

 ARL-MR-1031 ● JUNE 2021

TensorFlow Lite Extension to OpenNMT-tf
Documentation

by Gerardo Cervantes and Stephen LaRocca

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-MR-1031 ● JUNE 2021

TensorFlow Lite Extension to OpenNMT-tf
Documentation

Gerardo Cervantes
Advanced Resource Technologies, Inc.

Stephen LaRocca
Computational and Information Sciences Directorate,
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2021
2. REPORT TYPE

Memorandum Report
3. DATES COVERED (From - To)

September 2020–March 2021
4. TITLE AND SUBTITLE

TensorFlow Lite Extension to OpenNMT-tf Documentation
5a. CONTRACT NUMBER

W911QX20D0012
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gerardo Cervantes and Stephen LaRocca
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLC-IB
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-MR-1031

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID(s): Cervantes, 0000-0002-4392-5017; LaRocca, 0000-0003-3341-5520

14. ABSTRACT

Since its release in 2017, the OpenNMT project has provided open development tools for Neural Machine Translation (NMT)
including machine learning inference with artificial neural network models on Android platforms. Rapid advances in
OpenNMT methods were achieved using TensorFlow since 2018; however, most of these advances were not deployable for
use on Android platforms pending completion of the TensorFlow Lite library. The US Army Combat Capabilities
Development Command Army Research Laboratory Shareable Components project team closely tracked progress on
TensorFlow Lite and succeeded in implementing a new method for converting OpenNMT models from standard TensorFlow
to the Lite variant. Deployable on Android devices, these converted models provide important gains in execution speed while
occupying less space. A pull request submitted to the OpenNMT was approved and implemented in February 2021. This
report describes how OpenNMT developers using TensorFlow can convert several types of models to TensorFlow Lite for use
on Android platforms.
15. SUBJECT TERMS

Machine Translation, deep learning, Android, open development tools, TensorFlow Lite

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Stephen LaRocca
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-3198
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Tables v

1. Introduction 1

1.1 Document Contents 1

1.2 Purpose 1

1.3 Distribution 1

1.4 Tools 1

1.5 Convertible Models 1

2. Running the Conversion 2

2.1 Installing 2

2.2 Running 2

2.3 Data Configuration File 3

2.4 Vocabulary Files and IDs Used for Running 3

2.4.1 Acquiring Vocabulary Files 3

2.4.2 Description 3

2.4.3 Use 3

2.4.4 Example Code Snippet 4

2.5 Running on Android 4

2.6 Quantization Options 5

2.6.1 Model Quantization Options 5

2.6.2 How 5

2.6.3 Advantages 6

2.6.4 Future 6

2.7 Tests Created 6

2.8 Function Converted Description 6

2.8.1 Parameter 7

2.8.2 Returns 7

3. Additional Technical Details 7

3.1 Code Modifications/Additions 7

3.1.1 Source 7

iv

3.1.2 Testing 8

3.2 Conversion Process 8

3.2.1 Initial Running Tests 8

3.2.2 TensorFlow Conversion Methods 9

3.2.3 Custom Inference Function 9

3.2.4 Major Changes to Running a Normal Inference 9

Distribution List 11

v

List of Tables

Table 1 Automated conversion tests .. 6

Table 2 OpenNMT-tf source code modifications .. 8

Table 3 Testing files modified ... 8

1

1. Introduction

1.1 Document Contents

This report covers the new extension to the popular Machine Translation (MT)
open-source package OpenNMT-tf. This extension allows models that were trained
using this package to be mobile-compatible with TensorFlow Lite.

1.2 Purpose

The purpose of this report is to convert MT models trained with the OpenNMT-tf
package to be mobile friendly with TensorFlow Lite. The conversion of these
models to TensorFlow Lite improves the models’ run time on mobile environments
and allows the models to run using the onboard graphics processing unit (GPU) of
the mobile device.

1.3 Distribution

The OpenNMT-tf open-source package can be found on GitHub,
https://github.com/OpenNMT/OpenNMT-tf. This code is a pull request to the
open-source library that was reviewed and accepted by the OpenNMT developers.

1.4 Tools

The following tools are needed in order to convert OpenNMT models to
TensorFlow Lite:

• Python 3.5+

• Python pip

• OpenNMT-tf package, https://pypi.org/project/OpenNMT-tf/

1.5 Convertible Models

The following models from OpenNMT are convertible to TensorFlow Lite:

• NMTSmallV1

• NMTMediumV1

• NMTBigV1

• Luong Attention

https://github.com/OpenNMT/OpenNMT-tf
https://pypi.org/project/OpenNMT-tf/

2

2. Running the Conversion

2.1 Installing

To install and run the extension, first download Python (recommended version is
Python 3.7). Make sure this download adds Python and pip onto your PATH
environment variables so you can use the commands in the command line.

To install the extension in the command line, run this command to get the necessary
Python packages:

pip install OpenNMT-tf

2.2 Running

Make sure to install the Python packages before trying to run the conversion.

To run the conversion from the command line, navigate to the main directory of the
code (where the README resides).

To convert an OpenNMT-tf model to TensorFlow Lite, you must first train a model.
A small guide on training a model can be found here:
https://opennmt.net/OpenNMT-tf/quickstart.html.

Run this command with your model-specific options to convert the model to
TensorFlow Lite:

python opennmt/bin/main.py --model_type NMTSmallV1 --config
opensubs/data.yml export --output_dir
./opensubs/smallnmt/tflite --export_format tflite

Parameter descriptions are as follows:

• --model_type – The model architecture you are trying to load to convert to
TFLite; these can be found in opennmt/models/catalog.py.

• --config – The data configuration file, written in YAML. The file also
contains the path to the model. Parameters can be found here:
https://opennmt.net/OpenNMT-tf/configuration.html

• export – This tells the algorithm that you want to save the model as a
TensorFlow Lite model.

• --output_dir – This is the directory where you want your model to be saved.

• --format – This tells OpenNMT to export as a TensorFlow Lite model;
TensorFlow Lite options are “tflite” and “tflite_float16”.

https://opennmt.net/OpenNMT-tf/quickstart.html
https://opennmt.net/OpenNMT-tf/configuration.html

3

The conversion should take about 1–2 min to run.

2.3 Data Configuration File

Running anything on OpenNMT requires that you give OpenNMT a data
configuration file of structure YAML. All the possible data configurations can be
found here: https://opennmt.net/OpenNMT-tf/configuration.html

The data.yml file created when using the quick-start guide in model training is the
data configuration file. This data configuration file is needed to run any operation
in OpenNMT and is required to convert models to TensorFlow Lite.

One optional parameter added to OpenNMT with the code extension is
params:

tflite_output_size: 250

This parameter tells the algorithm what size array to make the output; if this
optional parameter is not provided, then the default value used is 250.

2.4 Vocabulary Files and IDs Used for Running

2.4.1 Acquiring Vocabulary Files

During the process of training an OpenNMT-tf model, two vocabulary files will
have been created. The location of these vocabulary files are specified in the data
configuration file and are required to convert a model to TensorFlow Lite and to
run a TensorFlow Lite–converted model on Android.

2.4.2 Description

The vocabulary files consist of a list of words of the language separated by new
line characters, where each word in the language is given a unique number,
commonly referred to as the word ID. To convert a word not in the vocabulary to
an ID, you will have to mark it as an unknown word ID, which will be the biggest
unique ID available plus 1.

2.4.3 Use

Running the TensorFlow Lite model requires an array of integers instead of text.
To translate text using the model, you must convert the text to IDs using the
vocabulary file of the language you are converting from. This is achieved by
separating each word with white space. Then, you must look up the unique ID of
each word in the vocabulary file. After getting the IDs of all of the words, you can
store them in an array and pass the IDs to the model to get a translation. The

https://en.wikipedia.org/wiki/YAML
https://opennmt.net/OpenNMT-tf/configuration.html

4

returned translation from the model will be integer IDs convertible to text using the
other vocabulary file.

2.4.4 Example Code Snippet

The following Android code snippet produces a HashMap that maps a word to the
unique ID given in the file.
public HashBiMap<String, Integer> readVocab(InputStream file){
 try {
 BufferedReader brFile = new BufferedReader(new
InputStreamReader(file));
 HashBiMap<String, Integer> vocab =
HashBiMap.create();
 String wordRead = brFile.readLine();
 int index = 0;
 while(wordRead != null){
 vocab.put(wordRead, index);
 index += 1;
 wordRead = brFile.readLine();
 }
 return vocab;
 }
 catch(IOException e) {
 return null;
 }
 }

2.5 Running on Android

This section provides portions of code that will load and run the model on Android
devices.

2.5.1 Gradle Dependencies

Adding these dependencies in the Android Studio Gradle file (build.gradle) will
allow TensorFlow Lite models to be run on Android. The following lines provide
the “nightly” version for TensorFlow, which is the beta version.
implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly'
implementation 'org.tensorflow:tensorflow-lite-select-tf-ops:0.0.0-
nightly'
implementation 'org.tensorflow:tensorflow-lite-support:0.0.0-nightly'

2.5.2 Loading the Model

The following code is used to load the model and assumes you have stored the
saved model to the assets folder. The code will look into the assets folder to find
the model you specified. The modelPath variable should be set to the location of

5

the model. The NUM_LITE_THREADS should be set to an integer that tells it how
many threads to use when running the model. Tested values are 1 and 4.

 AssetManager assetManager =
this.context.getResources().getAssets();
 ByteBuffer buffer = loadModelFile(assetManager,
modelPath);
 if (buffer == null){
 Log.e("nmt-tf", "Could not load model");
 return;
 }
 Interpreter.Options opt = new Interpreter.Options();
 opt.setNumThreads(NUM_LITE_THREADS);
 tflite = new Interpreter(buffer, opt);

2.5.3 Running the Model

The following code will run the model with the given input. Since the function takes
in IDs, you should read and load the vocabulary files onto the application. You
should also have functions to convert sentences to an integer array of the respective
IDs as well as a function to convert an integer array of IDs back to a sentence.

 int[] input_ids = sentenceToIds(“Hello World”);
 int[] output_ids = new int[250];
 tflite.run(input_ids, output_ids);
 String translatedSentence = IdsToSentence(output_ids);
 System.out.println(“Translated Sentence: ” +
translatedSentence);

output_ids is initialized to the array. After tflite.run is called, it will modify this
variable to have the result of the model inference. output_ids should be the same
size as tflite_output_size.

2.6 Quantization Options

Quantizing the model can be useful for reducing the model size and increasing the
run time.

2.6.1 Model Quantization Options

• Normal model

• 16-bit float quantized

2.6.2 How

The model can easily be quantized by modifying the argument value “format” when
exporting the model to TensorFlow Lite.

6

2.6.3 Advantages

The model size is reduced by half, and according to TensorFlow, the run time
should be faster.

2.6.4 Future

For an additional speedup, it may be worth quantizing differently. The following
options require a representative dataset to be able to smartly know how to quantize
the variables to 8 bits:

• Dynamic range quantization

o Weights to 8-bit integers; outputs are still 32 bit

o Four times smaller, two to three times speedup

• Full integer quantization

o Weights to 8-bit integers

o Four times smaller, three times plus speedup

These are great options to consider if the models need to run faster.

2.7 Tests Created

The tests listed in Table 1 check if the TensorFlow Lite function produces the same
results as the original inference function and if the models could be converted.

Table 1 Automated conversion tests

Test name Model Test description
testTFLiteOutput Luong Attention Checks that the model prediction is the

same when outputting with the
TensorFlow Lite conversion.

 NMTBigV1

testTFLiteOutputFile Luong Attention Checks that the code is able to convert
and output the model into a file. NMTBigV1

The tests can be found and ran from the following file: opennmt/tests/tflite_test.py.

2.8 Function Converted Description

The function being converted is named infer_tflite and can be found in the file
opennmt/models/sequencetosequence.py. This function runs when you predict
using the TensorFlow Lite model that was converted; it runs on any model that uses
SequenceToSequence.

7

2.8.1 Parameter

The function that takes in one parameter is named “ids”.

To run IDs in Python, you give the function a 32-bit integer Tensor, which can be
any size as long as it is 1-D. When running on Android, you will have to feed in a
1-D integer array; this array can be any size. The parameter is an integer array and
not a String because the function takes in an ID for each word in the sentence. Refer
to Section 2.4, Vocabulary Files and IDs Used for Running, to learn how to convert
the sentence you want translated back to IDs.

2.8.2 Returns

The function returns a 1-D integer array. The size of the array is by default 250
unless a size was specified in the data configuration file. Section 2.3, Data
Configuration File, covers how to specify a different output size.

In Python, the TensorFlow Lite function will return a 32-bit integer Tensor.
Running on Android will return a 32-bit integer array. The function does not return
a String; it will return IDs, which will have to be converted back to a sentence to
find the translation of the sentence. Refer to Section 2.4, Vocabulary Files and IDs
Used for Running, to go from IDs back to a sentence.

3. Additional Technical Details

3.1 Code Modifications/Additions

This section is a brief overview of why some files were modified or added, which
files changed, and the reason for the modification.

Source file changes are the changes that were made to add the TensorFlow Lite
support. Testing files are files that were modified or added to include automated
unit tests to check if the TensorFlow Lite conversion works.

3.1.1 Source

The files listed in Table 2 were modified to implement the TensorFlow Lite
conversion option.

8

Table 2 OpenNMT-tf source code modifications

File Reason
opennmt/utils/exporters.py Adds “tflite” as a method to export, making

models mobile friendly. This adds the class
TFLiteExporter to handle exporting. The model
produces an error if it is not compatible with
TensorFlow Lite. Otherwise, the model is
loaded and converted.

opennmt/inputters/text_inputter.py Adds the function tflite_call that gets the word
embeddings in a way that is safe for
TensorFlow Lite. The fix and problem
description can be found in TensorFlow issue
#42410.

opennmt/models/sequence_to_sequence.py Creates the custom inference function, which is
the concrete function that will be converted. A
parameter is added to _dynamic_decode to tell
the function that it is running in a TensorFlow
Lite safe way, and if running with TensorFlow
Lite, then it returns IDs.

opennmt/decoders/decoder.py Modifies the dynamic_decode function to use
the modified word embedding function.

opennmt/utils/decoding.py Modifies the decoding. The original function
uses TensorArrays, which are not compatible
with TensorFlow Lite unless they are specified
as static and are pre-allocated.

3.1.2 Testing

The files listed in Table 3 were modified or added to create the tests.

Table 3 Testing files modified

File Reason
opennmt/tests/tflite_test.py Contains four test cases created to check if the models

NMTBigV1 and Luong Attention produce the same output
when running as a TensorFlow Lite model and to check if they
were able to convert and save the model.

3.2 Conversion Process

The conversion runs through the command line. Running details are provided in
Section 2.2.

3.2.1 Initial Running Tests

After arguments are parsed, the function save_tflite is called, which loads the model
structure and restores the tensor weights of the model. To test for normal operation,
it runs on translating the small example “Hello World”. This is to ensure that the

https://github.com/tensorflow/tensorflow/issues/42410
https://github.com/tensorflow/tensorflow/issues/42410

9

model runs and not to verify that the output is correct. The model then tries to run
the custom function created in this TensorFlow Lite modification, which runs the
model in a way that is TensorFlow Lite safe; this will be explained later in the
report.

3.2.2 TensorFlow Conversion Methods

There are three different ways to convert a model to TensorFlow Lite.

• From a TensorFlow Saved model

o Converting from a Saved model was problematic because the word
embeddings were not being saved onto the TensorFlow Lite model
being converted. This resulted in an error.

• From a Keras model

o We cannot convert using this method because our model is not a
Keras model.

• From a concrete function

o This method worked the best and was used to convert the model to
TensorFlow Lite. TensorFlow did much of the work during
conversion, including automatically specifying which variables to
save. To convert from a concrete function, a custom inference
function was created. After ensuring it was compatible with
TensorFlow Lite operations, the function was converted.

3.2.3 Custom Inference Function

The custom inference function infer_tflite was used to convert the model to
TensorFlow Lite. The function inputs and outputs are described in Section 2.8,
Function Converted Description. To feed in a sentence to the algorithm, convert the
sentence to IDs using the same vocabulary used to train the model.

3.2.4 Major Changes to Running a Normal Inference

Modification to word embedding: The function tflite_call was added to get the
required word embeddings. This function is called twice: once during encoding and
again during decoding. One problem we encountered is also described in
TensorFlow issue #42410. The workaround described on the GitHub issue was
implemented to fix errors that occurred while trying to make the TensorFlow Lite
conversion work.

https://github.com/tensorflow/tensorflow/issues/42410

10

Different decoding: For decoding, we have to assume the batch size is 1. There is
an object from the TensorFlow library named TensorArray that is not fully
supported on TensorFlow. The object is only supported when the dynamic size flag
is set to flag, and the size is specified when creating the TensorArray. During
decoding, the TensorArray created is replaced with a static size TensorArray. We
assume that the batch size is 1, which is a safe assumption since we are running on
Android.

Inputs and outputs: This inference function only takes in an integer array as IDs
and outputs IDs as integers, as explained in Section 2.8, Function Converted
Description. Since the return of this function is only IDs, this function stops early
and only returns the IDs when decoding. The regular inference takes in a dictionary
that includes IDs and other required variables.

11

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 1 DEVCOM ARL
 (PDF) FCDD RLC IB
 S LAROCCA

	List of Tables
	1. Introduction
	1.1 Document Contents
	1.2 Purpose
	1.3 Distribution
	1.4 Tools
	1.5 Convertible Models

	2. Running the Conversion
	2.1 Installing
	2.2 Running
	2.3 Data Configuration File
	2.4 Vocabulary Files and IDs Used for Running
	2.4.1 Acquiring Vocabulary Files
	2.4.2 Description
	2.4.3 Use
	2.4.4 Example Code Snippet

	2.5 Running on Android
	2.6 Quantization Options
	2.6.1 Model Quantization Options
	2.6.2 How
	2.6.3 Advantages
	2.6.4 Future

	2.7 Tests Created
	2.8 Function Converted Description
	2.8.1 Parameter
	2.8.2 Returns

	3. Additional Technical Details
	3.1 Code Modifications/Additions
	3.1.1 Source
	3.1.2 Testing

	3.2 Conversion Process
	3.2.1 Initial Running Tests
	3.2.2 TensorFlow Conversion Methods
	3.2.3 Custom Inference Function
	3.2.4 Major Changes to Running a Normal Inference

