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EXECUTIVE SUMMARY 

Background: Forward deployments to austere areas introduce unique types of injuries. Further, 

conventional injuries can be more difficult to treat due to reduced access to therapeutic 

medicaments or diagnostic tools. Unique biomarkers released in response to injury and illness 

are crucial components of the development of diagnostic devices. Their identification, using 

specific probes, can guide optimal treatment courses. Most biochemically significant proteins in 

taxonomically close organisms have similar amino acid sequences, secondary structures, and 

tertiary structures. Therefore, any probe used to detect a protein biomarker of injury or illness 

must be able to bind to a unique site on the biomarker protein. In order to identify high-affinity 

binding agents to these unique biomarker active sites, small peptides can be synthesized to serve 

as an epitope-mimicking target for library screening methods such as phage display. When a 

protein must be identified preferentially over another closely-related protein, or group of 

proteins, the synthesized peptide should represent the most unique region of the biomarker’s 

amino acid sequence where binding can occur. Selecting and analyzing these unique sequences 

manually with database queries and local software tools are time-consuming, labor intensive, and 

error-prone.  

Objective: To combat the frailties of manual sequence-querying and selection, we designed an 

automated program that retrieves multiple protein amino acid sequences, aligns them, identifies 

unique amino acid subsequences, and generates a graphic to verify sequence correspondence to a 

region likely on to be the protein’s exterior surface, all presented in a simple user interface.  

Methods: A script in the Python programming language was designed to perform the objectives 

above. The Biopython and Matplotlib libraries were used for analysis, and the Tkinter 

library was used for the graphical user interface. The ClustalOmegaCommandline library was 

used for controlling the Clustal Omega program to perform sequence alignments locally.  

Results: A sample run of the program compares homologous venom components of two related 

snake species. A user-requested subsequence length of 50 amino acids for each snake’s venom 

component generates a unique target sequence for each component, with visual data showing the 

relative hydrophobicity for each species’ target sequence along its macromolecule length. 

Conclusions: We offer the Peptide Uniqueness Quantification Tool (PUnQT), a Python 

program that automates the generation of unique peptide targets for high-throughput protein 

target selection in a rapid and straightforward manner while minimizing possible user error. 
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INTRODUCTION 

 Austere deployment environments typically lack the expensive and large but accurate and 

precise diagnostic tools found in modern hospital settings. Accurate and rapid diagnosis of injury 

or disease is crucial for selection of the proper treatment course and paramount to implementing 

successful treatments. The creation of a diagnostic tool that is portable, inexpensive, rapid, and 

accurate will vastly improve the ability of Corpsmen to select the proper treatment course in field 

operations. In the area of diagnostic device development, two promising technologies are the 

surface acoustic wave (SAW) and optical sensor platforms for detecting protein-peptide 

interactions (Mujahid, Afzal, & Dickert, 2019; Mukundan et al.). Although they are not fieldable 

at the time of writing, surface acoustic wave devices are currently being developed for use as a 

small handheld diagnostic device ("Aviana Molecular Technologies," 2020). While the tool 

described herein was developed for these potential field devices, it would be well-suited to any 

other diagnostic method that requires generating peptide molecular targets.  

 Protein-protein and protein-peptide interactions are the basis of many biological 

processes. While biological studies of protein interactions can employ isolated, full proteins 

(Cossins & Lawson, 2015), the full proteins of interest may have several binding sites shared 

with other, irrelevant proteins. Alternatively, a sequence-specific span of the protein can be 

synthesized de novo to serve as an experimental target for experiments involving specific 

protein-protein interactions. These shorter, representative peptides could provide the protein 

macromolecules’ active sites or other clinically-relevant features of interest (Titus, Kay, Glaser, 

& Hwang, 2017). Use of SAW devices, optical sensor devices, or current detection modalities 

such as lateral-flow strips or enzyme-linked immunoassays (ELISAs), would require highly 

specific and selective probe molecules which are usually found through a massive screening 

procedure.  

Previously, our group used phage display panning methodology to yield phages that bind 

with high affinity and specificity to sites on the venom peptides of several snake species (Titus et 

al., 2017). Phage display allows researchers to rapidly identify short peptides that will bind to 

biological targets (Fralick, Chadha-Mohanty, & Li, 2008). The phages that bind to biological 

targets can be used to identify biomarkers that exist only in a single species of snake, which will 

expedite the differential diagnosis of snake bites and guide subsequent treatment. While the use 

of whole venoms as phage display targets would expose the phages to many irrelevant and/or 
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nonspecific binding sites shared among all snake venoms, a synthesized peptide will optimize 

identification of phages that bind to unique venom components of differing snake species. To act 

as an appropriate species-specific binding target, the chosen peptide subsequence must be part of 

a protein that is at a sufficient concentration within a particular venom, and be specific to the 

envenoming species. For this project, we analyzed the major venom components of North 

American venomous snakes; phospholipase A2, serine proteinase, and metalloproteinase 

(Engmark et al., 2017; Tasoulis & Isbister, 2017). The toxic component that has the most 

sequence uniqueness between species will serve as the protein macromolecule from which the 

unique peptide subsequences will be chosen.  

 Manual selection of viable peptide sequences to find target sequences in the above 

screening procedures involved time-consuming steps including extensive database querying, 

complex software tools, and secondary analysis of the peptide sequence, all of which facilitate 

human error. Automating the selection of protein targets by in silico analysis will lead to higher 

throughput of biomarker candidates and will generate a specific diagnostic test more rapidly than 

selection of peptide targets manually. An alternative for manual selection of viable peptide 

sequences is a single software tool that automates peptide selection and analysis, curtailing the 

time costs and minimizing error. To properly identify a unique amino acid subsequence within 

the protein to act as a peptide target, such a tool must perform five steps: 1) retrieve the protein 

sequences of each snake species’ homologous venom components, 2) align these protein 

sequences to one another, 3) identify the amino acid subsequence that is most unique to each 

homologous protein sequence, 4) allow a researcher to verify that the subsequence corresponds 

to a hydrophilic region on the macromolecule (i.e., a region likely to be accessible to interacting 

molecules within an aqueous environment) by providing a graphical representation of 

hydrophobicity/hydrophilicity across the sequence, and 5) sum the amount of residues in the 

sequence that affect lab-based peptide synthesis.  

 To address all of these concerns, we developed a tool within the Python programming 

environment to automatically generate a maximally-unique peptide sequence which requires only 

user input of the UniProt identification numbers of the proteins of interest. This software, 

Peptide Uniqueness Quantification Tool (PUnQT), was written to assist with the selection of 

peptide targets for discriminating between species-specific snake venom proteins. However, it 
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has broad applicability to situations in which individual, unique subsequences are needed within 

a group of homologous protein sequences. 

MATERIALS AND METHODS 
Materials  

Hardware. PC with Windows 10 Enterprise (64-bit), Intel Core i5-8350U CPU @ 1.70 GHz, and 

8.00 GB memory. However, PUnQT should be usable with any operating system/hardware 

which includes the following parameters: (1) internet access to query UniProt’s online database 

and (2) the software suite used. 

Software. Python programming environment (version 3.6) ("Python,") with its built-in urllib 

module, the Biopython Python library (version 1.72) ("Clustal Omega,") including 

Biopython’s ExPASy module, Biopython’s SeqIO module, and Biopython’s 

ClustalOmegaCommandline module, the Clustal Omega multiple sequence alignment tool 

(version 1.2.2, Windows 64-bit) ("Matplotlib,"), Matplotlib Python library (version 3.0.3) 

(Kyte & Doolittle, 1982), and Tkinter GUI library (Tkinter, 2020). 

 

Procedures 

Sequence querying - The script first prompts the user to provide the number of protein sequences 

they wish to analyze to reveal a unique short protein target peptide, followed by the UniProt 

protein identifiers for each sequence. This portion of the script uses the Biopython library’s 

ExPASy module to query FASTA-format files from the UniProt protein database. The FASTA 

files are converted by the Biopython library’s SeqIO module into a sequence (Seq) object that 

includes its protein identification information and protein sequence. 

 

Sequence alignment - UniProt uses the Clustal Omega multiple sequence alignment software to 

perform its alignments. As an alternative to Biopython’s built-in alignment tool, the library 

provides the ClustalOmegaCommandline module, a wrapper for the Clustal Omega software. 

The UniProt database does not allow programmatic access to sequence alignment queries or 

retrievals. While the Biopython library contains a pairwise sequence alignment module, it does 

not contain a multiple sequence alignment module, making it unsuitable for cases with more than 
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two query protein sequences. Further, Biopython’s pairwise alignment tool uses a different 

alignment algorithm than UniProt’s, creating an inconsistency between the tool and the results 

obtained if a user prepares the sequence data by using the UniProt website and querying an 

alignment locally using Biopython, making a tool like PUnQT even more necessary for 

consistent scientific data. Using the ClustalOmegaCommandline module, PUnQT loads all 

user-provided proteins’ sequences into the alignment tool. Clustal Omega returns an alignment 

object with all sequences aligned with each other, converting missing spans of amino acids from 

the unaligned sequences to dashes (-). 

 

Amino acid subsequence generation – PUnQT prompts the user to provide the desired peptide 

sequence length in a yellow-highlighted field, raising an error if the subsequence is longer than 

the query protein sequences. The aligned sequences are then passed to the 

uniqueness_marker function. This function generates a uniqueness score for each amino acid 

at the amino acid’s position within the aligned sequence. PUnQT iterates over each aligned 

sequence’s length one amino acid at a time, comparing the present amino acid with the other 

amino acid sequences in the same position of the alignment. If the amino acid is different from 

one of the other sequences’ amino acids, PUnQT adds 1 to the index of that amino acid’s 

position on the query sequence; a completely unique amino acid at a given position in a group of 

n query proteins, therefore, will have a score of n-1 at that position. If the amino acid of the 

aligned version of the query sequence is a (-) character, denoting a gap in alignment, the tool 

assigns a 0 to that position and moves to the next one.  

By the end of the sequence, the number at each amino acid position denotes the number 

of sequences from which that amino acid is unique. The script then repeats this for all other 

query protein sequences. 

The sequence scores and the user-specified peptide length are then passed to the 

uniqueness_adder function. The tool creates a sliding window of user-defined peptide length. 

Within the window, the sum of all individual uniqueness scores is generated. This window is 

scanned across each sequence, summing the uniqueness scores at each point, and locating the 

position of the window with the maximal sum over the entire sequence (comprising the sequence 

with the highest average uniqueness of user-defined length). The index of this window is then 
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returned to the main function. The main function then displays the starting index value of the 

most unique amino acid subsequence for each protein, along with the peptide subsequence itself. 

 

Hydrophilicity verification graph/cysteine-methionine count – Groups of hydrophilic residues 

tend to have greater accessibility to water in solution (Kyte & Doolittle, 1982). In PUnQT, the 

aqueous environment accessibility is predicted from Stephen White’s Experimentally 

Determined Hydrophobicity Scale (White, 2011). The user is prompted to give a hydrophobicity 

window size, expressed in number of amino acids. This user-defined value and the protein 

sequences are then passed to the hydrophobicity function. Similar to the uniqueness_adder 

function, this function slides the hydrophobicity window across the sequence, reading the 

subsequences and summing the hydrophobicity values of each amino acid within the window, 

which provides a numerical value for total free energy. The total free energy values of each 

species-specific target sequence are stored in a dictionary. If the sequence reader iterates over a 

dash (-), or other non-amino acid character, nothing is added to the total free energy sum, and the 

next character is considered. The hydrophobicity function returns a dictionary data structure 

in which the sequences are the keys, and a list of the windowed sums is each key’s value. 

This dictionary is then passed to the plotter function, which plots each sequence’s total 

free energy measurements as a function of each sequence’s index number. The span of amino 

acids corresponding to the species-specific target sequence is emphasized as a highlighted, 

yellowed region of the plot. In this way, the user can verify that the index value displayed for the 

unique subsequence corresponds to an area of higher amounts of total free energy.  

The hydrophobicity function also displays a count of methionine and cysteine 

residues within the sequence. The count of each of these hydrophobic residues affect peptide 

synthesis due to their oxidation and/or sulfide bridge-forming properties, with high amounts of 

both residues indicating a more difficult synthesis process (White, 2011). 

 

RESULTS 

Example Analysis: Snake Phospholipase A2: The snake phospholipase A2 sequence was 

chosen for illustrative purposes, to both show the conservation of most snake species’ destructive 

venom sequence and to illustrate the discriminatory powers of the tool. Comparisons with serine 

or metalloproteases generate similar results. Executing the program, the user is prompted to give 
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the number of sequences to compare, then to insert UniProt identification numbers for each 

sequence (Figure 1a). In this example, the UniProt identifiers for phospholipase A2 (PLA2) in 

Hardwick’s Spine-Bellied sea snake (Q8UW08) and in the Southern Copperhead snake 

(A0A194AQ80) are used as sample user-provided data. These two species have similar PLA2 

enzymes, but they differ in their sequence enough to demonstrate the tool’s capabilities. 

PUnQT then queries the UniProt database and aligns the sequences using the Clustal 

Omega program. Once the aligned PLA2 sequences are returned, the program refers these 

aligned sequences to the uniqueness_marker function. It also saves the aligned sequences in 

a text file for later viewing. The program then prompts the user to specify the sequence length of 

the desired peptide for future phage display experiments, using the value in the 

uniqueness_adder function. In this example, the chosen sequence length is 50 amino acids. 

The program outputs the maximally unique species-specific target sequence for each UniProt 

identifier, as well as its starting index number within the query sequence (Figure 1b). 

Finally, the program prompts the user to specify the window size for the hydrophilicity 

plot. Usually, this window size is the same size as the subsequence length but the option is left to 

the user to show coarser (larger window size) or finer (smaller window size) resolution 

throughout the query protein in cases of a larger synthesized peptide or a specific desired 

positioning relative to hydrophilic areas. In this example, the chosen resolution of the 

hydrophobic window is five amino acids (Figure 1c). 

The program uses the plotter function to return a graph showing each protein’s 

hydrophilicity summation over the entire protein at the user-defined resolution, highlighting the 

area of the greatest uniqueness in yellow. A .png file of this graph is also saved for later review. 

In this example, the most unique span of the Copperhead snake sequence is in a region of high 

total free energy, implying a higher likelihood of this span of peptides being in an aqueous-

accessible region of the protein than the most unique sequence of the Hardwick’s sea snake. 

Further, the methionine/cysteine count is shown (Figure 1d). 

 

DISCUSSION 
In this report, we offer PUnQT, a graphical user interface-directed Python program that 

automates the 1) retrieval of amino acid sequences of multiple proteins, 2) alignment of all 

protein sequences to one another, 3) identification of the amino acid subsequence most unique to 
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each protein within a group of homologous species, 4) generation of a graphic to verify that the 

sequence corresponds to a region likely to be exposed to the surrounding aqueous environment, 

and 5) provides a count of amino acids with special implications for peptide synthesis. PUnQT’s 

automation eliminates time-consuming and user error-prone tasks of website querying, and 

generates identical alignment data to that on the UniProt database website. The tool generates its 

alignments within seconds locally, rather than requiring several minutes when queried on the 

website. This tool assists the well-developed technique of protein synthesis to generate high-

throughput protein targets, and when used to analyze several different homologous proteins, the 

likelihood of choosing an optimal, or close to optimal, peptide target sequence is high. 

The representative peptide derived from PUnQT can then be used in conjunction with 

high-throughput selective processes, such as phage display, to yield high-affinity complementary 

peptides (Fralick et al., 2008; Titus et al., 2017). Complementary peptides can isolate epitopes or 

mimotopes for targeting pathogens (Gorr, Flory, & Schumacher, 2019), manufacturing 

biomarker probes (Hwang et al., 2017), and inhibiting toxic proteins (Titus et al., 2017). 

PUnQT provides a solid foundation to improve target peptides; however, successfully 

predicting a protein’s peptide sequence that can serve as a biological target depends upon more 

attributes than hydrophobicity, methionine-cysteine counts, and non-identical amino acid 

residues. The possibility of salt-bridge interactions, secondary structures as a result of disulfide 

binding within the peptide, or other confounding factors are possible, but cannot be predicted 

with this tool alone and require further scrutiny by researchers after generating their unique 

sequences. Gathering and interpreting as much information about the target protein as possible 

would result in more accurate predictions of successful peptide targets. Informed choice when 

choosing target peptides will yield peptide sequences that will reliably act as biological targets 

and promote easier, higher throughput, and less costly immunological studies. 

 

MILITARY SIGNIFICANCE 

 The military is interested in diagnostic biomarkers for wound healing, traumatic brain 

injury (TBI), and many others (Beidler et al., 2008; Hahm, Glaser, & Elster, 2011; Marion, 

Curley, Schwab, & Hicks, 2011). The PUnQT tool can assist in identifying the most unique span 

within a set of closely-related endogenous human proteins biomarkers of wound healing or TBI. 
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For example, identification of highly-specific epitopes using the PUnQT tool may accelerate the 

identification of military biosensor-based diagnostic targets, improving treatment outcomes and 

increasing warfighter readiness. Current diagnostics in controlled medical environments use 

ELISAs for diagnostic purposes; the PUnQT tool can be used presently to generate peptide 

targets for use with ELISAs as an alternative to antibody-based molecular probes. 
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FIGURES 

 

 
 

Figure 1. PUnQT graphical user interface and sample data. The graphical user interface of 

PUnQT is shown, with A) the number of aligned sequences requested/UniProt ID numbers, the 

B) calculated most unique subsequence for each aligned sequence, C) a hydrophilicity plot, and 

D) a methionine/cysteine count. 
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SOURCE CODE 

# -*- coding: utf-8 -*- 
""" 
@author: Steve Moffett 
""" 
from tkinter import * 
from Bio import ExPASy 
import urllib 
from urllib import request 
from Bio import SeqIO 
from Bio.Align.Applications import ClustalOmegaCommandline 
import os 
import matplotlib.pyplot as plt 
import random 
from PIL import ImageTk, Image 
class App: 
def __init__(self, master): 
def fieldsallocator(): 
"""This function uses Tkinter's functionality to populate an 
initial GUI window.""" 
self.num_seqs.configure(bg="white") 
self.numseqbutton.configure(bg="white") 
self.proteinID.configure(bg="yellow") 
seq_number = int(self.num_seqs.get()) 
for i in range(1,seq_number+1): 
self.seqs.append(Entry(frame, bg='yellow')) 
rownum = 1 
for j in self.seqs: 
j.grid(row=rownum+1, column=1) 
rownum += 1 
def proteinIDsubmitter(): 
"""This function extends the Tkinter functionality to use the 
data 
in the fields of the UniProt ID numbers to directly query the 
website for sequence information""" 
seq_number = int(self.num_seqs.get()) 
self.proteinID.configure(bg="white") 
for i in self.seqs: 
i.configure(bg='white') 
for i in self.seqs: 
seq0 = 
urllib.request.urlopen("http://www.uniprot.org/uniprot/"+i.get()
+".xml") 
seq_record = SeqIO.read(seq0, 'uniprot-xml') 
self.protdict[i.get()] = str(seq_record.seq) 
self.seq_record_list.append(seq_record) 
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self.seq_names_list.append(i.get()) 
"""This part of the function takes a list of seq records and 
makes them into a fasta 
file, then passes it to clustal omega for alignment. It 
returns a list of 
sequence records to the main function.""" 
namesString = "" 
for i in self.seq_names_list: 
namesString = i + "_" + namesString 
handle = open(namesString+"resultfile.fasta","w") 
for sequences in self.seq_record_list: 
SeqIO.write(sequences,handle,"fasta") 
handle.close() 
#names in and out file for the clustal omega program 
in_file = namesString+ "resultfile.fasta" 
out_file = namesString+"alignedresultfile.fasta" 
#this field should be changed to reflect the file path of the 
#clustal omega executable location 
clustalo_exe = r"C:\clustalomega\clustalo.exe" 
assert os.path.isfile(clustalo_exe), "Clustal Omega 
executable missing" 
#performs sequence alignment 
clustalo_cline = ClustalOmegaCommandline(clustalo_exe, 
infile=in_file,\ 
outfile=out_file, verbose=True, auto=True) 
aligned_object = clustalo_cline() 
#writes sequence results to file 
for seq_record in SeqIO.parse(out_file, "fasta"): 
self.seq_list.append(str(seq_record.seq)) 
print("Sequences Aligned, results files available.") 
self.window_size.configure(bg="yellow") 
self.window_size_button.configure(bg="yellow") 
def uniqueness(): 
self.window_size.configure(bg="white") 
self.window_size_button.configure(bg="white") 
self.hydro_window_size.configure(bg="yellow") 
self.hydrophobicity_button.configure(bg="yellow") 
windowsize = int(self.window_size.get()) 
seq_lengths = [] 
for i in self.seq_list: 
seq_lengths.append(int(len(i))) 
if windowsize > min(seq_lengths): 
print("Too large peptide size. Please enter a shorter \ 
interval than the length of the query proteins: ") 
else: 
unique_ints, self.SA = uniqueness_marker(self.seq_list, 
min(seq_lengths)) 
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self.maxvalindex = 
uniqueness_adder(unique_ints,windowsize, min(seq_lengths)) 
for keys in range(0,len(self.maxvalindex)): 
print("The input sequence 
"+self.seq_names_list[keys]+"'s unique sequence is:") 
print(self.SA[keys][self.maxvalindex[keys]:self.maxvalindex[keys
]+windows 
ize]) 
print("The starting index of this subsequence is: 
"+str(self.maxvalindex[keys])+"\n") 
for i in range(0,len(self.maxvalindex)): 
self.unique_subseq.append(Text(frame, width=60, 
height=5)) 
rownum = 1 
for j in range(0,len(self.maxvalindex)): 
subseq_span = 
str(self.SA[j][self.maxvalindex[j]:self.maxvalindex[j]+windowsiz
e]) 
start_ind = str(self.maxvalindex[j]) 
self.unique_subseq[j].grid(row=rownum+1, column=2) 
self.unique_subseq[j].insert('1.0', "The input 
sequence "+self.seq_names_list[j]+"'s unique sequence is: \n") 
self.unique_subseq[j].insert('2.0', subseq_span+"\n") 
self.unique_subseq[j].insert('3.0', "The starting 
index of this subsequence is: "+start_ind) 
rownum += 1 
def hydrophobicityfunc(): 
hydro, methionine, cysteine = 
hydrophobicity(int(self.hydro_window_size.get()),self.SA) 
plotter(hydro, self.seq_names_list, 
int(self.hydro_window_size.get()), self.maxvalindex) 
print("Methionine/Cysteine counts: \n") 
self.metcys.grid(row=6, column=3, sticky=W) 
self.metcys.insert('1.0',"Methionine/Cysteine counts: \n") 
for i in range(0,len(self.seq_names_list)): 
self.metcys.insert(str(float(i+2)),self.seq_names_list[i] 
+ " Methionine: " + str(methionine[i]) + " Cysteine: "\ 
+str(cysteine[i])+"\n") 
def uniqueness_marker(seq_recs, limiter): 
'''This function will generate the uniqueness score for each 
protein sequence 
by comparing it with each letter in the same position of the 
other sequences. 
It will print each sequence and its general uniqueness score, 
and it will 
return a dictionary containing the number (first, second, 
third...) of the 
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sequence you put in as a key, with a list of its uniqueness 
ints as its 
values.''' 
uniquedict = ("Aviana Molecular Technologies," 2020) 
SA = [] 
numseqs = len(seq_recs) 
for i in seq_recs: 
SA.append(i) 
for i in range(0,numseqs): 
'''This loop goes through each sequence, its sub-loops 
comparing each of 
the other letters at that position (including its own). 
If it is unique, 
the uniqueness score for that sequence and in that 
position goes up. If 
it is the same, the uniqueness score does not change.''' 
uniqueseq = [] 
uniquestr = "" 
for j in range(0,limiter): 
unique = 0 
for l in range(0,numseqs): 
if SA[i][j] == "-": 
unique += 0 
elif SA[i][j] != SA[l][j]: 
unique += 1 
else: 
unique += 0 
uniqueseq += [unique] 
uniquestr += str(unique) 
uniquedict[i] = uniqueseq 
return uniquedict, SA 
def uniqueness_adder(uniquedic, windowsize, limiter): 
"""This function takes the dictionary containing the number 
of sequence 
(1,2,3...) as keys and their uniqueness score in a list, and 
the userspecified 
window size, and adds up the uniqueness score with 
a sliding 
window. Once it finds the first instance of the window with 
the highest 
value, it returns a new dictionary with the same keys but the 
values are 
the indices of the start of the max values. This data can be 
used with the 
stringArrays list to identify the character strings of the 
most unique 
part of the sequences.""" 
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maxvalindex = {} 
for key in range(0,len(uniquedic)): 
presentseq = uniquedic[key] 
scorelist = [] 
startindex = 0 
wintotal = 0 
while startindex <= len(presentseq)-windowsize: 
for position in 
range(startindex,startindex+windowsize): 
wintotal += presentseq[position] 
scorelist += [wintotal] 
wintotal = 0 
startindex += 1 
maxvalindex[key] = scorelist.index(max(scorelist)) 
return maxvalindex 
def hydrophobicity(windowsize,stringArray): 
"""This function both assigns a hydrophobicity value for each 
residue 
based on Stephen H White's hydrophobicity scale, and also 
calculates 
the hydophobicity/philicity value alone a window of userdefined 
size. It takes as windowsize integer and a list of strings 
containing 
sequence information, and returns a dictionary with the 
sliding 
window values as well as the number of methionine and 
cysteine 
residues in the sequence (important for peptide synthesis 
considerations).""" 
self.hydro_window_size.configure(bg="white") 
self.hydrophobicity_button.configure(bg="white") 
#hydroDict is based on Stephen H. White's hydrophobicity 
scale 
hydroDict = {'A': 0.33, 'R':1.00, 'N':0.43, 'D':0.50, 
'C':0.22, 'E':0.12, \ 
'Q':0.19, 'G':1.14, 'H':-0.06, 'I':-0.81, 'L':-0.69, 'K':1.81, 
'M':-0.44, \ 
'F':-0.58, 'P':-0.31, 'S':0.33, 'T':0.11, 'W':-0.24, 'Y':0.23, 
'V':-0.53, '.':0, '-':0} 
resultsDict = {} 
McountList = [] 
CcountList = [] 
#sums net hydrophobicity within window and also counts M and 
C residues 
for sequence in stringArray: 
McountList += [sequence.count('M')] 
CcountList += [sequence.count('C')] 
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wintotal = 0 
startChar = 0 
seqtotal = [] 
countdown = 1 
while startChar <= len(sequence)-windowsize: 
for letter in range(startChar,startChar+windowsize): 
wintotal += hydroDict[sequence[letter]] 
seqtotal += [wintotal] 
wintotal = 0 
startChar += 1 
while startChar <= len(sequence): 
for letter in range(startChar,startChar+windowsizecountdown): 
wintotal += hydroDict[sequence[letter]] 
seqtotal += [wintotal] 
wintotal = 0 
startChar += 1 
countdown += 1 
resultsDict[sequence] = seqtotal 
return resultsDict, McountList, CcountList 
def plotter(hydrodict, names, hydrowindow, maxvalindex): 
"""This function plots the hydrophobicity for presentation 
within 
the GUI frame, and saves a copy of it as a .png file for the 
user's 
records.""" 
maxind = 0 
keyname = random.choice(list(hydrodict)) 
x = range(len(hydrodict[keyname])) 
uni = 0 
mainlines = [] 
namesString = "" 
for i in names: 
namesString = i+ "_" + namesString 
for key in hydrodict: 
y = hydrodict[key] 
mainline, = plt.plot(y, label=names[uni]) 
mainlines.append(mainline) 
uni += 1 
plt.plot(x[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow],
\ 
y[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow], 
c='yellow',\ 
lw=5, zorder=-1) 
maxind += 1 
plt.xlabel("Aligned Sequence Index (in 
"+str(hydrowindow)+"AA window)") 
plt.ylabel("Total Free Energy (kcal/mol)") 
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plt.title("Hydrophilicity") 
plt.legend(handles=mainlines) 
plt.savefig(namesString+'hydrophobicity_figure.png',dpi=80) 
image = Image.open(namesString+'hydrophobicity_figure.png') 
photo = ImageTk.PhotoImage(image) 
label = Label(frame, image=photo) 
label.image = photo 
label.grid(row=2, column=3, columnspan=4, rowspan=4, 
sticky=N+W) 
return 
"""The following sections of code initialize the frame for the 
GUI 
and then run the commands in the given functions above. It will 
yield 
a unique subsequence for each query sequence, as well as a 
hydrophilicity 
plot that assists in picking an external-facing part of the 
protein. In 
addition, it yields a count of methionines and cysteines in the 
sequences, 
which have bearing on the ease of peptide synthesis.""" 
#initializes GUI frame 
frame = Frame(master) 
frame.grid() 
#Quit button 
self.quitbutton = Button( 
frame, text="QUIT", fg="red", command=frame.quit 
) 
self.quitbutton.grid(row=0, column=0, sticky=W) 
#Label and field for Num of Seqs 
self.num_seqs = Entry(frame, bg="yellow") 
self.num_seqs.grid(row=1, column=1) 
#button to generate fields for number of seqs 
self.numseqbutton = Button(frame, text="Submit # sequences", 
bg="yellow", command=fieldsallocator) 
self.numseqbutton.grid(row=1, column=0) 
self.seqs = [] 
#button to get protein codes --> seq records and name lists 
self.proteinID = Button(frame, text="Submit UniProt IDs", 
command=proteinIDsubmitter) 
self.proteinID.grid(row=2, column=0) 
self.protdict = {} 
self.seq_list = [] 
self.seq_record_list = [] 
self.seq_names_list = [] 
#populates a window for the peptide window size button 
#and calculates the uniqueness 
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self.window_size = Entry(frame) 
self.window_size.grid(row=1, column=3) 
self.window_size_button = Button(frame, text="Peptide window 
size", command=uniqueness) 
self.window_size_button.grid(row=1, column=2) 
self.maxvalindex = {} 
self.unique_subseq = [] 
#field to get hydrophobicity window size 
self.hydro_window_size = Entry(frame) 
self.hydro_window_size.grid(row=1, column=5) 
self.hydrophobicity_button = Button(frame, text="Hydro window 
size", command=hydrophobicityfunc) 
self.hydrophobicity_button.grid(row=1, column=4) 
self.metcys = Text(frame, width=40, height=4) 
if __name__ == '__main__': 
root = Tk() 
root.title("PUnQT Ver 2.0") 
app = App(root) 
root.mainloop() 
root.destroy() 
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