

NAVAL MEDICAL RESEARCH UNIT SAN ANTONIO

PROTEIN SEQUENCE-BASED DESIGN AND ANALYSIS SOFTWARE FOR THE

DEVELOPMENT OF DIAGNOSIS TOOLS

STEVEN X. MOFFETT, PHD; DAVID J. LEMON, PHD; APRIL A. FORD, BS; HOLLY C. MAY, PHD;
EUN Y. HUH, MS; YOON Y. HWANG, PHD

MAXILLOFACIAL INJURY AND DISEASE

CRANIOFACIAL HEALTH AND RESTORATIVE MEDICINE

NAMRU-SA REPORT # 2020-607

Approved for public release; distribution is unlimited

1

DECLARATION OF INTEREST

The views expressed in this article are those of the authors and do not necessarily reflect the

official policy or position of the Department of the Navy, Department of Defense, nor the U.S.

Government. This work was funded by Defense Health Agency using work unit number G1716.

Authors are employees of the U.S. Government. This work was prepared as part of their official

duties. Title 17 USC §105 provides that ‘copyright protection under this title is not available for

any work of the US Government.’ Title 17 USC §101 defines a US Government work as a work

prepared by a military service member or employee of the US Government as part of that

person’s official duties.

06/16/2021

3

TABLE OF CONTENTS

ABBREVIATIONS .. 4

EXECUTIVE SUMMARY ... 5

INTRODUCTION .. 6

MATERIALS AND METHODS ... 8

RESULTS .. 10

DISCUSSION ... 11

MILITARY SIGNIFICANCE ... 12

REFERENCES .. 14

FIGURES ... 15

SOURCE CODE .. 16

4

ABBREVIATIONS

PUnQT Peptide Uniqueness Quantification Tool

PLA2 Phospholipase A2

SAW Surface Acoustic Wave

TBI Traumatic Brain Injury

5

EXECUTIVE SUMMARY

Background: Forward deployments to austere areas introduce unique types of injuries. Further,

conventional injuries can be more difficult to treat due to reduced access to therapeutic

medicaments or diagnostic tools. Unique biomarkers released in response to injury and illness

are crucial components of the development of diagnostic devices. Their identification, using

specific probes, can guide optimal treatment courses. Most biochemically significant proteins in

taxonomically close organisms have similar amino acid sequences, secondary structures, and

tertiary structures. Therefore, any probe used to detect a protein biomarker of injury or illness

must be able to bind to a unique site on the biomarker protein. In order to identify high-affinity

binding agents to these unique biomarker active sites, small peptides can be synthesized to serve

as an epitope-mimicking target for library screening methods such as phage display. When a

protein must be identified preferentially over another closely-related protein, or group of

proteins, the synthesized peptide should represent the most unique region of the biomarker’s

amino acid sequence where binding can occur. Selecting and analyzing these unique sequences

manually with database queries and local software tools are time-consuming, labor intensive, and

error-prone.

Objective: To combat the frailties of manual sequence-querying and selection, we designed an

automated program that retrieves multiple protein amino acid sequences, aligns them, identifies

unique amino acid subsequences, and generates a graphic to verify sequence correspondence to a

region likely on to be the protein’s exterior surface, all presented in a simple user interface.

Methods: A script in the Python programming language was designed to perform the objectives

above. The Biopython and Matplotlib libraries were used for analysis, and the Tkinter

library was used for the graphical user interface. The ClustalOmegaCommandline library was

used for controlling the Clustal Omega program to perform sequence alignments locally.

Results: A sample run of the program compares homologous venom components of two related

snake species. A user-requested subsequence length of 50 amino acids for each snake’s venom

component generates a unique target sequence for each component, with visual data showing the

relative hydrophobicity for each species’ target sequence along its macromolecule length.

Conclusions: We offer the Peptide Uniqueness Quantification Tool (PUnQT), a Python

program that automates the generation of unique peptide targets for high-throughput protein

target selection in a rapid and straightforward manner while minimizing possible user error.

6

INTRODUCTION

 Austere deployment environments typically lack the expensive and large but accurate and

precise diagnostic tools found in modern hospital settings. Accurate and rapid diagnosis of injury

or disease is crucial for selection of the proper treatment course and paramount to implementing

successful treatments. The creation of a diagnostic tool that is portable, inexpensive, rapid, and

accurate will vastly improve the ability of Corpsmen to select the proper treatment course in field

operations. In the area of diagnostic device development, two promising technologies are the

surface acoustic wave (SAW) and optical sensor platforms for detecting protein-peptide

interactions (Mujahid, Afzal, & Dickert, 2019; Mukundan et al.). Although they are not fieldable

at the time of writing, surface acoustic wave devices are currently being developed for use as a

small handheld diagnostic device ("Aviana Molecular Technologies," 2020). While the tool

described herein was developed for these potential field devices, it would be well-suited to any

other diagnostic method that requires generating peptide molecular targets.

 Protein-protein and protein-peptide interactions are the basis of many biological

processes. While biological studies of protein interactions can employ isolated, full proteins

(Cossins & Lawson, 2015), the full proteins of interest may have several binding sites shared

with other, irrelevant proteins. Alternatively, a sequence-specific span of the protein can be

synthesized de novo to serve as an experimental target for experiments involving specific

protein-protein interactions. These shorter, representative peptides could provide the protein

macromolecules’ active sites or other clinically-relevant features of interest (Titus, Kay, Glaser,

& Hwang, 2017). Use of SAW devices, optical sensor devices, or current detection modalities

such as lateral-flow strips or enzyme-linked immunoassays (ELISAs), would require highly

specific and selective probe molecules which are usually found through a massive screening

procedure.

Previously, our group used phage display panning methodology to yield phages that bind

with high affinity and specificity to sites on the venom peptides of several snake species (Titus et

al., 2017). Phage display allows researchers to rapidly identify short peptides that will bind to

biological targets (Fralick, Chadha-Mohanty, & Li, 2008). The phages that bind to biological

targets can be used to identify biomarkers that exist only in a single species of snake, which will

expedite the differential diagnosis of snake bites and guide subsequent treatment. While the use

of whole venoms as phage display targets would expose the phages to many irrelevant and/or

7

nonspecific binding sites shared among all snake venoms, a synthesized peptide will optimize

identification of phages that bind to unique venom components of differing snake species. To act

as an appropriate species-specific binding target, the chosen peptide subsequence must be part of

a protein that is at a sufficient concentration within a particular venom, and be specific to the

envenoming species. For this project, we analyzed the major venom components of North

American venomous snakes; phospholipase A2, serine proteinase, and metalloproteinase

(Engmark et al., 2017; Tasoulis & Isbister, 2017). The toxic component that has the most

sequence uniqueness between species will serve as the protein macromolecule from which the

unique peptide subsequences will be chosen.

 Manual selection of viable peptide sequences to find target sequences in the above

screening procedures involved time-consuming steps including extensive database querying,

complex software tools, and secondary analysis of the peptide sequence, all of which facilitate

human error. Automating the selection of protein targets by in silico analysis will lead to higher

throughput of biomarker candidates and will generate a specific diagnostic test more rapidly than

selection of peptide targets manually. An alternative for manual selection of viable peptide

sequences is a single software tool that automates peptide selection and analysis, curtailing the

time costs and minimizing error. To properly identify a unique amino acid subsequence within

the protein to act as a peptide target, such a tool must perform five steps: 1) retrieve the protein

sequences of each snake species’ homologous venom components, 2) align these protein

sequences to one another, 3) identify the amino acid subsequence that is most unique to each

homologous protein sequence, 4) allow a researcher to verify that the subsequence corresponds

to a hydrophilic region on the macromolecule (i.e., a region likely to be accessible to interacting

molecules within an aqueous environment) by providing a graphical representation of

hydrophobicity/hydrophilicity across the sequence, and 5) sum the amount of residues in the

sequence that affect lab-based peptide synthesis.

 To address all of these concerns, we developed a tool within the Python programming

environment to automatically generate a maximally-unique peptide sequence which requires only

user input of the UniProt identification numbers of the proteins of interest. This software,

Peptide Uniqueness Quantification Tool (PUnQT), was written to assist with the selection of

peptide targets for discriminating between species-specific snake venom proteins. However, it

8

has broad applicability to situations in which individual, unique subsequences are needed within

a group of homologous protein sequences.

MATERIALS AND METHODS
Materials

Hardware. PC with Windows 10 Enterprise (64-bit), Intel Core i5-8350U CPU @ 1.70 GHz, and

8.00 GB memory. However, PUnQT should be usable with any operating system/hardware

which includes the following parameters: (1) internet access to query UniProt’s online database

and (2) the software suite used.

Software. Python programming environment (version 3.6) ("Python,") with its built-in urllib

module, the Biopython Python library (version 1.72) ("Clustal Omega,") including

Biopython’s ExPASy module, Biopython’s SeqIO module, and Biopython’s

ClustalOmegaCommandline module, the Clustal Omega multiple sequence alignment tool

(version 1.2.2, Windows 64-bit) ("Matplotlib,"), Matplotlib Python library (version 3.0.3)

(Kyte & Doolittle, 1982), and Tkinter GUI library (Tkinter, 2020).

Procedures

Sequence querying - The script first prompts the user to provide the number of protein sequences

they wish to analyze to reveal a unique short protein target peptide, followed by the UniProt

protein identifiers for each sequence. This portion of the script uses the Biopython library’s

ExPASy module to query FASTA-format files from the UniProt protein database. The FASTA

files are converted by the Biopython library’s SeqIO module into a sequence (Seq) object that

includes its protein identification information and protein sequence.

Sequence alignment - UniProt uses the Clustal Omega multiple sequence alignment software to

perform its alignments. As an alternative to Biopython’s built-in alignment tool, the library

provides the ClustalOmegaCommandline module, a wrapper for the Clustal Omega software.

The UniProt database does not allow programmatic access to sequence alignment queries or

retrievals. While the Biopython library contains a pairwise sequence alignment module, it does

not contain a multiple sequence alignment module, making it unsuitable for cases with more than

9

two query protein sequences. Further, Biopython’s pairwise alignment tool uses a different

alignment algorithm than UniProt’s, creating an inconsistency between the tool and the results

obtained if a user prepares the sequence data by using the UniProt website and querying an

alignment locally using Biopython, making a tool like PUnQT even more necessary for

consistent scientific data. Using the ClustalOmegaCommandline module, PUnQT loads all

user-provided proteins’ sequences into the alignment tool. Clustal Omega returns an alignment

object with all sequences aligned with each other, converting missing spans of amino acids from

the unaligned sequences to dashes (-).

Amino acid subsequence generation – PUnQT prompts the user to provide the desired peptide

sequence length in a yellow-highlighted field, raising an error if the subsequence is longer than

the query protein sequences. The aligned sequences are then passed to the

uniqueness_marker function. This function generates a uniqueness score for each amino acid

at the amino acid’s position within the aligned sequence. PUnQT iterates over each aligned

sequence’s length one amino acid at a time, comparing the present amino acid with the other

amino acid sequences in the same position of the alignment. If the amino acid is different from

one of the other sequences’ amino acids, PUnQT adds 1 to the index of that amino acid’s

position on the query sequence; a completely unique amino acid at a given position in a group of

n query proteins, therefore, will have a score of n-1 at that position. If the amino acid of the

aligned version of the query sequence is a (-) character, denoting a gap in alignment, the tool

assigns a 0 to that position and moves to the next one.

By the end of the sequence, the number at each amino acid position denotes the number

of sequences from which that amino acid is unique. The script then repeats this for all other

query protein sequences.

The sequence scores and the user-specified peptide length are then passed to the

uniqueness_adder function. The tool creates a sliding window of user-defined peptide length.

Within the window, the sum of all individual uniqueness scores is generated. This window is

scanned across each sequence, summing the uniqueness scores at each point, and locating the

position of the window with the maximal sum over the entire sequence (comprising the sequence

with the highest average uniqueness of user-defined length). The index of this window is then

10

returned to the main function. The main function then displays the starting index value of the

most unique amino acid subsequence for each protein, along with the peptide subsequence itself.

Hydrophilicity verification graph/cysteine-methionine count – Groups of hydrophilic residues

tend to have greater accessibility to water in solution (Kyte & Doolittle, 1982). In PUnQT, the

aqueous environment accessibility is predicted from Stephen White’s Experimentally

Determined Hydrophobicity Scale (White, 2011). The user is prompted to give a hydrophobicity

window size, expressed in number of amino acids. This user-defined value and the protein

sequences are then passed to the hydrophobicity function. Similar to the uniqueness_adder

function, this function slides the hydrophobicity window across the sequence, reading the

subsequences and summing the hydrophobicity values of each amino acid within the window,

which provides a numerical value for total free energy. The total free energy values of each

species-specific target sequence are stored in a dictionary. If the sequence reader iterates over a

dash (-), or other non-amino acid character, nothing is added to the total free energy sum, and the

next character is considered. The hydrophobicity function returns a dictionary data structure

in which the sequences are the keys, and a list of the windowed sums is each key’s value.

This dictionary is then passed to the plotter function, which plots each sequence’s total

free energy measurements as a function of each sequence’s index number. The span of amino

acids corresponding to the species-specific target sequence is emphasized as a highlighted,

yellowed region of the plot. In this way, the user can verify that the index value displayed for the

unique subsequence corresponds to an area of higher amounts of total free energy.

The hydrophobicity function also displays a count of methionine and cysteine

residues within the sequence. The count of each of these hydrophobic residues affect peptide

synthesis due to their oxidation and/or sulfide bridge-forming properties, with high amounts of

both residues indicating a more difficult synthesis process (White, 2011).

RESULTS

Example Analysis: Snake Phospholipase A2: The snake phospholipase A2 sequence was

chosen for illustrative purposes, to both show the conservation of most snake species’ destructive

venom sequence and to illustrate the discriminatory powers of the tool. Comparisons with serine

or metalloproteases generate similar results. Executing the program, the user is prompted to give

11

the number of sequences to compare, then to insert UniProt identification numbers for each

sequence (Figure 1a). In this example, the UniProt identifiers for phospholipase A2 (PLA2) in

Hardwick’s Spine-Bellied sea snake (Q8UW08) and in the Southern Copperhead snake

(A0A194AQ80) are used as sample user-provided data. These two species have similar PLA2

enzymes, but they differ in their sequence enough to demonstrate the tool’s capabilities.

PUnQT then queries the UniProt database and aligns the sequences using the Clustal

Omega program. Once the aligned PLA2 sequences are returned, the program refers these

aligned sequences to the uniqueness_marker function. It also saves the aligned sequences in

a text file for later viewing. The program then prompts the user to specify the sequence length of

the desired peptide for future phage display experiments, using the value in the

uniqueness_adder function. In this example, the chosen sequence length is 50 amino acids.

The program outputs the maximally unique species-specific target sequence for each UniProt

identifier, as well as its starting index number within the query sequence (Figure 1b).

Finally, the program prompts the user to specify the window size for the hydrophilicity

plot. Usually, this window size is the same size as the subsequence length but the option is left to

the user to show coarser (larger window size) or finer (smaller window size) resolution

throughout the query protein in cases of a larger synthesized peptide or a specific desired

positioning relative to hydrophilic areas. In this example, the chosen resolution of the

hydrophobic window is five amino acids (Figure 1c).

The program uses the plotter function to return a graph showing each protein’s

hydrophilicity summation over the entire protein at the user-defined resolution, highlighting the

area of the greatest uniqueness in yellow. A .png file of this graph is also saved for later review.

In this example, the most unique span of the Copperhead snake sequence is in a region of high

total free energy, implying a higher likelihood of this span of peptides being in an aqueous-

accessible region of the protein than the most unique sequence of the Hardwick’s sea snake.

Further, the methionine/cysteine count is shown (Figure 1d).

DISCUSSION
In this report, we offer PUnQT, a graphical user interface-directed Python program that

automates the 1) retrieval of amino acid sequences of multiple proteins, 2) alignment of all

protein sequences to one another, 3) identification of the amino acid subsequence most unique to

12

each protein within a group of homologous species, 4) generation of a graphic to verify that the

sequence corresponds to a region likely to be exposed to the surrounding aqueous environment,

and 5) provides a count of amino acids with special implications for peptide synthesis. PUnQT’s

automation eliminates time-consuming and user error-prone tasks of website querying, and

generates identical alignment data to that on the UniProt database website. The tool generates its

alignments within seconds locally, rather than requiring several minutes when queried on the

website. This tool assists the well-developed technique of protein synthesis to generate high-

throughput protein targets, and when used to analyze several different homologous proteins, the

likelihood of choosing an optimal, or close to optimal, peptide target sequence is high.

The representative peptide derived from PUnQT can then be used in conjunction with

high-throughput selective processes, such as phage display, to yield high-affinity complementary

peptides (Fralick et al., 2008; Titus et al., 2017). Complementary peptides can isolate epitopes or

mimotopes for targeting pathogens (Gorr, Flory, & Schumacher, 2019), manufacturing

biomarker probes (Hwang et al., 2017), and inhibiting toxic proteins (Titus et al., 2017).

PUnQT provides a solid foundation to improve target peptides; however, successfully

predicting a protein’s peptide sequence that can serve as a biological target depends upon more

attributes than hydrophobicity, methionine-cysteine counts, and non-identical amino acid

residues. The possibility of salt-bridge interactions, secondary structures as a result of disulfide

binding within the peptide, or other confounding factors are possible, but cannot be predicted

with this tool alone and require further scrutiny by researchers after generating their unique

sequences. Gathering and interpreting as much information about the target protein as possible

would result in more accurate predictions of successful peptide targets. Informed choice when

choosing target peptides will yield peptide sequences that will reliably act as biological targets

and promote easier, higher throughput, and less costly immunological studies.

MILITARY SIGNIFICANCE

 The military is interested in diagnostic biomarkers for wound healing, traumatic brain

injury (TBI), and many others (Beidler et al., 2008; Hahm, Glaser, & Elster, 2011; Marion,

Curley, Schwab, & Hicks, 2011). The PUnQT tool can assist in identifying the most unique span

within a set of closely-related endogenous human proteins biomarkers of wound healing or TBI.

13

For example, identification of highly-specific epitopes using the PUnQT tool may accelerate the

identification of military biosensor-based diagnostic targets, improving treatment outcomes and

increasing warfighter readiness. Current diagnostics in controlled medical environments use

ELISAs for diagnostic purposes; the PUnQT tool can be used presently to generate peptide

targets for use with ELISAs as an alternative to antibody-based molecular probes.

14

REFERENCES

Aviana Molecular Technologies. (2020). Retrieved from https://avianamolecular.com/product/
Beidler, S. K., Douillet, C. D., Berndt, D. F., Keagy, B. A., Rich, P. B., & Marston, W. A. (2008).

Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic
venous insufficiency before and after compression therapy. Wound Repair Regen, 16(5), 642-648.
doi:10.1111/j.1524-475X.2008.00415.x

Clustal Omega. Retrieved from http://www.clustal.org/omega/
Cossins, B., & Lawson, A. (2015). Small molecule targeting of protein–protein interactions through

allosteric modulation of dynamics. Molecules, 20(9), 16435-16445.
Engmark, M., Lomonte, B., Gutiérrez, J. M., Laustsen, A. H., De Masi, F., Andersen, M. R., & Lund, O.

(2017). Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-
density peptide microarray epitope mapping. PLOS Neglected Tropical Diseases, 11(7), e0005768.
doi:10.1371/journal.pntd.0005768

Fralick, J., Chadha-Mohanty, P., & Li, G. (2008). Phage Display and Its Application for the Detection and
Therapeutic Intervention of Biological Threat Agents. In R. J. Kendall, S. M. Presley, G. P. Austin,
& P. N. Smith (Eds.), Advances in biological and chemical terrorism countermeasures (pp. 179-
202): CRC Press.

Gorr, S. U., Flory, C. M., & Schumacher, R. J. (2019). In vivo activity and low toxicity of the second-
generation antimicrobial peptide DGL13K. PLoS One, 14(5), e0216669.
doi:10.1371/journal.pone.0216669

Hahm, G., Glaser, J. J., & Elster, E. A. (2011). Biomarkers to predict wound healing: the future of complex
war wound management. Plast Reconstr Surg, 127 Suppl 1, 21S-26S.
doi:10.1097/PRS.0b013e3181fbe291

Hwang, H. J., Ryu, M. Y., Park, C. Y., Ahn, J., Park, H. G., Choi, C., . . . Park, J. P. (2017). High sensitive
and selective electrochemical biosensor: Label-free detection of human norovirus using affinity
peptide as molecular binder. Biosens Bioelectron, 87, 164-170. doi:10.1016/j.bios.2016.08.031

Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein.
Journal of Molecular Biology, 157(1), 105-132. doi:https://doi.org/10.1016/0022-2836(82)90515-
0

Marion, D. W., Curley, K. C., Schwab, K., & Hicks, R. R. (2011). Proceedings of the military mTBI
Diagnostics Workshop, St. Pete Beach, August 2010. J Neurotrauma, 28(4), 517-526.
doi:10.1089/neu.2010.1638

Matplotlib. Retrieved from https://matplotlib.org/
Mujahid, A., Afzal, A., & Dickert, F. L. (2019). An Overview of High Frequency Acoustic Sensors-QCMs,

SAWs and FBARs-Chemical and Biochemical Applications. Sensors (Basel), 19(20).
doi:10.3390/s19204395

Mukundan, H., Kumar S Fau - Price, D. N., Price Dn Fau - Ray, S. M., Ray Sm Fau - Lee, Y.-J., Lee Yj
Fau - Min, S., Min S Fau - Eum, S., . . . Dickert, F. A.-O. Rapid detection of Mycobacterium
tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical
biosensor. (1873-281X (Electronic)).

Python. Retrieved from https://www.python.org
Tasoulis, T., & Isbister, G. K. (2017). A Review and Database of Snake Venom Proteomes. Toxins (Basel),

9(9). doi:10.3390/toxins9090290
Titus, J. K., Kay, M. K., Glaser, C. J. J., & Hwang, Y. Y. (2017). Application of phage display for the

development of a novel inhibitor of PLA2 activity in Western cottonmouth venom. J Venom Res,
8, 19-24.

Tkinter. (2020). TKinter Library. Retrieved from https://docs.python.org/3/library/tkinter.html
White, S. (2011). Experimentally Determined Hydrophobicity Scales. Retrieved from

https://blanco.biomol.uci.edu/hydrophobicity_scales.html

15

FIGURES

Figure 1. PUnQT graphical user interface and sample data. The graphical user interface of

PUnQT is shown, with A) the number of aligned sequences requested/UniProt ID numbers, the

B) calculated most unique subsequence for each aligned sequence, C) a hydrophilicity plot, and

D) a methionine/cysteine count.

16

SOURCE CODE

-*- coding: utf-8 -*-
"""
@author: Steve Moffett
"""
from tkinter import *
from Bio import ExPASy
import urllib
from urllib import request
from Bio import SeqIO
from Bio.Align.Applications import ClustalOmegaCommandline
import os
import matplotlib.pyplot as plt
import random
from PIL import ImageTk, Image
class App:
def __init__(self, master):
def fieldsallocator():
"""This function uses Tkinter's functionality to populate an
initial GUI window."""
self.num_seqs.configure(bg="white")
self.numseqbutton.configure(bg="white")
self.proteinID.configure(bg="yellow")
seq_number = int(self.num_seqs.get())
for i in range(1,seq_number+1):
self.seqs.append(Entry(frame, bg='yellow'))
rownum = 1
for j in self.seqs:
j.grid(row=rownum+1, column=1)
rownum += 1
def proteinIDsubmitter():
"""This function extends the Tkinter functionality to use the
data
in the fields of the UniProt ID numbers to directly query the
website for sequence information"""
seq_number = int(self.num_seqs.get())
self.proteinID.configure(bg="white")
for i in self.seqs:
i.configure(bg='white')
for i in self.seqs:
seq0 =
urllib.request.urlopen("http://www.uniprot.org/uniprot/"+i.get()
+".xml")
seq_record = SeqIO.read(seq0, 'uniprot-xml')
self.protdict[i.get()] = str(seq_record.seq)
self.seq_record_list.append(seq_record)

17

self.seq_names_list.append(i.get())
"""This part of the function takes a list of seq records and
makes them into a fasta
file, then passes it to clustal omega for alignment. It
returns a list of
sequence records to the main function."""
namesString = ""
for i in self.seq_names_list:
namesString = i + "_" + namesString
handle = open(namesString+"resultfile.fasta","w")
for sequences in self.seq_record_list:
SeqIO.write(sequences,handle,"fasta")
handle.close()
#names in and out file for the clustal omega program
in_file = namesString+ "resultfile.fasta"
out_file = namesString+"alignedresultfile.fasta"
#this field should be changed to reflect the file path of the
#clustal omega executable location
clustalo_exe = r"C:\clustalomega\clustalo.exe"
assert os.path.isfile(clustalo_exe), "Clustal Omega
executable missing"
#performs sequence alignment
clustalo_cline = ClustalOmegaCommandline(clustalo_exe,
infile=in_file,\
outfile=out_file, verbose=True, auto=True)
aligned_object = clustalo_cline()
#writes sequence results to file
for seq_record in SeqIO.parse(out_file, "fasta"):
self.seq_list.append(str(seq_record.seq))
print("Sequences Aligned, results files available.")
self.window_size.configure(bg="yellow")
self.window_size_button.configure(bg="yellow")
def uniqueness():
self.window_size.configure(bg="white")
self.window_size_button.configure(bg="white")
self.hydro_window_size.configure(bg="yellow")
self.hydrophobicity_button.configure(bg="yellow")
windowsize = int(self.window_size.get())
seq_lengths = []
for i in self.seq_list:
seq_lengths.append(int(len(i)))
if windowsize > min(seq_lengths):
print("Too large peptide size. Please enter a shorter \
interval than the length of the query proteins: ")
else:
unique_ints, self.SA = uniqueness_marker(self.seq_list,
min(seq_lengths))

18

self.maxvalindex =
uniqueness_adder(unique_ints,windowsize, min(seq_lengths))
for keys in range(0,len(self.maxvalindex)):
print("The input sequence
"+self.seq_names_list[keys]+"'s unique sequence is:")
print(self.SA[keys][self.maxvalindex[keys]:self.maxvalindex[keys
]+windows
ize])
print("The starting index of this subsequence is:
"+str(self.maxvalindex[keys])+"\n")
for i in range(0,len(self.maxvalindex)):
self.unique_subseq.append(Text(frame, width=60,
height=5))
rownum = 1
for j in range(0,len(self.maxvalindex)):
subseq_span =
str(self.SA[j][self.maxvalindex[j]:self.maxvalindex[j]+windowsiz
e])
start_ind = str(self.maxvalindex[j])
self.unique_subseq[j].grid(row=rownum+1, column=2)
self.unique_subseq[j].insert('1.0', "The input
sequence "+self.seq_names_list[j]+"'s unique sequence is: \n")
self.unique_subseq[j].insert('2.0', subseq_span+"\n")
self.unique_subseq[j].insert('3.0', "The starting
index of this subsequence is: "+start_ind)
rownum += 1
def hydrophobicityfunc():
hydro, methionine, cysteine =
hydrophobicity(int(self.hydro_window_size.get()),self.SA)
plotter(hydro, self.seq_names_list,
int(self.hydro_window_size.get()), self.maxvalindex)
print("Methionine/Cysteine counts: \n")
self.metcys.grid(row=6, column=3, sticky=W)
self.metcys.insert('1.0',"Methionine/Cysteine counts: \n")
for i in range(0,len(self.seq_names_list)):
self.metcys.insert(str(float(i+2)),self.seq_names_list[i]
+ " Methionine: " + str(methionine[i]) + " Cysteine: "\
+str(cysteine[i])+"\n")
def uniqueness_marker(seq_recs, limiter):
'''This function will generate the uniqueness score for each
protein sequence
by comparing it with each letter in the same position of the
other sequences.
It will print each sequence and its general uniqueness score,
and it will
return a dictionary containing the number (first, second,
third...) of the

19

sequence you put in as a key, with a list of its uniqueness
ints as its
values.'''
uniquedict = ("Aviana Molecular Technologies," 2020)
SA = []
numseqs = len(seq_recs)
for i in seq_recs:
SA.append(i)
for i in range(0,numseqs):
'''This loop goes through each sequence, its sub-loops
comparing each of
the other letters at that position (including its own).
If it is unique,
the uniqueness score for that sequence and in that
position goes up. If
it is the same, the uniqueness score does not change.'''
uniqueseq = []
uniquestr = ""
for j in range(0,limiter):
unique = 0
for l in range(0,numseqs):
if SA[i][j] == "-":
unique += 0
elif SA[i][j] != SA[l][j]:
unique += 1
else:
unique += 0
uniqueseq += [unique]
uniquestr += str(unique)
uniquedict[i] = uniqueseq
return uniquedict, SA
def uniqueness_adder(uniquedic, windowsize, limiter):
"""This function takes the dictionary containing the number
of sequence
(1,2,3...) as keys and their uniqueness score in a list, and
the userspecified
window size, and adds up the uniqueness score with
a sliding
window. Once it finds the first instance of the window with
the highest
value, it returns a new dictionary with the same keys but the
values are
the indices of the start of the max values. This data can be
used with the
stringArrays list to identify the character strings of the
most unique
part of the sequences."""

20

maxvalindex = {}
for key in range(0,len(uniquedic)):
presentseq = uniquedic[key]
scorelist = []
startindex = 0
wintotal = 0
while startindex <= len(presentseq)-windowsize:
for position in
range(startindex,startindex+windowsize):
wintotal += presentseq[position]
scorelist += [wintotal]
wintotal = 0
startindex += 1
maxvalindex[key] = scorelist.index(max(scorelist))
return maxvalindex
def hydrophobicity(windowsize,stringArray):
"""This function both assigns a hydrophobicity value for each
residue
based on Stephen H White's hydrophobicity scale, and also
calculates
the hydophobicity/philicity value alone a window of userdefined
size. It takes as windowsize integer and a list of strings
containing
sequence information, and returns a dictionary with the
sliding
window values as well as the number of methionine and
cysteine
residues in the sequence (important for peptide synthesis
considerations)."""
self.hydro_window_size.configure(bg="white")
self.hydrophobicity_button.configure(bg="white")
#hydroDict is based on Stephen H. White's hydrophobicity
scale
hydroDict = {'A': 0.33, 'R':1.00, 'N':0.43, 'D':0.50,
'C':0.22, 'E':0.12, \
'Q':0.19, 'G':1.14, 'H':-0.06, 'I':-0.81, 'L':-0.69, 'K':1.81,
'M':-0.44, \
'F':-0.58, 'P':-0.31, 'S':0.33, 'T':0.11, 'W':-0.24, 'Y':0.23,
'V':-0.53, '.':0, '-':0}
resultsDict = {}
McountList = []
CcountList = []
#sums net hydrophobicity within window and also counts M and
C residues
for sequence in stringArray:
McountList += [sequence.count('M')]
CcountList += [sequence.count('C')]

21

wintotal = 0
startChar = 0
seqtotal = []
countdown = 1
while startChar <= len(sequence)-windowsize:
for letter in range(startChar,startChar+windowsize):
wintotal += hydroDict[sequence[letter]]
seqtotal += [wintotal]
wintotal = 0
startChar += 1
while startChar <= len(sequence):
for letter in range(startChar,startChar+windowsizecountdown):
wintotal += hydroDict[sequence[letter]]
seqtotal += [wintotal]
wintotal = 0
startChar += 1
countdown += 1
resultsDict[sequence] = seqtotal
return resultsDict, McountList, CcountList
def plotter(hydrodict, names, hydrowindow, maxvalindex):
"""This function plots the hydrophobicity for presentation
within
the GUI frame, and saves a copy of it as a .png file for the
user's
records."""
maxind = 0
keyname = random.choice(list(hydrodict))
x = range(len(hydrodict[keyname]))
uni = 0
mainlines = []
namesString = ""
for i in names:
namesString = i+ "_" + namesString
for key in hydrodict:
y = hydrodict[key]
mainline, = plt.plot(y, label=names[uni])
mainlines.append(mainline)
uni += 1
plt.plot(x[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow],
\
y[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow],
c='yellow',\
lw=5, zorder=-1)
maxind += 1
plt.xlabel("Aligned Sequence Index (in
"+str(hydrowindow)+"AA window)")
plt.ylabel("Total Free Energy (kcal/mol)")

22

plt.title("Hydrophilicity")
plt.legend(handles=mainlines)
plt.savefig(namesString+'hydrophobicity_figure.png',dpi=80)
image = Image.open(namesString+'hydrophobicity_figure.png')
photo = ImageTk.PhotoImage(image)
label = Label(frame, image=photo)
label.image = photo
label.grid(row=2, column=3, columnspan=4, rowspan=4,
sticky=N+W)
return
"""The following sections of code initialize the frame for the
GUI
and then run the commands in the given functions above. It will
yield
a unique subsequence for each query sequence, as well as a
hydrophilicity
plot that assists in picking an external-facing part of the
protein. In
addition, it yields a count of methionines and cysteines in the
sequences,
which have bearing on the ease of peptide synthesis."""
#initializes GUI frame
frame = Frame(master)
frame.grid()
#Quit button
self.quitbutton = Button(
frame, text="QUIT", fg="red", command=frame.quit
)
self.quitbutton.grid(row=0, column=0, sticky=W)
#Label and field for Num of Seqs
self.num_seqs = Entry(frame, bg="yellow")
self.num_seqs.grid(row=1, column=1)
#button to generate fields for number of seqs
self.numseqbutton = Button(frame, text="Submit # sequences",
bg="yellow", command=fieldsallocator)
self.numseqbutton.grid(row=1, column=0)
self.seqs = []
#button to get protein codes --> seq records and name lists
self.proteinID = Button(frame, text="Submit UniProt IDs",
command=proteinIDsubmitter)
self.proteinID.grid(row=2, column=0)
self.protdict = {}
self.seq_list = []
self.seq_record_list = []
self.seq_names_list = []
#populates a window for the peptide window size button
#and calculates the uniqueness

23

self.window_size = Entry(frame)
self.window_size.grid(row=1, column=3)
self.window_size_button = Button(frame, text="Peptide window
size", command=uniqueness)
self.window_size_button.grid(row=1, column=2)
self.maxvalindex = {}
self.unique_subseq = []
#field to get hydrophobicity window size
self.hydro_window_size = Entry(frame)
self.hydro_window_size.grid(row=1, column=5)
self.hydrophobicity_button = Button(frame, text="Hydro window
size", command=hydrophobicityfunc)
self.hydrophobicity_button.grid(row=1, column=4)
self.metcys = Text(frame, width=40, height=4)
if __name__ == '__main__':
root = Tk()
root.title("PUnQT Ver 2.0")
app = App(root)
root.mainloop()
root.destroy()

	Abbreviations
	Executive Summary
	Introduction
	Materials and Methods
	Results
	Discussion
	Military Significance
	References
	Figures
	Source Code
	# -*- coding: utf-8 -*-
	"""
	@author: Steve Moffett
	"""
	from tkinter import *
	from Bio import ExPASy
	import urllib
	from urllib import request
	from Bio import SeqIO
	from Bio.Align.Applications import ClustalOmegaCommandline
	import os
	import matplotlib.pyplot as plt
	import random
	from PIL import ImageTk, Image
	class App:
	def __init__(self, master):
	def fieldsallocator():
	"""This function uses Tkinter's functionality to populate an
	initial GUI window."""
	self.num_seqs.configure(bg="white")
	self.numseqbutton.configure(bg="white")
	self.proteinID.configure(bg="yellow")
	seq_number = int(self.num_seqs.get())
	for i in range(1,seq_number+1):
	self.seqs.append(Entry(frame, bg='yellow'))
	rownum = 1
	for j in self.seqs:
	j.grid(row=rownum+1, column=1)
	rownum += 1
	def proteinIDsubmitter():
	"""This function extends the Tkinter functionality to use the
	data
	in the fields of the UniProt ID numbers to directly query the
	website for sequence information"""
	seq_number = int(self.num_seqs.get())
	self.proteinID.configure(bg="white")
	for i in self.seqs:
	i.configure(bg='white')
	for i in self.seqs:
	seq0 =
	urllib.request.urlopen("http://www.uniprot.org/uniprot/"+i.get()+".xml")
	seq_record = SeqIO.read(seq0, 'uniprot-xml')
	self.protdict[i.get()] = str(seq_record.seq)
	self.seq_record_list.append(seq_record)
	self.seq_names_list.append(i.get())
	"""This part of the function takes a list of seq records and
	makes them into a fasta
	file, then passes it to clustal omega for alignment. It
	returns a list of
	sequence records to the main function."""
	namesString = ""
	for i in self.seq_names_list:
	namesString = i + "_" + namesString
	handle = open(namesString+"resultfile.fasta","w")
	for sequences in self.seq_record_list:
	SeqIO.write(sequences,handle,"fasta")
	handle.close()
	#names in and out file for the clustal omega program
	in_file = namesString+ "resultfile.fasta"
	out_file = namesString+"alignedresultfile.fasta"
	#this field should be changed to reflect the file path of the
	#clustal omega executable location
	clustalo_exe = r"C:\clustalomega\clustalo.exe"
	assert os.path.isfile(clustalo_exe), "Clustal Omega
	executable missing"
	#performs sequence alignment
	clustalo_cline = ClustalOmegaCommandline(clustalo_exe,
	infile=in_file,\
	outfile=out_file, verbose=True, auto=True)
	aligned_object = clustalo_cline()
	#writes sequence results to file
	for seq_record in SeqIO.parse(out_file, "fasta"):
	self.seq_list.append(str(seq_record.seq))
	print("Sequences Aligned, results files available.")
	self.window_size.configure(bg="yellow")
	self.window_size_button.configure(bg="yellow")
	def uniqueness():
	self.window_size.configure(bg="white")
	self.window_size_button.configure(bg="white")
	self.hydro_window_size.configure(bg="yellow")
	self.hydrophobicity_button.configure(bg="yellow")
	windowsize = int(self.window_size.get())
	seq_lengths = []
	for i in self.seq_list:
	seq_lengths.append(int(len(i)))
	if windowsize > min(seq_lengths):
	print("Too large peptide size. Please enter a shorter \
	interval than the length of the query proteins: ")
	else:
	unique_ints, self.SA = uniqueness_marker(self.seq_list,
	min(seq_lengths))
	self.maxvalindex =
	uniqueness_adder(unique_ints,windowsize, min(seq_lengths))
	for keys in range(0,len(self.maxvalindex)):
	print("The input sequence
	"+self.seq_names_list[keys]+"'s unique sequence is:")
	print(self.SA[keys][self.maxvalindex[keys]:self.maxvalindex[keys]+windows
	ize])
	print("The starting index of this subsequence is:
	"+str(self.maxvalindex[keys])+"\n")
	for i in range(0,len(self.maxvalindex)):
	self.unique_subseq.append(Text(frame, width=60,
	height=5))
	rownum = 1
	for j in range(0,len(self.maxvalindex)):
	subseq_span =
	str(self.SA[j][self.maxvalindex[j]:self.maxvalindex[j]+windowsize])
	start_ind = str(self.maxvalindex[j])
	self.unique_subseq[j].grid(row=rownum+1, column=2)
	self.unique_subseq[j].insert('1.0', "The input
	sequence "+self.seq_names_list[j]+"'s unique sequence is: \n")
	self.unique_subseq[j].insert('2.0', subseq_span+"\n")
	self.unique_subseq[j].insert('3.0', "The starting
	index of this subsequence is: "+start_ind)
	rownum += 1
	def hydrophobicityfunc():
	hydro, methionine, cysteine =
	hydrophobicity(int(self.hydro_window_size.get()),self.SA)
	plotter(hydro, self.seq_names_list,
	int(self.hydro_window_size.get()), self.maxvalindex)
	print("Methionine/Cysteine counts: \n")
	self.metcys.grid(row=6, column=3, sticky=W)
	self.metcys.insert('1.0',"Methionine/Cysteine counts: \n")
	for i in range(0,len(self.seq_names_list)):
	self.metcys.insert(str(float(i+2)),self.seq_names_list[i]
	+ " Methionine: " + str(methionine[i]) + " Cysteine: "\
	+str(cysteine[i])+"\n")
	def uniqueness_marker(seq_recs, limiter):
	'''This function will generate the uniqueness score for each
	protein sequence
	by comparing it with each letter in the same position of the
	other sequences.
	It will print each sequence and its general uniqueness score,
	and it will
	return a dictionary containing the number (first, second,
	third...) of the
	sequence you put in as a key, with a list of its uniqueness
	ints as its
	values.'''
	uniquedict = ("Aviana Molecular Technologies," 2020)
	SA = []
	numseqs = len(seq_recs)
	for i in seq_recs:
	SA.append(i)
	for i in range(0,numseqs):
	'''This loop goes through each sequence, its sub-loops
	comparing each of
	the other letters at that position (including its own).
	If it is unique,
	the uniqueness score for that sequence and in that
	position goes up. If
	it is the same, the uniqueness score does not change.'''
	uniqueseq = []
	uniquestr = ""
	for j in range(0,limiter):
	unique = 0
	for l in range(0,numseqs):
	if SA[i][j] == "-":
	unique += 0
	elif SA[i][j] != SA[l][j]:
	unique += 1
	else:
	unique += 0
	uniqueseq += [unique]
	uniquestr += str(unique)
	uniquedict[i] = uniqueseq
	return uniquedict, SA
	def uniqueness_adder(uniquedic, windowsize, limiter):
	"""This function takes the dictionary containing the number
	of sequence
	(1,2,3...) as keys and their uniqueness score in a list, and
	the userspecified
	window size, and adds up the uniqueness score with
	a sliding
	window. Once it finds the first instance of the window with
	the highest
	value, it returns a new dictionary with the same keys but the
	values are
	the indices of the start of the max values. This data can be
	used with the
	stringArrays list to identify the character strings of the
	most unique
	part of the sequences."""
	maxvalindex = {}
	for key in range(0,len(uniquedic)):
	presentseq = uniquedic[key]
	scorelist = []
	startindex = 0
	wintotal = 0
	while startindex <= len(presentseq)-windowsize:
	for position in
	range(startindex,startindex+windowsize):
	wintotal += presentseq[position]
	scorelist += [wintotal]
	wintotal = 0
	startindex += 1
	maxvalindex[key] = scorelist.index(max(scorelist))
	return maxvalindex
	def hydrophobicity(windowsize,stringArray):
	"""This function both assigns a hydrophobicity value for each
	residue
	based on Stephen H White's hydrophobicity scale, and also
	calculates
	the hydophobicity/philicity value alone a window of userdefined
	size. It takes as windowsize integer and a list of strings
	containing
	sequence information, and returns a dictionary with the
	sliding
	window values as well as the number of methionine and
	cysteine
	residues in the sequence (important for peptide synthesis
	considerations)."""
	self.hydro_window_size.configure(bg="white")
	self.hydrophobicity_button.configure(bg="white")
	#hydroDict is based on Stephen H. White's hydrophobicity
	scale
	hydroDict = {'A': 0.33, 'R':1.00, 'N':0.43, 'D':0.50,
	'C':0.22, 'E':0.12, \
	'Q':0.19, 'G':1.14, 'H':-0.06, 'I':-0.81, 'L':-0.69, 'K':1.81,
	'M':-0.44, \
	'F':-0.58, 'P':-0.31, 'S':0.33, 'T':0.11, 'W':-0.24, 'Y':0.23,
	'V':-0.53, '.':0, '-':0}
	resultsDict = {}
	McountList = []
	CcountList = []
	#sums net hydrophobicity within window and also counts M and
	C residues
	for sequence in stringArray:
	McountList += [sequence.count('M')]
	CcountList += [sequence.count('C')]
	wintotal = 0
	startChar = 0
	seqtotal = []
	countdown = 1
	while startChar <= len(sequence)-windowsize:
	for letter in range(startChar,startChar+windowsize):
	wintotal += hydroDict[sequence[letter]]
	seqtotal += [wintotal]
	wintotal = 0
	startChar += 1
	while startChar <= len(sequence):
	for letter in range(startChar,startChar+windowsizecountdown):
	wintotal += hydroDict[sequence[letter]]
	seqtotal += [wintotal]
	wintotal = 0
	startChar += 1
	countdown += 1
	resultsDict[sequence] = seqtotal
	return resultsDict, McountList, CcountList
	def plotter(hydrodict, names, hydrowindow, maxvalindex):
	"""This function plots the hydrophobicity for presentation
	within
	the GUI frame, and saves a copy of it as a .png file for the
	user's
	records."""
	maxind = 0
	keyname = random.choice(list(hydrodict))
	x = range(len(hydrodict[keyname]))
	uni = 0
	mainlines = []
	namesString = ""
	for i in names:
	namesString = i+ "_" + namesString
	for key in hydrodict:
	y = hydrodict[key]
	mainline, = plt.plot(y, label=names[uni])
	mainlines.append(mainline)
	uni += 1
	plt.plot(x[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow],\
	y[maxvalindex[maxind]:maxvalindex[maxind]+hydrowindow], c='yellow',\
	lw=5, zorder=-1)
	maxind += 1
	plt.xlabel("Aligned Sequence Index (in
	"+str(hydrowindow)+"AA window)")
	plt.ylabel("Total Free Energy (kcal/mol)")
	plt.title("Hydrophilicity")
	plt.legend(handles=mainlines)
	plt.savefig(namesString+'hydrophobicity_figure.png',dpi=80)
	image = Image.open(namesString+'hydrophobicity_figure.png')
	photo = ImageTk.PhotoImage(image)
	label = Label(frame, image=photo)
	label.image = photo
	label.grid(row=2, column=3, columnspan=4, rowspan=4,
	sticky=N+W)
	return
	"""The following sections of code initialize the frame for the
	GUI
	and then run the commands in the given functions above. It will
	yield
	a unique subsequence for each query sequence, as well as a
	hydrophilicity
	plot that assists in picking an external-facing part of the
	protein. In
	addition, it yields a count of methionines and cysteines in the
	sequences,
	which have bearing on the ease of peptide synthesis."""
	#initializes GUI frame
	frame = Frame(master)
	frame.grid()
	#Quit button
	self.quitbutton = Button(
	frame, text="QUIT", fg="red", command=frame.quit
)
	self.quitbutton.grid(row=0, column=0, sticky=W)
	#Label and field for Num of Seqs
	self.num_seqs = Entry(frame, bg="yellow")
	self.num_seqs.grid(row=1, column=1)
	#button to generate fields for number of seqs
	self.numseqbutton = Button(frame, text="Submit # sequences",
	bg="yellow", command=fieldsallocator)
	self.numseqbutton.grid(row=1, column=0)
	self.seqs = []
	#button to get protein codes --> seq records and name lists
	self.proteinID = Button(frame, text="Submit UniProt IDs",
	command=proteinIDsubmitter)
	self.proteinID.grid(row=2, column=0)
	self.protdict = {}
	self.seq_list = []
	self.seq_record_list = []
	self.seq_names_list = []
	#populates a window for the peptide window size button
	#and calculates the uniqueness
	self.window_size = Entry(frame)
	self.window_size.grid(row=1, column=3)
	self.window_size_button = Button(frame, text="Peptide window
	size", command=uniqueness)
	self.window_size_button.grid(row=1, column=2)
	self.maxvalindex = {}
	self.unique_subseq = []
	#field to get hydrophobicity window size
	self.hydro_window_size = Entry(frame)
	self.hydro_window_size.grid(row=1, column=5)
	self.hydrophobicity_button = Button(frame, text="Hydro window
	size", command=hydrophobicityfunc)
	self.hydrophobicity_button.grid(row=1, column=4)
	self.metcys = Text(frame, width=40, height=4)
	if __name__ == '__main__':
	root = Tk()
	root.title("PUnQT Ver 2.0")
	app = App(root)
	root.mainloop()
	root.destroy()

