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CLASSICAL AND GENERALIZED SOLUTIONS OF FRACTIONAL

STOCHASTIC DIFFERENTIAL EQUATIONS

S. V. LOTOTSKY AND B. L. ROZOVSKY

Abstract. For stochastic evolution equations with fractional derivatives, classical
solutions exist when the order of the time derivative of the unknown function is
not too small compared to the order of the time derivative of the noise; otherwise,
there can be a generalized solution in suitable weighted chaos spaces. Presence
of fractional derivatives in time leads to various modifications of the stochastic
parabolicity condition. Interesting new effects appear when the order of the time
derivative in the noise term is less than or equal to one-half.

November 1, 2018

1. Introduction

Given a β ∈ (0, 1), and a smooth function f = f(t), t > 0, the two most popular
definitions of the derivative of order β are Riemann-Liouville

Dβ
t f(t) =

1

Γ(1− β)

d

dt

∫ t

0

(t− s)−βf(s) ds

and Caputo

∂̃β
t f(t) =

1

Γ(1− β)

∫ t

0

(t− s)−βf ′(s)
)

ds;

Γ(z) =

∫ +∞

0

tz−1e−t dt. (1.1)

The Riemann-Liouville derivative can be considered a true extension of the usual
derivative to fractional orders. For example, a function does not have to be continu-
ously differentiable to have Riemann-Liouville derivatives of order β < 1 [20]. On the
other hand, the Caputo derivative is more convenient in initial-value problems, with
no need for fractional-order initial conditions [19, Section 2.4.1].

The Kochubei extension of the Caputo derivative,

∂β
t f(t) =

1

Γ(1− β)

d

dt

∫ t

0

(t− s)−β
(

f(s)− f(0+)
)

ds,
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f(0+) = limt→0,t>0 f(t), seems to achieve the right balance between mathematical
utility and physical relevance [8] and has been recently used in the study of large
classes of stochastic partial differential equations [4, 11].

Let w = w(t), t ≥ 0, be a standard Brownian motion on a stochastic basis
(Ω,F , {Ft}t≥0,P) satisfying the usual conditions. The objective of this paper is to ad-
dress fundamental questions about existence and regularity of solution for equations
of the type

∂β
t X(t) = aX(t) + ∂γ

t

∫ t

0

(

σX(s) + g(s)
)

dw(s), t > 0, a, b ∈ R. (1.2)

With a suitable choice of a and σ, (1.2) covers the time-fractional versions of the
Ornstein-Uhlenbeck process and the geometric Brownian motion, as well as certain
evolution equations in function spaces. The emphasis is on derivation and analysis of
explicit formulas for the solution, as opposed to the development of general theory.

Given the vast literature on the subject of fractional differential equations, Sec-
tion 2 provides the necessary background, to make the presentation reasonably self-
contained. Section 3 investigates the equation with a = σ = 0, corresponding to
fractional derivatives or integrals of the Brownian motion, followed by the time frac-
tional Ornstein-Uhlenbeck process (σ = 0) in Section 4 and the geometric Brownian
motion in Section 5. Along the way we understand the origins of the condition
β − γ > −1/2 at a more basic level than in [4, 11] and discover that the fractional in
time Ornstein-Uhlenbeck process can exhibit the full range of sub-diffusive behaviors,
including super-slow logarithmic. Section 6 investigates an SPDE version of (1.2) by
replacing the numbers a, σ with fractional powers of the Laplace operator. Then the
results of the previous sections lead to several versions of the stochastic parabolicity
condition.

Throughout the paper, C(G) denotes the space of real-valued continuous functions on
G and Cloc(G) is the space of functions that are continuous on every compact sub-set
of G; Γ = Γ(z), is the Gamma function, defined for all complex z except for the poles
at 0,−1,−2, . . . and, for z in the right half-plane, having the representation (1.1).
Most of other notations, such as L[·] and E for the Laplace transform and its domain,
and Eβ,ρ for the two-parameter Mittag-Leffler function, are introduced in Section 2.

2. Background

2.1. Fractional Derivatives and Integrals. In this section we do not indicate the
time variable as a subscript in the notations of the derivatives: for β ∈ (0, 1),

Dβf(t) =
1

Γ(1− β)

d

dt

∫ t

0

(t− s)−βf(s) ds, (2.1)

∂βf(t) =
1

Γ(1− β)

d

dt

∫ t

0

(t− s)−β
(

f(s)− f(0)
)

ds. (2.2)
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We also introduce the corresponding fractional integrals: for p > 0,

Ipf(t) =
1

Γ(p)

∫ t

0

(t− s)p−1f(s) ds, (2.3)

Jpf(t) =
1

Γ(p)

∫ t

0

(t− s)p−1
(

f(s)− f(0+)
)

ds, (2.4)

where f(0+) = limt→0 f(t). In what follows, with all functions defined only for t > 0,
we write f(0) instead of f(0+) By convention, I0f(t) = f(t), J0f = f(t)− f(0). In
particular, for the constant function f(t) = 1, t ≥ 0,

Ip[1](t) =
tp

Γ(p+ 1)
, Jp[1](t) = 0, Dβ[1](t) =

t−β

Γ(1− β)
, ∂β [1](t) = 0. (2.5)

Formulas (2.1)–(2.4) imply

Dβf(t) =
d

dt
I1−βf(t), (2.6)

∂βf(t) =
d

dt
J1−βf(t). (2.7)

Proposition 2.1. For all p, q > 0,

Ip(Iqf) = Ip+qf, Jp(Jqf) = Jp+qf. (2.8)

Proof. For I,

Γ(p)Γ(q)Ip(Iqf)(t) =

∫ t

0

∫ s

0

(t− s)p−1(s− r)q−1f(r) dr ds

=

∫ t

0

(
∫ t

r

(t− s)p−1(s− r)q−1 ds

)

f(r) dr

= B(p, q)

∫ t

0

(t− r)p+q−1f(r)dr = Γ(p)Γ(q)Ip+qf(t).

The same computation works for J after noticing that if p > 0 and f(t) is bounded
near 0, then

lim
t→0+

|Jpf(t)| ≤ C lim
t→0+

tp = 0. (2.9)

�

Proposition 2.2. If f ∈ Cloc
(

[0,+∞)
)

, then

∂βIβf(t) = DβIβf(t) = f(t), ∂βJβf(t) = f(t)− f(0). (2.10)

Proof. Using (2.6), (2.7), (2.8) and keeping in mind that, similar to (2.9), Iβf(0) = 0,
the result follows from the fundamental theorem of calculus:

∂βIβf(t) = DβIβf(t) =
d

dt

(

I1−βIβf
)

(t)
d

dt

(

If
)

(t) =
d

dt

∫ t

0

f(s)ds = f(t).

Similarly,

∂βJβf(t) =
d

dt

(

J1−βJβf
)

(t) =
d

dt

(

Jf
)

(t) =
d

dt

∫ t

0

(

f(s)− f(0)
)

ds = f(t)− f(0).



4 S. V. LOTOTSKY AND B. L. ROZOVSKY

�

Proposition 2.3. If

f(t) = f(0) +

∫ t

0

f ′(s) ds, (2.11)

then

Jpf = I1+pf ′, (2.12)

∂βf = I1−βf ′. (2.13)

Proof. For (2.12), integrate by parts:

pΓ(p)Jpf(t) =

∫ t

0

(

− ∂

∂s
(t− s)p

)(
∫ s

0

f ′(r) dr

)

ds

= (t− s)p
(
∫ s

0

f ′(r) dr

)

∣

∣

∣

∣

∣

s=t

s=0

+

∫ t

0

(t− s)pf ′(s) ds = Γ(1 + p)I1+pf ′(t),

and remember that pΓ(p) = Γ(1 + p).

For (2.13), differentiate (2.12) taking p = 1− β. �

Corollary 2.4. If (2.11) holds, then

Iβ∂βf(t) = f(t)− f(0). (2.14)

Proof. By (2.8) and (2.13),

Iβ∂βf(t) = IβI1−βf ′(t) = If ′(t) =

∫ t

0

f ′(s)ds = f(t)− f(0).

�

2.2. The Laplace Transform. Recall that

f = f(t) 7→ L[f ](λ) =
∫ +∞

0

f(t)e−λt dt (2.15)

is a one-to-one mapping defined on

E =
{

f ∈ L1,loc((0,+∞)) : sup
t>0

|f(t)|ect < ∞ for some c ∈ R

}

. (2.16)

We will use the following properties of the Laplace transform:

L[If ](λ) = λ−1L[f ](λ); (2.17)

f ′ ∈ E ⇒ L[f ′](λ) = λL[f ]− f(0); (2.18)

h(t) =

∫ t

0

f(t− s)g(s) ds ⇒ L[h](λ) = L[f ](λ)L[g](λ); (2.19)

f(t) =
tγ−1

Γ(γ)
, γ > 0 ⇒ L[f ](λ) = λγ. (2.20)

We now establish fractional versions of (2.17) and (2.18).
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Proposition 2.5. If f ∈ E ∩ Cloc
(

[0,+∞)
)

and β ∈ (0, 1), then

L[Ipf ](λ) = λ−pL[f ](λ), (2.21)

L[Dβf ](λ) = λβL[f ](λ), (2.22)

L[Jpf ](λ) = λ−pL[f ](λ)− λ−p−1f(0), (2.23)

L[∂βf ](λ) = λβL[f ](λ)− λβ−1f(0). (2.24)

Proof. Equality (2.21) is an immediate consequence of (2.19), and then (2.22) follows
from (2.18) and (2.6). To establish (2.23), we write

Γ(p)L[Jpf ](λ) =

∫ +∞

0

∫ t

0

(t− s)p−1
(

f(s)− f(0)
)

e−λt dt

=

∫ +∞

0

(
∫ +∞

s

(t− s)p−1e−λt dt

)

(

f(s)− f(0)
)

ds

=

∫ +∞

0

(
∫ +∞

0

up−1e−λu dt

)

e−λs
(

f(s)− f(0)
)

ds

= Γ(p)
(

λpL[f ](λ)− λp−1f(0)
)

.

Then (2.7) and (2.18) imply (2.24). �

Next, we compute the Laplace transform of the standard Brownian motion. Define

ŵ(λ) =

∫ +∞

0

e−λt dw(t); (2.25)

for every λ > 0, the random variable ŵ(λ) is Gaussian with mean zero and variance
1/(2λ). Then the stochastic Fubini theorem shows that

L[w](λ) = ŵ(λ)

λ
. (2.26)

2.3. The two parameter Mittag-Leffler function. The function is defined by the
power series

Eβ,ρ(z) =
∞
∑

k=0

zk

Γ(βk + ρ)
, (2.27)

and, in a sense, is the fractional version of the exponential function. If β > 0, then,
with the convention 1/Γ(−n) = 0, n = 0, 1, 2, . . ., the series on the right-hand side of
(2.27) converges for all z and ρ. The particular case ρ = 1 is

Eβ,1(z) := Eβ(z) =
∞
∑

k=0

zk

Γ(βk + 1)
. (2.28)

Note that E0 = 1/(1− z), |z| ≤ 1, E1(z) = ez, and E2(z) = cosh(
√
z).

Proposition 2.6 (The fractional Gronwall-Bellman inequality). If

y(t) ≤ A(t) +B

∫ t

0

(t− s)β−1y(s) ds,
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where y(t) ≥ 0, A(t) ≥ 0 is non-decreasing, B > 0, β > 0, then

y(t) ≤ A(t)Eβ

(

BΓ(β)tβ
)

.

Proof. See [23, Corollary 2]. �

In general, Eβ,ρ cannot be expressed using elementary functions, but, for many pur-
poses, the following results suffice.

Proposition 2.7. Let β ∈ (0, 1) and ρ > 0.

(1) There exist numbers C1, C2 > 0 such that, for all t > 0,

|Eβ,ρ(t)| ≤ C1(1 + t)(1−ρ)/βet
1/β

+
C2

1 + t
. (2.29)

(2) There exists a number C so that, for all t > 0,

|Eβ,p(−t)| ≤ C

1 + t
. (2.30)

(3) Moreover, if ρ ∈ (0, 1), then

lim
t→+∞

tEβ,ρ(−t) =
1

Γ(ρ− β)
, β 6= ρ; (2.31)

lim
t→+∞

t2Eβ,β(−t) = − 1

Γ(−β)
. (2.32)

Proof. See [19, Theorem 1.5], [19, Theorem 1.6], and [19, Theorem 1.4], respectively.

�

Next, define

yβ,ρ(t) = tρ−1Eβ,ρ(at
β).

Proposition 2.8. For every a ∈ R, the family of functions yβ,ρ, β ∈ (0, 1), ρ > 0,
has the following properties:

L[yβ,ρ](λ) =
λβ−ρ

λβ − a
; (2.33)

1

Γ(γ)

∫ t

0

(t− s)γ−1yβ,ρ(s) ds = yβ,ρ+γ(t), γ > 0; (2.34)

Dγyβ,ρ(t) = yβ,ρ−γ(t), γ ∈ (0, 1), ρ > γ. (2.35)

Proof. By (2.29), yβ,ρ ∈ E for all β ∈ (0, 1), ρ > 0 and a ∈ R. Then

L[yβ,ρ](λ) =
∑

k≥0

∫ +∞

0

aktkβ+ρ−1

Γ(kβ + ρ)
e−λt dt = λ−ρ

∑

k≥0

(aλ−β)k

=
λ−ρ

1− aλ−β
=

λβ−ρ

λβ − a
,
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proving (2.33). Then, with (2.20) in mind, (2.34) and (2.35) follow from (2.21) and
(2.22), respectively.

�

2.4. Time fractional linear deterministic equations. Consider the equation

∂βy(t) = ay(t) + f(t), t > 0, y(0) = y0, (2.36)

with β ∈ (0, 1), a ∈ R, f ∈ E ∩ Cloc
(

[0,+∞)
)

.

Definition 2.9. A function y ∈ Cloc
(

[0,+∞)
)

is called a classical solution of (2.36)
if

J1−βy(t) =

∫ t

0

(

ay(s) + f(s)
)

ds, t > 0. (2.37)

The following result is the analogue of [19, Example 4.3], where the Riemann-Liouville
derivative is considered.

Theorem 2.10. The unique solution of (2.36) in E is

y(t) = y0Eβ(at
β) +

∫ t

0

(t− s)β−1Eβ,β

(

a(t− s)β
)

f(s) ds. (2.38)

Proof. Take the Laplace transform on both sides of (2.37) and use (2.23):

λβ−1L[y](λ)− λβ−2y0 = λ−1
(

aL[y](λ) + L[f ](λ)
)

,

or

L[y](λ) = λβ−1

λβ − a
y0 +

L[f ](λ)
λβ − a

.

The conclusion of the theorem now follows from (2.19), (2.33), and uniqueness of the
Laplace transform on E . �

2.5. Chaos Expansion and Generalized Processes. Below is a summary of the
construction of the weighted chaos spaces; for details, see [12, 13, 16].

Introduce the following objects:

{mk = mk(t), t ∈ [0, T ]}, an orthonormal basis in L2((0, T )),

J =

{

α = (αk, k ≥ 1) : αk ∈ {0, 1, 2, . . .}, |α| :=
∑

k

αk < ∞
}

,

ξα =
∏

k

(

Hαk
(ξk)√
αk!

)

, Hn(x) = (−1)nex
2/2 dn

dxn
e−x2/2, ξk =

∫ T

0

mk(t) dw(t).

If η ∈ LW
2 (Ω), that is, a square-integrable functional of w(t), t ∈ [0, T ], then, by the

Cameron-Martin theorem [3],

η =
∑

α∈J

E(ηξα) ξα, Eη2 =
∑

α∈J

∣

∣

∣
E(ηξα)

∣

∣

∣

2

;
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see also [15, Theorem 5.1.12]. For example,

w(t) =
∑

k≥1

ξk Imk(t) =
∑

k≥1

ξk

(
∫ t

0

mk(s) ds

)

. (2.39)

Let q = {qk, k ≥ 1} be a sequence of positive numbers. We write

q
α :=

∏

k≥1

qαk
k .

Definition 2.11. Let q = {qk, k ≥ 1} be a sequence such that 0 < qk < 1 for all k.

The space L2,q

(

(0, T )
)

is the closure of LW
2

(

Ω;L2(0, T )
)

with respect to the norm

‖X‖2,q =
(

∑

α∈J

∥

∥E(Xξα)
∥

∥

2

L2((0,T ))

)1/2

.

An element of L2,q

(

(0, T )
)

is represented by an expression of the form

X(t) =
∑

α∈J

xα(t)ξα

with non-random xα ∈ L2((0, T )) satisfying
∑

α∈J

q
α ‖xα‖2L2((0,T )) < ∞,

and is called a q-generalized process.

For example, the white noise process

ẇ(t) =
∑

k≥1

ξkmk(t)

is a q-generalized process for every q satisfying
∑

k≥1

qk < ∞. (2.40)

3. Fractional Derivatives of the Brownian Motion

Proposition 3.1. If γ ∈ (0, 1), then
∫ t

0

(t− s)−γw(s) ds =
1

1− γ

∫ t

0

(t− s)1−γ dw(s). (3.1)

Proof. Integrate by parts on the right-hand side of (3.1). �

Corollary 3.2. Given γ ∈ (0, 1), define

Wγ(t) =
1

(1− γ)Γ(1− γ)

∫ t

0

(t− s)1−γ dw(s), t > 0. (3.2)

Then

J1−γw(t) = Wγ(t) = I1−γw(t), (3.3)
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and

∂γw(t) =
d

dt
Wγ(t). (3.4)

Proof. Equality (3.3) follows from (3.1), keeping in mind that w(0) = 0. After that,
(2.7) implies (3.4). �

Definition 3.3. A process V = V (t), t ∈ [0, T ], is called a Gaussian Volterra

process with kernel K = K(t, s) if there exists a non-random function K = K(t, s)
such that K(t, s) = 0, s > t, K ∈ L2((0, T )

2), and

P

(

V (t) =

∫ t

0

K(t, s) dw(s), t ∈ [0, T ]
)

= 1.

Proposition 3.4. If

γ ∈ (0, 1/2), (3.5)

then ∂γ
t w is a Gaussian Volterra process with representation

∂γ
t w(t) =

1

Γ(1− γ)

∫ t

0

(t− s)−γ dw(s). (3.6)

Proof. Similar to (2.9),

lim
t→0+

∫ t

0

(t− s)−γw(s) ds = 0

with probability one. Therefore, it is enough to show that
∫ t

0

(
∫ s

0

(s− r)−γ dw(r)

)

ds =
1

1− γ

∫ t

0

(t− r)1−γ dw(r),

which follows by the stochastic Fubini theorem; condition (3.5) is necessary for the
application of the stochastic Fubini theorem. �

Next, for β, γ ∈ (0, 1), consider the equation

∂β
t X(t) = ∂γ

t w(t), t > 0, X(0) = X0, (3.7)

Using (2.7), equation (3.7) becomes

d

dt
J1−βX(t) =

d

dt
J1−γw(t). (3.8)

Together with (2.9), (3.8) implies that equation (3.7) should be interpreted as the
integral equation

J1−βX(t) = J1−γw(t). (3.9)

Definition 3.5. A classical solution of (3.7) on [0, T ] is a continuous process X =
X(t) such that

P

(

J1−βX(t) = J1−γw(t), t ∈ [0, T ]
)

= 1.
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Theorem 3.6. If

β − γ > −1

2
, (3.10)

then

X(t) = X0 +
1

Γ(1 + β − γ)

∫ t

0

(t− s)β−γdw(s) (3.11)

is the unique classical solution of (3.7).

Proof. Apply ∂1−β
t to both sides of (3.9) and use (2.10), (2.8), and (2.7):

X(t)−X0 = ∂1−β
t J1−γw(t) =

d

dt
JβJ1−γw(t) =

d

dt
J1+β−γw(t)

=
d

dt
J1−(γ−β)w(t);

(3.12)

note that 1 + β − γ > 0 for all β, γ ∈ (0, 1). If γ − β > 0, then

d

dt
J1−(γ−β)w(t) = ∂γ−β

t w(t), (3.13)

and, under condition (3.10), equality (3.11) follows by Proposition 3.4.

If γ − β ≤ 0, then the function t 7→ J1−(γ−β)w(t) is continuously differentiable in t:

J1−(γ−β)w(t) =
1

Γ(1 + |γ − β|)

∫ t

0

(t− s)|γ−β|w(s)ds

so that

d

dt
J1−(γ−β)w(t) =

1

|γ − β|Γ(1 + |γ − β|)

∫ t

0

(t− s)|γ−β|−1w(s)ds

and (3.11) follows after integration by parts. �

We now make the following observations;

• In an ordinary differential equation, β = γ = 1, so that (3.10) holds.
• For every t > 0, X(t) is a Gaussian random variable with variance

σ2(t) ∝

∫ t

0

s2(β−γ)ds ∝ t2(β−γ)+1;

f ∝ g means f is proportional to g. The solution of (3.7) can thus exhibit
the anomalous diffusion behavior σ2(t) ∝ tα for all α ∈ (0, 3) [6, Section 1.2];
regular diffusion σ2(t) ∝ t corresponds to β = γ.

• The last equality in (3.12) suggests that the solution of (3.7) can be written
as

X(t)−X(0) = ∂γ−β
t w(t), (3.14)

which makes perfect sense, but requires a justification. In particular, the
proof of Theorem 3.6 shows that (3.10) is necessary for the right-hand side of
(3.14) to define a continuous process, which in this case is a Gaussian Volterra
process.
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• Taking the Laplace transform on both sides of (3.7), with (2.26) in mind,
results in

λβL[X ](λ)− λβ−1X0 = λγ−1ŵ(λ) (3.15)

or
L[X ](λ) = λ−1X0 + λγ−β−1ŵ(λ), (3.16)

which is consistent with (3.11).
• Condition (3.10) is standard in the study of fractional stochastic evolution
equations [4, 11].

If condition (3.10) fails, so that γ− β ≥ 1/2, then the solution of (3.7), as defined by
(3.9) or (3.16), is a generalized process, best described using weighted chaos spaces.

Theorem 3.7. If

m1(t) =
1√
T
, mk(t) =

√

2

T
cos

(

πt(k − 1)

T

)

, k ≥ 2, (3.17)

and

γ − β ≥ 1

2
, (3.18)

then (3.9) defines a q-generalized process for every q satisfying
∑

k

k2(γ−β−1)qk < ∞. (3.19)

Proof. Using (2.39), equalities (3.9) and (3.12) lead to

X(t) = X0 +
∑

k

ξkI
1−(γ−β)

mk(t). (3.20)

By direct computation,
∣

∣

∣

∣

∫ t

0

(t− s)−(γ−β) cos(ks) ds

∣

∣

∣

∣

≤ Ckγ−β−1, (3.21)

cf. [1, Example 6.6.1], and then (3.19) follows. �

Note that

• As a quick consistency check, the extreme case β = 0, γ = 1 in (3.7) corre-
sponds to X = ẇ, and then (3.19) becomes (2.40).

• The key step in the proof of Theorem 3.7 is asymptotic analysis, as k → ∞,
of

∫ t

0

(t− s)−κ
mk(s)ds, κ ∈ (0, 1),

which is made possible by assumption (3.17). The k−1+κ-asymptotic holds for
other trigonometric basis, and, while it might not hold in general, the main
constructions related to the chaos expansion, including the definition of the
q-generalized processes, are intrinsic and do not depend on the choice of the
bases, either in L2((0, T )) or in LW

2 (Ω); see [9, 12].
• Equality (3.20) also holds under (3.10).
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Remark 3.8. With obvious modifications, the results of this section extend to equa-

tions of the type

∂β
t X(t) = ∂γ

t

∫ t

0

g(s) dw(s),

where g ∈ L2((0, T )). Under condition (3.10), the function g can be random as long

as g is Ft-adapted and

E

∫ T

0

g2(t) dt < ∞.

4. Time Fractional Ornstein-Uhlenbeck Process

4.1. Derivation of the equation. Consider the harmonic oscillator

mẍ(t) + c2x(t) = F (t), (4.1)

with a slight twist that the restoring force −c2x does not depend on the mass m.

The force F has two components, damping Fd and external Fe:

F (t) = Fd(t) + Fe(t).

Traditional damping is

Fd(t) = −cdẋ(t), cd > 0.

Instead, we assume that Fd has memory:

Fd(t) = −
∫ t

0

fd(t− s)ẋ(s) ds. (4.2)

A possible choice of the memory kernel in (4.2) is

fd(t) = At−β, A > 0, β ∈ (0, 1),

which corresponds to a continuous time random walk model with a heavy-tailed jump
time distribution; cf. [17, Section 2.4].

If we also assume that the external force is the fractional derivative of the standard
Bronwian motion,

Fe = ∂γ
t w(t), γ ∈ (0, 1),

then, with (2.13) in mind, equation (4.1) becomes

mẍ(t) + b∂β
t x(t) + c2x(t) = ∂γ

t w(t). (4.3)

Now take the Laplace transform on both sides of (4.3), with (2.26) in mind. Assuming
zero initial conditions, the result is

(

mλ2 + bλβ + c2
)

L[x](λ) = λγ−1ŵ(λ) (4.4)

or

L[x](λ) = λγ−1ŵ(λ)

mλ2 + bλβ + c2
. (4.5)
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Finally, we pass to the limit m → 0 in (4.5); this procedure is known as the
Smoluchowski-Kramers approximation [5]. With X denoting the corresponding limit
of x, the result is

L[X ](λ) =
λγ−1ŵ(λ)

bλβ + c2
, (4.6)

which, back in the time domain, and with re-scaled constants, becomes the equation
describing the time fractional Ornstein-Uhlenbeck process:

∂β
t X(t) = −aX(t) + ∂γ

t w(t), a > 0. (4.7)

4.2. Solution and its long-time behavior. Similar to Definition 3.5, we say that
a continuous process X = X(t) is a classical solution of (4.7) on [0, T ] if

P

(

J1−βX(t) = −a

∫ t

0

X(s) ds+ J1−γw(t), t ∈ [0, T ]

)

= 1.

Theorem 4.1. If (3.10) holds, then, for every a ∈ R, X0 ∈ R, and T > 0, equation
(4.7) has a unique solution in the class E and

X(t) = X0Eβ(−atβ) +

∫ t

0

(t− s)β−γEβ,β−γ+1

(

− a(t− s)β
)

dw(s). (4.8)

Proof. Take the Laplace transform on both sides of (4.7):

L[X ](λ) =
λβ−1

λβ + a
X0 +

λγ−1

λβ + a
ŵ(λ). (4.9)

If β − γ > −1/2, that is, (3.10) holds, then inverting (4.9) yields (4.8). �

Equality (4.8) implies that, for every t > 0, X(t) is a Gaussian random variable with
mean

µ(t) = X0Eβ(−atβ)

and variance

σ2(t) =

∫ t

0

s2(β−γ)E2
β,β−γ+1(−asβ) ds. (4.10)

By (2.30),
lim

t→+∞
µ(t) = 0.

To study σ2(t), we use (2.31) with ρ = β − γ + 1:

lim
t→+∞

tEβ,β−γ+1(−t) =
1

Γ(1− γ)
. (4.11)

Note that (3.10) is necessary and sufficient for the convergence of (4.10) at zero. On
the other hand, (4.11) implies that, depending on the values of γ, the integral in
(4.10) can either converge or diverge at infinity:

s2(β−γ)E2
β,β−γ+1(−asβ) ∼ s−2γ, s → +∞. (4.12)

Using (4.12), as well as the arguments similar to the proof of Theorem 3.7, we get
the following characterization of the solution of (4.7) for all values of β, γ ∈ (0, 1].
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Theorem 4.2. (1) If β − γ ≤ −1/2, then X is a q-generalized process for every

q satisfying (3.19);
(2) If β − γ > −1/2, then X is a Gaussian Volterra process (4.8) and

• If γ > 1/2, then, as t → +∞, X(t) converges in distribution to a Gauss-

ian random variable with mean zero and variance

σ2
∞(a, β, γ) =

∫ +∞

0

s2(β−γ)E2
β,β−γ+1(−asβ) ds; (4.13)

• If γ = 1/2, then, as t → ∞, X(t) is a Gaussian random variable with

mean of order t−β and variance of order ln t;
• If γ < 1/2, then, as t → ∞, X(t) is a Gaussian random variable with

mean of order t−β and variance of order t1−2γ.

In particular, for β ∈ (0, 1] and γ ∈ (0, 1/2), the long-time behavior of X corresponds
to that of a sub-diffusion; see, for example, [22] or [18, Section 6]. For γ = 1/2, the
result is an ultra-slow, or Sinai-type, diffusion [21].

Remark 4.3. Different physical considerations lead to alternative forms of the time-

fractional Ornstein-Uhlenbeck process: see, for example [10] and references therein.

5. Time Fractional Geometric Brownian Motion

Similar to the geometric Brownian motion

dx(t) = ax(t)dt + σx(t)dw(t),

which is

x(t) = x(0) exp

((

a− σ2

2

)

t + σw(t)

)

, (5.1)

define the time fractional geometric Brownian motion as the solution of the equation

∂β
t X(t) = aX(t) + σ∂γ

t

∫ t

0

X(s) dw(s), t > 0, β, γ ∈ (0, 1), (5.2)

with non-random initial condition X(0) = X0.

By Theorem 3.6, if γ − β < 1/2, then (5.2) is equivalent to the integral equation

X(t) = X0+
a

Γ(β)

∫ t

0

(t−s)β−1X(s) ds+
σ

Γ(1 + β − γ)

∫ t

0

(t−s)β−γX(s) dw(s); (5.3)

using (4.8), we get a different, but equivalent, equation

X(t) = X0Eβ(at
β) + σ

∫ t

0

(t− s)β−γEβ,β−γ+1

(

a(t− s)β
)

X(s) dw(s). (5.4)

Accordingly, we define a classical solution of (5.2) on [0, T ] as a continuous process
X = X(t) such that, for all t ∈ [0, T ], EX2(t) < ∞, X(t) is Ft-measurable, and (5.3)
holds with probability one.

Because a closed-form expression of the type (5.1) is currently not available for X(t),
we will study (5.2) using chaos expansion.
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To simplify the notations, let

Φ(t) = tβ−γEβ,β−γ+1(at
β). (5.5)

Theorem 5.1. Under condition (3.10), equation (5.2) has a unique classical solution

for every T > 0 and X0, a, σ ∈ R, with chaos expansion

X(t) =
∑

α∈J

Xα(t)ξα,

where
∑

|α|=n

Xα(t)ξα = X0σ
n

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φ(t− sn)Φ(sn − sn−1) . . .Φ(s2 − s1)Eβ(as
β
1 ) dw(s1) . . . dw(sn),

(5.6)

and

EX2(t) = X2
0

(

E2
β(at

β) +

∞
∑

n=1

σ2n

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φ2(t− sn)Φ
2(sn − sn−1) . . .Φ

2(s2 − s1)E
2
β(as

β
1 ) ds1 . . . dsn

)

.

(5.7)

Proof. Existence and uniqueness follow from (5.3) by the standard fixed point argu-
ment. To derive (5.6), we use the general result about chaos expansion for linear
evolution equations [12, Section 6]. In particular, the functions Xα = Xα(t), α ∈ J ,
satisfy a system of equations, known as the propagator:

|α| = 0 : ∂β
t X(0) = aX(0), X(0)(0) = X0;

|α| > 0 : ∂β
t Xα(t) = aXα(t) + σ

∑

k≥1

√
αk I

1−γ(Xα−ǫ(k)mk)(t), Xα(0) = 0, (5.8)

where ǫ(k) is the multi-index with |ǫ(k)| = 1 and the only non-zero element in position
k. By Theorem 2.10,

X(0)(t) = X0Eβ(at
β),

Xα(t) = σ
∑

k≥1

√
αk

∫ t

0

(t− s)β−1Eβ,β

(

a(t− s)β
)

I1−γ(Xα−ǫ(k)mk)(s) ds,

|α| > 0.

(5.9)

Changing the order of integration and using (2.34),
∫ t

0

(t− s)β−1Eβ,β

(

a(t− s)β
)

I1−γ(Xα−ǫ(k)mk)(s) ds

=

∫ t

0

(t− s)β−γEβ,1+β−γ

(

a(t− s)β
)

X
α−ǫ(k)(s)mk(s) ds,

and then, iterating the result,

Xα(t) =
σn

√
α!

∑

π∈Pn

∫ t

0

∫ sn

0

· · ·
∫ s2

0

Φ(t− sn)

× Φ(sn − sn−1) . . .Φ(s2 − s1)X(0)(s1)miπ(n)
(sn) . . .miπ(1)

ds1 . . . dsn,

(5.10)
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where Pn is the permutations group of {1, . . . , n} and {i1, . . . , in} is the characteristic
set of α; cf. [12, Corollary 6.6]. After that, (5.6) follows from the connection between
the Hermite polynomials and the iterated Itô integrals [7, Theorem 3.1]. Then (5.7)
follows from (5.6) by Itô isometry.

It remains to show that the right-hand side of (5.7) is finite. To this end, we use
(2.29) to write

Φ2(t) ≤ Ctr−1, r = 2(β − γ) + 1 > 0,

so that
∫ t

0

∫ sn

0

. . .

∫ s2

0

Φ2(t− sn)Φ
2(sn − sn−1) . . .Φ

2(s2 − s1)

×E2
β(as

β
1 ) ds1 . . . dsn

)

≤ Cn(T )

Γ(nr + 1)
,

and convergence follows by the Stirling formula. �

Note that condition (3.10) is necessary and sufficient for the convergence of the in-
tegrals in (5.7), and once again we see that, without (3.10), no classical solution of
(5.2) can exist.

On the other hand, each Xα is well-defined by (5.9) for all β, γ ∈ (0, 1]. Accordingly,
we call the resulting formal sum

∑

α∈J Xα(t)ξα the chaos solution of (5.2). By
construction, this solution exists and is unique.

Theorem 5.2. If β−γ ≤ −1/2 and {mk, k ≥ 1} are given by (3.17), then the chaos

solution of (5.2) is a q-generalized process for every q satisfying (3.19).

Proof. The objective is to show that (3.19) implies
∑

α∈J

q
α|Xα(t)|2 < ∞, t > 0, (5.11)

and analysis of the proof of Theorem 5.1 shows that (5.11) will follow from

∑

k≥1

qk

(
∫ T

0

Φ(T − s)mk(s) ds

)2

< ∞. (5.12)

To prove (5.12), define the operator Q on L2((0, T )) by

Qmk =
√
qk mk, k ≥ 1.

Then the operator Q is symmetric on L2((0, T )),

Qf(t) =
∑

k≥1

√
qk

(
∫ T

0

f(s)mk(s) ds

)

mk(t),

∑

k≥1

qk

(
∫ T

0

Φ(T − s)mk(s) ds

)2

=

∫ T

0

(

QΦ(t)
)2

dt,

and (5.12) follows from (3.21). �
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6. Stochastic Fractional Parabolicity Conditions

Consider the stochastic equation

du(t, x) = buxx(t, x)dt+
(

̺uxx(t, x)+σux(t, x)+ cu(t, x)
)

dw(t), t > 0, x ∈ R, (6.1)

with real numbers b, ̺, σ, c as parameters. It is well known that

• Equation (6.1) is well-posed in L2(R) if and only if ̺ = 0 and 2b − σ2 ≥ 0;
see, for example, [15, Section 2.3.1].

• Equation (6.1) is well-posed in a suitable chaos space if b > 0; cf. [14].

On other hand, a perturbation-type argument [4] shows that the following fractional
version of (6.1),

∂β
t u(t, x) = auxx(t, x) + ∂γ

t

∫ t

0

(

̺uxx(s, x) + σux(s, x) + cu(s, x)
)

dw(s) (6.2)

is well-posed in L2(R) if β ∈ (0, 1), |̺| is sufficiently close to zero, and 0 < γ < 1/2.
Note that if γ < 1/2, then (3.10) holds for all β ∈ (0, 1).

The objective of this section is to establish more general sufficient conditions for
well-posedness of (6.2) and similar equations.

Fix the numbers b > 0, σ ∈ R, β, γ ∈ (0, 1], α, ν ∈ (0, 2], and let

Λ = (−∆)1/2

be the fractional Laplacian defined in the Fourier domain by

1

(2π)d/2

∫

Rd

e−ixy(Λf)(x) dx =
|y|

(2π)d/2

∫

Rd

e−ixyf(x) dx.

Consider the equation

∂β
t u(t, x) + bΛα(t, x) = σ ∂γ

t

∫ t

0

Λνu(s, x) dw(s), t > 0, x ∈ R
d, (6.3)

with non-random initial condition u(0, ·) ∈ L2(R
d).

Definition 6.1. An Ft-adapted process u ∈ L2

(

Ω; C
(

[0, T ];L2(R
d)
)

)

is called a so-

lution of (6.3) if, for every ϕ ∈ C∞
0 (Rd),

P

(

J1−β
(

u, ϕ
)

L2(Rd)
(t) + b

∫ t

0

(

u,Λαϕ
)

L2(Rd)
(s) ds

= σJ1−γ

(
∫ ·

0

(

u,Λνϕ
)

L2(Rd)
(s) dw(s)

)

(t), t ∈ [0, T ]

)

= 1.

Equation (6.3) is called well-posed in L2(R
d) if, for every initial condition u(0, ·) ∈

C∞
0 (Rd), there exists a unique solution u and

E‖u‖2L2(Rd)(t) ≤ C‖u(0, ·)‖2L2(Rd),

with C independent of the initial condition.
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The L2-isometry of the Fourier transform implies that, in terms of well-posedness in
L2, equation (6.3) with α = 2 and ν = 1, 2, is equivalent to (6.2); this equivalence
might no longer hold for well-posedness in Lp, p > 2, see [2] when β = γ = 1, α =
2, ν = 1.

In the rest of the section we show that, under (3.10),

(1) For γ ∈ (0, 1/2), equation (6.3) is well-posed in L2(R
d) if and only if α ≥ ν;

(2) For γ = 1/2, equation (6.3) is well-posed in L2(R
d) if and only if α > ν;

(3) For γ = (1/2) + βε, ε ∈ (0, 1), equation (6.3) is well-posed in L2(R
d) if

α > ν/(1 − ε), and can be well-posed when α = ν/(1 − ε) under additional
conditions on b and σ.

Theorem 6.2. Assume that (3.10) holds. Then (6.3) is well-posed in L2(R
d) in each

of the following cases:

• γ ∈ (0, 1/2) and α ≥ ν;
• γ = 1/2 and α > ν;
• γ ∈ (1/2, 1] and

α >
ν

1− γ−(1/2)
β

. (6.4)

Proof. Denote by U = U(t, y) the Fourier transform of u in the space variable. Then,
by Fourier isometry, (6.3) is well-posed in L2(R

d) if and only if

E|U(t, y)|2 ≤ C|U(0, y)|2, t > 0, (6.5)

for some C independent of y. Accordingly, throughout the proof, C denotes a positive
number independent of y.

Equation (6.3) in Fourier domain is

∂β
t U(t, y) = −b|y|α U(t, y) + σ|y|ν ∂γ

t

∫ t

0

U(s, y) dw(s). (6.6)

Notice that, for each y ∈ R
d, equation (6.6) is of the same type as (5.2). Then (5.4)

implies

E|U(t, y)|2 = |U(0, y)|2E2
β

(

− b|y|αtβ
)

+ σ2|y|2ν
∫ t

0

(t− s)2(β−γ)E2
β,β−γ+1

(

− b|y|α(t− s)β
)

E|U(s, y)|2 ds.
(6.7)

If |y| ≤ 1, then (2.30) immediately implies

E|U(t, y)|2 ≤ C
(

|U(0, y)|2 +
∫ t

0

(t− s)2(β−γ)
E|U(s, y)|2 ds

)

,

and (6.5) follows by Proposition 2.6.
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If |y| > 1, and γ ∈ (0, 1/2), then we use (2.30) to write

E2
β

(

− b|y|αtβ
)

≤ C,

E2
β,β−γ+1

(

− b|y|α(t− s)β
)

≤ C

b2|y|2α(t− s)2β
, (6.8)

and then (6.7) becomes

E|U(t, y)|2 ≤ C
(

|U(0, y)|2 +
∫ t

0

(t− s)−2γ
E|U(s, y)|2 ds

)

, (6.9)

so that (6.5) again follows by Proposition 2.6.

If γ ≥ 1/2, then the integral on the right-hand side of (6.9) diverges. Accordingly,
we replace (6.8) with

E2
β,β−γ+1

(

− b|y|α(t− s)β
)

≤ C
(

a2|y|2α(t− s)2β
)1−ε ,

taking ε > 0 if γ = 1/2 and εβ > γ−1/2 if γ ∈ (1/2, 1]. Note that (3.10) is equivalent
to 1− ε > 0. Then, instead of (6.9), we get

E|U(t, y)|2 ≤ C
(

|U(0, y)|2 +
∫ t

0

(t− s)2(εβ−γ)
E|U(s, y)|2 ds

)

,

as long as α(1− ε) ≥ ν, and conclude the proof by applying Proposition 2.6. �

Note that

(1) If γ ≥ (β + 1)/2, then (6.4) becomes α > 2ν. For equation (6.2), this means
̺ = σ = 0, which is consistent with [4].

(2) The results of [14] suggest that (6.3) is unlikely to have a q-generalized chaos
solution when ν > α.

If γ ∈ (0, 1/2), then condition α ≥ ν is also necessary: (2.31) shows that (6.5) is not
possible for large |y| when α < ν. If γ = β = 1, then (6.4) becomes α > 2ν. On
the other hand, similar to (6.1), equation (6.3) is well-posed in L2(R

d) if γ = β = 1,
α = 2, ν = 1, and

2b ≥ σ2. (6.10)

This observation suggests that, more generally, (6.3) could be well-posed if γ−1/2 =
βε, ε ∈ (0, 1), and α = ν/(1 − ε), under an additional condition of the type
(6.10). Dimensional analysis implies that the condition should be of the form
b ≥ C(β, γ)|σ|1/(1−ε). We conclude this section by establishing an upper bound for
C(β, γ), as well as addressing a similar question when γ = 1/2.

Theorem 6.3. Assume that (3.10) holds. Then equation (6.3) is

• NOT well-posed in L2(R
d) if γ = 1/2 and α = ν;

• well-posed in L2(R
d) if γ = (1/2) + εβ, ε ∈ (0, 1),

α =
ν

1− ε
, b ≥

(

σ2
∞(1, β, γ)

)1/(2−2ε) |σ|1/(1−ε), (6.11)

with σ2
∞(a, β, γ) defined in (4.13).
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Proof. Similar to the proof of the previous theorem, we need to study equality (6.7)
for |y| > 1, so we fix y with |y| sufficiently large and define

V (t) = E|U(t, y)|2 − |U(0, y)|2E2
β(−b|y|αtβ).

Then V is non-decreasing in t and satisfies

V (t) = σ2|y|2ν
∫ t

0

(t− s)2(β−γ)E2
β,β−γ+1

(

− b|y|α(t− s)β
)

V (s) ds

+ |U(0, y)|2 σ2|y|2ν
∫ t

0

s2(β−γ)E2
β,β−γ+1

(

− b|y|αsβ
)

E2
β

(

− b|y|α(t− s)β
)

ds.

(6.12)

If γ = 1/2, we re-write (6.12) as

V (t) ≥ |U(0, y)|2σ2|y|2ν
∫ t

0

s2β−1E2
β,β−γ+1

(

− b|y|αsβ
)

E2
β

(

− b|y|α(t− s)β
)

ds.

Changing the variables T = (b|y|α)1/β t, τ = (b|y|α)1/βs, and keeping in mind that
ν = α,

V (t) ≥ |U(0, y)|2σ2b−2

∫ T

0

τ 2β−1E2
β,β−γ+1

(

− τβ
)

E2
β

(

(T − τ)β
)

dτ.

Because lim|y|→∞ T = +∞ and, by (2.31), the last integral diverges at infinity, we
conclude that (6.5) cannot hold.

Next, consider the case γ ∈ (1/2, 1] under the assumptions (6.11). The same compu-
tations as in the case γ = 1/2 show that now the second integral on the right-hand
side of (6.12) is uniformly bonded in |y|. To analyze the first integral, write

ε =
γ − (1/2)

β
, ̟ = |y|−εα/β,

so that ν = α(1− ε), and

σ2|y|2ν
∫ t

0

(t− s)2(β−γ)E2
β,β−γ+1

(

− b|y|α(t− s)β
)

V (s) ds

= σ2|y|2ν
(
∫ t−̟

0

+

∫ t

t−̟

)

(t− s)2(β−γ)E2
β,β−γ+1

(

− b|y|α(t− s)β
)

V (s) ds.

(6.13)

We use (6.8) and t−s ≥ ̟ to bound the first integral on the right-hand side of (6.13)
by

Cσ2|y|2ν
(

b|y|α̟β
)2

∫ t−̟

0

(t− s)2(β−γ)V (s) ds ≤ C

∫ t

0

(t− s)2(β−γ)V (s) ds,

which, by (3.10), allows an application of Proposition 2.6. For the second integral,
we use monotonicity of V to get an upper bound

V (t)σ2|y|2ν
∫ t

t−̟

(t− s)2(β−γ)E2
β,β−γ+1

(

− b|y|α(t− s)β
)

ds

= V (t) σ2|y|2ν
∫ ̟

0

s2(β−γ)E2
β,β−γ+1

(

− b|y|αsβ
)

ds,
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which, after the change of variable τ = (b|y|α)1/βs becomes

V (t)
σ2

b2(1−ε)

∫ b1/β |y|ν/β

0

τ 2(β−γ)E2
β,β−γ+1

(

− τβ
)

dτ < V (t)
σ2

b2(1−ε)
σ2
∞(1, β, γ).

By assumption,
σ2

b2(1−ε)
σ2
∞(1, β, γ) ≤ 1,

and then (6.5) follows from (6.12). �

As a final comment, note that, while the proof of Theorem 6.3 suggests that (6.11)
might not be sharp, we do get the optimal bound (6.10) when α = 2, ν = 1, β = γ = 1,
and ε = 1/2, because, with E1,1(t) = et,

σ2
∞(1, 1, 1) =

∫ ∞

0

e−2t dt =
1

2
.
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