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1. Introduction 

Artificial intelligence (AI) is a modernization priority for US defense. The DOD 
AI strategy directs the department to accelerate the adoption of AI and the creation 
of a force fit for our time.1 It is natural then that it is also an Army modernization 
priority.2 It is an important element of solving problems from the Army’s 
perspective of multi-domain operations (MDO) as built on layered standoff in 
adversary engagements.3 While there is no concise and universally accepted 
definition of AI itself, the DOD AI strategy document1 refers to it as, “the ability 
of machines to perform tasks that normally require human intelligence – for 
example, recognizing patterns, learning from experience, drawing conclusions, 
making predictions, or taking action – whether digitally or as the smart software 
behind autonomous physical systems”. This statement implies a machine is 
exhibiting intelligence when it performs such tasks on its own, independently of 
human assistance. A key aspect of AI solutions that have emerged in the last decade 
is that they overwhelmingly fit the pattern-recognition mold; in most cases, they 
are assigning input data to data classes based on the outputs of a trained artificial 
neural network (ANN) to the same input data. Specifically, deep-learning neural 
networks (DNNs), consisting of many layers of artificial neurons and connecting 
weights, are initially trained on large amounts of data from known classes to 
determine the weights and then used to classify actual input data in an application.* 
Thus machine learning (ML), the process by which automata, in this case DNNs, 
learn patterns in the training phase, has been a dominant theme. Indeed, the success 
of DNNs in computer vision has been responsible for the increased attention and 
investment in AI by the commercial and government sectors.4 Advances in training 
algorithms and software development tools such as tensorflow, availability of 
computational power such as graphical processing units (GPUs), and access to large 
amounts of data such as through social media have enabled rapid exploration of 
deep-learning models in many applications. 

In supervised learning, where human experts create a set of samples to train the ML 
algorithms, the closeness of the training data to actual application data plays an 
important role in the AI approach’s performance. The main bottleneck for 
application of ML models to military problems is the lack of representative data in 
sufficient volume to train these models.5 The use of synthetic data has been 
proposed as a workaround.6 Synthetic data sets offer certain advantages: 

                                                 
* The number of weights, or parameters, can be huge, in the millions. This puts a tremendous burden 
on computation and training time. 
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• They come with accurate ground-truth. 

• It is easy to generate various types of data in large volumes with off-the-
shelf simulation products. 

• They impose fewer procedural hurdles such as, for example, obtaining 
institutional review board permissions with biometric data. 

However, the most crucial issue is whether training the ML models on synthetic 
data, or mixed synthetic and real data, enables these models to perform well with 
real data. Initial results obtained by the US Army Combat Capabilities 
Development Command Army Research Laboratory researchers and collaborators 
using synthetically generated human videos for robot recognition of gestures, show 
that training on a mix of synthetic and real data can improve the performance of the 
ML gesture recognizer.7 However, there are no universal or categorical results 
indicating consistent improvement of real-world ML performance when trained, 
fully or partially, on synthetic data. A systematic investigation is therefore 
necessary to determine the degree of confidence with which one can employ 
synthetic data for training ML methods. It is reasonable to hypothesize that the 
effectiveness of synthetic data for improving ML performance will be influenced, 
among other factors, by the domain of actual application, the fidelity of the 
synthesized data to real data, the training regime, and the ML methods themselves. 
Fidelity of synthesized data to real data, in turn, depends on the data synthesis 
methods and raises the issue of assessing the fidelity through suitable metrics. It is 
not clear, with images for example, that the performance of ML methods with 
synthetic data training is proportionately related to their fidelity with real scenes as 
perceived by human vision. It is possible that there are key features of the data that 
are more important for ML performance than those that influence human 
perception. A key purpose of organizing this Army Science Planning and Strategy 
Meeting (ASPSM) was to have leading academic and DOD experts in synthetic 
data generation, artificial intelligence and machine learning (AI & ML), and human 
perception address these very issues. The technical emphasis of the meeting was 
predominantly on image and video data reflecting the organizers’ mission areas of 
computer vision and scene perception. 

2. Organization 

Based on the issues raised in the previous section, the meeting was organized 
around three topical thrusts: 

1. Human learning and generalization: Humans can generalize from minimal 
abstractions and descriptions to complex objects. For example, observing a 
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cartoon image or line drawing of an object would suffice in many situations 
for humans to recognize the actual 3-D object later in a real scene in spite 
of the latter possessing more complex attributes than the cartoon or drawing 
depiction.* This is way beyond the ability of current AI & ML systems. If 
such capability were to be developed, it would significantly reduce the 
burden on the data-synthesis machine to assure tight fidelity across all 
attributes of the real data. This example is also an illustration of the fact that 
research into synthetic data generation for training ML models is intricately 
connected with improving the capabilities of the ML models themselves. 
This thrust was thus focused on exploration of learning in humans and 
animals to inspire new approaches in ML and data synthesis. 

2. Data synthesis approaches and validation: Most areas in which ML 
methods are being applied have techniques and tools available for 
synthesizing data specific to their domains. Gaming platforms provide a 
popular commercial example of video synthesis. There is the question of 
how to evaluate the performance of the different synthesis approaches in a 
given domain. One clearly has to identify metrics or criteria to perform such 
evaluation. Typically, too, authors of synthesis tools issue claims on the 
performance or efficacy of the tools. Validation would be the process of 
assessing such claims. The intent of this thrust was to address principles 
governing both the synthesis and validation processes. Examples of 
synthesis techniques of interest include computer graphics-based renderers 
(e.g., as used in movies), physics-based simulation (e.g., IR imagery), and 
generative models (which currently tend to be neural network based).  

3. Domain adaptation challenges: Domain adaptation in ML refers to training 
the ML model using data from one domain, known as the source, and then 
applying the ML to data in a different but related domain, known as the 
target.9 An example would be that of an ML algorithm trained to recognize 
vehicles using a source-image data set of predominantly civilian vehicles 
and then using the trained algorithm to recognize vehicles in a target data 
set containing mostly military vehicles. Where synthetic data are used for 
training, they would typically constitute the source domain and actual 
application data would be the target domain. The focus of this thrust was to 
identify and discuss key issues and challenges in effective domain 
adaptation.  

                                                 
* Closely related issues are discussed by Lamb et al.8 



 

3 

The ASPSM deliberations were spread over four sessions. Day 1 had two sessions 
covering the first two topical thrusts. The first session of Day 2 covered the third 
thrust and the second session was devoted to breakout discussions under the three 
thrusts. The schedules for the two days of the ASPSM are shown in Figs. 1 and 2, 
respectively. As can be seen, each thrust-based session began with a 40-min lead 
talk by an academic expert in the field followed by two 20-min talks, again by 
university experts. The talks were followed by discussions with a panel consisting 
of a mix of experts from academia and DOD. The last session consisted of 
breakouts where participants could discuss various aspects related to the thrusts. 

 

Fig. 1 Day 1 schedule 
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Fig. 2 Day 2 schedule 

3. Oral Sessions and Panels 

Prof Antonio Torralba of the Electrical Engineering & Computer Science 
Department of MIT delivered the lead talk in Session 1 on human learning and 
generalization. It was titled “Learning from vision, touch and audition” and it 
provided insights on how deep-learning approaches can discover meaningful 
representations of scenes without the use of extensive labeled training data. The 
illustrated example involved their DNN developing associations between visual 
scenery and sounds in the environment. The reader is referred to Aytar et al.10 for a 
representative article on this topic.  

The next talk by Dr James DiCarlo, also from MIT, was titled “Reverse Engineering 
Visual Intelligence”. The speaker defined reverse engineering as inferring internal 
processes in the brain based on observations of behaviors and reactions to inputs, 
and forward engineering as creating ANN models that would generate 
corresponding behaviors with the same inputs. A goal of his group is that of 
establishing benchmarks of performance of neurocognitive tasks that would 
simultaneously be met by humans, or other primates, and by ML models.11 His talk 
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presented initial results showing how models of processing in the brain could be 
adapted to ANN implementation and made the case that ANNs, which emulate 
human behavior closely through incorporation of these adaptations, would in turn 
be accurate descriptions of brain functioning.  

The third talk in Session 1, by Prof Jitendra Malik of UC Berkeley, was titled 
“Turing’s Baby”. The title is perhaps a reference to one of the earliest electronic 
stored-program computers, nicknamed “Baby”, one of whose creators was inspired 
by Alan Turing.12 Prof Malik began by quoting Turing’s musing that, rather than 
creating a program to simulate the adult mind, one could begin by simulating that 
of a child.13 Essentially, this would mean creating an AI that would learn and grow 
by interacting with the environment and by learning from other AI and humans. 
This is referred to as embodied machine intelligence. Prof Malik argued that 
supervised learning essentially deals with static data sets and thus displays 
disembodied intelligence operating on a well-curated moment in time. Specifically, 
he posited that the supervisory training approach is ill-suited for creating ML that 
can provide human-level understanding of the world, especially of human actions. 
Prof Malik presented “Habitat”, a platform developed by him and his collaborators 
for research in embodied AI.14 The panel discussion that followed touched on the 
topics addressed by the speakers as well as those related to learning by robots, and 
current models of intelligence development in children. 

Session 2 on “Data Synthesis: Approaches and Validation” began with a talk, titled 
“Learning to Generate or Generating to Learn?” by Prof Leonidas Guibas of 
Stanford University. Among the motivations for investigating synthetic data 
generation for training ML, he pointed out the alleviation of the burden of massive 
amounts of human annotations of training data. His premise was that generation 
efficiency and realism of the synthetic data are important regardless of whether 
used for training ML or for human consumption. However, he indicated other 
metrics of quality are not well defined and need further study. He showed examples 
of improved object-recognition performance by ML when trained on mixed 
synthetic and real data but acknowledged the difficulty of drawing generalizable 
conclusions. 

Dr Jessica Hodgins of Carnegie Mellon University delivered the second talk of the 
second session, titled “Generating and Using Synthetic Data for Training”. The talk 
showed examples of finely detailed synthetic scenes generated by her research 
group. Using the process of style transfer from real scenes to synthetic scenes,15 her 
group has created examples of where ML methods, trained on preponderantly style-
adapted synthetic data mixed with some real data, have outperformed those trained 
just on either real-only or synthetic-only data sets. The explanation for the improved 
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performance is attributed to the style transfer overcoming the “distribution gap” 
between the synthetic and real data sets. 

The final talk of Session 2 was by Prof Trevor Darrell of UC Berkeley. Titled 
“Generating, Augmenting, and Adapting Complex Scenes”, it was divided into 
three parts. The first part detailed a technique developed by the speaker and his co-
researchers, called “semantic bottleneck scene generation”, for synthesizing scenes 
from ground-truth labels. The techniques could further be combined with models 
generating such ground labels through a generative process. Detailed description of 
the technique is available in Azadi et al.16 The second part dealt with augmentation 
and self-supervised learning. The speaker made the argument that current 
contrastive learning methods build invariances in synthesizing augmented data that 
may or may not be beneficial. For example, building rotational invariance might be 
beneficial in recognizing flowers in a scene but might hinder effective recognition 
of objects with specific orientations. The speaker described his group’s approach 
of considering multiple learning paths with specific invariances and showed results 
indicating improved performance over prior art.17 The third part presented a 
technique called “Tent” (for “Test Entropy”). The premise is that the data 
encountered during application of a DNN might be distributed differently from the 
training data, resulting in performance degradation. Real-time or test-time 
adaptation of DNN parameters is therefore desirable to prevent such degradation. 
The Tent technique achieves this by minimizing the measured entropy of the DNN 
output by adapting its weights. The speaker then showed improved performance of 
this technique over prior approaches with commonly used data sets.18 The ensuing 
panel discussion dealt with synthesis challenges, especially those of IR images. 

Day 2 began with Session 3 on “Domain Transfer Challenges”. Dr Rama 
Chellappa, a Bloomberg Distinguished Professor at Johns Hopkins University, 
gave the first talk, titled “On the Expectations and Maximization of Synthetic Data 
for Solving Real DOD Problems”. The talk began by tracing the history of multiple 
DOD programs dealing with synthetic imagery over the last two decades. It made 
a key assertion that domain shift between real and synthetic data may be less if the 
physics governing the real data is incorporated in the synthesis process. Prof 
Chellappa also provided a quick tutorial on domain adaptive representations 
covering formal mathematical approaches as well as the newer generative 
adversarial networks (GANs). The GAN-based approach developed by the speaker 
and his coresearchers modifies the distribution of synthetic data to match that of 
the target distribution. The talk showed examples of this approach outperforming 
prior non-GAN approaches.19 

Prof Judy Hoffman of the Georgia Institute of Technology delivered the next talk, 
titled “Challenges in Generalizing from Multiple Data Sources”. The problem she 
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considered is that of learning models in simulation that then transfer to the real 
world. She identified four challenges: Generation, Enumeration, Generalization, 
and Adaptation. The speaker presented several different approaches for addressing 
these challenges. Specifically, the domain-specific masks for generalization 
(DMG) approach tackles multisource domain learning by balancing domain-
specific with domain-invariant feature representations to produce a single model 
that provides effective domain generalization.20 

The third and final talk of Session 3, titled “Recent Advances and Challenges in 
Sim2Real Domain Transfer for Image Classification and Segmentation”, was given 
by Prof Kate Saenko of Boston University. While continuing on themes addressed 
in the previous two talks, Prof Saenko also provided a history of visual domain 
adaptation and addressed issues of domain and data-set biases. Among different 
approaches for correcting data-set bias, the talk dealt in detail with domain 
adaptation. Of particular significance was the ability of techniques developed by 
Prof Saenko and collaborators showing synthetic to real adaptation, as from game 
engines to real data.21 The ensuing panel discussion brought up several interesting 
questions including that of training and test domains being different, not in the 
objects of interest but in the environments the objects are found in, such as military 
vehicles in a desert environment during training but in a tropical-vegetation 
background during testing. 

4. Breakout Discussions 

The three breakout discussions for each of the three thrusts were conducted in 
parallel. Discussions in the breakout on “Human Learning & Generalization” began 
by addressing questions such as, “How do humans learn?”, “How do ML models 
mimic human processes?”, and “How do synthetic data enable these?” 
Relationships between learning and growth from childhood through adolescence 
and adulthood emerged as key points. Other factors identified as aspects of human 
learning that would help if transferred to ML were human psychology, emotions, 
simultaneous engagement in multidimensional activities, memory, and ability to 
unlearn. 

The breakout on “Data synthesis: Approaches & Validation” identified several 
issues with synthesizing data, especially with image and video. The main questions 
related to the usefulness of incorporating physics, tradeoffs between fidelity to 
visual appearance and cost, metrics for fidelity, the importance of fidelity itself, and 
limitations of current techniques including those of GANs. It was observed that 
synthetic image and video generation has been around for at least a couple of 
decades but most products were designed either for visual effects or for reproducing 
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physical measurements (e.g., radiometric profiles in IR simulation). They are not 
well suited for training ML. Another issue raised was the importance of synthesized 
2-D imagery to be consistent with the underlying 3-D geometry of objects and 
environment. The case was also made that being able to generate a large amount of 
synthetic data in a particular context of interest may serve to test new AI & ML 
approaches as a first pass, regardless of whether that results in such methods 
working well on real data. 

The Thrust 3, “Domain Transfer Challenges”, breakout discussion identified a key 
desired AI capability for MDO as that of going from isolated learning to joint or 
collaborative learning among machines and humans. Joint learning in the sense of 
training ML simultaneously on multiple modalities of data was also discussed. It 
was recognized that work has barely begun in these areas. The need for providing 
unambiguous specification to the Soldier of what an AI-based system will do in a 
given situation was emphasized by the breakout lead. This led to discussions on 
system robustness. The breakout leads provided a summary of the discussions to 
the ASPSM audience. 

5. Gaps and Recommendations 

Based on the deliberations of this ASPSM, we have identified the following as areas 
worthy of further Army science and technology (S&T) investment: 

1. Synthesis techniques and data sets that support multimodal interactive 
learning. In contrast to the prevailing static data sets that capture “moments 
in time” (e.g., images of vehicles in rural settings), it is necessary to develop 
simulators that are more representative of the embodied experiences that 
support continuous learning, as we see with humans, and enable richer 
representations of the world. Hybrid approaches (e.g., augmented reality) 
may also bring together the advantages of human supervision with the 
flexibility of synthetic environments. 

2. Algorithms and architectures to learn and synthesize causality and 
hierarchical relationships. Recent approaches, such as graph-based 
convolutional neural networks, have shown promise in learning hierarchical 
relations in space and time (e.g., object-part and cause-effect relationships). 
Given the complexity of collecting and annotating such data in the real-
world, synthetic data generation could be particularly useful. Identifying 
hierarchical relationships is a key ingredient of general DOD and battlefield 
intelligence analysis. 



 

9 

3. Algorithms and architectures that support continuous, incremental, 
multimodal learning. Deep-reinforcement-learning methods are being 
successfully used to train virtual or robotic agents on relevant action policies 
such as predator–prey interactions. Imitation-based approaches 
acknowledge the social aspect of learning and typically partner agents with 
(often human) teachers to learn new policies. These types of interactive 
continuous learning can further be paired with multimodal learning (i.e., 
fusing data from multiple sensors) to enable richer representations of the 
world that are more robust and generalizable. Again, the difficulty of 
obtaining large amounts of curated data in this realm provides motivation 
for exploring synthesis engines. 

4. Algorithms and architectures that learn physics or are endowed with 
relevant physics domain knowledge. In many domains (e.g., object 
perception in IR light), perceiving from images and synthesizing imagery 
requires an understanding of the underlying physical properties of the world 
such as interaction between light and material. However, current deep-
learning models lack this physical knowledge. Developing techniques that 
endow ML with physics domain knowledge is critical to the performance 
of these systems. 

5. Domain adaptation techniques with rich intermediate representations. To 
close the domain gap between real and synthetic data, it is essential to 
further current trends in building domain-invariant intermediate 
representations, in particular, using semantic dictionaries and generative 
adversarial networks. Representations that are able to understand the 
underlying structure of the data (e.g., lighting, rotation, color) are more 
likely to succeed in abstracting away from unimportant details in the 
synthetic data. 

6. Methods for providing insight into ML models’ internal representations and 
comparison of synthetic versus real representations. Network dissection 
techniques “open up” the hidden layers in deep-learning models, allowing 
interpretation of which particular concepts, or their finer aspects, are being 
learned at each stage in the network. These techniques shed light on the 
internal representations of DNNs with real and synthetic inputs, helping 
identify key differences in what is being learned and, consequently, finding 
solutions to overcome such differences.  
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6. Conclusions 

The two-day virtual ASPSM drew a large and enthusiastic attendance of DOD 
scientists and engineers, leading academic experts, and S&T program managers. 
The multiple multidisciplinary discussions reinforced the view that developing 
improved methods for generating synthetic data for training ML approaches cannot 
be separated from understanding and improving the ML approaches themselves. A 
particularly important need is that of understanding how ML approaches, especially 
current learning architectures, create an internal representation of the scene. Two 
other areas that emerged as important are 1) understanding similarities and 
differences between human learning and what is possible in the ML world, and 2) 
multimodal data—from both synthesis and ML perspectives. We anticipate 
increased collaborative efforts in the near term between DOD and academic 
researchers in the areas identified in this report. 
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2-D two-dimensional 

3-D three-dimensional 

AI artificial intelligence 

AI & ML artificial intelligence and machine learning 

ANN artificial neural network 

ASPSM Army Science Planning and Strategy Meeting 

DMG domain-specific masks for generalization 

DNN deep-learning neural network 

DOD Department of Defense 

GAN generative adversarial network 

GPU graphical processing unit 

IR infrared 

MDO multi-domain operations 

ML machine learning 

S&T science and technology 
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