flow using

security and integrity parameters. For the Aberdeen Architecture, we group ‘data’

information flow into a single class called data flow integrity. We now have four

subclasses of information flow: instruction execution, page memory access, control

flow integrity, and data flow integrity. High-assurance information security policies

manage instruction execution, page memory access, control flow, and data flow.

In terms of a virtual machine, the security tag fields enable complete virtualization

of the execution pipeline. The register security tags also virtualize the register file

(registers R0, R1, R2, ∙∙∙ R31). The security tag fields are “interpreted” in real time

by the hardware state machine monitors. The monitors enforce the hardware-level

security policies providing complete instruction execution mediation.

Aberdeen Architecture adds hardware-level nano-kernel state machine monitors to

the Redstone Architecture. Figure 4 illustrates how the state machine enforces

security policies for the execution pipeline. Redstone Architecture uses two-level

security tag fields and cache bank memory pipeline architecture to provide high

performance. The Aberdeen Architecture enforces complete mediation for

instruction execution. The Aberdeen Architecture’s state machines enforce high-

assurance hardware-level security policies from architecture level 0 (most secure

layer). Execution pipeline (security level 1) runs software at security levels 2 and/or

higher. In terms of a virtual machine, the state machine monitors provide full

virtualization for the execution pipeline. The hardware security policy enforces

29

allowed instruction behavior for each instruction class. The Aberdeen Architecture

uses security policies to enforce allowed operations for the four information flow

classes. Instruction execution is considered an information flow class that is

dependent on the data flow class. The Aberdeen Architecture uses multiple security

policies to enforce allowed instruction execution. For example, a control flow

monitor ensures that the executing program is following a valid control flow path.

The next sections present a detailed description of the Aberdeen Architecture.

Apply Execution Pipeline Security Policies

State
Machine

State
Machine

State
Machine

State
Machine

IF ID EXE MA WB

Instruction
Fetch

Instruction
Decode

Instruction
Execute

Register
Writeback

Memory
Access

State
Machine

State
Machines

Fig. 4 State machine security policies

4.3.1 Aberdeen Architecture’s Information Flow Classes

Aberdeen Architecture uses four information flow classes. Information flow has

focused on data and data processing information flows. The current view of basing

information flow only on data needs to be extended. A wider view of information

flow is needed to better secure microprocessor architectures. Table 1 lists the four

information flow classes. All information flows are data flow dependent. Data flow

determines the path taken for program instruction flow (integrity), control flow

graph (control flow integrity), and memory access flow (integrity). Data flow

integrity covers integrity, secrecy, and other data characteristics (measurement

units, and data type [record, float, integer, etc.]). Data flow dependencies need to

be fully understood to create a secure architecture. As pointed out in Abadi et al.

(2005), stack operations are not taken into account in a control flow graph. Stack

operations can be data dependent or not. Stack memory access operations need to

be secured. Control flow integrity needs to be supplemented with stack and memory

protections. Data flow can drive stack and function call paths. We need to build up

30

a sound security policy starting from data flow, covering memory access, control

flow, and program instruction flow.

4.3.2 Software Design Philosophy Introduction

A microprocessor is designed to run software. We introduce the software design

philosophy for the Aberdeen Architecture to build up the architecture a step at a

time. We will use the Sieve of Eratosthenes C program in Fig. 5 as a code example.

Software for the Aberdeen Architecture is configured with a block structure. Single

CALL entry and RETURN exit points restrict function entry and exit points

(Kiriansky et al. 2002). We will build upon this code example to explain the

operation of the Aberdeen Architecture.

Another process, or the function itself, is not allowed to CALL an instruction inside

a function or code block. The block code structure is to prevent gadget attacks

typically used against library functions (or dynamically linked library [DLL]

functions). The block code structure is to enforce least privilege, privilege

separation, and complete mediation principles from Saltzer and Schroeder. Tag bits

are used to define the entry and exit code points. Tag bits can also be applied to

exception handlers to ensure code execution follows an allowed path (control flow

integrity). Figure 5 shows a C code version of the Sieve of Eratosthenes algorithm.

Figure 6 illustrates the code block formed by the entry point (CALL to function) and

exit point (RETURN from function). We will expand upon this code block structure

for the Aberdeen Architecture.

The sieve code uses a packed bit array of consecutive 32-bit words to hold bits

representing prime or not prime. In order to remove the square root function from

the algorithm, we define two parameters, R and LAST = R2 - 1. This removes the

square root function from the while loop: while (base < R). Figure 7 shows an

example list of prime numbers for R = 37 and LAST = 372 – 1 = 1368. Figure 8

shows the RISC-V assembly and machine codes for the Sieve of Eratosthenes

routine. We will use the RISC-V Sieve of Eratosthenes program to describe the

operation of the Aberdeen Architecture.

31

// Sieve of Eratosthenes
// uses packed bit array to store prime / not prime result
// pb[] = packed bit array, word aligned, e.g. addr = 0x100
// J. Ross and P. Jungwirth, Army Research Lab, October 2019
// C code is based on rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada
// Algorithm see https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

#include <stdio.h>
#define R 37
#define LAST (R * R)
#define LWORD (LAST / 32)
int pb[LWORD + 1]; // = { [0 ... LWORD] = 0xffffffff } -- packed bit array

void setbits() {
 for (int i = 0; i < LWORD + 1; i++) pb[i] = 0xffffffff; }

void display() {
 int bit = 0; int word = 0; int shift = 0;
 printf("Prime Numbers are \n");
 for (int i = 1; i < LAST - 1; i++)
 { word = i >> 5; shift = i & 0x1f;
 bit = (pb[word] >> shift) & 1;
 if (bit == 1) printf(" %d", i); }
}

void sieve() {
 int base = 2; int pbit = 0; int cnt = 0;
 int base_bit = 0; int base_word = 0; int base_shift = 0;
 int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;
 while (base < R) {
 base_word = base >> 5; base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;
 if (base_bit)
 { cnt = base << 1; // base + base;
 while (cnt < LAST)
 { cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask;
 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;
 cnt = cnt + base; }
 }
 base = base + 1;
 }
}

int main() {
 setbits(); // set array of bits = 1's
 sieve(); // Call Sieve of Eratosthenes
 display(); // display prime number
 return 0;
}

Fig. 5 Sieve of Eratosthenes in C code

Sieve of Eratosthenes Code

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

32

Fig. 6 Block code structure

Fig. 7 Sieve of Eratosthenes results for R = 37

Entry and Exit points
block other processes
from using a function
CALL to jump inside

the code block

void sieve() {
 int base = 2; int pbit = 0; int cnt = 0;
 int base_bit = 0; int base_word = 0; int base_shift = 0;
 int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;
 while (base < R) {
 base_word = base >> 5; base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;
 if (base_bit)
 { cnt = base << 1; // base + base;
 while (cnt < LAST)
 { cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask;
 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;
 cnt = cnt + base; }
 }
 base = base + 1;
 }
}

Single Entry Point

Single Exit Point

33

// Sieve of Eratosthenes – RISC-V Assembly Language

Memory Address Machine Code Assembly Code Code Description
 0x0000 0008: <sieve> 0x00200613 li a2, 2 # base = a2 = 2
 0x0000 000c: 0x10000513 li a0, 0x100 # pb[0] = 0x100
 0x0000 0010: 0x00100893 li a7, 1 # a7 = 1
 0x0000 0014: 0x06300813 li a6, 0x63 # LAST = R^2 -1 = 100 - 1
 0x0000 0018: 0x00a00313 li t1, 0x10 # t1 = R = 16
 0x0000 001c: 0x00c0006f j 28 <L1> # jump to <L1>
 0x0000 0020: <L3> 0x00160613 addi a2, a2, 1 # a2 = base = base +1

 0x0000 0024: 0x04660a63 beq a2, t1, 78 <L2> # if base = R then <L2> Done

 0x0000 0028: <L1> 0x40565793 srai a5, a2 ,0x5 # a5 = word offset
 0x0000 002c: 0x00279793 slli a5, a5, 0x2 # a5 = byte offset [note 1]
 0x0000 0030: 0x00f507b3 add a5, a0, a5 # a5 = pb[0] + byte offset
 0x0000 0034: 0x0007a783 lw a5, 0(a5) # a5 = LW(addr = a5)
 0x0000 0038: 0x40c7d7b3 sra a5, a5, a2 # a5 = a5 >> a2 [note 2]
 0x0000 003c: 0x0017f793 andi a5, a5, 1 # a5 = pb[word, bit number]
 0x0000 0040: 0xfe0780e3 beqz a5, 20 <L3> # if a5 = bit = 0 the <L3>
 0x0000 0044: 0x00161693 slli a3, a2 ,0x1 # a3 = cnt = base + base
 0x0000 0048: <L4> 0x4056d793 srai a5, a3, 0x5 # a5 = word offset from a3
 0x0000 004c: 0x00279793 slli a5, a5, 0x2 # a5 = byte offset
 0x0000 0050: 0x00f507b3 add a5, a0, a5 # a5 = pb[0] + byte offset
 0x0000 0054: 0x0007a583 lw a1, 0(a5) # a1 = LW(addr = a5 + 0)
 0x0000 0058: 0x00d89733 sll a4, a7, a3 # a4 = 1 << cnt = 0••010••00
 0x0000 005c: 0xfff74713 not a4, a4 # a4 = 1•••0•••11
 0x0000 0060: 0x00b77733 and a4, a4, a1 # clear bit
 0x0000 0064: 0x00e7a023 sw a4, 0(a5) # update word
 0x0000 0068: 0x00c686b3 add a3, a3, a2 # cnt = cnt + base
 0x0000 006c: 0xfcd85ee3 ble a3, a6, 48 <L4> # if less then <L4>
 0x0000 0070: 0x00160613 addi a2, a2, 1 # base = base + 1
 0x0000 0074: 0xfa661ae3 bne a2, t1, 28 <L1> # if base != R then <L1>

 0x0000 0078: <L2> 0x00000513 li a0, 0 # clear a0

 0x0000 007c: <return> ret

Fig. 8 RISC-V Sieve of Eratosthenes

34

The Aberdeen Architecture is instruction-set agnostic; however, to describe the

architecture’s operations, we need a specific instruction set. For this technical

report, we will use the RISC-V 32-bit integer instruction set. Code fragment {2}

shows the first line of the RISC-V code for the Sieve of Eratosthenes. We will add

tag bits to the machine code instructions for control flow integrity, data flow

integrity, memory access integrity, and instruction execution integrity. Memory

integrity is enforced by instruction execution integrity, control flow integrity, and

data flow integrity. For example, Aberdeen Architecture uses separate stacks for

“data” and return addresses. Mixing stack classes violates Saltzer and Schroeder’s

principles of least privilege, privilege separation, and complete mediation. More

details about memory architecture will be presented in Section 4.3.3.

Memory
Address

Instruction
Machine Code

RISC-V
Assembly Language

{2}

0x0000 0008

0x0020 0613

<sieve> li a2, 2 # base = a2

4.3.3 Instruction Set Architecture (ISA)

The Aberdeen Architecture is ISA agnostic. Both complex instruction set computer

and reduce instruction set computer ISAs can be used for the Aberdeen

Architecture. For this technical report, we have chosen to use the RISC-V reduce

instruction set computer ISA. The open source and extendable RISC-V ISA has an

established user community and software development ecosystem. Current

proprietary microprocessor ISAs were never designed to be extended. RISC-V

promotes its open design philosophy by creating an architecture that is designed to

be extended by the user community. We take advantage of this design philosophy

to create the Aberdeen Architecture. In addition, the small number of instruction

classes simplifies the design and simplifies establishing high assurance.

Table 3 lists the four classes of RISC-V instructions: (1) arithmetic/logic sequential,

(2) load and store sequential, (3) conditional branch, and (4) jump. A sequential

instruction increments the program counter register (PCR) by one instruction

(4 bytes for RISC-V). RISC-V arithmetic and logic instructions are sequential. An

example sequential class instruction is shown in Table 3 and Fig. 9. Load/store

instructions are sequential and read or write to memory. Figure 10 illustrates load

and store class instructions. The conditional branch instruction class is shown in

Fig. 11. A conditional branch instruction has two possible next instructions. If the

branch condition is false, the program counter is incremented by one instruction

(4 bytes). If the branch condition is true, the program counter is loaded with the

address for the destination instruction. Figure 12 describes the jump instruction

class. The jump instruction class has only one destination address. A jump

35

instruction loads the program counter with the destination address contained in the

jump instruction. The four instruction class definitions provide for least privilege

execution for each type of instruction. The Aberdeen Architecture uses the four

classes of instructions for instruction execution integrity.

Table 3 Aberdeen Architecture instruction classes

Instruction Class RISC-V Instruction Instruction Operation Next Instruction

(1) Sequential add R1,R2,R3 R1 = R2 + R3 PCR = PCR + 4

(2a) Load Sequential lw R1, 0(R2) R1 = read_mem(0 + R2) PCR = PCR + 4

(2b) Store Sequential sw R4, 0(R5) write_mem(0 + R5) = R4 PCR = PCR + 4

(3) Conditional Branch ble R3, R6, 48

Branch if less than

if(R3 < R6) then 48

else next instruction

PCR = 48 (true)

PCR = PCR + 4

(false)

(4) Jump j 28 Jump to address = 28 PCR = 28

Fig. 9 Sequential instruction class

Fig. 10 Load and store instruction class (same as sequential with memory access)

Sequential
Instruction

Executing Instruction
at Address = Instr_Addr
PC = Instr_Addr = 0x30

PC = Instr_Addr + 1 (instruction)
= 0x34

Next
Instruction

0x30: add a5, a0, a5 # a5 = pb[0] + byte offset

0x34: lw a5, 0(a5) # a5 = LW(addr = a5)

RISC-V Sieve of Eratosthenes Example

0x38: sra a5, a5, a2 # a5 = a5 >> a2

Load or Store
Instruction

Executing Instruction
at Address = Instr_Addr
PC = Instr_Addr = 0x34

PC = Instr_Addr + 1 (instruction)
= 0x38

Next
Instruction

Access
Memory

0x34: lw a5, 0(a5) # a5 = LW(addr = a5)

Load Word from Mem_Addr = register a5

RISC-V Sieve of Eratosthenes Example

36

Fig. 11 Conditional branch instruction class

Fig. 12 Jump instruction class

The instruction execution monitor provides a hardware virtual machine for

instruction execution. The execution of the instruction must pass all of the state

machine monitors’ verifications in order for the instruction to complete execution.

If a state machine monitor’s verification fails, a hardware-level exception is raised.

4.3.4 Memory Page Background

The Aberdeen Architecture uses the memory classes defined in Fig. 13. The classes

extend the memory classes described in the research paper “Hardware Security

Kernel for Cyber Defense” (Jungwirth et al. 2019b). A von Neumann machine

mixes program instructions and data. There is no difference between program

instructions and data; both are integers. In a von Neumann machine, a simple buffer

overflow “converts data” into program instructions. The von Neumann

architecture violates several of Saltzer and Schroeder’s security principles. The

Aberdeen Architecture’s memory classes restrict permitted operations to provide

least privilege and privilege separation for each memory class.

Executing Instruction
at Address = Instr_Addr
PC = Instr_Addr = 0x40

PC = Instr_Addr + 1 (instruction) = 0x44Next
Instruction

Destination
Address

PC = Destination Address = 0x20

Conditional
Branch

0x40: beqz a5, 20 <L3> # if a5 = bit = 0 then <L3>

0x44: slli a3, a2 ,0x1 # a3 = cnt = base + base

0x20: <L3> addi a2, a2, 1 # a2 = base = base +1

RISC-V Sieve of Eratosthenes Example

0x28: <L1> srai a5, a2 ,0x5 # a5 = word offset

Executing Instruction
at Address = Instr_Addr
PC = Instr_Addr = 0x1c

Destination
Address

PC = Destination Address
= 0x28

Jump 0x1c: j 28 <L1> # jump to <L1>

RISC-V Sieve of Eratosthenes Example

37

Fig. 13 Memory classes. Each class supports least privilege, privilege separation, and

complete mediation.

Process_Config_Page contains the start-up or boot parameters for the process.

Only the state machine monitors may read a Process_Config_Page memory

page. The Process_Config_Page contains the global security settings for a

process. For a more secure environment, encryption and a digital signature can be

used to protect the integrity of the Process_Config_Page.

The classic stack mixes data, function call parameters, return addresses, and so on.

Data, function call parameters, and return addresses are different object classes.

Each class has a set of authorized and unauthorized operations. Mixing stack classes

violates Saltzer and Schroeder’s security principles. On the surface, more stack

classes may seem like an increase in complexity; however, we are restricting each

stack class to least privilege. The multiple stack classes provided for the same

functionality as the conventional mixed class stack with significantly better

computer security.

The Exe_Page memory page class is execute only (unless page is being loaded).

Exe_Stack_Page provides function call and return stack operations for a running

process. We seek to completely isolate Exe_Stack from data. DLL_Data and

DLL_Stack memory pages support function calls to library functions. DLL_Data

and DLL_Stack memory pages restrict operations to those limited to support

function calls.

The Shared_Data memory page supports shared memory between two processes.

Shared memory operations are restricted to operations permitted for sharing

memory between two or more running processes.

The I/O_Page is the only memory page class that supports input and output. The

I/O_Page class limits input and output to a single memory class. I/O_Page

supports least privilege and privilege separation for input and output operations. No

other memory page class may be used for I/O. This is not as flexibles as C-pointer

arithmetic operations; however, it is much more secure. The I/O_Page class

supports complete mediation for all input and output operations.

Process Configuration Page

Exe Page

Exe Page

Exe Page Data Page

Data Page

Data Page

Data Page

Data Stack

Data Stack

I/O PageSharedData

SharedDataExe Stack

Exe Stack DLL Data

DLL Data

DLL Data

DLL Stack

DLL Stack

38

4.3.5 Tag Protection Bits

Saltzer and Schroeder promoted tagged memory for computer security back in

1975:

Suppose, for example, that every location in memory were tagged with an extra

bit. If the bit is OFF, the word in that location is an ordinary data or instruction

word. If the bit is ON, the word is taken to contain a value suitable for loading into

a protection descriptor register. … This kind of scheme is a particular example of

what is called a tagged architecture.

With the DARPA CRASH (DARPA 2010) and DARPA SSITH (Salmon 2017a)

programs, there has been a renewed interest in tag bits for high-assurance computer

systems. There is an underlying assumption for tag bits. Software cannot access tag

security bits. Software cannot force the architecture to leak information about the

tag security bits. Without complete isolation, tag security bits are not able to protect

a system.

The Aberdeen Architecture uses the security tag field architecture from the OS

Friendly Microprocessor Architecture (Redstone Architecture). A brief

introduction to tag fields for the Aberdeen Architecture is presented next. More

details will be provided in later sections.

Table 4 illustrates the instruction word tag protection bit fields for the Aberdeen

Architecture. The tag bits are “attached” to the instruction; however, only the

hardware state machines can access the tag bits. Tag bits are assumed to be created

by a trusted authority and/or trusted process. The tag bits allow the state machine

security policies to verify instruction execution (complete mediation). The tag bits

are completely isolated from all software and the execution pipeline.

Table 4 Aberdeen Architecture instruction format

Memory Address RISC-V Machine Code Local Tag Fields

0x0000 0034 0x0007a783 Exe Tags CFI Tags DFI Tags

The Process_Mem_Page is shown in Table 5. The memory page contains process

start, resource information, and process shutdown information. For better security,

the Process_Mem_Page should be encrypted and digitally signed. Table 6 shows

the local security tag bits for the register file. There are four categories of tag bits:

(1) register read / write / modify / stack operations / protected register, (2) register

load/store, (3) control flow integrity, and (4) data flow integrity.

39

Table 5 Aberdeen Architecture process configuration memory page

Configuration Information

•••

Configuration Information

Table 6 Aberdeen Architecture register file format

Aberdeen Architecture Local Tag Fields

Register Number RWM LD/ST CFI Tags DFI Tags
R0
R1
•••
R31

In Table 7, the Mem_Page contains global and local security tag fields. The global

tags set the security sandbox (fence) limit for the memory page. The local security

tag fields can further restrict the bounds on allowed memory accesses.

Table 7 Aberdeen Architecture memory page format

Global Tags
 Local Tag Fields

Memory Address (4096 bytes) Load/Store CFI Tags DFI Tags
0x0000
0x0004
•••

0x0ffc

4.3.6 Harvard Machine Architecture

A von Neumann architecture is compared to a Harvard architecture in Fig. 14. In a

von Neumann machine, there is no difference between data and instructions. This

is a fundamental security flaw. A simple buffer overflow can convert “data” into

program instructions. A Harvard architecture has complete hardware isolation

between data and program instructions. A return-oriented programming attack

requires malicious control of a stack and access to gadgets to implement the steps

required for the attack (Abadi et al. 2005). On x86 architectures, instructions have

variable byte lengths that offer more possibilities to find useful instructions for

malicious operations. Göktaş et al. (2014) show how von Neumann machine stack

and gadget attacks are becoming more sophisticated:

ROP [return-oriented programming] exploitation is based on an attacker

controlling the stack of a program. After corrupting the stack and controlling the

return address of an executing function, when the function returns, control is

diverted to a gadget specified by the attacker’s payload. Since gadgets are small

sequences of code that end with a ret [return instruction], similar to the return-

40

oriented gadget shown in Fig. 3a, the attacker can carefully position data on the

stack to make the program jump from gadget to gadget, chaining together the final

code.

Fig. 14 Harvard machine compared to von Neumann machine (Jungwirth 2020b)

New architectures need better stack isolation and security tags to block gadget

attacks. Function single entry and exit points could potentially eliminate most

gadget attacks. Single entry and exit points would reduce the number of gadgets

available from greater than 100,000 (Göktaş et al. 2014) to a relatively small

number. Instruction words should all have the same length (one instruction per

memory word). Note, the RISC-V architecture allows for byte, half-word, and word

memory accesses. For security, a simpler architecture only offering word memory

accesses would be a better architecture.

4.3.7 Aberdeen Machine Architecture

Aberdeen Architecture adds hardware-level state machine security policies to the

Redstone Architecture. The core features for the Redstone Architecture’s software

security framework is the basis for the state machine security policies. The

Redstone Architecture uses an extended Harvard architecture. The cache bank

memory pipeline is illustrated in Fig. 15. A technical report covering the Redstone

Architecture is found in Appendix A. The next section presents an introduction to

the state machine security policies.

Harvard Machine

Address Bus

Instruction and

D
a
ta

 a
n

d
P

ro
g
ra

m

In
s
tr

u
c
ti
o
n
 M

e
m

o
ry

No isolation between

instructions and data

von Neumann Machine
P

ro
g

ra
m

In
s
tr

u
c
ti

o
n

s

Address Bus Address Bus

Instructions

Bus

D
a

ta
 M

e
m

o
ry

Data Bus

Isolation provides better security

Data Bus

41

Fig. 15 Instruction execution pipeline: state machine controller

4.3.8 State Machine Security Policy Introduction

An introduction to the Instruction Execution Pipeline State Machine Controller is

presented in Fig. 15. State machines verify security policies for instruction

execution. Aberdeen Architecture considers instruction execution as an information

flow. Security policies verify information flow properties during instruction

execution. In terms of a virtual machine, the state machines’ security policies create

a virtual machine–based execution pipeline. Instruction execution policies are

verified during instruction execution. If one of the security policies fails, a

hardware-level exception is issued.

IF ID EXE MA WB

Memory Page
State Machine

Instruction Exe
State Machine

Exe

Mem

Exe Check

Control Flow Integrity Check

Page Mem Check

DATA

INSTR

Execution Pipeline Architecture

IF ID EXE MA WB

Redstone
Architecture

Data Flow Integrity Check

42

During instruction execution, control flow integrity is verified; data flow integrity

is verified; memory and memory page operations are verified; and instruction

execution is verified. Figure 15 summarizes the main state machine security

policies. The paper “Security Tag Computation and Propagation in OSFA”

describes data flow integrity for the Redstone Architecture (Jungwirth et al. 2018b).

A high-precision control flow implementation uses unique labels for each branch

in the control flow graph. Each node (code block) has entry and exit links (graph

edges). The destination address for jump/branch instruction is the entry point for a

code block. A jump or branch instruction forms the exit point for a code block. For

the high-precision case (Abadi et al. 2005), each edge (branch/jump control flow

change) in the control flow graph can be exactly identified by its unique label. Less

precise implementations reuse labels (labels are not unique).

High-precision implementation requires considerably more resources (memory)

than the low-precision implementation. For the Aberdeen Architecture, the labels

are scalable. Higher precision requires more bits for the edge labels. For the basic

implementation, we consider a small number of labels combined with function

single entry and exit points. Single entry and exit points significantly reduce gadget-

based attacks. A malicious program uses function CALL instructions to gadgets

(short sequence of useful hacking instructions followed by a return statement).

Several gadgets are called in sequence to launch an attack. Low-precision control

flow graphs provide less protection against gadget attacks. The Aberdeen

Architecture uses single point function call entry and exit points to significantly

reduce (best case would be to completely prohibit gadget attacks). The single point

entry and exit code block tags strengthen the protections provided by lower-

precision control flow protections.

Figure 16 presents an introduction to the instruction execution state machine

controller. The four classes of instruction execution control flows are highlighted

in blue. Sections 4.3.2 and 4.3.3 describe the control flow properties of the four

instruction classes. Figure 16 also introduces memory operations: stack operations,

memory page allocate, and memory page deallocate. The state machine for stack

operations is introduced in Fig. 17. Stack and memory page security policies will

be considered later in Section 4.4. We begin be looking at control flow integrity for

instruction execution next.

43

Exe
Instruction

Sequential

Valid
Mem Address

Hardware
Exception

No

Valid Next/
Destination

Address

Jump Valid
Destination

Address

Hardware
Exception

No

Update
PCR

Stack
Operation

Allocate
Mem Page

Deallocate
Page

Load/
Store

Memory
Operations

No

Next Instruction

Yes

Yes

Valid
PCR Address

Yes

No

Fig. 16 Instruction execution state machine

Executing
Instruction

No Stack Operation

Valid
Memory Page

Stack Operation

Does Stack
Cross Page?

Yes

Push/Pull
From Stack

Increment/
Decrement Stack

Update Stack
Pointer

Hardware
Exception

No

Push
Stack

Push

Stack

Page
 Error

Allocate
Page

Decrement
Stack

Pull
Stack

Pull Stack

Success Increment
Stack

Success

Deallocate
Page

Hardware
Exception

Page
 Error

Pull

Success

Fig. 17 Stack machine state machine

44

4.3.9 Control Flow Integrity

Abadi et al.’s paper (2005) reviewed control flow integrity methods and renewed

interest in control flow integrity for software security. Alves-Foss et al. (2014)

researched security tagging bits for high assurance: “Metadata-driven hardware

interlocks make it practical to take the security principles of Saltzer and Schroeder

[59] seriously.” For static programs, a control flow graph shows all possible

execution paths for the program. In general, a control flow graph is undecidable

when considering self-modifying programs, dynamic dispatch, and just-in-time

compiling (dynamic re-compilation). For simplicity, we will consider static control

flow graphs. The Aberdeen Architecture’s control flow integrity methods extend

the research concepts described in “Security Tag Fields and Control Flow

Management,” (Jungwirth and Ross 2019), “Hardware Security Kernel for Cyber

Defense,” (Jungwirth et al. 2019b), and “Hardware Security Kernel for Managing

Memory and Instruction Execution” (Jungwirth et al. 2020).

CFI [control flow integrity] enforcement is effective against a wide range of

common attacks, since abnormal control-flow modification is an essential step in

many exploits — independently of whether buffer overflows and other

vulnerabilities are being exploited. … We have examined many concrete attacks

and found that CFI enforcement prevents most of them. … Of course, CFI

enforcement is not a panacea: exploits within the bounds of the allowed CFG

[control flow graph] (e.g., Chen et al. [2005]) are not prevented. (Abade et al. 2009)

Figure 18 presents the control flow graph for the Sieve of Eratosthenes code in

Fig. 8. Aberdeen Architecture adds single entry and exit points for function calls,

exception handlers, and interrupt requests. The single entry and exit points provide

for Saltzer and Schroeder’s security principles: least privilege, privilege separation,

and complete mediation. The single entry and exit points are to help block gadget

attacks and improve precision for control flow integrity.

Fig. 18 Control flow graph for Sieve of Eratosthenes

08: <sieve> 00200613 li a2, 2
0c: 08000513 li a0, 0x80
10: 00100893 li a7, 1
14: 55800813 li a6, 1368
18: 02500313 li t1, 37
1c: 00c0006f j <L1>

44: 00161693 slli a3, a2 ,0x1

48: <L4> 4056d793 srai a5, a3, 0x5
4c: 00279793 slli a5, a5, 0x2
50: 00f507b3 add a5, a0, a5
54: 0007a583 lw a1, 0(a5)
58: 00d89733 sll a4, a7, a3
5c: fff74713 not a4, a4
60: 00b77733 and a4, a4, a1
64: 00e7a023 sw a4, 0(a5)
68: 00c686b3 add a3, a3, a2
6c: fcd85ee3 ble a3, a6, <L4>

70: 00160613 addi a2, a2, 1
74: fa661ae3 bne a2, t1, <L1>

28: <L1> 40565793 srai a5, a2 ,0x5
2c: 00279793 slli a5, a5, 0x2
30: 00f507b3 add a5, a0, a5
34: 0007a783 lw a5, 0(a5)
38: 40c7d7b3 sra a5, a5, a2
3c: 0017f793 andi a5, a5, 1
40: fe0780e3 beqz a5, <L3>

78: <L2> 00000513 li a0, 0
7c: <return> 00008067 ret

20: <L3> 00160613 addi a2, a2, 1
24: 04660a63 beq a2, t1, <L2>

CALL_ENTRY

CALL_EXIT

NEXT

Jump_Rec

NEXT

NEXT

NEXT

NEXT

Jump_Rec

Jump_Rec
NEXT

Ju
m

p
_R

ec

Ju
m

p
_T

o

Jump_To

Ju
m

p
_T

o

Ju
m

p
_T

o

Jump_To

45

Control flow integrity techniques have trade-offs between protection level,

overhead, and implementation difficulty. Software control flow integrity techniques

typically have a high overhead; however, some methods offer very high levels of

precision (fine grain protection control). The Aberdeen Architecture considers a

hardware implementation of a simple set of rules to enforce CFI. The proposed

methods do have limitations; however, we believe the protection offered,

complexity, and ease of implementation are well balanced.

Undoubtedly, even loose forms of CFI harden binaries against attacks. Normally,

control-hijacking exploits are able to redirect execution to any instruction in the

binary. On x86 architectures, which use variable-length instructions and have no

alignment requirements, an attacker can redirect control to virtually any executable

byte of the program. If we consider every executable byte as a potential control-

flow target, then CFI blocks more than 98% of these targets [17]. But, is the

remainder 2% enough for attackers exploiting a program? (Göktaş et al. 2014)

Figure 19 compares high-precision control flow tags to low-precision tags. The

high-precision tag uses a large (for example, 32 bit) random integer to link the

conditional branch to its destination address. With 232 = 4,294,967,296 ≈ 4.3∙10

9

possible tag combinations, each branch can have a unique tag. Low-precision tags

use only a few tag values and have to reuse tag values for other branches.

Address Label Machine Code Assembly Language

Tag Fields

0020: <L3> 0x00160613 addi a2, a2, 1
CFI Tag = 0xFC66BC28
(32 bit random integer)

▪▪▪ ▪▪▪
▪▪▪ ▪▪▪

0040: 0xfe0780e3 beqz a5, 20 <L3>
CFI Tag = 0xFC66BC28
(32 bit random integer)

Address Label Machine Code Assembly Language

Tag Fields

 0020: <L3> 0x00160613 addi a2, a2, 1
CFI Tag = 0x28

(8 bit random integer)
▪▪▪ ▪▪▪
▪▪▪ ▪▪▪

0040: 0xfe0780e3 beqz a5, 20 <L3>
 CFI Tag = 0x28

(8 bit random integer)

Fig. 19 High- and low-precision CFI tags

To address stack flow integrity issues, the Aberdeen Architecture uses several

stacks to separate program execution (CALL and RETURN) from program data flow.

More on stack and data control flow will be presented in later sections. Kiriansky

et al. (2002) describes the problems with mixing data, CALL/RETURN, etc. on a

stack:

46

Many entities participate in transferring control in a program execution.

Compilers, linkers, loaders, runtime systems, and hand-crafted assembly code all

have legitimate reasons to transfer control. Program addresses are credibly

manipulated by most of these entities, e.g., dynamic loaders patch shared object

functions; dynamic linkers update relocation tables; and language runtime systems

modify dynamic dispatch tables. Generally, these program addresses are

intermingled with and indistinguishable from data. In such an environment,

preventing a control transfer to malicious code by stopping illegitimate memory

writes is next to impossible. It requires the cooperation of numerous trusted and

untrusted entities that need to check many different conditions and understand

high-level semantics in a complex environment.

Abadi et al. (2005) describe how stack operations reduce the precision of a control

flow graph: “In particular, a finite CFG [control flow graph] does not capture the

dynamic execution call stack ...” Göktaş et al. [2014] point out the importance of

control flow to counter modern attacks: “As existing defenses like ASLR, DEP,

and stack cookies are not sufficient to stop determined attackers … In its ideal form,

CFI prevents flows of control that were not intended by the original program …”

A mixed stack violates several of Saltzer and Schroeder’s security principles. The

Aberdeen Architecture incorporates a data flow integrity policy to provide

additional protections for better control flow graph precision. In other words,

control flow integrity is a function of data flow integrity.

Buffers can be used to keep track of the last NI instructions, last NB branches, and

last NPC program counter values. Unfortunately, finite buffers lack control flow

graph precision. Arbitrarily large buffers are required to track large software

programs and data-driven function calls like recursion. CFI buffer lengths are

briefly discussed in (Jungwirth and Ross 2019). Aberdeen Architecture uses block

entry tags to ensure the current instruction has a valid control flow path back to the

block entry point. When the corresponding block exit point is reached, the path

from start to end can be deleted since control flow from block start to block end has

completed.

Figures 20–23 illustrate single point entry and exit points for exception handlers

and interrupt request and return handlers. This is to ensure that exception handlers

and return from interrupt requests cannot jump to a maliciously selected return

address to enable a gadget attack.

The single point entry and exit points are to provide specific fixed entry and exit

points. The fixed entry and exit points limit rogue behavior by reducing to

eliminating gadget code start points. There is some lost flexibility and additional

code required; however, the additional protection is well worth the single entry and

47

exit point cost. Figure 22 illustrates an exception occurring in the array pb[▪] in

{3}. The exception is handled by a single exit point, then either a local routine or a

function call occurs to handle the exception. Return from exception in {3} is

handled by a single routine. The exception handlers provide single entry and exit

points and prohibit “spaghetti code” exception handlers enabling gadget attacks.

pbit = pb[cnt_word] & bit_mask;

Exception
Occurs Here

 {3}

Figure 23 covers interrupt requests following the same idea for exception handlers.

An interrupt occurs during the while loop in {4}. Single point entry and exit points

cover a local interrupt handler and a function call to handle the interrupt request.

Again, more code is required; however, the security benefits of single entry and

exit points far out way the cost.

Interrupt Request
Occurs Here

while (cnt < LAST)

 {4}

Instruction Class CFI Link Type CFI Tag Type

Arithmetic/Logic Instruction Sequential Sequential Tag

Load/Store Load/Store Sequential Load/Store Sequential Tag

Conditional Branch Conditional Branch Conditional Branch Tag

Jump Jump Jump Tag

CALL Function Call CALL Tag

RETURN Function Return RETURN Tag

EXCEPTION Exception Link EXCEPTION Tag

EXCEPTION Return Exception Return Link Exception Return Tag

EXCEPTION Process Terminate Exception Terminate Link Exception Terminate Tag

INTERRUPT INTERRUPT Handler Link Interrupt Handler Tag

INTERRUPT RETURN Interrupt Return Link Interrupt Return Tag

INTERRUPT EXCEPTION
Process Terminate

INTERRUPT EXCEPTION
Process Terminate

INTERRUPT EXCEPTION
Process Terminate Tag

Fig. 20 Aberdeen Architecture CFI link types

48

// Sieve of Eratosthenes
// C code is based on https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada
// Algorithm see https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

void sieve() {
 int base = 2; int pbit = 0; int cnt = 0;
 int base_bit = 0; int base_word = 0; int base_shift = 0;
 int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int
bit_mask = 0;
 while (base < R) {
 base_word = base >> 5; base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;
 if (base_bit)
 { cnt = base << 1; // base + base;
 while (cnt < LAST)
 { cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask;
 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;
 cnt = cnt + base; }
 }
 base = base + 1;
 }
}

// Sieve Exception Handlers
EXCEPTION HANDLER // C code placeholder
// HANDLE EXCEPTION HERE (LOCAL)
 int local_exception_handler(◙)
// CALL EXCEPTION HANDLER (USING FUNCTION CALL)
 int call_exception_handler(◙)
// EXCEPTION HANDLERS MUST ALL RETURN HERE
 int handle_return_to_local_code(◙)
 int single_point_exception_handler_return(◙)

// Sieve Exception IRQ Handlers
IRQ HANDLER // C code placeholder
// HANDLE EXCEPTION HERE (LOCAL)
 int local_IRQ_handler(◙)
// CALL IRQ HANDLER (USING FUNCTION CALL)
 int call_IRQ_handler(◙)
// IRQ RETURNS MUST ALL RETURN HERE
 int single_point_IRQ_handler_return(◙)

Fig. 21 Exception and IRQ handlers exit and return points

Sieve of Eratosthenes Code

Single Point Exit and Return
Points for Exceptions

IRQ Handler Single Exit and
Return Points

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

49

Single Entry and Exit Points for
Exception Handlers

Function Call
Single Point Entry

Single Point
Function Return

Exception
Return

Exception
Occurs Here

void sieve() {
 int base = 2; int pbit = 0; int cnt = 0;
 int base_bit = 0; int base_word = 0; int base_shift = 0;
 int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;
 while (base < R) {
 base_word = base >> 5; base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;
 if (base_bit)
 { cnt = base << 1; // base + base;
 while (cnt < LAST)
 { cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask;
 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;
 cnt = cnt + base; }
 }
 base = base + 1;
 }
}

// Sieve Exception Handlers
EXCEPTION HANDLER // C code placeholder
// HANDLE EXCEPTION HERE (LOCAL)
 int local_exception_handler(◙)
// CALL EXCEPTION HANDLER (USING FUNCTION CALL)
 int call_exception_handler(◙)
// EXCEPTION HANDLERS MUST ALL RETURN HERE
 int handle_return_to_local_code(◙)
 int single_point_exception_handler_return(◙)

Fig. 22 Single point entry and exit exception handlers

Function Call
Single Point Entry

Single Point
Function Return

Interrupt
Return

Interrupt Request
Occurs Here

void sieve() {
 int base = 2; int pbit = 0; int cnt = 0;
 int base_bit = 0; int base_word = 0; int base_shift = 0;
 int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;
 while (base < R) {
 base_word = base >> 5; base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;
 if (base_bit)
 { cnt = base << 1; // base + base;
 while (cnt < LAST)
 { cnt_word = cnt >> 5; cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift); bit_mask = ~cnt_mask;
 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;
 cnt = cnt + base; }
 }
 base = base + 1;
 }
}

// Sieve Exception IRQ Handlers
IRQ HANDLER // C code placeholder
// HANDLE EXCEPTION HERE (LOCAL)
 int local_IRQ_handler(◙)
// CALL IRQ HANDLER (USING FUNCTION CALL)
 int call_IRQ_handler(◙)
// IRQ RETURNS MUST ALL RETURN HERE
 int single_point_IRQ_handler_return(◙)

Single Entry and Exit Points for
Interrupt Requests

Fig. 23 Single point interrupt request entry and exit points

50

4.3.9.1 Sequential Control Flow Integrity Class Instructions

Sieve of Eratosthenes control flow graph has single point function entry and exit

points shown in Fig. 24. Figure 24 shows the code blocks consisting of sequential

instructions with branch and jump instructions connecting the blocks together. The

tags NEXT, JUMP_To, and JUMP_Rec illustrate how the code blocks form a linked

list. Function calls are only allowed to the CALL_ENTRY point: <sieve>. The single

point function return is <return>. Function calls, jump instructions, branch

instructions, and so on, from another code block to internal code in Fig. 24 are not

allowed. The single point entry and exit points are to prevent gadget code attacks.

The single point code entry and exit points provide better control flow graph

precision for a limited number of tags (or labels).

Figure 25 shows how arithmetic and logic sequential instructions and LOAD/STORE

sequential instructions form a linked list A sequential instruction simply advances

the program counter by one instruction in (1). For RISC-V, a single instruction is

4 bytes in length. LOAD and STORE instructions are sequential instructions that

access memory. LOAD/STORE control flow tags are required to access memory.

Figure 26 shows a load instruction with control flow integrity tag = LOAD.

Sequential Instruction Control Flow Integrity Class Property

PCR(n + 1) = PCR(n) + 4 bytes 1 instruction is 4 bytes long (1)

51

Fig. 24 Control flow graph for Sieve of Eratosthenes

08: <sieve> 00200613 li a2, 2
0c: 08000513 li a0, 0x80
10: 00100893 li a7, 1
14: 55800813 li a6, 1368
18: 02500313 li t1, 37
1c: 00c0006f j <L1>

44: 00161693 slli a3, a2 ,0x1

48: <L4> 4056d793 srai a5, a3, 0x5
4c: 00279793 slli a5, a5, 0x2
50: 00f507b3 add a5, a0, a5
54: 0007a583 lw a1, 0(a5)
58: 00d89733 sll a4, a7, a3
5c: fff74713 not a4, a4
60: 00b77733 and a4, a4, a1
64: 00e7a023 sw a4, 0(a5)
68: 00c686b3 add a3, a3, a2
6c: fcd85ee3 ble a3, a6, <L4>

70: 00160613 addi a2, a2, 1
74: fa661ae3 bne a2, t1, <L1>

28: <L1> 40565793 srai a5, a2 ,0x5
2c: 00279793 slli a5, a5, 0x2
30: 00f507b3 add a5, a0, a5
34: 0007a783 lw a5, 0(a5)
38: 40c7d7b3 sra a5, a5, a2
3c: 0017f793 andi a5, a5, 1
40: fe0780e3 beqz a5, <L3>

78: <L2> 00000513 li a0, 0
7c: <return> 00008067 ret

20: <L3> 00160613 addi a2, a2, 1
24: 04660a63 beq a2, t1, <L2>

CALL_ENTRY

CALL_EXIT

NEXT

Jump_Rec

NEXT

NEXT

NEXT

NEXT

Jump_Rec

Jump_Rec
NEXT

Ju
m

p
_R

ec

Ju
m

p
_T

o

Jump_To

Ju
m

p
_T

o

Ju
m

p
_

To

Jump_To

52

Fig. 25 Control flow graph for arithmetic and logic sequential instructions

Fig. 26 Control flow graph for LOAD sequential instruction

28: <L1> 40565793 srai a5, a2 ,0x5
2c: 00279793 slli a5, a5, 0x2
30: 00f507b3 add a5, a0, a5
34: 0007a783 lw a5, 0(a5)
38: 40c7d7b3 sra a5, a5, a2
3c: 0017f793 andi a5, a5, 1
40: fe0780e3 beqz a5, <L3>

NEXT

Ju
m

p
_R

ec

Jump_To
NEXT

Se
q

u
en

ti
al

In

st
ru

ct
io

n
s

34: 0007a783 lw a5, 0(a5)

38: 40c7d7b3 sra a5, a5, a2

Sequential

LOAD Tag

Executing Instruction
Previous Instruction Tag = Sequential
Current Instruction = Sequential/Load

PCR(n + 1) = PCR(n) + 4 bytes

PCR(n)

53

4.3.9.2 Jump Instruction Control Flow Graph

Figure 27 illustrates the control flow properties for a JUMP instruction. There is

only one next address: the destination address. Equation (2) shows the next PCR

value, PCR(n + 1), is simply the destination address.

Fig. 27 Control flow graph for JUMP instruction

JUMP Instruction Control Flow Integrity Class Property

PCR(n + 1) = Destination Address (2)

4.3.9.3 Branch Instruction Control Flow Graph

The control flow graph properties for a branch instruction are illustrated in Fig. 28.

There are two possible next instruction addresses. If the branch condition is true,

the next address is the destination address. Else (condition is false), the next

address is the same as a sequential instruction; next address is the next sequential

instruction. Equation (3) describes the PCR values for a branch instruction.

Fig. 28 Control flow graph for branch instruction

1c: 00c0006f j <L1>

Executing Instruction

Jump Instruction has one possible destination address

Previous Instruction Tag = Sequential
Current Instruction = JUMP

28: <L1> 40565793 srai a5, a2 ,0x5

PCR(n + 1) = Destination Address = <L1>

PCR(n)

40: fe0780e3 beqz a5, <L3>

44: 00161693 slli a3,a2,0x1

20: <L3> 00160613 addi a2,a2,1

Executing Instruction

Conditional Branch has two possible next instructions:
sequential, and branch destination address

Previous Instruction Tag = Sequential
Current Instruction = Branch

Previous Instruction Tag = Branch
Current Instruction = Sequential

Previous Instruction Tag = Branch
Current Instruction = Sequential

PCR(n + 1) = PCR(n) + 4 bytes

PCR(n + 1) = Destination Address = <L3>

54

Branch Instruction Control Flow Integrity Class Property

if(condition == TRUE)
 PCR(n + 1) = Destination Address

else // condition == FALSE

 PCR(n + 1) = PCR(n) + 4 bytes // (same as sequential instruction)

 (3)

4.3.9.4 Sieve of Eratosthenes RISC-V Code with Control Flow Integrity Tags

Figure 29 illustrates control flow integrity tags for the Sieve of Eratosthenes

RISC-V code. The instruction START field tag is the END tag from the previous

instruction. The EXE tag is the instruction execution tag. There are four execution

classes of instructions: arithmetic and logical sequential, LOAD/STORE sequential,

jump, and conditional branch. Figure 30 shows the single entry and exit points for

the Sieve of Eratosthenes code. The EXE tags place limits on the RISC-V

instructions behavior: SEQ = sequential instruction, LOAD = load sequential

instruction, STORE = store sequential instruction, BR = conditional branch, and

JMP = jump. For example, a conditional branch instruction (as illustrated in Fig 28)

has two possible next instructions, either sequential or destination address.

55

// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]

Memory Address Machine Code Assembly Code Tag Fields
 Instruction Start Instruction Exe Instruction End
0x0000 0008: <sieve> 0x00200613 li a2, 2 START = CALL; EXE = LOAD; END = SEQ
0x0000 000c: 0x10000513 li a0, 0x100 START = SEQ; EXE = LOAD; END = SEQ
0x0000 0010: 0x00100893 li a7, 1 START = SEQ; EXE = LOAD; END = SEQ
0x0000 0014: 0x06300813 li a6, 0x63 START = SEQ; EXE = LOAD; END = SEQ
0x0000 0018: 0x00a00313 li t1, 0x8 START = SEQ; EXE = LOAD; END = SEQ
0x0000 001c: 0x00c0006f j 28 <L1> START = SEQ; EXE = JMP; END = JMP
0x0000 0020: 0x00160613 <L3> addi a2, a2, 1 START = BR; EXE = SEQ; END = SEQ
0x0000 0024: 0x04660a63 beq a2, t1, 78 <L2> START = SEQ; EXE = BR; END = BR|SEQ
0x0000 0028: 0x40565793 <L1> srai a5, a2 ,0x5 START = SEQ|BR|JMP; EXE = SEQ; END = SEQ
0x0000 002c: 0x00279793 slli a5, a5, 0x2 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0030: 0x00f507b3 add a5, a0, a5 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0034: 0x0007a783 lw a5, 0(a5) START = SEQ; EXE = LOAD; END = SEQ
0x0000 0038: 0x40c7d7b3 sra a5, a5, a2 START = SEQ; EXE = SEQ; END = SEQ
0x0000 003c: 0x0017f793 andi a5, a5, 1 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0040: 0xfe0780e3 beqz a5, 20 <L3> START = SEQ; EXE = BR; END = SEQ|BR
0x0000 0044: 0x00161693 slli a3, a2 ,0x1 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0048: 0x4056d793 <L4> srai a5, a3, 0x5 START = SEQ|BR; EXE = SEQ; END = SEQ
0x0000 004c: 0x00279793 slli a5, a5, 0x2 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0050: 0x00f507b3 add a5, a0, a5 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0054: 0x0007a583 lw a1, 0(a5) START = SEQ; EXE = LOAD; END = SEQ
0x0000 0058: 0x00d89733 sll a4, a7, a3 START = SEQ; EXE = SEQ; END = SEQ
0x0000 005c: 0xfff74713 not a4, a4 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0060: 0x00b77733 and a4, a4, a1 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0064: 0x00e7a023 sw a4, 0(a5) START = SEQ; EXE = STORE; END = SEQ
0x0000 0068: 0x00c686b3 add a3, a3, a2 START = SEQ; EXE = SEQ; END = SEQ
0x0000 006c: 0xfcd85ee3 ble a3, a6, 48 <L4> START = SEQ; EXE = BR; END = SEQ|BR
0x0000 0070: 0x00160613 addi a2, a2, 1 START = SEQ; EXE = SEQ; END = SEQ
0x0000 0074: 0xfa661ae3 bne a2, t1, 28 <L1> START = SEQ; EXE = BR; END = SEQ|BR
0x0000 0078: 0x00000513 <L2> li a0, 0 START = SEQ; EXE = SEQ; END = SEQ
0x0000 007c: <return> ret START = SEQ; EXE = RTN; END = RTN

Fig. 29 Sieve of Eratosthenes RISC-V code and control flow integrity tags

 =

56

Single Point Function Call Entry Point

0x0000 0008: <sieve> 0x00200613 li a2, 2 START = CALL; EXE = LOAD; END = SEQ

∙∙∙

0x0000 007c: <return> ret START = SEQ; EXE = RT; END = RTN

Single Point Exit RETURN

Fig. 30 Single point function entry and exit points

In Fig. 31, multiple control flow paths can lead to instruction <L1>. The START

tags show that the previous instructions can be either sequential, conditional branch,

or jump. As shown in Abadi et al. (2005), large random integers can provide higher

levels of control flow graph precision. The low precision provided by a handful of

control flow tags limits the control flow behavior; however, it does not limit the

control flow behavior as much as unique tags used for high-precision control flow.

For a practical application (Göktaş et al. 2014), control flow precision requires a

balancing act: How much precision is enough given a limited amount of resources?

We believe control flow tags combined with instruction execution tags, memory

integrity, and data flow integrity tags provides ‘the whole is greater than the sum

of the parts’ level of protection. Abadi et al. (2009) considers how dynamic stack

behavior is not captured in the control flow graph. The Aberdeen Architecture uses

stack state machines, stack isolation, and the separation provided by a Harvard

architecture to enforce least privilege for stacks (see Section 3.1 in Jungwirth et al.

[2019b] and Section 4.3.10 covering data flow integrity state machine monitors).

Preferably, control-flow enforcement should be as precise as possible. However,

even the reliance of CFI on a finite CFG implies a lack of precision. In particular,

a finite CFG does not capture the dynamic execution call stack; we address this

limitation in Section 5.4. Furthermore, without some care, schemes based on IDs

and ID-checks may be more permissive than necessary. (Abadi et al. 2009)

0x0000 0028: <L1> srai a5, a2 ,0x5 START = SEQ|BR|JMP; EXE = SEQ; END = SEQ

Previous Instruction can be either SEQ = sequantial,
BR = conditional Branch, or JMP = jump

Next Instruction must be a
sequential instruction

Fig. 31 START and END instruction execution control flow tags

57

4.3.10 Data Flow Integrity

Information integrity is defined as dependability and trustworthiness of information

(Mandke and Nayar 2000). A sound security policy only allows authorized

information flows. Denning 1976 formalized secure information flow.

Unfortunately, current commodity microprocessors still do not provide protections

against unauthorized information flow.

The security mechanisms of most computer systems make no attempt to guarantee

secure information flow. "Secure information flow," or simply "security," means

here that no unauthorized flow of information is possible. (Denning 1976)

Taint analysis (Venkataramani et al. 2008; Schwartz et al. 2010; Chen et al. 2011;

Kim et al. 2014; Prakash et al. 2015) typically implements a small number of

security tags to isolate two classes of data. Taint status is used to monitor data flow

integrity. Safe or trusted data is untainted. When trusted data is mixed with

untrusted data, the taint status is changed to untrusted or tainted (Schwartz et al.

2010): “Data from trusted sources starts out as untainted … Taints are then

propagated as values are copied or used in computation. To detect potential attacks,

a tainting scheme looks for unsafe uses of tainted values.” Venkataramani et al.

(2008) extends taint propagation to control flow integrity applications using a

tainted jump policy to catch control flow hijacking attacks:

A prototypical application of dynamic taint analysis is attack detection. Table III

shows a typical attack detection policy which we call the tainted jump policy. …

The goal of the tainted jump policy is to protect a potentially vulnerable program

from control flow hijacking attacks. …. A control flow exploit, however, will

overwrite jump targets (e.g., return addresses) with input-derived values. The

tainted jump policy ensures safety against such attacks by making sure tainted

jump targets are never used.

Castro et al. (2006) illustrate the connections between control-flow integrity and

data flow integrity. A control flow graph shows all possible comparison (control

flow if-then-else, et al.) software execution paths. During program execution, a data

flow graph shows how data types interact as data flows from a data source to a data

sink. Castro et al. (2006) describe the three process steps to monitor data flow

integrity:

Data-flow integrity enforcement has three phases. The first phase uses static

analysis to compute a data-flow graph for the vulnerable program. The second

instruments the program to ensure that the data-flow at runtime is allowed by this

graph. The last one runs the instrumented program and raises an exception if data-

flow integrity is violated.

58

Song et al. (2016) researched hardware-assisted data flow isolation. Data flow

integrity ensures data flow follows an allowed path in a data flow integrity graph.

Data flow integrity provides integrity and confidentiality guarantees. Song et al.

explain:

For example, to protect the integrity of sensitive data, we can enforce the Biba

Integrity Model [6]. In particular, we can use the tag to indicate integrity level (IL)

of the corresponding data: sensitive data has IL1 and normal data has IL0. Next,

we assign IL to write operations based on the data-flow. That is, we use static

analysis to identify write operations that can manipulate sensitive data, and allow

them to set the memory tag to IL1; all other write operations will assign to the tag

to IL0. Finally, when loading sensitive data from memory, we check if the tag is

IL1 … HDFI [Hardware-Assisted Data-Flow Isolation] can also be used to enforce

confidentiality, i.e., the Bell–LaPadula Model [5]. For instance, to protect sensitive

data like encryption keys, we can set their tag to SL1 (secret level 1), and enforce

that all untrusted read operations (e.g., when copy data to an output buffer) can

only read data with tag SL0.

Control flow [monitoring] precision describes how well a control flow protection

algorithm detects malicious control flow behavior. Current control flow techniques

do not take into account stack behavior (Abadi et al. 2005). Göktaş et al. (2014)

described return-oriented program attacks against a program’s stack. Stack and

memory protections are required to strengthen control flow and data flow integrity

protections.

ROP [return-oriented program] exploitation is based on an attacker controlling the

stack of a program. After corrupting the stack and controlling the return address of

an executing function, when the function returns, control is diverted to a gadget

specified by the attacker’s payload. (Göktaş et al. 2014)

Aberdeen Architecture uses state machines to enforce security policies. There are

four main hardware-enforced security policies: (1) instruction execution [integrity],

(2) page memory access [integrity], (3) control flow integrity, and (4) data flow

integrity. Aberdeen Architecture focuses on the whole is greater than the sum of

the parts security policy. By using simple rules for information flows (1)–(4),

Aberdeen Architecture implements a high-assurance security policy in hardware.

Aberdeen Architecture provides complete mediation for instruction execution.

State machines implement the security policies and are completely isolated from

the execution pipeline.

Control flow integrity ensures a program follows a valid execution path on a control

flow graph. During program execution, data flow integrity verifies that (1) the data-

driven control flow path is valid; and (2) data flow properties of security, integrity,

59

and accuracy are valid. For example, for eight levels for security and integrity,

security level 0 = most secure level and integrity level 0 = highest integrity.

Pressure transducer data source, Pt, outputs a current proportional to pressure,

Pt = k∙P. Pt has security = 3 and integrity = 2. The conversion constant,

C = 1 Torr/mA has security = 7 and integrity = 0. Pressure result, R, is found in (4)

and C code in {5}. For (4), the security and integrity values (5) are found using the

upper bound in (6). Security can be up-converted; however, security cannot be

down-converted. We cannot take sensitive information and change it to open source

information. A constant value, like 𝜋, has a high integrity because it is an exact

value. If we approximate 𝜋 as 3.14, it has a lower integrity than the exact value.

Integrity is calculated as a lower bound. An hourglass has integrity = 7 (lowest

integrity), whereas an atomic clock has integrity = 0 (highest integrity). Fake news

has integrity = 7.

𝑅[Torr] = 𝑃𝑡[mA] ∗ 𝐶 [
Torr

mA
] Sensor conversion equation (4)

RTorr = P_Transducer*C_Torr_per_mA; C Code {5}

𝑃𝑡 . 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 3,

𝑃𝑡 . 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 2

𝐶. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 7,

𝐶. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 0

Security and Integrity Properties:

(0 = most secure; 7 = least secure)

(0 = highest integrity; 7 = lowest integrity)

(5)

𝑅. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (3,7) = 3

𝑅. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 =
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (2,0) = 2

Security and Integrity Properties:

(0 = most secure; 7 = least secure)

(0 = highest integrity; 7 = lowest integrity)

(6)

We can also place restrictions on the security and integrities values R is allowed to

have. Equation (7) illustrates.

60

𝑅. 𝑚𝑎𝑥_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 4 ,

𝑅. 𝑚𝑖𝑛_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 5

𝑅. 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 0 ,
 𝑅. 𝑚𝑖𝑛_𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = 4

If the integrity and

security values are

outside the ranges, then

an exception occurs.

(7)

Data flow drives the execution of software. Conditional branches determine the

execution path taken in a control flow graph. As pointed out by Abadi et al. (2005),

stack operations are not captured in a control flow graph. For example, given two

classes of information—open source and company proprietary—the lattice security

model illustrates allowed information flows. Open source information can be

upgraded to company proprietary; however, company proprietary cannot be

downgraded to open source.

The simple data flow example in {5} does not block all potential information leaks.

Denning (1976) illustrates how a simple if statement can leak information. In {5},

RTorr leaks information to Low_Pressure. Practically speaking, the information

leak shown in {6} is only a problem if the information flows to a data sink that is

accessible by a malicious program. We must block this potential attack vector.

The primary difficulty with guaranteeing security lies in detecting (and

monitoring) all flow causing operations. This is because all such operations in a

program are not explicitly specified – or indeed even executed! As an example,

consider the statement if a = 0 then b := 0; if b ≠ 0 initially, testing b = 0 on

termination of this statement is tantamount to knowing whether a = 0 or not. In

other words, information flows from a to b regardless of whether or not the then

clause is executed. (Denning 1976)

RTorr = P_Transducer * C_Torr_per_mA;

Low_Pressure = FALSE;
if(RTorr < 100) {
 // Information leaks from RTorr to Low_Pressure
 Low_Pressure = TRUE; }

Example: C Code

Information Leakage
{6}

To block the information leakage in {6}, we need to reconsider single point code

block entry and single point code block exit points. Figure 32 illustrates the control

flow graph for the code in {6}. The true and false condition paths leak information

from RTorr to Low_Pressure. For the code block defined by the if statement,

we need to set the security tags for Low_Pressure equal to the security tags for

RTorr. This ensures that the data flow from information source, RTorr, to

information sink, Low_Pressure, follows a valid data flow integrity “path.”

61

RTorr = P_Transducer * C_Torr_per_mA;

if(RTorr < 100)

Low_Pressure = TRUE; Low_Pressure = FALSE;

RTorr = P_Transducer * C_Torr_per_mA;

Low_Pressure = FALSE;

if(RTorr < 100)
{
 // Information leaks from RTorr
 // to Low_Pressure
 Low_Pressure = TRUE;
}

// Information Leakage:
// Need to set security and integrity
// tags for Low_Pressure
SET TAGS for Low_Pressure

Tags.Low_Pressure = Tags.RTorr

Fig. 32 Control flow graph and data flow integrity (security and integrity tags)

Figure 33 illustrates a data flow leakage path in the RISC-V Sieve of Eratosthenes

code. Figure 34 shows a partial data flow integrity graph for the first half of the

Sieve of Eratosthenes RISC-V program. Figure 34 also shows how integrity and

security tags for data flow from information source (point where data originates) to

data sink (point where data is no longer used). Data flow integrity verifies the

security and integrity tags during instruction execution. Aberdeen Architecture

verifies instruction execution by checking (1) instruction execution tags, (2) control

flow graph integrity tags, (3) data flow integrity tags, and (4) memory access tags.

Hardware state machines monitor the (1)–(4) tags. By using four simple state

machines to provide overlapping security policy coverage, the Aberdeen

Architecture is able to use low-moderate precision tags to provide high assurance

and complete mediation of instruction execution. The paper “Security Tag

Computation and Propagation in OSFA” (Jungwirth et al. 2018b) describes security

tag propagation for the Redstone or OS Friendly Microprocessor Architecture.

Aberdeen Architecture can also support integrity tags for accuracy and

measurement units. We could specify accuracy tags of 0 = 64 bit, 1 = 32 bit,

2 = 16 bit, 3 = 8 bit. For measurement units, we could define tags for 0 = volt,

1 = ampere, 2 = ohm, and 3 = power.

62

<sieve> li a2, 2 # base = a2
 a2.security = constant.security = 7
 a2.integrity = constant.integrity = 0

// create buffer a0 with start address = a0, end address = a1
 li a0, 0x100 # buffer pb[0] = address = 0x100
 a0.Security = 7, a0.integrity = 0
 li a1, 0x200: a1.Security = 7, a1.integrity = 0
// create buffer a0 # Aberdeen Architecture Instruction
 AA.cb a0,a0,a1 a1.security = 7, a1.integrity = 0
 a0.security = 7, a0.Integrity = 0
 a0.security = Upper_Bound(7 , 7) = 7
 a0.integrity = Lower_Bound(0 , 0) = 0

 li a7, 1 # a7 = 1
 a7.Security = 7, a7.Integrity = 0

 li a6, 0x63 # LAST = R^2 -1 = 100 - 1
 Tags Security = 7, Integrity = 0

 li t1, 0x8 # t1 = R = 10
 Tags Security = 7, Integrity = 0

 j <L1> # jump to <L1>
 Tags Security = 7, Integrity = 0

<L3> addi a2, a2, 1 # a2 = base = base +1
Data Flow Integrity constant.security = 7, constant.integrity = 0
Information Leak a5.security = 7, a5.integrity = 0 (if a5 = bit = 0)
 a2.security = 7, a2.integrity = 0
 a2.security = Upper_Bound(7 , 7, a5) = 7
 a2.integrity = Lower_Bound(0 , 0, a5) = 0

<L1> srai a5, a2 ,0x5 # a5 = word offset
 a5.security = Upper_Bound(a2 , 7) = 7
 a5.integrity = Lower_Bound(a2 , 0) = 0

 slli a5, a5, 0x2 # a5 = byte offset [note 1]
 a5.security = Upper_Bound(a5 , 7) = 7
 a5.integrity = Lower_Bound(a5 , 0) = 0

 add a5, a0, a5 # a5 = pb[0] + byte offset
 a5.security = Upper_Bound(a0 , 7) = 7
 a5.integrity = Lower_Bound(a0 , 0) = 0

 lw a5, 0(a5) # a5 = LW(addr = a5)
 constant.security = 7, constant.integrity = 0
 Read_Mem(0+a5).security = tag.security = 7
 Read_Mem(0+a5).integrity = tag.integrity = 0
 a5.security = Read_Mem(0+a5).security) = 7
 a5.integrity = Read_Mem(0+a5).integrity) = 0

 sra a5, a5, a2 # a5 = a5 >> a2 [note 2]
 a5.security = Upper_Bound(a5 , a2) = 7
 a5.integrity = Lower_Bound(a5 , a2) = 0

 andi a5, a5, 1 # a5 = pb[word, bit number]
 a5.security = Upper_Bound(a5 , 7) = 7
 a5.integrity = Lower_Bound(a5 , 0) = 0

 beqz a5, <L3> # if a5 = bit = 0 the <L3>
 Tags Security = 7, Integrity = 0

Fig. 33 Sieve of Eratosthenes data flow integrity

In
fo

rm
a
ti

o
n

 L
ea

k

63

<sieve> li a2, 2 # base = a2
 a2.security = constant.security = 7
 a2.integrity = constant.integrity = 0

// create buffer a0 with start address = a0, end address = a1
 li a0, 0x100 # buffer pb[0] = address = 0x100
 a0.Security = 7, a0.integrity = 0
 li a1, 0x200: a1.Security = 7, a1.integrity = 0
// create buffer a0 # Aberdeen Architecture Instruction
 AA.cb a0,a0,a1 a1.security = 7, a1.integrity = 0
 a0.security = 7, a0.Integrity = 0
 a0.security = Upper_Bound(7 , 7) = 7
 a0.integrity = Lower_Bound(0 , 0) = 0

 li a7, 1 # a7 = 1
 a7.Security = 7, a7.Integrity = 0

 li a6, 0x63 # LAST = R^2 -1 = 100 - 1
 Tags Security = 7, Integrity = 0

 li t1, 0x8 # t1 = R = 10
 Tags Security = 7, Integrity = 0

 j <L1> # jump to <L1>
 Tags Security = 7, Integrity = 0

<L3> addi a2, a2, 1 # a2 = base = base +1
Data Flow Integrity constant.security = 7, constant.integrity = 0
Information Leak a5.security = 7, a5.integrity = 0 (if a5 = bit = 0)
 a2.security = 7, a2.integrity = 0
 a2.security = Upper_Bound(7 , 7, a5) = 7
 a2.integrity = Lower_Bound(0 , 0, a5) = 0

<L1> srai a5, a2 ,0x5 # a5 = word offset
 a5.security = Upper_Bound(a2 , 7) = 7
 a5.integrity = Lower_Bound(a2 , 0) = 0

 slli a5, a5, 0x2 # a5 = byte offset [note 1]
 a5.security = Upper_Bound(a5 , 7) = 7
 a5.integrity = Lower_Bound(a5 , 0) = 0

 add a5, a0, a5 # a5 = pb[0] + byte offset
 a5.security = Upper_Bound(a0 , 7) = 7
 a5.integrity = Lower_Bound(a0 , 0) = 0

 lw a5, 0(a5) # a5 = LW(addr = a5)
 constant.security = 7, constant.integrity = 0
 Read_Mem(0+a5).security = tag.security = 7
 Read_Mem(0+a5).integrity = tag.integrity = 0
 a5.security = Read_Mem(0+a5).security) = 7
 a5.integrity = Read_Mem(0+a5).integrity) = 0

 sra a5, a5, a2 # a5 = a5 >> a2 [note 2]
 a5.security = Upper_Bound(a5 , a2) = 7
 a5.integrity = Lower_Bound(a5 , a2) = 0

 andi a5, a5, 1 # a5 = pb[word, bit number]
 a5.security = Upper_Bound(a5 , 7) = 7
 a5.integrity = Lower_Bound(a5 , 0) = 0

 beqz a5, <L3> # if a5 = bit = 0 the <L3>
 Tags Security = 7, Integrity = 0

a2.si = constant

a0.si = constant

a1.si = constant

a0.si = buffer(a0, a1)

a7.si = constant

a6.si = constant

t1.si = constant

a2.si = dataflow(a2, const)

a5.si = dataflow(a5, a2, const)

a5.si = dataflow(a5, a2, const)

a5.si = dataflow(a0, a5)

a5.si = dataflow(Read_Mem(0 + a5))

jump

a5.si = dataflow(a2, a5)

a5.si = dataflow(a5, const)

a2.si = dataflow(a5)

To store word

while loop

Data Flow Diagram

In
fo

rm
at

io
n

 L
e

a
ka

ge
 P

at
h

Fig. 34 Partial data flow diagram for Sieve of Eratosthenes

64

4.3.11 System Architecture

The Aberdeen Architecture provides complete mediation for instruction execution.

Hardware-level security policies are enforced by state machine monitors in Fig. 35.

Data flow integrity, control flow integrity, and memory access policies are verified

during instruction execution. Memory access policy verifies load/store and stack

memory operations. Aberdeen Architecture uses multiple stacks to isolate control

information (CALL, RETURN, etc.) from “data”. Data and control information stack

mixing is not allowed. The state machine security policies located at security level

0 (most secure) are the trusted computing base. Memory integrity is more secure

than executing code. A memory access violation will raise a hardware-level

exception.

Instruction execution monitor relies on the data flow integrity monitor, control flow

integrity monitor, and memory access monitor. Memory access monitor manages

load/store operations, stack operations, and memory page operations. More OS

relevant functions, process context switch, interrupt handler, and exception handler

are included for instruction execution.

Hardware-level security policies are defined for levels 0–0.9. Instruction execution

occurs at security level 1. Guest operating systems reside at security level 2.

Application software is placed at security levels 3 and above.

Level 0 is the hardware state machine monitors. We could use a configuration file

at policy level 0.1 to configure some of the state machine settings. Policy level 0.2

could define scratchpad memory for the state machines. Level 0.5 defines the

memory access policies. Memory access integrity is more important than

instruction execution. Numerous cyber researchers point to memory manipulation

as a common attack vector. A hardware hypervisor could be placed at security level

0.7.

65

Fig. 35 Aberdeen architecture security levels. Hardware state machine monitors enforce

security policies. Memory access policy is below the execution pipeline. Execution Pipeline

cannot change memory policy. Execution Pipeline sits at security level 1. Guest OS and

Applications software are at less secure levels.

4.4 Aberdeen Architecture State Machine Monitors

In this section, instruction execution is explained in several steps. The control flow

graph forms the global structure for a running process. The data flow graph

describes navigating the control flow graph and local level of information flow. The

data flow subgraphs describe local information flows covering information sources,

data processing, and information sinks. Instruction execution follows allowed

control flow graph paths and data flow graph paths. As described in Section 4.3.3,

there are four classes of instructions. The four instruction classes each have a set of

allowed operations. The instruction classes allow Saltzer and Schroeder’s security

principles to be applied to instruction execution. We begin by describing basic

instruction execution and build our way up to the complete Aberdeen Architecture.

4.4.1 Instruction Execution

In a conventional microprocessor, the number of combinations of instructions

makes formal statements difficult (exponential growth). For the Aberdeen

Architecture, a framework for formal proofs limits the number of combinations to

a practical number. For the Aberdeen Architecture, there are four possible

instruction classes for the previous instruction, four classes for the current

instruction, and four classes for the next instruction. The Aberdeen Architecture

IF ID EXE MA WB

Instruction
Fetch

Instruction
Decode

Instruction
Execute

Register
Writeback

Memory
Access

Process
Context
Switch

Aberdeen Architecture
State Machine MonitorsStack

Operations

Data
Flow

Integrity

Interrupt
Handler

Exception
Handler

Control
Flow

Integrity

RISC-V Execution Pipeline

Memory
Pipeline

Memory
Pipeline

Memory
Pipeline

Memory
Pipeline

State Machine
Security Policies

Level 0

Instruction
Execution
Integrity

Memory
Pages

Load/Store
Operations

Guest OS Guest OS Guest OS

Applications

Applications

Applications

Applications Applications

Redstone Architecture Cache Bank
Memory PipelinesMemory Access

Level 0.5

Execution
Pipeline Level 1

Guest OS
Level 2

Applications
Level 3 and Up

Applications

Memory
Access

66

has a total of 4
3
 = 64 cases to consider. As illustrated in Table 1, data flow

determines the instruction execution path on a control flow graph.

4.4.1.1 Sequential Instruction Execution Classes

Figure 36 illustrates sequential instruction class execution. If the previous

instruction was a sequential or load/store sequential instruction, the program

counter is advanced by one instruction to the currently executing instruction. If the

previous instruction was a conditional branch, there are two possible paths to reach

the currently executing sequential instruction. If the branch condition evaluates to

true, the next instruction is found at the branch destination address (program

counter is loaded with the branch destination address). If the branch condition

evaluates to false, the next instruction is found by advancing the program counter

by one instruction (PC = PC + 1 instruction, just like the sequential instruction

class). If the previous instruction was a jump instruction, the next instruction is the

jump destination address (PC = jump destination address).

Sequential

Sequential
Load/Store

Branch Jump

Any class

Previous Instruction Classes

Program Counter Currently Executing Instruction

Program Counter
PC = PC + 1 Instruction

PC = PC + 4 bytes

Next Instruction

P
C =

 P
C + 4

 b
yte

s

P
C

 = D
estin

atio
n A

d
d

r

P
C = P

C + 4 b
yte

s

Fig. 36 Sequential and load/store sequential instruction execution

The instruction flow in Fig. 36 can be used to develop a proof-by-induction. For a

proof-by-induction, we show the instruction execution properties hold for n = 2

instructions, and then show the instruction execution properties hold for n = k + 1

instructions. For a more complete proof of high assurance, several protection

properties need to be demonstrated: data flow integrity, stack and memory

behavior, and register behavior.

67

Figure 37 shows part of the Sieve of Eratosthenes <L1> code block. There are

several sequential class instructions in a row. The instruction execution tag maps to

the EXE field found in Fig. 29. The bottom part of the figure illustrates some of the

properties verified during execution of lw a5, 0(a5) instruction. Memory access

flow tag is set to LOAD. This tag allows memory read operation. Data flow integrity

checks are completed during instruction execution (see Instruction Execution

block). Each memory address also has data flow integrity tags that are completely

isolated from data.

34: 0007a783 lw a5, 0(a5)

 Memory Access Flow = LOAD Sequential
a5 = pointer ?

Data Flow Integrity Checks
constant.security = 7, constant.integrity = 0
Read_Mem(0+a5).security = tag.security = 7
Read_Mem(0+a5).integrity = tag.integrity = 0
a5.security = Read_Mem(0+a5).security) = 7
a5.integrity = Read_Mem(0+a5).integrity) = 0

Instruction Start Instruction Execution End

Control Flow =
Sequential

Control Flow =
Sequential

0x0000 0034: 0x0007a783 lw a5, 0(a5) START = SEQ; EXE = LOAD; END = SEQ

 Sieve of Eratosthenes Code Execution Tag

 28: <L1> 40565793 srai a5, a2 ,0x5 CFT = Sequential
 2c: 00279793 slli a5, a5, 0x2 CFT = Sequential
 30: 00f507b3 add a5, a0, a5 CFT = Sequential
 34: 0007a783 lw a5, 0(a5) CFT = Load Sequential
 38: 40c7d7b3 sra a5, a5, a2 CFT = Sequential
 3c: 0017f793 andi a5, a5, 1 CFT = Sequential

From Figure 4.29

Fig. 37 LOAD sequential instruction execution

4.4.1.2 Branch Instruction Execution Class

The branch instruction execution class is illustrated in Fig. 38. For the previous

instruction, there are four possible instruction classes. The branch instruction has

two possible next instructions. For condition = TRUE, the next instruction is located

at the branch destination address (PC = destination address). For condition = FALSE,

the next instruction is the same as the sequential execution class (PC = PC + 1

instruction). Figure 39 shows a code block for beqz a5, 20 <L3> from Fig. 29

and control flow links for begz branch instruction class. The START control flow

tags shows the previous instruction class was sequential. The execution tag shows

the instruction class is branch. The END tag control flow links show that the two

possible next instruction classes are sequential or branch.

68

Branch

Sequential
Load/Store

Branch Jump

Any class

Previous Instruction Clases

Program Counter Currently Executing Instruction

Next Instruction

P
C

 = P
C

 + 4
 b

ytes

P
C

 = D
e

stin
atio

n
 A

d
d

r

Any class
Program Counter

PC = PC + 1 Instruction
PC = PC + 4 bytes

Next Instruction

Program Counter
PC = Destination Address

Fig. 38 Branch instruction execution

Sieve of Eratosthenes RISC-V Code
0020: <L3> 0x00160613 addi a2, a2, 1 START = BR EXE = SEQ END = SEQ

003c: 0x0017f793 andi a5, a5, 1 START = SEQ EXE = SEQ END = SEQ

0040: 0xfe0780e3 beqz a5, 20 <L3> START = SEQ EXE = BR END = SEQ|BR

0044: 0x00161693 slli a3, a2 ,0x1 START = SEQ EXE = SEQ; END = SEQ

Sequential

Condition = False

Condition = True

Previous CF Link

Instruction Execution Class

Condition = False

Condition = True
Next CF Links

From Figure 4.29 Instruction
Start

Instruction
Execute

Instruction
End

Executing
Instruction

Fig. 39 Branch instruction execution example

4.4.1.3 Jump Instruction Execution Class

The jump instruction execution class is similar to the branch instruction. As shown

in Fig. 40, the jump instruction class only has one next instruction: the destination

address. Figure 41 shows the control flow link tags and instruction execution tag

for a jump instruction.

69

Jump

Sequential
Load/Store

Branch Jump

Any class

Previous Instruction Clases

Program Counter Currently Executing Instruction

P
C

 = P
C

 + 4
 b

ytes

P
C

 = D
e

stin
atio

n
 A

d
d

r

P
C

 =
 D

e
st

in
at

io
n

 A
d

d
r

Next Instruction

Program Counter
PC = Destination Address

Fig. 40 Jump instruction execution

0018: 0x00a00313 li t1, 0x8 START = SEQ; EXE = LOAD END = SEQ

001c: 0x00c0006f j 28 <L1> START = SEQ; EXE = JMP END = JMP

0028: <L1> 0x40565793 srai a5, a2 ,0x5 START = SEQ|BR|JMP EXE = SEQ END = SEQ

Instruction
Start

Instruction
Execute

Instruction
End

Sequential

Previous CF Link

Instruction Execution Class Next CF Link

From Figure 4.29

Sieve of Eratosthenes RISC-V Code

Executing
Instruction

Fig. 41 Jump instruction execution example

4.4.1.5 Stack Operations

Stack and memory protections are required to strengthen control flow and data flow

integrity protections. A control flow graph does not consider stack behavior (Abadi

et al. 2005). Control flow and stack both must be protected. Abadi et al. note, “Of

course, CFI enforcement is not a panacea: exploits within the bounds of the allowed

CFG (e.g., Chen et al. [2005]) are not prevented.” Return-oriented programming

(ROP) is a common stack attack, and CFI fails to block it. An ROP attack corrupts

the stack and maliciously modifies the return address for an executing function

(Göktaş, et al. 2014). Current software architectures combine data and control

information on the same stack. This design philosophy violates Saltzer and

70

Schroeder’s security principles of least privilege, privilege separation, and

complete mediation. Current stack implementations suffer the same isolation issues

found in a von Neumann machine. All control information must be completely

isolated from data. To isolate control and data, separate stacks are required similar

to instruction and data isolation provided by a Harvard architecture.

Figure 42 illustrates stack state machine operations (Jungwirth 2020b). Control

flow operations are saved on the EXE_STACK. Data is placed on DATA_STACK. The

two stacks completely isolate control information from data. A malicious data stack

operation cannot overwrite or modify control flow information on the control flow

stack. A process ID (PID) provides a second level of isolation. Each process has its

own EXE_STACK and DATA_STACK. This provides a second level of isolation for

stack information.

Stack State
Machine

Mem Page
& PID Check

Write to stack

Add Stack
Mem Page

Clear Mem
Page

Increment
Stack Pointer

Decrement
Stack Pointer

Dealloc Mem
Page

Clear Mem
Page

Mem Page
& PID Check

Mem Addr Not Valid

Stack Underflow Error

Not Finished

Read from
stack

Read from
stack

Out of Mem

Not
Finished

Sta
ck

 O
p

Stack Op

No Stack Op

Fig. 42 Stack push and pull operations

4.4.1.6 Memory Page Operations

Memory access and page operations are presented in Sections 4.3.4, 4.3.5, 4.3.8,

and 4.3.9; and Jungwirth et al. (2019b) and Jungwirth and Ross (2019). I/O and

data page operations are presented in Jungwirth et al. (2019b).

4.4.2 State Machine Monitors Introduction

The Aberdeen Architecture’s state machine monitors are the trusted computing

base. State machine monitors interpret the security tag bits during instruction

execution. Each instruction class has a set of allowed and prohibited operations.

The security tag bits define the boundaries between allowed and prohibited

71

operations. As each instruction is executed, the security tags define the limits for

control flow behavior, memory access operations, data flow behavior, and

instruction execution. Instructions that violate one or more of the security properties

will raise a hardware-level exception. Section 4.5 describes the hardware-level

security policies enforced by the state machine monitors in detail.

Additional information covering control flow integrity is found in the paper

“Security Tag Fields and Control Flow Management” (Jungwirth and Ross 2019).

Data flow integrity for the Redstone Architecture is covered in the paper “Security

Tag Computation and Propagation in OSFA” (Jungwirth et al. 2018b). Redstone

Architecture’s instruction execution and page memory management is covered in

"Hardware Security Kernel for Cyber-Defense” (Jungwirth et al. 2019b) and

“Cyber Defense through Hardware Security” (Jungwirth et al. 2018a). Aberdeen

Architecture builds on the control flow and data flow integrity ideas for the

Redstone Architecture.

4.5 State Machine Monitors

Aberdeen Architecture’s state machine monitors are the trusted computing base.

Aberdeen Architecture’s data flow integrity was presented in section 4.3.10,

Figs. 33 and 34. Control flow integrity is presented in Section 4.3.9. Both data flow

integrity and control flow integrity are scalable. More field labels for control flow

integrity and data flow integrity provide higher levels of precision. Memory page

integrity monitor is covered in Section 4.3.4. Instruction execution integrity is

found in Sections 4.3 and 4.4. Following the software description philosophy in

Section 4.3.2, we present the RISC-V Aberdeen Architecture version of the Sieve

of Eratosthenes in Section 4.5.1.

Monitors are presented in reverse order (Data Flow Integrity, Control Flow

Integrity, Memory Page Monitor, and Instruction Execution Monitor) to build up

to instruction execution class. Instruction execution is a function of all information

flow classes. Section 4.5 finishes up with an introduction to “OS” support function

monitors: scheduler, interrupt handler, and exception handler.

4.5.1 RISC-V Aberdeen Architecture version of the Sieve of Eratosthenes

Figure 43 introduces instruction execution for the Aberdeen Architecture. The

control flow diagram for the Sieve of Eratosthenes code is found in Fig. 24. Control

flow integrity is validated by verifying the execution path that follows the control

flow security tags. Figure 29 shows the instruction execution tags. The previous

instruction’s END tag is the same as the current instruction’s START tag. The EXE

tags ensure that the proper control flow path is followed.

72

In Fig. 43, the load immediate instruction, li a7, 1, is a sequential class

instruction (see Fig. 36). The instruction loads the constant 1 into register a7. The

data memory access type is load immediate. The data integrity flow tags for a

constant are security = 7 (lowest security) and integrity = 0 (highest integrity). The

Aberdeen Architecture uses the register tags from the Redstone Architecture to

track data flow integrity through register calculations, and memory read and write

operations. When a value is read into a register, the memory word tag fields are

assigned to the register. When a value is stored to memory, the register tag values

are saved with the memory word.

Single point entry and exit points are shown in Fig. 44. The single entry and exit

points significantly reduce the chances of a gadget attack against code inside the

single entry and exit points. The control flow tags for code inside the single entry

and single exit blocks also block function calls. The two simple control flow

mechanisms, single entry/exit points, and control flow tags provide a high degree

of protection without a high cost (memory and chip area). Control flow protections

are known to lack coverage for stack operations. Aberdeen Architecture also

includes memory protections for stacks, data, executable code, and I/O. The

overlapping state machines’ protections provide the whole is greater than the sum

of the parts level of protection.

Instruction execution in Fig. 43 shows the interaction of all the state machines to

implement Saltzer and Schroeder’s complete mediation principle (verification of

operations and authority) for instruction execution. Complete mediation for

instruction execution requires high precision for protections. The Aberdeen

Architecture takes advantage of the overlapping protections provided by lower

precision protection mechanisms. Partial complete mediation is a practical level of

mediation suitable for an actual implementation. The precision level is scalable;

more security tags provide greater precision. Here we are interested in a balance

between protection cost (memory and circuits) and protection level. Figure 45

presents the ranges for mediation. Complete mediation verifies operations and

authorities without any ambiguities (highest level of precision). Complete

mediation is not practical for all applications. In addition, when using multiple

protection mechanisms with moderate levels of precision, an approximation to

complete mediation is possible. Near complete mediation reduces the ambiguities

to a small level where the available attack vectors are difficult to nearly impossible

to exploit. For computer code running on the Aberdeen Architecture, the multiple

overlapping protection mechanism for near-complete mediation can be greater than

the sum of the parts and provide a practical implementation for complete instruction

mediation.

73

10: li a7, 1
a7 = 1

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

a7 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a7.security = 7
a7.integrity = 0

a7 = READ

Aberdeen Architeture
Instruction

Execute Tags

Data Mem Access

Data Flow
Integrity Tags

Figure 29. Sieve of Eratosthenes RISC-V Code and Control Flow Integrity Tags

<sieve> li a2, 2 # base = a2
 a2.security = constant.security = 7
 a2.integrity = constant.integrity = 0

 li a7, 1 # a7 = 1

 a7.Security = 7, a7.Integrity = 0

a7.si = constant

Figure 34. Partial Data Flow Diagram for Sieve of Eratosthenes

Register
Permissions

Register Tag
Result

Redstone Architecture
Register Tags

Data Flow Protection

08: <sieve> 00200613 li a2, 2
0c: 08000513 li a0, 0x80
10: 00100893 li a7, 1
14: 55800813 li a6, 1368
18: 02500313 li t1, 37
1c: 00c0006f j <L1>

CALL_ENTRY

NEXT
Jump_To

Figure 28. Control Flow Graph for Sieve of Eratosthenes

Control Flow
Integrity

Fig. 43 Aberdeen Architecture RISC-V Sieve of Eratosthenes code instruction execution example

74

08: <sieve> li a2, 2
(function CALL single entry point)
base = a2 = 2

START = CALL;
EXE = LOAD IMM SEQ;
END = SEQ

a2 = RWM
Is END tag from prev
instruction = CALL?

LOAD IMMEDIATE
a2.security = 7
a2.integrity = 0

a2 = RWM

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
IntegrityData Mem Access

Data Flow
Integrity Tags

Register Tag
Result

Function CALL Single Entry Point

7c: <return> ret
function single exit point)

return from function CALL

START = SEQ;
EXE = RET;
END = RET

N/A

Function CALL Single Exit Point

Function CALLs to inside this code
block are not allowed

Is END tag from prev
instruction = SEQ?
Is next instruction tag = RET

(instruction following CALL)

A9 = function call
stack. RET uses A9
for return.

A9 = Call Stack
A9 = protected
stack

A9 = Call Stack
A9 = protected
stack

Fig. 44 Sieve of Eratosthenes single entry and exit code points

75

High Precision

Complete
Mediation

No Verification Near Complete
Mediation

Partial Mediation

Low Precision

Unique Labels for Every
Code Branch and Jump

Small number of Labels Moderate to Large
Number of Labels

Moderate
Precision

Page Memory
Verification

Word Memory
Verification

Protected Instruction
State Machine Exe

Protected Instruction
Pipeline Exe

Fig. 45 Partial, near-complete, and complete mediation ranges

76

The Aberdeen Architecture uses the register and memory tags from the Redstone

Architecture to implement protected buffers. In Fig. 46, Aberdeen Architecture

protected state machine “monitor call” instruction AA.Create_Buffer creates a

protected pointer to a buffer. An example of a protected pointer was introduced in

Fig. 44. A memory state machine controller creates the protected pointer. The

register tags are set to an array pointer. An array pointer cannot be “read” by the

running program. A pointer may be copied to other registers; however, the new

registers are upgraded to an array pointer. A register without the register tag “array

pointer” cannot be used to read or write to memory. Section 4.3.4 presented an

introduction to the Aberdeen Architecture memory map.

An Aberdeen Architecture JUMP instruction is illustrated in Fig. 47. The control

flow path from the previous instruction is shown. The JUMP instruction has one

possible next instruction: the jump destination address. The control flow graph for

the <L1> instruction can accept control flow tags SEQUENTIAL, BRANCH, and

JUMP. A larger number of control flow labels can improve control flow precision.

The Aberdeen Architecture conditional branch instruction is shown in Fig. 48.

LOAD and STORE memory instructions for the Aberdeen Architecture are presented

in Fig. 49. The LOAD instruction reads and STORE instruction writes a memory word

pointed to by a register tag = pointer register. For arrays or memory words, a

protected register prevents misuse of read and write operations. To read or write to

memory, the running process ID must match the process ID tag for the memory

page. Shared memory pages support multiple processes sharing memory. Each

memory address has memory tags. A read operation sets the register tags to the

stored memory tags. A write operation saves the memory word and register tags.

The memory tags provide for data flow integrity.

The complete Sieve of Eratosthenes RISC-V program for the Aberdeen

Architecture is presented in Fig. 50. Control flow, data flow, memory access flow,

and instruction execution are presented. Security tag fields are completely isolated

from the executing program. Security tag fields are created by parsing a binary or

high-level language to generate control flow, data flow, and memory access

patterns.

77

Buffer Length = 0x200 bytes

##: AA.cb a0, a1
buffer = a0 => array of integers
a1 = buffer length

START = SEQ;
EXE = AA SEQ;
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev
instruction = SEQ?

NONE
a0.security = 7
a0.integrity = 0

a0 = ARRAY POINTER

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
IntegrityData Mem Access

Data Flow
Integrity Tags

Register Tag
Result

0c: li a1, 0x200
buffer length = 0x200

START = SEQ;
EXE = LOAD IMM SEQ;
END = SEQ

a1 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7
a1.integrity = 0

a1 = READ

Register a0 is protected

Memory State Machine function call to create
a pointer with 0x200 bytes in length.

Pointer is a protected type that cannot be accessed by a running program.
Aberdeen Architecture uses the register tags from the Redstone Architecture
to implement protected pointers

Fig. 46 Aberdeen Architecture creates protected buffer

78

18: li t1, 0x0A
t1 = R = 10

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

1c: j 28 <L1>
jump to <L1>

START = SEQ
EXE = JMP
END = JMP

t1 = READ

N/A

Is END tag from prev
instruction = SEQ?

Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

LOAD IMMEDIATE

NONE

t1.security = 7
t1.integrity = 0

t1 = READ

N/A

28: <L1> srai a5, a2 ,0x5
a5 = word offset

START = SEQ|BR|JMP;
EXE = SEQ;
END = SEQ

NONE
Is END tag from prev
instruction=SEQ|BR|JMP?

a5.dfi = a2.dfi
 = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
IntegrityData Mem Access

Data Flow
Integrity Tags

Register Tag
Result

Previous CF Link

Instruction Execution ClassNext CF Link
Jump Destination Address

Previous Instruction can be
SEQUENTIAL, BRANCH, or JUMP

Executing Instruction

Sequential

Fig. 47 Aberdeen Architecture JUMP instruction execution

79

68: add a3, a3, a2
cnt = cnt + base

6c: ble a3, a6, 48 <L4>
if less then <L4>

070: addi a2, a2, 1
base = base + 1

START = SEQ;
EXE = SEQ;
END = SEQ

Is END tag from prev
instruction = SEQ?

NONE

START = SEQ
EXE = SEQ
END = SEQ

Is END tag from prev
instruction = SEQ?

NONE

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a3 = RWM
a6 = READ

N/A
START = SEQ;
EXE = BR
END = BR

a3.dfi = a3.dfi
a2.dfi

a2 = RWM
a3 = RWM

a3 = RWM

a2.dfi = a2.dfi a2 = RWM A2 = RWM

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
Integrity

Data Flow
Integrity Tags

Register Tag
ResultData Mem Access

48: <L4> srai a5, a3, 0x5
a5 = word offset from a3

START = SEQ|BR;
EXE = SEQ;
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 = (7, 0)

a5 = RWM
a3 = RWM

a5 = RWM

Previous CF Link

Instruction Execution ClassSequential

Branch Destination
Address

Executing Instruction

Sequential

Fig. 48 Aberdeen Architecture conditional branch

80

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
Integrity

Data Flow
Integrity Tags

Register Tag
Result

34: lw a5, 0(a5)
a5 = LW(addr = a5)

START = SEQ;
EXE = LOAD;
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0)

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointer

Data Mem Access

Register a5 is protected

64: sw a4, 0(a5)
update word

START = SEQ;
EXE = STORE;
END = SEQ;

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

Register a5 is protected

LOAD and STORE
EXE tags

Verify Memory Access Operation

Pointer is
Protected Type

Since a5=MemRead(0+a5),
a5 pointer is overwritten and

a5.dfi = MemRead(0+a5).dfi tags

MemWrite(a5+0) = a4
Mem(a5+0) = a4.tags = RWM

Pointer is
Protected Type

Register a5 is protected

Fig. 49 Aberdeen Architecture LOAD and STORE memory instructions

81

08: <sieve> li a2, 2
(function CALL single entry point)
base = a2 = 2

START = CALL;
EXE = LOAD IMM SEQ;
END = SEQ

10: li a7, 1
a7 = 1

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

14: li a6, 0x63
LAST = R^2 - 1 = 100 - 1

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

18: li t1, 0x0A
t1 = R = 10

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

1c: j 28 <L1>
jump to <L1>

START = SEQ
EXE = JMP
END = JMP

##: AA.cb a0, a1
buffer = a0 => array of integers
a1 = buffer length

START = SEQ;
EXE = AA SEQ;
END = SEQ

a2 = RWM

a0 = RWM
a1 = READ

a7 = READ

a6 = READ

t1 = READ

N/A

Is END tag from prev
instruction = CALL?

Is END tag from prev
instruction = SEQ?

Is END tag from prev
instruction = SEQ?

Is END tag from prev
instruction = SEQ?

Is END tag from prev
instruction = SEQ?

Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

LOAD IMMEDIATE

NONE

LOAD IMMEDIATE

LOAD IMMEDIATE

LOAD IMMEDIATE

NONE

a2.security = 7
a2.integrity = 0

a0.security = 7
a0.integrity = 0

a7.security = 7
a7.integrity = 0

a6.security = 7
a6.integrity = 0

t1.security = 7
t1.integrity = 0

20: <L3> addi a2, a2, 1
a2 = base = base +1

START = BR;
EXE = SEQ;
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi
 = (7, 0)

Is END tag from prev
instruction = BR?

a2 = RWM

a0 = ARRAY POINTER

a7 = READ

a6 = READ

t1 = READ

N/A

a2 = RWM

24: beq a2, t1, 78 <L2>
if base = R then <L2> Done

START= SEQ;
EXE = BR;
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a2 = READ
t1 = READ

N/A

28: <L1> srai a5, a2 ,0x5
a5 = word offset

START = SEQ|BR|JMP;
EXE = SEQ;
END = SEQ

NONE
Is END tag from prev
instruction=SEQ|BR|JMP?

a5.dfi = a2.dfi
 = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

2c: slli a5, a5, 0x2
a5 = byte offset [note 1]

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 = (7, 0)

a5 = RWM a5 = RWM

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
IntegrityData Mem Access

Data Flow
Integrity Tags

Register Tag
Result

0c: li a1, 0x200
buffer length = 0x200

START = SEQ;
EXE = LOAD IMM SEQ;
END = SEQ

a1 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7
a1.integrity = 0

a1 = READ

Register a0 is protected

Function CALL Single Entry Point

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code

82

30: add a5, a0, a5
a5 = pb[0] + byte offset

START = SEQ;
EXE = SEQ;
END = SEQ

Aberdeen Architeture
Instruction

Execute Tags

a5 = RWM
a0 = array pointer

Register
Permissions

Control Flow
Integrity

none
a5.dfi = a0.dfi
 = (7, 0)

Data Flow
Integrity Tags

a5 = Array Pointer
(protected register)

Register Tag
Result

34: lw a5, 0(a5)
a5 = LW(addr = a5)

38: sra a5, a5, a2
a5 = a5 >> a2 [note 2]

3c: andi a5, a5, 1
a5 = pb[word, bit number]

40: beqz a5, 20 <L3>
if a5 = bit = 0 the <L3>

44: slli a3, a2 ,0x1
a3 = cnt = base + base

48: <L4> srai a5, a3, 0x5
a5 = word offset from a3

4c: slli a5, a5, 0x2
a5 = byte offset

50: add a5, a0, a5
a5 = pb[0] + byte offset

54: lw a1, 0(a5)
a1 = LW(addr = a5 + 0)

Is SEQUENTIAL Execution
Valid?

START = SEQ;
EXE = LOAD;
END = SEQ

START = SEQ|BR;
EXE = SEQ;
END = SEQ

START = SEQ;
EXE = SEQ;
END = SEQ

START = SEQ;
EXE = SEQ;
END = SEQ

START = SEQ;
EXE = LOAD MEM;
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0)

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointer

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 a2.dfi
 = (7, 0)

a5 = RWM
a2 = RWM

a5 = RWM

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 = (7, 0)

a5 = RWM a5 = RWM
START = SEQ;
EXE = SEQ
END = SEQ

START= SEQ;
EXE = BR;
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a5 = RWM N/A

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a3.dfi = a2.dfi
 = (7, 0)

a3 = RWM
a2 = RWM

a3 = RWM

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 = (7, 0)

a5 = RWM
a3 = RWM

a5 = RWM

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 = (7, 0)

a5 = RWM a5 = RWM

NONE
Is END tag from prev
instruction = SEQ?

a5.dfi = a5.dfi
 a0.dfi
 = (7, 0)

a5 = RWM
a0 = Array Pointer

a5 = Array Pointer
(protected register)

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid?

a1 = RWM
a5 = ARRAY POINTER

a1 = ReadMem(0+a5)
a5 = Array Pointer

Data Mem Access

Register a5 is protected

Register a5 is protected

Register a5 is protected

Register a0 is protected

Register a0 is protected

Register a5 is protected Register a5 is protected

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code (continued)

83

Aberdeen Architeture
Instruction

Execute Tags Register
Permissions

Control Flow
Integrity

Data Flow
Integrity Tags

Register Tag
Result

58: sll a4, a7, a3
a4 = 1 << cnt = 00 1 000

5c: not a4, a4
a4 = 11 0 111

60: and a4, a4, a1
clear bit

64: sw a4, 0(a5)
update word

68: add a3, a3, a2
cnt = cnt + base

6c: ble a3, a6, 48 <L4>
if less then <L4>

070: addi a2, a2, 1
base = base + 1

74: bne a2, t1, 28 <L1>
if base != R then <L1>

7c: <return> ret
function single exit point)

return from function CALL

START = SEQ;
EXE = SEQ;
END = SEQ

Is END tag from prev
instruction = SEQ?

NONE

START = SEQ;
EXE = SEQ;
END = SEQ

Is END tag from prev
instruction = SEQ?

NONE

START = SEQ;
EXE = STORE;
END = SEQ

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a3 = RWM
a6 = READ

N/A
START = SEQ;
EXE = BR;
END = BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a2 = RWM
t1 = READ

N/A
START = SEQ;
EXE = BR;
END = BR

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a4.dfi = a7.dfi
a3.dfi

a4 = RWM
a7 = RWM
a3 = RWM

a4 = RWM

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a4.dfi = a4.dfi a4 = RWM a4 = RWM

START = SEQ;
EXE = SEQ
END = SEQ

NONE
Is END tag from prev
instruction = SEQ?

a4.dfi = a4.dfi
a1.dfi

a4 = RWM
a1 = READ

a4 = RWM

Data Mem Access

Register a5 is protected

a3.dfi = a3.dfi
a2.dfi

a2 = RWM
a3 = RWM

a3 = RWM

a2.dfi = a2.dfi a2 = RWM A2 = RWM

78: <L2> AA.dp a0, 0
deallocated memory

START = SEQ;
EXE = SEQ;
END = SEQ

Is END tag from prev
instruction = SEQ?

Deallocate memory
pointed to by a0

a0.dfi = (7, 0)
a0 = POINTER a0 = READ

Register a0 is protected

START = SEQ;
EXE = RET;
END = RET

Is END tag from prev
instruction = SEQ?
Is next instruction tag = RET

(instruction following CALL)

N/A
A9 = function call
stack. RET uses A9
for return.

Function CALL Single Exit Point

Register A9 is

protected CALL stack
Register A9 is

protected CALL stack

Fig. 50 Aberdeen Architecture RISC-V Sieve of Eratosthenes code (continued)

84

4.5.2 Data Flow Integrity Monitor

Table 8 summarizes Aberdeen Architecture’s data flow integrity policies. The Data

Flow Integrity Monitor performs data integrity and data security tag checks listed

in Fig. 44. Instruction execution integrity monitor, described in Section 4.4.5,

demonstrates the behavior of all of the state machines. Data integrity and data

security use lattice operators to compute the resultant integrity level and security

level. For arithmetic and logic calculations in (8), registers rd = destination register,

rs1 = source register 1, and rs2 = source register 2. For arithmetic and logic

calculations, the resultant security tag in (9) is the highest-level tag in the

calculation. For the integrity tags in (10), rd.tag.integrity is equal to the least

integrity level for rs1 and rs2. Global register tags in (11) can be used to define

minimum and maximum values for integrity and security.

Table 8 Data flow integrity policies summary

𝑟𝑑 = 𝑟𝑠1 ⨀ 𝑟𝑠2
where ⨀ is the arithmetic or logic operation for RISC-V

arithmetic or logic instruction. For example, rd = rs1 + rs2
(8)

𝑟𝑑. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = max(𝑟𝑠1. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 , 𝑟𝑠2. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦)
arithmetic and logic

security tag result
(9)

𝑟𝑑. 𝑡𝑎𝑔. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 = min(𝑟𝑠1. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 , 𝑟𝑠2. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦)
arithmetic and logic

integrity tag result
(10)

𝑟𝑑. 𝑡𝑎𝑔. 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦. 𝑟𝑎𝑛𝑔𝑒 = (2 , 7)

𝑟𝑑. 𝑡𝑎𝑔. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦. 𝑟𝑎𝑛𝑔𝑒 = (0 , 5)

Global register tags can be used to define

security and integrity ranges
(11)

Data integrity verification checks data integrity tags in (10) and data security tags

in (9) for the information flow in (8). The memory access tag for LOAD and STORE

instructions provides data flow verification for memory accesses.

4.5.3 Control Flow Integrity Monitor

In Table 9, control flow integrity supports (1) code block labels, block start, block

end, (2) CALL, RETURN single point entry and exit points, (3) exception single point

entry/exit points, (4) interrupt request single point entry/exit points, and (5) control

flow instruction labels and links (instruction linked list). Control flow integrity

operations are illustrated in Fig. 44. Control flow integrity was discussed in

Section 4.3.9. Instruction execution integrity routine, described in Section 4.4.5,

demonstrates the behavior of all of the state machines.

85

Table 9 Control flow label summary

Control Flow Label Control Flow Description Figures

CALL Function Call Single Entry Point 24, 29, 30, 44

RETURN Function Return Single Exit Point 24, 29, 30, 44

EXCEPTION_CALL Exception Single Entry Point 21

EXCEPTION_RET Exception Single Entry Return 21, 22

IRQ_CALL Interrupt Single Entry Point 21, 23

IRQ_RETURN Interrupt Single Entry Return 21, 23

AL_SEQUENTIAL Arithmetic/Logic Sequential Instruction 9, 25, 36

LOAD_IMM_SEQ Load immediate sequential Instruction 43, 46

LOAD_SEQUENTIAL Load from memory sequential instruction 10, 26, 37, 49

STORE_SEQUENTIAL Store to memory sequential instruction 10, 49

AA.SEQUENTIAL Aberdeen Architecture Sequential

Class Privileged Instructions
46, 50

BRANCH Branch instruction 11, 38, 39, 48, 50

JUMP Jump instruction 12, 27, 40, 41, 47, 50

4.5.4 Memory Page Monitor

Section 4.3.4 and Fig. 13 introduce page memory classes. Figure 17 describes the

operation of the stack state machine. The memory classes extend the memory

classes described in the paper “Hardware Security Kernel for Cyber Defense”

(Jungwirth et al. 2019b). Memory Page Monitor Supports: memory page classes,

Exe Mem Page, Exe Stack Mem Page, Data Stack Mem Page, Create Stack Pointer

and Deallocate Stack Pointer; Virtual Page Table Mem Page, OS Table Mem Page;

LOAD/STORE memory access; I/O Page Class; Data Page Class; Data Stack Page;

conversions between allowed classes; and Process Configuration Page (protected

page class).

Each memory page class provides least privilege, complete mediation, and

privilege separation. Memory pointers, stack, IO_Page, buffers, and so on, also

have a set of allowed memory operations to support least privilege, complete

mediation, and privilege separation. For a process’s data stack to be used by a DLL,

the data stack memory page must be converted to DLL_Stack using an Aberdeen

Architecture protected instruction. Once memory page class = DLL_Stack, the

running process cannot access the stack space. When the DLL completes, it sets the

page class back to Data Stack for the running process.

4.5.5 Instruction Execution Monitor

The Aberdeen Architecture’s instruction execution monitor verifies four instruction

classes shown in Table 10. AA_Protected instructions are sequential class

instructions that call state machine monitor operations. For an example state

86

machine operation, see AA.Create_Buffer. Instruction classes are based on the

behavior of the PCR. Sequential instruction classes AL_SEQUENTIAL,

IMM_SEQUENTIAL, LS_SEQUENTIAL, and AA_Protected advance the PCR to

the next instruction. CALL and RETURN instructions are a protected “jump”-like

instruction. BRANCH instruction class has two next instruction addresses: PCR =

next instruction (same as sequential class) and PCR = branch destination address.

The JUMP instruction simply jumps to the jump destination address (PCR =

destination address).

Table 10 Instruction class summary

Instruction Class Control Flow Description Figures

(1.1) AL_SEQUENTIAL Arithmetic and Logic Sequential Instruction Class 9, 25, 36

(1.2) IM_SEQUENTIAL Load immediate sequential Instruction 43, 46

(1.3) LS_SEQUENTIAL LOAD/STORE Sequential Instruction 10, 26, 37, 49

(2) AA_Protected Aberdeen Architecture Protected Instructions 46, 50

(3) BRANCH Branch instruction 11, 38, 39, 48, 50

(4) JUMP Jump instruction 12, 27, 40, 41, 47, 50

As listed in Table 10, sequential instructions cover (1.1) register-to-register

arithmetic and logic instructions; (1.2) load immediate, and (1.3) LOAD and STORE

instructions. The sequential class instructions advance the program counter to the

next instruction. Aberdeen Architecture instructions are protected instructions

directly executed by the Aberdeen Architecture state machine controllers. For

example, an operating system or user program can call an Aberdeen Architecture

instruction to create a buffer. The buffer is managed and protected by state

machines. Aberdeen Architecture instructions also include stack operations, I/O

operations, and memory page operations. Section 4.5.6 presents a pseudo-code

implementation for the instruction execution monitor.

4.5.6 Instruction Execution State Machine Monitor

A simplified state machine instruction execution monitor is presented in Fig. 51.

Section 4.5.6 and Fig. 52 present a pseudo-code implementation for the instruction

execution monitor. The instruction execution state machine uses (1) data flow

control state machine monitor, (2) control flow state machine monitor, and (3)

memory access state machine. Together the four state machines provide high-

assurance instruction execution for the Aberdeen Architecture. The instruction

execution monitor operation is described for the Sieve of Eratosthenes RISC-V

code in Fig. 44. Each instruction class uses a line of code from Fig. 44 to explain

the operation of the instruction execution state machine. For example, code {7}

handles the arithmetic and logic sequential instruction class. Code {8} shows an

87

example of a protected instruction, AA.create_buffer. Protected instructions are

executed by state machine controllers.

case Arithmetic_Logic_SEQUENTIAL: {7}
20: <L3> addi a2, a2, 1
a2 = base = base +1

START = BR;
EXE = SEQ;
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi
 = (7, 0)

Is END tag from prev
instruction = BR?

a2 = RWM

// Aberdeen Architecture Protected Instructions
// Executed by State Machine Controllers
case AA.Create_Buffer:

{8}

##: AA.cb a0, a1
buffer = a0 => array of integers
a1 = buffer length

START = SEQ;
EXE = AA SEQ;
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev
instruction = SEQ?

NONE
a0.security = 7
a0.integrity = 0

a0 = ARRAY POINTER

0c: li a1, 0x200
buffer length = 0x200

START = SEQ;
EXE = LOAD IMM SEQ;
END = SEQ

a1 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7
a1.integrity = 0

a1 = READ

Register a0 is protected

Fig. 51 Simplified execution monitor state machine

Execute

Instruction

STACK

OPERATION

LOAD

STORE
ARITHMETIC

LOGIC

RAISE

EXCEPTION

Invalid

Mem

Page

ALLOW

MEM OP

DESTINATION

ADDRESS

RAISE

EXCEPTION

Invalid

Mem

Page

ALLOW

MEM OP

Instruction

Completed

88

int Instruction_Exe_Monitor(int PID, int instruction_class, reg_type registers,
data_mem_type &data)
{

switch(instruction_class){

20: <L3> addi a2, a2, 1
a2 = base = base +1

START = BR;
EXE = SEQ;
END = SEQ

NONE a2 = RWM
a2.dfi = a2.dfi
 = (7, 0)

Is END tag from prev
instruction = BR?

a2 = RWM

case Arithmetic_Logic_SEQUENTIAL:
 if((Control_Flow (PCR-1, PCR) == ALLOWED) &&

 (Mem_Access_Tag == NONE) &&
 (Exe_Page.Tag == EXE) &&

 (Exe_Page.PID == Running_Process_ID)) &&
 (Register_Tags[rd] != PROTECTED)) &&
 (Register_Tags[rd] == at least WRITE))

{
 if (Register[rd].dfi.bounds ALLOWED for Register[rs1].dfi ◊
 Register[rs2].df)
 {
// ◊ = data flow integrity lattice operator
 Register[rd].dfi = Register[rs1].dfi ◊ Register[rs2].dfi;
 Register[rd].tags = Register[rs1].tags ◊ Register[rs2].tags;

 // RISC-V Core executes
// rd = rs1 ⊙ rs2; where ⊙ = arithmetic/logic
 }
 else
 throw Register_Bounds_EXCEPTION;
}
else
 throw AL_SEQ_EXCEPTION;

break;

10: li a7, 1
a7 = 1

START = SEQ
EXE = LOAD IMM SEQ
END = SEQ

a7 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a7.security = 7
a7.integrity = 0

a7 = READ

case LOAD_IMM_SEQUENTIAL: // LOAD CONSTANT
 if((Control_Flow (PCR-1, PCR) == ALLOWED) &&
 (Mem_Access_Tag == NONE) &&

 (Exe_Page.Tag == EXE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Register_Tag[rd] != PROTECTED)) &&
 (Register_Tag[rd] == at least WRITE))
 {
 Register[rd].security = 7; // lowest security
 Register[rd].integrity = 0; // highest integrity
 Register[rd].tags = Register[rd].tags;
 // RISC-V Core executes
 // Register[rd] = immediate value
 }
 else
 throw LOAD_IMM_EXCEPTION;
break;

Fig. 52 Instruction execution state machine monitor

89

34: lw a5, 0(a5)
a5 = LW(addr = a5)

START = SEQ;
EXE = LOAD;
END = SEQ

Is EXE tag = LOAD, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid? a5 = dfi(Mem(a5 + 0)) = (7, 0)

a5 = Array Pointer
(protected register)

a5=tags.Mem(a5+0)
a5 is not a pointerRegister a5 is protected

case LOAD_WORD_SEQUENTIAL:
 addr = register[rs] + offset;
 if((Control_Flow (PCR-1, PCR) == ALLOWED) &&

 (Exe_Page.Tag == EXE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Mem_Access_Tag == LOAD) &&
 (Mem_Page.PID == Process.PID &&
 (Mem_Addr == VALID &&
 (Mem_Page.tag == at least READ)) &&
 (Register[rd] == at least WRITE)) &&
 {
 if (Register[rd].dfi.bounds ALLOWED for Register[rs1].dfi ◊
 Register[rs2].df)
 {
 Register[rd].dfi = Mem(addr = rs + offset).dfi;
 Register[rd].tags = Mem(addr = rs + offset).register_tags;
 // RISC-V core executes
 // Register[rd] = Mem(addr = rs + offset);
 }
 else
 throw Register_Bounds_EXCEPTION;
 }
 else
 throw LOAD_IMM_EXCEPTION();
break;

64: sw a4, 0(a5)
update word

START = SEQ;
EXE = STORE;
END = SEQ

Is EXE tag = STORE, PID valid for Mem Page, a5 = pointer, and
SEQUENTIAL Exe valid?

a5 = ARRAY POINTER
a4 = RWM

MEM(a5+0)= a4 = RWM

a5 = pointer

Register a5 is protected

case STORE_WORD_SEQ
 addr = register[rs] + offset;
 if((Control_Flow (PCR-1, PCR) == ALLOWED) &&

 (Exe_Page.Tag == EXE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Mem_Access_Tag == STORE) &&
 (Mem_Page.PID == Process.PID &&
 (Mem_Addr == VALID &&
 (Mem_Page.tag == at least WRITE)) &&
 (Register[rd].tag == at least READ)) &&
 (Register[rs1].tag == POINTER)
 {
 Mem(addr = rs + offset).dfi = Register[rd].dfi;
 Mem(addr = rs + offset).register_tags = Register[rd].tags;
 // Mem(addr = rs + offset = Register[rd];
 }
 else
 throw STORE_EXCEPTION;
 break;

Fig. 52 Instruction execution state machine monitor (continued)

90

##: AA.cb a0, a1
buffer = a0 => array of integers
a1 = buffer length

START = SEQ;
EXE = AA SEQ;
END = SEQ

a0 = RWM
a1 = READ

Is END tag from prev
instruction = SEQ?

NONE
a0.security = 7
a0.integrity = 0

a0 = ARRAY POINTER

0c: li a1, 0x200
buffer length = 0x200

START = SEQ;
EXE = LOAD IMM SEQ;
END = SEQ

a1 = READ
Is END tag from prev
instruction = SEQ?

LOAD IMMEDIATE
a1.security = 7
a1.integrity = 0

a1 = READ

Register a0 is protected

// Aberdeen Architecture Protected Instructions
// Executed by State Machine Controllers
 case AA.Create_Buffer:
 if(rd.tag != BUFFER|STACK|PROTECTED)
 rd.tag == BUFFER;
 ALLOCATE_MEM_PAGE();
 else
 throw Create_Buffer_ERROR;
 break;

 case AA.CALL: // similar to jump with stack operation
 if(CALL Destination Address == VALID) &&

 (Exe_Page.Tag == EXECUTE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Exe_Mem_Page.PID == Process.PID &&
 (Destination_Addr == VALID)
 { // State Machine Executes Protected Instruction
 PCR = DESTINATION ADDRESS;
 PUSH_Exe_Stack();
 }
 else
 throw CALL_EXCEPTION;
 break;

 case AA.RETURN:
 if((PCR(n) == RET instruction) &&
 (PCR(n+1) == ACCEPT_RETURN)
 {
 PCR = PCR + 1;
 Update_Exe_Stack();
 }
 else
 throw RETURN_EXCEPTION;
 break;

 case AA.Data_Stack:
 Update_Data_Stack();
 break;

 case AA.Data_Stack_to_DLL_Stack:
 if(rd.tag == DATA_STACK)
 rd.tag == DLL_STACK;
 else
 throw STACK_TYPE_ERROR;
 break;

Fig. 52 Instruction execution state machine monitor (continued)

91

 case AA.DLL_Stack_to_Data_Stack:
 if(rd.tag == DLL_STACK)
 rd.tag == Data_STACK;
 else
 throw STACK_TYPE_ERROR;
 break;

 case AA.IO_Page_to_Data:
 if(rd.tag == IO_PAGE)
 rd.tag == Data_PAGE;
 else
 throw IO_PAGE_TYPE_ERROR;
 break;

 case AA.Data_to_IO_Page:
 if(rd.tag == DATA_PAGE)
 rd.tag == IO_PAGE;
 else
 throw DATA_PAGE_TYPE_ERROR;
 break;

 case AA.Open_IO_Port:
 rd.tag = IO_Port;
 rd = Port_Controller_Address(create, rd);
 if Port_Controller_Address == NULL then
 {
 rd.tag = NULL;
 throw Open_Port_Exception;
 }
 Clear_IO_Page(rd);
 break;

 case AA.Close_IO_Port:
 Clear_IO_Page(rd);
 Port_Controller_Address(free, rd);
 if Port_Controller_Address != 0 then Close_Port_Exception;
 break;

 default:
 throw SEQUENTIAL_INSTRUCTION_EXCEPTION;
 break;

24: beq a2, t1, 78 <L2>
if base = R then <L2> Done

START= SEQ;
EXE = BR;
END = SEQ|BR

NONE
Is END tag from prev instruction = SEQ?
Is Branch destination address or sequential
next instruction valid?

a2 = READ
t1 = READ

N/A

case BRANCH:
 if((Control_Flow (PCR(n-1), Destination_Addr, SEQ) == ALLOWED) &&

 (Exe_Page.Tag == EXECUTE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Destination_Addr == VALID &&
 (Sequential_Addr == VALID &&)
 {
 Register.PCR.tags = ???
 // PCR = Destination Address or Next Sequential Address
 }
 else
 throw BRANCH_EXCEPTION;
break;

Fig. 52 Instruction execution state machine monitor (continued)

92

1c: j 28 <L1>
jump to <L1>

START = SEQ
EXE = JMP
END = JMP

N/A
Is END tag from prev instruction = SEQ?
Is Jump Destination Valid?

NONE N/A

case JUMP:
 if((Control_Flow (PCR(n-1), Destination_Addr) == ALLOWED) &&

 (Exe_Page.Tag == EXECUTE) &&
 (Exe_Page.PID == Running_Process_ID) &&

 (Exe_Mem_Page.PID == Process.PID &&
 (Destination_Addr == VALID)
 {
 Register.PCR.tags = ???
 // Jump to Destination Address, PCR = Destination Addres
 }
 else
 throw JUMP_EXCEPTION;

break;

// invalid instruction type
 default:
 throw Instruction_Type_Exception }
 break;

Fig. 52 Instruction execution state machine monitor (continued)

93

4.6 Aberdeen Architecture Two-State Machine Simulation

C code for a limited prototype RISC-V-based Aberdeen Architecture simulation is

found in Appendix B. The prototype only simulates (1) simple control flow

integrity, and (2) simple page memory verification. A fully functional prototype

would require several more protection features to be implemented and additional

functionality to fuse the outputs from the multiple state machine monitors.

Figure 53 illustrates a simple control flow violation (see Appendix C). Executing

instruction is a JUMP instruction. Control flow tags are set for BRANCH instruction.

Since the executing instruction violates the control flow tags, a control flow

violation occurs. The case BRANCH in Fig. 52 raises a BRANCH_EXCEPTION as

illustrated in Fig. 53.

Fig. 53 Control flow state machine simple control flow graph exception

mts[0x09].mem = 0x04660a63; // beq a2, t1, 78 <L2> //
mts[0x09].exe_tag = JUMP; // CHANGED TAG TO JUMP
mts[0x09].link_tag = 32;

PCR = 3c Byte Address
opcode = AL_IMM_OPCODE

check Link = 1
opcode = AL_IMM_exe

PCR = 40 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

PCR = 20 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 24 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

Branch Control Flow Violation.

Word Address = 0x09

link_tag = 32 is for a branch

instruction. With Instruction

set to JUMP, a branch control

flow violation occurs.

94

Fig. 54 Memory page state machine simple memory page exception

Figure 54 illustrates simulating a simple page memory boundary for the sieve array

of bits. For each bit, 0 = not prime, and 1 = prime. Accessing memory outside the

memory page (0x100 through 0x10c) will raise a simulated hardware exception.

int lw(int32_t addr, mts_t& mems, int32_t& word)
{

int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;

if(byte_addr >= 0x100 && byte_addr <= 0x10c)
word = mems[word_addr].mem;

else
{

printf("Invalid memory page \n");
exit(1);

}

return 0;
}

Memory Page

Boundary

12 bytes are required to store 100

bits (prime numbers 1..100)

95

4.7 Summary of Aberdeen Architecture State Machine Monitors

A brief summary of the Aberdeen Architecture is presented in Fig. 55. The

Aberdeen Architecture adds state machine monitor protection mechanisms to the

Redstone Architecture presented in Appendix A.

 1. Aberdeen Architecture -- State Machine Monitors

1.1. Aberdeen Architecture Protection Mechanisms

1.1.1. Data Flow Integrity Monitor

1.1.2. Control Flow Integrity Monitor

1.1.3. Memory Access Page Monitor

1.1.4. Instruction Execution Monitor

1.2. Data Flow Integrity Monitor (Table 8)

1.3. Control Flow Integrity Monitor (Table 9)

1.3.1. Control Flow Tags (SEQUENTIAL, BRANCH, JUMP)

1.3.2. Control Flow Code Blocks

1.3.3. CALL/RETURN Instructions

1.3.4. IRQ/RETURN Code Blocks

1.3.5. EXCEPTION/RETURN Code Blocks

1.4. Memory Page Monitor (§ 4.3.4)

1.4.1. Memory Page Classes

1.4.1.1. Exe Mem Page

1.4.1.2. Stack Mem Page

1.4.1.3. Exe Stack Mem Page

1.4.1.4. Create Stack Pointer // Deallocate Stack Pointer

1.4.1.5. Virtual Page Table Mem Page

1.4.1.6. OS Table Mem Page

1.5. Instruction Monitor (§ 4.3.1)

1.5.1. RISC-V instruction set architecture (§ 4.3.3)

1.5.2. Classes of RISC instructions (§ 4.4.1)

1.5.2.1. Sequential Execution

1.5.2.1.1. Register-to-Register

1.5.2.1.2. Load Immediate

1.5.2.1.3. Load/Store

1.5.2.2. Direct Jump

1.5.2.3. Branch

1.5.2.4. Aberdeen Architecture Protected Instructions. (§ 4.4, and § 4.5)

1.5.2.4.1. Buffer, IO, Memory Page, et al. Pointers

1.5.2.4.2. Stack Pointers

1.5.2.4.3. Allocate/Deallocate Memory Pages

1.5.2.4.4. CALL/RETURN Instructions

2. Redstone Architecture

2.1. Aberdeen Architecture uses high assurance features in Redstone Architecture

2.1.1. Tag Files

2.1.2. Register Tag Fields

2.1.3. Local and Global Tag Fields

2.2. Aberdeen Architecture uses cache bank memory pipeline from Redstone

Architecture

2.2.1. Round Robin scheduler uses cache bank memory pipeline for context

switches

Fig. 55 Aberdeen Architecture summary

96

5. Conclusions

This technical report describes a high-assurance computer architecture that

achieves complete mediation (Saltzer and Schroeder 1975, Smith 2012) for

instruction execution. The Aberdeen Architecture uses hardware-level state

machine monitors for the trusted computing base. The state machine monitors

provide security policies enforcing multiple information flow properties. The state

machines provide complete mediation for instruction execution based on four

information flow classes. The Aberdeen Architecture combines several protection

methods to create a system security policy where the whole is greater than the

individual security policies. The multiple security policies provide overlapping

coverage preventing brittleness and single-point security policy failures. The

Aberdeen Architecture fully virtualizes the execution pipeline and register file,

providing complete time and space separation between software and the security

policies.

The Aberdeen Architecture is currently patent pending.

6. Future Research Areas

The Aberdeen Architecture requires a high-assurance compiler to take advantage

of the security tag features and state machine controllers. A high-level language is

required for software developers. The compiler for the high-level language needs

to determine and implement the security details for the programmers.

The high-assurance security features from the Aberdeen Architecture can simplify

the implementation of high-assurance microkernels. We envision using the security

features from the Aberdeen Architecture to develop a streamlined version of seL4.

The AA-seL4 would run as a guest OS using the nano-kernel OS features provided

by the hardware-level state machines.

An out-of-order instruction execution architecture is possible. Each execution

thread requires a PID to isolate threads, processes, and hardware states.

97

7. References

Abadi M, et al. Control-flow integrity principles, implementations, and

applications. ACM CCS; 2005 Nov. pp 340–353

Abadi M, et al. Control-flow integrity principles, implementations, and

applications. ACM Transactions on Information and System Security. 2009

October;13(1):Article 4.

Acıiçmez O, et al. Predicting secret keys via branch prediction. Proceedings of the

cryptographers' track at the RSA conference on topics in cryptology. 2007 Feb

5–9. pp 225–242. [accessed 2021 June 9]. https://eprint.iacr.org/2006/288.pdf

Adleman N, et al. Multics security integration requirements. 1976 Mar. Report No.:

ESD-TR-76-354 [accessed 2021 June 9].

https://apps.dtic.mil/dtic/tr/fulltext/u2/a041514.pdf

AEG Telefunken. TR441: Characteristics of the RD441 [German]. AEG

Telefunken Manual, DBS 180 0470, Konstanz, Germany; 1970.

Aga M, Austin T. Smokestack: thwarting DOP attacks with runtime stack layout

randomization. IEEE/ACM International Symposium on Code Generation and

Optimization (CGO); 2019. pp 26–36. doi: 10.1109/CGO.2019.8661202.

Alves-Foss J, et al. A new operating system for security tagged architecture

hardware in support of multiple independent levels of security (MILS)

compliant systems. 2014 Apr. AFRL Technical Report: AFRL-RI-RS-TR-

2014-088. www.dtic.mil/dtic/tr/fulltext/u2/a602198.pdf

Ammann O, et al. The failure of the tacoma narrows bridge, a report to the

administrator. Report to the Federal Works Agency, Washington, 1941.

https://authors.library.caltech.edu/45680/1/The%20Failure%20of%20the%20

Tacoma%20Narrows%20Bridge.pdf

Bell G. Wozniak’s blue box. Computer History Museum; 1972. Catalog No.:

102713487. http://www.computerhistory.org/collections/catalog/102713487

Bernstein D. Cache-timing attacks on AES; 2005. https://www.semanticscholar.org

› Papers › Cache-timing attacks on AES

Blinde L. Galois awarded $4.5M DARPA contract to strengthen hardware security.

Intelligence Community News; 2018 Jan 26 [accessed 2021 Apr 26].

https://intelligencecommunitynews.com/galois-awarded-4-5m-darpa-

contract-to-strengthen-hardware-security/

http://www.computerhistory.org/collections/catalog/102713487
https://intelligencecommunitynews.com/galois-awarded-4-5m-darpa-contract-to-strengthen-hardware-security/
https://intelligencecommunitynews.com/galois-awarded-4-5m-darpa-contract-to-strengthen-hardware-security/

98

Blue box. Wikipedia; n.d. [accessed 2021 June 9].

http://en.wikipedia.org/wiki/Blue_box

Bondi J, Branstad M. Architectural support of fine-grained secure computing; 1989

Dec 4–8. pp 121–130.

Breen C, Dahlbom C. Signaling systems for control of telephone switching. Bell

System Technical Journal. 1960 November;39(6):1381–1444.

archive.org/details/bstj39-6-1381

Brown G, et al. Operating system enhancement through firmware. Proceedings of

the 10th annual workshop on Microprogramming, ACM SIGMICRO. 1977

Sept.;8(3):110–133. https://dl.acm.org/citation.cfm?id=800102.803324

Burow N, et al. Control-flow integrity: precision, security, and performance. ACM

Computing Surveys. April 2017;50(1):1–33.

https://doi.org/10.1145/3054924.

Burroughs Corp. Burroughs B6500 information processing systems reference

manual. Burroughs Corp.; 1969.

Castro M, et al. Securing software by enforcing data-flow integrity. In: Proceedings

of the 7th Symposium on Operating Systems Design and Implementation

(OSDI '06). USENIX Association; 2006. pp 147–160.

Chen Z, et al. Dynamic taint analysis with control flow graph for vulnerability

analysis. First International Conference on Instrumentation, Measurement,

Computer, Communication and Control; 2011. pp 228–231. doi:

10.1109/IMCCC.2011.66.

Chirgwin R. DARPA seeks SSITH lords to keep hardware from the dark side. The

Register; 2017 Apr 21. [accessed 2021 June 9].

https://www.theregister.com/2017/04/12/darpa_ssith_program/

Chiricescu S, et al. SAFE: a clean-slate architecture for secure systems. IEEE

International Conference on Technologies for Homeland Security (HST); 2013

Nov 12–14. pp 570–576.

Confused deputy problem. Wikipedia; n.d. [accessed 2021 June 9].

https://en.wikipedia.org/wiki/Confused_deputy_problem

DARPA Microsystems Technology Office. Broad agency announcement, system

security integrated through hardware and firmware (SSITH); 2017 Apr 19.

DARPA. Clean-slate design of resilient, adaptive, secure hosts (CRASH); 2010

June. DARPA-BAA-10-70.

http://en.wikipedia.org/wiki/Blue_box
https://en.wikipedia.org/wiki/Confused_deputy_problem

99

de Amorim A, et al. A verified information-flow architecture (long version). crash-

safe.org; n.d. [accessed 2017 May 10]. http://www.crash-

safe.org/assets/verified-ifc-long-draft-2013-11-10.pdf

De Clercq R, Verbauwhede I. A survey of hardware-based control flow integrity

(CFI). pp 4-5, 2017 31 Jul. arxiv.org/ftp/arxiv/papers/1706/1706.07257.pdf

Denning D. A lattice model of secure information flow. ACM. 1976

May;19(5):236–243.

Dhawan U, et al. Architectural support for software-defined metadata processing.

crash-safe.org. [accessed 2017 May 10]. www.crash-safe.org/assets/PUMP-

ASPLOS-2015.pdf

Dhawan U, et al. Hardware support for safety interlocks and introspection. IEEE

Adaptive Host and Network Security Workshop; 2012 Sep 14.

Dijkstra E. The structure of the 'THE'-multiprogramming system. Communications

of the ACM. 1968 May;11(5):341–346.

Engler D, et al. Exokernel: an operating system architecture for application-level

resource management. ACM SIGOPS Operating Systems Review. 1995

Dec;29(5):251–266.

Feustel E. The rice research computer - a tagged architecture*. ACM AFIPS

Proceedings of the Spring Joint Computer Conference. 1972 May 16–18. pp

369–377.

Feustel E. On the advantages of tagged architecture. IEEE Transactions on

Computers. 1973 July;C-22(7).

Foster C. Hardware enhancement of operating systems. University of

Massachusetts, Amherst; 1978 Nov 23.

www.dtic.mil/docs/citations/ADA062462

Garfinkel T, Rosenblum M. A virtual machine introspection based architecture for

intrusion detection. NDSS. 2003 Feb;3:191–206.

https://suif.stanford.edu/papers/vmi-ndss03.pdf

Gehringer E, Keedy J. Tagged architecture: how compelling are its advantages?

Proceedings of the 12th annual international symposium on computer

architecture. 1985 June 17–19. pp 162–170,

Göktaş E, et al. Out of control: overcoming control-flow integrity. IEEE

Symposium on Security and Privacy; 2014. pp 575–589.

100

Goldberg R. Architecture principles for virtual computer systems [master’s thesis].

Harvard University; 1973 Feb. www.dtic.mil/dtic/tr/fulltext/u2/772809.pdf

Halderman J, Felten E. Lessons from the Sony CD DRM episode. Center for

Information Technology Policy, Department of Computer Science, Princeton

University; 2006 Feb. [accessed 2021 June 9].

https://www.copyright.gov/1201/2006/hearings/sonydrm-ext.pdf

Hardin D. Real-time objects on the bare metal: an efficient hardware realization of

the Java/sup TM/ Virtual Machine. Fourth IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing. 2001 May 2–4. pp 53–59.

Hardy N. The confused deputy: (Or why capabilities might have been invented).

Association for Computing Machinery. 1988 Oct.;22(4):36–38.

https://dl.acm.org/doi/10.1145/54289.871709

Higher Order Software, Inc. Techniques for operating system machines; 1977 July.

(Report No.: 7). https://apps.dtic.mil/sti/citations/ADA095989

Hruska J. DARPA, University of Michigan Team Up to Build ‘Unhackable’ chip.

ExtremeTech; 2017 Dec 22 [accessed 2021 Apr 26].

https://www.extremetech.com/extreme/261052-darpa-university-michigan-

team-build-unhackable-chip

Jiang Z, Fei Y. A novel cache bank timing attack. IEEE/ACM International

Conference on Computer-Aided Design; 2017. pp 139–146.

Jiang Z, et al. High-level synthesis with timing-sensitive information flow

enforcement. ACM Proceedings of the International Conference on Computer-

Aided Design; 2018. Article 88, pp 1–8. doi.org/10.1145/3240765.3243415

Jiang Z, et al. Designing secure cryptographic accelerators with information flow

enforcement: a case study on AES, ACM/IEEE design automation

conference (DAC); 2019. pp 1–6.

Jungwirth P, inventor. Computer security framework and hardware level computer

security in an operating system friendly microprocessor architecture. US

Patent 10,572,687. Granted 2020a 25 Feb.

Jungwirth P. Hardware security kernel for managing memory and instruction

execution [UMBC cyber presentation]; 2020b Feb.

Jungwirth P, Hahs D. Transfer entropy quantifies information leakage. IEEE

SouthEastCon; 2019 Apr.

http://www.dtic.mil/dtic/tr/fulltext/u2/772809.pdf
https://www.extremetech.com/extreme/261052-darpa-university-michigan-team-build-unhackable-chip
https://www.extremetech.com/extreme/261052-darpa-university-michigan-team-build-unhackable-chip

101

Jungwirth P, La Fratta P. OS friendly microprocessor architecture. Army Research

Laboratory (US); 2017 Apr. Report No.: ARL-SR-0370.

https://apps.dtic.mil/sti/pdfs/AD1032088.pdf

Jungwirth P, LaFratta P, inventors. OS friendly microprocessor architecture. US

Patent 9,122,610. Granted 2015 Sep 1.

Jungwirth P, La Fratta P. OS friendly microprocessor architecture. SPIE Defense +

Security Cyber Sensing Conference; Baltimore, MD; 2016 Apr 17–21.

Jungwirth P, Ross J. Security tag fields and control flow management. IEEE

SouthEastCon 2019; 2019 Apr.

Jungwirth P, et al. Secure computing architecture: a direction for the future -- the

OS friendly microprocessor architecture. IEEE HPEC; 2017. [accessed 2021

June 9]. http://ieee-hpec.org/2017/techprog2017/index_htm_files/67.pdf

Jungwirth P, et al. Cyber defense through hardware security. 2018a Apr. Paper

10652-22. (Disruptive Technologies in Information Sciences, Vol. 10652).

https://doi.org/10.1117/12.2302805

Jungwirth P, et al. Security tag computation and propagation in OSFA. SPIE

Defense + Security; 2018b Apr.

Jungwirth P, et al. The future of cybersecurity workshop. IEEE SouthEastCon;

2019a Apr.

Jungwirth P, et al. Hardware security kernel for cyber-defense. Disruptive

Technologies in Information Sciences II; Proc. SPIE 11013; 2019b 10 May.

doi.org/10.1117/12.2513224

Jungwirth P, et al. Hardware security kernel for managing memory and instruction

execution [Department of Computer Science and Electrical Engineering,

University of Maryland, Baltimore County, presentation]. 2020 Feb 28.

Kamibayashi N, et al. HEART: an operating system nucleus machine implemented

by firmware. ACM Proceedings of the first international symposium on

architectural support for programming languages and operating systems; 1982

Mar 1–3. pp 195–204. https://dl.acm.org/citation.cfm?id=801843

Karger P, Schnell R. Thirty years later: lessons from the Multics security

evaluation. IEEE Annual Computer Security Applications Conference; Las

Vegas, NV; 2002 Dec 9–13. pp 119–126.

Karimi E, et al. A timing side-channel attack on a mobile GPU. IEEE International

Conference on Computer Design; 2018. pp 67–74.

https://dl.acm.org/citation.cfm?id=801843

102

Keller J. Five organizations working with DARPA to develop design tools for cyber

security and trusted computing. Military & Aerospace Electronics; 2017 Dec

13 [accessed 2021 Apr 26].

https://www.militaryaerospace.com/articles/2017/12/design-tools-cyber-

security-trusted-computing.html

Kenyon H. DARPA’s CRASH program reinvents the computer for better security.

Breaking Defense; 2012 Dec 21. https://breakingdefense.com/2012/12/darpa-

crash-program-seeks-to-reinvent-computers-for-better-secur/

Kerchoffs A. La cryptographie militaire [French]; 1883. (Also see

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs).

Kim J, et al. Survey of dynamic taint analysis. 4th IEEE International Conference

on Network Infrastructure and Digital Content; 2014. pp 269–272. doi:

10.1109/ICNIDC.2014.7000307.

Kiriansky V, et al. Secure execution via program shepherding. Proceedings of the

11th USENIX Security Symposium; 2002 Aug 5–9; San Francisco, CA;

http://groups.csail.mit.edu/commit/papers/02/RIO-security-TM-625.pdf

Kocher P, et al. Spectre attacks: exploiting speculative execution; 2018 Jan 3

[accessed 2021 June 9]. arxiv.org/pdf/1801.01203.pdf

Kovacs E. Foreshadow/L1TF. SecurityWeek.Com; 2018 Aug 15.

https://www.securityweek.com/foreshadowl1tf-what-you-need-know

Landwehr C. Formal models for computer security. ACM Computing Surveys.

1981 September;13(3):247–277.

Lipner S. A comment on the confinement problem. Association for Computing

Machinery. 1975 November;9(5):192–196.

Lipp M, et al. Meltdown. 2018 Jan 3. [accessed 2021 June 9].

arxiv.org/pdf/1801.01207.pdf

Mann C. Homeland insecurity. The Atlantic Monthly. 2002 September;290(2):81–

102.

Moisuc E, et al. Hardware event handling in the hardware real-time operating

systems. Proceedings of the 18th International Conference on System Theory;

2014 Oct 17–19. pp 54–58.

Murtaza Z, et al. Silicon real time operating system for embedded DSPs. IEEE 2006

International Conference on Emerging Technologies; 2006 Nov 13–14. pp

188–191.

https://www.militaryaerospace.com/articles/2017/12/design-tools-cyber-security-trusted-computing.html
https://www.militaryaerospace.com/articles/2017/12/design-tools-cyber-security-trusted-computing.html

103

Nair R. Evolution of memory architecture. IEEE Proceedings. 2015

August;103(8):1331–1345.

Nakano T, et al. Hardware implementation of a real-time operating system. IEEE

Proceedings of the 12th TRON Project International Symposium; 1995 Nov

28 Nov – 1995 Dec 2. pp 34–42.

Nakano T, et al. Performance evaluation of STRON: a hardware implementation of

a real-time OS. IEICE Transactions Fundamentals. 1999 Nov;E82-

A(11):2375–2382.

Nakano T, Komatsudaira Y, Shiomi A, Imai M. VLSI implementation of a real-

time operating system. Proceedings of ASP-DAC '97: Asia and South Pacific

Design Automation Con; 1997 Jan 28–31. pp 679680.

Mandke VV, Nayar MK. Implementing information integrity technology - a

feedback control system approach. In: van Biene-Hershey ME, Strous L,

Editors. Integrity and Internal Control in Information Systems. IICIS 1999.

Springer; 2000. (IFIP - The International Federation for Information

Processing, Vol 37). https://doi.org/10.1007/978-0-387-35501-6_3

[NICTA] National ICT Australia Ltd, [UNSW] University of New South Wales.

Trustworthy embedded systems: ERTOS-2 project plan 2009–2013; 2009

July. https://ts.data61.csiro.au/publications/papers/ERTOS_09.pdf

Oliveira A, et al. The ARPA-MT embedded SMT processor and its RTOS hardware

accelerator. IEEE Transactions on Industrial Electronics. 2011

March;58(3):890–904.

Ong S, et al. SEOS: Hardware implementation of real-time operating system for

adaptability. 2013 First International Symposium on Computing and

Networking; 2013 Dec 4–6. pp 612–616.

Papachristou C, Gambhir S. Microcontrol architectures with sequencing firmware

and modular microcode development tools. Microprocessing and

Microprogramming. 1991 March;29(5):303–328.

Podebrad I, et al. List of criteria for a secure computer architecture. IEEE Third

International Conference on Emerging Security Information, Systems and

Technologies, Secureware '09; 2009 June. pp 76–80.

Popek J, Goldberg R. Formal requirements for virtualizable third generation

architectures. Communications of the ACM. 1974;17(7):412–421.

doi:10.1145/361011.361073.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3586
https://doi.org/10.1007/978-0-387-35501-6_3

104

Prakash A, et al. On the trustworthiness of memory analysis—an empirical study

from the perspective of binary execution. IEEE Transactions on Dependable

and Secure Computing. 2015 1 Sep–Oct;12(5):557–570.

doi: 10.1109/TDSC.2014.2366464.

Rebello K. System security integration through hardware and firmware (SSITH).

Defense Advanced Research Projects Agency; n.d. [accessed 2021 Apr 26].

https://www.darpa.mil/program/ssith

Renesas. Renesas expands ecosystem for its R-IN32M3 industrial network devices

to deliver up to 5X improvement in overall network performance; 2014 Jun 18

[accessed 2021 Jun 9]. https://www.renesas.com/us/en/about/press-

room/renesas-expands-ecosystem-its-r-in32m3-industrial-network-devices-

deliver-5x-improvement-overall

Renesas. Renesas data sheet R-IN32M3 series. 2021a Jan 12.

https://www.renesas.com/sg/en/document/dst/r-in32m3-series-

datasheet?r=1215991

Renesas. R-IN32M3 ASSP for multi-protocol support; 2021b.

https://www.renesas.com/sg/en/products/factory-automation/multi-protocol-

communication.html

Rice University. Rice University computer-basic machine operation. Rice

University; rev. 1962.

RISC-V Members. 2020 July. https://riscv.org/members-at-a-glance/

Russinovich M. Sony, rootkits and digital rights management gone too far. 2005

Oct. https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-

rootkits-and-digital-rights-management-gone-too-far/

Salmon L. System security integrated through hardware and firmware (SSITH).

Proposers Day Presentation, Defense Advanced Research Projects Agency;

2017a Apr 21.

https://www.darpa.mil/attachments/SSITHProposersDay20170422.pdf

Salmon L. Baking hack resistance directly into hardware. Defense Advanced

Research Projects Agency; 2017b 10 Apr. https://www.darpa.mil/news-

events/2017-04-10

Saltzer J, Schroeder M. The protection of information in computer systems.

Proceedings of the IEEE. 1975 Sept;63(19):1278–1308.

Schneier B. The security of pretty much every computer on the planet has just

gotten a lot worse. CNN.com, 5 Jan 18.

https://www.renesas.com/sg/en/products/factory-automation/multi-protocol-communication.html
https://www.renesas.com/sg/en/products/factory-automation/multi-protocol-communication.html
https://www.darpa.mil/news-events/2017-04-10
https://www.darpa.mil/news-events/2017-04-10

105

http://www.cnn.com/2018/01/04/opinions/security-of-nearly-every-computer-

has-just-gotten-a-lot-worse-opinion-schneier/index.html

Schwartz E, et al. All you ever wanted to know about dynamic taint analysis and

forward symbolic execution (but might have been afraid to ask). IEEE

Symposium on Security and Privacy; 2010. pp 317–331. doi:

10.1109/SP.2010.26.

Sethumadhavan S. Hardware-enforced privacy. IEEE Computer. 2016

October;49:10.

Shioya R, et al. Low-overhead architecture for security tag. IEEE Pacific Rim

International Symposium on Dependable Computing. 2009 Nov 16–18. pp

135–142.

Shrobe H, et al. Trust-management, intrusion tolerance, accountability, and

reconstruction architecture (TIARA). Massachusetts Institute of Technology:

2009 June. Report No.: AFRL-RI-RS-TR-2009-271. www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA511350

Smith JM. Clean-slate design of resilient, adaptive, secure hosts (CRASH). Defense

Advanced Research Projects Agency; n.d.

https://www.darpa.mil/program/clean-slate-design-of-resilient-adaptive-

secure-hosts

Smith RE. A contemporary look at Saltzer and Schroeder's 1975 design principles.

IEEE Security Privacy. 2012 Nov;10(6):20–25. doi:10.1109/MSP.2012.85.

ISSN 1540-7993

Sockut G. Firmware/hardware support for operating systems: principles and

selected history. ACM SIGMICRO Newsletter. 1975 Dec;6(4):17–26.

https://dl.acm.org/citation.cfm?id=1217198

Song J. Security tagging for a real-time zero-kernel operating system [dissertation].

University of Idaho; 2014 Oct.

Song J, Alves-Foss J. Security tagging for a zero-kernel operating system. IEEE

46th Hawaii International Conference on System Sciences (HICSS); 2013.

Song C, et al. HDFI: Hardware-assisted data-flow isolation. IEEE Symposium on

Security and Privacy (SP); 2016. pp 1–17. doi: 10.1109/SP.2016.9.

Song M, et al. Reducing the overhead of real-time operating system through

reconfigurable hardware. 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools (DSD 2007); 2007 Aug 29–31. pp

1–4.

https://dl.acm.org/citation.cfm?id=1217198

106

Sony BMG copy protection rootkit scandal. Wikipedia; 2020 July 13.

https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal

Stenquist C. HW-RTOS improved RTOS performance by implementation in

silicon [white paper]. Renesas R-IN32M3 Industrial Network ASSP; 2014

May. https://www.renesas.com/en-eu/media/support/partners/r-in-

consortium/technology/R-IN32_HWRTOS_Whitepaper_5_20_14.pdf

Suh G, et al. Secure program execution via dynamic information flow tracking.

ACM ASPLOS XI Proceedings of the 11th international conference on

Architectural support for programming languages and operating systems; 2004

Oct 7–13. pp 85–96.

Taram M, et al. Context-sensitive fencing: securing speculative execution via

microcode customization. ACM Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating Systems;

2019. pp 395–410. doi.org/10.1145/3297858.3304060

Tiwari M, et al. Crafting a usable microkernel, processor, and I/O system with strict

and provable information flow security. ACM Proceedings of the 38th Annual

International Symposium on Computer Architecture; 2011 June 4–8. pp 189–

200,

Venkataramani G, et al. FlexiTaint: a programmable accelerator for dynamic taint

propagation. IEEE 14TH International Symposium on High Performance

Computer Architecture; 2008. pp 173–184. doi:

10.1109/HPCA.2008.4658637.

Vetromille M, et al. RTOS scheduler implementation in hardware and software for

real time applications. Seventeenth IEEE International Workshop on Rapid

System Prototyping (RSP'06); 2006 June 14–16. pp 1–6.

Weaver A, Newall N. In-band single frequency signaling. Bell System Technical

Journal. 1954 Nov;33(6):1309–1330. https://archive.org/details/bstj33-6-1309

Witten I, et al. An introduction to the architecture of the Intel iAPX 432. IEEE

Software & Microsystems. 1983 April;2(2):29–34.

Yan L, et al. Hardware implementation of muC/OS-II based on FPGA. 2010

Second International Workshop on Education Technology and Computer

Science; 2010 Mar 6–7. pp 825–828.

Zeldovich N, et al. Hardware enforcement of application security policies using

tagged memory. Proceedings of the 8th USENIX conference on Operating

systems design and implementation; 2008 Dec. pp 225–240.

https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal

107

Zurkus K. Side-channel vulnerability portsmash steals keys. Infosecurity

Magazine; 2018 Nov 6. www.infosecurity-magazine.com/news/side-channel-

vulnerability/

108

Appendix A. OS Friendly Microprocessor Architecture Tech

Report (Redstone Architecture)

 This appendix appears as a pdf attachment.

109

Appendix B. In-Progress Prototype Aberdeen Architecture

Simulation Code

 This appendix appears as a pdf attachment.

110

Appendix C. Limited Simulation Presentation

 This appendix appears as a pdf attachment.

111

List of Symbols, Abbreviations, and Acronyms

AA Aberdeen Architecture

AES advanced encryption standard

CFI control flow integrity

CWE Common Weakness Enumeration

DFI data flow integrity

DLL dynamically linked library

ISA instruction set architecture

PCR program counter register

RISC reduced instruction set computer

SSITH System Security Integration Through Hardware and Firmware

TCB Trusted Computing Base

112

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 1 DEVCOM ARL

 (PDF) FCDD RLD DCI

 TECH LIB

 1 DEVCOM ARL

 (PDF) FCDD RLC CA

 P JUNGWIRTH

 ARL-SR-0370 ● APR 2017

 US Army Research Laboratory

OS Friendly Microprocessor Architecture

by Patrick Jungwirth and Patrick La Fratta

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-SR-0370 ● APR 2017

 US Army Research Laboratory

OS Friendly Microprocessor Architecture

by Patrick Jungwirth
Computational and Information Sciences Directorate, ARL

Patrick La Fratta
Aviation and Missile Research, Development, and Engineering Center,
Redstone Arsenal, AL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2017
2. REPORT TYPE

Special Report
3. DATES COVERED (From - To)

September 2014–August 2016
4. TITLE AND SUBTITLE

OS Friendly Microprocessor Architecture
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Patrick Jungwirth and Patrick La Fratta
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-SR-0370

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Patrick La Fratta is now affiliated with Micron Technology, Inc., Boise, Idaho.

14. ABSTRACT

We present an introduction to the patented Operating System Friendly Microprocessor Architecture (OSFA). The software
framework to support the hardware-level security features is currently patent pending. We are interested in information
technology and computer security professionals reviewing the hardware-level security features and information assurance
features.
Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. The
goal of the OSFA is to provide a high-performance microprocessor and OS. Computer security features are implemented in
hardware. By extending Unix file permissions bits down to each cache memory bank and memory address, the OSFA
provides hardware-level information assurance. OS-level access to memory is divided into access layers. For each software
application, a table (white list) sets limits for all OS library function calls required by the application. Each library function
call has a set of object limits. The cache bank memory pipeline architecture and permission bits provide features to balance the
complexities of hardware, software, and computer security.
15. SUBJECT TERMS

microprocessor, operating system, context switch, hardware computer security, computer security, cache bank pipeline, library
call permissions

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

56

19a. NAME OF RESPONSIBLE PERSON

Patrick Jungwirth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-6174
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables vi

Preface vii

Acknowledgment viii

1. Introduction 1

1.1 OS Friendly Microprocessor Architecture Permission Bits 2

1.2 Bus Architectures 2

2. In-Band Signaling, the Open Front Door 3

3. OS Friendly Microprocessor Architecture 4

3.1 DMA/Cache Bank Controller Architecture 5

3.2 Context Switch 6

3.3 Cache Bank Architecture 8
3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache

Bank 8

3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline
State Cache Bank 10

3.4 OS Friendly Microprocessor Architecture Performance Modeling 11
3.4.1 Conventional and OS Friendly Microprocessor Architecture

Context Switch Modeling 11

3.4.2 Conventional Architecture Context Switch Modeling 13

3.4.3 OS Friendly Microprocessor Architecture Context Switch
Modeling (Version 1) 14

3.4.4 OS Friendly Microprocessor Architecture Context Switch
Modeling (Version 2) 17

4. OS Friendly Microprocessor Architecture Hardware Computer
Security 17

4.1 Cache Bank and Memory Cell Permission Bits 18

Approved for public release; distribution is unlimited.
iv

4.2 Instruction Permission Bits 18

4.3 Library Call Permissions 19

5. OS Friendly Microprocessor Architecture Access Layers 20

5.1 Instruction, Data, Register, and Pipeline State Memory Partitions 21

5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications 21

5.3 I/O Implementation 22

5.4 Exception Handling 24

5.5 Practical Permission Bit Architecture 25

5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache
Bank Architecture 27
5.6.1 OS Friendly Microprocessor Architecture Version 1

Permission Bit Limitations 28

5.6.2 OS Friendly Microprocessor Architecture Version 2
Permission Bit Cache Bank Architecture 28

5.7 Microkernel, OS, and Application Cache Banks Organization 29

5.8 Process Level Cache Bank Operations 30

5.9 Cache Bank I/O Example 33

6. Computer Security Examples 35

6.1 Buffer Overflow 35

6.2 Data Execution Exploitation 36

6.3 “Low-Level Driver” Protection 37

6.4 Control Information Protection 40

6.5 Debugging Traps 40

6.6 Hardware Features for Hypervisor 40

6.7 Architecture Issues 41

7. Conclusion 42

8. References 43

List of Symbols, Abbreviations, and Acronyms 45

Distribution List 46

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 OS friendly microprocessor architecture ...1

Fig. 2 von Neumann and Harvard bus architectures ..3

Fig. 3 Computer memory types and sizes ..3

Fig. 4 OS friendly microprocessor architecture ...5

Fig. 5 OS friendly DMA controller and cache bank controller pipeline
architecture ...6

Fig. 6 OS friendly microprocessor architecture context switch timing
diagram ..7

Fig. 7 Data, instruction, and register cache controller banks9

Fig. 8 Pipeline state parallel cache controller banks10

Fig. 9 OS friendly microprocessor architecture version 2 pipeline state
cache banks ..11

Fig. 10 Conventional processor architecture model ...12

Fig. 11 OS friendly microprocessor architecture model13

Fig. 12 Cache bank and memory cell hardware information assurance...........18

Fig. 13 Library function call table information assurance19

Fig. 14 OS friendly microprocessor architecture cache bank permission
bits ..20

Fig. 15 Secure microkernel cache banks and permission bits22

Fig. 16 Thick OS cache banks and permission bits ..22

Fig. 17 Application’s permission bits ..22

Fig. 18 OS friendly microprocessor architecture I/O example23

Fig. 19 Real-world example of OS friendly microprocessor architecture’s
permission architecture ..23

Fig. 20 For the I/O port, the application software knows the register number;
however, the application cannot access the contents of the register24

Fig. 21 Permission bits and hardware exception handling25

Fig. 22 Example 4-layer architecture ...27

Fig. 23 Practical permission bit and cache bank architecture28

Fig. 24 Cache bank permission bit lookup table ..29

Fig. 25 OS friendly microprocessor architecture cache bank organization30

Fig. 26 Microkernel cache bank organization ..31

Fig. 27 OS and application cache bank organization32

Approved for public release; distribution is unlimited.
vi

Fig. 28 Application writes a cache bank block of data to USB controller34

Fig. 29 Process stack example..36

Fig. 30 Ethernet frame ..37

Fig. 31 Cache bank and Ethernet frame example ...39

Fig. 32 Real-time debugging trap example ..40

Fig. 33 OS friendly microprocessor architecture: software and hardware
hierarchy ..42

List of Tables

Table 1 Conventional architecture context switch steps14

Table 2 OS friendly microprocessor architecture version 1 context switch
steps..16

Table 3 Example OS friendly microprocessor architecture layer hierarchy20

Table 4 Some possible OS friendly microprocessor architecture access
levels ..26

Approved for public release; distribution is unlimited.
vii

Preface

The paper “OS Friendly Microprocessor Architecture: Hardware Level Computer
Security” was originally published in Proceedings of SPIE: Cyber Sensing 2016,
0277-786X, V. 9826 (2016 April 19, Baltimore, MD). This report is a longer version
of the published paper and it includes additional material, including 1) a bus
architecture introduction, 2) Operating System Friendly Microprocessor
Architecture (OSFA) Version 2 pipeline state cache bank, 3) debugging traps, and
4) architecture features for a hypervisor.

Approved for public release; distribution is unlimited.
viii

Acknowledgment

The author wishes to thank The US Army Aviation and Missile Research,
Development, and Engineering Center and the US Army Research Laboratory for
the opportunity to develop and improve the OS Friendly Microprocessor
Architecture.

Approved for public release; distribution is unlimited.
1

1. Introduction

The Operating System (OS) Friendly Microprocessor Architecture’s (OSFA’s)
goals are to provide a high-performance microprocessor and reduce the code
complexity of an operating system. We have developed a computer architecture
that reduces the high cost of a context switch and provides hardware-based
computer security. A context switch can be as fast as 1 central processing unit
(CPU) cycle.

Figure 1 introduces the OSFA.1–2 The processor memory and bus architecture is an
extended Harvard architecture. The OSFA1 uses pipeline memory controllers to
rapidly background switch cache memory pages. The pipeline memory architecture
supports hardware-based OS context switches. Context switches for lightweight
threads can be as fast as 1 CPU cycle.

OS Friendly Microprocessor Architecture Block Diagram

Data Bus

Program

Address Bus

Data

Address Bus

Read/Write

Program

 Memory

Extended

Harvard

Processor

Architecture

Program

Bus

 Data

Memory

Data

Address Bus

Read/Write

Data

Address Bus

Read/Write

Register

Mem

Pipeline

State Mem

OS Friendly

Architecture

B
u

s
s

e
s

B
u

s
s

e
s

B
u

s
s

e
s

B
u

s
s

e
s

Microprocessor Execution Pipeline

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Da
ta

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Re
gi

st
er

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

Fig. 1 OS friendly microprocessor architecture

OS information assurance is implemented in hardware. By extending the traditional
Unix file permissions bits down to each memory cell, each cache line, and each
cache memory bank, the OSFA processor provides hardware-based computer
security.

Approved for public release; distribution is unlimited.
2

1.1 OS Friendly Microprocessor Architecture Permission Bits

A unique feature of the OSFA is the permission bit Index_Register_I/O
(IRegIO). IRegIO allows the OS to provide an index register pointing to an
input/output (I/O) port or I/O memory address. The IRegIO bit “locks out” the
memory address pointer (index register) from being read, written to, or modified. The
running process is prevented from accessing the contents of the register; however, the
process can use the index register (pointer) to read/write to I/O (registers, ports, or
addresses).

The hardware permission bits can be set to allow real-time software debugging.
Program debugging can use the R W M permission bits (Read = allowed, Write =
not allowed, and Modify = not allowed) to trap all writes made to a memory address
or register. This allows for hardware level debugging with zero performance
overhead at the software level until a write occurs.

Library function protection is provided by extending the principal of least privilege
to library function calls. For each software application, a table sets limits (white
list) for all OS function calls required by the application. The library function call
table sets limits for typical load, moderate load, and maximum load. Exceeding the
limits for typical load, moderate load, and/or maximum load can be set to generate
an exception or require higher than user level privileges.

Sections 2 through 5 cover the OSFA. Section 6 covers computer security,
information assurance, and permission bits.

1.2 Bus Architectures

There are 2 commonly used microprocessor bus architectures. The von Neumann
architecture consists of a unified instruction (program) and data memory. The
combined memory contains both data and instructions. Newer microprocessors
incorporate a no-execute bit in cache memory tables to prevent data from being
executed. A Harvard bus architecture has separate instruction (program) memory
and data memory. A modified Harvard architecture has internal separate caches for
instructions (program) and data with a combined (unified) external memory.
Figure 2 compares von Neumann and Harvard bus architectures. Note, the Harvard
architecture allows for parallel memory operations over the 2 busses and memories.

Approved for public release; distribution is unlimited.
3

von

Neumann

Processor

Architecture
Address Bus

Program/Data

Bus

Read/Write

Combined
Program and

Data Memory
Data Bus

Program

Address Bus

Data

Address Bus

Read/Write

 Program

Memory
Harvard

 Processor

Architecture

Program

Bus

 Data

Memory

Fig. 2 von Neumann and Harvard bus architectures

Figure 3 compares computer memory types and approximate memory sizes for
2013. Register memory is the fastest memory inside a computer. Register memory
typically is small. Level 1 (L1) and level 2 (L2) memory caching are contained on-
chip inside the microprocessor. Level 3 (L3) memory caching can be on or off chip.
Main memory is present on the main or system computer board. Hard drives and
tape backups represent mass storage memory. The memory types from register to
mass storage span a range of approximately 1011 or more.

M
e

m
o

ry
 T

y
p

e

Memory Size in Bytes

S
lo

w
e

r
--

 M
e

m
o

ry
 S

p
e

e
d

 -
-

F
a

s
te

r

On-Chip Memory
Board Level MemoryRegister (8 to 128)

 L1 Cache Size (8 k to 256k)

 L2 Cache Size (256k to 1024k)

 L3 Cache Size (512k to 8192k)

Main Memory (1 to 64 Gbytes)

Mass Storage (100 Gbytes to 10 Terabytes)

Fig. 3 Computer memory types and sizes

2. In-Band Signaling, the Open Front Door

In-band signaling is an open front door. There is no user authentication for control
information. A black hat or prankster only needs the tools to provide the in-band
control signals to the network system.

Telephone in-band signaling combines voice (data) and control information on a
telephone line. The papers by Weaver and Newell3 and Breen and Dahlbom4
provided the technical details for controlling the telephone network. In-band
signaling provides the open front door to send control information over the phone
line. Back in the 1970s, before the telephone companies switched to out-of-band

Approved for public release; distribution is unlimited.
4

signaling, a blue box generated the control tones (codes) to control the telephone
network. A “blue box”5 built by Steve Wozniak is on display at the Computer
History Museum.6 The average electronics hobbyist could easily build a blue box.
Blue box phone calls were free. It did not take long for “free” blue box phone calls
to become illegal.

The classic buffer overflow error, unfortunately all too common in modern
programming, presents an opportunity for a black hat to place control information
inside and gain control of a computer. The control information could be a line of
code to jump to a computer virus or other malware application.

Caller ID does not have any authentication. A prank caller can easily spoof Caller
ID. Caller ID uses a 1200 Hz frequency shift keying, Bell 202 modem7 to send
caller ID information. An “orange box” generates the spoofed Caller ID string8 for
the telephone network. In-band signaling is an open front door for controlling,
spoofing, and/or hacking a system.

The OSFA’s information assurance goal is to completely separate control and data
at the hardware level. The objective is to raise the difficulty level to hack a computer
system. Keep in mind that claiming a system is unhackable is like creating an
unsinkable ship. Current computer security best practices are based on a risk
analysis and cost/benefit analysis.

3. OS Friendly Microprocessor Architecture

This section describes the OSFA’s cache bank architecture. Section 5 covers the
cache bank and memory cell hardware permission bits.

The OSFA uses an extended Harvard architecture as illustrated in Fig. 4. In a
Harvard architecture (see Fig. 2), there are separate busses and memories for
instructions (programs) and data. The OSFA uses 4 separate busses and memories
for high-speed context switching and hardware-level information assurance. A
modified extended Harvard architecture has a unified external memory with
separate internal caches. A context switch only requires cache banks to be
connected and disconnected to the execution pipeline. Cache bank contents are
background copied to and from L1 caching while the execution pipeline is running
another process or thread.

Approved for public release; distribution is unlimited.
5

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

Microprocessor Execution Pipeline

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Da
ta

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Re
gi

st
er

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

Fig. 4 OS friendly microprocessor architecture

3.1 DMA/Cache Bank Controller Architecture

The OSFA in Fig. 5 consists of 4 DMA/cache controller banks (Instruction, Data,
Register, and Pipeline State), connected to a microprocessor execution pipeline.
The OSFA is a set of memory blocks (stages) in a pipeline configuration. The
DMA/cache controller banks (instruction, data, register, and pipeline state) connect
to internal level 1/level 2, and such, caching through busses. Internal caches connect
to external caches and external memories. The OSFA can also use a unified external
memory architecture similar to a modified Harvard architecture (internal separate
caches for instructions and data, and a unified external memory).

Approved for public release; distribution is unlimited.
6

Fig. 5 OS friendly DMA controller and cache bank controller pipeline architecture

The instruction, data, and register cache bank controllers are configured to only
write one block at a time from/to the processor pipeline. There is a tradeoff between
cache bank size and writing data in parallel. The DMA/cache bank controllers use
a parallel bus to copy to (L1 and L2 caches, internal/external L3 caches, and main
memory) memory. The pipeline caching structure also allows the execution
pipeline to run at full speed while hardware controllers provide background cache
to memory (L1 and L2 caches, internal/external L3 caches, and main memory) copy
operations in parallel.

In version 1 of the OSFA,1 the pipeline state controller and cache bank is fully
parallel. For instruction, data, and register DMA/cache controller banks, cache
memory size is more important than a fully parallel memory copy. Version 2 of the
OSFA 2 merges the pipeline state cache banks with the execution pipeline. A
parallel memory copy is not required in Version 2 2 since the cache banks are
already stored in the execution pipeline stages.

3.2 Context Switch

A typical process is allowed to run for milliseconds before context switching to the
next process. As long as the instruction, data, register, and pipeline state DMA
controller/cache memory banks in Fig. 5 can complete background copy operations
on the order of milliseconds, the processor does not “see” any of the background
operations. Since instruction, data, register, and pipeline state memory for L1, L2,

Idle Cache Banks

are not in use

Swapping Set

Cache Banks –

DMA Controllers

Active Cache

Banks Connected

to Execution

Pipeline

External

Cache and

Memory

External

Cache and

Memory

External

Cache and

Memory

External

Cache and

Memory

B
u

s
s
e
s

Leve1,

 Level 2

Caching

Leve1,

Level 2

Caching

Leve1,

Level 2

Caching

Leve1,

Level 2

Caching

DMA

Controller

Controller

and Cache

Banks

B
u

s
s
e
s

DMA

Controller

Controller

and Cache

Banks

B
u

s
s
e
s

DMA

Controller

 Controller

 and Cache

Banks

B
u

s
s
e
s

DMA

Controller

 Controller

and Cache

Banks
B

u
s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

Microprocessor Pipeline

In
s
tr

u
c
ti
o

n
 -

-
M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

D
a

ta
 -

-
M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

R
e

g
is

te
r

--
 M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

P
ip

e
lin

e
 S

ta
te

 -
-

M
e

m
o

ry
 P

ip
e

lin
e

 A
rc

h
it
e

c
tu

re

Approved for public release; distribution is unlimited.
7

L3 caching, and external main memory can now run at a lower clock frequency,
significant power savings results without decreasing processor performance.

Figure 6 illustrates the OSFA Version 11 write (copy) and read (load) cache bank
operations for processes n – 1, n, and n + 1. OSFA Version 2 2 removes the parallel
memory copy (see Section 4.3.2). We use sequential numbers to simplify Fig. 6. In
an actual system, the process identification (PID) numbers would be arbitrary. The
load (read) and write (copy) cycles for each cache bank (instruction, data, register,
and pipeline state) are shown. This is a worst-case example showing cache writes
and loads for each context switch. Data locality would limit the number of writes
and loads resulting in more time to copy memory, allowing for more power savings.
Fully parallel memory copy operations, for the pipeline state cache bank, are shown
(OSFA Version 1). The “Bank(m)” notation refers to cache bank number (m) or a
set of bank numbers (m)’s. The instruction, data, register, and pipeline state cache
controller banks consist of cache banks in 1) active use by the execution pipeline:
instruction.act, data.act, register.act, and pipeline_state.act; 2) swapping set cache
banks (instruction.swp, data.swp, register.swp, pipeline_state.swp) in use by
instruction, data, register, and pipeline state DMA controllers as illustrated in
Figs. 5 and 6; and 3) inactive cache banks: instruction.ina, data.ina register.ina,
and pipeline_state.ina not in use by execution pipeline and not in use by DMA
controllers in Fig. 5.

Fig. 6 OS friendly microprocessor architecture context switch timing diagram

Process = n + 1Process = n - 1

Load

Caches for

PID = n

Copy

Caches for

PID = n-2

Load

Caches for

PID = n+1

Copy

Caches for

PID = n-1

Load

Caches for

PID = n+2

Copy

Caches for

PID = n

Pipeline

Exec Process n - 1
Pipeline

Exec Process n
Pipeline

Exec Process n + 1

Active

Cache Banks

Pipeline State

Cache Banks

Execution

Pipeline

Parallel Write Parallel Write Parallel Write

Active (Exec Process)

Process = n

Active

(Running Process)

 Process = n
Process = n - 1 Process = n + 1

Process

Number

Context Switch Time Context Switch Time Context Switch Time

Parallel

Operations
Pipeline Operations, Pipeline States, and Context Switch Timing

Swapping

Cache Banks

Pipeline Active Cache

Banks For PID = n - 1
Pipeline Active Cache

Banks For PID = n
Pipeline Active Cache

Banks For PID = n + 1

Inactive

Cache Banks
Caches Idle Caches Idle Caches Idle

Parallel ReadParallel ReadParallel Read

Cache

Bank Activity

Active Caches

Swapping Set

Idle Caches

Approved for public release; distribution is unlimited.
8

At process n’s start, the active pipeline state cache bank (pipeline_state.act) is
copied in parallel (OSFA Version 1) into the execution pipeline latches. At the end
of context for process n, the pipeline state latches (OSFA Version 1) are copied in
parallel to the active pipeline state cache bank (pipeline_state.act). During context
time for process n, the inactive cache banks instruction.ina, data.ina, register.ina,
and pipeline_state.ina are idle. For process n – 1, the swapping set cache banks
instruction.swp, data.swp, register.swp, and pipeline_state.swp are copied to L1
level caching as shown in Figs. 5 and 6. The swapping set cache banks currently in
L1 cache memory, instruction, data, register, and pipeline_state, for process n + 1
are loaded into cache banks instruction.swp(n + 1), data.swp(n + 1),
register.swp(n + 1), and pipeline_state.swp(n + 1), to prepare to execute process
n + 1 during the next context time.

At end of context for process n, the active process n cache banks are set to swapping
set cache banks: instruction.swp(n) = instruction.act, data.swp(n) = data.act,
register.swp(n) = register.act, and pipeline_state.swp(n) = pipeline_state.act. After
context switching from process n to process n + 1, the swapping set cache banks
for process n + 1 are set to active: instruction.act = instruction.swp(n + 1),
data.act = data.swp(n + 1), register.act = register.swp(n + 1), pipeline_state.act =
 pipeline_state.swp(n + 1). The cache banks instruction.act, data.act, register.act,
and pipeline_state.act and now in use by execution pipeline. Figures 5 and 6
illustrate how the instruction, data, register, and pipeline_state DMA controllers
run in parallel with the execution pipeline.

3.3 Cache Bank Architecture

The instruction, data, and register cache bank controllers and cache banks only need
to write one word (n bits) at a time. Conventional microprocessors have a small
number of registers: on the order of 16–128. The OSFA envisions a much larger
number of registers. We envision instruction and data cache banks on the order of
128,000 or larger and register cache banks on the order of 1000 or larger. The
pipeline state cache bank is on the order of 128–1000. Figure 3 compares the sizes
of memories and caches for conventional architectures.

3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank

For OSFA Version 1, the pipeline state cache controller and cache banks need to
be able to read or write to all of the pipeline stage latches in parallel. Figure 6
illustrates, the parallel load (read) and write operations for the pipeline state cache
controller and cache banks. OSFA Version 2, in Section 4.3.2, removes the parallel
read/write required for Version 1.

Approved for public release; distribution is unlimited.
9

Figure 7 shows the cache controller and cache bank architecture for the instruction,
data, and register banks for OSFA Versions 1 and 2. The bank selection controller
provides arbitration to prevent the DMA controller and microprocessor execution
pipeline from accessing the same cache bank at the same time. This separation
allows the DMA to transfer cache memory pages to L1 caching in the background
while the microprocessor pipeline is executing instructions. The bank address
controller sets the cache bank memory addresses for the swapping set cache banks
(instruction.swp, data.swp, and register.swp) and the active cache banks
(instruction.act, data.act, register.act and pipeline_state.act). The read/write
controllers set the data direction for the swapping set cache banks and the active
cache banks.

In
s
tr

u
c
ti
o
n
 -

-
M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h
it
e
c
tu

re

D
a
ta

 -
-

M
e
m

o
ry

 P
ip

e
lin

e
 A

rc
h
it
e
c
tu

re

R
e
g
is

te
r

--
 M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h
it
e
c
tu

re

DMA

Controller

 Controller

and Cache

Banks

B
u

s
s

e
s

B
u

s
s

e
s

B
u

s
s

e
s

Cache Bank 2

Cache Bank 1

DMA Controller

Bank Selection Controller

B
a
n
k
 A

d
d
re

s
s
 C

o
n
tr

o
lle

r

b
u
s

Cache Bank (n-1)

Cache Bank 3

R
e
a
d
/W

ri
te

 C
o
n
tr

o
lle

r

R/W

B
u
s
_
0

D
M

A
_
B

u
s
_
0

D
M

A
_
B

u
s
_
1

D
a
ta

b
u
s

B
a
n
k
_
S

e
l_

0

B
a
n
k
_
S

e
l(
n
-1

)

B
u
s
_
1

D
a
ta

Cache Bank 0

B
a
n
k
_
S

e
l_

1

B
a
n
k
_
S

e
l_

2

B
u
s
_
1

B
u
s
_
0

Bank_0

Bank_1

Bank_2

Bank_3

Bank_(n-1)

R/W_Bk0

R/W_Bk1

RW_Bk2

RW_Bk3

RW_Bk(n-1)

Microprocessor Pipeline

Fig. 7 Data, instruction, and register cache controller banks

Figure 8 shows the pipeline state cache controller and cache banks for OSFA
Version 1. The pipeline state cache bank controller and DMA cache bank controller
provide arbitration preventing the DMA controller and pipeline state (pipeline stage
latches) from using the same cache bank at the same time. This separation allows
the DMA to transfer a pipeline state cache memory bank to L1 caching in the
background while the microprocessor pipeline is executing instructions. At the start
of a context, as shown in Fig. 6, the active pipeline state cache bank

Approved for public release; distribution is unlimited.
10

(pipeline_state.act) is copied into the pipeline state (pipeline stage latches) in
parallel in a single CPU clock cycle. At the end of a context, the pipeline state is
copied in parallel in a single CPU clock cycle to the active pipeline state cache bank
(pipeline_state.act).

 Bank 0

 Bank (n-1)

 Bank 2

 Bank 1

P
ip

e
lin

e
 B

k
 S

e
l
C

o
n
tr

o
lle

r

D
M

A
 B

k
 S

e
l
C

o
n
tr

o
lle

r

DMA Controller

B
U

S

B
U

S

R
/W

Row_Sel(p-1)

Row_Sel0

Row_Sel(r-1)

A
d
d
rs

s

D
a
ta

C
o
l _

0

Row_0

C
o
l_

1

C
o
l_

2

C
o
l_

3

C
o
l_

(c
- 1

)

Row_1

Row_2

Row_(r-1)

B
U

S

B
U

S

B
U

S

B
U

S

P
ip

e
lin

e
 S

ta
te

 -
-

M
e
m

o
ry

 P
ip

e
lin

e
 A

rc
h
it
e
c
tu

re DMA

Controller

 Controller

 and Cache

Banks

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

Row_Sel1

Row_Sel2

Row_Sel0

Row_Sel1

Row_Sel1

R/W

Note: pipeline_state.act = pipeline_state.swp banks; bank arbitration prevents DMA and

execution pipeline from writing to or reading from the same cache bank at the same time.

Fig. 8 Pipeline state parallel cache controller banks

3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State
Cache Bank

For the OSFA Version 2, the 8 memory latches are included in each pipeline stage
as shown in Fig. 9. For example, for process n, Latch4 is currently in use. To switch
to process n + 1, Latch4 is disconnected from the pipeline stage, and another latch,
for example Latch2, is connected. The latches used by process n may now be
background copied to L1 cache sequentially from stage 0 through stage (m – 1) (all
of the pipeline latches) during context n + 1. The Version 2 pipeline state
DMA/cache controller pipeline offers the same processor performance as Version 1
while requiring less power.

Approved for public release; distribution is unlimited.
11

Fig. 9 OS friendly microprocessor architecture version 2 pipeline state cache banks

3.4 OS Friendly Microprocessor Architecture Performance
Modeling

The OSFA1 offers new opportunities for increased performance and decreased
power consumption by providing hardware features to reduce the OSs cost for
managing resources. Sections 4.4.1–4.4.3 develop a first-order approximation of
the potential improvements in OS Friendly Microprocessor Architecture’s context
switch performance. Conventional microprocessor performance models are based
on the research from Vangal et. al.9 and Mudge.10

3.4.1 Conventional and OS Friendly Microprocessor Architecture
Context Switch Modeling

Sections 4.4.2 and 4.4.3 estimate the context switch time required for a
conventional architecture and the new OSFA. The OSFA significantly improves
the context switch time and uses less power. The high-level representations for
conventional and improved OSFA architectures are shown in Figs. 10 and 11.
These figures assume the following architectural characteristics. First, the internal
designs of the execution pipelines in the 2 architectures are the same. The model
for the OSFA execution pipeline in Fig. 11 uses the same execution pipeline as the
conventional architecture in Fig. 10. The labels inside the pipeline stages (labeled
“PS”) refer to the stages to which the following sections reference (EX: Execution
Stage, MEM: Memory Access Stage, and WB: Writeback Stage). Next, it is
assumed that the pipelines in both architectures, OSFA and conventional, operate

128D 128R 138128I

190

192A 192B

194A 194B

192C

194C

B
U

S

B
U

S

B
U

S

B
U

S

Microprocessor Pipeline

102I 102D 102R 130

192 B
U

S

194

100A

Cache Bank
Look-up Table

Register

Cache

Pipeline

Data

Cache

Pipeline

Pipeline

State

Cache

Pipeline

Instruction

Cache

Pipeline

Merge Pipeline State Cache Bank in Pipeline. Each Stage has 8 latches for

holding pipeline state information for processes 0••7. This provides for more

parallelism and simplifies the parallel load and copy for the cache banks.

Approved for public release; distribution is unlimited.
12

at a fixed voltage VP_H with clock period tS. The Register File Set (RFS), active
register cache bank (register.act), and the active pipeline state cache bank
(pipeline_state.act) normally operate at voltage VR_H with clock period tS. For
power improvements, the OSFA can dynamically scale down both the voltages and
clock rates of the inactive and swapping cache controllers and cache banks. The
voltage of inactive and swapping cache controllers and cache banks can be reduced
to some value VL, while the clock frequency (clock period) of these components
can be reduced (clock period increased) to some value, clock frequency fL, or clock
period tL.

Memory/Cache Controller

EX

MEM

WB

R
e
g
is

te
r

F
ile

Conventional Architecture

PS

Fig. 10 Conventional processor architecture model

Approved for public release; distribution is unlimited.
13

PS EX MEM WB
Modeled

Pipeline

External

Cache and

Memory

External

Cache and

Memory

External

Cache and

Memory

External

Cache and

Memory

B
u

s
s
e
s

Leve1,

 Level 2

Caching

Leve1,

Level 2

Caching

Leve1,

Level 2

Caching

Leve1,

Level 2

Caching

DMA

Controller

Controller

and Cache

Banks
B

u
s
s
e
s

DMA

Controller

Controller

and Cache

Banks

B
u

s
s
e
s

DMA

Controller

 Controller

 and Cache

Banks

B
u

s
s
e
s

DMA

Controller

 Controller

and Cache

Banks

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

In
s
tr

u
c
ti
o

n
 -

-
M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

D
a

ta
 -

-
M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

R
e

g
is

te
r

--
 M

e
m

o
ry

 P
ip

e
lin

e
 A

rc
h

it
e

c
tu

re

P
ip

e
lin

e
 S

ta
te

 -
-

M
e

m
o

ry
 P

ip
e

lin
e

 A
rc

h
it
e

c
tu

re

OS

Friendly

 Processor

Architecture

Fig. 11 OS friendly microprocessor architecture model

3.4.2 Conventional Architecture Context Switch Modeling

This section presents the steps taken by conventional processor architecture in
Fig. 10 to perform a context switch. Each step requires a certain period of time,
which is determined by the amount of work required by the step, the clock rate of
the components involved, and the parallelism exploited by these components. All
components of the conventional architecture operate with the short clock period ts.
The steps involved in a context switch for the conventional processor are shown in
Table 1.

Approved for public release; distribution is unlimited.
14

Table 1 Conventional architecture context switch steps

Step Description

Step 1 Flush the pipeline state out to the register file.

Step 2 Write out each register value to memory.

Step 3 Bring the OS register state back into the register file.

Step 4 Refill the pipeline with the OSs pipeline state.

Step 5 Execute the standard OS operations.

Step 6 Flush the OS pipeline state to the register file.

Step 7 Write out each register value to memory.

Step 8 Bring the register state of another process, p, back into the register file.

Step 9 Refill the pipeline with p’s state.

Assuming the conventional pipeline in Fig. 10 has s stages, step 1 will require s
clock ticks, and hence s·tS time. Step 2, writing each register file out to memory,
requires reading each register value into the EX stage, moving it into the MEM
stage, and then flushing it out to memory. There are 3 clock ticks for each register
value, but since the operations can be performed in a pipelined fashion, we
approximate this as r·tS time total for all r registers. Step 3 requires filling up the
pipeline to retrieve register values from memory, requiring s ticks, then writing
each value back to the register file in the writeback stage for a total of (s + r)·tS
time. Step 4 is filling the pipeline back up with values from the register file, but this
can be pipelined with the register file refill and hence is already accounted for.
Step 5 takes some unknown amount of time, tOS_NORMAL, that is dependent on the
OS design. Steps 6 and 7 are similar to steps 1 and 2, which again require s·tS time
and r·tS time, respectively. Step 8 is like step 3, which requires (s + r)·tS time, and
step 9 is like step 4, which is accounted for in this time. Hence, an expression that
approximates this entire process is given by Eq. 1 and simplified in Eq. 2.

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑡𝑡𝑆𝑆 + 𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑠𝑠𝑡𝑡𝑆𝑆 + 𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆. (1)

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 4𝑡𝑡𝑆𝑆(𝑟𝑟 + 𝑠𝑠) + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Conventional Architecture’s Context Switch Time) (2)

3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling
(Version 1)

Figure 6 presents a worst-case timing diagram for the OSFA Version 1 assuming
swapping set cache banks (instruction.swp, data.swp, register.swp, and
pipeline_state.swp) must be loaded and written for every context switch. Data
locality will significantly reduce the number of cache bank memory copy
operations. The model for OSFA’s execution pipeline in Fig. 11 is same as the

Approved for public release; distribution is unlimited.
15

conventional architecture described in Section 4.4.2 and Fig. 10. A more optimized
pipeline would provide higher performance.

The OSFA pipeline model also operates with clock period tS. In the determination
of the clock frequency of the OSFA’s other components, the cache banks are
divided into 3 sets: active, inactive, and swapping set. One of the register cache
banks, register.act, is active and one of the pipeline state caches, pipeline_state.act,
is active. These active cache banks are those that are in use by the OSFA pipeline
in Fig. 4 and the modeled pipeline in Fig. 11. There is then a set of the other cache
banks, instruction.bank(m)’s, data.bank(m)’s, register.bank(m)’s and
pipeline_state.bank(m)’s, that are either flushing state out to the DMA controllers
(instruction DMA, data DMA, register DMA, pipeline state DMA) or bring state
back from the DMA controllers (instruction DMA, data DMA, register DMA,
pipeline state DMA). These sets are designated as the swapping sets where

instruction.swp = set of instruction.bank(m)’s cache memory banks,

data.swp = set of data.bank(m)’s cache memory banks,

register.swp = set of register.bank(m)’s cache memory banks, and

pipeline_state.swp = set of pipeline_state.bank(m)’s cache memory
banks.

The cache banks not in use by the execution pipeline or DMA controllers are
inactive or idle.

The active components instruction.act, data.act, register.act and pipeline_state.act
operate with clock period tS, the swapping components instruction.swp, data.swp,
register.swp and pipeline_state.swp operate with the longer clock period tL , and the
inactive components instruction.ina, data.ina, register.ina and pipeline_state.ina are
idle (for static memory, clock frequency could be set to 0 Hz).

The modeled OSFA Version 1 in Fig. 11 performs the following steps in Table 2
during a context switch. The key feature of the OSFA is that parallelism takes place
at various levels to reduce execution time. In step 1, all pipeline stages flush state
to the active pipeline state cache simultaneously (see Figs. 5, 6, and 11), and hence
this requires only one tick at the high clock rate for a time of tS.

Approved for public release; distribution is unlimited.
16

Table 2 OS friendly microprocessor architecture version 1 context switch steps

Step Description

Step 1 Flush the pipeline state (pipeline stage latches) out to the active pipeline state cache.

Step 2 Switch the active cache banks to the OS state

Step 3
If necessary (if free slots in the pipeline_state cache bank and register cache bank
are needed), flush the contents of the previous process’ state cache banks for the
previous process ID (PID) as described in Figure 6 .

Step 4 Bring the OSs pipeline state back into the pipeline from the pipeline state cache.

Step 5 Execute the standard OS operations.

Step 6 Flush the pipeline state out to the active pipeline state cache pipeline_stage.act.

Step 7 If necessary, fetch the state of the next process for execution from memory into the
next process’ cache banks.

Step 8

Switch the active cache banks to the caches containing new (next) process (for
example, next PID): pipeline_state.act = pipeline_state(next PID), register.act =
register(next PID), instruction.act = instruction(next PID), and data.act =
data(next PID).

Step 9
Parallel copy the contents of the active pipeline state cache back into the pipeline
stage latches. Section 4.4.3 describes the parallel copy for pipeline state cache
controller and pipeline state cache banks.

Step 2 also takes a single tick to switch to the set of active cache banks for the next
PID: instruction.act = instruction(next PID), register.act = register(next PID),
data.act = data(next PID), and pipeline_state.act = pipeline_state (next PID).

Step 3 takes s ticks for the pipeline state cache and r ticks for the register file.
However, these steps can be completed at the same time as steps 4–6, so as long as
they are completed in at most the time for those steps, the pipeline will not see
them. It is reasonable to assume that step 3 can be completed in less time (if, for
the time being, we ignore cache misses and contention), as the pipeline state and
register file are relatively small, while the OS must generally perform several
system operations before switching back to a user-level process.

Step 4 is the reverse of step 1, so it requires only a single tick.

Step 5 still takes tOS_NORMAL as with the conventional architecture, and step 6 takes
a single tick like step 1. Step 7 is the reverse of step 3 and requires the same amount
of time. Again, these steps can be performed in parallel with those of steps 4–6.

Step 8 is the same as step 2, and step 9 is the same as step 4. Each of these takes
one tick. Hence, the total time for the OSFA context switch, 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂, is found in
Eq. 3 and simplified in Eq. 4.

Approved for public release; distribution is unlimited.
17

 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆. (3)

 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 6𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁. (4)

We will ignore the tOS_NORMAL term by assuming it is the same for conventional and
OSFA. The speedup offered by the OSFA for context switching is estimated to be
𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 in Eq. 5. For example, for a 5-stage pipeline, s = 5, and 32
general-purpose registers, r = 32, this translates to an estimated theoretical speedup
of 25 found in Eq. 5 for OSFA. This is a significant order of magnitude speedup
improvement for the OSFA compared with the conventional processor architecture.

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 ≈
4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆

6𝑡𝑡𝑆𝑆
≈ 2

3
(𝑠𝑠 + 𝑟𝑟) = 2

3
(5 + 32) = 25 For OSFA Context Switch. (5)

In Eq. 6 for a large number of registers, 𝑟𝑟 ≫ 𝑠𝑠, and for 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 ≫ 6𝑡𝑡𝑆𝑆 , with
𝑡𝑡𝑆𝑆 ≲ 1

100 MHz , the speedup is order the number of registers, 𝒪𝒪(𝑟𝑟).

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
6𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑟𝑟
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 𝒪𝒪(𝑟𝑟). (6)

3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling
(Version 2)

OSFA Version 2 pipeline state cache bank in Fig. 9 has the same context switch
speedup found in Eq. 5. The parallel memory copy for version 1 was replaced by a
background serial memory copy as described in Section 4.3.2. The serial memory
copy only requires a low-speed clock. Power requirements for the serial memory
copy are less than the full parallel memory copy used in version 1 described in
Section 4.4.3.

4. OS Friendly Microprocessor Architecture Hardware
Computer Security

OS information assurance for “data” (instruction cache banks, data cache banks,
register cache banks, pipeline state cache banks, and memory cells) is implemented
in hardware. By extending the traditional Unix file permissions bits11–13 down to
each memory cell, memory cache line, and cache memory bank, the OSFA provides
hardware-level information assurance. Figure 12 illustrates hardware-level
information assurance hierarchy and permission bits.1

Approved for public release; distribution is unlimited.
18

OS Permissions

Read

IRegIO

Write

Modify

JMP

Read

IRegIO

Write

Modify

JMP

Register (n bits)Cell Permission Bits

User

PermissionsLayer 0 Layer (n-1)Layer 1

Read

IRegIO

Write

Modify

JMP

Read

IRegIO

Write

Modify

JMP

Read

IRegIO

Write

Modify

JMP

Applications Software

Permissions

D
M

A

C
o

n
tr

o
ll

e
r

 C
o

n
tr

o
ll

e
r

a
n

d
 C

a
c

h
e

B
a

n
k

s

BussesBusses Busses

D
M

A

C
o

n
tr

o
ll

e
r

 C
o

n
tr

o
ll

e
r

a
n

d
 C

a
c

h
e

B
a

n
k

s

BussesBusses Busses

D
M

A

C
o

n
tr

o
ll

e
r

 C
o

n
tr

o
ll

e
r

a
n

d
 C

a
c

h
e

B
a

n
k

s

BussesBusses Busses

D
M

A

C
o

n
tr

o
ll

e
r

 C
o

n
tr

o
ll

e
r

a
n

d
 C

a
c

h
e

B
a

n
k

s

BussesBusses Busses

Pipeline State Controller

Register Controller

Data Controller

Instruction Controller In
s
tr

u
c
ti
o
n
,
D

a
ta

,
R

e
g
is

te
r,

 o
r

P
ip

e
lin

e
 S

ta
te

C
a
c
h
e
 B

a
n
k

IRegIO

Cache Bank OS Permissions

Layer 0
Layer

(n-1)Layer 1

Read

IRegIO

Write

Modify

JMP

Read

IRegIO

Write

Modify

JMP

Read

Write

Modify

JMP

Memory

Type

Cache Bank

Permissions

C
a
c
h
e
 B

a
n
k
 (

m
)

Memory Cell (Cache Address = 0xNNNN)

Fig. 12 Cache bank and memory cell hardware information assurance

4.1 Cache Bank and Memory Cell Permission Bits

The instruction, data, register, and pipeline state cache banks have a set of OS level
permission bits. The cache bank memory type field is used to define data types
(e.g., data space, stack space, heap space, integer, floating point). Only the OS has
permission to access and modify cache banks’ permission bits. OS level access to
cache controller banks is divided into access layers (layer_0, layer_1, layer_2, etc.).
Example permission bits are shown in Fig. 12. Each cache memory bank has
permission bits for each memory cell. Each cache bank memory cell has permission
bits for the OS layers and software (user level, and applications, etc.). The OS
permission bits are further divided in OS layers (layer_0, layer_1, etc.). Additional
permission bits can easily be added to Fig. 12.

4.2 Instruction Permission Bits

The OSFA also includes permission bits for additional OS level control over
instructions and hardware. In Fig. 12, permission bit JMP provides OS level control
of jump or branch on index register instructions. Permission bit IRegIO allows OS
to provide an index register pointing to an I/O port or I/O memory address. The
IRegIO bit locks out the index register (pointer). The running process is prevented

Approved for public release; distribution is unlimited.
19

from accessing the contents of the register/cache bank; however, the process can
use the index register (pointer) to read/write to I/O (registers, ports, or addresses).
Registers can be used to define data types using 2 registers for minimum value and
maximum value. For example, the type IOMemAddressType could be defined as
minimum = 0, and maximum = 15. If a register of type IOMemAddressType is
outside the minimum/maximum range, then the processor will generate an out-of-
range exception.

4.3 Library Call Permissions

The library function call table in Fig. 13 extends the principal of least privilege to
the library function call level. A table listing all possible library function calls a
software program may use is created. Each possible library function call is listed
with typical moderate load and maximum load lower and upper limits. More limits
could be used for finer grain control as in the example of the OpenFile(•) library
function call privilege limits. If the minimum number of open files is 0, the lower
limits for cases typical, moderate, and maximum is 0. If the typically user will only
have 5 files open at a time, the upper limit for typical is 5. Maximum load upper
limit specifies the maximum number of files that may be open at a time. Exceeding
the upper limits can be set to 1) require higher than user level privileges or to 2)
generate an exception. The digital signature provides authentication of the library
function call table and its permission settings.

CreateWindow(•,•,•)

Typical Values Moderate Load Maximum LoadAll Library Functions

are Listed.

Digital Signature

OpenFile(•,•,•)

LibraryCall01(•,•,•)

LibraryCall02(•,•,•)

LibraryCall03(•,•,•)

OpenComPort(•,•,•)

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Fig. 13 Library function call table information assurance

Approved for public release; distribution is unlimited.
20

5. OS Friendly Microprocessor Architecture Access Layers

Figure 12 introduces the cache bank permission bits for the OSFA. The instruction,
data, register, and pipeline state cache banks all use the same block of permission
bits. Figure 14 focuses on the cache bank permission bits. Each cache bank contains
a memory type field. The memory type field can be used to define stack space, heap
space, user memory, shared memory and the like. Each cache bank contains a list
of permission bits for the OS rings or OS layers. One possible hierarchy for the OS
Layers is found in Table 3. The secure microkernel and microkernel drivers control
all permission bits and manage I/O and memory allocation.

Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits

Cache Bank

Permissions

Cache Bank (m)

Cache Bank OS Permissions

Memory Type

Layer 0

Read

IRegIO

Write

Modify

JMP

Layer 1

Read

IRegIO

Write

Modify

JMP

IRegIO

Layer (n-1)

Read

Write

Modify

JMP

Fig. 14 OS friendly microprocessor architecture cache bank permission bits

Table 3 Example OS friendly microprocessor architecture layer hierarchy

Layer Number Trust Level OS Access Level

Layer_0 Complete Secure Microkernel
Layer_1 Microkernel Drivers
Layer_2 Hypervisor
Layer_3 Thick OS
Layer_4 Dynamic Link Libraries
Layer_5 OS Drivers
Layer_6 • • •
Layer_7 Untrusted Applications Software

As illustrated in Fig. 5, all memory, and I/O is managed as direct memory access.
For example, an application writes a block of data to a hard drive. The application
executes file.create(•). The OS level file operation calls the secure
microkernel for an I/O port. The secure microkernel passes a pointer to an I/O port.
The pointer to the port address is marked R W M IRegIO (read, write, and modify

Approved for public release; distribution is unlimited.
21

are not allowed, IRegIO specifies pointer to I/O port). We will use the notation
R W M for read, write, and modify are allowed. The OS cannot read, write, or
modify the value of the pointer. The application then calls file.write(•) using
the pointer. The OS can only use the file pointer for I/O for the file.write(•)
OS library function call. Microkernel can manage (run) multiple OSs and programs
at the same time.

5.1 Instruction, Data, Register, and Pipeline State Memory
Partitions

The instruction, data, register, and pipeline state cache banks all use the same
permission bits. The memory type field in Fig. 14 restricts the information that can
be placed in the cache bank. For example, if the cache bank type is set to application
data, the running task or thread cannot use the cache bank as stack space. For a
cache bank to be used for stack space, the stack space permission bit must be set.
For a push or pull stack operation to read or write to a stack cache bank, an index
pointer must have stack permission bit set. Stack registers will also be marked as
R W M (read, write, modify are not allowed), so the running task cannot modify
the contents of the stack pointer (register).

Instructions and data have their own stack space (cache banks). For example, an
array of data is placed on the stack to call an OS library function. The return address
is not data and is placed on a separate stack contained in the instruction cache bank.
The stack spaces are not unified. The data stack does not contain any return
addresses. The instruction stack is managed by the microkernel, so the OS and
application do not have any direct access to the return address pointer. The return
address pointer can also be set to R W M (read, write, modify are not allowed).

The next section looks at permission bits for different OS access levels covered in
Table 3.

5.2 Permission Bits: Microkernel, Thick OS, Drivers, and
Applications

Figures 15–17 provide example permission bit settings. Figure 15 shows
permission bit settings for the secure microkernel, the most secure layer. The
microkernel has complete access. Microkernel drivers have read and write access.
In Fig. 16, the full feature OS and dynamic link libraries are set to access layers 3
(OS) or 4 (DLL) through n – 1. OS hardware drivers are set to read and write access
only. The application’s permission bits are shown in Fig. 17. The multiple levels of
permission bits allow for restricting the OS from writing to applications’ areas of
memory. Keep in mind that each cache bank memory can have different permission

Approved for public release; distribution is unlimited.
22

bit settings. The OS could have full control over one application’s cache memory
bank and have no control or visibility to a second application’s cache memory bank.
The large number of permission bits allows for fine grain memory access control.
We could set the permission bits to allow a trusted application to run under an
untrusted OS. The permission bits allow for hardware sandbox execution of
unknown, untrusted code. The hardware permission bits require that we at least
completely trust the secure microkernel. A formal proof of correctness or a very
high assurance level microkernel is recommended.

Layers 1 to n-1

Read

Pointer

Write

Modify

IRegIO

Read

Pointer

Write

Modify

IRegIO

Microkernel

Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write

Modify

IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write

Modify

IRegIO

Layers 4 to n-1

Dynamic Linked

Libraries

Read

Pointer

Write

Modify

IRegIO

Layers 6 to 7

Applications

Software

Layers 0 to n-1

Read

Pointer

Write

Modify

IRegIO

Secure

Microkernel

Hardware

Drivers

Read

Pointer

Write

Modify

IRegIO

Layers 5 to n-1

Fig. 15 Secure microkernel cache banks and permission bits

Layers 1 to n-1

Read

Pointer

Write

Modify

IRegIO

Read

Pointer

Write

Modify

IRegIO

Microkernel

Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write

Modify

IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write

Modify

IRegIO

Layers 4 to n-1

Dynamic Linked

Libraries

Read

Pointer

Write

Modify

IRegIO

Layers 6 to 7

Applications

Software

Layers 0 to n-1

Read

Pointer

Write

Modify

IRegIO

Secure

Microkernel

Hardware

Drivers

Read

Pointer

Write

Modify

IRegIO

Layers 5 to n-1

Fig. 16 Thick OS cache banks and permission bits

Layers 1 to n-1

Read

Pointer

Write

Modify

IRegIO

Read

Pointer

Write

Modify

IRegIO

Microkernel

Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write

Modify

IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write

Modify

IRegIO

Layers 4 to n-1

Dynamic Linked

Libraries

Read

Pointer

Write

Modify

IRegIO

Layers 6 to 7

Applications

Software

Layers 0 to n-1

Read

Pointer

Write

Modify

IRegIO

Secure

Microkernel

Hardware

Drivers

Read

Pointer

Write

Modify

IRegIO

Layers 5 to n-1

Fig. 17 Application’s permission bits

5.3 I/O Implementation

The OSFA uses cache banks and direct memory access controllers for I/O. The
cache bank architecture allows all I/O to have a uniform structure. In a high-level
programming language, we use file operations like file.open(•),
file.write(•), and file.read(•). The file function calls provide a uniform

Approved for public release; distribution is unlimited.
23

structure abstracting the low-level details away from the programmer. By using
cache banks and direct memory access for all input and output, all I/O operations
at the hardware level are the same. As illustrated in Fig. 18, a USB controller
interfaces to a direct memory access controller. This allows cache banks to be the
basic block for all input and output operations. We could replace the USB controller
with a disk drive controller or a video graphics card. The cache bank and direct
memory access controller provide a universal interface between the OSFA and
other devices.

Fig. 18 OS friendly microprocessor architecture I/O example

In Fig. 18, the software applications calls the OS library function
OS.Create.I/O_Port(•). The OS calls the microkernel function
MK.Create.I/O_Port(•) to create a pointer to a cache bank. The pointer has
permission bits set to R W M IRegIO. The OS and applications software cannot
read, write, modify, or access the contents of the index register (pointer). All the
OS and application know is that the index register, for example register 10 (R10),
contains a pointer to the I/O port. Figure 19 gives a real-world example for
comparison. The junior engineer knows the project plan is contained in the safe;
however, he does not have access to the project plan.

Junior engineer knows the project plan is in the safe;
however, he does not have access to the plan.

Junior EngineerChief Engineer

Thanks.

The CEO left the 2015-16 project
plan for you to review in the safe.

Fig. 19 Real-world example of OS friendly microprocessor architecture’s permission
architecture

Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return

Call

Return

Microkernel

MKPort = Pointer R W M RegIO

Application

OS.Write_I/O.Port(Port, Data)

Call

Return

Hardware Direct Memory AccessOS

Call

Return

Cache Bank

Pointer

Write_I/O.Port(Pointer, Data)

Cache Bank

Direct Memory

Access Controller

USB

Controller

Pointer

R W M RegIO

R W M RegIO

Permissions = R W M RegIO

USB

Cable

R W M IRegIO

 R W M IRegIO

R W M IRegIO

 R W M IRegIO

Approved for public release; distribution is unlimited.
24

The permission bits guarantee that the pointer can be trusted by the microkernel.
Here trust refers to software level. Only the microkernel has access to the actual
address for the pointer to the I/O Port. The software applications in Figs. 18 and 20
know the register number containing the I/O pointer; however, the software
applications cannot access the contents of the register (memory address contained
in the register).

Fig. 20 For the I/O port, the application software knows the register number; however, the
application cannot access the contents of the register

The application places data inside the cache bank pointed to by the pointer Port.
The application calls OS.Write.I/O_Port(•), which simply passes the pointer
to the hardware DMA controller to transmit the cache bank contents. In Fig. 18, the
direct memory access controller sends the contents of the cache bank to a USB
controller. We have several options for the lifetime of the I/O Port pointer: 1 context
time, single read/write operation, or forever for the microkernel.

In summary, the IRegIO permission bit restricts access to only the microkernel.
The permission bits allow the microkernel to trust the pointer. An application passes
the pointer to a hardware direct memory access controller to send or receive a cache
bank size block of data. If a black hat had control of a process and could guess the
address of a cache bank, he still would have to bypass the microkernel to set the
IRegIO permission bit for the cache bank. The permission bits and cache bank
architecture provide for efficient, high speed, low overhead I/O.

5.4 Exception Handling

Two example exceptions are illustrated in Fig. 21. A simple divide by zero error in
the application software raises an exception handled by the OS. If the software
application has provided an exception handler, it is called by the OS; else, the OS
terminates the running application.

Application

Port = OS.Create_I/O.Port(•)
OS.Write_I/O.Port(Port, Data)

Bits Permissions =
R W M RegIO

Bits Permissions =
R W M RegIO

Port is a Register Number. For example, Port = R10
(Register 10). Application Software knows the register
number; however, the contents of the register cannot be
accessed: read, written to, modified, etc.

Port = R10

Register R10's contents
cannot be accessed by

the application

Permission Bits=
R W M IRegIO

Approved for public release; distribution is unlimited.
25

Fig. 21 Permission bits and hardware exception handling

With the permission bits set to R W M (read, write, and modify are not allowed), if
the application software attempts to read the Array pointer’s address, a memory
access violation exception is raised. The OSFA hardware detects a memory access
violation and calls microkernel to handle the exception. The system developer
could include a microkernel driver to handle the memory exception and even allow
reading the address contained in the pointer Array. This would be considered poor
coding style, violate the security layer hierarchy and be an open door for hacking.

For example, a high-performance algorithm cannot be proved to be absolutely
numerically stable. A second moderate performance algorithm is known to be
numerically stable is also running. If the high-performance algorithm raises an
exception, the second algorithm is already running and can take over immediately.

5.5 Practical Permission Bit Architecture

Some possible OSFA access levels are shown in Table 4. The access levels are set
by cache permission bits. Access levels are specific to the OSFA. OS rings are
similar; however, OS rings already have an accepted definition and functions. If we
have a trusted application, we can give the application higher-level privileges than
an untrusted OS as illustrated in the right-hand column. The secure microkernel in
access layers 0 and 1 has exclusive access to the hardware permission bits. No other
layers can access the file permission bits.

Divide by zero

Exception

Application

DeltaX = 0;
Slope = Y1-Y2/DeltaX

OS

If Div0_Exeption Handler Registered
 Call Div0_Exeption Handler
ELSE
 End_Process

Application

Array[i] = new Object;

Printf(“Array Address =”, Array);

OS

Call

Call OS_Pointer =
 Microkernel.CreateMem();
Return OS_Pointer

Microkernel

Pointer = CreateCacheBank();
R W M RegIO

Return Return

Call

R W M RegIO

Permissions = R W M RegIO

Microkernel

EndProcess();
CleanUpMemory();

Hardware Exception:
Permission Bits prevent reading the

memory address of Array[];

Slope = (Y1-Y2)/DeltaX;

R W M

R W M
R W M

Approved for public release; distribution is unlimited.
26

Table 4 Some possible OS friendly microprocessor architecture access levels

Object OS friendly microprocessor architecture access levels
Microkernel (boot) 0 1 n/a n/a 0
Microkernel 0 0 0 0 0, 1
Microkernel drivers 1 1 1, 2 1, 2 2, 3
Hypervisor n/a 2 3, 4 3 4, 5
Thick OS 2 3 5, 6, 7 4, 5, 6, 7 7, 8, 9
OS libraries (DLLs) 2 3 7 7, 8 10, 11
OS drivers 2 4 8 8, 9 12, 13
Applications 3 5 9 10, 11 6

Trust Level Complete Untrusted

To illustrate some simple computer security examples, we limit the number of
access levels to 4. We can easily increase to 8 or more for a full-featured
architecture. The memory cost for the permission bits can be significant. For
example, with 8 access levels, 8 permission bits, and 16 bits for the memory type,
we would need an additional 96 bits for each cache block. For a 1-kiloword cache
bank, this is not significant; however, for each memory cell an additional 96 bits is
large. The OSFA Version 2 uses a 1-kiloword permission bit lookup table in a cache
bank, which only requires 10 bits. Each memory cell would require 8 bits for
layer_0, 8 bits for layer_1, and 10 bits for the cache lookup table (26 bits total),
which is much more practical. Layer_0 and layer_1 permission bits are included
for each memory cell for high-speed microkernel access. A larger cache bank is
possible; however, at some point becomes unpractical like the 96 bits per cell
described previously.

The access level for mobile code is set by a trusted certificate authority and verified
by the microkernel. Mobile code with an unverified (untrusted) certificate is
deleted.

An example, 4-layer permission bit architecture for the OSFA, is illustrated in
Fig. 22. To reduce the complexity for describing the architecture’s features, we
have limited the access layers to 4. As shown in Table 4, more access layers are
easy to define. We consider 4 layers the minimum number of access layers for the
OSFA. A practical number of access layers is around 8. Section 6 covers some
computer security examples for the example architecture described in Fig. 22.

Approved for public release; distribution is unlimited.
27

Secure Microkernel

Boot Drivers

Cache Bank Management

Bank

 • Boot

• Cache Bank Memory

Management

• Hardware Exceptions

 • Thick OS

• DLL

• OS Library Functions

Standard OS

DLL File APIs OS Srv

 Application

 Software

Bank Bank Bank

OS Services

Calls

Cache Bank,

Input/Output

Drivers

Layer 0
(Trusted)

Layers

1, 2

Layer 3
(Untrusted)

OS

Friendly

 Processor

Architecture

Hardware
Level

Hardware

Configuration,

Exception

Handling

Fig. 22 Example 4-layer architecture

5.6 OS Friendly Microprocessor Architecture Version 2:
Practical Cache Bank Architecture

An example practical cache bank and permission bit architecture is described in
Fig. 23. A possible 256-bit cache bank header with 5 defined fields is shown. A
larger, more complex cache bank header would be easy to define. A memory type
field describes the type of memory contained in the cache bank. The PID field
describes the “owner” of the cache bank. A microkernel field is defined for
additional microkernel control over the cache bank. The undefined field may
contain additional microkernel settings, or the OS may call the microkernel to
include OS-related cache bank information in the undefined field. Each cache bank
contains 256 bits (cache bank header), 64 bits per memory cell, and 32 permission
bits per memory cell. For a 1-kiloword (8-KB) memory cache bank, 12 KB of
memory are required. For a 4-kiloword (32-KB) cache bank, 48 KB of memory are
required. For the example processor, we use 1 kiloword (8 KB) for the cache size.
A good compromise for an actual microprocessor would be around 8–64 kilowords.

Approved for public release; distribution is unlimited.
28

Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits

Cache Bank

Permissions

256 bits

Cache Bank (m)

Cache Bank OS Permissions

Memory Type (16 bits)

Layer 0

8 bits

Layer 1 Layer 7

8 bits 8 bits

64 bits Total

Process ID (16 bits)

Microkernel Field (32 bits)

Undefined (128 bits)

256 Permission Bits per Cache Bank

One Memory

Cell (Word)

Wordsize = 64 bits 32 bits

Memory Cell Size Permission Bits

Layer 0

Layer 1

8 bits + 6 bits

8 bits

Layers

2-7

10 bits

Look up table

Fig. 23 Practical permission bit and cache bank architecture

5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit
Limitations

The memory required for OSFA Version 1 permission bits is large. Most processes
(tasks) will only require a few different permission bit settings. For the OSFA
Version 2, we implement a cache bank lookup table with 10–16 address bits. This
provides a lookup table with 1024–65,536 entries. With a 10-bit lookup table, we
can get by with only 32 bits per memory cell to hold the permission bits. Without
the lookup table, 64–96 bits per memory cell or more would be required.

5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit
Cache Bank Architecture

Figure 24 shows the OSFA Version 2 permission bit cache bank look up table. A
10-bit lookup table provides for 1024 different permission bit settings. Version 1
without the lookup table would require 64–96 bits per memory cell. A 16-bit
permission bit cache bank lookup table would provide for 64k of unique permission
bit settings. As illustrated in Fig. 23, a 64k cache bank lookup table would only
require 38 bits per memory cell for the cache bank permission bits.

Approved for public release; distribution is unlimited.
29

Fig. 24 Cache bank permission bit lookup table

5.7 Microkernel, OS, and Application Cache Banks Organization

The OSFA cache bank organization, for the 4-layer model introduced in Figs. 22
and 23, is described in Fig. 25. There are 3 groups of cache banks: microkernel
(layer 0), OS (layers 1 and 2), and application software (layer 3). The microkernel
controls and configures all cache bank permission bits. The microkernel has full
access to the OSFA’s permission bits and it is completely trusted. At the hardware
level, all cache banks are the same. Only the instructions in the instruction cache
banks are executed. The data, register, and pipeline state cache banks are not
connected to the instruction decode block in the execution pipeline and cannot be
executed.

128D 128R 138128I

190

192A 192B

194A 194B

192C

194C

B
U

S

B
U

S

B
U

S

B
U

S

Microprocessor Pipeline

102I 102D 102R 130

192 B
U

S

194

100A

For example, with 8 access levels,
and 8 permission bits, and 16 bits
for the memory type, we would
need an additional 96 bits for each
cache block. For a 1k word cache
bank, this is not significant;
however, for each memory cell an
additional 96 bits is large.

A 1k word permission bit cache
bank look-up table would only
require 10 bits. Each memory cell
would require 8 bits for layer_0, 8
bits for layer_1, and 10 bits for the
cache look-up table (26 bits total)
which would be much more
practical. Cache Bank

Look-up Table

Register

Cache

Pipeline

Data

Cache

Pipeline

Pipeline

State

Cache

Pipeline

Instruction

Cache

Pipeline

Microprocessor Execution Pipeline

Approved for public release; distribution is unlimited.
30

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk
s

Da
ta

Ca

ch
e

Ba
nk

s

Re
gi

st
er

Ca

ch
e

Ba
nk

s

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

s

M
ic

ro
k
e
rn

e
l

(l
a
y
e
r

0
)

O
S

(l
a
y
e
rs

 1
,
2
)

A
p
p
lic

a
ti
o
n

(l
a
y
e
r

3
)

Fig. 25 OS friendly microprocessor architecture cache bank organization

5.8 Process Level Cache Bank Operations

Figure 26 presents a simplified example of microkernel cache banks and cache bank
contents. Figure 26 does not present the details for a complete microkernel. The 4
cache bank pipelines, instruction, data, register, and pipeline state, are completely
separated. The contents from one cache bank type cannot be copied to another
cache bank type. For example, data placed on the data stack cannot be accessed by
the instruction cache bank pipeline. Two threads, thread_0 and thread_1, are
contained in the instruction cache bank set. Only the instruction cache bank pipeline
connects to the OSFA’s instruction decode stage in execution pipeline. A third
cache bank is used as a return function call stack for the microkernel.

Approved for public release; distribution is unlimited.
31

Microkernel
(layer 0)

Pipeline State
Cache Banks

P
ip

e
lin

e

T
h

re
a

d
_

0

P
ip

e
lin

e

T
h

re
a

d
_

1

P
ip

e
lin

e

T
h

re
a

d
_

2

Register
Cache Banks

R
e

g
 C

a
c
h

e

T
re

a
d

_
0

R
e

g
 C

a
c
h

e

T
re

a
d

_
1

Data
Cache Banks

D
a

ta

T
h

re
a

d
_

0

D
a

ta
 S

ta
c
k

T
h

re
a

d
_

0

D
a

ta

T
h

re
a

d
_

1

D
a

ta
 S

ta
c
k

T
h

re
a

d
_

1

Instruction
Cache Banks

T
h

re
a

d
_

0
R

e
tu

rn
 C

a
ll

S
ta

c
k

T
h

re
a

d
_

1

Fig. 26 Microkernel cache bank organization

Data cache banks contain data in use by thread_0 and thread_1. Each thread may
be assigned its own stack space in the set of data cache banks. The separation of
thread stack areas also enforces isolation between threads. Each thread, thread_0
and thread_1, has its own set of registers in the set of register cache banks. The
pipeline state cache banks contain the latch states from the microprocessor’s
execution pipeline in Fig. 5. The pipeline state cache banks allow for very rapid
context switching. Section 4.2 and Fig. 6 describe cache banks and context
switches. Context switches for threads can be as fast as 1 CPU cycle using the
OSFA.1

The instruction, data, register, and pipeline state cache banks in Fig. 27 for the OS
and applications software have the same hierarchy as the microkernel. The
microkernel configures all cache banks and permission settings. The OS and
applications software are “clients” to the microkernel. The microkernel manages
all permission bit settings, hardware exceptions, I/O, memory management, and
DMA settings for the OSFA. The cache bank architecture provides high-speed
context switches, and very efficient I/O.

Approved for public release; distribution is unlim
ited.

32

OS
(layers 1 and 2)

Pipeline State
Cache Banks

P
ip

e
lin

e

T
h

re
a

d
_

0

P
ip

e
lin

e

T
h

re
a

d
_

1

P
ip

e
lin

e

T
h

re
a

d
_

2

Register
Cache Banks

R
e

g
 C

a
c
h

e

T
re

a
d

_
0

R
e

g
 C

a
c
h

e

T
re

a
d

_
1

Data
Cache Banks

O
S

 D
a

ta

T
h

re
a

d
_

0

D
a

ta
 S

ta
c
k

T
h

re
a

d
_

0

O
S

 D
a

ta

T
h

re
a

d
_

1

D
a

ta
 S

ta
c
k

T
h

re
a

d
_

1

Instruction
Cache Banks

O
S

T
h

re
a

d
_

0

R
e

tu
rn

 C
a

ll

S
ta

c
k

O
S

T
h

e
a

d
_

1

Application
(layer 3)

Pipeline State
Cache Banks

P
ip

e
lin

e

A
p

p
lic

a
ti
o

n

Register
Cache Banks

A
p

p
lic

a
ti
o

n

R
e

g
 C

a
c
h

e

Data
Cache Banks

D
a

ta
 B

a
n

k

A
p

p
_

0

D
a

ta
 B

a
n

k

A
p

p
_

1

D
a

ta
 B

a
n

k

A
p

p
_

2

D
a

ta
 B

a
n

k

A
p

p
_

3

Instruction
Cache Banks

A
p

p
lic

a
ti
o

n

B
a

n
k
_

0

R
e

tu
rn

 C
a

ll

S
ta

c
k

A
p

p
lic

a
ti
o

n

B
a

n
k
_

1

O
S

T
h

e
a

d
_

2

A
p

p
lic

a
ti
o

n

B
a

n
k
_

2

Assume App

is single treaded

Fig. 27 OS and application cache bank organization

Approved for public release; distribution is unlimited.
33

5.9 Cache Bank I/O Example

We present an example in Fig. 28 showing the interaction between microkernel,
OS, and applications software for the USB I/O example discussed in Fig. 18. We
follow the cache bank organization and discussion found in Sections 5.7 and 5.8.
The software application in Application Bank_0 is executing the machine code
equivalent of the high-level instruction Port = OS.Create_I/O.Port(●). The
OS transfers the call to the microkernel by OSPort = MK.Create_I/O.Port(●).
The microkernel creates a pointer to a data cache bank. The application program
has permission to write data into the cache bank; however, it cannot access the
contents of the pointer (register). The pointer (register) contains the memory
address of the cache bank.

Once the data have been placed in the I/O bank for App_0, the application calls the
OS. The OS calls the microkernel, which simply enables a direct memory access
controller starting at the address found in the pointer Port.

Approved for public release; distribution is unlim
ited.

34

Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return

Call

Return

Microkernel

MKPort = Pointer R W M RegIO

Cache Bank

Pointer

R W M RegIO

Permissions =
R W M RegIO

A
p
p
lic

a
ti
o
n

B
a
n
k
_

0 Application is running in

instruction cache bank:

Application Bank_0

O
S

T
h
e
a
d

_
1

OS Thread_1 manages

I/O port create calls

T
h
re

a
d

_
0 Microkernel Thread_0 sets

up pointer and permission

bits for I/O Cache Bank

I/
O

 B
a
n
k

A
p
p

_
0

Port
Application can read/write

data to I/O cache bank

USB Cable

I/
O

 B
a
n
k

A
p
p

_
0

Pointer

R W M RegIO
USB

Controller

Direct Memory

Access Controller

Application

OS.Write_I/O.Port(Port, Data)

Call

Hardware Direct Memory AccessOS

Call

Return

Write_I/O.Port(Pointer, Data)

Permissions = R W M RegIO

A
p
p
lic

a
ti
o
n

B
a
n
k
_

0 Application is running in

instruction cache bank:

Application Bank_0

O
S

T
h
e
a
d

_
1 OS Thread_1 calls

microkernel for write

cache bank operation T
h
re

a
d

_
0 Microkernel Thread_0

starts DMA transfer at

address pointed to by Port

Return

Fig. 28 Application writes a cache bank block of data to USB controller

Approved for public release; distribution is unlimited.
35

6. Computer Security Examples

To improve system performance, the OSFA implements context switching, cache
memory management, and resource permission bits in hardware. This architecture
requires a secure boot to properly set up the permission hierarchy.

The goal is to have each task run in its own hardware “sandbox”. All access points
to control operations are managed by the hardware permission bits. All tasks are
running in an environment without any software level access to a control or
management level resources. In the 1970s blue box terms, we are hopefully
blocking all paths to an in-band signaling channel.

6.1 Buffer Overflow

Buffer overflow attacks are described in Cowan et al.14 In telephone in-band
signaling,3–4 a blue box5–6 was the tool needed to control the telephone network.
Back in the 1970s, there was no authentication to prevent a prankster from using a
blue box. In a buffer overflow attack, the attacker follows a set of steps avoiding
any authentication to reach the goal of administrator privileges. A buffer overflow
attack is in the same class as in-band signaling—an open door.

All of these methods seek to alter the program’s control flow so that the program will
jump to the attack code. The basic method is to overflow a buffer that has weak or
non-existent bounds checking on its input with a goal of corrupting the state of an
adjacent part of the program’s state, e.g. adjacent pointers, etc. By overflowing the
buffer, the attacker can overwrite the adjacent program state with a near-arbitrary[15]
sequence of bytes, resulting in an arbitrary bypass of C’s type system[16] and the victim
program’s logic.14

In Fig. 29, a running process executes the machine code equivalent of
printf(“ABCDEFGHIJKLMNO”);. The string is placed on the stack and the OS function
printf() is called. The return address is placed on an instruction stack. The
executing process can only place data on the “data stack”. The process does not
have any access to the instruction stack. The return address is not contained on the
“data stack”. Overwriting the data stack cannot modify the return pointer on the
instruction stack. The OS library call will need to check the length of the string. If
the stack was overwritten, the printf() call would continue printing characters
until a null string character was found or when the printf() library function call
tries to access memory out-of-bounds, a memory access violation error would
occur. The process does not have access to the return address and cannot
maliciously modify the return address.

Approved for public release; distribution is unlimited.
36

0x41424344
0x45464748
0x494A4B4C
0x4D4E4F00

0x123456

Data Stack Instruction Stack

Process and OS Cannot

Access Instruction Stack

ABCD
EFGH
IJKL

MNO-Pointer
Pointer Return Address

Process and OS

have access to stack

Printf(“ABCDEFGHIJKLMNO”);
// Place “ABCDEFGHIJKLMNO” On stack and Call OS Function //

Fig. 29 Process stack example

6.2 Data Execution Exploitation

The OSFA maintains a strong separation between instructions and data. The OSFA
(Fig. 5) cache bank memory pipelines (instruction, data, register, and
pipeline_state) are not unified. The pipelines are completely separated at the
hardware level. The cache bank permission bits (Fig. 12) maintain separation of
access layers and permission bits as described in Section 5.2. A practical cache
bank permission bit structure is described in Fig. 23. A process level description of
permission bits is presented in Section 5.8. Figures 26 and 27 show the strong
separation of access layers, cache banks, and processes.

Assume a running malware application has created a data block containing the
machine code for a computer virus. To take control of the computer, the malware
needs to find an open door to a microkernel level resource and attack the
vulnerability. Assume the application, Application Bank_0, running in Fig. 27 is
malware. The malware does not have any access to its running code in the
instruction cache bank pipeline. The malware could create an executable virus in
data memory. Assume Data Bank App_0 contains the machine code instructions for
malware. The following paragraphs describe the actions malware would need to
take to attack the architecture.

• The malware would need to move, copy, or transfer the data cache bank into
an instruction cache bank. Second, the malware would need to access the
cache bank permission bits and set the “data” type to executable. The
microprocessor architecture shown in Figs. 1 and 5 does not have any
logical connection between data and instruction cache bank memory
pipelines.

• The malware could place the computer virus in Application Bank_2 cache
bank. The cache bank permission settings set the access level for the

Approved for public release; distribution is unlimited.
37

malware “application” to level 3 (untrusted). The hardware will not allow
an access level 3 application to modify a cache bank, or I/O port. Attempting
to write to a privileged resource would instantly raise a hardware memory
access violation. As illustrated in Fig. 28, the malware could call the OS
and request an I/O port. The port address is contained in a register (for
example R10). R10 has access permission bits set to R W M IRegIO. As
illustrated in Fig. 21, any attempt to read the address contained in Register
R10 results in a hardware-level exception.

The architecture’s permission bits, cache bank memory type, and cache bank
permission bits enforce a strong separation between access levels. The conventional
von Neumann computer architectures present numerous opportunities for malware
to take control of what should be a trusted resource. Avoid allowing the malware
any in-band signaling channels to exploit an attack.

6.3 “Low-Level Driver” Protection

We present a low-level driver example for an Ethernet interface. This example
follows the USB and open port example found in Fig. 28. A high-level description
of an Ethernet frame17 is found in Fig. 30. The Ethernet frame has a maximum
length of about 1518 bytes. One Ethernet frame would fit in an OSFA 512-word
(2 KB) cache bank.

“Source”

Computer

Destination MAC

Address

Source MAC

Address
Ethernet Type Packet Message

6 bytes 6 bytes 2 Bytes 46 to 1500 Bytes in Length

Packet

“Destination”

Computer

Ethernet Frame

Destination MAC

Address

Source MAC

Address
Ethernet Type Packet Message

Ethernet Frame

Packet

Fig. 30 Ethernet frame

Figure 31 illustrates an OSFA cache bank configured to hold an Ethernet packet.
The application software calls the OS, which calls the microkernel to create a
pointer to a cache bank. The application then calls OS and microkernel to configure
the cache bank memory type as Ethernet. The application calls to set the source and
destination MAC addresses; the microkernel then checks to see if the MAC
addresses are valid. The source and destination MAC addresses are stored in the
cache bank as R W M (not allowed by the application and OS). The source and

Approved for public release; distribution is unlimited.
38

destination addresses are trusted because the permission bits block access to the
application and OS. The microkernel checks the packet length and then configures
the DMA controller to transfer the packet to the Ethernet controller. The cache bank
architecture and permission bits provide a general interface for all I/O operations
for the OSFA.

Approved for public release; distribution is unlim
ited.

39

Call

Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return
Return

Microkernel

MKPort = Pointer R W M RegIO

Cache Bank

Pointer

R W M RegIO

Permissions =
R W M RegIO

Port

Ethernet

Controller

Direct Memory

Access Controller

Application

OS.Ethernet.Port(Port, Data)

Call

Check Packet Message Length.

Hardware Direct Memory Access

Ethernet Controller sends packet

OS

Call

Return

Write_I/O.Port(Pointer, Data)

Permissions = R W M RegIO

Return

Pointer R W M RegIO

Application

OS.EthernetSource(•)
OS.EthernetDestination(•)

OS
Call

Return

Call

Return

Microkernel

Configure Ethernet
Source and Destination MACs

MK.EthernetSource(•)
MK.EthernetDestination(•)

Cache Bank (Memory = 2 kbytes)

Destination

MAC Address

Source

MAC Address

Ethernet

Type
Packet Message

6 bytes 6 bytes 2 Bytes 1500 Bytes max

Cache Bank (Memory = 2 kbytes)

Destination

MAC Address

Source

MAC Address

Ethernet

Type
Packet Message

6 bytes 6 bytes 2 Bytes 1500 Bytes max

Microkernel

Fig. 31 Cache bank and Ethernet frame example

R W M RegIO

R W M RegIO

OSFA Cache Bank
see Figure 24.

Approved for public release; distribution is unlimited.
40

6.4 Control Information Protection

Computer security examples in Section 6 describe how control information is
isolated from OS and application software access levels. All system resources are
managed by the microkernel. The microkernel can give the OS access to system
resources like memory; however, the OS is limited to only the resources isolated
from the microkernel. If an application is trusted more than the OS, the microkernel
could be configured to isolated the trusted application from an untrusted OS.

6.5 Debugging Traps

Program debugging at the register level can use the R W M permission bits (Read
= allowed, Write = not allowed, and Modify = not allowed) to trap all writes made
to a memory address or register (Fig. 32). This allows for hardware-level debugging
with no performance overhead at the software level until a write occurs.

Fig. 32 Real-time debugging trap example

6.6 Hardware Features for Hypervisor

Recent research work has suggested that a fully hardware level (level 0) hypervisor
might be possible. A Lynx Technologies white paper 18 states that a level 0, chip
level hypervisor would not require OS support. All required OS features are
implemented at the hardware level. The goal of creating a type 0 hypervisor may
not be possible.18–20

R01

R02

R03

R04

R W M •••

R W M •••

R W M •••

R W M •••

R(n-1) R W M •••

When a write occurs to Register
R4, a hardware exception is raised.

This illustrates how the permission
bits provide for real-time hardware
level debugging.

Register Permission Bits

Approved for public release; distribution is unlimited.
41

The OSFA offers features that would help develop a future level 0 hypervisor. The
cache bank and permission bit hierarchy offers hardware-level features needed to
create a sublevel 1 hypervisor. For interrupt driven threads, zero overhead context
switching is possible with the current OSFA architecture. More hardware features
are required to come closer to a level 0 hypervisor.

6.7 Architecture Issues

Proprietary OS uses digitally signed drivers to reduce the chances of malware
having easy access to protected OS resources. The OSFA has more complex
requirements for digitally signed files. There are computer security trade-offs
between a unified external memory (combining instructions, register, data, and
pipeline state cache banks) and separate internal cache memories. The same issues
are present with unified external mass storage and separate mass storage for the 4
memory pipelines. Figure 33 presents an OSFA system based on Figs. 22–32.

Approved for public release; distribution is unlimited.
42

Microprocessor Execution Pipeline

External

Cache and

Memory

Leve1,

 Level 2

Caching

DMA

Controller

Cache Bank

Controller

Cache

Banks

External

Cache and

Memory

Leve1,

 Level 2

Caching

DMA

Controller

Cache Bank

Controller

Cache

Banks

External

Cache and

Memory

Leve1,

 Level 2

Caching

DMA

Controller

Cache Bank

Controller

Cache

Banks

External

Cache and

Memory

Leve1,

 Level 2

Caching

DMA

Controller

Cache Bank

Controller

Cache

Banks

Secure Microkernel

Boot Drivers

Cache Bank Management

Layer 0
(Trusted)

Certificate

Management

Standard OS

DLL File APIs OS Srv

Drivers

Layers

1, 2

 Application

 Software
Layer 3

(Untrusted)

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

B
u

s
s
e
s

Cache

Banks

Cache

Banks

Cache

Banks

Cache

Banks

Cache

Banks

Cache

Banks

Cache

Banks

Cache

Banks

Cache Bank

Hierarchy

Fig. 33 OS friendly microprocessor architecture: software and hardware hierarchy

7. Conclusion

We have presented an introduction to the hardware and software hierarchy for the
OSFA and described hardware-level computer security features. The cache bank
memory pipeline architecture and permission bits provide features to balance the
complexities of hardware, software, and computer security.

Approved for public release; distribution is unlimited.
43

8. References

1. Jungwirth P, La Fratta P, inventors; US Army is assignee. OS Friendly
Microprocessor Architecture. United States Patent 9122610. 2015 Sep.

2. Jungwirth P, inventor; US Army is assignee. OS Friendly Microprocessor
Architecture: Hardware Level Computer Security. US Provisional Patent
Application. 2016 Apr.

3. Weaver A, Newell N. In-band single frequency signaling. Bell System
Technical Journal. November 1954;33(6):1309–1330. https://archive.org
/details/bstj33-6-1309.

4. Breen C, Dahlbom C. Signaling systems for control of telephone switching.
Bell System Technical Journal. November 1960;39(6):1381–1444.
https://archive.org/details/bstj39-6-1381.

5. Wikipedia: Blue box. [place unknown]: Wikipedia [updated 2016 Sep 2;
accessed 2014 June]. http://en.wikipedia.org/wiki/Blue_box.

6. Computer History Museum. Artifact details: Wozniak’s blue box. Mountain
View (CA): Computer History Museum [updated 2017; accessed 2014 Dec].
http://www.computerhistory.org/collections/catalog/102713487.

7. Wikipedia: Caller ID spoofing. [place unknown]: Wikipedia [updated 2016
Nov 13; accessed 2014 Dec]. http://en.wikipedia.org/wiki/Caller_ID_spoofing.

8. FCC: Caller ID spoofing. Washington (DC): Federal Communications
Commission [accessed 2014 Dec 29]. http://www.fcc.gov/guides/caller-id-
and-spoofing.

9. Vangal S, Anders MA, Borkar N, Seligman E, Govindarajulu V, Erraguntla V,
Wilson H, Pangal A, Veeramachaneni V, Tschanz JW et al. 5-GHz 32-bit
integer execution core in 130-nm dual-VT CMOS. Solid-State Circuits. Nov.
2002;37(11):1421–1432.

10. Mudge T. Power: a first-class design arch constraint. Computer. Apr.
2001;34(4):52–8.

11. Fillpot M. Understanding Linux file permissions. San Francisco (CA):
Linux.com; 2010 May 18 [accessed 2014 Dec 8]. http://www.linux.com/learn
/tutorials/309527-understanding-linux-file-permissions.

12. Bacon J. Getting to grips with Linux permissions: do it with permission. Linux
Magazine. 2000 Oct; 1:72–74. http://www.linux-magazine.com/Issues/2010
/120/Beginners-File-Control.

https://archive.org/

http://en.wikipedia.org/wiki/Caller_ID_spoof

http://www.linux.com/learn

http://www.linux-magazine.com/Issues/2010

Approved for public release; distribution is unlimited.
44

13. Wikipedia: File system permissions. [place unknown]: Wikipedia [2017
Jan 31; accessed 2014 Feb]

 https://en.wikipedia.org/wiki/File_system_permissions.

14. Cowan C, Wagle P, Pu C, Beattie S, Walpole J. Buffer overflows: attacks and
defenses for the vulnerability of the decade. SANS 2000 (System
Administration, Networking, and Security) Conference; 2000 Mar 21–28;
Orlando, FL. p. 1–11.

 http://www.cs.utexas.edu/~shmat/courses/cs380s_fall09/cowan.pdf.

15. lsap.org. Linux Security Audit Project. c2017 [accessed 2017 Mar 24]
http://lsap.org/.

16. Arcangeli A. xterm exploit. Bugtraq mailinglist. 1998 May 8. http://geek-
girl.com/bugtraq/, .

17. Morgan D. Ethernet basics. Dallas (TX): Southern Methodist University; 2009
[accessed 2017 Mar 28]. http://homepage.smc.edu/morgan_david/linux/n-
protocol-09-ethernet.pdf.

18. Lynx Software Technologies. The rise of the type zero hypervisor. San Jose
(CA): Lynx Software Technologies; 2012 July 18 [accessed 2017 Mar 28].
http://www.lynx.com/the-rise-of-the-type-zero-hypervisor.

19. Wikipedia: Hypervisor. [place unknown]: Wikipedia [2017 Feb 6; accessed
January 2015]. http://en.wikipedia.org/wiki/Hypervisor.

20. Beaver S, Haletky E. Type 0 hypervisor - fact or fiction. Austin (TX): The
Virtualization Practice; [accessed 2012 July 26]. http://www.virtualization
practice.com/type-0-hypervisor-fact-or-fiction-17159/.

https://en.wikipedia.org/wiki/File_system

http://www.cs.utexas.edu/%7Eshmat/courses/cs380s_fall09/cowan.pdf

http://www.virtualizationpractice.com/type-0-hypervisor-fact-or-fiction-17159/

http://www.virtualizationpractice.com/type-0-hypervisor-fact-or-fiction-17159/

Approved for public release; distribution is unlimited.
45

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

CPU central processing unit

I/O input/output

ID identification

IRegIO Index_Register_I/O

OS operating system

OSFA Operating System Friendly Microprocessor Architecture

PID process identification

RFS Register File Set

USB Universal Serial Bus

		AD1032088.pdf

		List of Figures

		List of Tables

		Preface

		Acknowledgment

		1. Introduction

		1.1 OS Friendly Microprocessor Architecture Permission Bits

		1.2 Bus Architectures

		2. In-Band Signaling, the Open Front Door

		3. OS Friendly Microprocessor Architecture

		3.1 DMA/Cache Bank Controller Architecture

		3.2 Context Switch

		3.3 Cache Bank Architecture

		3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank

		3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State Cache Bank

		3.4 OS Friendly Microprocessor Architecture Performance Modeling

		3.4.1 Conventional and OS Friendly Microprocessor Architecture Context Switch Modeling

		3.4.2 Conventional Architecture Context Switch Modeling

		3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 1)

		3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 2)

		4. OS Friendly Microprocessor Architecture Hardware Computer Security

		4.1 Cache Bank and Memory Cell Permission Bits

		4.2 Instruction Permission Bits

		4.3 Library Call Permissions

		5. OS Friendly Microprocessor Architecture Access Layers

		5.1 Instruction, Data, Register, and Pipeline State Memory Partitions

		5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications

		5.3 I/O Implementation

		5.4 Exception Handling

		5.5 Practical Permission Bit Architecture

		5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache Bank Architecture

		5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit Limitations

		5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit Cache Bank Architecture

		5.7 Microkernel, OS, and Application Cache Banks Organization

		5.8 Process Level Cache Bank Operations

		5.9 Cache Bank I/O Example

		6. Computer Security Examples

		6.1 Buffer Overflow

		6.2 Data Execution Exploitation

		6.3 “Low-Level Driver” Protection

		6.4 Control Information Protection

		6.5 Debugging Traps

		6.6 Hardware Features for Hypervisor

		6.7 Architecture Issues

		7. Conclusion

		8. References

		List of Symbols, Abbreviations, and Acronyms

		UM Presentation 28 Feb 2020 (7) -- AA Report.pdf

		Slide Number 1

		Presentation Summary

		Presentation OUTLINE

		Trusted Computing Base (TCB)

		TCB Challenge

		DARPA Sponsored research

		INSECURE PIPELINE EXECUTION

		Hardware Isolation provides security

		Tagged architectures

		Proposed More Secure Pipeline Execution

		Control flow integrity

		Control flow integrity

		Embedded control flow codes

		RISC-V Program

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		

		Control flow GRAPH

		Hardware state machines

		Memory page types

		Sieve of Eratosthenes MEMORY MAP

		EXECUTE STATE MACHINE MONITOR

		State Machine Monitor Simulation

		State Machine Monitor Simulation RESULTS

		SIMULATION EXECUTION

		Branch instruction violation

		Valid MEMORY PAGE Access

		MEMORY PAGE access VIOLATION

		FUTURE RESEARCH WORK

		Slide Number 32

		Additional references

		Additional references

		Additional references

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// AA Sim (2.2).cpp : This file contains the 'main' function. Program execution begins and ends there.

// RISCV simple simulator

#include "rv_base.h"

#include "rv_imm.h"
#include "rv_decode.h"

#include "rv_ldstr.h"
#include "rv_jal.h"
#include "rv_branch.h"
#include "rv_al.h"
#include "rv_fence.h"
#include "rv_call.h"
#include "rv_csr.h"

// int instr_exe(int32_t instr, int32_t& PC, mst_t & mem, reg_t& rf, csrmem_t& csr)

int instr_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf, csrmem_t& csr)
{

char opcode = 0;
char rd = 0, rs1 = 0, rs2 = 0;
// char code3bit = 0;
int32_t pctemp = 0;

int32_t imm = 0;
int32_t addr = 0;

int32_t sign_ext_byte = 0;

int32_t word_addr = PC >> 2;

int32_t instr = mems[word_addr].mem;

op_decode(instr, opcode);

Disclaimer:

• Aberdeen Architecture Limited Experimental Research and Development Prototype.
• Code is provided AS IS.

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

switch (opcode)
{

// control flow check added
case JAL_OPCODE:

printf("JAL opcode \n");
JAL_exe(prev_PC, PC, mems, rf); // JAL_OPCODE = 0x6f; // Jump and Link
break;

// control flow check added
case JALR_OPCODE: // JALR_OPCODE = 0x67; // Jump and Link Register

JALR_exe(prev_PC, PC, mems, rf);
break;

// ***** Load Unsigned Immediate Instructions ***** //

case LUI_OPCODE: // imm[31:12] rd[11:7] [011 0111] = 0x37(6:0) LUI

LUI_exe(prev_PC, PC, mems, rf); // LUI_OPCODE = 0x37 Load upper immediate
break;

case AUIPC_OPCODE: // imm[31:12] rd[11:7] [001 0111] = 0x37(6:0) AUIPC

AUIPC_exe(prev_PC, PC, mems, rf); // AUIPC_OPCODE = 0x17; // Add upper immediate to PC
break;

case LOAD_OPCODE:

LOAD_exe(prev_PC, PC, mems, rf); //const char LOAD_OPCODE = 0x03;
break;

case BRANCH_OPCODE:

Branch_exe(prev_PC, PC, mems, rf);
break;

case STORE_OPCODE:
Store_exe(prev_PC, PC, mems, rf);
break;

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

case AL_IMM_OPCODE:

AL_IMM_exe(prev_PC, PC, mems, rf);
break;

case AL_OPCODE:
AL_exe(prev_PC, PC, mems, rf);
break;

case FENCE_OPCODE:
Fence_exe(prev_PC, PC, mems, rf);
break;

case CALL_OPCODE:
CALL_exe(prev_PC, PC, mems, rf);
break;

case CSR_OPCODE:
CSRRW_exe(prev_PC, PC, mems, rf, csr);
break;

default:
printf("Error illegal opcode \n\n");
break;

}

rf[0] = 0; // clear register r0
return 0;

}

int main()
{

csrmem_t csr;
mem_st mems;

reg_t regfile;
int32_t PCR = 0;
int32_t prev_PCR = 0;
int32_t word_addr = 0;
int32_t instr_addr = 0;

4
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

char reg = 0;
char rs2 = 0;
char rs1 = 0;
char rd = 0;

mts_t mts_mem;

init_rf(regfile);
print_rf(regfile);

// init_mem(mems);
init_mts(mts_mem);

mts_t mts;
init_mts(mts);

/*

// Sieve of Eratosthenes
// uses packed bit array to store prime / not prime result
// pb[] = packed bit array, word aligned, addr = 0x100
// J. Ross and P. Jungwirth, Army Research Lab
// October 2019
// reference: https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada

#ifndef __riscv
#include <stdio.h>
#endif

#define R 37
#define LAST (R * R)
#define LWORD (LAST / 32)
int pb[LWORD + 1]; // = { [0 ... LWORD] = 0xffffffff };

int main()
{

int base = 2; int pbit = 0; int cnt = 0;
int base_bit = 0; int base_word = 0; int base_shift = 0;

5
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

int cnt_word = 0; int cnt_shift = 0; int cnt_mask = 0; int bit_mask = 0;

for (int i = 0; i < LWORD + 1; i++)
 pb[i] = 0xffffffff;

while (base < R)
{
 base_word = base >> 5;
 base_shift = base & 0x1f;
 base_bit = (pb[base_word] >> base_shift) & 1;

 if (base_bit)
 {

 cnt = base << 1; // base + base;

 while (cnt < LAST)
 {

 cnt_word = cnt >> 5;
 cnt_shift = cnt & 0x1f;
 cnt_mask = (1 << cnt_shift);
 bit_mask = ~cnt_mask;

 pbit = pb[cnt_word] & bit_mask;
 pb[cnt_word] = pbit;

 cnt = cnt + base;
 }

 }
 base = base + 1;
}

#ifndef __riscv
int bit = 0; int word = 0; int shift = 0;

for (int i = 1; i < LAST; i++)
{
 word = i >> 5;
 shift = i & 0x1f;

 bit = (pb[word] >> shift) & 1;

6
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

 if (bit == 1)
 printf("Prime Number = %d \n", i);

}
#endif

}

*/

// RISCV I32 Assembly Language for Sieve of Eratosthenes

mts[0x00].mem = 0;
mts[0x00].prev_instr_tag = 0;
mts[0x00].exe_tag = 0;
mts[0x00].exe_type_tag = 0;
mts[0x00].next_instr_tag = 0;

mts[0x00].link_tag = 1;

mts[0x01].mem = 0;
mts[0x01].prev_instr_tag = REC_NEXT;
mts[0x01].exe_tag = NEXT;
mts[0x01].exe_type_tag = IMMEDIATE;
mts[0x01].next_instr_tag = TO_NEXT;

mts[0x01].link_tag = 1;

mts[0x02].mem = 0x00200613; //<main> li a2, 2 // base = a2
mts[0x02].prev_instr_tag = REC_NEXT;
mts[0x02].exe_tag = NEXT;
mts[0x02].exe_type_tag = IMMEDIATE;
mts[0x02].next_instr_tag = TO_NEXT;

mts[0x02].link_tag = 1;

mts[0x03].mem = 0x10000513; // li a0, 0x100 // pb[0] = 0x100
mts[0x03].prev_instr_tag = REC_NEXT;
mts[0x03].exe_tag = NEXT;
mts[0x03].exe_type_tag = IMMEDIATE;
mts[0x03].next_instr_tag = TO_NEXT;

mts[0x03].link_tag = 1;

7
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

mts[0x04].mem = 0x00100893; // li a7, 1 // a7 = 1
mts[0x04].prev_instr_tag = REC_NEXT;
mts[0x04].exe_tag = NEXT;
mts[0x04].exe_type_tag = IMMEDIATE;
mts[0x04].next_instr_tag = TO_NEXT;

mts[0x04].link_tag = 1;

mts[0x05].mem = 0x06300813; // li a6, 63 // LAST = R^2 1 = 100 1 = 0x63
mts[0x05].prev_instr_tag = REC_NEXT;
mts[0x05].exe_tag = NEXT;
mts[0x05].exe_type_tag = IMMEDIATE;
mts[0x05].next_instr_tag = TO_NEXT;

mts[0x05].link_tag = 1;

mts[0x06].mem = 0x00a00313; // li t1, 8 // t1 = R = 10
mts[0x06].prev_instr_tag = REC_NEXT;
mts[0x06].exe_tag = NEXT;
mts[0x06].exe_type_tag = IMMEDIATE;
mts[0x06].next_instr_tag = TO_NEXT;

mts[0x06].link_tag = 1;

mts[0x07].mem = 0x00c0006f; // j 28 < L1 > // jump to <L1>
mts[0x07].prev_instr_tag = REC_NEXT;
mts[0x07].exe_tag = JUMP;
mts[0x07].exe_type_tag = JUMP;
mts[0x07].next_instr_tag = JUMP_TO;

mts[0x07].link_tag = 16;

mts[0x08].mem = 0x00160613; //<L3> addi a2, a2, 1 // a2 = base = base + 1
mts[0x08].prev_instr_tag = BRANCH_REC;
mts[0x08].exe_tag = NEXT;
mts[0x08].exe_type_tag = IMMEDIATE;
mts[0x08].next_instr_tag = TO_NEXT;

mts[0x08].link_tag = 2;

8
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

mts[0x09].mem = 0x04660a63; // beq a2, t1, 78 <L2> // if base = R then <L2> Done //0x4660C63
mts[0x09].prev_instr_tag = REC_NEXT;
mts[0x09].exe_tag = BRANCH; // CHANGED TAG
mts[0x09].exe_type_tag = 0;
mts[0x09].next_instr_tag = BRANCH_TO | TO_NEXT;

mts[0x09].link_tag = 32;

mts[0x0a].mem = 0x40565793; //<L1> srai a5, a2, 0x5 // a5 = word offset
mts[0x0a].prev_instr_tag = JUMP_REC | BRANCH_REC | REC_NEXT;
mts[0x0a].exe_tag = NEXT;
mts[0x0a].exe_type_tag = REGISTER;
mts[0x0a].next_instr_tag = TO_NEXT;

mts[0x0a].link_tag = 7;

mts[0x0b].mem = 0x00279793; // slli a5, a5, 0x2 // a5 = byte offset [note 1]
mts[0x0b].prev_instr_tag = REC_NEXT;
mts[0x0b].exe_tag = NEXT;
mts[0x0b].exe_type_tag = IMMEDIATE;
mts[0x0b].next_instr_tag = TO_NEXT;

mts[0x0b].link_tag = 1;

mts[0x0c].mem = 0x00f507b3; // add a5, a0, a5 // a5 = pb[0] + byte offset
mts[0x0c].prev_instr_tag = REC_NEXT;
mts[0x0c].exe_tag = NEXT;
mts[0x0c].exe_type_tag = REGISTER;
mts[0x0c].next_instr_tag = TO_NEXT;

mts[0x0c].link_tag = 1;

mts[0x0d].mem = 0x0007a783; // lw a5, 0(a5) // a5 = LW(addr = a5)
mts[0x0d].prev_instr_tag = REC_NEXT;
mts[0x0d].exe_tag = NEXT;
mts[0x0d].exe_type_tag = LOAD;
mts[0x0d].next_instr_tag = TO_NEXT;

mts[0x0d].link_tag = 1;

9
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

mts[0x0e].mem = 0x40c7d7b3; // sra a5, a5, a2 // a5 = a5 >> a2 [note 2]
mts[0x0e].prev_instr_tag = REC_NEXT;
mts[0x0e].exe_tag = NEXT;
mts[0x0e].exe_type_tag = REGISTER;
mts[0x0e].next_instr_tag = TO_NEXT;

mts[0x0e].link_tag = 1;

mts[0x0f].mem = 0x0017f793; // andi a5, a5, 1 // a5 = pb[word, bit number]
mts[0x0f].prev_instr_tag = REC_NEXT;
mts[0x0f].exe_tag = NEXT;
mts[0x0f].exe_type_tag = IMMEDIATE;
mts[0x0f].next_instr_tag = TO_NEXT;

mts[0x0f].link_tag = 1;

mts[0x10].mem = 0xfe0780e3; // beqz a5, 20 <L3> // if a5 = bit = 0 the <L3>
mts[0x10].prev_instr_tag = REC_NEXT;
mts[0x10].exe_tag = BRANCH;
mts[0x10].exe_type_tag = BRANCH;
mts[0x10].next_instr_tag = TO_NEXT | BRANCH_TO;

mts[0x10].link_tag = 32;

mts[0x11].mem = 0x00161693; // slli a3, a2, 0x1 // a3 = cnt = base + base
mts[0x11].prev_instr_tag = REC_NEXT;
mts[0x11].exe_tag = NEXT;
mts[0x11].exe_type_tag = IMMEDIATE;
mts[0x11].next_instr_tag = TO_NEXT;

mts[0x11].link_tag = 2;

mts[0x12].mem = 0x4056d793; //<L4> srai a5, a3, 0x5 // a5 = word offset from a3
mts[0x12].prev_instr_tag = REC_NEXT | BRANCH_REC;
mts[0x12].exe_tag = NEXT;
mts[0x12].exe_type_tag = IMMEDIATE;
mts[0x12].next_instr_tag = TO_NEXT;

10
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

mts[0x12].link_tag = 4;

mts[0x13].mem = 0x00279793; // slli a5, a5, 0x2 // a5 = byte offset
mts[0x13].prev_instr_tag = REC_NEXT;
mts[0x13].exe_tag = NEXT;
mts[0x13].exe_type_tag = IMMEDIATE;
mts[0x13].next_instr_tag = TO_NEXT;

mts[0x13].link_tag = 1;

mts[0x14].mem = 0x00f507b3; // add a5, a0, a5 // a5 = pb[0] + byte offset
mts[0x14].prev_instr_tag = REC_NEXT;
mts[0x14].exe_tag = NEXT;
mts[0x14].exe_type_tag = REGISTER;
mts[0x14].next_instr_tag = TO_NEXT;

mts[0x14].link_tag = 1;

mts[0x15].mem = 0x0007a583; // lw a1, 0(a5) // a1 = LW(addr = a5 + 0)
mts[0x15].prev_instr_tag = REC_NEXT;
mts[0x15].exe_tag = NEXT;
mts[0x15].exe_type_tag = LOAD;
mts[0x15].next_instr_tag = TO_NEXT;

mts[0x15].link_tag = 1;

mts[0x16].mem = 0x00d89733; // sll a4, a7, a3 // a4 = 1 << cnt
mts[0x16].prev_instr_tag = REC_NEXT;
mts[0x16].exe_tag = NEXT;
mts[0x16].exe_type_tag = REGISTER;
mts[0x16].next_instr_tag = TO_NEXT;

mts[0x16].link_tag = 1;

mts[0x17].mem = 0xfff74713; // not a4, a4 // a4 = 1•••0•••11
mts[0x17].prev_instr_tag = REC_NEXT;
mts[0x17].exe_tag = NEXT;
mts[0x17].exe_type_tag = IMMEDIATE;
mts[0x17].next_instr_tag = TO_NEXT;

11
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

mts[0x17].link_tag = 1;

mts[0x18].mem = 0x00b77733; // and a4, a4, a1 // clear bit;
mts[0x18].prev_instr_tag = REC_NEXT;
mts[0x18].exe_tag = NEXT;
mts[0x18].exe_type_tag = REGISTER;
mts[0x18].next_instr_tag = TO_NEXT;

mts[0x18].link_tag = 1;

mts[0x19].mem = 0x00e7a023; // sw a4, 0(a5) // update word
mts[0x19].prev_instr_tag = REC_NEXT;
mts[0x19].exe_tag = NEXT;
mts[0x19].exe_type_tag = STORE;
mts[0x19].next_instr_tag = TO_NEXT;

mts[0x19].link_tag = 1;

mts[0x1a].mem = 0x00c686b3; // add a3, a3, a2 // cnt = cnt + base
mts[0x1a].prev_instr_tag = REC_NEXT;
mts[0x1a].exe_tag = NEXT;
mts[0x1a].exe_type_tag = REGISTER;
mts[0x1a].next_instr_tag = TO_NEXT;

mts[0x1a].link_tag = 1;

mts[0x1b].mem = 0xfcd85ee3; // ble a3, a6, 48 <L4> // if less then <L4>
mts[0x1b].prev_instr_tag = REC_NEXT;
mts[0x1b].exe_tag = BRANCH;
mts[0x1b].exe_type_tag = BRANCH;
mts[0x1b].next_instr_tag = TO_NEXT | BRANCH_TO;

mts[0x1b].link_tag = 32;

mts[0x1c].mem = 0x00160613; // addi a2, a2, 1 // base = base + 1
mts[0x1c].prev_instr_tag = REC_NEXT;
mts[0x1c].exe_tag = NEXT;
mts[0x1c].exe_type_tag = IMMEDIATE;
mts[0x1c].next_instr_tag = TO_NEXT;

12
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

mts[0x1c].link_tag = 2;

mts[0x1d].mem = 0xfa661ae3; // bne a2, t1, 28 <L1> // if base != R then <L1>
mts[0x1d].prev_instr_tag = REC_NEXT;
mts[0x1d].exe_tag = BRANCH;
mts[0x1d].exe_type_tag = BRANCH;
mts[0x1d].next_instr_tag = TO_NEXT | BRANCH_TO;

mts[0x1d].link_tag = 32;

mts[0x1e].mem = 0x00000513; //<L2> li a0, 0 // clear a0,
mts[0x1e].prev_instr_tag = REC_NEXT;
mts[0x1e].exe_tag = NEXT;
mts[0x1e].exe_type_tag = IMMEDIATE;
mts[0x1e].next_instr_tag = TO_NEXT;

mts[0x1e].link_tag = 4;

mts[0x1f].mem = 0x00;

mts[0x20].mem = 0x00;

for (int i = 0x40; i < MAX_MEM; i = i++)
mts[i].mem = 0xffffffff;

// print_mem(mem);

init_csrmem(csr);

PCR = 0x08; // program start address
prev_PCR = PCR 4;

printf(" sim start \n\n");

while (PCR <= 0x78)
{

printf("PCR = %x Byte Address \n", PCR);
instr_exe(prev_PCR, PCR, mts, regfile, csr);

13
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

}

// printf("\nPC Register = 0x%x \n", PCR);

// print_rf(regfile);

// print_mem(mem);

// print_mts(mts);

// print out prime numbers
int word = 0;
int shift = 0;
int bit = 0;
int bitnum = 0;

for (bitnum = 1; bitnum <= 99; bitnum++)
{

word = (bitnum >> 5) + 0x40;
shift = bitnum & 0x1f;

int bit = (mts[word].mem >> bitnum) & 1;

if (bit == 1)
printf("Prime Number = %d \n", bitnum);

}

return 0;

}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"

#include "rv_imm.h"
#include "rv_decode.h"

#include "rv_chk_link.h"

//**
//***** Arithmetic and Logic Instructions *****//
const char AL_IMM_OPCODE = 0x13; // OPCode for Arithmetic and Logic Immediate Instructions

// Arithmetic and Logic Immediate Instructions Format
// imm[11:0](31:20) rs1(19:15) 000(14:12) rd(11:7) [001 0011]=0x13(6:0) ADDI
// imm[11:0](31:20) rs1(19:15) 010(14:12) rd(11:7) [001 0011]=0x13(6:0) SLTI
// imm[11:0](31:20) rs1(19:15) 011(14:12) rd(11:7) [001 0011]=0x13(6:0) SLTIU
// imm[11:0](31:20) rs1(19:15) 100(14:12) rd(11:7) [001 0011]=0x13(6:0) XORI
// imm[11:0](31:20) rs1(19:15) 110(14:12) rd(11:7) [001 0011]=0x13(6:0) ORI
// imm[11:0](31:20) rs1(19:15) 111(14:12) rd(11:7) [001 0011]=0x13(6:0) ANDI

// Arithmetic and Logic Immediate FUNCTION CODES
const char ADDI_CODE = 0x00; // Add Immediate
const char SLTI_CODE = 0x02; // Set if less than (signed) Immediate
const char SLTIU_CODE = 0x03; // Set if less than Immediate (Unsigned)
const char XORI_CODE = 0x04; // Exclusive OR immediate
const char ORI_CODE = 0x06; // OR immediate
const char ANDI_CODE = 0x07; // And Immediate

// Logical and Arithmetic Shift Instructions Format (shamt = shift amount in bits 0 .. 31)
// [000 0000]=0x00(31:25) shamt(24:20) rs1(19:15) [001](14:12) rd(11:7) [001 0011]=0x13(6:0) SLLI
// [000 0000]=0x00(31:25) shamt(24:20) rs1(19:15) [101](14:12) rd(11:7) [001 0011]=0x13(6:0) SRLI
// [010 0000]=0x20(31:25) shamt(24:20) rs1(19:15) [101](14:12) rd(11:7) [001 0011]=0x13(6:0) SRAI

// Logical and Arithmetic Shift FUNCTION CODES
const char SLLI_CODE = 0x01; // Shift left logical immediate
const char SRLI_CODE = 0x05; // shift right logical immediate (*** see sign flags ***)
const char SRAI_CODE = 0x05; // shift right arithmetic immediate (*** see sign flags ***)

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

const char AL_OPCODE = 0x33; // OPCodes for Arithmetic and Logic Instructions
// Arithmetic and Logic Instructions
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 000(14:12) rd(11:7) [011 0011]=0x33(6:0) ADD
// [010 0000]=0x20(31:25) rs2(24:20) rs1(19:15) 000(14:12) rd(11:7) [011 0011]=0x33(6:0) SUB
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 001(14:12) rd(11:7) [011 0011]=0x33(6:0) SLL
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 010(14:12) rd(11:7) [011 0011]=0x33(6:0) SLT
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 011(14:12) rd(11:7) [011 0011]=0x33(6:0) SLTU
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 100(14:12) rd(11:7) [011 0011]=0x33(6:0) XOR
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 101(14:12) rd(11:7) [011 0011]=0x33(6:0) SRL
// [010 0000]=0x20(31:25) rs2(24:20) rs1(19:15) 101(14:12) rd(11:7) [011 0011]=0x33(6:0) SRA
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 110(14:12) rd(11:7) [011 0011]=0x33(6:0) OR
// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 111(14:12) rd(11:7) [011 0011]=0x33(6:0) AND

// Logical and Arithmetic FUNCTION CODES
const char ADD_CODE = 0x00; // Add (*** see sign flag ***)
const char SUB_CODE = 0x00; // Subtract (*** see sign flag ***)
const char SLL_CODE = 0x01; // Shift left logical
const char SLT_CODE = 0x02; // Set if less than
const char SLTU_CODE = 0x03; // Set if less than unsigned
const char XOR_CODE = 0x04; // Exclusive OR
const char SRL_CODE = 0x05; // Shift right logical
const char SRA_CODE = 0x05; // Shift right arithmetic (*** see sign flag ***)
const char OR_CODE = 0x06; // OR
const char AND_CODE = 0x07; // AND

// Sign Flags SIGN Flags For Logical and Arithmetic Shift
const char SIGN_FLAG = 0x20; // [000 0000]=0x00(31:25)
const char USIGN_FLAG = 0x00; // [010 0000]=0x20(31:25)

//
int AL_flag(uint32_t instr, char& flag)
{

flag = 0x00;
uint32_t temp = instr & 0x40000000;
flag = char(temp >> 25);
return 0;

}
// END Arithmetic and Logic Instructions

int AL_IMM_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

printf("opcode = AL_IMM_OPCODE \n\n");

int32_t AL_IMM_imm = 0;
int32_t temp = 0;
uint32_t temp_u = 0;
int32_t sign_bit = 0x80000000;

int64_t l_temp = 0;
int64_t rv = 0;
int64_t imm = 0;
int32_t shamt = 0;

char rd = 0;
char opcode = 0;
char AL_IMM_code = 0;
char rs1 = 0;
char flag = 0;
char bits = 0;

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

 mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Checked linked list instructions. //

int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

printf("Check Link = %d \n", instr_link_valid);

4
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

printf("opcode = AL_IMM_exe \n\n");

if (instr_link_valid)
{

I_type(instr, AL_IMM_imm, rs1, AL_IMM_code, rd, opcode);

// ******************** Need to correct shift code *********************
//
// Shifts by a constant are encoded as a specialization of the Itype format. The operand to be shifted
// is in rs1, and the shift amount is encoded in the lower 5 bits of the I immediate ♀eld.The right
// shift type is encoded in a high bit of the I immediate.SLLI is a logical left shift(zeros are shifted
// into the lower bits); SRLI is a logical right shift(zeros are shifted into the upper bits);and SRAI
// is an arithmetic right shift(the original sign bit is copied into the vacated upper bits).
switch (AL_IMM_code)
{

// Arithmetic and Logic Immediate FUNCTION CODES
case ADDI_CODE: // ADDI_CODE = 0x00; // Add Immediate

rf[rd] = rf[rs1] + AL_IMM_imm;
break;

case SLTI_CODE: // SLTI_CODE = 0x02; // Set if less than (signed) Immediate
rf[rd] = 0;
if (rf[rs1] < AL_IMM_imm)

rf[rd] = 1;
break;

case SLTIU_CODE: // SLTIU_CODE = 0x03; // Set if less than Immediate (Unsigned)

imm = int64_t(AL_IMM_imm); // convert 32 bit integer immediate to 64 bit int
imm = imm & 0x00000000ffffffff; // Remove top 32 bits. Lower 32 bits is "unsigned"

rv = int64_t(rf[rs1]); // convert 32 bit integer immediate to 64 bit int
rv = rv & 0x00000000ffffffff; // Remove top 32 bits. Lower 32 bits is "unsigned"

rf[rd] = 0; // destination register to rd = 0

if (rv < imm)
{

rf[rd] = 1; // if less than, rd = 1

5
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

}
break;

case XORI_CODE: // XORI_CODE = 0x04; // Exclusive OR immediate
rf[rd] = rf[rs1] ^ AL_IMM_imm;
break;

case ORI_CODE: // ORI_CODE = 0x06; // OR immediate
rf[rd] = rf[rs1] | AL_IMM_imm;
break;

case ANDI_CODE: // ANDI_CODE = 0x07; // And Immediate
rf[rd] = rf[rs1] & AL_IMM_imm;
break;

// Register Immediate logical and arithmetic shifts
case SLLI_CODE: // SLLI_CODE = 0x01; // Shift left logical immediate

shamt = AL_IMM_imm & 0x1F; // shift amount (in bits) is found in Function 7 bit field
rf[rd] = rf[rs1] << shamt;
break;

case SRLI_CODE: // SRLI_CODE = 0x05; // shift right logical immediate (*** see sign flags ***)
// SRAI_CODE = 0x05; // shift right arithmetic immediate (*** see sign flags ***)
// same as SRAI_CODE, need to check sign flag field

shamt = AL_IMM_imm & 0x1F; // Number of bits to shift is found in Function 7 bit field
AL_flag(instr, flag); // Arithmetic Logical Shift Flag
switch (flag)
{
case SIGN_FLAG: // SRAI_CODE // SIGN_FLAG = 0x20; // [000 0000]=0x00(31:25)

rf[rd] = rf[rs1] >> shamt;
break;

case USIGN_FLAG: // SRLI_CODE // USIGN_FLAG = 0x00; // [010 0000]=0x20(31:25)
temp_u = uint32_t(rf[rs1]);
temp_u = temp_u >> shamt;
rf[rd] = int32_t(temp_u);
break;

default: // Error SLLI / SRLI instruction code
printf("Error SLLI / SRLI instruction code \n");
break;

6
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

}
break;

default: // switch (AL_IMM_code)
printf("Error Illegal Arithmetic/Logic Function Code \n\n");
break;

}
}
else
{

printf("Arithmetic / Logic Instruction control flow violation. \n");
// exit(0);

}

prev_PC = PC; // added 2/4/20

PC = PC + 4; // increment PC register by 4 bytes (1 word, 32 bits)
return 0;

}

int AL_exe(int32_t& prev_PC, int32_t & PC, mts_t& mems, reg_t rf)
{

// Logical and Arithmetic FUNCTION CODES
// const char ADD_CODE = 0x00; // Add (*** see sign flag ***)
// const char SUB_CODE = 0x00; // Subtract (*** see sign flag ***)
// const char SLL_CODE = 0x01; // Shift left logical
// const char SLT_CODE = 0x02; // Set if less than
// const char SLTU_CODE = 0x03; // Set if less than unsigned
// const char XOR_CODE = 0x04; // Exclusive OR
// const char SRL_CODE = 0x05; // Shift right logical
// const char SRA_CODE = 0x05; // Shift right arithmetic (*** see sign flag ***)
// const char OR_CODE = 0x06; // OR
// const char AND_CODE = 0x07; // AND

 // Sign Flags SIGN Flags For Logical and Arithmetic Shift
// const char SIGN_FLAG = 0x20; // [000 0000]=0x00(31:25)
// const char USIGN_FLAG = 0x00; // [010 0000]=0x20(31:25)

7
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

char opcode = 0;
char reg7_code = 0;
char rs1 = 0;
char rs2 = 0;
char AL_code = 0;
char rd = 0;
int32_t temp = 0;
uint32_t temp_u = 0;
char flag = 0;

int64_t u_rs1 = 0;
int64_t u_rs2 = 0;
int64_t u_temp = 0;

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

printf("opcode = AL_exe \n\n");

if (instr_link_valid)
{

R_type(instr, reg7_code, rs2, rs1, AL_code, rd, opcode);

switch (AL_code) // changed opcode to AL_code
{
case ADD_CODE: // and SUB_CODE

// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 000(14:12) rd(11:7) [011 0011]=0x33(6:0) ADD
// [010 0000]=0x20(31:25) rs2(24:20) rs1(19:15) 000(14:12) rd(11:7) [011 0011]=0x33(6:0) SUB

8
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

// ADD_CODE = 0x00; // Add (*** see sign flag ***)
// SUB_CODE = 0x00; // Subtract (*** see sign flag ***)

switch (reg7_code)
{
case SIGN_FLAG: // SUB_CODE = 0x00; // Subtract (*** see sign flag ***)

rf[rd] = rf[rs1] rf[rs2];
break;

case USIGN_FLAG: // ADD_CODE = 0x00; // Add (*** see sign flag ***)
rf[rd] = rf[rs1] + rf[rs2];
break;

default:
printf("Illegal Sign Flag code for ADD/SUB \n");
break;

}
break; // End_Case ADD_CODE

case SLL_CODE: // SLL_CODE = 0x01; // Shift left logical

rf[rd] = rf[rs1] << rf[rs2];
break; // End_Case SLL_CODE

case SLT_CODE: // const char SLT_CODE = 0x02; // Set if less than

rf[rd] = 0;
if (rf[rs1] < rf[rs2])

rf[rd] = 1;
break; // End_Case SLT_CODE

case SLTU_CODE: // SLTU_CODE = 0x03; // Set if less than unsigned

u_rs1 = int64_t(rf[rs1]);
u_rs1 = u_rs1 & 0x00000000ffffffff; // create 32 bit unsigned int

u_rs2 = int64_t(rf[rs2]);
u_rs2 = u_rs2 & 0x00000000ffffffff; // create 32 bit unsigned int

u_temp = u_rs1 u_rs2;

rf[rd] = 0; // destination register to rd = 0

if (u_temp < 0)

9
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

{
rf[rd] = 1; // if less than, rd = 1

}
break; // End_Case SLTU_CODE

case XOR_CODE: // const char XOR_CODE = 0x04; // Exclusive OR
rf[rd] = rf[rs1] ^ rf[rs2];
break; // End_Case XOR_CODE

// [000 0000]=0x00(31:25) rs2(24:20) rs1(19:15) 101(14:12) rd(11:7) [011 0011]=0x33(6:0) SRL
// [010 0000]=0x20(31:25) rs2(24:20) rs1(19:15) 101(14:12) rd(11:7) [011 0011]=0x33(6:0) SRA
// const char SRL_CODE = 0x05; // Shift right logical (*** see sign flag ***)
// const char SRA_CODE = 0x05; // Shift right arithmetic (*** see sign flag ***)

case SRL_CODE: // const char SRL_CODE = 0x05; // Shift right logical

AL_flag(instr, flag);

switch (flag)

// ********************* Need to Correct Code ***********************

// SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in
// register rs1 by the shift amount held in the lower 5 bits of register rs2.

{
case USIGN_FLAG:

temp_u = uint32_t(rf[rs1]);
rf[rd] = int32_t(temp_u >> rf[rs2]);
break;

case SIGN_FLAG:
rf[rd] = rf[rs1] >> rf[rs2];
break;

default:
printf("Illegal SRL/SRA function code. \n");
break;

}
break; // End_Case SRL_CODE

case OR_CODE: // OR_CODE = 0x06; // OR
rf[rd] = rf[rs1] | rf[rs2];
break; // END_CASE OR_CODE

10
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

case AND_CODE: // AND_CODE = 0x07; // AND
rf[rd] = rf[rs1] & rf[rs2];
break; // END_CASE OR_CODE

default:
printf("Illegal Arithmetic Logic Function Code \n");
break; // END_CASE Default

}

}
else
{

printf("AL control flow violation. \n");
exit(0);

}

prev_PC = PC; // added 2/4/20

PC = PC + 4; // Move PC to next instruction
return 0;

}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h> // use 32 bit integer: uint32_t

char const MAX_REG = 32; // RISCV has 32 registers
uint32_t const MAX_MEM = 0x100; // Memory space for simulation. [0.. MAX_MEM1]
uint32_t const MAX_CSR_MEM = 100; // Control, Status Registor memory space for simulation. [0.. MAX_CSR_MEM 1]

typedef int32_t reg_t[MAX_REG]; // register file type
typedef int32_t mem_t[MAX_MEM]; // maim memory type
typedef int32_t csrmem_t[MAX_CSR_MEM]; // Control and Status Register memory type

int32_t const NEXT = 1; // sequential execution

int32_t const JUMP = 2;
int32_t const JUMP_TO = 4; // jump or branch to instruction
int32_t const JUMP_REC = 8; // JUMP_REC tag receives an instruction with JUMP_TO tag

int32_t const CALL = 16;
int32_t const CALL_TO = 32; // Call subroutine
int32_t const CALL_REC = 64; // Accept Subroutine call

int32_t const RET = 128;
int32_t const RET_TO = 256; // Return from subroutine
int32_t const RET_REC = 512; // Accept return from subroutine

int32_t const ST_BLK = 1024; // Start of Code Block
int32_t const END_BLK = 2*1024; // END of code block

int32_t const LOAD = 4*1024;
int32_t const STORE = 8*1024;
int32_t const REGISTER = 16*1024;
int32_t const IMMEDIATE = 32*1024;

int32_t const BRANCH = 64*1024;
int32_t const BRANCH_TO = 128*1024;
int32_t const BRANCH_REC = 256*10124;

int32_t const TO_NEXT = 512*1024;
int32_t const REC_NEXT = 1024*1024;

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

int32_t const NO_TAG = 0x80000000; // NO_TAG placeholder.

struct mem_st
{

int32_t mem; // instruction word

// added 2/3/2020
int32_t prev_instr_tag; // NEXT_INSTR
int32_t exe_tag; // IMMEDIATE
int32_t exe_type_tag; // 0
int32_t next_instr_tag; // NEXT_INSTR
int32_t link_tag; // instruction linked list connection type tag
//

int32_t state;
int32_t pid;
int32_t page_num;
int32_t page_type;

};

typedef mem_st mts_t[MAX_MEM];

int init_mts(mts_t mem)
{

for (int i = 0; i < MAX_MEM; i++)
{

mem[i].mem = i;

// added 2/3/2020
mem[i].prev_instr_tag = i;
mem[i].exe_tag = i;
mem[i].exe_type_tag = i;
mem[i].next_instr_tag = i;
//

mem[i].state = i;
mem[i].pid = i;

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

mem[i].page_num = i;
mem[i].page_type = i;

}
return 0;

}

int print_mts(mts_t mem)
{

for (int i = 0; i < MAX_MEM; i++)
{

printf(" mem[%d].mem = 0x%x \n", i, mem[i].mem);

printf(" mem[%d].state = %d \n", i, mem[i].state);
printf(" mem[%d].pid = %d \n", i, mem[i].pid);
printf(" mem[%d].page_num = %d \n", i, mem[i].page_num);
printf(" mem[%d].page_type = %d \n \n", i, mem[i].page_type);

}
return 0;

}

// **
// Open File RISCV binary contained in the file mem.txt
// Load RISCV instructions into the memory array mem[]
int init_mem(mem_t& mem)
{

FILE* fpmem; // file pointer to RISCV instruction code file mem.txt

int read_int = 0;
int cnt = 0;

errno_t err = fopen_s(&fpmem, "C:/Users/patrick.w.jungwirth/Documents/2020/RISCVFile/mem.txt", "r");
if (err)

printf_s("File Error. The file was not opened. \n");
else
{

while (!feof(fpmem) && cnt < MAX_MEM)
{

fscanf_s(fpmem, "%x", &read_int);

4
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

mem[cnt] = read_int;
cnt = cnt + 1;

}
fclose(fpmem);

}
return 0;

}
// End. init_mem(mem_t& mem)

int print_mem(mem_t& mem)
{

for (int i = 0; i < MAX_MEM; i++)
printf("memory [0x%x] = 0x%x \n", i, mem[i]);

return 0;
}

int init_csrmem(csrmem_t & csrmem)
{

for (int i = 0; i < MAX_CSR_MEM; i++)
csrmem[i] = 0;

return 0;
}

int print_csrmem(csrmem_t & csrmem)
{

for (int i = 0; i < MAX_CSR_MEM; i++)
printf("CSR memory [%i] = %i \n", i, csrmem[i]);

return 0;
}

int init_rf(reg_t & rf)
{

for (int i = 0; i < MAX_REG; i++)
rf[i] = 0;

return 0;
}

int print_rf(reg_t & rf)
{

for (int i = 0; i < MAX_REG; i++)

5
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

printf("register [%i] = hex %x => dec %i \n", i, rf[i], rf[i]);
return 0;

}

// **
// Get Register Numbers from Instruction Word for bits [24..20], [19..15], [11..7],
//
// **** Get Register Number from bits [24..20] *****//
int reg24_20(uint32_t inst, char& reg)
{

uint32_t mask = 0x1f00000;
uint32_t temp = inst & mask;
temp = temp >> 20;
temp = temp & 0x1f;
reg = char(temp);
return 0;

}
// **** Get Register Number from bits [19..15] *****//
int reg19_15(uint32_t inst, char& reg)
{

uint32_t mask = 0xF8000;
uint32_t temp = inst & mask;
temp = temp >> 15;
temp = temp & 0x1f;
reg = char(temp);
return 0;

}
// **** Get Register Number from bits [11..7] *****//
int reg11_7(uint32_t inst, char& reg)
{

uint32_t mask = 0xf80;
uint32_t temp = inst & mask;
temp = temp >> 7;
temp = temp & 0x1f;
reg = char(temp);
return 0;

}
// Source and Destination Registers
int rs2_reg(uint32_t inst, char& reg)
{

reg24_20(inst, reg);

6
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

return 0;
}
int rs1_reg(uint32_t inst, char& reg)
{

reg19_15(inst, reg);
return 0;

}
int rd_reg(uint32_t inst, char& reg)
{

reg11_7(inst, reg);
return 0;

}
// END Get Register Numbers

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

#include "rv_decode.h"

#include "rv_chk_link.h"

// **
// ***** Branch Instructions *****//
const char BRANCH_OPCODE = 0x63;
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [001]=0x01(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BNE
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [100]=0x04(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BLT
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [101]=0x05(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BGE
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [110]=0x06(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BLTU
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [111]=0x07(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BGEU

// Branch Instructions FUNCTION CODES
const char BEQ_CODE = 0x00; // Branch if equal
const char BNE_CODE = 0x01; // Branch if not equal
const char BLT_CODE = 0x04; // Branch if less than
const char BGE_CODE = 0x05; // Branch if greater than or equal
const char BLTU_CODE = 0x06; // Branch if less than unsigned
const char BGEU_CODE = 0x07; // Branch if greater than unsigned
// END Branch Instructions

int Branch_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t rf)
{

printf("opcode = BRANCH_OPCODE \n\n");

char br_decode = 0;
int32_t br_imm = 0;

char rs2 = 0;
char rs1 = 0;
char br_code = 0;

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

char opcode = 0;

int64_t l_rs1 = 0;
int64_t l_rs2 = 0;
int64_t l_temp = 0;

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

printf("opcode = Branch \n\n");

if (instr_link_valid)
{

// int instr_decode(uint32_t instr, char& instrdecode)
B_type(instr, br_imm, rs2, rs1, br_decode, opcode);

switch (br_decode)
{
case BEQ_CODE: // BEQ_CODE = 0x00; // Branch if equal

prev_PC = PC; // added 2/4/20

if (rf[rs1] == rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;

case BNE_CODE: // BNE_CODE = 0x01; // Branch if not equal

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

// BEQ and BNE take the branch if registers rs1 and rs2
// are equal or unequal respectively.

prev_PC = PC; // added 2/4/20

if (rf[rs1] != rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;

case BLT_CODE: // BLT_CODE = 0x04; // Branch if less than

prev_PC = PC; // added 2/4/20

if (rf[rs1] < rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;

case BGE_CODE: // BGE_CODE = 0x05; // Branch if greater than or equal

prev_PC = PC; // added 2/4/20

if (rf[rs1] >= rf[rs2]) { PC = PC + br_imm; }
else { PC = PC + 4; }
break;

case BLTU_CODE: // BLTU_CODE = 0x06; // Branch if less than unsigned

printf(" rs1 = %x rs2 = %x \n", rf[rs1], rf[rs2]);
l_rs1 = (int64_t)(rf[rs1]);
l_rs2 = (int64_t)(rf[rs2]);

l_rs1 = l_rs1 & 0x00000000ffffffff; // created 32 bit unsigned number
l_rs2 = l_rs2 & 0x00000000ffffffff; // created 32 bit unsigned number

prev_PC = PC; // added 2/4/20

if (l_rs1 < l_rs2)
{

PC = PC + br_imm;
}
else

4
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

{
PC = PC + 4;

}
break;

case BGEU_CODE: // BGEU_CODE = 0x07; // Branch if greater than or equal unsigned

printf(" rs1 = %x rs2 = %x \n", rf[rs1], rf[rs2]);
l_rs1 = (int64_t)(rf[rs1]);
l_rs2 = (int64_t)(rf[rs2]);

l_rs1 = l_rs1 & 0x00000000ffffffff; // created 32 bit unsigned number
l_rs2 = l_rs2 & 0x00000000ffffffff; // created 32 bit unsigned number

prev_PC = PC; // added 2/4/20

if (l_rs1 >= l_rs2)
{

PC = PC + br_imm;
}
else
{

PC = PC + 4;
}
break;

default:
printf("Error illegal branch code \n\n");
break;

}
}
else
{

printf("Branch Control Flow Violation. \n");
exit(0);

}

return 0;

}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

#include "rv_decode.h"

// **
// **** CALL instructions *****//
const char CALL_OPCODE = 0x73;
// [0000 0000 0000](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) ECALL
// [0000 0000 0001](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) EBREAK

// CALL instructions FUNCTION CODES
const char ECALL_CODE = 0x00; // Environment Call
const char EBREAK_CODE = 0x00; // Environment Breakpoint
// Enviroment Call Flags
const char ECALL_FLAG = 0x00; // [0000 0000 0000](31:20)
const char EBREAK_FLAG = 0x01; // [0000 0000 0001](31:20)

int ecall_flag(uint32_t instr, char& flag)
{

uint32_t mask = 0x100000;
uint32_t temp = instr & mask;
temp = temp >> 20;
temp = temp & 0x7f;
flag = char(temp);
return 0;

}
// END CALL instructions

int CALL_exe(int32_t &prev_PC, int32_t PC, mts_t& mems, reg_t rf)
{

//const char CALL_OPCODE = 0x73;
// [0000 0000 0000](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) ECALL
// [0000 0000 0001](31:20) [0 0000](19:15) [000](14:12) [0 0000](11:7) [111 0011](6:0) EBREAK

// CALL instructions FUNCTION CODES
// const char ECALL_CODE = 0x00; // Environment Call
// const char EBREAK_CODE = 0x00; // Environment Breakpoint
// Enviroment Call Flags

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

// const char ECALL_FLAG = 0x00; // [0000 0000 0000](31:20)
// const char EBREAK_FLAG = 0x01; // [0000 0000 0001](31:20)

int32_t imm = 0;
char rd = 0;
char opcode = 0;
char Call_flag = 0;

int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;

U_type(instr, imm, rd, opcode);
ecall_flag(instr, Call_flag);

switch (Call_flag)
{
case ECALL_FLAG:

printf("Print Environment Call Exit \n");
exit(0);
break;

case EBREAK_FLAG:

printf("Print Environment Breakpoint Exit \n");
exit(0);
break;

default:
printf("Call Flag Error \n");

}
return 0;

}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

#include "rv_decode.h"

// ***
// **** Control and Status Register Read and Write *****//
const char CSR_OPCODE = 0x07;
// Control and Status Register Instruction Format
// csr(31:20) rs1(19:15) 001(14:12) rd(11:7) [111 0011](6:0) CSRRW
// csr(31:20) rs1(19:15) 010(14:12) rd(11:7) [111 0011](6:0) CSRRS
// csr(31:20) rs1(19:15) 011(14:12) rd(11:7) [111 0011](6:0) CSRRC
// csr(31:20) zimm(19:15) 101(14:12) rd(11:7) [111 0011](6:0) CSRRWI
// csr(31:20) zimm(19:15) 110(14:12) rd(11:7) [111 0011](6:0) CSRRSI
// csr(31:20) zimm(19:15) 111(14:12) rd(11:7) [111 0011](6:0) CSRRCI

// Control and Status Register FUNCTION CODES
const char CSRRW_CODE = 0x01; // Control and Status Register Read and Write
const char CSRRS_CODE = 0x02; // Control and Status Register Read and Set
const char CSRRC_CODE = 0x03; // Control and Status Register Read and Clear
const char CSRRWI_CODE = 0x05; // Control and Status Register Read and Write Immediate
const char CSRRSI_CODE = 0x06; // Control and Status Register Read and Set Immediate
const char CSRRCI_CODE = 0x07; // Control and Status Register Read and Clear Immediate

// Code status register number
// csr(31:20) rs1(19:15) 001(14:12) rd(11:7) [111 0011](6:0) CSRRW

int csr(uint32_t instr, int32_t& csr_num)
{

U_imm(instr, csr_num);
return 0;

}

2
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

int csr_code(uint32_t instr, int32_t& code)
{

I_imm(instr, code);
return 0;

}

int csr_zimm(uint32_t instr, char& imm)
{

reg19_15(instr, imm);
return 0;

}

int CSRRW_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf, csrmem_t& csrmem)

{
int32_t imm = 0;
char rs1 = 0;
char CSR_code = 0;
char rd = 0;
char opcode = 0;
uint32_t csraddr = 0;
int32_t temp = 0;
char zimm = 0;

int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;

printf("opcode = CSR_OPCODE \n\n");

I_type(instr, imm, rs1, CSR_code, rd, opcode);

3
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

csraddr = uint32_t(imm);
csraddr = csraddr >> 20;

switch (CSR_code)
{
case CSRRW_CODE:

temp = csrmem[csraddr];
csrmem[csraddr] = rf[rs1];
rf[rd] = temp;
break;

case CSRRS_CODE:
temp = csrmem[csraddr];
csrmem[csraddr] = temp | rf[rs1];
rf[rd] = temp;
break;

case CSRRC_CODE:
temp = csrmem[csraddr];
csrmem[csraddr] = temp & !rf[rs1];
rf[rd] = temp;
break;

case CSRRWI_CODE:

csr_zimm(instr, zimm);
csrmem[csraddr] = zimm;
break;

case CSRRSI_CODE:
csr_zimm(instr, zimm);
temp = csrmem[csraddr];
csrmem[csraddr] = temp | zimm;
rf[rd] = temp;

4
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

break;

case CSRRCI_CODE:
csr_zimm(instr, zimm);
temp = csrmem[csraddr];
csrmem[csraddr] = temp & !zimm;
rf[rd] = temp;
break;

default:
printf("Illegal CSR Function Code \n");

}

prev_PC = PC; // added 2/4/20

PC = PC + 4; //advance PC to next instruction

return 0;
}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

// **
// **** OPCode Decode *****//
//
// int instr contains an int representing the RISCV instruction in binary
//
// This function takes an int and returns the lower 6 bits which contains the RISCV operation code
//
// for example for the instruction BEQ we have
//
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
//
// opcode_decode(int instr, int &op) op returns the op code for above BEQ, op = 0x63;

int op_decode(uint32_t instr, char& op)
{

uint32_t mask = 0x7f;
op = char(instr & mask);
return 0;

}
// END OPCode Decode

// **
// **** instruction decode *****//
//
// int instr contains an int representing the RISCV instruction in binary
//
// This function takes an int and returns the instruction field bits 14..12 right shifted to bits 2..0
//
// imm[12 | 10:5](31:25) rs2(24:20) rs1(19:15) [000]=0x00(14:12) imm[4:1 | 11](11:7) [110 0011]=0x63(6:0) BEQ
//
// instr_decode(int inst, int& in) reurns in 0x00 bits [14..14] from above.

int instr_decode(uint32_t instr, char& instrdecode)
{

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

uint32_t mask = 0x7000; // bit mask for bits 14..12 set 0011 1000 0000 0000 = 0x3800
uint32_t temp = instr & mask;
instrdecode = char(temp >> 12); // bit shift bits 14..12 to bits 2..0;
return 0;

}
// END Instruction Decode

int R_code(uint32_t instr, char& code)
{

uint32_t mask31_25 = 0xfe000000;

uint32_t temp = instr & mask31_25;

temp = temp >> 25;

temp = temp & 0x7f;

code = char(temp);

// printf("R_code => code = 0x0%x \n\n", code);

return 0;
}

int R_type(uint32_t instr, char& r_code, char& rs2, char& rs1, char& AL_code, char& rd, char& opcode)
{

rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
rd_reg(instr, rd);

instr_decode(instr, AL_code);
R_code(instr, r_code);
// printf("R_type => r_code = 0x%x \n\n", r_code);
op_decode(instr, opcode);

return 0;
}

int I_type(uint32_t instr, int32_t & imm, char& rs1, char& code3, char& rd, char& opcode)
{

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

I_imm(instr, imm);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
rd_reg(instr, rd);
op_decode(instr, opcode);
return 0;

}

int S_type(uint32_t instr, int32_t & imm, char& rs2, char& rs1, char& code3, char& opcode)
{

S_imm(instr, imm);
rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
op_decode(instr, opcode);

return 0;
}

int B_type(uint32_t instr, int32_t & imm, char& rs2, char& rs1, char& code3, char& opcode)
{

B_imm(instr, imm);
rs2_reg(instr, rs2);
rs1_reg(instr, rs1);
instr_decode(instr, code3);
op_decode(instr, opcode);

return 0;
}

int U_type(uint32_t instr, int32_t & imm, char& rd, char& opcode)
{

U_imm(instr, imm);
rd_reg(instr, rd);
op_decode(instr, opcode);

return 0;
}

int J_type(uint32_t instr, int32_t & imm, char& rd, char& opcode)

4
124
125
126
127
128
129
130
131

{
J_imm(instr, imm);
rd_reg(instr, rd);
op_decode(instr, opcode);

return 0;
}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

#include "rv_decode.h"

// **
// **** Fence instructions *****//
const char FENCE_OPCODE = 0x0f;
// [0000](31:28) pred(27:24) succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I

// Fence instructions FUNCTION CODES
const char FENCE_CODE = 0x00; // Fence Memory and I/O
const char FENCEI_CODE = 0x01; // Fence Instruction Stream
// END Fence instructions

int Fence_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

// const char FENCE_OPCODE = 0x0f;
// [0000](31:28) pred(27:24) succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I

// Fence instructions FUNCTION CODES
// const char FENCE_CODE = 0x00; // Fence Memory and I/O
// const char FENCEI_CODE = 0x01; // Fence Instruction Stream

char opcode = 0;
char fence_code = 0;
char pred = 0;
char succ = 0;

// const char FENCE_OPCODE = 0x0f;
// [0000](31:28) pred(27:24) succ(23:20) [0 0000](19:15) 000(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE
// [0000](31:28) [0000](27:24) [0000](23:20) [0 0000](19:15) 001(14:12) [0 0000](11:7) [000 1111]=0x0f(6:0) FENCE.I

// Fence instructions FUNCTION CODES
// const char FENCE_CODE = 0x00; // Fence Memory and I/O
// const char FENCEI_CODE = 0x01; // Fence Instruction Stream

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;

uint32_t bits31_28 = uint32_t(instr) & 0xf0000000;
uint32_t bits27_24 = uint32_t(instr) & 0x0f000000;
uint32_t bits23_20 = uint32_t(instr) & 0x00f00000;
uint32_t bits19_15 = uint32_t(instr) & 0x000f8000;

char field3 = char(bits31_28 >> 28);
char field2 = char(bits27_24 >> 24);
char field1 = char(bits23_20 >> 20);
char field0 = char(bits19_15 >> 15);

pred = field2;
succ = field1;

if (1)
{

instr_decode(instr, fence_code);

switch (fence_code)
{
case FENCE_CODE: // FENCE_CODE = 0x00

printf("Fence instruction \n");
break;

case FENCEI_CODE: // FENCEI_CODE = 0x01;
printf("Fence.I instruction \n");
break;

default:
printf("Illegal Fence Operation \n");

}
}
else
{

3
83
84
85
86
87
88
89
90
91
92
93
94

printf(" Fence instruction control flow violation. \n");
exit(0);

}

prev_PC = PC; // added 2/4/20

PC = PC + 4;
return 0;

}

1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once
#include "rv_base.h"

// **
// I-immediate field (Figure 2.4)
//
// function int I_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int I_imm(uint32_t instr, int32_t& imm)
{

uint32_t mask31_20 = 0xFFF00000; // mask for bits [31..20]
uint32_t sign_mask = 0x800; // sign bit for [11..0]
uint32_t sign_ext = 0xFFFFF000; // sign extend [11..0] to [31..0]

uint32_t bit31_20 = instr & mask31_20; // get immediate field [11..0] from instruction [31..20]
uint32_t imm11_0 = bit31_20 >> 20; // right shift 20 bits so immediate is in bits [11..0]

uint32_t sign_bit = imm11_0 & sign_mask; // get sign bit set

uint32_t temp = imm11_0;

if (sign_bit) // if sign_bit then sign extend to 32 bits.
{

temp = temp | sign_ext; // extend sign if negative
}

imm = int32_t(temp);

return 0;
}
// -- END I-Immediate Field ------------------------------

// **
// S-immediate field (Figure 2.4)
//

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

// function iint S_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int S_imm(uint32_t instr, int32_t& imm)
{

uint32_t mask31_25 = 0xFE000000; // mask for bits [31..25]
uint32_t mask11_7 = 0x0f80; // mask for bits [11..7]

uint32_t bit31_25 = instr & mask31_25;
uint32_t bit11_7 = instr & mask11_7;
uint32_t sign_bit = 0;
uint32_t sign_ext = 0xFFFFF000; // sign extension for [11..0] to 32 bits

uint32_t imm10_5 = bit31_25 >> 20;
uint32_t imm4_0 = bit11_7 >> 7;

uint32_t temp = imm10_5 | imm4_0; // immediate value without sign extension

sign_bit = temp & 0x800; // get sign bit, b11 = ?

if (sign_bit) // if b11 = 1 then sign extend
{

temp = temp | sign_ext; // extend sign if negative (b11 = 1)
}

imm = int32_t(temp);

return 0;
}
// -- END S-Immediate Field ------------------------------

// **
// B-immediate field (Figure 2.4)
//
// function iint B_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

//

int B_imm(uint32_t instr, int32_t& imm)
{

uint32_t mask31 = 0x80000000;
uint32_t mask30_25 = 0x7E000000;
uint32_t mask11_8 = 0x0f00;
uint32_t mask7 = 0x80;
uint32_t sign_ext = 0xFFFFF000;
// bit0 = 0

uint32_t bit31 = instr & mask31;
uint32_t bit30_25 = instr & mask30_25;
uint32_t bit11_8 = instr & mask11_8;
uint32_t bit7 = instr & mask7;
// bit0 = 0

imm = 0;
uint32_t imm31_12 = 0; // sign for positive number

if (bit31)
{

imm31_12 = sign_ext; // if negative, sign extend to 32 bits
};

uint32_t imm11 = bit7 << 4;
uint32_t imm10_5 = bit30_25 >> 20;
uint32_t imm4_1 = bit11_8 >> 7;
// bit0 = 0
uint32_t temp = imm31_12 | imm11 | imm10_5 | imm4_1;
imm = int32_t(temp);
imm = imm & 0xfffffffe; // make sure b0 = 0

return 0;
}
// -- END B-Immediate Field ------------------------------

// **
// U-immediate field (Figure 2.4)
//

4
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

// function int U_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int U_imm(uint32_t instr, int32_t& imm)
{

uint32_t mask31_12 = 0xFFFFF000;
uint32_t imm31_12 = instr & mask31_12;
imm = int32_t(imm31_12);
return 0;

}
// -- END U-immediate field-------------------------------

// ***
// J-immediate field (Figure 2.4)
//
// function int J_imm(uint32_t instr, uint32_t& imm)
//
// instr = RISC-V I32 instruction
// imm = sign extended (to 32 bits) immediate value
//
int J_imm(uint32_t instr, int32_t& imm)
{

uint32_t mask31 = 0x80000000;
uint32_t mask30_21 = 0x7FE00000;
uint32_t mask20 = 0x100000;
uint32_t mask19_12 = 0xFF000;

uint32_t sign_ext = 0xFFF00000;

uint32_t bit31 = instr & mask31;
uint32_t bit30_21 = instr & mask30_21;
uint32_t bit20 = instr & mask20;
uint32_t bit19_12 = instr & mask19_12;

uint32_t imm31_20 = 0; //sign field for positive number

if (bit31)
{

5
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

imm31_20 = sign_ext; // negative number sign extend
}

uint32_t imm19_12 = bit19_12;

uint32_t imm11 = bit20 >> 9;

uint32_t imm10_1 = bit30_21 >> 20;

uint32_t temp = imm31_20 | imm19_12 | imm11 | imm10_1;

imm = int32_t(temp);

// imm = imm & 0xfffffffe; // bit0 = 0
return 0;

}
// -- END J-immediate field ------------------------------

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#pragma once

#include "rv_base.h"
#include "rv_imm.h"

#include "rv_chk_link.h"

// **
// ***** Jump and Link Instructions *****//
// imm[20 | 10:1 | 11 | 19:12](31:12) rd(11:7) [110 1111] = 0x6f (6:0) JAL
// imm[11:0](31:20) rs1(19:15) 000(14:12) rd(11:7) [110 0111] = 0x67 (6:0) JALR
const char JAL_OPCODE = 0x6f; // Jump and Link
const char JALR_OPCODE = 0x67; // Jump and Link Register

//// imm[11:0](31:20) rs1(19:15) 000(14:12) rd(11:7) [110 0111] = 0x67 (6:0) JALR
int JALR_imm(uint32_t instr, int32_t& immvalue)
{

I_imm(instr, immvalue);
printf("immediate value = %x", immvalue);
return 0;

}
// END Jump and Link Instructions

int JAL_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

2
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

if (instr_link_valid)
{

int32_t imm = 0;
char rd = 0;
char opcode = 0;
printf("opcode = JAL_OPCODE \n\n");
printf("Valid Control Flow Tags for JAL Instruction. \n");

J_type(instr, imm, rd, opcode);

printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);

prev_PC = PC; // added 2/4/20
rf[rd] = PC + 4;
PC = PC + imm;
printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);

}
else
{

printf("JAL Control Flow Error at Word_Addr = %x \n\n", w_addr);
exit(0);

}

return 0;
}

int JALR_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

int32_t imm = 0;
char rd = 0;
char opcode = 0;
char JALR_code = 0;
char rs1 = 0;
int32_t pctemp = 0;

int32_t w_addr = PC >> 2;

3
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

if (instr_link_valid)
{

printf("opcode = JALR_OPCODE \n\n");

I_type(instr, imm, rs1, JALR_code, rd, opcode);
// rf[14] = 0x5555;
printf("before exe rs1[%i] = %x \n", rs1, rf[rs1]);
printf("before exe rd[%i] = %x \n", rd, rf[rd]);
printf("PC = %x \n", PC);
printf("imm = %x \n", imm);

prev_PC = PC; // added 2/4/20

pctemp = PC + 4;
PC = rf[rs1] + imm;
PC = PC & 0xfffffffe; // set b0 = 0;
rf[rd] = pctemp;

printf("after exe PC = %x \n", PC);
printf(" rd[%i] = %x \n", rd, rf[rd]);

}
else
{

printf("JALR Control Flow Error at Word_Addr = %x \n\n", w_addr);
exit(0);

}

return 0;

4
124
125
126

}

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#pragma once

#include "rv_base.h"
#include "rv_imm.h"
#include "rv_decode.h"

#include "rv_chk_link.h"

// **
// ***** Load Unsigned Immediate Instructions ***** //
// imm[31:12] rd[11:7] [011 0111] = 0x37(6:0) LUI
// imm[31:12] rd[11:7] [001 0111] = 0x17(6:0) AUIPC
const char LUI_OPCODE = 0x37; // Load upper immediate (20 bit offset, left shift 12 bits, sign extended)

int LUI_exe(int32_t &prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
 {

int32_t imm = 0;
char rd = 0;
char opcode = 0;

int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

if (instr_link_valid)
{

2
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

printf("opcode = LUI_OPCODE \n\n");
// const char LUI_OPCODE = 0x37; // Load upper immediate (20 bit offset, left shift 12 bits, sign extended)
U_type(instr, imm, rd, opcode);

printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);

prev_PC = PC; // added 2/4/20

PC = PC + 4;
rf[rd] = imm;

printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);

}
else
{

printf("Invalid control flow for LUI instruction. \n");
exit(0);

}

return 0;

}

//
const char AUIPC_OPCODE = 0x17; // Add upper immediate to PC (20 bit offset, left shift 12 bits, sign extended)

/*

int AUIPC_imm(uint32_t instr, int32_t& immvalue)
{

3
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

U_imm(instr, immvalue);
return 0;

}

*/

int AUIPC_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

int32_t imm = 0;
char rd = 0;
char opcode = 0;

int32_t w_addr = PC >> 2;
int32_t instr = mems[w_addr].mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

if (instr_link_valid)

{
// const char AUIPC_OPCODE = 0x17; // Add upper immediate to PC (20 bit offset, left shift 12 bits, sign extended)
printf("opcode = AUIPC_OPCODE \n\n");

U_type(instr, imm, rd, opcode);

4
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

printf("before exe rd[%i] = %i \n", rd, rf[rd]);
printf("imm = 0x%x = decimal %i \n", imm, imm);
printf("PCR = 0x%x \n", PC);

prev_PC = PC; // added 2/4/20

PC = PC + imm;
rf[rd] = PC;

printf("after exe rd[%i] = 0x%x \n", rd, rf[rd]);
printf("PCR = 0x%x \n\n", PC);

}
else
{

printf("Invalid control flow for AUIPC instruction. \n");
exit(0);

}

return 0;
}

// END Load Unsigned Immediate Instructions

// **
// ****** Load Instructions *****//
const char LOAD_OPCODE = 0x03;
// imm[11:0](31:20) rs1(19:15) [000]=0x00(14:12) rd(11:7) [000 0011]=0x03(6:0) LB
// imm[11:0](31:20) rs1(19:15) [001]=0x01(14:12) rd(11:7) [000 0011]=0x03(6:0) LH
// imm[11:0](31:20) rs1(19:15) [010]=0x02(14:12) rd(11:7) [000 0011]=0x03(6:0) LW
// imm[11:0](31:20) rs1(19:15) [100]=0x04(14:12) rd(11:7) [000 0011]=0x03(6:0) LBU

5
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

// imm[11:0](31:20) rs1(19:15) [101]=0x05(14:12) rd(11:7) [000 0011]=0x03(6:0) LHU

// Load Instructions FUNCTION CODES
const char LB_CODE = 0x00; // Load Byte
const char LH_CODE = 0x01; // Load Halfword (2 bytes)
const char LW_CODE = 0x02; // Load Word
const char LBU_CODE = 0x04; // Load Byte Unsigned
const char LHU_CODE = 0x05; // Load Halfword Unsigned
// END Load Instructions

// Subfunctions for LOAD_exe

int lbyte_u(int32_t byte_addr, mts_t& mems, char& byte_u)
{

char offset = byte_addr & 3; // offset = 3, 2, 1, 0 for byte offset

char shift = offset * 8; // number of bit shifts for byte offset

int32_t word_addr = byte_addr >> 2;

int32_t word = mems[word_addr].mem;

int32_t temp = word >> shift;

temp = temp & 0xff; // unsigned byte;

byte_u = char(temp);

return 0;

}
int lbyte(int32_t addr, mts_t& mems, int32_t& sign_ext_byte)
{

6
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

char temp = 0;
int32_t sign_ext = 0xffffff00;

lbyte_u(addr, mems, temp);

sign_ext_byte = int32_t(temp);

if (temp & 0x80)
{

sign_ext_byte = sign_ext | int32_t(temp);
}

return 0;
}

int lhw_u(int32_t byte_addr, mts_t& mems, uint32_t& hw_u)
 {

int32_t word_addr = byte_addr >> 2;
uint32_t word = 0;
uint32_t temp = 0;

char offset = byte_addr & 3; // offset = 3, 2, 1, 0 for byte offset

// halfword for offset = 2 and offset = 0 in lower halfword
// hw_u is in lower 16 bits.

word = uint32_t (mems[word_addr].mem);

hw_u = word & 0xffff; // hw_u = lower halfword
switch (offset)
{

printf("System Dependent Memory Access \n");
case 0:

7
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

hw_u = word & 0xffff; // word = bytes [0][1]
break;

case 1: // word = bytes [1][2]
hw_u = (word >> 8) & 0xffff;
break;

case 2: // word = bytes [2][3]
hw_u = (word >> 16) & 0xffff;
break;

case 3: // word = bytes [3][4] byte [4] is next mem word address
printf("Memory address across Word Boundary \n");
break;

default:
printf("Default case is not valid for halfword access. \n");
break;

}

printf("hw_u = 0x%x \n", hw_u);
return 0;

}

int lhw(int32_t byte_addr, mts_t& mems, int32_t& hw)
{

uint32_t temp = 0;
int32_t sign_ext = 0xffff0000;

lhw_u(byte_addr, mems, temp);

hw = int32_t(temp);
if (temp & 0x8000)
{

hw = sign_ext | hw;
}
printf("hw = 0x%x \n", hw);

8
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

return 0;
}

int lw(int32_t addr, mts_t& mems, int32_t& word)
{

int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;
if (byte_addr & 0x03)

printf("Address is not word aligned \n");

if(byte_addr >= 0x100 && byte_addr <= 0x10c) // added 2102020
 word = mems[word_addr].mem;
else
{

printf("Invalid memory page \n");
exit(1);

}

return 0;
}

int LOAD_exe(int32_t& prev_PC, int32_t& PC, mts_t& mems, reg_t& rf)
{

int32_t imm = 0;
char rd = 0;
char opcode = 0;
char code3bit = 0;
char rs1 = 0;
int32_t pctemp = 0;
int32_t byte = 0;
char byte_u = 0;
int32_t hw = 0;
uint32_t hw_u = 0;

9
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

int32_t word = 0;
int32_t byte_addr = 0;
int32_t word_addr = 0;

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

// ** //
if(instr_link_valid)

if (instr_st.exe_type_tag == LOAD) // added 2/7/2020
{

//const char LOAD_OPCODE = 0x03;
// imm[11:0](31:20) rs1(19:15) [000]=0x00(14:12) rd(11:7) [000 0011]=0x03(6:0) LB
// imm[11:0](31:20) rs1(19:15) [001]=0x01(14:12) rd(11:7) [000 0011]=0x03(6:0) LH
// imm[11:0](31:20) rs1(19:15) [010]=0x02(14:12) rd(11:7) [000 0011]=0x03(6:0) LW
// imm[11:0](31:20) rs1(19:15) [100]=0x04(14:12) rd(11:7) [000 0011]=0x03(6:0) LBU
// imm[11:0](31:20) rs1(19:15) [101]=0x05(14:12) rd(11:7) [000 0011]=0x03(6:0) LHU

// Load Instructions FUNCTION CODES
// const char LB_CODE = 0x00; // Load Byte
// const char LH_CODE = 0x01; // Load Halfword (2 bytes)
// const char LW_CODE = 0x02; // Load Word

10
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

// const char LBU_CODE = 0x04; // Load Byte Unsigned
// const char LHU_CODE = 0x05; // Load Halfword Unsigned

I_type(instr, imm, rs1, code3bit, rd, opcode);

byte_addr = rf[rs1] + imm;
word_addr = byte_addr >> 2;

switch (code3bit)
{

case LB_CODE: // Load Byte

lbyte(byte_addr, mems, byte);
rf[rd] = byte;

break;

case LH_CODE: // LH_CODE = 0x01; // Load Halfword (2 bytes)

lhw(byte_addr, mems, hw);
rf[rd] = hw;
break;

case LW_CODE: // LW_CODE = 0x02; // Load Word

lw(byte_addr, mems, word);
rf[rd] = word;

break;
case LBU_CODE: // LBU_CODE = 0x04; // Load Byte Unsigned

lbyte_u(byte_addr, mems, byte_u);

11
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

rf[rd] = int32_t(byte_u);
break;

case LHU_CODE: // Load Halfword Unsigned

lhw_u(byte_addr, mems, hw_u);
rf[rd] = hw_u;
break;

default:
printf("Error illegal load code \n\n");
break;

}
}
else
{

printf("Load instruction tag does not equal LOAD /n");
}

else
{

printf("Load.exe Control flow violation. \n");
exit(0);

}

prev_PC = PC; // save previous PC add
PC = PC + 4; // advance to the next instruction
return 0;

}

// **
// ****** Store Instructions *****//
const char STORE_OPCODE = 0x23;

12
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

// imm[11:5](31:25) rs2(24:20) rs1(19:15) 000=0x00(14:12) imm[4:0](11:7) [010 0011]=0x23(6:0) SB
// imm[11:5](31:25) rs2(24:20) rs1(19:15) 001=0x01(14:12) imm[4:0](11:7) [010 0011]=0x23(6:0) SH
// imm[11:5](31:25) rs2(24:20) rs1(19:15) 010=0x02(14:12) imm[4:0](11:7) [010 0011]=0x23(6:0) SW

// Store Instructions FUNCTION CODES
const char SB_CODE = 0x00; // Store Byte
const char SH_CODE = 0x01; // Store Halfword (2 bytes)
const char SW_CODE = 0x02; // Store Word (4 bytes)

// **** store_imm *****//

int store_imm(uint32_t instr, int32_t& immvalue)
{

S_imm(instr, immvalue);
return 0;

}

int32_t Store_exe(int32_t& prev_PC, int32_t & PC, mts_t& mems, reg_t rf)
 {

// store word aligned, address = bbbb bbbb bb00; last two bits must be zeroes.

int32_t st_imm = 0;
char rs1 = 0;
char rs2 = 0;
char st_code = 0;
char opcode = 0;

int32_t offset = 0;
int32_t word_mem = 0;
int32_t byte_addr = 0;
int32_t word_addr = 0;
int32_t shift = 0;

int32_t st_byte = 0;
int32_t st_hw = 0;

13
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

int32_t mask8 = 0xff;

int32_t w_addr = PC >> 2;
int32_t p_addr = prev_PC >> 2; // previous instruction word address

mem_st p_instr_st = mems[p_addr];
mem_st instr_st = mems[w_addr];

int32_t instr = instr_st.mem;

// Check Linked List Instructions
int32_t instr_link_valid = 0;
instr_link_valid = chk_link(prev_PC, PC, mems);

printf("opcode = STORE_OPCODE \n\n");

if (instr_link_valid)
if (instr_st.exe_type_tag == STORE) // added 2/7/2020
{

S_type(instr, st_imm, rs2, rs1, st_code, opcode);

// The effective byte address is obtained by adding register
// rs1 to the sign extended 12 bit o♂set. Loads copy a value from memory to register rd.
// Stores copy the value in register rs2 to memory.

byte_addr = rf[rs1] + st_imm;
word_addr = byte_addr >> 2;

offset = byte_addr & 0x3; //byte offset = 0, 1, 2, 3;

word_mem = mems[word_addr].mem;

14
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

switch (st_code)
{
case SB_CODE:

switch (offset)
{
case 0:

st_byte = rf[rs2] & 0x000000FF;
word_mem = word_mem & 0xFFFFFF00;

word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;

break;
case 1:

st_byte = rf[rs2] & 0x0000FF00;
word_mem = word_mem & 0xFFFF00FF;

word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;
break;

case 2:
st_byte = rf[rs2] & 0x00FF0000;
word_mem = word_mem & 0xFF00FFFF;

word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;
break;

case 3:
st_byte = rf[rs2] & 0xFF000000;
word_mem = word_mem & 0x00FFFFFF;

word_mem = word_mem | st_byte;
mems[word_addr].mem = word_mem;

15
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

break;
default:

printf("Illegal store memory address operation. \n");
break;

}
break;

case SH_CODE:
switch (offset)
{
case 0:

word_mem = word_mem & 0xffff0000; // clear lower halfword
st_hw = rf[rs2] & 0xffff; // save lower halfword

word_mem = word_mem | st_hw; // upper half word | lower halfword
mems[word_addr].mem = word_mem; // update memory

break;

case 2:
word_mem = word_mem & 0xffff; // clear upper half word
st_hw = rf[rs2] & 0xffff0000; // save upper half word
word_mem = word_mem | st_hw;
mems[word_addr].mem = word_mem; // update memory
break;

default:
printf("HW memory address is not halfword aligned. \n");
break;

}
break;

case SW_CODE:
if (offset == 0)

mems[word_addr].mem = rf[rs2];

16
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

else
printf("SW memory address is not word aligned. \n");

break;

default:
printf("Illegal Store Function 3 Code. \n");
break;

}
}
else
{

printf("Store instruction does not contain STORE tag. /n");
}

else
{

printf("STORE control flow violation. \n");
exit(0);

}

prev_PC = PC; // added 2/4/20

PC = PC + 4; //advance to next instruction
return 0;

}

// END Store Instructions

Distribution Statement A:
Approved for public release: distribution unlimited
ID: 3808480

		AD1032088.pdf

		List of Figures

		List of Tables

		Preface

		Acknowledgment

		1. Introduction

		1.1 OS Friendly Microprocessor Architecture Permission Bits

		1.2 Bus Architectures

		2. In-Band Signaling, the Open Front Door

		3. OS Friendly Microprocessor Architecture

		3.1 DMA/Cache Bank Controller Architecture

		3.2 Context Switch

		3.3 Cache Bank Architecture

		3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank

		3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State Cache Bank

		3.4 OS Friendly Microprocessor Architecture Performance Modeling

		3.4.1 Conventional and OS Friendly Microprocessor Architecture Context Switch Modeling

		3.4.2 Conventional Architecture Context Switch Modeling

		3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 1)

		3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 2)

		4. OS Friendly Microprocessor Architecture Hardware Computer Security

		4.1 Cache Bank and Memory Cell Permission Bits

		4.2 Instruction Permission Bits

		4.3 Library Call Permissions

		5. OS Friendly Microprocessor Architecture Access Layers

		5.1 Instruction, Data, Register, and Pipeline State Memory Partitions

		5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications

		5.3 I/O Implementation

		5.4 Exception Handling

		5.5 Practical Permission Bit Architecture

		5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache Bank Architecture

		5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit Limitations

		5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit Cache Bank Architecture

		5.7 Microkernel, OS, and Application Cache Banks Organization

		5.8 Process Level Cache Bank Operations

		5.9 Cache Bank I/O Example

		6. Computer Security Examples

		6.1 Buffer Overflow

		6.2 Data Execution Exploitation

		6.3 “Low-Level Driver” Protection

		6.4 Control Information Protection

		6.5 Debugging Traps

		6.6 Hardware Features for Hypervisor

		6.7 Architecture Issues

		7. Conclusion

		8. References

		List of Symbols, Abbreviations, and Acronyms

		UM Presentation 28 Feb 2020 (7) -- AA Report.pdf

		Slide Number 1

		Presentation Summary

		Presentation OUTLINE

		Trusted Computing Base (TCB)

		TCB Challenge

		DARPA Sponsored research

		INSECURE PIPELINE EXECUTION

		Hardware Isolation provides security

		Tagged architectures

		Proposed More Secure Pipeline Execution

		Control flow integrity

		Control flow integrity

		Embedded control flow codes

		RISC-V Program

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		

		Control flow GRAPH

		Hardware state machines

		Memory page types

		Sieve of Eratosthenes MEMORY MAP

		EXECUTE STATE MACHINE MONITOR

		State Machine Monitor Simulation

		State Machine Monitor Simulation RESULTS

		SIMULATION EXECUTION

		Branch instruction violation

		Valid MEMORY PAGE Access

		MEMORY PAGE access VIOLATION

		FUTURE RESEARCH WORK

		Slide Number 32

		Additional references

		Additional references

		Additional references

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

U.S. ARMY COMBAT CAPABILITIES
DEVELOPMENT COMMAND –
ARMY RESEARCH LABORATORY

Patrick Jungwirth, Army Research Lab
James Ross, Army Research Lab
Thomas Barnett, CCDC Aviation and Missiles, Redstone Arsenal

28 February 2020

Distribution A: Unlimited Release
ID: 3065536

Hardware Security Kernel for Managing
Memory and Instruction Execution

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

2

The cybersecurity world faces multiple attack vectors from
hardware level exploits like cache bank malicious operations,
rowhammer, Spectre, Meltdown, and Foreshadow attacks to
software based buffer overflow attacks.

Hardware level exploits bypass the protections provided by
software based separation kernels. Current microprocessor
execution pipelines are not designed to understand security.
Current microprocessor execution pipelines treat malicious
instructions, software bugs, and harmless code the same.

This presentation considers adding a hardware level security
monitor below the execution pipeline. [1], [2], [3]

PRESENTATION SUMMARY

[1] P. Jungwirth, et al.: "Hardware security kernel for cyber-defense", Proc. SPIE 11013, Disruptive Technologies in Information Sciences II, 110130J, Baltimore
10 May 2019); https://doi.org/10.1117/12.2513224
[2] P. Jungwirth, and J. Ross: “Security Tag Fields and Control Flow Management,” IEEE SouthEastCon 2019, Huntsville, AL, April 2019.
[3] P. Jungwirth and D. Hahs: “Transfer Entropy Quantifies Information Leakage,” IEEE SouthEastCon 2019, Huntsville, AL, April 2019.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

3

PRESENTATION OUTLINE
• Introduction

– Trusted Computing Base
– Trusted Computing Base Challenge
– Recent Research Efforts

• Insecure Execution Pipeline

• Proposed More Secure Execution Pipeline
– Move OS Features into Hardware based Monitor
– State Machine Monitors

• Control Flow Integrity State Machine Monitor
– Control Flow Tags
– Instruction Blocks
– Embedded Control Flow Protections

• Hardware State Machine Monitor
– Memory Pages
– Instruction Type
– Instruction Execution

• State Machine Monitor Simulation Results

• Conclusion

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

4

TRUSTED COMPUTING BASE (TCB)

The Trusted Computing Base (TCB) is the set of hardware and
software components which are critical to the security of the
system. … a TCB should be as small as possible in order to
guarantee its correctness …

To enforce a strong security policy, we recommend that the TCB
consists of as little as possible software, while placing as much as
possible security-critical functionality in hardware.

[4] R. De Clercq and I. Verbauwhede: “A survey of Hardware-based Control Flow Integrity (CFI),” pp. 4-5, 31 Jul 2017. arxiv.org/ftp/arxiv/papers/1706/1706.07257.pdf
[5] P. Jungwirth, et al.: “Cyber Defense through Hardware Security”, Presentation, Disruptive Technologies in Information Sciences, Paper 10652-22, Orlando, FL,
April 2018. https://doi.org/10.1117/12.2302805

De Clercq and Verbauwhede 2017 [4]

The pursuit of error free software assumes bug free hardware! [5]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

5

TCB CHALLENGE

The security of pretty much every computer on the
planet has just gotten a lot worse, and the only real
solution – which, of course, is not a solution – is to
throw them all away …

But more [malwares] are coming, and they'll be worse.
2018 will be the year of microprocessor vulnerabilities,
and it's going to be a wild ride.

[6] B. Schneier: “The security of pretty much every computer on the planet has just gotten a lot worse,” CNN.com, 5 Jan 18.
http://www.cnn.com/2018/01/04/opinions/security-of-nearly-every-computer-has-just-gotten-a-lot-worse-opinion-schneier/index.html

B. Schneier, 2018 [6]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

6

DARPA SPONSORED RESEARCH

This race against ever more clever cyber-intruders is never going to
end if we keep designing our systems around gullible hardware that
can be fooled in countless ways by software. [7], [8]

DARPA System Security Integration Through Hardware
and Firmware (SSITH) Program

[7] https://www.darpa.mil/news-events/2017-04-10
[8] https://www.darpa.mil/program/system-security-integration-through-hardware-and-firmware
[9] https://www.militaryaerospace.com/articles/2017/12/design-tools-cyber-security-trusted-computing.html
[10] https://www.extremetech.com/extreme/261052-darpa-university-michigan-team-build-unhackable-chip
[11] https://intelligencecommunitynews.com/galois-awarded-4-5m-darpa-contract-to-strengthen-hardware-security/

TA1 teams are developing SSITH technologies and TA2 team is providing V&V

· Lockheed Martin Corp. [9] (Technology Developer)
· The Charles Stark Draper Laboratory in Cambridge, Mass. [9] (Tech Developer)
· SRI International in Menlo Park, Calif [9] (Technology Developer)
· Cornell University in Ithaca, N.Y. [9] (Technology Developer)
· University of California-San Diego in La Jolla, Calif. [9] (Technology Developer)
· University of Michigan [10] (Technology Developer)
· Galois [11] (Security Test and Evaluation)

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

7

INSECURE PIPELINE EXECUTION

• Execution pipeline only executes instructions.

• Pipeline has no concept of computer security.

Pipeline cannot determine if an
instruction is safe or malicious

1011 0110 1110 1110 1111 0101 1110

Malicious Machine
Code Instruction(s)

IF ID EXE MA

Instruction
Fetch

Instruction
Decode

Instruction
Execute

Memory
Access

Register
Writeback

Classic 5 Stage RISC Pipeline
WB

1001 1110 1110 1010 1100 0111 0110

Coding Error(s)

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

8

HARDWARE ISOLATION PROVIDES SECURITY

Harvard Machine

Address Bus

Instruction and

D
at

a
an

d
Pr

og
ra

m

In
st

ru
ct

io
n

M
em

or
y

No isolation between
instructions and data

von Neumann Machine
Pr

og
ra

m

In
st

ru
ct

io
ns

Address Bus Address Bus

Instructions
Bus

D
at

a
M

em
or

y

Data Bus

Isolation provides better security

In the von Neumann machine, program and data are equivalent in the sense that
data which the program operates on may be the program itself. The loop which
modifies its own addresses or changes its own instructions is an example of this.
While this practice may be permissible in a minicomputer with a single user, it
constitutes gross negligence in the case of multi-user machine where sharing of
code and/or data is to be encouraged.

[12] E. Feustel: “On The Advantages of Tagged Architecture,” IEEE Transactions on Computers, Vol. C-22, No. 7, July 1973.

Data Bus

Feustel 1973 [12]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

9

TAGGED ARCHITECTURES

… [if] every location in memory were tagged with an extra bit. If the bit is
OFF, the word in that location is an ordinary data or instruction word. If the
bit is ON, the word is taken to contain a value suitable for loading into a
protection descriptor register. Saltzer and Schroeder, 1975 [13]

[13] J. Saltzer and M. Schroeder: “The protection of information in computer systems,” IEEE Proceedings Vol. 63, Issue 19, pp. 1278-1308, Sept. 1975.
[14] Burroughs: Burroughs B6500 Information Processing Systems Reference Manual, Burroughs Corp., Detroit MI, 1969.
[15] AEG Telefunken: TR441: Characteristics of the RD441, (German), AEG Telefunken Manual, DBS 180 0470 Konstanz, Germany, 1970.
[16] E. Feustel: “The Rice Research Computer – A tagged architecture*,” ACM AFIPS Proceedings of the spring joint computer conference, pp. 369–377, Atlantic
City, New Jersey — May 16 - 18, 1972.
[17] J. Bondi and M. Branstad: “Architectural Support of Fine-Grained Secure Computing,” pp. 121-130, Tucson, AZ, 4-8 Dec. 1989.
[18] J. Alves-Foss, et al.: A New Operating System for Security Tagged Architecture Hardware In Support of Multiple Independent Levels of Security (MILS)
Compliant Systems, University of Idaho, Center Secure and Dependable Systems, Air Force Research Lab Tech Report AFRL-RI-RS-TR-2014-088, APRIL 2014
[19] P. Jungwirth, and P. LaFratta: “OS Friendly Microprocessor Architecture,” Technical Report ARL-SR-0370, April 2017.
[20] H. Shrobe, et al.: “Trust-Management, Intrusion Tolerance, Accountability, and Reconstruction Architecture (TIARA),” MIT, AFRL Final Technical Report AFRL-
RI-RS-TR-2009-271, June 2009.

… the arguments we have advanced provide a powerful incentive for further
investigation and exploitation of tagged architecture. Such a machine may
soon well be a replacement for today's widely accepted von Neumann
architecture. Feustel 1973 [12]

• Tagged architectures originated in the 1960’s [14]-[16]

• Today tagged architectures are being revisited for security [9], [10], [17]-[20]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

10

– Move OS Features into Hardware based Monitor
– Harvard Architecture to separate/isolate instructions and data
– Hardware State Machine Monitor

• Control Flow Integrity [2]
• State Machine Instruction Execution and Page Memory Management [1]

PROPOSED MORE SECURE PIPELINE EXECUTION

IF ID EXE MA WB

Memory Page
State Machine

Instruction Exe
State Machine

Exe

Mem

Exe Check

Control Flow Check

Page Mem Check

DATA

INSTR

Pr
og

ra
m

In

st
ru

ct
io

ns

Address Bus Address Bus

Instructions
Bus

Da
ta

 M
em

or
y

Data Bus

Harvard Machine

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

11

CONTROL FLOW INTEGRITY

Control Flow Integrity (CFI) is a term used for
computer security techniques which prevent
CRAs [Code Reuse Attacks] by monitoring a
program’s flow of execution (control flow). CFI
techniques do not aim to prevent the sources of
attacks, but instead rely on monitoring a
program at runtime to catch deviations from the
normal behavior. R. De Clercq and I. Verbauwhede 2017 [4]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

12

CONTROL FLOW INTEGRITY
For RISC-V sequential, branch and jump
instructions there are 3 possible control flows:

1) Most instructions are sequential.
Advance program counter to next
instruction.

2) Branch Instruction has two possible end
addresses: next instruction and branch
destination address.

3) Jump instruction has a single destination
address.

Other instruction types are CALL, and RETURN.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

13

• Steps to place control flow integrity protection codes
inside an executable.

– Parse RISC-V machine code

– Create Linked List of Instructions

– Assign Link Codes for each instruction

– Link Codes embed control flow information into executable

EMBEDDED CONTROL FLOW CODES

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

14

RISC-V PROGRAM
// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
8: <main> li a2, 2 // base = a2
c: li a0, 0x80 // pb[0] = 0x80

10: li a7, 1 // a7 = 1
14: li a6, 1368 // LAST = R^2 -1 = 1369 - 1
18: li t1, 37 // t1 = R = 37
1c: j 28 <L1> // jump to <L1>
20: <L3> addi a2, a2, 1 // a2 = base = base +1
24: beq a2, t1, 78 <L2> // if base = R then <L2> Done
28: <L1> srai a5, a2 ,0x5 // a5 = word offset
2c: slli a5, a5, 0x2 // a5 = byte offset [note 1]
30: add a5, a0, a5 // a5 = pb[0] + byte offset
34: lw a5, 0(a5) // a5 = LW(addr = a5)
38: sra a5, a5, a2 // a5 = a5 >> a2 [note 2]
3c: andi a5, a5, 1 // a5 = pb[word, bit number]
40: beqz a5, 20 <L3> // if a5 = bit = 0 the <L3>
44: slli a3, a2 ,0x1 // a3 = cnt = base + base
48: <L4> srai a5, a3, 0x5 // a5 = word offset from a3
4c: slli a5, a5, 0x2 // a5 = byte offset
50: add a5, a0, a5 // a5 = pb[0] + byte offset
54: lw a1, 0(a5) // a1 = LW(addr = a5 + 0)
58: sll a4, a7, a3 // a4 = 1 << cnt = 0••010••00
5c: not a4, a4 // a4 = 1•••0•••11
60: and a4, a4, a1 // clear bit
64: sw a4, 0(a5) // update word
68: add a3, a3, a2 // cnt = cnt + base
6c: ble a3, a6, 48 <L4> // if less then <L4>
70: addi a2, a2, 1 // base = base + 1
74: bne a2, t1, 28 <L1> // if base != R then <L1>
78: <L2> li a0, 0 // clear a0,
7c: ret

[21] https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Ada
[22] https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

15

main li a2, 2
li a0, 0x80
li a7, 1
li a6, 1368
li t1, 37
j 28, L1

L3 addi a2, a2, 1
beq a2, t1, L2

L1 srai a5, a2 ,0x5
slli a5, a5, 0x2
add a5, a0, a5
lw a5, 0(a5)
sra a5, a5, a2
andi a5, a5, 1
beqz a5, 20, L3

slli a3, a2 ,0x1

L4 srai a5, a3, 0x5
slli a5, a5, 0x2
add a5, a0, a5
lw a1, 0(a5)
sll a4, a7, a3
not a4, a4
and a4, a4, a1
sw a4, 0(a5)
add a3, a3, a2
ble a3, a6, L4

addi a2, a2, 1
bne a2, t1, L1

L2 li a0, 0
ret

CONTROL FLOW GRAPH

• Control Flow Graph shows
how the blocks of code are
linked together [4].

• Control flow graph forms an
instruction linked list [4], [2].

• Control flow integrity verifies
the control flow linked list at
run-time [4], [2].

// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

16

slli a3, a2 ,0x1

L4 srai a5, a3, 0x5
slli a5, a5, 0x2
add a5, a0, a5
lw a1, 0(a5)
sll a4, a7, a3
not a4, a4
and a4, a4, a1
sw a4, 0(a5)
add a3, a3, a2
ble a3, a6, L4

addi a2, a2, 1
bne a2, t1, L1

• Sequential Instruction Flow
within code blocks [2].

• Program Counter (PC)
advances by 1 instruction
o PC = PC + 4 bytes

CONTROL FLOW GRAPH
// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

17

slli a3, a2 ,0x1

L4 srai a5, a3, 0x5
slli a5, a5, 0x2
add a5, a0, a5
lw a1, 0(a5)
sll a4, a7, a3
not a4, a4
and a4, a4, a1
sw a4, 0(a5)
add a3, a3, a2
ble a3, a6, L4

addi a2, a2, 1
bne a2, t1, L1

• Branch Instructions’ Control Flow
is statically indeterminate.

• Data flow determines if the branch
is taken or not taken

• There are two possible control
flows:
• Branch condition is false.

Branch is Not taken.
Go to Next instruction.
PC = PC + 4 bytes

• Branch condition is true.
Branch is taken.
Branch to Destination Address.
PC = Destination Address

// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]

2
1

1
2

CONTROL FLOW GRAPH

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

18

• Jump instruction simply jumps
to the destination address.

// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]

CONTROL FLOW GRAPH

main li a2, 2
li a0, 0x80
li a7, 1
li a6, 1368
li t1, 37
j 28, L1

L3 addi a2, a2, 1
beq a2, t1, L2

L1 srai a5, a2 ,0x5
slli a5, a5, 0x2
add a5, a0, a5
lw a5, 0(a5)
sra a5, a5, a2
andi a5, a5, 1
beqz a5, 20, L3

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

19

NEXT

INSTR

NEXT

Link List Code = 1

Executing
Instruction

Previous
Instruction

Example Code

<main> li a2, 2
li a0, 0x80

Example Code

li t1, 37
j <L1>

Example Code

<L3> addi a2, a2, 1
beq a2, t1, <L2>

JUMP

INSTR

NEXT

Link List Code = 16

BRANCH

INSTR

NEXT

Link List Code = 32

CONTROL FLOW LINK TYPES

• Some Example Control Flow Link Codes

• We are working with 21 different link codes.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

20

mts[0x06].mem = 0x00a00313; // li t1, LAST // t1 = R = LAST

mts[0x06].exe_tag = NEXT; // Sequential Instruction Tag

mts[0x06].link_tag = 1; // Instruction Linked List Code

mts[0x07].mem = 0x00c0006f; // j 28 <L1> // jump to <L1>

mts[0x07].exe_tag = JUMP;

mts[0x07].link_tag = 16;

mts[0x09].mem = 0x04660a63; // beq a2, t1, 78 <L2> // if base = R then <L2>

mts[0x09].exe_tag = BRANCH;

mts[0x09].link_tag = 32;

CONTROL FLOW GRAPH
RISC-V Simulation Code

JUMP Instruction and Link Tag

Branch Instruction and Link Tag

main li a2, 2
li a0, 0x80
li a7, 1
li a6, 1368
li t1, 37
j 28, L1

L3 addi a2, a2, 1
beq a2, t1, L2

L1 srai a5, a2 ,0x5

Instruction Linked List Mapping

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

21

• Hardware State Machine Monitor (kernel) [1]
– Stack State Machine [1]

• Verify permissions to access Stack
• Manage creating and deleting stack memory pages

– Memory State Machine [1]
• Manage creating and deleting memory pages
• Verify memory access

– Instruction Execution State Machine [1]
• Manage execution of instructions
• Manages Stack State Machine and Memory State Machine

HARDWARE STATE MACHINES

SSM

MSM

ISM

SSM

MSM

ISM

Hardware State Machines Control Execution Pipeline

IF ID EXE MA

Instruction
Fetch

Instruction
Decode

Instruction
Execute

Memory
Access

Register
Writeback

Classic 5 Stage RISC Pipeline
WB

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

22

MEMORY PAGE TYPES

Process Info

Exe Page Data Page Data Stack I/O PageSharedDataExe Stack

Exe Page Data Page Data Stack I/O PageSharedDataExe Stack

Exe Page Data Page

Data Page

Data Stack

• Goal is to isolate memory page types [1]
• Exe stack is isolated from Data Stack
• Each memory page type provides for least

privilege memory access operations.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

23

SIEVE OF ERATOSTHENES MEMORY MAP

Exe Page Data Page

// Sieve of Eratosthenes – RISC-V Assembly Language [21]-[22]
8: <main> li a2, 2 // base = a2
c: li a0, 0x80 // pb[0] = 0x80
10: li a7, 1 // a7 = 1
14: li a6, 1368 // LAST = R^2 -1 = 1369 - 1
18: li t1, 37 // t1 = R = 37
1c: j 28 <L1> // jump to <L1>
20: <L3> addi a2, a2, 1 // a2 = base = base +1
24: beq a2, t1, 78 <L2> // if base = R then <L2> Done
28: <L1> srai a5, a2 ,0x5 // a5 = word offset
2c: slli a5, a5, 0x2 // a5 = byte offset [note 1]
30: add a5, a0, a5 // a5 = pb[0] + byte offset
34: lw a5, 0(a5) // a5 = LW(addr = a5)
38: sra a5, a5, a2 // a5 = a5 >> a2 [note 2]
3c: andi a5, a5, 1 // a5 = pb[word, bit number]
40: beqz a5, 20 <L3> // if a5 = bit = 0 the <L3>
44: slli a3, a2 ,0x1 // a3 = cnt = base + base
48: <L4> srai a5, a3, 0x5 // a5 = word offset from a3
4c: slli a5, a5, 0x2 // a5 = byte offset
50: add a5, a0, a5 // a5 = pb[0] + byte offset
54: lw a1, 0(a5) // a1 = LW(addr = a5 + 0)
58: sll a4, a7, a3 // a4 = 1 << cnt = 0••010••00
5c: not a4, a4 // a4 = 1•••0•••11
60: and a4, a4, a1 // clear bit
64: sw a4, 0(a5) // update word
68: add a3, a3, a2 // cnt = cnt + base
6c: ble a3, a6, 48 <L4> // if less then <L4>
70: addi a2, a2, 1 // base = base + 1
74: bne a2, t1, 28 <L1> // if base != R then <L1>
78: <L2> li a0, 0 // clear a0,
7c: ret

1010 1010 1010 1000 1010 0010 0010 1010
0000 1000 1010 0010 0010 1000 1010 1000
0010 0010 1000 0010 0010 0010 1010 0000

• PID has read and
write permissions

• PID has execute only permissions

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

24

Execute
Instruction

STACK
OPERATION

LOAD

STOREARITHMETIC
LOGIC

RAISE
EXCEPTION

Invalid
Mem
Page

ALLOW
MEM OP

DESTINATION
ADDRESS

RAISE
EXCEPTION

Invalid
Mem
Page

ALLOW
MEM OP

Instruction
Completed

EXECUTE STATE MACHINE MONITOR

Simplified Execution State Machine – See [1] for a more detailed description
[1] P. Jungwirth, et al.: "Hardware security kernel for cyber-defense", Proc. SPIE 11013, Disruptive Technologies in Information Sciences II, 110130J, Baltimore
10 May 2019); https://doi.org/10.1117/12.2513224

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

25

• State Machine Monitors
– Control Flow Integrity

• Supports branch, jump, load, store, and arithmetic and logic instructions

– Execution and Memory State Machine
• Supports valid memory pages for load instructions
• Future research work will add more features to State Machines

STATE MACHINE MONITOR SIMULATION

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

26

• State Machine Monitor Simulation
– Control Flow Integrity

• Simulated Sieve of Eratosthenes with Control Flow Protection.
• Simulated Branch Instruction Control Flow Violation.

– Execution and Memory State Machine
• Simulated Sieve of Eratosthenes
• Simulated Load Instruction Memory Page Operations.

STATE MACHINE MONITOR SIMULATION RESULTS

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

27

PCR = 8 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = c Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 10 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 14 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 18 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 1c Byte Address
JAL opcode
opcode = JAL_OPCODE

Valid Control Flow Tags for JAL Instruction.
before exe rd[0] = 0
imm = 0xc = decimal 12
PCR = 0x1c
after exe rd[0] = 0x20
PCR = 0x28

PCR = 28 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 2c Byte Address

opcode = AL_IMM_exe

PCR = 40 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

PCR = 20 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 24 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

PCR = 78 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

Prime Number = 1
Prime Number = 2
Prime Number = 3
Prime Number = 5
Prime Number = 7
Prime Number = 11
Prime Number = 13
Prime Number = 17
Prime Number = 19
Prime Number = 23
Prime Number = 29
Prime Number = 31
Prime Number = 37
Prime Number = 41
Prime Number = 43
Prime Number = 47
Prime Number = 53
Prime Number = 59
Prime Number = 61
Prime Number = 67
Prime Number = 71
Prime Number = 73
Prime Number = 79
Prime Number = 83
Prime Number = 89
Prime Number = 97

SIMULATION EXECUTION

Text Output Showing Execution
Steps (100 pages) Output – Prime Numbers

1 through 100

Prime Number = 1

Prime Number = 2

Prime Number = 3

Prime Number = 5

Prime Number = 7

Prime Number = 11

Prime Number = 13

Prime Number = 17

Prime Number = 19

Prime Number = 23

Prime Number = 29

Prime Number = 31

Prime Number = 37

Prime Number = 41

Prime Number = 43

Prime Number = 47

Prime Number = 53

Prime Number = 59

Prime Number = 61

Prime Number = 67

Prime Number = 71

Prime Number = 73

Prime Number = 79

Prime Number = 83

Prime Number = 89

Prime Number = 97

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

28

BRANCH INSTRUCTION VIOLATION

mts[0x09].mem = 0x04660a63; // beq a2, t1, 78 <L2> //
mts[0x09].exe_tag = JUMP; // CHANGED TAG TO JUMP
mts[0x09].link_tag = 32;

PCR = 3c Byte Address
opcode = AL_IMM_OPCODE

check Link = 1
opcode = AL_IMM_exe

PCR = 40 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

PCR = 20 Byte Address
opcode = AL_IMM_OPCODE

Check Link = 1
opcode = AL_IMM_exe

PCR = 24 Byte Address
opcode = BRANCH_OPCODE

opcode = Branch

Branch Control Flow Violation.

Word Address = 0x09

link_tag = 32 is for a branch
instruction. With Instruction
set to JUMP, a branch control
flow violation occurs.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

29

VALID MEMORY PAGE ACCESS

int lw(int32_t addr, mts_t& mems, int32_t& word)
{

int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;

if(byte_addr >= 0x100 && byte_addr <= 0x10c)
word = mems[word_addr].mem;

else
{

printf("Invalid memory page \n");
exit(1);

}

return 0;
}

Memory Page
Boundary

12 bytes are required to store 100
bits (prime numbers 1..100)

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

30

MEMORY PAGE ACCESS VIOLATION

int lw(int32_t addr, mts_t& mems, int32_t& word)
{

int32_t byte_addr = addr;
int32_t word_addr = byte_addr >> 2;

if(byte_addr >= 0x100 && byte_addr <= 0x10b)
word = mems[word_addr].mem;

else
{

printf("Invalid memory page \n");
exit(1);

}

return 0;
}

Memory Page
Boundary

11 bytes is not
enough memory

PCR = 54 Byte Address
Invalid memory page

54: lw a1, 0(a5) // a1 = LW(addr = a5 + 0)

Memory Page Error Occurs at 0x54 LoadWord

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

31

• Complete State Machine Monitor Simulation

• Add more control flow features including: CALL and RETURN tags

FUTURE RESEARCH WORK

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

32

• Simulated Sieve of Eratosthenes Prime Number Algorithm on RISC-V
32 bit Architecture

• Simulated Control Flow Protections

• Simulated LOAD instruction memory page protections

• Future operating systems need to take advantage of hardware
security monitors.

CONCLUSION

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

33

ADDITIONAL REFERENCES

• E. Feustel: "The Rice Research Computer - A tagged architecture*," ACM AFIPS Proceedings of the spring joint computer conference, pp. 369-377,
Atlantic City, New Jersey - May 16 - 18, 1972.
• Rice University: “Rice University Computer-Basic Machine Operation,” Rice Univ., Houston, TX., revised 1962.
• Burroughs: Burroughs B6500 Information Processing Systems Reference Manual, Burroughs Corp., Detriot MI, 1969.
• AEG Telefunken: TR441: Characteristics of the RD441, (German), AEG Telefunken Manual, DBS 180 0470 Konstanz, Germany, 1970.
• E. Feustel: "On The Advantages of Tagged Architecture," IEEE Transactions on Computers, Vol. C-22, No. 7, JULY 1973.
• J. Bondi and M. Branstad: “Architectural Support of Fine-Grained Secure Computing,” pp. 121-130, Tucson, AZ, 4-8 Dec. 1989.
• M. Abadi, et al.: “Control-Flow Integrity Principles, Implementations, and Applications,” ACM CCS, pp. 340-353 , Alexandria, Virginia, USA, November
2005.
• M. Tiwari, et al.: "Crafting a Usable Microkernel, Processor, and I/O System with Strict and Provable Information Flow Security," ACM Proceedings of
the 38th annual international symposium on Computer architecture, pp. 189-200, San Jose, CA, 4-8 June 2011.
• A. Russo and A. Sabelfeld: “Dynamic vs. Static Flow-Sensitive Security Analysis,” IEEE Computer Security Foundations Symposium, pp. 187-199,
2010.
• E. Göktaş, et al.: “Out Of Control: Overcoming Control-Flow Integrity,” IEEE Symposium on Security and Privacy, pp. 575-589, 2014.
• T. Austin and C. Flanagan: “Efficient Purely-Dynamic Information Flow Analysis,” ACM PLAS, pp. 113-124, Dublin, Ireland, June 2009.
• E. W. Dijkstra: "The structure of the 'THE'-multiprogramming system," Communications of the ACM, Volume 11, Issue 5, pp. 341-346, May 1968.
• G. Sockut: "Firmware/hardware support for operating systems: principles and selected history," ACM SIGMICRO Newsletter, Volume 6 Issue 4, pp.
17 - 26, December 1975. https://dl.acm.org/citation.cfm?id=1217198
• G. Brown, et al.: “Operating system enhancement through firmware,” Proceedings of the 10th annual workshop on Microprogramming, ACM
SIGMICRO Volume 8 Issue 3, pp. 110-133, Sept. 1977. https://dl.acm.org/citation.cfm?id=800102.803324
• Higher Order Software: “Techniques for Operating System Machines,” Technical Report # 7, July 1977. www.dtic.mil/dtic/tr/fulltext/u2/772809.pdf
• N. Kamibayashi, et al.: “HEART: An Operating System Nucleus Machine Implemented by Firmware,” ACM Proceedings of the first international
symposium on Architectural support for programming languages and operating systems, pp. 195-204, Palo Alto, CA, 01 – 03 March 1982.
https://dl.acm.org/citation.cfm?id=801843
• C. Papachristou and S. Gambhir: "Microcontrol architectures with sequencing firmware and modular microcode development tools," Microprocessing
and Microprogramming, Volume 29, Issue 5, pp. 303-328, March 1991.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

34

ADDITIONAL REFERENCES

• C. Foster: “Hardware Enhancement of Operating Systems,” University of Massachusetts, Amherst, November 23, 1978.
www.dtic.mil/docs/citations/ADA062462
• T. Nakano, et al.: “Hardware Implementation of a Real-time Operating System,” IEEE Proceedings of the 12th TRON Project International
Symposium, pp. 34-42, 28 Nov.-2 Dec. 1995.
• T. Nakano, et al.: “Performance Evaluation of STRON: A Hardware Implementation of a Real-Time OS,” IEICE Transactions Fundamentals, Vol.
E82-A, No. 11, pp. 2375-2382, Nov, 1999.
• T. Nakano, Y. Komatsudaira, A. Shiomi, and M. Imai: "VLSI implementation of a real-time operating system," Proceedings of ASP-DAC '97: Asia and
South Pacific Design Automation Con, pp. 679-680, Chiba, Japan, 28-31 Jan. 1997.
• D. Hardin: "Real-time objects on the bare metal: an efficient hardware realization of the Java/sup TM/Virtual Machine," IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pp. 53-59, Magdeburg, Germany, 2-4 May 2001.
• Z. Murtaza, et al.: "Silicon real time operating system for embedded DSPs," IEEE 2006 International Conference on Emerging Technologies, pp. 188-
191, Peshawar, Pakistan, 13-14 Nov. 2006.
• M. Song, et al.: "Reducing the Overhead of Real-Time Operating System through Reconfigurable Hardware," Euromicro Conference on Digital
System Design Architectures, Methods and Tools, pp. 1-4, Lubeck, Germany, 29-31 Aug. 2007.
• M. Vetromille, et al.: "RTOS Scheduler Implementation in Hardware and Software for Real Time Applications," Seventeenth IEEE International
Workshop on Rapid System Prototyping (RSP'06), pp. 1-6, Chania, Greece, 14-16 June 2006.
• L. Yan, et al.: "Hardware Implementation of muC/OS-II Based on FPGA," 2010 Second International Workshop on Education Technology and
Computer Science, pp. 825-828, Wuhan, China, 6-7 March 2010.
• Arnaldo S. R. Oliveira ; Luís Almeida ; António de Brito Ferrari: "The ARPA-MT Embedded SMT Processor and Its RTOS Hardware Accelerator,"
IEEE Transactions on Industrial Electronics, Volume: 58, Issue: 3, pp. 890-904, March 2011.
• S. Ong, et al.: "SEOS: Hardware Implementation of Real-Time Operating System for Adaptability," 2013 First International Symposium on Computing
and Networking, pp. 612-616, Matsuyama, Japan, 4-6 Dec. 2013 .
• E. Moisuc, et al.: "Hardware Event Handling in the Hardware Real-Time Operating Systems," Proceedings of the 18th International Conference on
System Theory, pp. 54-58, Sinaia, Romania, October 17-19, 2014.
• C. Stenquist: “HW-RTOS Improved RTOS Performance by Implementation in Silicon,” White Paper – Renesas R-IN32M3 Industrial Network ASSP,
May 2014. https://www.renesas.com/en-eu/media/support/partners/r-in-consortium/technology/R-IN32_HWRTOS_Whitepaper_5_20_14.pdf
• S. King, et al.: “SubVirt: implementing malware with virtual machines,” IEEE Symposium on Security and Privacy, pp. 1-14, 21-24 May 2006.
• R. Fannon: An analysis of hardware-assisted virtual machine based rootkits, Thesis, Naval Postgraduate School, June 2014.
calhoun.nps.edu/handle/10945/42621

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

35

ADDITIONAL REFERENCES

• P. Kocher, et al.: “Spectre Attacks: Exploiting Speculative Execution,” Cornell University Library, 3 Jan 2018. https://arxiv.org/pdf/1801.01203.pdf
• M. Lipp, et al.: “Meltdown,” Cornel University Library, 3 Jan 2018. https://arxiv.org/pdf/1801.01207.pdf
• M. Seaborn, and T. Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, pp. 7-9, 2015.
• Foreshadow/L1TF: SecurityWeek.Com, 15 Aug 2018.
https://www.securityweek.com/foreshadowl1tf-what-you-need-know.
• K. Zurkus: “Side-Channel Vulnerability PortSmash Steals Keys,” Infosecurity Magazine, 6 Nov. 2018.
www.infosecurity-magazine.com/news/side-channel-vulnerability/
• SecurityWeek, 4 Oct 2018. https://www.securityweek.com/china-used-tiny-chips-us-computers-steal-secrets-report
• SecurityWeek, 5 Oct 2018. “Industry Reactions to Chinese Spy Chips: Feedback Friday.” https://www.securityweek.com/industry-reactions-chinese-
spy-chips-feedback-friday
• W. Keegan: "Separation Kernels Enable Rapid Development of Trustworthy Systems," COTS Journal, pp. 1-3, February 2014.
• G. Sockut: "Firmware/hardware support for operating systems: principles and selected history," ACM SIGMICRO Newsletter, Vol. 6 Issue 4, pp. 17 -
26, Dec. 1975. https://dl.acm.org/citation.cfm?id=1217198.
• G. Brown, et al.: “Operating system enhancement through firmware,” Proceedings of the 10th annual workshop on Microprogramming, ACM
SIGMICRO Volume 8 Issue 3, pp. 110-133, Sept. 1977. https://dl.acm.org/citation.cfm?id=800102.803324
• M. Tiwari, et al.: "Crafting a Usable Microkernel, Processor, and I/O System with Strict and Provable Information Flow Security," ACM Proceedings of
the 38th annual international symposium on Computer architecture, pp. 189-200, San Jose, CA, 4-8 June 2011.
• J. Pierce: An Introduction to Information Theory: Symbols, Signals, and Noise, 2nd ed., Dover Publications, New York, 1980.
• D. Denning: "A Lattice Model of Secure Information Flow," ACM, Vol. 19, No. 5, pp. 236-243, May 1976.
• D. Bernstein: “Cache-timing attacks on AES,” 2005. https://www.semanticscholar.org › Papers › Cache-timing attacks on AES
• L. Salmon: “Baking Hack Resistance Directly into Hardware,” DARPA, 10 April 2017. https://www.darpa.mil/news-events/2017-04-10
• Aleph One: “Smashing The Stack For Fun And Profit,” Vol. 7, Issue 49, File 14 of 16, Phrack 49, 1996. www-
inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
• T. Schreiber: “Measuring information transfer,” Physical Review Letters, Vol. 85, Issue 2, pp. 461–464, 2000. doi: 10.1103/PhysRevLett.85.461
• D. Hahs, and S. Pethel: "Transfer Entropy for Coupled Autoregressive Processes," Entropy, 15(3), pp. 767-788, 2013. doi:10.3390/e15030767
• T. Haruna, and K. Nakajima: "Symbolic transfer entropy rate is equal to transfer entropy rate for bivariate finite-alphabet stationary ergodic Markov
processes," arXiv.org, 12 Dec 2011. arxiv.org/abs/1112.2493v3
• O. Acıiçmez, et al.: “Predicting Secret Keys via Branch Prediction,” Proceedings of the 7th Cryptographers' track at the RSA conference on Topics in
Cryptology, pp. 225-242, San Francisco, CA, 05 - 09 Feb, 2007. https://eprint.iacr.org/2006/288.pdf

		AD1032088.pdf

		List of Figures

		List of Tables

		Preface

		Acknowledgment

		1. Introduction

		1.1 OS Friendly Microprocessor Architecture Permission Bits

		1.2 Bus Architectures

		2. In-Band Signaling, the Open Front Door

		3. OS Friendly Microprocessor Architecture

		3.1 DMA/Cache Bank Controller Architecture

		3.2 Context Switch

		3.3 Cache Bank Architecture

		3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank

		3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State Cache Bank

		3.4 OS Friendly Microprocessor Architecture Performance Modeling

		3.4.1 Conventional and OS Friendly Microprocessor Architecture Context Switch Modeling

		3.4.2 Conventional Architecture Context Switch Modeling

		3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 1)

		3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 2)

		4. OS Friendly Microprocessor Architecture Hardware Computer Security

		4.1 Cache Bank and Memory Cell Permission Bits

		4.2 Instruction Permission Bits

		4.3 Library Call Permissions

		5. OS Friendly Microprocessor Architecture Access Layers

		5.1 Instruction, Data, Register, and Pipeline State Memory Partitions

		5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications

		5.3 I/O Implementation

		5.4 Exception Handling

		5.5 Practical Permission Bit Architecture

		5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache Bank Architecture

		5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit Limitations

		5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit Cache Bank Architecture

		5.7 Microkernel, OS, and Application Cache Banks Organization

		5.8 Process Level Cache Bank Operations

		5.9 Cache Bank I/O Example

		6. Computer Security Examples

		6.1 Buffer Overflow

		6.2 Data Execution Exploitation

		6.3 “Low-Level Driver” Protection

		6.4 Control Information Protection

		6.5 Debugging Traps

		6.6 Hardware Features for Hypervisor

		6.7 Architecture Issues

		7. Conclusion

		8. References

		List of Symbols, Abbreviations, and Acronyms

		UM Presentation 28 Feb 2020 (7) -- AA Report.pdf

		Slide Number 1

		Presentation Summary

		Presentation OUTLINE

		Trusted Computing Base (TCB)

		TCB Challenge

		DARPA Sponsored research

		INSECURE PIPELINE EXECUTION

		Hardware Isolation provides security

		Tagged architectures

		Proposed More Secure Pipeline Execution

		Control flow integrity

		Control flow integrity

		Embedded control flow codes

		RISC-V Program

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		Control flow GRAPH

		

		Control flow GRAPH

		Hardware state machines

		Memory page types

		Sieve of Eratosthenes MEMORY MAP

		EXECUTE STATE MACHINE MONITOR

		State Machine Monitor Simulation

		State Machine Monitor Simulation RESULTS

		SIMULATION EXECUTION

		Branch instruction violation

		Valid MEMORY PAGE Access

		MEMORY PAGE access VIOLATION

		FUTURE RESEARCH WORK

		Slide Number 32

		Additional references

		Additional references

		Additional references

