
© 2021 Carnegie Mellon University

[Distribution Statement A]: Approved for public release and unlimited distribution.

Managing Technical Debt and

Software Architecture

Ipek Ozkaya

June 2021

International Software Architecture PhD School 2021

Lorentz Center, Leiden Netherlands

2
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-0547

3
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

• What is technical debt?

• Managing technical debt

• Getting started

Agenda

4
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What is Technical Debt?

Technical debt* is a collection of design or

implementation choices that are expedient in the short

term, but that can make future changes more costly or

impossible.

Technical debt represents current and future liability

whose impact is both on the quality of the system as

well as overall project resources.

* Term first used by Cunningham, W. 1992. The WyCash Portfolio Management

System. OOPSLA '92 Experience Report. http://c2.com/doc/oopsla92.html.

5
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Common Consequences of Technical Debt

• Teams spend almost all of their time fixing defects, and new

capability development is continuously slipping.

• Integration of products built by different teams reveals that

incompatibilities cause many failure conditions and lead to

significant out-of-cycle rework.

• Progress toward milestones is unsatisfactory because

unexpected rework causes cost overruns and project-completion

delays.

• Recurring user complaints about features that appear to be fixed.

• Out-dated technology and platforms require length convoluted

solutions and added complexity in maintaining or extending the

systems.

6
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Unmanaged technical debt costs organizations time and money!

• In 2010 Gartner estimated the total amount of technical debt worldwide could reach $1

trillion

• Government’s old technology deficit that needs to be replaced is estimated to be up to

$7.5 billion

• U.S. Department of Veterans Affairs, spending 75% of its technology budget to

maintain outdated legacy systems

• High profile industry failures are often associated with technical debt (for example

United Airlines network connectivity failure and New York Stock Exchange glitches of

July 8, 2015)

Technical Debt is Common

7
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software engineers know technical debt when they see it!

8
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software engineers know technical debt when they see it!

9
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

A Typical Example

A decade ago processors were not as powerful. To optimize for performance we

would not insert code for exception handling when we knew we would not divide

by zero or hit an out of bounds memory condition. These areas now are hard to

track and have become security nightmares.

Technical debt is a software design issue that:

Exists in an executable system artifact, such as code, build scripts,
data model, automated test suites;

Is traced to several locations in the system, implying issues are not
isolated but propagate throughout the system artifacts.

Has a quantifiable and increasing effect on system attributes (e.g.,
increasing defects, negative change in maintainability and code
quality indicators).

10
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt Timeline

4321

Debt is

intentionally or

unintentionally

incurred

Debt is

recognized,

but not fixed

A plan is made

to re-architect

or refactor the

system

Debt is

paid off

Management practices, technical contexts, and business contexts all affect the

timeline

• Who is responsible at each point

• Amount of time that passes between points

• Available options

“[Contractor] developed our software tool and delivered

the code to the government for maintenance. The code

was poorly designed and documented therefore there

was a very long learning curve to make quality changes.

We continue to band aide over 1 million lines of code

under the maintenance contract. As time goes by, the

tool becomes more bloated and harder to repair.”

11
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Organizations needs to address the following challenges

continuously:

1. Recognizing technical debt

2. Making technical debt visible

3. Deciding when and how to resolve debt

4. Living with technical debt

Managing Technical Debt

12
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical debt can be recognized directly or indirectly by

• Recording decisions to intentionally incur debt

• Conducting design and architecture reviews

• Analyzing development and management artifacts for symptoms

• Talking to development teams

1. Recognizing Technical Debt

13
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

From Symptoms to Specifics

The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external

VisibleVisible

New Features

Additional Functionality

Evolution Issues: Evolvability

Defects

Low External Quality

Quality Issues: Maintainability

Mostly Invisible

Code

Low Internal Quality

Code Complexity

Code Smells

Coding Style Violations

Architecture

Architecture Smells

Pattern Violations

Structural Complexity

Other Development Artifacts

Testing and Documentation Issues

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec 2012.

14
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Tools can help assess aspects of

software complexity and structural

quality.

This is only a starting point!

Information from these tools needs to be

coupled with an understanding of:

• Number of defects and their locations

• Areas where systems change a lot

• Areas developers avoid

• Architecture decisions

• ….

Taking Advantage of Tool Support

15
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Results from over 1800 developers from two large

industry and one government software development
organization

“Measure it? Manage it? Ignore it? Software Practitioners and

Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I.

Gorton, Int. Symp on Foundations of Software Engineering 2015

Results from over 1800 developers

from two large industry and one

government software development

organization.
“Measure it? Manage it? Ignore it? Software Practitioners and

Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I.

Gorton, Int. Symp on Foundations of Software Engineering 2015.

Software Architecture and Design Trade-offs Matter

16
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Making technical debt visible implies communicating and tracking technical debt

• Timely

• Concretely identifying what and where

• Including experienced and potential consequences

• Involving all relevant stakeholders

2. Making Technical Debt Visible

17
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Developers already discuss technical debt, even if not using the vocabulary.

Communicating Technical Debt

10977: Crash due to large negative number.

"We could just fend off negative numbers near the

crash site or we can dig deeper and find out how

this -10000 is happening."

"Time permitting, I'm inclined to want to know the

root cause. My sense is that if we patch it here, it

will pop-up somewhere else later."

"there must be multiple things going on here"

18
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

[Chromium #243948] Paying off

technical debt becomes a higher

priority, not lower, when in those rare

cases it must be deferred. Tests are not

a ‘nice to fix’ feature. Raising to Pri-1.

[Chromium #43780] One might consider

this a technical debt paydown bug.

However, feel free to reprioritize….

Backup sockets were committed

conditionally on them being refactored

to the “right” place (10/18/2010)…

Looks like the statements about the

code are still true. (08/17/2017)

Examples Identified by Developers

19
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

[Chromium 507796] This is just a first step to make sure the code is

being exercised. It’s been tested locally but only on this

configuration. Some more work might be needed to get this

working in non-GN builds. Further refactoring of the

Telemetry dependencies will occur in follow-on

CLs.…Unfortunate that that build breakage wasn’t caught.

… let me know if you have any trouble diagnosing what went

wrong. I don’t know why so many of the other isolates

would complain about crashpad_database_util not having

been built.

20
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Defects

Technical

Debt

Vulnerabilities

Defect proneness implies increased

vulnerability risks

Technical debt increases vulnerability

risks.

Technical debt as it lingers in the

system increases defect proneness.

Some issues just overlap, making it

hard to tease apart!

defect – error in coding or logic

that causes a program to

malfunction or to produce

incorrect/ unexpected results

vulnerability – system

weakness in the

intersection of three

elements:

• system flaw,

• attacker access to the

flaw,

• attacker capability to

exploit the flaw

technical debt – design or

implementation construct

traced to several locations

in the system, that make

future changes more costly

21
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Incentivize developers and acquisition

organizations to disclose technical debt when they

recognize it through simple practices.

Start with a simple issue type labelled technical

debt. This practice pretty quickly helps recognize

specific aspects of your technical debt.

Scout for project management and technical

review practices that can easily be revised to

include discussing and recording technical debt,

augmenting technical debt issues with its effects

and consequences if not resolved.

Incorporate Tracking into Existing Practices

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, Mary Popeck: Got technical debt?: surfacing

elusive technical debt in issue trackers. MSR 2016: 327-338

22
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

This is essentially a business decision balancing the cost of remediating debt

(making a change) and the cost of accepting debt (no change).

• Cost of remediation is simply the cost of all needed changes

• Cost of accepting debt is more complex

• Work arounds

• Delays or inability to add capability

• Recurring maintenance overhead

• User satisfaction

3. Deciding When and How to Resolve Debt

23
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Cost of Accepting Technical Debt

For each instance of technical debt

• Understand range of consequences

• Measure what you can

• Qualitatively assess what you can’t

• Reconcile data with assessments

Make informed trade-off decisions

about remediation.

Expected CoC

Actual CoC

Time

C
o
s
t
o
f

C
h
a
n
g
e
 (

C
o
C

)

Accumulating

technical debt

24
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Do nothing

• There is benefit in carrying the debt and deferring payment

• The cost of reducing the debt far exceeds the benefit

• Business decides to abandon the system to optimize value

Replace

• The cost of reducing the debt far exceeds replacing the system

• Replacing the system has added benefit of aligning with new markets and technology

Commitment to invest, incremental refactoring

• Refactoring over multiple releases or focused refactoring release

• Balancing new feature development with refactoring effort to continue to generate

value

Developing a Payback Strategy Balancing Value for Cost

25
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

All long-lived, large scale system have technical

debt!

• Allocate time for managing technical debt at every

iteration.

• Invest in a sound development and testing

infrastructure that includes automated quality

measurement.

• Differentiate strategic technical debt from technical

debt that emerges from low code quality or poor

engineering practices.

4. Living with Technical Debt

New features

and added

functionality

Architectural,

structural

features

Defects
Technical

Debt

26
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Discussion of backlog items should include an

explicit focus on any technical debt items.

Resolving technical debt should be an explicit part

of planning (allocate one sprint, integrate into

multiple sprints, etc.).

Technical debt should be explicitly recorded,

similar to new user stories, defects, and the like.

Next sprint

stories

New story

Break-down

epic

Delete obsolete

items

Epic (tbd in the future)

Product backlog grooming

T
o
p
 p

ri
o
ri
ty

 i
te

m
s
 =

 f
in

e
r

g
ra

n
u
la

ri
ty

TD item

Incorporate Technical Debt Management to Release Planning

27
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Include language on how technical debt will be managed in contracts, including

• Percentage of resources to be withheld until high priority technical debt is resolved

• Data to be shared throughout the development life cycle

• Ongoing analysis to be conducted and its results shared

• Incentives to share technical debt the contractor takes on

Include technical debt discussions as part of assessments; request use of both

appropriate software quality tools and architecture reviews.

Request evidence from contractors and continuously assess where you are on

the technical debt timeline

• Helpful data includes commit histories, defect logs, testing results, architecture

conformance measures, and software quality analyses

Technical Debt Management within Software Development Lifecycle

28
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Ask The Hard Questions Early and Often

What are our dominant sources of debt?

• Start with code, architecture, and technology as areas of

investigation

How can debt be visualized with effective

tool support?

• Decide on key business metrics and relate them to the product,

that will drive what tool, if any, is right

• Request information from contractors; make it part of contracts

How and when to pay-back debt?

• Make it an ongoing process

• Incentivize development teams to disclose technical debt

How to manage strategic technical debt?

• Optimize for cost of change, both for short-term and long-term

29
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Manage the Technical Debt Timeline

30
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

From Folklore to Practice

Building a case to manage debt:

• Can we identify instances of technical debt

over the history of the project?

• Do those instances correlate with expected

symptoms of accruing interest?

Use data to identify instances:

• Insights into the planned design (from

team members).

• Optional: narrative information about the

project history (specifically, any major

refactorings that have occurred).

• Code repository; optional: architecture

documentation.

Use data to detect symptoms:

• History of change and defect reports on a project.

Ideally traceable to versions of the code under

configuration management, and to the code

modules involved.

• Optional: classification of defects / changes

by type.

• Effort by change / defect fix.

31
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Using software issue trackers effectively can improve issue resolution time:

• Herzig, K., Just, S., and Zeller, A. ICSE 2013. “It’s not a bug, it’s a feature”

• Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schröter, A., and Weiss, C. TSE 2010. “What makes a good

bug report?”

Relationship of defects and vulnerabilities is an active area of research:

• Camilo, F., Meneely, A., and Nagappan, M. MSR 2015 – Do bugs foreshadow vulnerabilities?

The concept of self-admitted technical debt has been studied using developer comments in code, e.g. “fix-me” “this is a

hack”:

• Giancarlo Sierra, Emad Shihab, Yasutaka Kamei: A survey of self-admitted technical debt. J. Syst. Softw. 152: 70-82

(2019)

Technical debt in ML-enabled systems is starting to get traction:

• Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, Shanping Li: An exploratory study on the introduction and

removal of different types of technical debt in deep learning frameworks. Empir. Softw. Eng. 26(2): 16 (2021)

Technical debt is all about design and architecture issues!

• George Fairbanks: Ur-Technical Debt. IEEE Softw. 37(4): 95-98 (2020)

Research Directions

32
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

33
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

© 2015 Carnegie Mellon University

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Questions?

34
Managing Technical Debt

June 2021

© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Information

Ipek Ozkaya, PhD

Technical Director

Engineering Intelligent Software Systems

Software Solutions Division

Carnegie Mellon University

Software Engineering Institute

email: ozkaya@sei.cmu.edu

For more on technical debt:

https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=6520
For more on software architecture:

http://www.sei.cmu.edu/architecture/

mailto:ozkaya@sei.cmu.edu
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=6520
http://www.sei.cmu.edu/architecture/

