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1. Introduction 

Robust visual perception for autonomous robots in various environments is 
becoming increasingly imperative for navigation tasks. Robots must be able to 
successfully and effectively identify landmarks within an environment to 
ameliorate their path planning and decision making. There are a number of different 
visual perception tasks (e.g., object classification, object detection, and semantic 
segmentation) that can provide robots with the environmental context, and each 
task requires a different type of annotated data to learn its respective perception 
model.1  

We specifically focus on the task of semantic segmentation to provide visual 
perception for a robot, where each pixel in an image is identified as a semantic class 
(e.g., vehicle, road, or tree). Semantic segmentation is generally a supervised 
machine learning (ML) task, meaning that the algorithm being used requires raw 
image data and ground truth annotations to guide the learning process. The ground 
truth annotations are of the same format that we want the algorithm to learn to 
output. In the case of semantic segmentation, the ground truth for the training 
images is the class label for each pixel. Figure 1 provides an example of a semantic 
segmentation annotation. Ground truth annotations are generally collected by a 
human, and for complex scenes like urban environments the annotation process can 
be very time consuming.  

 

Fig. 1 Example pixel-wise annotation of an urban environment. A human annotator must 
draw the boundaries between every object in the scene and then assign a semantic label. Each 
color in this image represents a different semantic class. 

For our project, we wanted to investigate the ground truth annotations that come 
from humans. Recently the US Army Combat Capabilities Development Command 
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Army Research Laboratory collected video sequences recorded by robots in an 
outdoor environment. The initial annotation process for this data consisted of 
outsourcing the labeling to human annotators who were supposed to label every 
pixel within each frame in a video sequence. Figure 2 shows an example of a raw 
image (left) from the outdoor environment and the ground truth annotation (right) 
that was collected from a human. The data consists of a number of objects (e.g., 
tree, bush, fence, and barrier) and terrains (e.g., grass, asphalt, and mud). However, 
there is an evident negative consequence when human annotators are labeling each 
frame: human error. Human error can be incorrectly labeling pixels (e.g., saying 
grass terrain is a tree) or forgetting to label a pixel altogether. These types of errors 
can be damaging to the training of an ML algorithm, causing the ability to detect 
certain landmarks to deteriorate immensely and resulting in degraded visual 
perception for robots.  

 

Fig. 2 Example raw image and its corresponding annotation representation. Both pieces of 
information are needed to train a supervised semantic segmentation algorithm. 

This research is focused on removing or correcting any possible annotation errors 
before the data is used to train a visual perception model. By correcting human 
errors, we believe that more-robust ML models can be generated to provide the best 
quality visual perception for robots operating in unstructured environments. Since 
annotation is already time consuming, we do not want to introduce more human 
effort into the label correct process. Thus, we discuss methods of automated 
correctional labeling for annotated frames in video sequences. This automation 
identifies potential errors (i.e., mislabeled or unlabeled) in the labels, infers the 
correct label, and relabels pixels without any human intervention.  

2. Image Annotation Background 

Image annotation is an essential task to collect the necessary information needed 
for supervised ML. Different types of visual perception tasks can be applied to an 
image and each require specific image annotation types. Each type of annotation 
requires varying degrees of human labeling effort. We provide a brief background 
on the different types of image annotation and associated visual perception tasks.  
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Image annotation, in general, is the process of assigning an image with one or more 
class labels (e.g., vehicle, road, and building). This type of annotation is a  
human-powered task where human annotators use a predetermined label set, often 
referred to as a dataset ontology, to attach semantics to an image. Image annotations 
are conventionally categorized into different types with varying degrees of 
difficulty. Some of the most common include label assignment to the whole image, 
bounding box annotation, polygon annotation, annotation of lines and splines, and 
semantic segmentation.  

Figure 3 shows examples of the first four types of annotations as provided by 
Ambalina.1 Assigning a single label to an entire image is the easiest type of 
annotation since it does not require the human annotator to localize a specific 
object. These annotations are useful for classification tasks. Bounding box, 
polygon, and line and spline annotation requires the human user to localize objects 
(i.e., define their boundaries in the images) in addition to providing a semantic 
label. This results in a greater degree of effort but also provides more information. 
These types of annotations are used for detection tasks, where localization of 
landmarks is the ultimate goal.  

Fig. 3 Examples of different types of image annotations: (left to right) whole image label 
assignment, bounding box annotation, lines and splines annotation, and polygon annotation1 

Semantic segmentation is one of the most time consuming methods of image 
annotation, but also provides the most-dense information about the contents of an 
image. This type of image annotation considers every pixel within an image and 
associates each pixel with a semantic class from the predetermined ontology. 
Figures 1 and 2 provide examples of semantic segmentation in urban and off-road 
unstructured environments, respectively. Semantic segmentation is becoming the 
most popular form of visual perception to run on autonomous vehicles since it 
provides the most-precise information about landmarks and terrain in an 
environment. 

Because semantic segmentation is known as the most-dense method of image 
annotation, it is one of the most difficult and time consuming methods. Annotating 
every single pixel is a very tedious task, and therefore humans are prone to produce 
errors that involve mislabeled or unlabeled pixels within a video sequence. The rest 
of this technical note outlines how we address these errors.  



 

4 

 

3. Methodology 

This technical note focuses on the effects of methods that perform automatic label 
inference to relabel images with unlabeled pixel annotations. The presence of 
unlabeled pixels within video sequences exist mainly due to human error during the 
annotation process. The presence of unlabeled pixels results in missing 
environment context and could potentially degrade visual perception learning. This 
research, specifically, is concerned with the process that is performed prior to ML 
training (i.e., evaluating video sequences and correcting annotations in each frame 
within those video sequences to ensure each specific landmark is annotated 
accurately).  

The research focused on three video sequences. Through the programming 
language of Python, we were able to produce dataset statistics that analyze the 
frequency of semantic classes in the annotated frames of those three video 
sequences. The frequency is represented as a percentage of total pixels labeled for 
each object class. Furthermore, a graphical representation of each video sequence 
was produced to visualize where class annotations occur throughout the duration of 
the video sequence. Figure 4 shows the output of our initial analysis of the 
annotations. 

Moreover, these statistics quickly identify when images with unlabeled pixels occur 
within a video sequence. We use this information to deploy innovative automatic 
inference methods to label these unlabeled pixels. Our experiments and results in 
the rest of this technical note focus on one specific video sequence that contains 
images with alarmingly high concentrations of unlabeled pixels. Figure 5 shows the 
statics of this particular video sequence and illustrates the frames of the video 
sequence that we test our automatic label inference on.  
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Fig. 4 Three video sequences were analyzed to determine the frequency of semantic classes. 
Top row: Pixel frequency of each class shown as a raw pixel count and percentage. Bottom 
row: Line plots that visualize the frequency of semantic classes as a function of time. This 
visual representation makes it easy to find where an object class most frequently occurs within 
a video sequence. 
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Fig. 5 The video sequence used to test our methods for automatic inference of pixels that 
are unlabeled. This is a short video sequence, but it contains several images with high 
concentrations of unlabeled pixels as seen in the bottom right image. 

3.1 Adjacent Frame Evidence 

Temporal ordering of images is a unique characteristic of video sequences. In 
essence, there are minute changes in object location from frame to frame (with a 
high frame rate), so there is a high probability that we will have equivalent class 
pixel values throughout multiple consecutive frames. Therefore, when we come 
across a frame with unlabeled pixels, we can use the fully annotated neighboring 
frames to estimate the labels of those unlabeled pixels.  

We were able to create a Python function that creates a sliding window in a video 
sequence that represents three consecutive frames. Specifically, we look at 
windows with the center frame that contains unlabeled pixels. The other frames in 
this window represent the previous and next images in the video sequence with 
respect to the center frame with unlabeled pixels. The function analyzes the center 
image, pixel by pixel, to calculate the coordinate of each unlabeled pixel. For each 
unlabeled pixel coordinate, the function evaluates the label associated with the 
same pixel coordinate in the adjacent previous and next images. At their respective 
pixel coordinate, if the pixel label from the previous and next images are equivalent, 
the function will relabel the unlabeled pixel with that matching pixel label. This 
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first approach is very conservative in the sense that an unlabeled pixel value is only 
inferred if neighboring frames provide unanimous agreement. 

In the left window of Fig. 6 it is fairly obvious that the unlabeled pixels (shown in 
black) from the center frame should be labeled as “blue”, which represents the sky 
class. However, the middle and right window examples have a much larger portion 
of unlabeled pixels, and it is much more difficult to visually determine the labels of 
the unlabeled pixels. Accordingly, we use the adjacent frames from the windows, 
which represent fully annotated images, and our previously described inference 
method to infer an annotation label and relabel unlabeled pixels of the image of 
interest. The bottom of Fig. 6 shows the results of this automatic inference.  

 

Fig. 6 Method that makes use of the information encoded in temporal ordering of images. 
The top row shows three slide windows, where the middle frame contains unlabeled pixels, 
and the bottom row shows the inferred label results after using label evidence from 
neighboring frames. 

With this simple method we are able to infer most of the unlabeled images with less 
than 5% of the pixels remaining unlabeled after running our inference. However, 
in some cases the adjacent frames used as evidence support to infer an unlabeled 
pixel might disagree. For example, the previous frame may have a green pixel 
representing grass and the next frame may have a blue pixel representing sky. This 
is most often seen at the region boundaries of classes in the annotations and is 
expected to happen since the robot collecting the data is in motion and landmarks 
will shift from frame to frame. In this case, our algorithm leaves the unlabeled pixel 
as is since there is no agreeing evidence, and this leaves regions of unlabeled pixels 
within the image. In the bottom row of Fig. 6, the newly labeled images still contain 
some regions of unlabeled pixels (shown in black). Another shortcoming of this 
approach arises when dealing with consecutive frames containing unlabeled pixels. 
In this case, there is no agreeing supporting evidence, and running our inference 
will result in very little improvement in the total pixels labeled. 
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3.2 Adjacent Frame Evidence with Neighborhood Radius 

To address the shortcoming previously mentioned in Section 3.1, we extend the 
neighborhood of pixel evidence in adjacent frames to run our automatic labeling 
inference. We use the same three consecutive frames defined previously to make 
up the sliding window. Rather than simply comparing the single pixel labels from 
neighboring frames at the same respective pixel coordinate as the unlabeled pixel, 
our code uses a neighborhood radius that collects and gathers fully annotated pixels 
and calculates the most commonly occurring pixel label from this neighborhood.  

This approach is able to gather more evidence for the voting algorithm that we 
created to calculate the most frequently occurring pixel label from the collection of 
surrounding annotated pixels. Using these pixel label evidence statistics we can 
automatically assign a label to the unlabeled pixels. As seen in Fig. 7, this method 
assigns a label to every unlabeled pixel, noted by the 100% measure of pixels 
labeled, since the most frequent label from the evidence is always chosen as the 
inferred label. 

 

Fig. 7 Results of our approach that uses a neighborhood radius around the unlabeled pixels 
to gather label evidence from adjacent frames in the sliding window. In these three images, 
the radius is fixed to 10 pixels. 

However, there are present disadvantages to this method. When calculating the 
most commonly found pixel value within the neighborhood radius, the function 
calculates a maximum number of occurrences from the voting algorithm. In 
consequence, we are confronted with instances where we have an equivalent 
number of occurrences of two or more class labels in which the voting algorithm 
will arbitrarily choose one of these to relabel an unlabeled pixel. Additionally, the 
maximum vote from the evidence does not guarantee that the label selected will be 
accurate. Consider the case when there are 20 pixels providing label evidence, and 
18 of these pixels are themselves unlabeled and 2 of these pixels represent grass. 
Our algorithm would select grass at the label to be inferred even though only 10% 



 

9 

 

of the queried pixels match that label. The radius parameter selection for this 
approach is also an important factor to consider. In the instance of using a smaller 
radius, there is little evidence provided to make an inference decision. However, by 
using an extremely large radius, there is a high probability of calculating an 
incorrect label value due to examining many pixels far from the unlabeled pixel of 
interest. 

3.3 Voting Thresholding 

Our next approach uses voting thresholding to avoid some of the disadvantages 
mentioned in Section 3.2. In this setting the threshold defines how much agreeing 
evidence is needed to infer a pixel value. This helps resolve the issue of having two 
or more labels with maximum number of occurrences (i.e., ties for the max vote) 
or little evidence support due to unlabeled evidence, overall eliminating possible 
inference labeling errors.  

This method uses the same algorithm described in Section 3.2 that uses a 
neighborhood radius to collect label evidence. However, rather than using a 
maximum voting algorithm to infer the pixel label, this method uses a function that 
will determine if the respective maximum number of occurrences is good enough 
to make an inference based on some threshold. The function saves and updates the 
number of occurrences for each pixel label detected within the neighborhood radius 
so as to calculate the pixel label with the greatest number of occurrences. Based on 
the total number of pixels used to collect evidence, the calculated maximum number 
of occurrences of the pixel value is converted to a percentage value. If the max label 
percentage is greater than or equal to the defined threshold, the function will 
automatically relabel the unlabeled pixel with the label with the maximum number 
of occurrences. In the case that the maximum does not surpass the threshold, the 
unlabeled pixel will remain void.  

Results of this approach can be seen in Fig. 8 using the image on the far left with 
unlabeled pixels. The inference and thresholding function is applied to the image 
with a threshold of 50%. As this function is applied to the image with increasing 
radii values, fewer and fewer of the originally unlabeled pixels receive an inferred 
label. In addition, the landmarks within the unstructured environment become less 
clearly distinguished and detected as the set radius increases, indicating an 
escalation in the number of classes with label agreement in the neighborhood of 
pixels, which could lead to incorrect inference. In this particular unlabeled image, 
a smaller radius with a threshold of 50% results in a more accurate label inference 
of the image. 
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Fig. 8 Method of thresholding applied to three images with unlabeled pixels with multiple 
tested fixed radii values. The threshold is fixed as 50%. The bar plot compares the 
concentration of labeled pixels vs. various fixed radii values. 

Although this method helps address shortcomings from the methods discussed in 
previous sections, we still encounter the problem of existing regions of unlabeled 
pixels. Although smaller radii with a threshold of 50% applied to this image results 
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in almost a 100% label inference (i.e., nearly all pixels are assigned labels), there 
still remains unlabeled pixels within the image. Despite the fact that this issue might 
seem insignificant due to the unlabeled pixels not being visible by the human eye, 
other video sequences might consider those unlabeled pixels essential to the visual 
perception of a robot. For future work, we believe it is essential to consider methods 
that make use of a large amount of agreeing evidence to infer labels within an 
incomplete annotated image.  

4. Conclusions and Future Work 

The methods discussed in this technical note were designed to address the need for 
automatic label correction. As such, the three methods of label inference require no 
human effort to relabel annotated frames within the video sequences. The presented 
methods progressively provided more-sophisticated solutions to addressing 
relabeling an annotated image. The foundation of the work relies on the temporal 
correlation that can be extracted from sequential frames in the video sequence. 
Using neighboring frames, we can evaluate the pixel label at the same coordinate 
in the image and use voting mechanisms to infer the label. We presented a technique 
that required strict agreement between neighboring frames; however, this method 
often leaves a large number of pixels unlabeled due to disagreement. Next, we 
presented a method that gathers label evidence from a radius of neighbors to label 
every unlabeled pixel with the most common value within the neighborhood.  

Nonetheless, there are drawbacks to this method. We are confronted with the 
problem of having multiple maximum numbers of occurrences of two or more 
labels plus the issue of the most frequent label still not providing significant 
evidence for inference, with implications in incorrect inferencing. Again, to solve 
these drawbacks, we concluded with an approach that uses a threshold value to 
determine if enough evidence can be found in the neighboring region. Although 
this method does not require that every unlabeled pixel be labeled, it produces 
results in which the labeled concentration of relabeled images is extremely close to 
100%.  

These methods demonstrate effective automatic inference on these annotated 
images that furthers development to automate robotic navigation. These automatic 
labeling functions will provide additional information in the training stage of robots 
for future ground navigational work. Using the knowledge acquired from building 
these automatic inference methods, some further research topics to invest in may 
involve further advanced complex methods of semantic annotation techniques to 
label both unlabeled and mislabeled pixels. The methods of automatic inference 
discussed strongly correlate to the research of correcting mislabeled pixels to 
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maintain label consistency. Figure 9 provides an example of label inconsistency. 
The presence of mislabeled pixels is also due to human error when annotating 
images within a video sequence. Therefore, these methods of label inference can 
directly be applied to pixels that are mislabeled by observing ordered annotated 
frames to identify inconsistent labels from frame to frame. We hope to address this 
application in future work. 

 

Fig. 9 Middle image is an example of inconsistent (mislabeled) labels in an image since the 
vegetation on the right hand side is labeled as tree (seen as green) instead of bush (seen as 
pink). Consecutive frames shown in this figure emphasize the inconsistency in labels. 
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