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1. Introduction 

Consider a conductor with an initially uniform distribution of mobile charges (for 
instance, electrons). The uniform distribution of charges in a bounded conductor 
creates a nonzero electric field inside the conductor and thus generates electric 
currents. For the simplest models of a charged liquid, the current will continue until 
all the charges redistribute in such a way that the ultimate configuration of the 
charges will meet the following conditions: 1) there are no charges inside the 
conductor, 2) all charges are concentrated on the conductor’s boundary, and 3) the 
final field inside the conductor vanishes. The transient processes include not only 
migration of charges, but also sophisticated evolutions of electric and magnetic 
fields. These processes can be analyzed based on the Maxwell model of 
electromagnetism. However, the system is, basically, too difficult for analytical 
treatment. Even when such a treatment is possible, the formal solutions become so 
complicated that they are even less transparent than the original equations. 
Therefore, the solutions should still be visualized by means of different asymptotic 
techniques and graphical tools. Fortunately, nowadays, computers make this 
procedure much easier. Moreover, different intermediate analytical treatment of the 
underlying mathematical models can be avoided almost completely. Still, a precise 
mathematical analysis remains unavoidable for several reasons, such as 1) 
qualitative analysis of the processes, 2) establishing general features of the 
solutions, 3) establishing asymptotic results, 4) verification and validation (V&V) 
of computer codes, and so on. 

When dealing with V&V, researchers rely on the exact solutions of the underlying 
mathematical models in the simplest cases. Those cases should be relevant to the 
practical goals. When those goals change, the relevant simplest cases should be 
changed also.  

In this report, we consider a 1-D nonstationary problem for the system of Maxwell 
equations permitting an exact solution. Namely, we consider an isotropic 
conducting plate, schematically shown in Fig. 1. 

We use the Gauss system of units. Also, we neglect the permittivity and 
permeability of the conductor. 
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Fig. 1 Unbounded isotropic conducting plate 

2. Formulation of the Problem 

Let ( , )Q z t  be the volumetric charge distribution of mobile electric charges. Let 
( , )iI z t  be the electric current. Also, let iE  and iH  be the electric and magnetic 

fields. 

For describing evolution of the fields, we postulate the Maxwell system 

 4i
i
E Q  , (1) 

 0i
i
H  , (2) 

 

i
ijk

j k

H
cz E

t


  


, (3) 

and 4
i

i ijk
j k

E
I cz H

t



  

 . (4) 

The bulk master system, Eqs. 1–4, should be supplied with the charge conservation 
equation  

 
( , )

0i
i

Q z t
I

t


 
 . (5) 

We postulate the following simplest form of Ohm’s law: 

 i iI SE , (6) 

where S  is an electric conductivity. 

Inserting Eq. 6 for iI  in Eq. 5, we get the equation 

 
( , )

0i
i

Q z t
S E

t


  
 . (7) 
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Now, eliminating i
i
E  between Eqs. 1 and 7, we get equations closed with respect 

to the charge density ( , )Q z t  

 
( , )

4 0
Q z t

SQ
t




 
 . (8) 

Given the initial distribution of charges ( ) ( ,0)Q z Q z , we can find distribution 
of charges ( , )Q z t  for any 0t  . Indeed, multiplying Eq. 8 by exp(4 )St , we can 
rewrite it as 

 
( exp(4 )) 0Q St

t





 . (9) 

Integrating Eq. 9 over interval [0, ]t , we get  

 
4( , ) ( ,0)StQ z t e Q z   (10) 

and then 

 
4( , ) ( ) StQ z t Q z e  

. (11) 

(Compare this analysis with Landau and Lifshitz [1984].)  

For the simplest model of electronic liquid, it is assumed infinitely compressible 
and sometimes called the “dust” model. Because of this feature, there appear 
boundary layers of charges with the density ( , )t   per unit area of the boundary 
(where 1 2,   are the Gaussian coordinates at the boundary surfaces). Across the 

boundary surface, the electric field iE  experiences finite jump, satisfying the 
classical relationship 

 
4i

iE N πτ
+

−
  = −  . (12) 

where 
i

N  are components of the unit normal to the boundary.  

Also, when the current ( , )iI z t  reaches the external boundaries and it still does not 
vanish, then the local charge density changes according to the charge conservation 
equation 

 
( , ) i

i

t
N I

t
 


 . (13) 

In Eq. 13, we consider the simplest situation, ignoring the surface flux of the 2D 
electric charges. In the following calculations of Section 3, we assume that the 
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surface charge density vanishes at 0t  . Also, we notice that the surface charge 
density can both grow or decrease due to the bulk current.  

3. One-Dimensional Solution of the Problem for the Plate 
Geometry 

Let us apply Eq. 11 for the plate geometry, assuming that the initial charge 
distribution ( ) ( ,0)Q z Q z depends only on the vertical coordinate Z . We look 
for the solution of the Maxwell system of equations and boundary that also depend 
on the single spatial coordinate Z . Moreover, we are looking for a solution with an 
identically vanishing magnetic field, i.e., ( , ) 0iH z t  . Next, we assume that the 
electric field has the only nonvanishing Z component for which we use the notation 

( , )E Z t . For the sake of simplicity, we consider the symmetric initial distribution 
( ) ( )Q Z Q Z   . Then, the same symmetry distribution will be true for any 0t 

. Thus, we can limit ourselves considering the interval [0, ]H  instead of [ , ]H H , 
and use the boundary condition 

 (0, ) 0E t  . (14) 

Equation 11 implies 

 
4( , ) ( ) StQ Z t Q Z e  

. (15) 

The bulk Eq. 1 implies 

 
4 ( , )

dE
Q Z t

dZ
 . (16) 

With the help of Eq. 15, we can rewrite Eq. 16 as follows: 

 
4( , )

4 ( ) StE Z t
Q Z e

Z
 






. (17) 

Integrating Eq. 17 over interval (0, )Z  and using boundary condition Eq. 14, we 
get 

 

4

0

( , ) 4 ( )
Z

StE Z t e d Q    

, (18) 

for Z H .  

Outside of the plate, Eq. 16 should be replaced with Eq. 18 for the field ( , )E Z t  . We 
get  



 

5 

 
0

E
Z




 . (19) 

forZ H .  

Equation 19 entails 

 
( , ) ( ), forE Z t F t Z H  . (20) 

Combining the Ohm’s law Eq. 6 with relationship Eq. 18, we get 

 

4

0

( , ) ( , ) 4 ( ),
Z

StI Z t SE Z t Se d Q Z H     

. (21) 

Now, let us substitute ( , )I Z t  from Eq. 21 into Eq. 13. In the 1D case, we get 

 

4

0

( , ) 4 ( )
H

Std
I H t Se d Q

dt


     

. (22) 

Integrating Eq. 22 over the interval [0, ]t  and using the initial condition (0) 0  , we 
get 

 

4

0

( ) (1 ) ( )
H

Stt e d Q     

. (23) 

Now, we turn to the jump condition, Eq. 12, of electric field, which can be rewritten 
as 

 ( 0, ) ( 0, ) 4 ( )E H t E H t tπτ− − + = − . (24) 

In Eq. 24, ( 0, )E H t−  designates the limit value of the field ( , )E Z t , when Z  
approaches H from inside the plate, whereas ( 0, )E H t+  designates the limit value 
of the field ( , )E Z t  when Z  approaches H from outside the plate. According to 
Eqs. 18 and 20, these limit values are equal to 

 

4

0

( 0, ) 4 ( ),

( 0, ) ( )

H
StE H t e d Q

E H t F t

   

 

 

. (25) 

Inserting the relationships of Eq. 25 into Eq. 24 and using Eq. 23 for the surface 
charge density, we arrive at the relationship  

 

4 4

0 0

4 ( ) ( ) 4 (1 ) ( )
H H

St Ste d Q F t e d Qπ ππ ζ ζ π ζ ζ− −− = − −∫ ∫o o

. (26) 
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Equation 26 implies 

 0

( ) 4 ( )
H

F t d Q constπ ζ ζ= =∫ o . (27) 

4. Suggested Transient Solution from the Standpoint of the 
Maxwell Model  

Having found the fields ( , ), ( , ), ( )E z t I z t t , can we claim that we found the exact 
solution to our problem in the framework of the Maxwell model of 
electromagnetism? Not yet. For such a claim, we have to verify that all the 
equations of the Maxwell model of electromagnetism, including the boundary 
conditions and initial data, are satisfied. It does not matter whether we used some 
of those equations explicitly or not. In particular, in our analysis we have not used 
the famous Eq. 4, containing the displacement current /iE t  . However, until 
we verify the validity of this equation, we cannot claim that our relations comprise 
the exact solution of the Maxwell model. Let us dwell on this equation since there 
are many models and applications that ignore the Maxwellian displacement current. 
Moreover, many outstanding thinkers, including Helmholtz and Kelvin, did not 
recognized the importance and correctness of this Maxwell invention. And nobody 
recognized Maxwell’s model during his lifetime. 

Our solution includes the relationship ( , ) 0iH z t  , which still has the status of 
assumption, which also has to be verified in concert with solutions for ( , ), ( , )E z t I z t
and ( )t  . Let us begin with Eq. 1. Inserting Eqs. 14 and 18 into Eq. 1, we indeed see 
that Eq. 1 is satisfied. Then Eq. 2 is satisfied if ( , ) 0iH z t  .  

We leave to the readers the simple check that the rotation of our electric field 
vanishes, and this automatically implies the validity of Eq. 3 for our solution. Also, 
we leave to the readers the simple checks of validity for our solution of Eqs. 5, 6, 
12, and 13. Of course, these checks are elementary since we established our solution 
explicitly using these equations.  

The remainder of Eq. 4 in our 1D case with a vanishing electric field inside the 
plate reads as  

 
4 0

E
I

t



 

  
. (28)

 
In essence, we have not used this equation, but we still have to verify its validity 
for our solution. This can be done by substituting the formulae of Eqs. 18 and 21. 
Verifying Eq. 28 outside the plate, in view of Eq. 27, is straightforward. 
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To summarize, our simple solution is indeed the exact solution of the Maxwell 
model of electromagnetism.  

5. The Role of the Displacement Current 

Coming back to Eq. 28, we notice that the first term /E t   is the Maxwell’s 
displacement current, whereas the second – 4 I is the conductive current. We see 
that these two components are exactly equal to each other. Depending on the 
substances, the bulk conductivity S  can vary in the range of about 20 orders of 
magnitude. Then, both components of the current in Eq. 28 can change by 20 orders 
of magnitude. However, these two components of current are exactly equal to each 
other. Therefore, one cannot claim that in metals the conductivity current dominates 
over the displacement current. Depending on the particular problem, that statement 
can be true or false. For instance, for our exact solution the conductivity current is 
exactly equal to the displacement current regardless of the magnitude of 
conductivity.  

So far, we analyzed the role of displacement current from a quantitative point of 
view. Now, let us analyze its role from a qualitative point of view. What if we just 
ignore the displacement current? The implications of such an action would be 
completely destructive. From a physical point of view, we would destroy the now 
classical electromagnetic theory of light. Our exact solution demonstrates that 
ignoring the displacement current is also destructive far from the theory of 
electromagnetic waves. For instance, ignoring the displacement current in Eq. 28 
forces us to conclude that the convective current should also vanish. In other words, 
our elementary problem would not be solvable at all. This fact should be taken into 
account in magnetic hydrodynamics, in which neglecting the displacement current 
is the starting point of modeling (Landau and Lifshitz, 1984; Davidson, 2016). 

From a purely mathematical point of view, neglecting the displacement current 
dramatically changes the global structure of the problem. The system of hyperbolic 
type becomes a problem of parabolic type with qualitatively different properties of 
solutions.  

6. Conclusion 

We analyzed a boundary value problem for the Maxwell equations, describing a 
transient process of establishing electrostatic equilibrium in an isotropic conducting 
plate. The solution is intended to be used for verification purposes when using the 
full magnetohydrodynamics code. To those purposes, various exact solutions of the 
Maxwell equations are required, and we established one of those. The solution is 
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representative when dealing with pulse loading problems. It clearly shows the 
importance of the displacement current concepts for analyzing the transient 
processes in conductors. 
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